SLIDER: Mining correlated motifs in protein-protein interaction networks
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Abstract—Correlated motif mining (CMM) is the problem
to find overrepresented pairs of patterns, called motif pairs,
in interacting protein sequences. Algorithmic solutions for
CMM thereby provide a computational method for predicting
binding sites for protein interaction. In this paper, we adopt
a motif-driven approach where the support of candidate motif
pairs is evaluated in the network. We experimentally establish
the superiority of the Chi-square-based support measure over
other support measures. Furthermore, we obtain that CMM
is an NP-hard problem for a large class of support measures
(including Chi-square) and reformulate the search for corre-
lated motifs as a combinatorial optimization problem. We then
present the method SLIDER which uses local search with a
neighborhood function based on sliding motifs and employs
the Chi-square-based support measure. We show that SLIDER
outperforms existing motif-driven CMM methods and scales to
large protein-protein interaction networks.
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I. INTRODUCTION

Large-scale biological networks describing interactions
between proteins are available now for several organ-
isms [13]. Such data demonstrate how proteins function
as part of an interaction network, but provide no insight
into how interactions are encoded in protein sequences.
In particular, it is unknown which part of the sequences
correspond with physical interaction sites. Unfortunately,
the discovery of these sites requires laborious and expen-
sive biological experiments. In fact, it is estimated that
it would take 20 years to determine all interactions types
using current experimental techniques [2]. Therefore, several
computational approaches have been proposed to locate
binding sites by mining overrepresented pairs of patterns
(called motifs) in the sequences of interacting proteins [8],
[9], [10], [11], [14]. Correlated motif mining (CMM) is an
approach to identify binding sites by looking for a consensus
pattern in one set of proteins which interact with (almost)
all proteins which contain another consensus pattern. If so,
both patterns are likely to represent a part of the surface
of the molecules which makes interactions possible through
a physical binding. For instance, in Fig. 1 the patterns
{1,A} and {2,B} represent two such correlated motifs. In
particular, there is an undirected edge between two protein
sequences when the first one contains motif 1 (resp., 2) and
the second one motif A (resp., B).

These methods can be subdivided into two classes: (i)
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Figure 1: Compatible binding sites {1,A} and {2,B} as
correlated motifs in sequences

interaction-driven [9], [10], [11]; and, (ii) motif-driven ap-
proaches [8], [14]. Interaction-driven methods mine for
(quasi-)bicliques, that is, disjoint subsets of vertices for
which every vertex from one set is connected to (almost)
all vertices of the other set. Such subgraphs exhibit a type
of all-versus-all (or most-versus-most) interaction. A motif
pair representing the corresponding interaction sites is then
derived from the sequence carried by the vertices. The
motif-driven approach, in contrast, starts from candidate
motif pairs whose support is then evaluated in the net-
work. Although both approaches have shown to produce
biologically meaningful results, the second approach has
several conceptual advantages over the first: (i) motif pairs
are mined directly, not derived; (ii) all proteins containing
one of the motifs, and not a subset, are taken into account;
(iii) if the interactions between two sets of proteins is a
consequence of multiple compatible binding sites, such as
{1,A} and {2,B} in Fig. 1, the interaction-driven method
necessarily merges them into one motif pair; and, (iv) all
interactions of proteins having both binding sites described
by the motif pair are taken into account, i.e., the subsets
containing each motif do not have to be disjoint.

In this article, we study different aspects of the motif-
driven approach towards CMM for which currently only
two techniques have been introduced and implemented.
Unfortunately, both methods differ not only in the mining
method but also in the used notion of support for correlated
motifs. The first method by Tan et al. [14], called D-STAR,
uses a x2-based scoring function to determine the support
but the underlying mining method does not scale to net-
works containing more than 250 proteins. As contemporary
biological networks contain up to thousands proteins (for
instance the protein-protein interaction networks of yeast
and human [4]), scalability is an increasingly important
issue. The second method called MotifHeuristics employs
a different, probabilistically motivated notion of support
called p-score, is developed by Leung et al. [8] and does



scale to larger networks. Although the authors argue in their
paper that MotifHeuristics is superior to D-STAR, it remains
unclear if the latter is due to the different support measure or
the underlying mining method. Moreover, an in-depth study
of support measures as such has never been undertaken.

