
2.1 Some elements of dynamic simulation 

P.A. Leffelaar and Th.J. Ferrari 

2. J.J Introduction 

When analysing systems, one is usually interested in the status of the system at 
a given moment and in its behaviour as a function of time. A system, which can be 
defined as a limited part of reality that contains interrelated elements, may be too 
complex to study directly. However, a model, which can be defined as a simplified 
representation of a system that contains the elements and their relations that are 
considered to be of major importance for the system's behaviour, may be easier to 
study. The design of such models and the study of the model properties in relation 
to those of the system is called simulation; if these models change with time they 
are called dynamic simulation models. 

Dynamic simulation models are based on the assumption that the state of each 
system - at any given moment - can be quantified, and that changes in the state 
can be described by mathematical equations: rate or differential equations. This 
leads to models in which state, rate, and driving variables can be distinguished. 

The purpose of this Section is to introduce the method of constructing models 
according to the state variable approach by using the very elementary system 
units described in Subsection 2.1.2. Subsection 2.1.3 shows how the appropriate 
differential equations may be integrated analytically to obtain the state variables 
as a function of time in these simple system units. The concept of feedback, and 
the possibility of visualizing the available knowledge of a system by means of 
relational diagrams, will be discussed in Subsection 2.1.4. Slight changes in 
differential equations make analytical solutions impossible, so solutions must be 
obtained by numerical integration methods. These solutions are based on the 
assumption that the rate of change is constant over a short period of time, At. The 
principle of numerical integration, the relation between the time interval of 
integration, At, and the time coefficient of an equation, are discussed in Subsec­
tion 2.1.5. Some numerical integration methods are presented in Subsection 
2.1.6. During a time interval of integration, rates will usually change, so numeri­
cal integration methods introduce errors in the solution of differential equations. 
This will be demonstrated in Subsection 2.1.7, and relations between these errors 
and the time coefficient of the system will also be discussed. Finally, in Subsection 
2.1.8 a more complex system is analysed using the methods presented. 

2.7.2 State variables, rate variables and driving variables 

To introduce the method of constructing models according to the state-
variable approach, the following elementary system units are used (Figure 4): 
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Car (distance) Animals (number) Water tank (volume) 
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dt 
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dt 

— . c . ( W m - W ) (3) 
dt 
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Figure 4. Rate or differential equations (Equations 1,2 and 3), and their graphs, for three 
elementary system units. D, A and W stand for the state variables, t for time and c is 
a constant that may be different in each equation. Wm is the maximum water level that 
can be reached. 

1. 
2. 
3. 

A car driving at a constant speed; 
A number of animals that increases every year by a certain fraction; 
A tank which is filled by a flow of water through an adjustable valve until 
a certain water level is reached. 

The state variables in these examples are the distance covered by the car, the 
number of animals, and the amount of water in the tank, respectively. Generally, 
state variables have dimensions of length, number, volume, weight, energy or 
temperature. Such quantities can be measured directly. 

The ultimate status of a system is not the only feature of interest; we are also 
concerned with its behaviour in time. Thus, the rate of change of the state 
variables in time, as well as the direction of change must be known. If these rates 
have a clear pattern, they may be formalized by means of rate equations or 
differential equations. The rate equations and their graphical representation for 
the three elementary system units are given in Figure 4. Rate variables, on the left 
hand sides of Equations 1,2 and 3, have the dimension of a state variable per time, 
i.e. length time"1, number time"1 and volume time"1, respectively. These 
variables cannot be measured directly and are usually calculated from state 
variables. For instance, when both the distance covered by the car and the time 
are measured, the (average) speed is given by their ratio. In Equations 2 and 3 the 
rate variables are functions of the state variables, A and W, respectively, whereas 
in Equation 1 the state has no effect on the rate. The influence of a state on its rate 
of change is called feedback and will be discussed in Subsection 2.1.4. The 
proportionality coefficients, c, in Equations 2 and 3 are important with regard to 
the behaviour of the state variables and are often given special names. In 
biological systems c is called the relative growth rate; in technical systems the 
inverse of c is used, and is called the time coefficient. Time coefficients and their 
effect on numerical integration are crucial in dynamic simulation, which is 
discussed in Subsection 2.1.5. The constant c in Equation 1 is a driving variable 
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with the dimension for speed. Driving variables, or forcing functions, character­
ize the effect of outside conditions on a system at its limits or boundaries, and 
their value must be monitored continuously. Driving variables may have the 
dimension of rate variables, as in Equation 1, or of state variables, depending on 
their nature. When the driving variable is temperature, e.g. when the fraction by 
which the number of animals increases each year depends on temperature, it has 
the dimension of a state variable. It is good practice to check the dimensions of all 
variables in a particular model. 

Exercise 1 
a. What are the dimensions of c in Equations 1, 2 and 3 in Figure 4? 
b. Which general rules form the basis of dimensional analysis? 

2.1.3 Analytical integration and system behaviour in time 

Differential equations summarize the existing knowledge of a system, i.e. they 
relate rate variables to state variables, driving variables and parameters. Hence, 
they form a model for that system. When the differential equations are for­
mulated, and when the state of the model at a certain moment is known, then its 
future state can be calculated. For this purpose, the differential equation must be 
solved with respect to its state variable. This process of integration can be 
visualized for the simplest case of Equation 1 by determining the distance covered 
by the car after a certain period of time when its speed is constant and known. 
Here, the speed is multiplied by the time. Thus, the value of the state variable 
equals the area (Figure 4) delimited by the time axis, the line parallel to this time 
axis at the value c on the rate axis, and the two lines, parallel to the rate axis, at 
two points of time, t0 and tl5 indicating the period. This does not apply to 
Equations 2 and 3 as the rate variables depend on the state; they are not expressed 
as functions of time. The formal process to obtain the state variable as a function 
of time must be applied. This is shown in Figure 5 for all three models. Integra­
tion of Equation 2 produces the familiar exponential growth curve (Equation 5). 
The relationship between the rate variable, dA/dt, and time is obtained by 
differentiating Equation 5 with respect to time. This yields Equation 2a, which 
has the same form as Equation 5. The graph depicting Equation 2a may be used 
to obtain the state variable. It may seem trivial to state this, since the analytical 
solution is already available in the form of Equation 5. The graph may, however, 
be used to illustrate the errors introduced by numerical integration methods 
when these are used to solve differential equations (Subsection 2.1.7). 

