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Abstract. In this paper a novel approach to estimate paeé@ an LTI continuous-time state-
space model is proposed. Essentially, the appr@&abhsed on a so-called pgR-decomposition of
the numerator and denominator polynomials of tretesy’s transfer function. This approach al-
lows the physical knowledge of the system to begmeed. As an illustrative example, a biomedi-
cal/biochemical process with two compartments iralel and with first-order reaction is used.
First, the process is approximated by a discrete-tstate-space model. Next, after deriving the
corresponding discrete-time transfer function, thgonal transfer function is decomposed into
pgR form and then reparametrized to obtain a skhedr regressive equations. Subsequently, the
unknown linear regression parameters, which arelgnpmial function of the original physical
parameters, are uniquely estimated from real datiaeobiomedical/biochemical process using the
ordinary least-squares method. This approach isufaldde when there is a need to preserve physi-
cal interpretations in the parameters. Furthermuydaking into account the original model struc-
ture, a smaller number of parameters than in tee o&direct transfer function estimation may re-
sult and the identifiability property naturally agaps.

1 Introduction

In literature, various parameter estimation methualge been proposed. Often, non-linear least sguaethods
are used to iteratively estimate parameters in tedtiat are so-called non-linear in the parametdmvever,
unlike the ordinary least squares methods, thelineas least squares methods do not guaranteebalgiuini-
mum, especially in non-convex optimization problef2s Alternatively, for some problems it is pddsi to
generate a linear-in-the-parameters model to appeaig the system by applying a logarithmic transgation
[5] or via reparametrization [3]. However, it istrelways possible to apply these methods directlg more
complex model. It is also well-known that applyitige classical linear regression technique on argéniés-
crete-time LTI system poses a significant shortcopmmmgjch is the loss of physical knowledge of thetem.
Usually, the estimation of unknown parameters imioled solely by the use of input-out data relatfop, as
represented by the discrete-time transfer funciid@13], and thus black-box parameters result. Toege to
preserve physical knowledge in the parameterslémge extend, a novel parameter estimation meth@de
called pgR-decomposition [7] is proposed in thipgra

The main objective of this paper is to estimate patars in an LTI state-space model structure whthmag

the physical knowledge. The approach is illustrated biomedical/biochemical system with two contypants
in parallel using real data. Firstly, the probleistament is defined in section 2. Next, the physiwadelling of

the biomedical/biochemical system is defined intieac3. In section 4, the methodology to obtain #xact
linear regressive realization suitable for linestireation via pgR-decomposition for the systemdsadibed. The
estimation results and discussion are presentsddtion 5 and section 6, respectively. Finally,ahagions are
drawn in section 7.

2 Problem statement

The following simple LTI continuous-time state-spaceded is used to illustrate some of the availabl¢hods
that are currently used to estimate the parameters.

Z(A’ B,C) - d);Et) = Ax(t)+ Bu(t) , X(O) =% (1)
y(t)= Cx(t)

with A= -4, B= 0 andC = 1. Consequently, the analytical solution of diuma(1) is given by y(t) =xe "
with x, the initial condition. For this particular modekhich in recursive form can also be written as
y(t) = y(t —1) e “ with At the time step, a logarithmic transformation carapplied. Hence, the following

linear regression is obtained.



Iny(t)=Iny(t-1) = -ant (2)

However, if y(t) = x(t) +e(t) with &(t) a noise term, the statistical properties of taesformed model might

be different from those of the original model [Blternatively, the equivalent discrete-time forng shown
above, may also be applied to compute the estim&iggparametrization as follows

y(t)= y(t-1)e™ @)
= ay(t-1)

Hence, witha, := e ™ equation (3) becomes a linear regression modwd. vRlue ofa, can be estimated by

applying an ordinary least-squares method. Finatlye physical paramete@ can be found from
a=-In& /At where”™ denotes the estimate. Now, let us consider tHevfaig LTI SISO continuous-time
state-space model structure,