The contributions of this paper are: (i) a thorough em-
pirical study of the effectiveness of various notions of
support for correlated motifs; (ii) we have proven that,
under reasonable assumptions concerning the used notion
of support, the complexity of the correlated motif mining
problem is NP-hard and its associated decision problem is
in NP. We therefore approach the problem as a combinatorial
optimization problem. And (iii) SLIDER, a local search
method in which the key component is its neighborhood
function which views a motif as a window which slides
over the amino acid sequences of the proteins. We validate
SLIDER by showing that it outperforms all existing motif-
driven approaches on retrieving implanted motif pairs from
artificial networks. Furthermore our experiments show that
SLIDER is able to tackle CMM on large protein-protein
interaction networks.

We assume the reader is familiar with basic concepts
of graph theory and computational complexity; any basic
textbook in each of these areas, like [6] and [5], will supply
the necessary background. We will often use the popular
abbreviation biclique for a complete bipartite subgraph.

II. CORRELATED MOTIF MINING PROBLEM

We model a protein-protein interaction (PPI) network by
an undirected labeled graph G = (V, E,)\) in which the
vertices V' correspond to the proteins, the edges £ to the
interactions and the labels of the vertices to the amino acid
sequence of the proteins. Hence, the label function A\ maps
each vertex v € V to a string A\(v) over the alphabet ¥ =
{4,...,Z}\ {B,J,0,U,X, Z}.

An (¢,d)-motif is a string of length ¢ over the alphabet
¥ U {x} containing exactly d x-characters. The character x
is interpreted as a wildcard-symbol, i.e., it matches with any
character of X. For instance, GAQPRNMY matches the (8,4)-
motif GxxPxNxY. A protein contains an (¢, d)-motif X if its
amino acid sequence contains a substring of length ¢ that
matches X.

Given an ({,d)-motif X and a PPl-network G =
(V,E,X), let Vx = {v € V | A(v) contains X}, be the
set of proteins in the network containing the motif X, and

EX,YZ{{U7’U}€E|UEVX/\UEVY},

be the set of interactions between proteins containing X
and proteins containing Y. Hence, the subgraph Gxy
selected by a motif pair {X,Y} is Gxy = (Vx U
Vv, Ex v, A\jvxuvy ) With Ay oy, the restriction of A to
Vx U Vy. Note that Vx and V3 can share proteins.

A support measure f is simply a function mapping a
motif pair {X,Y} and a graph G to a positive real number

FHX,Y},G). We refer to f({X,Y},G) as the support of
{X,Y}in G.

We next formulate the correlated motif pair mining prob-
lem in a PPI-network (Correlated Motif Mining, CMM):

Input: a PPI-network G = (V, E, \), three natural num-
bers ¢,d, k and a support measure f.

Output: the k (¢, d)-motif pairs {X1,Y1}, ..., {Xk, Yi}
with highest support in G' with respect to f.

ITI. SUPPORT MEASURES

Support measures should reflect the power of a motif
pair to describe interactions. Several considerations should
be taken into account in deciding how to measure the
descriptive power of a motif pair for a given PPI-network
G = (V,E,\): (i) Ex,y should be significantly larger than
expected given GG, Vx and Vy; and, (ii) Vx and Vy should
be large enough in order to minimize the likelihood that the
appearance of the motif X, respectively Y, in the sequences
of the proteins in Vx, respectively Vy-, is just by chance.

In other words, we want the motifs X and Y to truly rep-
resent an overrepresented consensus pattern in the sequences
of the proteins in Vx respectively Vy in order to increase the
likelihood that they correspond to, or at least overlap with, a
so called binding site — a part of the molecule on the surface
that makes interactions between proteins from Vx and Vi
possible through a molecular lock-and-key mechanism.

We call a motif pair {X, Y} complete if each protein from
Vx interacts with each protein from Vi .

