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General Abstract
• Background Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 annual grass species (Poaceae)
originating from Ethiopia. Teff cultivation in the Netherlands is thought to be economically
feasible because teff grains and flour do not contain gluten and are rich in iron. These
two characteristics make teff a desirable ingredient in health products, particularly for
celiac disease patients. At the start of this project Dutch teff yields were modest (1.0 - 1.5
Mg·ha−1). The sowing and harvest dates were (too) late in the season and the crop was
sensitive to lodging. Here, lodging is defined as the permanent displacement of shoots
from their vertical due to root or shoot failure.

• The objective of this research is to detail some processes that underlie the sensitivity to
lodging and the late harvest. Therefore we studied seed germination, lodging resistance,
day length response, pace of leaf appearance.

• Germination of teff can be described by assuming a normally distributed rate of ger-
mination within the seed population. Minimal and maximal temperatures required for
germination depend on water availability (water potential). Conversely, the minimal re-
quired water potential for germination depends on temperature.

• Lodging was inevitable for teff grown on a Dutch sandy soil. We identified that not only
the shoots of teff are prone to lodging, but that the roots are also a major factor in the
lodging process. Furthermore, water adhering to the shoots alone, without wind action,
could induce lodging in the studied cultivars.

• Flowering in teff is significantly delayed by exposure to long days. Teff is therefore a short
day plant; not only panicle initiation, but also development and outgrowth of the panicle
were influenced by photoperiod.

• Phyllochron, defined as the time required between the appearance of two successive teff
leaves, increased abruptly for the last few leaves on the main stem of teff. After re-evaluation
of literature data this abrupt increase in phyllochron seemed to be also present in both
wheat and rice. The delay is most likely independent of temperature, but might be related
to the moment of panicle initiation.

• In conclusion, the study on teff identified clear targets for breeding towards a high-
yielding cultivar in the Netherlands.

Key words: Teff (Eragrostis tef (Zuccagni) Trotter), germination, temperature, model, leaf
appearance, phyllochron, development rate, lodging, biomechanics, safety factor, flower-
ing, heading, day length, photoperiod.
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General introduction

This general introduction‘sets the scene’ for this thesis and ultimately converges to the

general objective of this study. As starting point, compendious information on the cereal

teff (Eragrostis tef (Zuccagni) Trotter) (Fig.1.1) is provided, the main reasons for cultivation

in the Netherlands are presented, and teff’s global growing areas are identified. Next, the

history and meaning of the scientific name ‘Eragrostis tef (Zuccagni) Trotter’ are explained.

To draw a clear picture of the plant itself the physical appearance (morphology) of teff is de-

scribed (Fig.1.1). The introduction of a new plant species, such as teff, into the Netherlands

could cause biological hazards, therefore certain possible threats to the Dutch environment

are discussed. This is followed by a discussion on the main yield-reducing pests and dis-

eases of teff, and by information on teff production and consumption in its natural habitat,

Ethiopia. The work towards the general objective of this thesis is subdivided into four

research topics. Each of the four research topics is addressed in an independent chapter.

The four topics follow from a brief analysis of preliminary field trials, from currently known

Ethiopian yield constraints, and from differences in environmental conditions between

Ethiopia and the Netherlands.

What is teff and where does it grow?

Eragrostis tef is an annual grass species (Poaceae) that most likely originates from Ethiopia

(Vavilov, 1951). Teff is believed to be an ancient crop, the cultivation dating back to at least

3.000 B.P. (Mengesha, 1966; Costanza et al., 1979). This C4 cereal crop species (Kebede et

al., 1989) can be cultivated both for its grains, suitable for human consumption, and for its

straw, usable as fodder, building material and various other domestic purposes.

Teff was recently introduced to the Netherlands. This project was funded by the Dutch

Technology Foundation STW with the objective to facilitate a successful introduction of teff

to Dutch agriculture. The main reason that teff production is thought to be economically

feasible in the Netherlands is that teff grains and flour are rich in certain minerals, especially

iron (Mengesha, 1966; Abebe et al., 2007; Verdonschot et al., 2008) and more importantly

do not contain gluten (Spaenij- Dekking et al., 2005). Gluten is a multi-protein complex in

seeds that can cause coeliac disease in genetically predisposed humans. The absence of

gluten makes teff a desirable ingredient in health products, particularly for celiac disease

patients. Teff can replace gluten-containing cereals in products such as pasta, bread, beer,

cookies and pancakes.

Before the introduction to the Netherlands, the crop was already introduced to Australia,

India and South Africa as forage in the late 19th century by military and political agents of the

British Empire (Costanza et al., 1979). In several other countries teff is or was grown mainly,

but not exclusively, as fodder: Argentina (Nicora, 1939), Ukraine (Krasnokutskii & Konstanc,

1939), Malawi, Zaire, Sri Lanka, New Zealand, Mozambique, Uganda, Tanzania, Palestine,

Kenya, Canada (Ketema, 1997), USA (Castellani, 1948) and parts of Asia (Castellani, 1948).
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Fig. 1.1: Drawing of (a) ripening inflorescence of teff (drooping panicle); (b) branche of the panicle,
containing spikelets; (c) individual spikelet, containing teff grains; (d) individual teff grain; (e) teff
stubble and root system; (f) teff phytomer: (1) node, (2) axillary branche, (3) internode, (4) leaf sheath
and (5) leaf blade.
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How teff received its common and scientific name

The common name of Eragrostis tef (Zuccagni) Trotter, is often spelled "teff" or "t’ef" and

is considered by many to originate from the Amharic word teffa, which means ‘lost’, since

grains spilled on the ground are so small that they are lost.

According to Costanza et al. (1979), Attilio Zuccagni was the first to publish a botanical

description of teff as a species and named it Eragrostis tef in 1775. In 1851, however,

Jacquin described this same species as Poa abyssinica (Costanza et al., 1979) in the genus

Poa; abyssinica is referring to the Empire of Ethiopia, historically known as Abyssinia.

Later teff was thought to belong to the love grass genus, Eragrostis and accordingly named

Eragrostis abyssinica. In 1918, Trotter rediscovered the original description of Zuccagni,

hence the current name featuring two authors: Eragrostis tef (Zuccagni) Trotter.

Plant morphology

Most of the observations on the diverse appearance of teff described here, I did during my

research at Wageningen University and during visits to Dutch teff breeders. These breeders

showed me fields with mixed teff landraces, i.e. local teff varieties originating from Ethiopia.

I found that the length of full-grown plants ranged between approximately one and two

meters depending on the variety. Some teff varieties can produce numerous tillers and

each tiller can produce axillary branches. Axillary branches are defined as branches that

arise from buds in the axils of leaves higher up the culms, where stem internodes have

expanded (Doust, 2007). Teff shoots are often thin, 1-4 mm in diameter, and the shoots

of most varieties easily bend. Teff possesses small (10 - 100 mm) and long (40 - 700 mm)

leaf blades, a culm can produce 1 to 13 leaf ranks, the ligule of teff is very short (0.5-1 mm)

and ciliated (Fig.1.1). The inflorescence of teff plants is a panicle (Fig.1.1). Among teff

varieties differences in panicle shape can be enormous: from long to short, compact to

open and from erect to drooping. In general a panicle can contain over 1000 spikelets

and each spikelet has 2 to 20 florets. These florets are bisexual and teff is self-pollinating,

but chasmogamous, i.e. its flowers open, making cross pollination possible (Berhe, 1976;

Ketema, 1983). Yet, the degree of outcrossing in teff is very low, i.e. 0.2-l.0% (Ketema, 1997).