In the case of the water tank, it is assumed that the rate of water inflow 
decreases linearly with the difference between a known maximum water level, 
Wm, and the actual water level, W (Equation 3). Integration yields Equation 6, 
which shows that the amount of water in the tank approaches Wm exponentially. 
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dW 
— = - c . ( W - W m ) 
dt 

d ( W - W m ) 

dt 
= - c . ( W - W m ) 

dD = c. / dt 
dA 

= c / dt d ( W - W m ) 

W - W m 
= - c / dt 

D = c . t + Q InA =c. t + Q ln ( W - W m ) = - c . t + Q 

in i t ia l va lue of the state var iable at t =0 

D = Dn 5 0 Q - - D , A = AQ SO Q = lnAQ W ^ W Q SO Q = l n ( W 0 - W m ) 

I n 4 - s c t 
A 0 

, , W - W m % l n ( — — — ) = - c . t 
W 0 - W m 

D = c.t + D0 (4) A = A 0 e c t ( 5 ) W = W m - ( W m - W 0 ) . e " c t ( 6 ) 

39-c 
dt 

d_D 
dt 

(1) 

•> t 

dt ° 

A0 .c 

(2a) i : ( W m - W J c . e 
dt ° 

( W m - W 0 ) . c 

- c t 
( 3 a ) 

•» t -> t 

Figure 5. Upper half: analytical solutions (Equations 4,5 and 6) to differential Equations 
1, 2 and 3, respectively, and their graphs. 
Lower half: rate variables (Equations 1, 2a and 3a) as a function of time, derived from 
Equations 4, 5 and 6, respectively, and their graphs. For an explanation of variables see 
Figure 4. Q stands for a general integration constant, and D0, A0 and W0 are the initial 
values of the state variables in the particular models. 
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Equation 3a, obtained by differentiating Equation 6, shows that the rate of inflow 
decreases exponentially. 

Exercise 2 
Consider the graphs depicting Equations 4, 5 and 6 in Figure 5. 
a. What do the slopes of the different lines represent? 
b. What is the dimension of the slope in each case? 
c. How do the numerical values of the slopes change as a function of time? 
d. Are your findings in accordance with the graphs depicting Equations 1, 2a 

and 3a? 

As long as differential equations are simple, they may be solved analytically to 
study the behaviour of the models. Slight changes in these equations, e.g. if c in 
Equation 2 is a function of temperature, make analytical solutions impossible. 
The equations should then be solved numerically. Before the principle of numeri­
cal integration is discussed (Subsection 2.1.5), and some integration methods 
presented (Subsection 2.1.6), the concept of feedback and the possibility of 
representing state, rate and driving variables in the form of relational diagrams is 
considered. 

2.1.4 Feedback and relational diagrams 

The rate variables in Equations 2 and 3 (Figure 4) are, respectively, a function 
of the state variables A and W, whereas the rate in Equation 1 is independent of 
the distance covered. When a rate variable, dX/dt, of a differential equation 
depends on the state variable X, there is a feedback loop, i.e. the state of the 
variable determines the degree of action or rate of change of this state. This 
process takes place in a continuously circulating loop. There are two types of 
feedback loops. 

In a negative feedback loop, the rate may be either positive or negative, but will 
decrease as a function of the state variable. For instance, in the case of the water 
tank, Equation 3, the rate is positive, but decreases linearly with the increasing 
volume of water in the tank. An example of a negative rate which decreases the 
state variable, and vice versa, is obtained when the sign of the coefficient c in 
Equation 2 is made negative. Then, the number of animals decreases each year by 
a certain fraction. This denotes exponential mortality. A negative feedback loop 
can be recognized in a differential equation when the rate of change of the state 
variable is negatively related to that state variable (Equation 3). Negative 
feedback causes the system to approach equilibrium. Such an equilibrium state is 
stable: if the system is perturbed it returns to its equilibrium state. In the case of 
the water tank, the equilibrium state is the maximum level of water, Wm, whereas 
in the case of exponential mortality the state variable approaches zero. 
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In a positive feedback loop, the rate enhances the state, and vice versa, so that 
both become greater and greater. The exponential growth of the animals that is 
described by Equations 2 and 5 is an example of positive feedback. In nature, 
however, there are limits to growth. For instance, there may be a shortage of 
food. Then, the simple Equations 2 and 5 no longer describe the system and the 
model needs revision. A positive feedback loop can be recognized in a differential 
equation when the rate of change of the state variable is positively related to that 
state variable (Equation 2). 

Relational diagrams are used to visualize feedback loops, rate and state 
variables and, more generally, the available knowledge about a system. They 
depict the most important elements and relationships of a system and form 
qualitative models of systems. Relational diagrams may be especially helpful at 
the start of the research in order to simplify the formulation of rate and state 
variables. They also make the content and characteristics of a model easily 
accessible. Relational diagrams for the three systems are given in Figure 6. They 
are drawn according to Forrester (1961), as shown in Figure 7. Figure 6 shows 
that feedback is absent in the case of the car, and that there is positive and 
negative feedback in the case of the animals and the water tank, respectively. 
When a parameter turns out to be variable, it must be replaced by a table or by an 
auxiliary equation. For instance, if the coefficient c, in the relational diagram for 
the animals, is temperature dependent, it can be replaced by a so-called auxiliary 
variable which contains information concerning this temperature dependence, 
and from which information flows to the rate variable. 

Relational diagrams of more complex models may often be analysed in terms 
of the elementary units of Figure 6. 

2.7.5 Numerical integration and the time coefficient 

The differential equations considered so far can be solved analytically in order 
to study the state variable as a function of time. When model computations do 
not agree with the behaviour of the system, more complex (sub-)models are 
needed, based on new knowledge of the system. The resulting set of differential 
equations cannot be integrated analytically; instead, numerical integration 
methods must be used. 

