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Abstract. In this paper a novel approach to estimate parameters in an LTI continuous-time state-
space model is proposed. Essentially, the approach is based on a so-called pqR-decomposition of 
the numerator and denominator polynomials of the system’s transfer function. This approach al-
lows the physical knowledge of the system to be preserved. As an illustrative example, a biomedi-
cal/biochemical process with two compartments in parallel and with first-order reaction is used. 
First, the process is approximated by a discrete-time state-space model. Next, after deriving the 
corresponding discrete-time transfer function, the rational transfer function is decomposed into 
pqR form and then reparametrized to obtain a set of linear regressive equations. Subsequently, the 
unknown linear regression parameters, which are a polynomial function of the original physical 
parameters, are uniquely estimated from real data of the biomedical/biochemical process using the 
ordinary least-squares method. This approach is favourable when there is a need to preserve physi-
cal interpretations in the parameters. Furthermore, by taking into account the original model struc-
ture, a smaller number of parameters than in the case of direct transfer function estimation may re-
sult and the identifiability property naturally appears. 

1 Introduction 
In literature, various parameter estimation methods have been proposed. Often, non-linear least squares methods 
are used to iteratively estimate parameters in models that are so-called non-linear in the parameters. However, 
unlike the ordinary least squares methods, the non-linear least squares methods do not guarantee a global mini-
mum, especially in non-convex optimization problems [2].  Alternatively, for some problems it is possible to 
generate a linear-in-the-parameters model to approximate the system by applying a logarithmic transformation 
[5] or via reparametrization [3]. However, it is not always possible to apply these methods directly to a more 
complex model. It is also well-known that applying the classical linear regression technique on a general dis-
crete-time LTI system poses a significant shortcoming, which is the loss of physical knowledge of the system. 
Usually, the estimation of unknown parameters is obtained solely by the use of input-out data relationship, as 
represented by the discrete-time transfer function [12,13], and thus black-box parameters result. Therefore, to 
preserve physical knowledge in the parameters to a large extend, a novel parameter estimation method via so-
called pqR-decomposition [7] is proposed in this paper.  

The main objective of this paper is to estimate parameters in an LTI state-space model structure while retaining 
the physical knowledge. The approach is illustrated to a biomedical/biochemical system with two compartments 
in parallel using real data. Firstly, the problem statement is defined in section 2. Next, the physical modelling of 
the biomedical/biochemical system is defined in section 3. In section 4, the methodology to obtain the exact 
linear regressive realization suitable for linear estimation via pqR-decomposition for the system is described. The 
estimation results and discussion are presented in section 5 and section 6, respectively. Finally, conclusions are 
drawn in section 7. 

2 Problem statement 
The following simple LTI continuous-time state-space model is used to illustrate some of the available methods 
that are currently used to estimate the parameters. 

( )
( ) ( ) ( )
( ) ( )

0( ) , 0
, , :

dx t
Ax t Bu t x x

A B C dt
y t Cx t


= + == 

 =

∑    (1) 

with A = −a, B = 0 and C = 1. Consequently, the analytical solution of equation (1) is given by  ( ) 0
ty t x e α−=  

with 0x  the initial condition. For this particular model, which in recursive form can also be written as 

( ) ( )1 ty t y t e α− ∆= −  with t∆  the time step, a logarithmic transformation can be applied. Hence, the following 

linear regression is obtained. 



( ) ( )ln ln 1y t y t tα− − = − ∆      (2) 

However, if ( ) ( ) ( )y t x t e t= +  with e(t) a noise term, the statistical properties of the transformed model might 

be different from those of the original model [5]. Alternatively, the equivalent discrete-time form, as shown 
above, may also be applied to compute the estimates via reparametrization as follows 
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Hence, with 1 : ta e α− ∆= , equation (3) becomes a linear regression model. The value of 1a  can be estimated by 

applying an ordinary least-squares method. Finally, the physical parameter α  can be found from 