A. A x%-based support measure

Tan et al. [14] introduced the y2-score for statistical
significance as a support measure for CMM:

(Ex,v|-Exy)*

fXQ({va}vG) = { 0

if ‘EX,Y| > EX,Y
if |[Exy| < Exy

Ex vy

with m the expected number of interactions between Vx
and Vy, which is calculated by assuming a uniform density
of edges. To that end, let ed(G) = |E\/(|¥‘) be the edge
density of G, i.e., the proportion of edges it has of all its
potential edges. Then, Ex y = ed(G)M (Vx, Vy ) , with the
maximum amount of edges in the subnetwork

Vx N V4
MVx,Vy) = (Vx||Vy| - < X 9 Y|> - |VXﬂVy|) )

If we also use the edge density of the selected subnetwork
ed(Gxy) = |Exy|/M(Vx,Vy), we can rewrite the y?-
support of {X,Y} for which |Ex y| > Exy as

(ed(Gxy) —ed(G))?
ed(G)

As ed(QG) is a constant for a fixed PPI-network, we clearly
see in this form that f,- uses two criteria to determine the
support of a motif pair {X,Y}: (i) the difference in edge
density of Gx y and G, which rewards a larger Ex y than

fXQ({Xv Y}7G) = M(VX7VY)



expected; and, (ii) the (potential) size of G'x y in terms of
the number of edges, which rewards larger Vx and Vy.

B. p-score: a probabilistic support measure

The p-score is a measure introduced by Leung et al. [8] to
evaluate the statistical significance of a motif pair {X,Y} in
a PPI-network G = (V, E, \) by estimating the conditional
probability that there are |Ex y| or more interactions be-
tween Vx and Vy given the number of interactions involving
Vx and assuming a uniform distribution of interactions over
all interaction partners. Motif pairs for which this probability
is small are considered to be statistically significant.

C. Comparison of f,» and f,

Comparing f, with f,2, a major difference is that f,-
bases its support on the whole network G, while f,-support
uses only a small environment of the selected subnetwork.
Moreover, besides the typical edge distribution assumption,
fp makes implicitly the following additional assumptions: (i)
Vx and Vy are disjoint; and, (ii) every interaction from Ex
(Ey) can be described using X (Y), thus to calculate the
support of {X, Y} each protein is assumed to have only one
binding site. Finally, we stress a design flaw in the definition
of fp: the approximation used becomes less precise when
ed(Gx,y) becomes larger, i.e., becomes more interesting.

IV. COMPLEXITY OF CMM

We can prove that CMM is NP-hard for a whole class of
support measures and show at the end of the section that
fx2 is a member of that class.

We call a support measures compliant if it abides to
three reasonable conditions: (i) the support can be computed
efficiently; (ii) if the topology of the selected subnetworks
of two motif pairs differ only in the number of edges,
the one which covers more interactions has higher support;
and, (iii) the support of a complete motif pair increases
with the size of the selected subnetwork. We call a support
measure f biclique-maximal if any complete motif {X,Y}
with |Vx| = |V | scores highest if Gx y is a biclique and
clique-maximal if the motif scores highest if it is a clique.

We can show that CMM is NP-hard by proving that even a
simplified version of the associated decision (D) problem
is already NP-complete. Let D-CMM be the problem to
decide whether for a given PPI-network G = (V, E,\),
natural numbers ¢, d, a real number ¢ and a support mea-
sure f, there exists an (¢, d)-motif pair {X,Y} for which
J{X.Y},G) > t.

Theorem 1: D-CMM is NP-complete for any clique- or
biclique-maximal compliant support measure f.

For the proof and a more formal treatment, we refer to
[3].

It is easy to see that f,- abides the conditions and is
biclique-maximal. Indeed, the support for a complete motif
pair {X,Y} where |Vx| = |Vy| in any PPI-network G
is M(Vx, Vy)(1 —ed(G))?/ed(G) , which is maximal for
[Vx N Vy| =0.
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Figure 2: Two neighboring (6, 3)-motifs as sliding windows
on a sequence. Moving from RTxTxx to KxxTxT, shifts the
window to the left.

V. SLIDER

Since the decision problem associated with CMM is in
NP, CMM can be tackled efficiently as a search problem
in the space of all possible (¢, d)-motif pairs. If we add
the assumption that similar motifs can be expected to get
similar support, it has the typical form of a combinatorial
optimization problem. A number of heuristic algorithms
called meta-heuristics are known to yield good solutions
to a wide variety of combinatorial optimization problems.
One such meta-heuristic is local search [1]. Local search
algorithms move from the current point to a neighboring
point in the space of candidate solutions until a locally
optimal solution is found, i.e., a solution that maximizes
f in its neighborhood. This process is repeated with many
initial random starting points and the best results are saved.