In numerical integration the assumption is made that the rate of change of 
a state variable is constant over a short period of time, At. To calculate the state of 
a model after that short period, one must know the state of the system at time t, 
statet, and the value of the rate variable, ratet, calculated from the differential 
equation. By multiplying the ratet by At, and adding this product to the value of 
the state variable according to 

statet+At = statet + At • ratet - Equation 7 

24 



Car Animals Water tank 

ir__it 

Figure 6. Relational diagrams for three elementary systems. Variables and symbols are 
explained in Figures 4 and 7, respectively. 

o- > 

> 

-O 
+ > -

A state variable, or integral of the flow; the final result of what 
has happened. 

Flow and direction of an action by which an amount, or state 
variable, is changed. These flows always begin or end at a state 
variable, and may connect two state variables. 

Flow and direction of information derived from the state of the 
system. Dotted arrows always point to rate variables, never to 
state variables. The use of information does not affect the 
information source itself. Information may be delayed and as 
such be a part of a process itself. 

Valve in a flow, indicating that calculation of a rate variable is 
taking place; the lines of incoming information indicate the 
factors upon which the rate depends. 

Source and sink of quantities, the content of which is consider­
ed to be unimportant. This symbol is often omitted. 

A constant or parameter. 

Auxiliary or intermediate variable in the flow of information. 

Sometimes placed next to a flow of information to indicate 
whether a loop involves a positive or negative feedback. 

Figure 7. Basic elements of relational diagrams. Abbreviated names of variables repre­
sented by these elements are usually written inside the symbols. Note that driving 
variables are often underlined or placed in parenthesis. Intermediate variables are often 
characterized by circles. 
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the new state, statel+Al, of the system is determined. From this new state, a new 
rate is calculated which holds for the next interval At, and so on. Much can be 
said about the 'short period', At, especially in the context of its relation to the time 
coefficient of a particular model (see below), and with respect to errors introduced 
by numerical integration methods (see Subsection 2.1.7). The calculation of ratet 

will be discussed further in Subsection 2.1.6. 
Numerical integration is first applied to the example of the water tank, 

Equation 3. Assume that there is no water in the tank at t = Os, so W0 = 01; 
coefficient c equals i s " 1 , and the maximum water level Wm =161. The rate at 
which water flows into the tank at t = 0 is calculated from the rate equation 

(dW/dt)t = c • (Wm - Wt) Equation 8 

as 41 s"1. If the time interval At, or the 'short period' equals 2 s, the volume of 
water at time t + At is obtained from the state equation 

Wt+At = Wt + At • (d\V/dt)t Equation 9 

as 81. During the following time interval of 2 s, the rate is: £• (16 — 8) = 2 Is"1. 
Thus, during this time interval, 41 of water will flow into the tank and the total 
quantity of water after 4 s equals 8 + 4=121. The calculations thus proceed 
according to Equations 8 and 9, and can be facilitated by the following diagram: 

times s 0 < - A t - > 2 4 6 8 .10 

—>8 W 1 0 
1 

dW/dt Is"1 4- 2 

Exercise 3 
Complete the calculation and plot the amount of water in the tank against time. 
Calculate the amount of water in the tank using Equation 6 and the same 
parameters, and plot the results in the same graph. 
a. What do you notice about the difference between the numerical and analyti­

cal solution? 
b. When is the rate of inflow zero? 
c. What happens if coefficient c is 1/8 instead of 1/4? 

In the case of the water tank the rate of filling decreases (see Figure 5 depicting 
Equation 3a), so that the numerical integration, where the rate variable is kept 
constant during the time interval At, overestimates the amount of water in the 
tank compared to the analytical solution (see also Exercise 3). The difference 
between the value of the state variable obtained by the numerical method, and 
the analytical value, will be smaller when At is smaller. The lower limit of At is set 

26 



by the technical (rounding errors) possibilities of performing the calculations 
over large time spans. 

Exercise 4 
The parameters in Equations 8 and 9 are: 

W0 = 01; Wm = 161; c = i s - 1 . 

a. Perform numerical integration up to about 30 s for the filling of the water 
tank using the following time intervals: 

At = 1 • c"l; At = H • c"l; At = 2 • c" *; At = 2\ • c - l 

b. Plot your results in the graph of Exercise 3. 
c. What can you say about the ratio of the time interval and the value of c"*? 
d. What upper limit would you set to this ratio? (Also consider your calcula­

tions for Exercise 3.) 

The upper limit to At is determined by the inverse of coefficient c in the 
differential equation. The inverse of c is called the time coefficient, T, which has 
the dimension of time. It is a measure of the reaction rate of a model. In models 
containing more than one time coefficient, a first approximation to the time 
interval is obtained by taking At smaller than one-tenth of the smallest T in that 
model. The time coefficient appears equal to the time that would be needed by the 
model to reach the equilibrium state, if the rate of change were fixed. This applies 
to any point on the integrated function, as shown in Figure 8. 

amount of water W 
(I) 
K 1—a k- Wm(l) 

Figure 8. The amount of water as a function of time, according to Equation 6, with 
W0 = 0 1, Wm = 161 and c*1 = T = 4s, yields W = Wm*(l - e"t/r). The time interval 
over which the tangent must be extended to intercept the line of equilibrium is the time 
coefficient, T. 
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Exercise 5 
a. Prove this last statement by using Equation 8 for the water tank case. 
b. This is also correct for a positive feedback loop, but the formulation is 

different. Explain this for the case of exponential growth. 

Biological models are often characterized by a relative growth rate (rgr), i.e. 
coefficient c in Equation 2, with dimension t" *. This name is clarified by writing 
c explicitly: c = (dA/dt)/A. 

Exercise 6 
a. Calculate the time coefficients when the relative growth rates are 1.5,0.2, and 

0.05 per year. 
b. What time intervals would you use for numerical integration in these cases? 

