
3.3 Predator-prey models, stochasticity 

R. Rabbinge and S.A. Ward 

3.3.1 Introduction 

Population growth in time and space can be simulated using the techniques 
presented in Chapter 2, and is illustrated for polycyclic epidemics in Section 3.1. 
Applying these methods to predator-prey or host-parasite systems would result 
in population models for either predator and prey, or host and parasite. In such 
models, the interaction between predator and prey, or host and parasite, deter­
mines the decrease in prey numbers due to predation, and the growth in the 
number of predators as a result of feeding. 

Predator-prey or host-parasite relations are probably the most frequently 
modelled phenomena in population biology. Predator-prey models, at all levels 
of detail and complexity, can be found in the literature. These models vary from 
differential equations expressing predator-prey relations in terms of a single 
variable, to very detailed predator-prey models at individual and population 
levels; incorporating much ethological and physiological information. Stochas­
tic elements are often included. In this Section, a simple model of the population 
dynamics of prey and predators is presented. The behavioural and physiological 
factors influencing predation rate are then considered at the level of the individ­
ual. Finally, methods are introduced which can be used to calculate population 
changes using models of predation rates for individuals. 

3.3.2 Lotka- Volterra equations for predator-prey interactions 

The logistic growth equation (Section 3.1, Equation 37) can be applied in 
predator-prey systems to both prey and predator. The predation process is then 
introduced as a reduction in the growth rate of the prey population, and the 
increase in predator numbers is made dependent on the availability of prey. 
Lotka (1925) and Volterra (1931) proposed the following equations for changes in 
prey and predator numbers: 

dx 
for the prey, —- = (a — b • x) • x — c • x • y; Equation 58 

dt 

for the predator, -^- = — e • y + d • x • y. Equation 59 

In these equations, the following implicit assumptions are made: 
1. Densities of prey and predators can be expressed as single variables; 
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2. Interaction between prey and predator responds instantaneously to changes 
in density; 

3. In the absence of predation (i.e. with c • x • y = 0), the prey population grows 
according to a logistic growth equation; 

4. In the absence of prey, the predator population declines exponentially; 
5. The rate of consumption of prey is proportional to the product of prey and 

predator densities; 
6. The effects of predator satiation are negligible. 
None of these assumptions is valid in real predator-prey systems. Nevertheless, 
these equations may help to provide some insight into the operation of pred­
ator-prey systems. It is possible, for example, to use them to study the behaviour 
of such systems at equilibrium. Here, the rates of change are zero, so conditions at 
equilibrium can be defined as: 

for the prey: — = 0, so a — b • x — c#y = 0; 

dy 
for the predator: — = 0, so — e -f d • x = 0. 

Figure 35 shows the trajectory of the system when b/c > 0. When the densities of 
prey or predator, x and y respectively, are below their equilibrium, the rates of 
change are positive and their numbers increase (Equations 58 and 59). When prey 
or predator densities are above their equilibrium, the rates are negative and the 
numbers of x and y decrease. As a result, the numbers of x and y approach an 
equilibrium value at the junction of both equilibrium lines. The system moves in 
an anti-clockwise spiral towards stable equilibrium. If b/c < 0, however, the 
system spirals away from equilibrium, until either the predator population or 
both prey and predators become extinct. Apparently, the ratio between the 
parameter which expresses intraspecific effects of the prey population (b) and the 
parameter which expresses predation activity (c), determines whether stable 
equilibrium, or extinction of prey or predator populations, will be reached. This 
ratio determines the position of both equilibrium lines; the graphical representa­
tion helps to explain the consequences of the change in b/c. 

Exercise 43 
Plot the changes in the populations of prey, x, and predators, y, as functions of 
time, for b/c < 0, b/c = 0 and b/c > 0. Try to explain these phenomena. 

To evaluate the consequences of changing various parameter values for popu­
lation fluctuations of prey and predator, a simple simulation model may help. 
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Figure 35. Equilibrium conditions for prey and predator populations; when b/c > 0 there 
will be a stable equilibrium. 