Thus, in order to apply local search to CMM, we need
to define a neighborhood function N which maps a motif
pair {X, Y} to its neighbors N({X,Y}) in the space of all
motif pairs. Consider a motif pair {X,Y} and the selected
subnetwork G x y. Ideally, the subnetwork G'x- y- selected
by a neighbor {X' )Y’} € N({X,Y}) should also be
“close” to G x y in the sense that at least some proteins and
interactions should be shared between G'xy and Gx- y-. To
that end, we first define a neighbor function N slide o1y motifs,
which will be the basis for a neighbor function on motif
pairs. Looking for a match of an (¢, d)-motif X in a protein
can be seen as sliding a window of length ¢ with £ —d holes
over the sequence until the characters in the holes match the
non-wildcard characters of X. Hence, a motif X’ obtained
by closing a hole on a matching substring and creating a
new one while respecting the window size ¢, guarantees that
the same protein will contain X’. In this way, we can slide
the motif window to the left or right by punching the new
hole before the first or after the last original character, as
illustrated in Fig. 2 and formally defined next.

For a motif X, denote by trim(X), the motif obtained
from X by removing leading and trailing wildcards. That
is, trim(xTxTxx) = TxT. A motif X' € Nd(X) if X
and X’ have the same length and trim(Y) = trim(Y”)
where Y (resp., Y’) is obtained from X (resp., X') by
changing one non-wildcard character into a wildcard. In
Fig. 2, X equals RTxTxx while X’ equals KxxTxT. Now,
X' € N™%(X) as X (resp., X’) can be transformed into
Y = xTxTxx (resp., Y’ = xxxTxT) by changing one non-
wildcard character into a wildcard and Y equals Y’ after



stripping leading and trailing wildcards. Next, we define
Nelide for motif pairs. That is, {X', Y’} € Nsi({X Y})
if X' € NWe(X)AY' =Y or Y € Nie(Y) A X/ = X.
Note that when applying N9 to pairs of motifs, one
of the motifs remains fixed. Our experiments, reported in
Section 7.3, show that fixing one motif at each step greatly
improves the effectiveness.
We define the method SLIDER as local search with:

(i) neighbor function N*“; and, (ii) support measure f,z.

VI. DATASETS

Artificial data. To evaluate the biological relevance of
the different notions of support and the power of heuris-
tic methods to retrieve the best motif pairs in terms of
describing interactions, we created a number of artificial
networks as follows. Each network is composed of 100
proteins which are randomly chosen out of the well-known
yeast network [4]. We then generate 50 random (8, 3)-
motifs ! and implant 3 to 10 instances of each motif in the
sequences of randomly chosen proteins. Then, we implant
motif pairs by randomly selecting two implanted motifs X
and Y and connecting each protein containing X with each
protein containing Y until a chosen minimal edge density
is obtained — we used 0.1, 0.2 and 0.3. Consequently, the
network obtained is perfect in the sense that each interaction
is a direct consequence of an implanted motif pair. Because
noise and missing data are an important factor in biological
networks, we also evaluate the resistance to noise of both
the support measures and heuristic methods. To that end,
we create “diluted” versions of each network, by choosing a
dilution level a (from 0.05 to 0.3 in 0.05 steps) and flipping
the edge relation of each pair of vertices with probability a.

We restrict ourselves to networks of 100 proteins because
this is more or less the maximum size for which we are
still able to mine the motif pairs with highest support for
each support measure by a brute force computation within
a reasonable time frame.

Biological data. To assess the effectiveness of SLIDER on
larger networks, we ran our method on the high-confidence
protein-protein interaction network of yeast [4] consisting
of 1620 nodes and 9060 interactions. It is very difficult to
measure the biological significance of the found correlated
motifs, because only very few of them are actually known.
Therefore, we executed a brute force CMM-algorithm over
the yeast network on a computer cluster, finding the best
1000 correlated motifs according to f,2 and compared these
to the results returned by SLIDER. The brute force compu-
tation occupied about 100 nodes in the cluster spanning a
period of 2 weeks. Its purpose was to create a baseline for
motif-driven CMM-algorithms as well as collecting the best

1Using entropy analysis, research has shown that the highest amount of
structural information per sequence length can be found in subsequences
of length 7 to 9 (see Fig. 1 in [12]).

correlated yeast motifs for biological analysis (which is still
ongoing at this point).