Heading, defined as emergence of the tip of the inflorescence from the sheath of the flag

leaf, and pollination almost coincide. From here on we will use the term heading instead

of flowering. Each floret has a lemma, a palea, three stamens, an ovary and mostly two,

in some cases three, feathery stigmas (Ketema, 1983). Teff has 40 chromosomes (2n= 4x

= 40) with a relatively small genome size of about 730 Mbp (Jones et al., 1978; Ayele et

al., 1996). Grains are approximately 0.5-1.7 mm long, and 0.2-1.0 mm in diameter, and

have a l000-kernel weight of 0.25 - 0.5 grams. Grain colour varies between varieties, from

plain white through dark yellow and bright red to dark brown. The rooting system of teff

is fairly shallow with most of the roots in the top 20 cm of the soil, however, during field

observations we did observe some thin roots at more than 1 m depth.
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Teff as a pest?

The introduction of a new plant species into the Netherlands could cause biological hazards.

The more so because in the 20th century pilosa (Eragrostis pilosa), closely related to teff,

became rapidly a common species in the Netherlands. As indicated by the Dutch vegetation

data base (Schaminée et al., 2007), pilosa is mostly growing along road sides and in urban

areas. According to W. Ozinga (personal communication, 2010) pilosa does not cause a

great threat to the Dutch vegetation, neither does it cause great inconvenience to Dutch

citizens. In the Netherlands seeds must possess some form of dormancy in order to remain

viable until the next growing season. Whereas pilosa seeds can be dormant (Tenner, 2004),

teff seeds are free of dormancy and therefore most of the teff seeds that are shed on the

soil will germinate that same season. Therefore it is unlikely for teff to become invasive. In

accordance with this, no spontaneous teff re-growth was observed on the fallow fields the

year after agronomic trials in Wageningen, dating from 2005 to 2008. These observations

together with the absence of dormancy, and absence of invasive problems in other coun-

tries, indicate that current teff varieties are unlikely to become troublesome invasive plants.

There is, however, still the potential threat of teff being a host for plant diseases that are

new to Dutch natural vegetation and agriculture.

Pests and diseases in teff

Although teff is known for its high pathogenic resistance, more than 24 fungal pathogens

and several nematodes have been reported to cause some harm to teff in Ethiopia (Amogne

et al., 2000). Impact of the majority of these diseases is ‘minor’, only teff rust (Uromyces

eragrostidis Tracy), head smudge (Helminthosporium miyakei Nisikado) and damping-

off caused by Drechslera spp. and Epicoccum nigrum are important diseases in Ethiopia

(Amogne et al., 2000). Welo bush-cricket (Decticoides brevipennis Ragge) (Ragge, 1977;

Stretch et al., 1980) and caterpillars of noctuid moths (in particular species belonging to the

genus Spodoptera, i.e. army worms) are the cause of most of the insect damage in Ethiopia

(Ketema, 1997). Reports on viral or bacterial diseases in relation to teff yield are scarce. It

has however been reported that teff can be a host of both dwarf mosaic virus and sugarcane

mosaic virus (Bekele et al., 1995).

In the Netherlands we found that both thrips (Family: Thripidea in particular the

species: Limothrips cerealium; Thrips angusticeps; Frankliniella tritici) and aphids (Family:

Aphidoidea in particular the species: Aphis frangulae and Aphis nasturtii) can substantially

reduce yield, if no management action is taken. Teff in the Netherlands is also susceptible

to several pathogenic fungi: Fusarium graminiarum; Fusarium culmorum and several

Pythium species. Some nematodes can cause damage at the early stages of development

viz: Meloidogyne chitwoodi and Pratylenchus penetrans. Although we did not observe any

teff-related plant diseases that are new to the Netherlands since the introduction of teff in

2001, we should not yet exclude such a possibility.
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Teff production and consumption in Ethiopia

The Ethiopian national average teff grain yield is as low as 1.1 Mg·ha−1 (CSA Ethiopia, survey

2005-2010). For teff to be economically feasible in the Netherlands yield have to be in the

order of 2.5 - 3.0 Mg·ha−1. Thus, Dutch yields have to be two to three times as high as the

average Ethiopian yield. It is therefore interesting to identify the main yield constraints that

underlie this low national average of Ethiopia.

The low national average is partly associated with constraints such as water logging,

drought and nutrient limitation (Tulema et al., 2005). Although farmers can use teff as a

drought-tolerant crop, water remains a major yield constraint (40-50% yield reduction) in

rain-fed teff cultivation (Yizengaw & Verheye, 1994).

Another cause for the currently low teff grain yields is lodging. Lodging can be defined

as the permanent displacement of a plant from the vertical (Berry et al., 2004). Solving teff’s

lodging problems would dramatically increase actual yield and therefore lodging resistance

is the main focus in several breeding programmes (Assefa et al., 2011; Syngenta-Foundation,

2011), Berhe, 1973; Ketema, 1991; Hundera et al., 2000; Zhang et al., 2001; Tefera et al., 2003;

Yu et al., 2006).

A different cause for the currently low teff yields is bad seedling establishment. For

homogenous seedling emergence and to better compete with weeds, teff requires a ho-

mogenous seedbed. Preparing a flat seedbed on Ethiopian vertisols using man power and

draught animals (oxen) is tedious and laborious. Moreover, depending on water availability,

teff requires temperatures higher than 10 ◦C in order to germinate. At lower temperatures

growth is arrested and the plant is more susceptible to pests and diseases, e.g. damping off.

In the Netherlands, water, nutrient and lack of proper seedbed preparations are unlikely

to reduce yields. However, both poor seedling establishment at the start of the season

resulting from low temperatures, and lodging can potentially restrict teff grain yield in the

Netherlands.

In the period between 1995 and 2010 on average about 28% of the total Ethiopian

acreage of the seven major cereals was occupied by teff, but teff only accounts for 20% of

the overall grain production. These lower average teff yields compared to the other cereals

can, to some degree, be explained by the crops ability to produce some yield where other

crops fail (Ketema, 1997). Nevertheless, the yield of well-fertilized unsupported plants in

’on station’ field experiments is 2.5 Mg·ha−1 on average (Tulema et al., 2005), which is half

of the grain yields that can be obtained for wheat landraces (Erkossa et al., 2000).

If teff yields are indeed lower than other cereals in Ethiopia, then the question arises:

‘For what reason(s) do the Ethiopians continue to grow teff?’ Firstly, teff can be grown

in areas prone to both droughts and excessive water. It withstands anaerobic conditions

better than many other cereals, including wheat and sorghum (Ketema, S., 1991; Ketema,

1997). Secondly, teff has fewer disease or insect pest problems compared with other cereals

growing in Ethiopia (Amogne et al., 2000). Thirdly, nitrogen fertilizer requirements are low,

i.e. no more than 60 kg·ha−1 N is recommended for obtaining yields in the order of 2.0

Mg·ha−1 (Kidanu et al., 1999). Fourthly, and most importantly, teff receives relatively high
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market prices for both its straw and its grain. This is because cattle prefers teff straw to

straw of other cereals (Davy, 1913). And in the Ethiopian culture there is a strong preference

for consuming teff instead of other cereals (Belay et al., 2006). Ethiopians consume teff in

the form of popular pancake-like bread, called enjera, and sometimes as a porridge or in

the form of alcoholic drinks, called tela and katikala.

In summary the often sub-optimal growth conditions (e.g. moisture stress, lack of

fertilizer or pesticides) and Ethiopian cultural preferences make teff a relatively safe and

suitable crop for the average Ethiopian farmer.