This is formulated in the simulation language CSMP (see Appendix 5). Such 
a program reads as follows: 

TITLE PREDATOR-PREY 

INITIAL 
INCON PREYI = 10., PREDI = 2. 
PAR AM A = 0.1732, B = 0.0577, C = 0.0867, D = 0.1540, E = 0.2310 

DYNAMIC 
PREY = INTGRL(PREYI, RPREY) 
PRED = INTGRL(PREDI, RPRED) 

RPREY = (A - B * PREY) * PREY - C * PREY * PRED 
RPRED = - E * PRED + D * PREY * PRED 

TIMER FINTIM = 50., DELT 
OUTPUT PREY,PRED 
METHOD RECT 
END 
STOP 
ENDJOB 

= 0.4, OUTDEL = 5. 
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Exercise 44 
Give the time coefficients of this simple system. What are the dimensions of A, B, 
C, D and E? Test the sensitivity of the output to changes in the values of these 
parameters. Explain the outcomes of the model. Run the model with various 
combinations of parameter values. 

This simple predator-prey model may offer some insight into the functioning 
of predator-prey systems. It is a conceptual model, which can be used at the very 
beginning of the scientific approach to the problem. The addition of further detail 
may improve the model's realism and, ultimately, yield a comprehensive simula­
tion model. This 'top-down' approach is different from the 'bottom-up' approach 
used in Section 3.1 for the epidemiological models. Here, we can proceed by 
modifying the model's assumptions. This increases its realism but does not imply 
that it is now a comprehensive explanatory model. It is still conceptual and 
various other ways of improvement, discussed below, are possible. For example, 
assumption 2, that both prey and predator react instantaneously to changes in 
density, is unrealistic as there is generally a considerable time delay in the 
numerical response of predator density to changing prey density. To take this 
delay into account, a separate state variable is introduced which accumulates the 
numbers of recently consumed prey. The state variable PREYP is emptied, and 
its content multiplied by the inverse of a time coefficient of, for example, 3 days, so 
that an exponentially weighted average of prey consumption rate is found: 

PREYP = INTGRL(0.,C*PREY*PRED - PREYP/3.) 

This state variable, expressing predation activity, is used as the independent 
variable of the table from which D is read: 

D = AFGEN(DT, PREYP) 

Thus, as far as numerical response is concerned, the model has become more 
realistic. Even so, the changes are arbitrary and lack experimental quantitative 
support. 

Assumptions 5 and 6 are equally unrealistic, since a predator cannot continue 
to eat indefinitely. Long before its appetite is satisfied, the predator becomes 
more selective and tends to accept only the most attractive prey, which may then 
be only partially consumed. This selective behaviour, which depends on sati­
ation, can be introduced into the Lotka-Volterra equations by inserting a state 
variable representing, for example, the gut content. The predation rate is then 
dependent on this gut content. 
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333 Prey preference and predator satiation 

Several animal ecologists have tried to quantify the physiological conditions 
determining predator behaviour. Holling (1966), Fransz (1974) and many other 
workers quantified the influence of physiological conditions on predation activ­
ity. They determined the effect of this state variable on predator behaviour, and 
its consequences for the interactions between prey and predator populations. 

Detailed observations have shown the presence of a functional response; as the 
number of prey per unit area increases, predation activity also increases until 
a certain plateau is reached. Holling (1966) distinguishes three basic functional 
responses (Figure 36). Type 1 includes a linear increase in predation rate per 
predator, as prey density increases, until a maximum predation rate is reached. 
This type of response is found only in a few filter-feeding crustacae. As prey 
density increases, predation rate also increases until the filters are completely full; 
at that level, increases in prey density do not result in a further increase in 
predation rate. 

Type 2 is often found in arthropod predators. Predation increases at a decreas­
ing rate with increasing prey density, until a plateau is reached. The flattening is 
due either to satiation, which decreases predation activity, or to the time needed 
for the various components of the predation process to accumulate. Prey hand­
ling, prey consumption, and prey searching; all require time, which becomes 
a limiting factor at higher prey densities. Thus, time limitation and satiation 
together limit the predation rate. The predator gradually reaches satiation and, 
as a result, the predation rate steadily approaches its maximum value. The type 
2 functional response can be described with a hyperbolic function, or may be 
tabulated with an Arbitrary Function GENerator (in CSMP: AFGEN). 

Exercise 45 
Introduce the type 2 functional response into the Lotka-Volterra equations. 
Adapt the simulation program and run it with various self-chosen values for the 
parameters. 
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Figure 36. Three functional responses of predation rate with regard to prey density. 
(Source: Holling, 1966). 