VII. EXPERIMENTS

With the exception of the brute force run on yeast, all
experiments were run on a 3GHz Mac Pro with 4GB of
RAM and 8 cores. In the sequel, whenever a timing is
mentioned and unless explicitly mentioned otherwise, the
experiment was run using only 1 core. Nevertheless, we
stress that our SLIDER-prototype, implemented in Java, can
use as many processors as are available. In this section,
we experimentally assess the effectiveness of (i) support
measures to assign a support to a motif pair reflecting its
power to describe interactions; and, (ii) neighbor functions
to find the motif pairs with highest support by exploring the
space of all motif pairs. Furthermore, we compare SLIDER
with other motif-driven CMM-methods. To this end, we need
a notion of precision that compares an ordered set of motif
pairs to a set of motif pairs which is considered to be
the “ground truth”. Finally, we assess the effectiveness of
SLIDER on the yeast network.

A. Precision for motif pairs

We define the similarity between (¢, d)-motif pairs
{X,Y} and {X’, Y’} in a PPI-network G = (V, E, \) as

Exy Npos Ex7 y'|
SUX Y X, Y7, @) = Y Opos Bxv]
({ }{ } ) |EX7YUEX/7Y"

where {v,w} € Ex yn,,,xy if there exists substrings s,
and s, in A(v) and substrings s, and s}, in A(w) such that s,
(resp., sy,) matches with X (resp., Y), s), (resp. s,,) matches
with X’ (resp., Y’), and, s, and s/ as well as s,, and s,
overlap in at least [¢/3] positions in A(v) respectively A(w).

Let S = {M;,..., M,} be a list of motif pairs, then we
reduce S by deleting for every j from 1 to n, every M; for
1 > j such that s(MZ-,Mj) > 0.9. We denote the reduced
version of S by S*.

Let T be a set of “ground truth” (¢, d)-motif pairs and
let S ={My,...,M,} be a list of (¢,d)-motif pairs to be
compared against 7. We define the precision of .S against 7'
at rank k as the fraction of motif pairs M; in S*, 1 <i <k
for which there exists a motif pair Mp in 7™ such that
s(M;, M) > 0.9. We note that, when k = |T™|, the
precision as defined above also corresponds to the usual
notion of recall.

B. Evaluation of support measures

Since the most describing motif pairs in real PPI-networks
are unknown, we measure the ability of a support measure
to assign the highest support to motif pairs on artificial
networks with implanted motifs, as described in Section VI.
We used a collection of networks G¢ with edge density e%
and dilution level a%. We compare the support measures
by looking at the precision of implanted motif pairs on G¢
at rank m, where m equals the number of implanted motif



pairs. Remark that, in this setting, recall and precision are
the same.

In order to make sure that the f,» and f, assign a
meaningful support, we also implemented two naive support
measures f. and f,. The f.-support in a PPI-network
G = (V,E) is simply the number of interactions covered:
fC({X7 Y}, G) = |EX,Y| and

|Exy|
M(Vx,Vy> + |VX U Vy‘ ’

Both measures are naive in that they are independent of the
interaction distribution in G. It is straightforward to show
that both measures are compliant and biclique-maximal.

A visual inspection of the graph in Fig. 3a already
indicates that f,» globally outperforms the other support
measures in selecting motif pairs describing actual inter-
actions. Indeed, at every data point, the precision of f,»
is the best value or very close to the best value of the
four support measures considered. Moreover, comparing
precision on diluted networks shows that f, 2 is vastly more
robust to noise — a crucial aspect since contemporary
PPI-networks still contain large amounts of both noise and
missing data [16]. The results on the artificial networks with
a greater density showed the same trends.

Thus, we can conclude from this experimental section that
fxz2 is superior to all other support measures considered on
all merits.

fv({X7Y}a G) =

C. Evaluation of neighborhood functions

We also defined several naive neighbor functions on motif
pairs, based on simple perturbations of its component motifs.
Fig. 3b displays the precision of local search with each of
these neighborhood functions on the implanted network of
density 10%. The displayed precision is averaged over 5
local search runs. As the speed of local search is highly
dependent on the chosen neighbor function, we provided
each run the same amount of time (10 minutes).