Teff’s growth environment

Dutch farmers possess more capabilities in terms of mechanised land preparation, drainage,

nutrient management and pesticide management than Ethiopian farmers. It is therefore

surprising that at the start of this project, teff grain yields in the Netherlands (1.0-1.5

Mg·ha−1) were comparable to the Ethiopian national average. The harvest index (which

is the ratio of dry weight of grain, to dry weight of total above ground biomass) for teff in

the Netherlands was also low (0.1 - 0.2) compared to that of wheat and barley (0.4-0.6).

This low harvest index indicates that the crop produces sufficient biomass (5-15 Mg·ha−1),

but a modest quantity of grains is harvested. Therefore it is unlikely that daily solar pho-

tosynthetically active radiation (PAR) and water stress are major yield constraints in the

Netherlands. The more so because grain yields from well-irrigated Dutch experimental

plots were comparably low (1.0-2.0 Mg·ha−1). However, several other reasons for the low

Dutch grain yields can still be postulated, such as: slow progress through developmental

phases resulting from sub-optimal temperature or day length, or severe lodging, or grain

losses due to strong wind. Comparison of Dutch and Ethiopian temperatures, day lengths

and wind forces during the growing seasons could help to identify the constraints on teff

yield in the Netherlands.

The main production areas of teff in Ethiopia are in the central-west to the central-

north, at altitudes between 1700 and 2400 m a.s.l., in particular the administrative regions of

Shewa, Gojam, Gonder, Wello and Welega (Ketema, 1997)(CSA Ethiopia, survey 2005-2010).

Temperature during the growing seasons in Ethiopia is, depending on altitude, mostly

above 8 ◦C and below 27 ◦C with a daily average between 15 and 22 ◦C (NMA, 2011). Teff

requires temperatures between 15 and 21 ◦C for optimal growth (Yizengaw & Verheye, 1994;

Zerihun, 1996; Ketema, 1997). Our preliminary field trials showed that low temperatures

(< 10 ◦C), especially at the beginning of the Dutch growing season, can cause bad seedling

establishment or arrest crop development.

One of the major environmental differences between Ethiopia and the Netherlands is

day length. In Ethiopia during the main growing season day length, here defined as civil

twilight, is about 13 h at sowing and approximately 10 h at harvest. In the Netherlands

the day length is approximately 17 h at sowing, peaks at 18.5 h on the 21s t of June and

then decreases to approximately 14 h at harvest. As indicated by Gebreselassie (1985), we

17



| Chapter 1

expect that teff is a short-day plant. Consequently, the Dutch long days will prolong the

time required to reach the heading stage. Late heading (flowering) will shift the harvest date

to wetter and colder weather in September, which is undesirable, since cereals generally

require a dry period to ripen properly.

The preliminary field trials in the Netherlands confirmed the Ethiopian observations

(Ketema, 1983; Ketema, Seyfu, 1991) that the crop is susceptible to lodging. Average wind

speeds during the growing season in the central highlands of Ethiopia (≈ 2 m·s−1) are lower

than in the Netherlands (≈ 3 m·s−1) (NMA, 2011). However, maximum winds speeds during

the growing season in the Ethiopia are equal, or even higher than in the Netherlands (MAQ,

2011; NMA, 2011).

Above, I have postulated several grain yield constraints for teff in the Netherlands. In

relation to these constraints four research topics for this thesis have been chosen:

I: Viable teff seed can fail to germinate as a result of sub-optimal temperatures at the start of

the season. This relates to the first research topic of this thesis: teff germination in response

to temperature and water availability.

II: In both Ethiopia and the Netherlands teff is susceptible to lodging. This relates to the

second research topic of this thesis: the analysis of lodging in teff.

III: The long day length in the Netherlands may increase the time to heading (flowering) in

teff. This relates to the third research topic of this thesis on photoperiodism in teff.

IV: Relatively low average temperatures and long day lengths in the Netherlands could

prolong the developmental stages of the crop, especially at the beginning of the growth

season. A widely used indicator of the rate of development during the early stages is the

time interval between the appearance of two successive leaves, the so-called phyllochron.

This relates to the fourth research topic of this thesis: the variation in teff phyllochron.

General objectives and outline of this thesis

The general objective of the work described in this thesis was to examine some of the major

yield constraints of teff, thus helping breeders to identify targets for breeding high yielding

cultivars for cultivation in the Netherlands. The evaluation of preliminary Dutch field

trials and comparison between the Dutch and the Ethiopian growth environment in the

previous section, resulted in the identification of four research topics that are related to the

most yield-restraining factors of teff. Ergo, the topics of this thesis are: seed germination,

lodging, timing of leaf appearance (phyllochron) and time to heading. Apart from forming

possible yield constraints and the common denominator "teff", the four chapters all share

a strong quantitative component, assessing the environmental impact on seed or plant

development. The chapters can, however, be read as independent units, but all references

used are compiled at the end of this thesis.

18
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In compliance with the regulations of our funders (STW (see section on funding),

we choose the topics in consultation with breeders, farmers, food technologists, crop

physiologists and agronomists. Aside from the practical objective of helping breeders

to obtain a high-yielding cultivar, I also want to use this thesis to advance our current

understanding of the seed physiology, phenology and morphology of teff in particular, and

other cereals in general. Therefore, although the main model species in this thesis is teff, for

several plant traits an explicit comparison will be made to wheat and rice, using published

and newly gathered data.

Chapter 2: Germination of teff: Re-examining "hydro thermal time modelling"

For good seedling establishment in the field, teff germination has to take place close to

the soil surface (van Delden et al., 2010). Consequently, large variations in temperatures

and water potentials commonly occur when growing this crop in the Netherlands. The

Hydro thermal time model (HTT) of Alvarado & Bradford (2002) is the current standard to

describe the interacting effects of temperature and water potential on the time required to

germination of seeds in a population. We fitted this HTT model (Alvarado & Bradford, 2002)

to an extensive germination data set of teff. This model did, however, not give a satisfactory

fit to our data. In this chapter we present a modified modelling framework, that provides

a better description of teff germination data than the model of Alvarado and Bradford

(2002). This modified modelling framework introduces more flexibility in modelling of seed

germination at all combinations of constant temperature and constant water potential.

Chapter 3: Analysing lodging of the panicle bearing cereal teff

Lodging, the permanent displacement of crop plants from their vertical due to root or shoot

failure, is a major yield constraint of teff. The objective of this chapter is to analyse the

causes of lodging of teff by using, modifying and validating conventional biomechanical

models (for both root or shoot failure) and making comparisons to rice (Oryza sativa L.)

and wheat (Triticum aestivum L.).

Chapter 4: Variation in cereal phyllochron revisited

As a vital condition for making accurate predictions of crop development in a field, with

continuously changing circumstances, the fundamental concepts on the timing of leaf

appearance obtained under constant temperatures need to be correct. Yet, the theory

on the phyllochron, i.e. time between the appearance of two successive leaves, is still

controversial. Many studies have highlighted inaccuracies in predictions of the timing

of successive leaves in the field. This chapter provides an accurate description of the

fundamental concepts on the timing of leaf appearance in the cereals teff (Eragrostis tef

(Zuccagni) Trotter), rice (Oryza sativa L.) and wheat (Triticum aestivum L.)

19
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Chapter 5: Photoperiodism in teff: Analysis of ontogeny and morphology in response

to photoperiod

This chapter analyses the degree to which teff’s ontogeny and morphology is day-length

sensitive and provides a detailed description and quantification of the response of teff

to day length. Smooth logistic functions are presented that are generally applicable in

short-day cereals. By using four distinct teff cultivars, we also studied the feasibility to

breed for a teff genotype that is well adapted to northern latitudes.