123 



The type 3 functional response is often found in vertebrate predators. It differs 
from the type 2 response in that the predation rate at low prey densities, shows 
a more than proportional increase with prey density. This could be due to several 
reasons. First, if the prey occurs in clusters or patches, the predator may leave 
low-density patches, but remain for a longer time in dense prey clusters (e.g. the 
parasitoid, Aphelinus thomsoni (Collins et al., 1981)). Second, predators may 
'switch' from one habitat type to another, depending on the densities of prey 
available (e.g., the predatory groundbeetle, Pterostychus coerulescens (Mols, 
1989)). Finally, some predators may develop a 'search image' for a particular prey 
species if this species is abundant (e.g. the great tit, Pants major searching for 
caterpillars or aphids (van Balen, 1973)). 

At high prey densities, satiation or handling time again limit the predation 
rate. Type 3 is thus sigmoid (Figure 36). Other factors, which can be important in 
determining the predation rate, include mutual interference between searching 
predators (Hassell & May, 1973) and the spatial distribution of prey and pred­
ators (see Subsection 3.2.4). 

In addition to the effects of predation on prey mortality rate, the second main 
component of the predator-prey interaction (at the population level) is the effect 
of predation on the predators' rate of increase. In many insect parasitoids, each 
act of 'predation' (i.e. oviposition in a host) results in the production of a new 
'predator' (parasitoid). In true predators, however, this relation is less direct; for 
example, a predator's feeding rate may determine either its rate of reproduction 
or its probability of surviving to maturity (Dixon, 1959). 

Although the likely effects of these relations have been widely studied using 
general analytical models (Hassell, 1978), the complexity of real systems often 
means that numerical models must be used to study particular examples. 

There is another reason for developing simulation models. During the pred­
ation process, some stochastic phenomena play a role; e.g. a certain probability 
for predator-prey encounters (which are discrete events) occurring within 
a limited time period. The effects of these stochastic elements on the predation 
process, and their consequences for the predation rate, can be evaluated using 
a numerical simulation model. 

33 A Stochastic and deterministic models 

Many phenomena in ecology are stochastic: the appearance of a spore from 
a pustule, its arrival at a particular place at a particular time, the sampling of 
a population, or the killing of a prey by a predator. All these events occur with 
a certain probability. However, it is not the event as such that is important 
(except for the individual concerned), but its consequences for the overall rates. 
Thus sporulation rate, landing rate, predation rate etc., must be examined. 
Simulation models of the predation process are used to compute the expected 
number of prey killed, over time. The expected values are the means of many 
simulation experiments with individual predators. As the interval between the 
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captures is a state variable with a certain probability distribution, each experi­
ment is a stochastic process with a variable number of captures in a well-defined 
time interval. The expected number of captures is estimated by dividing the total 
number of catches in a collection of experiments by the number of experiments. 
There may be important differences between the results of deterministic and 
stochastic models. In deterministic models, computations are based on the 
expected values of the parameters. However, this may introduce errors, since the 
mean of the values computed, using unprocessed values of the components, does 
not necessarily equal the value calculated using the expected values of the 
components: c(f(x)) ̂  f(c(x)). In addition, stochastic models compute both the 
mean and the variance. Thus, generally, there are two reasons for using stochastic 
models: 
1. Curvilinear relations between stochastic characteristics and rate variables 

mean that the use of mean values introduces a significant bias into the results; 
2. Stochastic models can provide estimates of the variation in the system's 

behaviour. Sampling errors, for example, may have important consequences 
in interpreting the results. 

To illustrate the consequences of deterministic and stochastic simulation of the 
predation process, simple deterministic and stochastic models of the predation 
process will be described and their results compared. 

A computer model Assume that P is the number of prey killed by a predator in 
a certain time. The predation rate, dP/dt, depends on the predator's velocity, V, 
which has a uniform probability distribution between 0 and 1, so 0 ^ V ̂  1. 

If the rate of predation, dP/dt, is proportional to V, then dP/dt = cV, where c is 
a parameter whose value expresses predation efficiency; here c = 10. 

A deterministic simulation of predation during the course of a day can be 
written in CSMP as: 

TITLE DETERMINISTIC PREDATION 

INITIAL 
INCON PI = 0.0 
PARAM V = 0.5, C = 10.0 

» 

DYNAMIC 
P = INTGRL(PI, C * V) 

TIMER FINTIM = 24., DELT = 1., OUTDEL = 1. 
METHOD RECT 
OUTPUT P 
END 
STOP 
ENDJOB 
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Alternatively, this process can be modelled stochastically (with the velocity 
changing at random every hour) using the following program: 

TITLE STOCHASTIC PREDATION 

INITIAL 
FIXED M 
M = 315 
INCON PI = 0. 
PARAM C = 10.0 

DYNAMIC 
P = INTGRL(PI, C * V) 
V = RNDGEN(M) 
NOSORT 
M = M + 2 
TIMER FINTIM = 24.0, DELT = 1.0, OUTDEL = 1. 
METHOD RECT 
OUTPUT P 