Also take into account the practical aspect of numerical calculations. 
c. Compute the number of animals after 5 years, when c = 0.2, A0 = 100, by 

using 
1. The analytical solution to the problem, Equation 5; 
2. The numerical solution to the problem, using Equation 2 and 

At = c"7l0. 
d. Plot your results on graph paper. 
e. Explain the underestimate of the numerical solution compared with the 

analytical one. 

A note of caution may be appropriate here. The time coefficient is defined as 
the inverse of the relative growth rate (see also Exercise 6). The growth percentage 
(i.e. the relative increase in the number of animals after one year, or annual 
relative increase) is often used to calculate T, but this gives incorrect results. 
A growth rate of, for example, 20% per year is not equivalent to an rgr of 0.2 per 
year. The relative growth rate is less: when A0 = 100, A equals 120 after one year 
and Equation 5 can be used to calculate the relative growth rate as follows: 
A = 120 = 100-e'8"1, so rgr = In 1.2 = 0.182yr_1and T = 5.48 yr instead of 
1/0.2 = 5yr. The relative growth rate (rgr) may be expressed in the annual 
relative increase (ari) as: A0 + A0 • ari = A0

# ergr#1 or rgr = ln(l + ari). For an 
exponential decline, one can derive rdr = — ln(l — ard), rdr and ard being the 
relative death rate and the annual relative decrease, respectively. The differences 
between ari and rgr, or that between ard and rdr, will be substantial when the 
annual relative increase or decrease is large. 

Other names for the time coefficient and related concepts are time constant, 
transmission time (in control-system theory), average residence time, delay time, 
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extinction time and relaxation time; this indicates the significance of the time 
coefficient in various sciences. Doubling time, the time needed to double an 
amount, is sometimes used to characterize a system but it is not synonymous with 
the time coefficient. 

Exercise 7 
The relationship between doubling time, t(2), and the time coefficient in exponen­
tial growth is t(2) s 0.7 • T. Why? 

Relaxation time, a term often used in physics, is the time needed in exponential 
increase to change the state by a factor e, or in exponential decrease, to change the 
state by a factor 1/e: it is equivalent to the time coefficient. For an example of 
average residence time, consider an exponentially decreasing population of 
animals without the effects of birth or migration. Then, the average residence 
time equals the time coefficient. 

Exercise 8 
Prove this last statement mathematically by using the definition of the average 
residence time: 

1 

A0 

°o Ao oo 

* dA _, I f . 1 " 
dt A, 

f d A = A'dt , 
Ao 

0 0 0 

and the analytical equation describing exponential decrease: A = A0 • e~t/r. 

In nature many processes occur simultaneously. Calculations in simulation 
models of such processes, however, take place one after another. But since 
dynamic simulation is based on the principle that rates of change are mutually 
independent (i.e. they depend individually on state variables and driving vari­
ables), all rates applicable to any one moment can be calculated in series; they can 
then be integrated (in series) to obtain the values of the state variables a moment 
(At) later. In this way the model operates in a semi-parallel fashion, and simulates 
simultaneously occurring processes. It is convenient to use special simulation 
languages to describe parallel processes in a semi-parallel fashion. If other 
computer languages are used, this requirement should still be met. 
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2.1.6 Some numerical integration methods 

The principle of numerical integration was illustrated using the simplest and 
most straightforward, rectangular integration method of Euler. Rectangular 
integration gives the poorest agreement with an analytical solution (if available). 
Other, more sophisticated methods, e.g. the trapezoidal method and the 
Runge-Kutta method, are more accurate, but cannot always be used. These two 
sophisticated methods will now be considered in more detail. Their computation 
schemes are given in Table 1. The example of the water tank will be used 
to illustrate the trapezoidal integration method. A first estimate of the rate 
variable, Rl, and the state variable, Al, is calculated using the rectangular 
integration method, yielding (for a 2 s time step): Rl = (dW/dt)t=0 =41 s"1 and 
Al = W t=2 = 81. The estimated final state, Al, is used to calculate a second rate, 
R2, pertaining to t = 2s: R2 = (dW/dt)t = 2 = i*(16 - 8) = 21s"1. The rate 
which is integrated is the arithmetic average of Rl and R2; thus, the final amount 
of water, after 2 seconds, is: 0 + 2 • ((4 + 2)/2) = 61. The following diagram 
clarifies the calculations: 

time 0<—At 

WfI nal 0 

(dW/dt)lstest. 

w. 
" lstest. 

Is - 1 

(dW/dt)2n dest. Is - 1 

a 

4—1 

8' 

(dW/dt)final Is - l 

r2 

8 

9.75 

2.5 

11 

1.25 

1.875 

where the sequence, a to e, indicates the computational sequence. At a and c, the 
rate equation is used (Equation 3 from Figure 4); at b and e, integration takes 
place and, at d, the arithmetic average is calculated; est. stands for estimate. 
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Exercise 9 
Complete the calculation above and plot the amount of water in the tank against 
time on the graph from Exercise 3. 
a. What do you notice about the difference between the numerical and analyti­

cal solutions? 
b. Show graphically that the trapezoidal integration method underestimates 

the analytical solution, and explain why; make use of the graph depicting 
Equation 3a, and the appropriate numerical values. 

In this method, the differential equation had to be evaluated twice to obtain 
the state of the model after one time interval. The larger computation effort is 
more than compensated for by the larger ratio of At/r that can be taken to reach 
the same accuracy as in the rectangular method (see Subsection 2.1.7). This is 
even more so for the Runge-Kutta integration method. This method will not be 

Table 1. Summary of the rectangular, trapezoidal and Runge-Kutta integration methods; 
t stands for time, R for rate and A for state. The equals sign is not used here algebraically 
but as an assignment. 