Chapter 6: General Discussion

The study on this crop in the past several years created clear targets for breeding towards

a high yielding cultivar in the Netherlands. This chapter summarizes the gained insights

for both breeders and scientist. I start this chapter by discussing my view on modelling in

plant biology.
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Abstract

• Background: Current hydrothermal time models describe seed germination curves well

under conducive germination conditions, but they may fail at the extremes of the per-

missive range. In this Chapter we present a modified germination modelling framework, in

which cardinal temperatures are a smooth function of water potential and, conversely, the

cardinal water potential is a smooth function of temperature.

• Methods: Experimental data on seed germination of teff (Eragrostis tef (Zuccagni) Trotter)

were obtained at 17 temperatures and 5 water potentials, using a complete factorial design

with 3 replications, resulting in a highly discriminating data set.

• Key Results: We show that the postulate of a normal distribution of seed germination rate

can explain the time course of seed germination at any combination of temperature and

water potential. Final germination percentage and lag phase are emerging properties of the

modelled mean germination rate and its variation among seeds in a population.

• Conclusions: The normal distribution provides an accurate and parsimonious summary

of teff germination curves. The newly developed framework gives better predictions of seed

germination than alternative models. The proposed modelling approach circumvents stat-

istical problems of degree of freedom inflation and identifiability of spread in population

parameters.

Key words:

Germination, teff (Eragrostis tef (Zuccagni) Trotter), water potential, temperature, model,

hydrothermal time, normal distribution, stress.
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Roman abbreviations used in this chapter

Roman
symbols

Explanation Units Eqns.

a
Parameter characterising the slope of the relation-
ship betweenψb and T near Tb

oC−1 2.7

AIC
Akaike’s information criterion, a measure of the
goodness of fit

b
Parameter characterising the slope of the relation-
ship betweenψb and T near Tc

oC−1 2.7

c
Shape parameter characterizing the rate of the
change of θH with temperature at suboptimal tem-
peratures

2.8

CV Coefficient of variation 2.9

d
Shape parameter characterizing the rate of the
change of θH with temperature at supra-optimal
temperatures

2.8

g Germination percentile % 2.1, A2.2.13

bg (t ) Predicted germination fraction as a function of time 2.2

ISTA International Seed Testing Association

KT
The slope of increase of base water potential at T >
To

◦C·MPa−1 2.1, 2.5

k
Observed number of germinated seeds of the replic-
ate

2.3

n Number of viable seeds per replicate 2.3

NTC Negative temperature coefficient

r (g )
Germination rate r (g ) = t (g )−1, r (50) represents me-
dian germination rate

h−1 2.2

T Temperature ◦C
2.1, 2.2, 2.5, 2.6, 2.7,
2.8, 2.9,2.10, 2.12

Tb Base or minimum temperature for seed germination ◦C 2.6, 2.7, A2.2.13

Tc
Ceiling or maximum temperature for seed germina-
tion

◦C 2.7, A2.2.13

Ti
Temperature at the inflection point of the curves
describingσ

◦C 2.10

T Tb(ψ)
o

the temperature where Tb(ψ) does not further in-
crease

◦C A2.2.13

T Tc(ψ)
o the temperature where Tc(ψ) has its lowest value ◦C A2.2.13

To Optimum temperature for seed germination ◦C 2.1, 2.6

Ts
Temperature at whichσ starts to increase with tem-
perature

◦C 2.10

t Mean time to germination of the seed population h 2.2

t (g )
Time to germination of percentile g and t (50) rep-
resents median time to germination

h 2.1, A2.2.13
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Greek abbreviations used in this chapter

Greek symbols Explanation Units Eqns.

α
Proportionality factor betweenσmin and tem-
perature

◦C−1·h−1 2.9

µ
Mean germination rate, also applied as a func-
tion of both water potential and temperature,
µ(ψ, T )

h−1 2.2, 2.4, 2.9

ψb

Median base water potential, i.e. minimal wa-
ter potential required for 50% germination,
also applied as a function of temperature,
ψb(T )

MPa
2.1, 2.4,
2.5, 2.7,
A2.2.13

ψmin
b

Minimum value, over a range of temperatures,
of the base water potential

MPa 2.7

σ
Standard deviation of germination rate, also
applied as a function of both water potential
and temperatureσ(ψ,T )

h−1 2.2, 2.9,
2.10

σmin(T )
Minimal spread in seed germination rate, ap-
plied as a temperature dependent minimal
spread

h−1 2.10

σmax(ψ)

Maximal spread in seed germination rate, ap-
plied as a water potential dependent max-
imum, thusσmax(0) representsσmax whenψ=
0

h−1 2.10

σψb Standard deviation of the base water potential MPa
2.1,
A2.2.13

θH
Hydro time, i.e. cumulative water potential,
required for 50% germination

MPa·h 2.4, 2.8,
2.12

θHT Hydrothermal time required for germination MPa·◦C·h 2.1, 2.6,
A2.2.13

θH(To)
The hydro time constant at the optimal tem-
perature

�

To

� MPa·h 2.8

To(θH)
The optimal temperature (C) of the hydro time
constant

�

θH

�

◦C 2.8
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Introduction

The time required by a seed to germinate depends on the interaction between environ-

mental factors (including temperature, water and oxygen availability, nutrients, light, toxins

and pathogens) and endogenous seed factors (including hormones, age, state of ripeness

and dormancy). Seeds used as planting material in agriculture are preferably free from

dormancy and uniform in size, age and history. In the absence of dormancy, oxygen short-

age, toxins and pathogens, the main environmental factors that determine the time to

germination are: temperature (T ) (◦C) and water availability (Hilhorst et al., 1997). Water

availability is best characterized by water potential (ψ) (MPa).

The relationship between temperature (T ) and the reciprocal of time (t ) to germin-

ation, i.e. germination rate (r ), of a population percentile g is often taken to be linear.

Therefore germination response to temperature can be described with the thermal time

concept (Feddes, 1972; Bierhuizen & Wagenvoort, 1974). By combining the thermal time

concept with probit analysis, Covell et al. (1986) were able to describe the time course of

germination for a population of seeds at different temperatures.

Hegarty (1976) observed that germination rate (r ) decreased linearly with the water

potential
�

ψ
�

of the seed. Gummerson (1986), therefore, introduced the hydro time concept

analogous to the thermal time concept. Gummerson (1986) combined the hydro time and

thermal time concepts for the suboptimal range of temperature in one overarching model:

the Hydrothermal time model (HTT). The "hydrothermal time constant" (MPa ·◦C ·h) used

in this model was considered to be a population constant and thus the same for all seeds.

Essentially, the hydrothermal time approach assumes proportionality of the rate of seed

germination with temperature and water potential, each as measured with respect to their

cardinal values. This hydrothermal time approach was elaborated by several authors (Ni &

Bradford, 1992; Dahal & Bradford, 1994; Bradford, 1995; Alvarado & Bradford, 2002; Rowse

& Finch-Savage, 2003; Batlla & Benech-Arnold, 2010). Currently, HTT modelling for non-

dormant seeds is based on the model of Alvarado and Bradford (2002) where the authors

incorporated the effect of supra-optimal temperature into the HTT modelling approach.

We fitted this HTT model to an extensive germination data set of Eragrostis tef (Zuc-

cagni) Trotter (common name teff), a small-seeded C4 cereal species (dry seed size≈0.59×1.0

mm) (Kebede et al., 1989; Zewdu & Solomon, 2007) originating from Ethiopia (Vavilov, 1951).

For good seedling establishment in the field, teff germination has to take place close to

the soil surface (van Delden et al., 2010). Consequently, extreme temperatures and water

potentials commonly occur in its natural habitat.