For the sake of completeness, we also experimented with
neighborhood functions on motif pairs where both motifs
can be replaced with a neighboring one (in contrast to the
previous neighborhood functions where one is kept fixed).
Unfortunately, the precision was never larger than 10%,
independent of the level of dilution.

D. Comparison with existing methods

D-STAR. Tan et al. introduced the first motif-driven method
for cMM: D-STAR [14]. Strictly speaking, D-STAR does
not deliver (¢, d)-motifs. Instead it returns two strings sx
and sy, and two sets of proteins Vx and V3 together with
the indices of the substring of the amino acid sequence of
each protein in Vx (respectively Vy-) that differs at most 2d
characters from sx (respectively sy ). As the similarity in
Section 7.1 is defined in terms of positions of substrings, we
can directly use the returned subsets Vx and V3 to compare
with implanted motifs. Every run of D-STAR on the same

network produced the same result, consequently the running
time of D-STAR cannot be parameterized. We used the D-
STAR implementation freely available on the web.
MotifHeuristics. Another method, called MotifHeuristics,
proposed by [8], derives (¢, d)-motifs directly within the
wildcard model and introduced the probabilistically mo-
tivated fp,-support measure. Because we could not obtain
an implementation of MotifHeuristics, we implemented our
own version based on the algorithmic description in [8].
Comparison. The graph in Fig. 3c depicts the precision
of the various methods on the artificial network of density
10%. As a naive baseline, we ran the method Random,
evaluating random motif pairs using f,2. D-STAR took 5
minutes to finish. We gave Random and SLIDER 10 minutes
of computation time. In order to give our unoptimized
implementation of MotifHeuristics a fair chance, we allowed
it to run 30 times longer than SLIDER (that is 5 hours). The
underlying reason why MotifHeuristics takes such a long
time is that for every search step a number of supports has to
be calculated which approaches the total number of motifs.
The graph makes it quite apparent that the success rates of
both D-STAR and MotifHeuristics are smaller than or equal
to that of SLIDER. Overall, SLIDER is more effective and
more robust than its competitors. All algorithms perform
significantly better than random search.

When we double the execution time of SLIDER to 20
minutes, the precision increases significantly. The latter
execution time is still minor in comparison with the brute
force computation which takes about 40 hours.

E. Biological validation

Next, we assess the effectiveness of SLIDER on the yeast
network. We did not try MotifHeuristics as it already takes
a long time on networks of modest size (cf. Section 7.4).
Furthermore, although D-STAR terminated on our artificial
networks within 5 minutes, the method does not scale to
larger networks. In particular, Leung et al. [8] mention
an experiment where they executed D-STAR on the yeast
network and it did not finish in 5 days, we ourselves have
run D-STAR on this network for 48 hours without result.

We ran SLIDER for 20 minutes exploiting all 8 cores of
the Mac Pro. The average precision of the 1 000 best results
returned by SLIDER over 5 runs, while taking the 1 000 best
motifs returned by the brute force computation as a baseline,
is 16%. We point out that the name precision is misleading
in this context as we do not compare with implanted motifs.
The number implies that SLIDER succeeds in recovering no
less than 160 of the 1000 best correlated motifs out of a
search space of 6 x 10*® (8,3)-motif pairs after only a run
of 20 minutes which is quite satisfactory.

VIII. CONCLUSION

At first sight the present work seems highly related to the
mining of frequent patterns in sequences (as for instance in
[7]). It is therefore tempting to think about a method which
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Figure 3: Precision on artificial networks with implanted motifs of density 10%.

first mines frequent motifs from protein sequences which are
then paired together in a second step serving as candidates
for high scoring correlated motifs. An examination of the
1000 top correlated motifs in yeast, however, reveals that
each of the participating motifs occur only in 3 to 10
motifs, whereas highly frequent motifs in yeast occur in up
to 60 proteins. Therefore, mining correlated motifs is very
different from mining frequent motifs.

Van Dijk et al. [15] showed how motifs generated by D-
STAR can be used to predict transcription factor interaction
on small networks. Using SLIDER rather than D-STAR, the
same methodology can be applied to larger networks.

Finally, we mention that we could not confirm the claimed
superiority in [8] of MotifHeuristics over D-STAR. In fact,
our results clearly show that f,, is inferior to f,2 in recov-
ering implanted motifs. These tests should be repeated on
real world data, but as long as only few biological correlated
motifs are known this is not possible.
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