Euler's rectangular method 
R = f(At,t) 
A,+At = At + A f R 
t = t + At 

Trapezoidal method 
Rl 
Al 
R2 

A t + At 

t 

= f(At,t) 
= At + A fR l 
= f(Al,t + At) 
= At + Af(Rl + R2)/2 
= t + At 

Runge-Kutta method 
Rl 
Al 
R2 
A2 
R3 
A3 
R4 

At + Al 

t 

= f(At,t) 
= At + AfRl« 
= f(Al,t + 0.5« 
= At + AfR2< 
= f(A2,t + 0.5-
= At + At*R3 
= f(A3, t + At) 

•0.5 
At) 
•0.5 
At) 

= A, + A f ( R l + 2 -
= t + At 

, 

R2 + 2 • R3 + R4)/6 
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explained in detail, but its scheme, given in Table 1, shows that four estimates are 
necessary to calculate the final rate. 

Exercise 10 
Calculate the amount of water in the tank after a time interval of 2 s using the 
numerical integration scheme of Runge-Kutta. Use the numerical values from 
Exercises 3 and 9. 

So far, the integration routines have had a fixed time interval, which was set 
arbitrarily to one-tenth of the time coefficient of the model. If the time coefficient 
changes during simulation, and its smallest value is known, one can fix the time 
interval to one-tenth of that value. This, however, implies that during periods 
with large T values, the accuracy of integration would be greater than that during 
periods with small T values. In models intended to quantify natural systems, it is 
preferable to preset the accuracy of integration and to vary the time interval to 
meet this accuracy. This is done by combining the integration methods of 
Runge-Kutta and Simpson. (The Simpson method, the accuracy of which lies 
somewhere between that of the trapezoidal and the Runge-Kutta methods, is 
discussed in detail in IBM, 1975.) Two integration routines, Runge-Kutta's and 
Simpson's are applied to integrate the differential equations. Their results are 
compared and, if they differ by more than a preset error, the time interval of 
integration, At, is halved. If the deviation is much smaller than required, At is 
doubled for the next time step. Because of the constancy of the integration error, 
this method is to be recommended as standard. 

Exercise 11 
The principle of the combined Runge-Kutta and Simpson methods is demon­
strated in the program given in Figure 9, for the example of exponential popula­
tion growth (for numerical constants see Exercise 6c). For simplicity, the 
Runge-Kutta and Simpson methods are replaced by the trapezoidal and rectan­
gular methods, respectively. Also, At (DELT) is doubled at the beginning of each 
new time interval. The program is written in FORTRAN and the results given in 
Table 2. 
a. Draw a flow diagram of the program listed in Figure 9, indicating 

decisions by < > and calculations, etc., by I I 
Note that the purposes and symbols of a flow diagram are completely different 
from those of the relational diagram. The first is a technical scheme of how 
calculations are arranged, whereas the second expresses the conceptualization of 
the system. 
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Figure 9. Program demonstrating the principle of an integration method that adapts its 
time interval to meet a pre-set error criterion, using the rectangular and the trapezoidal 
integration methods. 

C Demonstration program of a variable time-step integration method 
C using the rectangular- and trapezoidal methods. 
C Timer variables 1) DELT should not become smaller than a certain small 
C value (DELMIN) or larger than the print interval (PRDEL) 
C 2) timer variables have been set double precision to 
C avoid rounding errors on the PRDEL-timings. 
C INITIAL PART. 

DOUBLE PRECISION TIME,PRDEL,FINTIM,DELT,DELMIN,DELTIM,C0UNT3 
TIME =0.D00 
FINTIM=5.D00 
PRDEL =5.D00 
DELMIN=l.D-5 
DELT =5.D00 
ERROR =l.E-5 

C Relative growth rate and initial amount. 
A =100. 
RGR =0.2 

C Counter one gives number of times that algorithm has been executed. 
C Counter two gives number of times final integration has been performed. 
C Counter trhee gives the number of times that output has been written. 

C0UNT1=0. 
C0UNT2=0. 
C0UNT3=0.D00 

C DYNAMIC PART. 
5 IF(TIME.EQ.C0UNT3*PRDEL) GOTO 10 

IF(TIME.GT.FINTIM) STOP 'FINTIM' 
DELT =2.D00*DELT 
DELTIM=C0UNT3*PRDEL-TIME 
IF(DELT.GT.DELTIM) DELT=DELTIM 

C Remember current amount 'A' in memory 'B'. 
15 B =A 

GR1 =RGR*A 
Al =A+DELT*GR1 
GR2 =RGR*A1 
A =A+((GR1+GR2)/2.)*DELT 

C RELERR=ABSolute value of (A(RECT)-A(TRAPZ))/A(TRAPZ) 
RELERR=ABS((A1-A)/A) 
C0UNT1=C0UNT1+1. 
IF(RELERR.GT.ERROR) GOTO 20 
TIME =TIME+DELT 
C0UNT2=C0UNT2+1. 
GOTO 5 

20 CONTINUE 
C Restore current amount 'A' again in memory A, because 
C calculation is not accurate enough and should be done again 
C starting with the previous final amount and a halved DELT. 

A =B 
DELT =DELT/2. 
IF(DELT.LT.DELMIN) STOP 'DELMIN' 
GOTO 15 

C PRINT PART. 
10 WRITE(21,25)TIME,AIA1,RELERR,DELT(C0UNT3IC0UNT1,C0UNT2 
25 F0RMAT(/10H TIME =D12.7,10H A =F12.5,10H Al =F12.5/ 

$10H RELERR =E12.7,10H DELT =D12.7,10H C0UNT3=F9.2/ 
$10H C0UNT1 =F8.2,14H C0UNT2=F8.2) 

C0UNT3=C0UNT3+1. 
GOTO 5 33 
END 



Table 2. Results of the program shown in Figure 9. 

Symbols mean: 
A, Al : Results of integration by the trapezoidal and the rectangular 

methods, respectively. 
RELERR : Absolute value of the relative error between methods. 
DELT : At. 
COUNT1,2 and 3: See Comments in Figure 9 (lines starting with C in first column). 