The model of Alvarado and Bradford (2002) did not give a satisfactory fit to our data.

As to be discussed in more detail in the materials and methods sections, many workers

in the field encounter these problems. The overall objective of this chapter is to explain

why the current models may not provide a satisfactory data fit for particular plant species.

Here we propose a modified model framework that overcomes fitting problems of the

hydrothermal time modelling approach for seed germination. The new model does not
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contain discontinuous (i.e. broken) functions and accounts for both variation in cardinal

temperatures and variation in the spread of germination within a population of seeds. The

model is valid for the whole range of combinations of water potentials and temperatures

at which seeds are able to germinate. Since our modified model framework focuses on

modelling the rate of germination we propose the name "hydrothermal rate model" (HTR).

Materials and Methods

Background on the need for improving the HTT model

One of the most widely used models for hydrothermal time is that by Alvarado and Bradford

(2002):

Probit(g) =
ψ−

�

θHT

(T−Tb)t (g )

�

−ψb

σψb

if Tb < T ≤ To (2.1a)

Probit(g) =
ψ−

�

θHT

(To−Tb)t (g )

�

−ψb−KT(T −To)

σψb

if T > To (2.1b)

where Probit(g) is the germination percentage g , converted to probits,ψ (MPa) the water

potential, T (◦C) the temperature, θHT (MPa·◦C·h) the hydrothermal time constant, Tb (◦C)

the base temperature, t (g ) (h) the time to germination of a percentile g , ψb (MPa), the

median base water potential, andσψb (MPa) the standard deviation of base water potential.

Application of the model is possible if base water potential is normally distributed. The fit is

achieved in one big overarching probit regression. In order to obtain an accurate fit to our

germination data on teff we will modify and extend this HTT model. These modifications

were motivated by four difficulties with the current concept.

First, the HTT model assumes that the base water potential
�

ψb
�

is constant for the

lower temperature range of germination (Fig. 2.1c). Accordingly, there is one common

base temperature for germination (Tb) irrespective of water potential (Fig. 2.1a,c,e). There

is increasing evidence, however, that cardinal temperatures and base water potential in-

teract for several species, as summarized by Bradford (1995) and later confirmed in, e.g.,

Orobanche aegyptiaca (Kebreab & Murdoch, 1999), Festuca rubra, Lolium perenne (Larsen

et al., 2003), Poa pratensis, Eurotia lanata (Wang et al., 2005) and Arundo donax (Graziani &

Steinmaus, 2009). To the best of our knowledge this interaction at sub optimal temperatures

has never been incorporated in the HTT model.

Second, the HTT model uses discontinuous linear relationships, to model the rela-

tionship between germination rate and temperature. Such discontinuous linear functions

are subject to debate (Marshall & Squire, 1996; Hardegree, 2006), since the overall relation

between temperature and development rate of a biological system is generally smooth and

curvilinear (Schoolfield et al., 1981; Labouriau & Osborn, 1984; Zwietering et al., 1991; Yin

et al., 1995; Orozco-Segovia et al., 1996; Yan & Hunt, 1999; Timmermans et al., 2007).

28



Seed germination of teff |

2

Third, the HTT model attributes all variation within a seed population in time to

germination to the differences among individual seeds in base water potential
�

σψb

�

.

This single variation parameter
�

σψb

�

is assumed to have a constant value regardless of

water potential. Although this simplification of reality may be justified from a modelling

perspective, from a biological perspective spread in base temperature (Tb) is not unlikely.

The more so because, in experiments at constant water potential, cardinal temperatures

have also been shown to vary; for example in seed populations of Brassica napus (Marshall

& Squire, 1996), Daucus carota (Finch-Savage et al., 1998), Stellaria media (Grundy et al.,

2000) and Lithospermum arvense (Chantre et al., 2009). In other words it is hard to identify

whether variation in time to germination is a result of the seed response to temperature or

the response to water availability or both. Modelling the spread of the process rate itself as

a function of both temperature and water potential will circumvent this problem.

The fourth problem of the current approach in HTT modelling is related to the statist-

ical assumptions made. The HTT model is fitted using probit transformed data, whereby

each observed germination percentile, g , is considered as an independent observation.

However, subsequent observations in time of germination fraction within a single replicate

constitute dependent data. Treating these as independent results in inflation of degrees of

freedom, which can result in spurious significance claims. An appropriate data analysis

should account for this statistical dependence by applying a data reduction step in which

dependent data are summarized, by fitting growth curves, and subsequently analysing the

parameters characterizing those curves (Keuls & Garretsen, 1982). Furthermore, germina-

tion data provide a classical example of heteroscedastic data for which a binomial error

distribution is appropriate (Hilborn & Mangel, 1997). Moreover, transformation of germina-

tion percentages of 0 or 100% is not possible and observations below 5% and above 95% are

recommended to be removed (Bradford, 1990) when fitting ordinary least squares. A mod-

elling technique that allows inclusion of all available data, such as a maximum-likelihood

weighted regression method as proposed by Bradford (1990) is desirable.
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Fig. 2.1: Comparison of key relationships defining two models for seed germination: (1) the current
hydrothermal time model (HTT) of Alvarado and Bradford (2002) (a, c, e) (eqn 2.1); (2) hydrothermal
rate model (HTR) (b, d, f) (eqn 2.4, 2.7 and 2.8). The top two panels (a,b) describe for each of the two
models the response of mean rate of seed germination to temperature at water potentials of 0 MPa
(solid line), -0.4 MPa (grey line), -0.8 MPa (broken line) and -1.2 MPa (dotted line). The middle two
panels (c,d) describe for each of the two models the response of base water potential to temperature
and different markers represent cardinal temperatures Tb (open symbols) and Tc (closed symbols) at
water potentials: 0 MPa (circles), -0.4 MPa (triangles), -0.8 MPa (squares) and -1.2 MPa (diamond).
The two panels at the bottom (e,f) describe for each of the two models the response of hydrotime, θH,
to temperature. The solid line in panel (e) represents the model of Alvarado and Bradford (2002) and
the broken line the model of Rowse and Finch-Savage (2003).
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Theory of the Hydro Thermal Rate model

Here, we present a modelling framework that overcomes the listed difficulties of the current

HTT modelling approach for seed germination. The proposed data analysis is subdivided

into three steps (Fig 2.2).

In step 1 the germination curves from individual replicates are summarized by fitting

two parameters (i.e. mean germination rate and corresponding variation) for each replicate

before further analysis. The error model used for fitting the germination data is binomial.

In step 2 the response of these summary measures to water potential and temperature

is then further analysed using flexible smooth continuous functions that are fitted with

non-linear regression, assuming a normal error model. These functions allow cardinal

temperatures and base water potential to interact and vary over the whole temperature

range of seed germination.

In step 3 two alternative models are proposed: one, using a coefficient of variation and

two, using an empirical logistic function to model variation in germination rate within the

seed population. In both models the spread in germination rate, is free to fluctuate as a

function of water potential and temperature.