1ˆ ˆln /α = − ∆a t  where ̂  denotes the estimate. Now, let us consider the following LTI SISO continuous-time 

state-space model structure, 
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Notice that for the estimation of the parameters a1 and a2 both the logarithm transformation and direct linear 
regression cannot be applied directly onto the system given by equation (4). Subspace identification [9,10] and 
non-linear least-squares estimation (NLS) are the two common methods used to estimate parameters in matrix 
A . However, applying subspace identification usually leads to a black-box state-space structure, where the use 
of  NLS [2,3] may result in a local minima if incorrect initial estimates are specified. Furthermore, the NLS may 
requires substantial computational effort when a multi-start procedure is applied to find the global minimum. 
Thus, the aim of our study is to estimate the parameters inA  and B  using linear regression techniques. This 
paper is greatly inspired by the work on rational systems and distributed parameter systems, as presented in [3,6, 
11-13]. 

3 Physical modelling 

 

Figure 1. Two-compartmental biomedical/biochemical system. 
 
Consider a biomedical/biochemical example that consists of two compartments in parallel with first-order reac-
tion kinetics, as shown in Figure 1. In [8], the response to this biomedical/biochemical system is defined by a 
two exponential model, with initial and final output zero. The model response is given by 1 2( ) = −a t a ty t ce ce , in 

which c  is the initial concentration and 1a  as well as 2a  are the decay constants of the exponentials in com-

partment 1 and 2 , respectively. This equation can also be realized by two ordinary differential equations with 
one observation equation. Furthermore, it is assumed that the same amount of input is supplied to both of the 
compartments. Thus, the concentration in the two compartments can be described by 1

1 1 1= +dx
dt a x b u  and 

2
2 2 1= +dx

dt a x b u , respectively with u(t), an impulsive input. The initial concentration in both compartment is 

given by ( ) ( )1 20 0 0= =x x . The output of the system is the difference between the two compartment outputs so 

that, 1 2y x x= − . Alternatively, these first-order linear differential equations can be written into an LTI SISO 

continuous-time state-space form as follows 
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where the impulse input is defined as ( ) ( )u t tδ= . Consequently, 1 2( ) ( )a t a ty t b e e= − . In the next section, this 

physical system will be decomposed into pqR form to allow a ordinary least-squares estimation of 1a , 2a  and 

1b . 

4 Linear regressive realization via pqR-decomposition 

The main concept of pqR-decomposition involves splitting the transfer function ( ),G qθ  of a system into a 

numerator polynomial ( ),N qθ%  and a denominator polynomial ( ),M qθ%  with q the forward-shift operator. To 

illustrate this, the continuous-time state-space model given by equation (5) is first approximated by a discrete-
time state-space model using an Euler discretization scheme as follows 
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where k is the time index. Note that matrices A  and B  depend on the physical parameter vector ϑ, which 

contains 1a , 2a  and 1b . The corresponding transfer function of this system is given by 
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 and ϑ a parameter vector that contains combinations 

of 1a , 2a  and 1b .  As will be shown later, ( ),a bθ  is a polynomial function in 1a , 2a  and 1b . The observa-

tion vector C  is filled with an arrangement of constants and zeros. Thus, the transfer function ( ),G qθ  can be 

split into denominator and numerator polynomials as follows  
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where ( )A I A tϑ= + ∆% . Applying this concept to the biomedical/biochemical system results in 

( ) ( )( )1 2 2, : 1 1M q q a t q a tθ = − + + ∆ − + + ∆%  and ( ) ( )2
1 1 2, :N q b t a aθ = ∆ −% . Next, these polynomials are fur-

ther split into a pqR-decomposition: 
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where ( ): 1T T
M Mp p=%  and ( )1T T

N Np p=%  are the parameter vectors , M  and N  are the regression 

weighting matrices and ( ) kq yψ , ( ) kq uψ  are the output and input data vector, respectively. Applying this de-

composition to the biomedical/biochemical system results in 

( )

2
1 2 0

2 1

1 2

0 0

0
, :

0

1 1 2 1

T

k

M

a a t
q

a t t
M q q y

a t t
q

θ

 ∆ 
    ∆ −∆    =     ∆ −∆       −   

%

1442443

    (10a) 