TIME = .0000000D+00 A = 100.00000 Al = 0.00000 
RELERR = .0000000E + 00 DELT = .5000000D + 01 COUNT3 = 0.0 
COUNT1 = 0.00 COUNT2 = 0.00 

TIME = .5000000D4-01 A = 271.82767 Al = 271.82559 
RELERR = .7634231E-05 DELT = .1953125D-01 COUNT3 = 1.00 
COUNT1 = 518.00 COUNT2 = 256.00 

The combined methods of Runge-Kutta and Simpson cannot be used at 
discontinuities of the state variable in time. For instance, when a crop is har­
vested, the contents of the state variable in the model must be removed instan­
taneously. In principle, states can only be changed by integration of rates over 
time. If a state variable's content, At, must be removed instantaneously, i.e. in one 
time interval At, the rate of change must be defined as Rt = At/At, and the 
rectangular integration method should be used. Rewriting Equation 7 for the 
moment of harvesting yields: 

At+At = A t-At-(A t/At) 

Exercise 12 
Let At be 100, At be 2, and define the rate of change Rt as Rt = At/At: 
a. Compute the amount At+At according to the rectangular and trapezoidal 

integration routines. 
b. What do you conclude about the method of integration to be applied when 

division by At occurs in a rate variable? 

There are many more numerical integration routines available, but the 
methods discussed here are usually sufficient to tackle the problems encountered 
in biological models. 

Figure 10 summarizes the line of reasoning to be followed in order to select the 
appropriate integration method. 
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yes 

yes 

no 

choose the combined integration 
method of Runge-Kutta and Simp­
son. Determine what At is chosen 
by the method to meet the e r ro r 
c r i ter ion. 

yes 

no 

continue t o use the combined methods 
of Runge-Kutta andj Simpson 

choose the rectangular integra­
tion method. 
Synchronize At w i th the d iscon­
tinuities if they appear at regular 
intervals. Choose At smaller 
than 1/10 of the smallest t ime 
coefficient. 

choose the method of Runge-Kutta, 
Set At at about Vz of the t ime 
coefficient. 

choose the method of Runge-Kutta. 
Round At down to the next whole 
fraction of the output in terval , 
PRDEL (i.e. so that PRDEL is an 
integral multiple of A t ) . 

Figure 10. Flow diagram for choosing the appropriate integration method. 

2.1.7 Error analysis; a case study of integration with and without feedback 

The accuracy of numerical integration is influenced by the choice of At 
(Subsection 2.1.5). An error criterion was introduced in Subsection 2.1.6 (see 
Figure 9) to determine which At should be chosen to obtain integration results 
with errors smaller than, or equal to, this preset limit. Error analysis is used to 
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quantify these errors in terms of At and T. AS many rates in nature are propor­
tional to the amounts present, the error analysis will be demonstrated for the 
model of exponential growth (Equations 2, 2a, 5 and Figure 6). 

In the analysis of propagation of errors in integration, two situations should be 
distinguished. In the first situation, rate as a function of time is known in advance, 
e.g. a driving force. Then, results of integration are independent of the state 
variable that is changed by integrating the rate (situation without feedback), and 
the same relative error is made each time interval. In the second situation, the rate 
depends at each moment on the state of the system. This situation usually occurs 
in simulation, and the error in the calculations will accumulate: in exponential 
growth, an underestimation of the state will cause an underestimation of the rate, 
and hence state (situation with feedback). 

Integration of a driving force (no feedback) When a driving force is integrated, its 
value is known in advance as a function of time; for instance, a series of data of 
rates of change which may be represented by an exponential curve. Figure 11 
shows such a curve (solid line), drawn according to Equation 2a, with A0c = v0, 
the initial velocity. Integration by the rectangular and trapezoidal methods 
yields the hatched areas. In this case, the exact error in the result obtained by the 
rectangular integration method could be derived, but a good approximation is 
given by the area of the triangles that are included using the trapezoidal integra­
tion method. 

The relative error in an integration method of order n is defined as 

_ A(nth order method) — A((n + l)th order method) ^ 
Erel _ = — —r - -— Equation 10 rel,n A((n + l)th order method) H 

where A stands for surface area. (This definition has already been used in the 
program in Figure 9.) Examples of first, second, third and fourth order integra­
tion methods are the rectangular, trapezoidal, Simpson and Runge-Kutta 
methods, respectively. 

Applying Equation 10 to calculate the relative error in the first order rectangu­
lar integration method gives: 

v0-At 
r e U (v0 + v0-e

c-At)-At/2 

From the numerator and denominator, v0 • At cancels, and ec*At can be written 
according to a Taylor expansion: 1 -f c • At + j(c • At)2 4 - . . . (see Appendix 1 for 
details). Since c • At is much smaller than 1, higher order terms can be omitted, 
and, after some algebra, one obtains: 

i At . „ 
E r eU = — i # c # At = — £ • — _ Equation 11 
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^ = v = v 0 e ^ 
dt ° 

Figure 11. Graphical representation of the surface areas that are calculated by the 
rectangular integration method ( EEZ1) and by the trapezoidal integration method 
( V////A 4- ESS3 ), when the exponential rate curve is given as a function of time (solid 
curved line). 

This derivation is given in detail in Appendix 1. Equation 11 shows that the 
relative error is proportional to the ratio of the time interval of integration and 
the time coefficient of the model. The minus sign reveals the underestimation of 
the surface area beneath the curved solid line in Figure 11. As the rate of change 
grows exponentially, the same relative error is added each time interval. Thus, the 
final absolute error is Eabs x = — ̂ #(At/i)#A. In the trapezoidal integration 
method, the triangles are taken into account, so the error is much smaller. The 
remaining error is estimated from the area between the straight line that is formed 
by connecting the corners of the vertical bars and the parabola constructed 
through the values of the exponential rate function at times t, t + \ • At and 
t -f At. The relative errors for the trapezoidal and Runge-Kutta integration 
methods have been calculated by Goudriaan (1982) and are given in Table 3. 
Note that for integration without feedback, the relative error is independent of 
the simulation time. 
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Exercise 13 
a. Use the estimates of the relative errors without feedback from Table 3 to 

calculate which At (expressed as a fraction of T) must be chosen to yield 
a relative error of 1 % in the integration of an exponential curve, for all three 
methods. 

b. Calculate analytically the area beneath an exponential curve between t = 0 
and t = 1, with v0 = 1 and c = 1. Also, calculate this area using the three 
numerical methods with At = 1. Since in integration without feedback all 
rates are known in advance, it is neither necessary to know the initial 
condition nor to calculate the intermediate areas. 

c. From the answer to b, calculate the exact absolute and relative errors in the 
integration results using the three numerical methods, with respect to the 
analytical solution. Compare these exact relative errors with the estimates 
from Table 3. 