The statement V = RNDGEN(M) is a CSMP function, which draws (each 
time interval of integration, DELT) a number at random from a standard 
uniform probability distribution between 0 and 1. M is an arbitrary odd integer 
chosen to initialize the random number generator. PI is the initial value of P, and 
C is a constant. The program uses time steps of 1 hour and continues the 
calculations for one day (24 hours). The expected value of P (eP) is the mean result 
of many replicates of the experiment (in this case 1000). The commands to repeat 
the performance 1000 times and to calculate the expectation value are given 
below in FORTRAN. 

TERMINAL 
PARAM NREP = 1000. 
INCON SUMP = 0., COUNT = 0. 

SUMP = SUMP + P 
COUNT = COUNT + 1. 
IF (COUNT.GE.NREP) GOTO 1 
CALL RERUN 
GO TO 2 

1 EP = SUMP/COUNT 
WRITE (6,100) EP 

100 FORMAT (HI, F10.4) 
2 CONTINUE 

END 
STOP 
ENDJOB 

126 



This TERMINAL section is performed once per run, when TIME reaches the 
value FINTIM. 

With a uniform probability distribution, an analytical solution of c(P) is 
possible because P is the sum of a number of stochastic variables: 

e(P) = PI + 24*e(cV) 

e(cV) = cVdV = i*cV2]J = 5 

o 

e(P) = 0 + 24-5= 120 

The deterministic computation of this model is found by accumulating the 
expected values during the observation period. 

P = PI + 24*c*c(V) 
c(V) = 0.5 
P = 0 + 24* 10*0.5 = 120 

Thus, with dP/dt proportional to V, the deterministic model (using V) yields the 
same result as the stochastic version, since e(f(x)) = f(e(x)). If the relation between 
dP/dt and V is non-linear, however, the deterministic model introduces import­
ant errors. 

Consider the following simple example. We wish to determine the mean rate of 
predation by a predator whose velocity varies at random as assumed above. The 
individual predation rate is 

dP/dt = c*V± 

and V has a uniform distribution between 0 and 1. A deterministic model, using 
the population's mean V gives 

P = PI + 24 • c • (e(V))* 

where c(V) = 0.5, so 

P = 0 + 240-(0.5)* = 169.7 

A stochastic model, however, which allows for variation in V, yields: 

P = PI + 24*c*£(V±) 

£(V±) = V±dV = 2/3V3/2]£ = 0.67, 

so P = 0 + 240*0.67 = 160.8 
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The use of c(V) in the deterministic model, thus results in an overestimation of the 
total predation. This is because the curvilinear relation, between the predation 
rate and the velocity of the individual predators, means that 

d(c(P))/dt # c • (c(V))* 

Exercise 46 
Use a deterministic model and a stochastic model to calculate the number of prey 
killed per day when the relationship between the number of prey killed per hour 
and the predator's velocity is described by dP/dt = cV3/2; c equals 8 and V has 
a standard uniform probability distribution. Make these calculations both nu­
merically and analytically. 

The case of the stochastic simulation is described above. When the parameters 
are dependent upon environmental factors or a relation, such as the dependency 
of predation rate on velocity, more complicated simulation models are needed. 
However, the basic structure remains the same. 

Basically, the process of sampling from a population, needed in many popula­
tion studies, is the same. This is explained by de Wit & Goudriaan (1978) for 
a population model of protozoa growing on a bacterial culture. 

3.3.5 Modelling at the population level 

The model STOCHASTIC PREDATION simulates prey mortality caused by 
a predator moving with a velocity that changes unpredictably during the 24 hour 
foraging period. When the relation between V and dP/dt is non-linear, models 
that fail to account for the variation in V yield erroneous results. 

Similar problems are encountered in modelling changes at the population 
level. For example, the effects of a population of predators cannot be accurately 
modelled by using the population mean of the search parameters (velocity, 
handling time, etc.), unless these parameters are the same for all individual 
predators; in which case, stochastic models can be used to simulate the conse­
quences of individual variation. 