Step 1

The germination rate of a seed at given constant conditions is defined as the reciprocal

of the time to germination, 1
t
= r . This rate (r ) varies within the seed population. Some

seeds germinate early and have a high rate, while others germinate late, having a low

rate. When a cumulative percentile g has germinated at time t , we can equivalently state

that a percentile g has a germination rate of at least 1
t

. For the distribution of the rate,

several models might be used as a null model. Here, we choose the normal distribution

to describe the variation in rate, because of the distributions’ generality and strong the-

oretical foundation (Hilborn & Mangel, 1997). Moreover, this assumption is consistent

with the assumption of a normal variability in the base water potential of the HTT model

(Alvarado & Bradford, 2002). As a consequence, the cumulative normal distribution func-

tion
�

with population mean (µ)and spread (σ)
�

can be used to describe the germination of

31



| Chapter 2

population quantile bg (t ) as a function of time t :

bg (t ) = Pr
�

t ≤ t
�

(2.2a)

= Pr

�

1

t
≥

1

t

�

(2.2b)

= Pr

�

−
1

t
≤−

1

t

�

(2.2c)

=Φ







− 1
t
−
h

−µ
�

1
t

�i

σ
�

1
t

�






(2.2d)

=Φ
�

−r +µ(r )
σ(r )

�

(2.2e)

where the t (h) is the stochastic variable time to germination, t (h) the actual time to

germination of population quantile bg (t ), r (h−1) the germination rate, µ (h−1) and σ

(h−1) the mean and standard deviation of the rate, and Φ the cumulative standard normal

distribution function.

While the distribution of the rate r (g ) is assumed to be normal as a null model, the

corresponding distribution of the time to germination will not be normal but skewed. The

mean rate of germination
�

µ
�

is equal to the median rate of germination (r (50)) because

these two parameters are equal in a normal distribution. Equality does not hold for the

mean time (t ) and median time (t (50)) to germination. Due to the right-skewed distribution

of time to germination, the mean (t ) is greater than the median (t (50)). It should be noted

that the distribution of the rate allows negative values. Negative values in the left tail of the

distribution of the rate represent seeds that do not germinate under the given conditions,

i.e. the rate is effectively truncated at a value of 0. Equation 2.4 can be fitted to data by

minimizing the negative log likelihood. Given the type of data, binomial likelihood is

appropriate (Hilborn & Mangel, 1997):

LL =
∑

�

−k · log
�

bg (t )
�

− (n −k ) · log
�

1− bg (t )
��

(2.3)

where LL is the negative log likelihood, bg (t ) the predicted germination quantile at time t ,

n the number of viable seeds of the replicate, and k the observed number of germinated

seeds in the replicate. The dependent data of observation of germination fraction within a

replicate sample are now summarized with two parameters, i.e. µ andσ, for each replicate.

Step 2

In the second step, the response of mean germination rate
�

µ
�

to water potential and

temperature is modelled. In order to express the mean germination rate
�

µ
�

as a function

of both water potential
�

ψ
�

and temperature (T ), we rewrite the model of Alvarado and
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Bradford (2002) (eqn 2.1) back to its basic form as used by Gummerson (1986):

µ(ψ, T ) =
ψ−ψb(T )
θH(T )

(2.4)

where µ(ψ, T ) is the mean germination rate,ψ(MPa) is water potential, T (◦C) is temper-

ature,ψb(T ) (MPa) is the base water potential of the population median as a function of

temperature, θH(T ) (MPa·h) is the hydro time constant as a function of temperature. In the

approach of Alvarado and Bradford (2002),ψb(T ) in eqn 2.4 (Fig. 2.1c), is represented by:

ψb(T ) =ψb if Tb < T ≤ To (2.5a)

ψb(T ) =ψb+KT (T −To) if To < T ≤ Tc (2.5b)

whereψb (MPa) is the constant base water potential at suboptimal temperatures, Tb and

Tc (◦C) are, respectively, the base and ceiling temperature below and above which half of

the population does not germinate, To (◦C) the temperature at which germination rate

is maximal, and KT the slope of the relationship between temperature, T , and ψb. This

relationship is only valid at temperatures above To. In the approach of Alvarado and

Bradford (2002), θH(T ) in eqn 2.4 (Fig. 2.1e), is represented by:

θH(T ) =
θHT

(T −Tb)
if Tb < T ≤ To (2.6a)

θH(T ) =
θHT

(To−Tb)
if To < T ≤ Tc (2.6b)

where θHT (MPa·◦C·h) is the hydrothermal time constant, Tb the base temperature. Note

that at supra optimal temperatures the value for hydrotime is fixed, i.e. θH(T ) = θH(To),
(Fig. 2.1e).

Thus in the model of Alvarado and Bradford (2002),ψb(T ) and θH(T ) are represented by

eqn 2.5 and 2.8, respectively. To gain model flexibility we now propose two flexible smooth

U-shaped functions, eqn 2.7 (Fig. 2.1d) and 2.8 (Fig. 2.1f), which replace eqn 2.5 (Fig. 2.1c)

and 2.8 (Fig. 2.1e). To describe base water potential
�

ψb
�

as a function of temperature we

propose:

ψb(T ) =ψmin
b

�

1− e a (Tb−T )
��

1− e b (T−Tc)
�

(2.7)

whereψmin
b (MPa) is an asymptotic minimum base water potential (Fig. A1.2.12), Tb (◦C) the

base temperature at maximum water availability
�

ψ= 0 MPa
�

and a (oC−1) and b (oC−1)

characterize the slope of the relationship between base water potential and temperature in

the sub-optimal and supra-optimal ranges, respectively.
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To describe hydrotime (θH) as a function of temperature we propose:

θH(T ) = θH(To)+
�

d

c

�
2c+d
c+d �

1−e[c (To(θH)−T )]
�

+
�

d

c

�
c

c+d �

1−e[d (T−To(θH))]
�

(2.8)

where θH(To) (MPa h) is the hydro time constant at the optimal temperature To (◦C), To(θH)
is the temperature at which the hydro time required for germination is at its minimum,

and shape parameters c and d determine the change in θH in the sub- and supra-optimal

ranges of temperature, respectively.

In essence we have rewritten the hydro time equation of Gummerson (1986) as a

function of temperature (eqn 2.4). We will refer to this model as the hydrothermal rate

(HTR)-model.

Step 3

The third step involves modelling the spread in germination rate (σ) as a function of

temperature (T ) and water potential
�

ψ
�

. We compared two approaches. The first approach

assumes a constant coefficient of variation (CV) of seed germination rate when conditions

are suitable for germination, and sets a temperature dependent minimum spread when the

rate becomes low:

σ(ψ,T ) =max
�

CV ·µ(ψ, T) , σmin(T)
�

(2.9a)

and

σmin(T ) =α ·T (2.9b)

whereσ(ψ, T ) and µ(ψ, T ) (h−1) are the standard deviation and mean of the germination

rate at a certain combination of temperature (T ) and water potential
�

ψ
�

, CV is the coef-

ficient of variation and, σmin(T ) (h−1) is the minimum spread. The parameter α (◦C·h−1)
characterizes the increase in minimal spread with temperature.