Table 3. Estimates of the relative errors of three integration methods. 

Method Without feedback With feedback 
rectangular - (At/r)/2 - (t • At/t2)/2 
trapezoidal (At/i)2/12 - (t • At2/t3)/6 
Runge-Kutta (At/r)4/2880 - (t • At4/r5)/120 

Integration of a differential equation withfeedback In dynamic simulation, the rate 
variable is usually not known as a function of time; instead, new values are 
calculated from the current state, as for example in Equations 2 and 3. For 
instance, in the case of exponential growth of an animal population, an underesti­
mate of the growth rate will result in an underestimate of the population at time 
t + At, and thus also of the growth rate at that moment. This occurs in numerical 
integration of differential equations with feedback, and a new error will be added 
each time interval. Thus, in contrast to the integration of a driving force, relative 
errors increase during the time of simulation. The error analysis is slightly 
different from that for a driving force, because the relative error will refer to the 
total integral value, which consists of the integrated amount together with the 
initial value. 

For the rectangular method this implies the following. The rate at time t equals 
(Equation 2): (dA/dt)t = c • At. So the value of the integral after one time interval 
is At+At = At + At • c • At. To calculate the value of the integral according to the 
trapezoidal method, the rate at t + At is calculated: 

(dA/dt)t+At = c - A t - ( l + A f c ) . 

38 



It then follows that 

At+At = At + Af(c-A t + c-A t-(l + Afc))/2. 

All the terms required to calculate E r c l l according to Equation 10 are now 
available. After some algebra, and neglecting higher order terms, the relative 
error in the rectangular integration method is determined as 

This derivation is given in detail in Appendix 2. The relative error occurs in each 
integration step and, in contrast to the situation without feedback, these errors 
accumulate. At time t, when t/At integration steps have been performed, the 
relative error is 

E r e U ^ - ( t -A t / r 2 ) / 2 

Interestingly, the relative error is proportional to At, as for integration without 
feedback, but is now also linearly dependent on the simulation time. The relative 
errors for integration with feedback for the trapezoidal and Runge-Kutta inte­
gration methods, as derived by Goudriaan (1982), are also given in Table 3. 

Exercise 14 
a. Perform the calculations in Exercise 13a for the situation with feedback and 

a simulation time equal to T. 
b. For the situation with feedback, the differential equation is dA/dt = v = 

c • A (Equation 2). Calculate A at t = 1 when the initial condition, A0, equals 
1, c = 1, and At = 1, using the three numerical methods. Also calculate A at 
t = 1 for this situation, analytically. 

c. Perform the calculations in Exercise 13c for the situation with feedback. 

At a discontinuity, no derivative exists. When an integration interval overlaps 
a discontinuity, the error in any integration method will be large, as seen in 
Exercise 12 where an attempt was made to nullify a state variable in one time step, 
using the trapezoidal integration method. Error analysis as described above can, 
however, be applied before and after such discontinuities. The numerical error 
due to the discontinuity itself is avoided by using the rectangular integration 
method and synchronizing the time interval with the discontinuity. 

2.1.8 An example 

The different steps which are distinguished in systems analysis of living 
systems are demonstrated below. 
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Objectives and definition of the system A microbiologist plans to develop a techni­
cal system in which yeast can be grown continuously. To do this he wishes to use 
a vessel of constant volume, through which a sugar solution will flow. To gain 
insight into the proper technical system parameters, such as the volume of the 
vessel (v, m3), the concentration of sugar in water (cs, kg kg" l) and the flow rate of 
water (q, m3 d~ *), he decides to design a model of the system. 

The physiological parameters pertaining to the yeast cannot be adjusted like 
the technical parameters. Therefore, some experiments are performed which 
reveal that the absolute growth rate of the yeast (dy/dt, kg d "*) is proportional to 
the amount of yeast (y, kg) present, and to the sugar concentration. At a sugar 
concentration of 10%, cs l0, the relative growth rate and amount of sugar in the 
vessel are termed fil0 and s10, respectively. The rate of sugar consumption per 
unit yeast (sy, kg kg" l d" l) is known. The maximum possible quantity of sugar 
(sm, kg) in the vessel is determined by the incoming sugar concentration and the 
volume of the vessel. 

2000 
1950 
1900 
2050 

2000 
2119 
2340 
3110 

2000 
2304 
2882 
4717 

2000 
2958 
5384 

16464 

Exercise 15 
The following table gives fictitious data on the changing amount of yeast at 
different constant sugar concentrations. 

sugar concentration time (h) 
in water (kg kg"1) 0 2 4 10 

0 
0.02 
0.05 
0.10 

a. Derive the relative growth rate of yeast, /x, at these four different sugar 
concentrations. 

b. Plot the relative growth rate, in units of day ~ *, against the sugar concentra­
tion, cs. Express \i in terms of cs, cs l0 and /z10. 

c. Rewrite the expression for /i in terms of the current amount of sugar, s, and 
sio-

The relational diagram Figure 12 shows the relational diagram of the model. 
Note that this figure is constructed from the elementary system units used 
throughout this text. For instance, the lower left input rate together with the 
integral of the sugar (s, kg) is equivalent to the relational diagram of Jhe car from 
Figure 6; and the upper integral of the yeast, together with the right output rate, 
forms an exponential decrease. The representation of the model by one integral 
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Figure 12. Relational diagram of a continuous yeast culture fed by a sugar solution. 

for y and one for s, implies that the yeast and the sugar solution are well mixed 
throughout the vessel; the integral contents as a whole influence both input and 
output rates. The relational diagram does not contain yeast mortality: the time 
coefficient of the vessel (T, d) influences only the outflow rate of yeast. The T of the 
vessel has a similar influence on the outflow rate of the sugar, but here a second 
outflow is present as sugar is consumed by the yeast. The time coefficient of the 
vessel represents the average residence time of yeast and sugar in the vessel. In the 
real system, this characteristic time can be adjusted, as it is defined as T = v/q (d). 