( )
2 0

1 1
2 1

1 2
2

0 0

, : 0 0

1 0 0 0

T

k

N

b a t q

N q b a t q u

q

θ
  ∆ 
   = −∆   

        

%

1442443

    (10b) 

 

 



Then, substituting equation (10a) and equation (10b) into equation (8), while using equation (7), yields  
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Equation (11) can be rearranged in the following linear regression form 
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From equation (13), it can be pointed out that unidentifiability of the physical parameters occurs. Thus, the poly-
nomials as a result of expanding equation (13) are reparametrized as follows 
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Re-writing equation (14) in the form of equation (12) results in a linear regressive set of equations as follows 
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By defining 1 22k k k ky y y y+ += − +% , ( )( )2 2
1:k k k k k

t u t y y t yφ += ∆ ∆ − −∆  and  ( )1 2 3

Tθ θ θ θ=  , we 

obtain a linear regression. Hence, θ  can be estimated via the ordinary linear-squares method using observations 
from a methionine tolerance test [1], see Table 1.  Since, it is common for many biomedical/biochemical sys-
tems, that the dynamic model is based on sparse data from non-repeatable experiments [1], the raw observations 
are interpolated to generate more samples. Data in italic font in Table 1 are the results of linear interpolation 
from the available observations to obtain equidistant data. 

Table 1. Raw observations and interpolated data of a biomedical/biochemical process [1]. 
t  (hour) 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

( )y t  

(micromoles/litre) 
0 45 90 115 100 85 70 55 47.5 40 

( )u t  1 0 0 0 0 0 0 0 0 0 

Then, if needed the data can even be further interpolated to predict values of observations, y , and input, u , at 

specific time instances. In addition to this step of 0.25 hour, as shown in Table 1, we also investigate the effect of 
a smaller time step ∆ t  = 0.05 hour. Estimation results are presented in the next section.  

5 Results 
After applying the ordinary least-squares method to the set of linear regressive equations, we obtain results as 
shown in Figure 2. The solid line represents the predicted model output, while each cross represents the interpo-
lated observations from the methionine tolerance test. The small circle represents real data from the methionine 
tolerant test obtained from Norton [8]. Figure 2(a) presents the results using a time interval with 0.25t∆ =  hour. 



Figure 2(b) shows the results related to a smaller time interval, 0.05t∆ =  hour. Plots of the residuals for both 
cases are presented in Figure 3. The mean values of the residuals are 0.8407 and 0.1222, respectively. By look-
ing at Figure 2, this method gives a good curve fit. However, from Figure 3(a) and Figure 3(b) it can be pointed 
out there are multiple points where the residuals deviate from zero, significantly. This is due to the change in 
direction (positive or negative) of the slope when a new (interpolated) observation becomes available. The peaks 
in both Figure 2(a) and Figure 2(b) cannot be accurately estimated because the linear regression structure utilizes 
the previous value to predict the next value. Finally, it can be concluded, that this method gives a good curve fit 
for this biomedical/biochemical system, especially when the sampling time is set smaller after applying linear 
interpolation. 

  

Figure 2. Estimation curve versus observations for – (a) sampling time 0.25 hour and (b) sampling time 0.05 hour. 
 

 
Figure 3. Plot of residuals for – (a) sampling time 0.25 hour and (b) sampling time 0.05 hour. 

 
For ∆t = 0.25 hour and after using equation (15), the final estimates are given by: 

( )436.5227 -2.4251 1.6489
Tθ = . Hence, these values can be used to predict the output. However, if we are 

interested in the physical parameter estimates, another step is needed. To obtain the physical parameter esti-
mates, the parameter relationships in equation (14) are solved using the estimates of θ . Because of the first-
order interaction (a1a2), two solutions appear. However, one solution contains a negative b1 and is thus dis-
carded. The other solution is: 1= -1.2126-0.4226ia , 2 -1.2126+0.4226ia =  and 1 516.4268b i= . For ∆t = 0.05 

hour, the final estimates are given by ( )270.5102 -1.5028 1.7470
Tθ = . Again, parameter relationships in 

equation (14) are solved similar to the previous step and results in: 1= -0.7514-1.0874ia , 

2 -0.7514+1.0874ia =  and 1 124.3861ib = . Unfortunately, these solutions are not physically feasible due to 

the imaginary values, which are probably caused by the linear interpolation of the measurements. Hence, we will 
determine how sensitive the estimation result is with respect to the measurements, in the next analysis. 