The second approach for modelling the spread (σ) uses a logistic relationship between

standard deviation and temperature:

σ(ψ,T ) =
σmax(ψ)−σmin

1+ e
2
(Ti−T )
(Ti−Ts )

+σmin (2.10a)

and

σmax(ψ) =σmax(0) · eψ (2.10b)

whereσ (h−1) is the population spread;σmin (h−1) the minimum of the observed spread;ψ

(MPa) the water potential; T (◦C) the temperature; σmax(0) (h−1) the asymptote to which

maximum spread atψ= 0 MPa approaches;σmax(ψ) (h−1) the asymptotic maximum spread

as a function of water potential; Ts (◦C) temperature at whichσ (h−1) starts to increase; and

Ti (◦C) the temperature at the inflection point of the curve.
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Experimental setup

Home propagated seeds of teff (Eragrostis tef (Zuccagni) Trotter), cultivar DZ-Cr-255 (Gibe)

of approximately 0.7-0.8 mm length were used. Teff seeds were germinated at 85 combin-

ations of 17 temperatures (8, 10, 12, 14, 17, 21, 24, 27, 30, 33, 35, 36, 37, 39, 41, 43, 45 ◦C)

and 5 water potentials (0, -0.4, -0.8, -1.2, -1.4 MPa). Every combination was conducted in

triplicate, where every replicate consisted of a single Petri dish (diameter 85 mm, height 15

mm) with 100 seeds. Petri dishes were placed in an experimental facility with 100 separate,

thermally isolated cells (diameter 102 mm, height 33 mm), each with a separately controlled

temperature (accuracy ±0.2 ◦C, SMARTEC-sensors, Breda, The Netherlands ) (Mclaughlin

et al., 1985; Timmermans et al., 2007). This results in true replicates where each single

Petri dish had an independent germination environment. Set temperatures were verified

with NTC-thermistors in the germination medium. Water potentials (ψ) were obtained by

combining poly ethylene glycol (PEG 8000) and pure milli-Q water (ψ≈ 0) (Sigma-Aldrich)

according to the equation:

ψ= 0.13[PEG]2 ·T −13.7[PEG]2 (Michel, 1983) (2.11)

as recommended by Hardegree and Emmerich (1990).

The Petri dishes were sealed with Para film to limit evaporation. To further prevent

evaporation and also prevent dripping of condensate onto the seeds, a piece of water satur-

ated filter paper (4.1 g each, diameter 85 mm product no. 3621, Schleicher & Schuell, Dassel,

Germany) was put in the Petri dish lid at temperatures higher than 21 ◦C. At temperatures

lower than 21 ◦C evaporation was very low and since PEG solutions are hygroscopic, a

water saturated filter paper could increase the water potential of the solution. According

to Hardegree and Emmerich (1990), filter paper contains a hydrophylic volume fraction

that is inaccessible to high molecular weight polymers such as PEG 8000. Hardegree and

Emmerich (1990) showed that water absorbed by filter paper fibres concentrates the poly-

ethylene glycol solution and, as a consequence, lowered the intended water potential in

solution-filter paper mixtures. Therefore seeds were not put on traditional filter paper but

they made direct contact with the fluid lying on a slightly elevated sieve with a 5 mm plastic

brim. To aerate the whole system and correct for evaporation, the sieve was lifted from

the Petri dish at least two times per day and the evaporated water mass (determined by

weighing) was added and thoroughly mixed with the fluid. Using sieves in this way avoids

direct contact of seeds with added water or a poorly mixed PEG solution.

Seeds were scored as germinated when protrusion of the radicle exceeded 2 mm (ISTA);

germinated seeds were removed from the system. Observation frequency depended on

germination rate but was at least two times a day until maximal 1500 h after imbibition.
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Statistical analysis

All calculations were performed in Matlab (MathWorks, Natick, Massachusetts, USA) ver-

sion 7.8.0.347 (R2009a). Maximum likelihood estimation (eqn 2.3) and nonlinear least

squares regression (all remaining fits) were performed with the simplex method, using the

built-in optimisation function fminsearch. In order to prevent fminsearch to convergence

to local minima the fit was repeated with 10 different combinations of randomly chosen

initial parameter values within the biologically plausible range. Values for parameter θH and

the right hand side of eqn 2.7 were log transformed for fitting the large range in parameter

values. To compare model performance, Akaike’s information criterion (AIC) and sums

of squared standardized residuals were used. When residuals are standardized, the raw

residuals (observation model prediction) are divided by their corresponding binomial

standard errors
p

n ·p (1−p )where, n is the total number of seeds and p the model pre-

diction. These standardized residuals are more useful because binomial responses do not

have constant variance.The AIC was calculated by taking twice the sum of the minimized

negative log-likelihood (eqn 2.3) of the final model plus two times the number of paramet-

ers. A model with lower AIC is superior to a model with higher AIC (Hilborn & Mangel 1997).

Generally, a difference in AIC of 10 or more between different models is taken as sufficient

evidence that the model with the lower AIC provides a superior description of the data

(Burnham & Anderson, 2002).

Results

The HTT-model (Alvarado & Bradford, 2002) (eqn 2.1), fitted in the usual way on the probit

scale, gave a rather poor description of the data r 2 = 0.645. So did the less restricted model

of Rowse and Finch-Savage (2003): r 2 = 0.642. To gain insight in the reason for insufficient

fit, we here show the detailed results of the proposed three step modelling framework.

Step 1: Are germination curves the result of a normally distributed

germination rate?

The postulate of a normally distributed germination rate was tested by fitting to germination

data from each replicate, i.e. individual Petri dishes. Despite its simplicity, and having only

two parameters (µ andσ) it described the entire range of germination curves (Fig. 2.3). It

could also handle low final germination percentages of less than 10% (Fig. 2.3f). The overall

fit was very good, the r 2 ’s for the 5th, 25th, 50th, 75th and 95th percentile of all 198 individual

fits were respectively 0.945, 0.971, 0.986, 0.994 and 0.999.

The mechanism by which the model accommodates for final germination percentages

is by defining a mean germination rate below zero, such that only the right tail of the

distribution has a positive germination rate. The area beneath this positive tail represents

the final germination percentage.
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Fig. 2.3: Example fits of eqn 2.2 (solid lines) to data (circles) of six individual replicates selected from
treatments with different combinations of temperature and water potential: (a) 33 ◦C and 0 MPa, (b)
35 ◦C and -0.8 MPa, (c) 17 ◦C and -1.4 MPa, (d) 35 ◦C and -1.4 MPa (e), 10 ◦C and -0.8 MPa, and (f) 43
◦C and 0 MPa. Note the different time scales of the x-axes.
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Step 2: Parameter µ as a function of water potential
�

ψ
�

and

temperature (T )

In this second step we used the HTR model (eqn 2.4) to fit the response of mean germination

rate to temperature (T ) and water potential (ψ) (Fig. 2.4). The HTR model in combination

with the new eqn 2.7 and 2.8 provided a better fit (r 2 = 0.974) for this response surface

than the HTT model (eqn 2.1) (r 2 = 0.934) (Fig. 2.4). The intersection of the fitted response

surface with the base plane (where the mean germination rate is 0) shows the relationship

between the base water potential and temperature (Fig. 2.4). As water potential decreases,

the ceiling temperature Tc decreases while the base temperature,Tb, increases, thus nar-

rowing the range of temperatures at which germination takes place (Fig. 2.1, 2.4 and 2.5).

Figure 2.4 and 2.5 make clear that the HTT model is a justified, but a less elegant way of

describing the data. In the HTT concept the optimum temperature, To, is fixed whereas

in the new HTR model, To increases subtly with water potential (Fig. 2.4). Cross sections

through the response surface are given to accurately show the model fit of germination rate,

µ, to temperature at different water potentials for the three models (Fig. 2.5).
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Fig. 2.4: Mean germination rate
�

µ
�

(dots) (z-axis; h−1) as a function of water potential
�

ψ
�

(x-axis;
MPa) and temperature (T ) (y-axis; ◦C) for (a) the HTT model (eqn 2.1) and (b) the HTR model (eqn 2.4,
2.7 and 2.8). The gridded surface represents the modelled response surface. Black dots are above the
surface whereas grey dots are below it. The U-shaped solid black line is the intersection between
the response surface and the plane defined by µ= 0. This U-shaped solid black line represents the
relationship between base water potential and temperature

�

ψb(T )
�

. The same U-shaped solid black
line shows cardinal temperatures Tb(ψ) and Tc(ψ) as a function of water potential. The maximum
germination rate at each water potential is represented by the broken black line. The corresponding
optimum temperature To as a function of water potential