Differential or rate equations The relational diagram in Figure 12 can help to 
derive the differential equations. It is immediately clear which variables will 
appear in a particular rate or flow. For example, for the input flow of yeast: 
dy/dt = f(y,/i), with \i = f(/Xio,s10,s); and for the output flow: dy/dt = f(y,i). 

This information, together with information on the proportionalities and 
dimensions of variables, yields the net flow rate for yeast: 

dy y, 
T 

Equation 13 

where 

^ = " 0 i o 
b io 

Equation 14 
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sio = csio *v • 1000 Equation 15 

v 
t = — Equation 16 

q 

By analogy, the net flow rate for sugar is 

ds s 
— = cs • q • 1000 — y • sy Equation 17 

Exercise 16 
a. Examine the dimensions of all variables and constants in Equations 13 to 17. 
b. What does the number 1000 denote in Equations 15 and 17? 

Further analysis of Equations 13 to 17 To study the dynamic behaviour of the 
yeast-sugar model, Equations 13 and 17 should be solved by numerical integra­
tion. However, several model properties can be analysed without a computer; for 
example by studying simplified equations or equilibrium properties. 

An example of needing to simplify equations, is the calculation of the time 
needed to equilibrate a water-filled vessel, which is initially free of sugar, with the 
sugar solution but in the absence of yeast. The relational diagram for this 
problem is represented by the lower half of Figure 12 when the outflow of sugar, 
due to consumption by the yeast, is omitted. The differential equation for the 
sugar, when y = 0, is ds/dt = cs • q • 1000 — S/T, which can be solved analytically. 
For the condition that at t = 0, s = 0, this gives 

s = sm
#(l — e"t/r) Equation 18 

where sm = cs
# v 1000, which is the maximum amount of sugar that can be 

achieved with given cs and v. 
Equations 18 and 6, when W0 = 0, are similar in form, although their differen­

tial equations describe quite different systems and express a dynamic and a static 
flow model, respectively. 

Exercise 17 
Derive from Equation 18, in general terms, the time needed to reach 95% of the 
final equilibrium level of sugar in the vessel. 

Such equilibrating processes may take a long time when large time coefficients 
are involved. It is preferable, therefore, to start an experiment by filling an empty 
vessel with the desired sugar solution. 
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Exercise 18 
How much time, expressed in terms of the time coefficient, is needed to reach 
100 % of the equilibrium level of sugar when an empty vessel is filled at a constant 
rate with the sugar solution? There is no outflow until the vessel is full. 

Equations 13 and 17 can be analysed to determine whether equilibrium levels 
of yeast and sugar can be reached, and if so, what levels. In a dynamic equilibrium 
the state variables are constant, and the sum of the inflow rates is equal to the sum 
of the outflow rates. Thus, the net rate of change of the state variable is zero. In 
the case of the continuous culture, this means that dy/dt and ds/dt in Equations 
13 and 17, respectively, are zero. The equilibrium levels of sugar and yeast can be 
calculated from 

s = — ^ — Equation 19 

and 

1 

sy 
(sm — s) Equation 20 

A special case of dynamic equilibrium is obtained when y is zero. Such a dynamic 
equilibrium is established when the yeast culture is washed out, because the time 
coefficient for the vessel is smaller than that for the yeast. This is the case when 
q > c s -v/ i 1 0 /c i l 0 . 

Exercise 19 
Derive Equations 19 and 20 from Equations 13 to 17. 

Equation 20 shows that the equilibrium level of yeast depends on the (manipul­
ate) time coefficient for the vessel. 

The microbiologist is interested in the combination of manipulate pa­
rameters yielding maximum yeast production with the minimum amount of 
sugar. The only manipulate variables in Equation 20 are sm and T. From 
Equation 19 it follows that s is a hyperbolic function of T, indicating that at very 
low T values s will be very large, and at high T values s will be small; i.e. there is no 
practical minimum value of the amount of sugar. To investigate whether a maxi­
mum exists in the curve of yeast production against the time coefficient, Equation 
19 is inserted into Equation 20, which is then differentiated with respect to T, to 
obtain 
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— = — • sm Equation 21 
dr T2«sy VT#i"io 

Exercise 20 
a. Derive Equation 21. 
b. At what value of T is there a maximum or minimum value of y? 

If the second derivative of y with respect to T is negative at the t value found in 
Exercise 20b, y is at a maximum. The second derivative is 

d / d y \ d2y 2 ( 31s1o_\ 
sm Equation 22 

dz\dxj dt2 t 3 #s y \ m f / ' i o 

Substituting the answer from Exercise 20b into Equation 22 yields a negative 
value for the second derivative. The maximum yeast level, at that value of T, can 
be calculated from Equation 20 as 

y = i • ^ • s£ Equation 23 
s10 sy 

The quantity of sugar is then 

s = £ • sm. Equation 24 

Equations 23 and 24 show that at the optimum value of T (= v/q), the amounts of 
yeast and sugar can still be changed by adjusting the inflow concentration of 
sugar which determines sm. 

Exercise 21 
a. Check the dimensions of Equations 19 to 24. 
b. Express the water flux q in terms of the other parameters to calculate the 

inflow rate resulting in the maximum amount of yeast at a given sugar 
concentration and vessel volume. 

It has been shown which tools are needed to develop and solve simple models. 
Although the treatise is far from complete, it will be seen that most of the models 
described in the following chapters are composed of the elementary feedback 
loops discussed in this chapter, and that the above simple mathematical tech-
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niques are adequate to solve them. Analysing and solving more complex prob­
lems, requires more knowledge, expecially about the relationships that may 
characterize system structure, rather than sophisticated mathematics. Today, the 
lack of such knowledge is the major restriction, but is also the major challenge, of 
future research. 
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