Let us investigate the following possibilities, i.e. ( )0.25 0,5,10,15,...,85y =  and repeat the linear regression 

estimation method via pqR-decomposition for 0.25∆ =t  hour. Results are shown in Table 2.  
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(a) Plot of residuals (delta t=0.25)
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(b) Plot of estimation curve and observations (delta t=0.05)
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(a) Plot of estimation curve and observations (delta t=0.25)
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Table 2. Linear regression estimation technique via pqR-decomposition 0.25∆ =t  hour. 

( ) ( )0.25y t y=  

(micromoles/litre) 
1θ  2θ  3θ  1a  

2a  1b  

0 1440.0 -3.1 2 -0.9156 -2.1844 1134.8790 
5 1340.2 -3 2 -1 -2 1340.2 
10 1237.7 -2.9 2 -1.1298 -1.7702 1932.9627 
15 1132.4 -2.9 1.9 -1 -1.9 1258.2222 
20 1024.1 -2.8 1.9 -1.1551 -1.6449 2090.4354 
25 912.5439 -2.7254 1.8675 -1.3627-0.1027i -1.3627+0. 1027i 4442.4658i 
30 797.7738 -2.6481 1.8208 -1.3241-0.2602i -1.3241+0. 2602i 1533.1420i 
35 679.8742 -2.5705 1.7690 -1.2853-0.3422i -1.2853+0. 3422i 993.2532i 
40 559.2044 -2.4950 1.7117 -1.2475-0.3943i -1.2475+0. 3943i 709.1759i 
45 436.5227 -2.4251 1.6489 -1.2126-0.4226i -1.2126+0. 4226i 516.4268i 
50 313.1893 -2.3659 1.5805 -1.1829-0.4256i -1.1829+0. 4256i 367.9447i 
55 191.4322 -2.3247 1.5075 -1.1624-0.3955i -1.1624+0. 3955i 241.9957i 
60 74.6636 -2.3111 1.4315 -1.1556-0.3102i -1.1556+0.3102i 120.3599i 
65 -32.2214 -2.3376 1.3554 -1.2722 -1.0654 155.7958 
70 -122.7122 -2.4189 1.2842 -1.6320 -0.7869 145.1958 
75 -188.9868 -2.5700 1.2246 -1.9382 -0.6318 144.6699 
80 -222.9857 -2.8032 1.1850 -2.2845 -0.5187 126.2827 
85 -218.4403 -3.1222 1.1743 -2.6848 -0.4374 97.1957 

 
Theoretically and by referring to Norton [8, p.81], 1b  must be positive, while 2a  and 1a  must have negative 

values. In addition to this, 2a  must be larger than 1a  in term of magnitude in order to get the correct estimation 

curve. Clearly, it can be observed from Table 2 that the estimates of 1a , 2a  and 1b  are unrealistic 

when ( )0.25 25micromoles/litrey ≥ . Notice from Figure 2 and Figure 5 that, despite the physically unrealistic 

estimates of 1a , 2a  and 1b , the estimation curve is still able to follow the observations. 

 
Figure 4. Estimation curve and residuals plot when ( )0.25 5y =  for 0.25t∆ = . 