Y (ABC)= a @ ;j@ @
y= (1 0)x

Notice that for the estimation of the parametrsanda, both the logarithm transformation and direct linea
regression cannot be applied directly onto theesyggiven by equation (4). Subspace identificat@i (] and
non-linear least-squares estimation (NLS) are ttee dammon methods used to estimate parameters iixmat
A. However, applying subspace identification usubdbds to a black-box state-space structure, wihereise

of NLS [2,3] may result in a local minima if ingect initial estimates are specified. Furthermdre,NLS may
requires substantial computational effort when dtirstart procedure is applied to find the globahimum.
Thus, the aim of our study is to estimate the patarsénA and B using linear regression techniques. This
paper is greatly inspired by the work on rationeitsms and distributed parameter systems, as [peelsen[3,6,
11-13].

3 Physical modelling

u(t) + y(t)'

%

Figure 1. Two-compartmental biomedical/biochemical system.

Consider a biomedical/biochemical example that ist&\®f two compartments in parallel with first-erdreac-
tion kinetics, as shown in Figure 1. In [8], thepense to this biomedical/biochemical system isnddfby a

two exponential model, with initial and final outmero. The model response is given yff) = ce® —ce™ , in
which ¢ is the initial concentration ang, as well asa, are the decay constants of the exponentials in- com

partmentl and 2, respectively. This equation can also be realizetino ordinary differential equations with
one observation equation. Furthermore, it is asduthat the same amount of input is supplied to ldtthe
compartments. Thus, the concentration in the twopastments can be described By, =ax, +bu and

d%t =a,X, +bu, respectively withu(t), an impulsive input. The initial concentrationboth compartment is
given byxl(O) = XZ(O) = 0. The output of the system is the difference betwhertwo compartment outputs so
that, y = x - x,. Alternatively, these first-order linear differaitequations can be written into an LTI SISO
continuous-time state-space form as follows

>(ABC)= a (31 ij@ Q
y= (1 -Dx



where the impulse input is defined at) = J(t). Consequentlyy(t) =b(e* —e™). In the next section, this

physical system will be decomposed into pgR fornaltow a ordinary least-squares estimationapf a, and

b,

4 Linear regressiverealization via pqR-decomposition
The main concept of pgR-decomposition involves ipdjtthe transfer functiorG(H, q) of a system into a

numerator polynomiaN (6, q) and a denominator polynomiali (ﬁ,q) with g the forward-shift operator. To

illustrate this, the continuous-time state-spacelehgiven by equation (5) is first approximateddyliscrete-
time state-space model using an Euler discretizatitheme as follows

_[x(k+2)= (1 +A(2)At)x(k) +B() Atu(k)
A A

where K is the time index. Note that matrice® and B depend on the physical parameter ve®pmhich
containsa,, a, and bl The corresponding transfer function of this syste given by

(6)

G(e,q):%:c[R(A,q)]B(ﬁ)At 7
<+ adjR(A,q)

where R(A,q) = [q| —(| + A(&)At)] andd a parameter vector that contains combinations

" detR(A )
of &, &, andb;. As will be shown laterf(a,b) is a polynomial function irg,, &, andb,. The observa-
tion vector C is filled with an arrangement of constants anageThus, the transfer functiaB(e,q) can be
split into denominator and numerator polynomialéciiews
_CladiR(Aqg)|B(6)At  K(6,q)

G(6,q)= -

- '\:l (8)
detR(A,q) M (6.q)

where A=| +A(z9)At. Applying this concept to the biomedical/biocheahicsystem results in
M (6,q) =(-g+1+aAt)(-q+1+aAt,) and N(6,q):=bAt*(a,-a,). Next, these polynomials are fur-
ther split into a pqR-decomposition:

Pu' M@(@)y, = By N (a)y, €)
where p,," ::(pMT 1) and p,’ :(pNT 1) are the parameter vectorsM and N are the regression

weighting matrices angy(q)y, , ¢/(q)u, are the output and input data vector, respectiveplying this de-
composition to the biomedical/biochemical systesults in

aa,) (a> 0 0 ¢
M(Q,Q) = a2 At -At O ql y (10&)
a At -At 0 ¢ “
1 1 -2 1
M
ba, ) [ A2 0 0)(q°
N(6,9)=|ba,| | -At> 0 0| d" |u, (10b)