Areas where true stochasticity is important at the population level include, for 
example, mortality in small populations and the effects of sampling. For 
examples and discussion of these areas see Pielou (1974) and de Wit & Goudriaan 
(1978). An example based on the predation process above: in the stochastic model 
for a population of individuals the assumption is made that velocity has a well-
defined probability distribution. The average velocity is: 

n 

V = E V,/n^ 
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where Vj is the velocity of individuals in one predation experiment. When Vj is 
constant, then a deterministic model could be used. However, this is virtually 
never true; therefore, calculations using various individual velocities should be 
done. The mean and variance may be computed because the rates in a single 
predation experiment have a uniform probability distribution. Therefore, the 
mean velocity is computed as: £(Vj) = 0.5, and its variance computed as: 

1 1 

var(V|) = V?dV,- VidV, 1 = 1/3 WfV0- (1/2- V?]£)2 = 1 /3 - 1/4 = 1/12 

0 0 

In a population of n individuals the mean velocity is thus: 

£(V) = n/n-0.5 = 0.5 

and its variance is computed as 

var(V) = n/n2- l /12= 1/(12n) 

As with the 'individual' model, the results of this 'population' model differ from 
the deterministic model of an individual predation process because of the cur­
vilinear relationship between stochastic variables and the state or rate variables. 
Also, the variance of the model is different. 

The results in this section serve to emphasize an important problem in the use 
of experimental data on individuals to construct models to simulate the dynam­
ics of populations. Unless features of population dynamics depend linearly on 
components of individuals' behaviour (e.g. velocity), the use of the mean behav­
iour may introduce significant errors into simulations at the population level. 
Therefore, where rate variables depend non-linearly on variable or stochastic 
state (or rate) variables, deterministic models are often inadequate. 

33.6 Other methods 

The model STOCHASTIC PREDATION illustrates the use of Monte Carlo 
analysis to obtain results at the population level using information about individ­
ual predators. Effectively, it 'samples' 1000 predators at random, and uses each 
predator in a simulated experiment. In principle, therefore, it solves the problem 
of stochasticity in the same way as the model of dispersal, described in Subsection 
3.2.3 (Sabelis, 1981). 

Repeated use of stochastic models, however, is time-consuming and expensive, 
so other methods, such as the queuing approach of Curry & De Michele (1977) 
and the compound simulation of Fransz (1974), have been developed to mimic 
stochasticity. The queuing technique requires only a limited amount of computer 
time. Basically, this method may be compared with calculating the waiting time 
of a patient in the dentist's waiting room. The patient may enter the waiting room 
(be encountered by a predator) with a certain expectance of service (being eaten). 
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Compound simulation is an intermediate approach between the stochastic 
model, which gives correct results but requires a lot of computing time, and the 
deterministic model, which requires less computer time but gives erroneous 
results. In this intermediate approach, deterministic simulation is applied to 
classes of the stochastic variables. The classes in this method of compound 
simulation, are chosen in such a way that within the classes the relation between 
velocity and predation rate is approximately linear. The number of classes 
depends on the balance required between accuracy and computer time. The 
calculation, for each class of individuals, is made at each time step of integration, 
after which the contents of the classes are updated and another computation 
starts with the redistributed classes of individuals. In this way, only one simula­
tion needs to be carried out for each set of conditions, instead of 1000 runs, as 
required for the Monte Carlo method. Replication of all computations is omit­
ted, and replaced by a complicated, but not time-consuming, system of book­
keeping of predators, distributed each time interval among classes of individuals. 

Sabelis (1981) described the application of Fransz's compound simulation, 
Monte Carlo techniques and queuing techniques to the predation process of 
mites. He showed that all three methods produced results that were within the 
confidence intervals of the measurements. The queuing techniques required the 
least computing time, whereas the deterministic model gave erroneous results. 
Although these mimicking procedures have contributed a great deal to the 
accurate simulation of predation rates, they are still too complicated to be 
applied to population models of prey and predators. 

33 J Equilibria 

Simulation of individual predators shows that if prey density is kept roughly 
constant, the predator population reaches equilibrium. In that situation, the 
physiological condition of the predator oscillates, with low amplitudes, around 
a constant level. Changes in this equilibrium level are slow in comparison with 
changes in population composition. The time coefficient of this change is thus 
large in comparison with those for other changes in the system, such as develop­
ment and growth. This equilibrium level is determined by prey and predator 
densities, and by temperature. At equilibrium, velocity and other variables 
determining predation rate also vary slightly, relative to the system as a whole. 
This characteristic of many predator-prey systems permits the computation of 
the predation rate at each level of the motivation state or physiological condition 
of the predator, using the expected values of the component variables. Use of this 
approach in population models for predator-prey systems will be illustrated for 
an acarine system in Section 3.4. 
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