 
Figure 5. Estimation curve and residuals plot when ( )0.25 75y =  for 0.25t∆ = . 
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(b) Plot of residuals (delta t=0.25)
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(a) Plot of estimation curve and observations (delta t=0.25)
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(b) Plot of residuals (delta t=0.25)
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Our hypothesis is that the infeasible estimation results are due to the linear interpolation. Our final effort to iden-
tify the actual cause which leads to imaginary and negative estimation results is by examining the analytical 
solution of  1 1 1 1 2b a b aθ = − , 2 1 2a aθ = +  and 3 1 2a aθ =  (see equation (14)). The solutions are given by 

2
1 2 2 3

1 1
4

2 2
a θ θ θ= − ± −  

2
2 2 2 3

1 1
4

2 2
a θ θ θ= − ± −  

1
1 2

2 34
b

θ
θ θ

= ±
−

 

It can be observed that imaginary numbers appear if 2
3 2 / 4θ θ> . The value of 1θ  only affects the magnitude of 

1b , but it will never lead to an imaginary number. 

6 Discussion 
Applying linear regressive parameter estimation via pqR-decomposition gives a good curve fit between the pre-
dicted model output and the corresponding observations. This is especially true when the time interval is small. 
The least-squares estimation method minimizes the cost function which helps to fit the estimation curve to the 
observation points. On top of that, the linear regression estimation method also involves updating the next point 
using the previous point. This further ensures a good curve fit, even in the cases where the physical parameter 
estimates obtained are unrealistic as shown in Figure 2 and Figure 5. More importantly, the physical structure of 
the system is directly embedded in the linear regression model via the pqR-decomposition. 

In an estimation study of a diffusion process, Vries [11] showed that a successful reconstruction of the physical 
parameters is possible. Unfortunately, for this particular study, we are not able to directly estimate the physical 
parameters via linear regressive parametric realization of the approximate discrete-time system, as we antici-
pated. Perhaps, this would be possible if more observations were available from the experiment.  

However, the investigation on the sensitivity of the estimation result with respect to the measurements, led to 
interesting findings. It is found that ( )0.25y  must be smaller than or equal to 20 micromoles/litre in order to 

obtain physically interpretable results, as shown in Table 2. This suggests that a time-delay may exist at the be-
ginning of the experiments. It is known that a rapid oral dose of methionine in the proportion of 0.01mg/kg of 
body mass is administered into the subject [1]. Hence, it is likely that the administering of oral dose is causing 
the time-delay.  

Hence, our suggestion is to take measurements at smaller sampling time especially at the beginning of the ex-
periment. However, measuring more samples may result in higher cost for most biological experiments [1]. It is 
also unfortunate that in this study, the methionine tolerant test is non-repeatable. Thus, in cases such as this, our 
suggestion is to roughly and intuitively predict the missing points. Another possible solution is to generate more 
observation points which closely follow the measured data, using an appropriate model with initial guesses of 
the physical parameters.  

It is also important to realize that linear regression estimation via pqR-decomposition takes into account the 
physical structure of the model. The pqR-decomposition is a direct realization of the physical model with physi-
cal interpretation. By referring to the pqR-decomposition, only three parameters are estimated after reparametri-
zation. Typically, estimation of a corresponding transfer function related to an n-compartment model leads to 
2 1n +  parameters. Notice that the pqR-decomposition splits the physical parameters from the numerical scheme 
used for discretization. One advantage of this is that we can easily check identifiability by only looking at the 
regression weighting matrices M  and N .  For the continuous-time case without a discretization step, we may 
also use the Laplace transform to obtain a transfer function [4]. Similarly, a pqR-decomposition, as presented in 
this abstract, of the transfer function ( , )θG s , with s the Laplace variable, can be applied.  

7 Concluding remarks 
The novel method of pqR-decomposition leads to a physically interpretable linear regression structure from a 
discrete-time transfer function of an LTI system. Hence, using ordinary least-squares techniques, unique linear 
regression parameters, which are polynomial functions of the physical parameters, can be found. This finally 
results in an unbiased physical model-based predictor. However, as shown in this study, the linear regression 
parameters do not automatically lead to realistic physical parameter estimates. Nevertheless, the study of when 



realistic estimates do occur reveals that an appropriate choice of interpolated data points is crucial and in this 
particular application it suggests a plausible time delay. 

The linear regression realization approach, as presented in this paper, is subject to further research. In particular, 
other model classes and applications with suitable and sufficient experimental data will be investigated. 
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