1 0 0 0l

- v
N



Then, substituting equation (10a) and equation (irib)equation (8), while using equation (7), ygld

aa,) (a2 0 0 ¢ ¢
a, At -At O g |y = ba \(At> 0 O d u (11)
a At -At O 7 “ |ba, )l -At2 0 O o X

1 1 -2 1

Equation (11) can be rearranged in the followingdinregression form

(pNT pMT 1)[ON ?M ]ZK:O (12)

wherez, =(U, Ui Uasr Y Yi: Yieo) - Finally this results in

0
u
ba ) (> 0 0 O ooqluk
ba, | |-At> 0 0 0 ooqzk
QT | _ (13)
aa,| |0 0 0 -At* 0 Of 5 =Y~ 2V Yiuo
a, | |0 0 0 -At Atoquk
a 0 0 0 -At At 0 qzyk
aYi

From equation (13), it can be pointed out that enidiability of the physical parameters occursushthe poly-
nomials as a result of expanding equation (13yewarametrized as follows

Yo = 2yk+1 T Y2 = (blal_blaZ)Atzuk + (a1+ az)At ( Yir 17 Y ) —aa 2At2yk
| |\ — —
6 6, 6 (14)
OATU + Ot (Yieoy ~ Vi) ~ OALYY,

Re-writing equation (14) in the form of equatio2)tesults in a linear regressive set of equatia®llows

T

6\ (At 0 0 \(q%,
52 0 -At At qoyk =Y~ 2yk+1 * Yie2 (15)
6,) |0 -At? 0 (gl

By defining y, =Yy, =2¥1 * Yiuzs @::(Atzuk At(yk+1_yk) _Atzyk) and 9:(51 o, ‘93)T » we

obtain a linear regression. Hend2,can be estimated via the ordinary linear-squarethod using observations
from a methionine tolerance test [1], see TableSince, it is common for many biomedical/biochermmgs-
tems, that the dynamic model is based on sparsefiath non-repeatable experiments [1], the raw Mag®ns
are interpolated to generate more samples. Daitalia font in Table 1 are the results of lineareiqtolation
from the available observations to obtain equidistiata.

Table 1. Raw observations and interpolated data of a biocadBiochemical process [1].

t (hour) 0 025 | 050 [ 075 | 100 [ 125 | 150 [ 1.75 | 200 [2.25
y(t) 0 45 90 115 | 100 85 70 55 | 475 | 40
(micromolesl/litre)

u(t) 1 0 0 0 0 0 0 0 0 0

Then, if needed the data can even be further intgubto predict values of observations, and input,u, at

specific time instances. In addition to this st€p.@5 hour, as shown in Table 1, we also invettigfae effect of
a smaller time stefit = 0.05 hour. Estimation results are presenteddm#xt section.

5 Reaults

After applying the ordinary least-squares methoth® set of linear regressive equations, we obsnlts as
shown in Figure 2. The solid line represents theioted model output, while each cross represastinterpo-
lated observations from the methionine toleranse fEhe small circle represents real data fromntle¢hionine
tolerant test obtained from Norton [8]. Figure 2§&dsents the results using a time interval viith= 0.25 hour.



Figure 2(b) shows the results related to a sméhee interval, At =0.05 hour. Plots of the residuals for both
cases are presented in Figure 3. The mean valube oésiduals are 0.8407 and 0.1222, respectidgiyook-
ing at Figure 2, this method gives a good curveHdwever, from Figure 3(a) and Figure 3(b) it tenpointed
out there are multiple points where the residualgate from zero, significantly. This is due to tteange in
direction (positive or negative) of the slope wigenew (interpolated) observation becomes availdtile.peaks
in both Figure 2(a) and Figure 2(b) cannot be ately estimated because the linear regressiontsteuatilizes
the previous value to predict the next value. Fyndl can be concluded, that this method give®adgcurve fit
for this biomedical/biochemical system, especiallyen the sampling time is set smaller after apglyinear
interpolation.

(a) Plot of estimation curve and observations édei0.25) (b) Plot of estimation curve and observations éi=i0.05)
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Figure 2. Estimation curve versus observations for — (a) disgpime 0.25 hour and (b) sampling time 0.05 hour

(a) Plot of residuals (delta t=0.25) (b) Plot of residuals (delta t=0.05)
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Figure 3. Plot of residuals for — (a) sampling time 0.25 hand (b) sampling time 0.05 hour.
For At = 0.25 hour and after using equation (15), the alfinestimates are given by:

6= (436.5227 -2.4251 1.645)5. Hence, these values can be used to predict tpetotdowever, if we are
interested in the physical parameter estimatesthanstep is needed. To obtain the physical paranestée
mates, the parameter relationships in equation gi@)solved using the estimates @f Because of the first-
order interaction g;a,), two solutions appear. However, one solution a@imst a negativéy; and is thus dis-
carded. The other solution ig;= -1.2126-0.422¢, a, =-1.2126+0.422€ andb, =516.4268. ForAt = 0.05
hour, the final estimates are given by=(270.5102 -1.5028 1.747{]. Again, parameter relationships in
equation (14) are solved similar to the previouspstand results in: a=-0.7514-1.0874

a, =-0.7514+1.087< and b, =124.3861. Unfortunately, these solutions are not physicédigsible due to

the imaginary values, which are probably causethbyinear interpolation of the measurements. Heweewill
determine how sensitive the estimation result th waéspect to the measurements, in the next asalysi

Let us investigate the following possibilities, i.¢(0.25) = 0,5,10,15,....,€ and repeat the linear regression
estimation method via pgR-decomposition fir= 0.25 hour. Results are shown in Table 2.



Table 2. Linear regression estimation technique via pgRedeapsition At = 0.25 hour.

Y(t) = y(0-25) 6 6, 6, & a, b,
(micromolesllitre)
0 1440.0 -3.1 2 -0.9156 -2.1844 1134.8790
5 1340.2 -3 2 -1 -2 1340.2
10 1237.7 -2.9 2 -1.1298 -1.7702 1932.9627
15 1132.4 -2.9 1.9 -1 -1.9 1258.2222
20 1024.1 -2.8 1.9 -1.1551 -1.6449 2090.4354
25 912.5439 -2.7254 1.8675 -1.3627-0.1027i  -1.3621827i 4442.4658i
30 797.7738 -2.6481 1.8208 -1.3241-0.2602i  -1.3R42602i 1533.1420i
35 679.8742 -2.5705 1.7690 -1.2853-0.3422i  -1.2853422i 993.2532i
40 559.2044 -2.4950 1.7117 -1.2475-0.3943i  -1.2073943i 709.1759i
45 436.5227 -2.4251 1.6489 -1.2126-0.42261  -1.2028226i 516.4268i
50 313.1893 -2.3659 1.5805 -1.1829-0.42586i  -1.1829256i 367.9447i
55 191.4322 -2.3247 1.5075 -1.1624-0.39551  -1.16238955i 241.9957i
60 74.6636 -2.3111 1.4315 -1.1556-0.3102i -1.15586HIPi 120.3599i
65 -32.2214 -2.3376 1.3554 -1.2722 -1.0654 155.7958
70 -122.7122 -2.4189 1.2842 -1.6320 -0.7869 148195
75 -188.9868 -2.5700 1.2246 -1.9382 -0.6318 1449669
80 -222.9857 -2.8032 1.1850 -2.2845 -0.5187 126.282
85 -218.4403 -3.1222 1.1743 -2.6848 -0.4374 97.1957

Theoretically and by referring to Norton [8, p.8%, must be positive, whilea, and a, must have negative

values. In addition to thisa, must be larger tham, in term of magnitude in order to get the correstingation

curve. Clearly, it can be observed from Table 2 ttie estimates ofa, a, and by are unrealistic

wheny(0.25) = 25 micromolesf/litr. Notice from Figure 2 and Figure 5 that, despit physically unrealistic

estimates ofy,, a, andb,, the estimation curve is still able to follow thleservations.
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Figure 4. Estimation curve and residuals plot Why(10_25) = efor At =0.25.
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Our hypothesis is that the infeasible estimaticults are due to the linear interpolation. Ourlfiffort to iden-
tify the actual cause which leads to imaginary apdative estimation results is by examining thelyaical
solution of g =ba, —ba,, 6, =a, +a, and g, = aa, (see equation (14)). The solutions are given by

1 1
qZ—EHZiE 922_463
1 1
azz_zgzia 65_493
er—
6; - 46,

It can be observed that imaginary numbers appaﬁgif@zz /4. The value off, only affects the magnitude of
b, but it will never lead to an imaginary number.

6 Discussion

Applying linear regressive parameter estimationpg&®-decomposition gives a good curve fit betwéenpre-
dicted model output and the corresponding obsematiThis is especially true when the time inteisamall.
The least-squares estimation method minimizes tefoaction which helps to fit the estimation cuteethe
observation points. On top of that, the linear esgion estimation method also involves updatinghthe point
using the previous point. This further ensures adgnove fit, even in the cases where the physiaghmeter
estimates obtained are unrealistic as shown inr€igwand Figure 5. More importantly, the physi¢edcture of
the system is directly embedded in the linear i=siom model via the pgR-decomposition.

In an estimation study of a diffusion process, ¥ii£l] showed that a successful reconstructiomefghysical
parameters is possible. Unfortunately, for thigipalar study, we are not able to directly estinthie physical
parameters via linear regressive parametric raalizaof the approximate discrete-time system, asavweci-
pated. Perhaps, this would be possible if morerohtens were available from the experiment.

However, the investigation on the sensitivity of thstimation result with respect to the measuremded to
interesting findings. It is found tha](0.25) must be smaller than or equal to 20 micromoles/iit order to

obtain physically interpretable results, as showiable 2. This suggests that a time-delay may axiste be-
ginning of the experiments. It is known that a dapral dose of methionine in the proportion of @@lkg of
body mass is administered into the subject [1].déeiit is likely that the administering of oral @ois causing
the time-delay.

Hence, our suggestion is to take measurements altesreampling time especially at the beginningha ex-
periment. However, measuring more samples maytrieshigher cost for most biological experiment§ [Lis
also unfortunate that in this study, the methionalerant test is non-repeatable. Thus, in casels as this, our
suggestion is to roughly and intuitively predice imissing points. Another possible solution is éograte more
observation points which closely follow the measudata, using an appropriate model with initial gges of
the physical parameters.

It is also important to realize that linear regm@ssestimation via pgR-decomposition takes intocact the
physical structure of the model. The pgR-decompmsis a direct realization of the physical modahwhysi-

cal interpretation. By referring to the pgR-decowipion, only three parameters are estimated afjganametri-
zation. Typically, estimation of a correspondingngf@r function related to amcompartment model leads to
2n+1 parameters. Notice that the pgR-decompositiortssiiie physical parameters from the numerical sehem
used for discretization. One advantage of thihad e can easily check identifiability by only kiog at the
regression weighting matricdd and N . For the continuous-time case without a disca¢itn step, we may
also use the Laplace transform to obtain a trarigfeation [4]. Similarly, a pqR-decomposition, aggented in
this abstract, of the transfer functi@®(8, s), with s the Laplace variable, can be applied.

7 Concluding remarks

The novel method of pgR-decomposition leads to asighily interpretable linear regression structunt a
discrete-time transfer function of an LTI systemnEke using ordinary least-squares techniques, anigear
regression parameters, which are polynomial funstiof the physical parameters, can be found. Thaly
results in an unbiased physical model-based prdietowever, as shown in this study, the linearesgion
parameters do not automatically lead to realidtigsiral parameter estimates. Nevertheless, the stidrhen



realistic estimates do occur reveals that an apjatepchoice of interpolated data points is crueiadl in this
particular application it suggests a plausible taeéy.

The linear regression realization approach, as ptegen this paper, is subject to further researciparticular,
other model classes and applications with suitabtesufficient experimental data will be investeght
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