�

ψ
�

is represented by the solid grey line
drawn atψ = 0 in the (T,ψ) plane.
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Fig. 2.5: Mean germination rate
�

µ
�

at five water potentials (n = 3, error bars represent sd; not visible
when smaller than the marker) plotted against temperature for (a) the HTT model (eqn 2.1) r 2 = 0.934
(b) the HTR model (eqn 2.4, 2.7 and 2.8). r 2 = 0.976. Different markers represent water potentials: 0
MPa (closed circles), -0.4 MPa (closed squares), -0.8 MPa (open circles), -1.2 MPa (grey triangles) and
-1.4 MPa (open squares). Lines represent the modelled mean rate

�

µ(T )
�

at each water potential: 0
MPa (broken), -0.4 MPa (dotted), -0.8 MPa (broken dotted), -1.2 MPa (grey) and -1.4 MPa (solid).
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We fitted the mean germination rate of all water potentials and replicates for each

temperature using eqn 2.4, resulting in values forψb and θH for each temperature. The HTR

model provided a very good description of the two parameters,ψb(T ) (r 2 = 0.973; eqn 2.7)

and θH(T ) (r 2 = 0.971; eqn 2.8) (Fig. 2.6), that underpin the 3D response surface (eqn 2.4)

(Fig. 2.4). In the HTT model the parametersψb(T ) and θH(T ) are not directly fitted. Instead

the relationships shown in Fig. 2.6 for the HTT are derived from the overall HTT model,

fitted on all the germination data. It appears that the HTT based relationships forψb and

θH as a function of temperature have leverage points at low (10-12 ◦C) and high (37-42 ◦C)

temperatures resulting in a very low r 2’s, in this case even below zero. The latter indicates

that taking the averageψb and θH over all temperatures gave better predictions than the

HTT model. We did obtain some improvement in goodness of fit forψb(T ) and θH(T )when

the HTT model was refitted on a restricted data set, i.e. when data of temperatures below 20
◦C were removed,ψb(T ) r 2 = 0.193 and θH(T ) r 2 = 0.506. By fitting on this restricted data

set r 2 increased from 0.645 to 0.751, indicating that the HTT model is not well equipped to

describe germination in the low suboptimal temperature range of teff.

Fig. 2.6: (a) Base water potential
�

ψb
�

(circles) and (b) hydro time constant (θH) (circles) as a function
of temperature. Error bars indicate data point extremes based on the highest and lowest values of
mean germination rate

�

µ
�

fitted with eqn 2.4 for each single temperature. The solid line represents
the fitted HTR model (a) eqn 2.7 r 2 = 0.973 and (b) eqn 2.8 r 2 = 0.971; the broken line represents the
fitted HTT model (a) eqn 2.5 r 2 < 0 and (b) eqn 2.6 r 2 < 0. Parameters for eqn 2.5 and 2.6 are derived
from the overarching probit regression model used for fitting eqn 2.1.

Step 3: Parameterσ as a function of water potential
�

ψ
�

and

temperature (T )

In the third step we compare two alternative approaches to model the spread (σ) around

the mean germination rate
�

µ
�

. In the first approach we combine a coefficient of variation

(CV) with a minimum value of the spread (σmin) that is a function of temperature (eqn 2.9).

Using a minimal value of spread is consistent with the data, as for each temperature the

treatments of -1.2 and -1.4 MPa (Fig. 2.7) have approximately the same value for spreadσ.

In other words, the spread as a function of water potential
�

σ(ψ)
�

reaches a temperature

dependent minimum value ofσ at low water potentials. Equation 2.9 in combination with

42



Seed germination of teff |

2

the HTR model proved to be a good model (r 2 = 0.793) that only uses two parameters to

describe the spread as a function of water potential
�

σ(ψ)
�

(Fig. 2.7). The bell shapes of

the fitted function, however, did not entirely correspond with the pattern shown by the

data; the fitted curves show an optimum, whereas data points indicate thatσ approaches a

constant value at high values of temperature (Fig. 2.7).

The second approach is based on an empirical logistic function (eqn 2.10), that ap-

proaches a constant value at high values of temperature (Fig. 2.7). The logistic eqn 2.10

yielded a better description of the relationship between the spread (σ) and predictor vari-

ablesψ and T in our data set (r 2 = 0.900), but at the cost of four (eqn 2.10) instead of two

parameters (eqn 2.9) (Fig. 2.7).

The HTT model (eqn 2.1) uses only one parameter to describe the spread in time

to germination, σψb . On basis of eqn 2.1 the spread in base water potential, σψb , can be

expressed in the spread in germination rate,σ, by (Fig. 2.7):

σ=
σψb

θH(T )
(2.12)

From eqn 2.12 and Fig. 2.7 we can see that the HTT model crudely assumes the same

relation betweenσ and temperature as eqn 2.10. However, the current HTT model does

not account for a spread that changes with water potential (Fig. 2.7).

Comparing model predictions of seed germination

Having obtained µ(ψ, T ) (eqn 2.4, 2.7 and 2.8) and σ(ψ, T ) (eqn 2.9 or 2.10) the actual

germination curves and the final germination percentages can be described at any combin-

ation of temperature (T ) and water potential (ψ).
The total number of parameters of the new hydrothermal rate model (HTR) is 11 (when

using eqn 2.9) or 13 (when using eqn 2.10) whereas the hydrothermal time (HTT) (eqn 2.1)

of Alvarado and Bradford (2002) contains only 6 parameters. Therefore the question arises

whether the model improvement is in statistical terms
�

r 2 = 0.646 for HTT, r 2 = 0.842

for HTR (eqn 2.9) and r 2 = 0.874 for HTR (eqn 2.10)
�

, worth the cost of the additional

parameters. In order to answer this question the overall sum of squared residuals and

Akaike’s Information Criterion (AIC) were calculated (Table A3.2.2).

The plotted residuals for the HTR model were more homoscedastic than those of the

HTT (Fig. 2.8). The residual histogram also shows that the HTR models had a narrower

error range and smaller sum of squared standardized residuals (SSE) than the HTT model

(Fig. 2.9).

The AIC was 1.686×105 for the traditional HTT model compared to 1.487×105 for the

HTR model with 11 parameters, and 1.461×105 for the model with 13 parameters. These

AIC values indicate a major improvement of the new over the old model. According to the

AIC the HTR 13-parameter model (eqn 2.10) was a meaningful improvement over the HTR

11-parameter model (using eqn 2.9). Therefore on statistical grounds the 13-parameter
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HTR was superior to the 6-parameter HTT and 11-parameter HTR, which is confirmed by

comparing all fits (e.g. Fig. 2.10) to the data and inspection of residual plots (Fig. 2.8 and 2.9).

The final parameter values for all parameters of these models are given in Table A4.2.3.

Final germination percentage at high or moderate water potentials (=-0.8 MPa) was

well described by the reference HTT model as well as the HTR model (Fig. 2.11a-c). The

main differences occurred at the high end of the temperature range. Both approaches

showed minor lack of fit at supra-optimal temperatures. However, at a limiting water

potential of -1.2 MPa, the HTT model substantially underestimated the final germination

percentages in the intermediate temperature range whereas HTR model described the

data very well (Fig. 2.11d). At the lowest water potential tested (-1.4 MPa), the HTT model

showed major lack of fit at all temperatures whereas the HTR approach described the final

germination data well (Fig. 2.11e).

44



Seed germination of teff |

2

Fig. 2.7: Relationship of spread (σ) of germination rate (r ) to temperature at five measured water
potentials (n = 3, error bars are omitted for readability) for (a) HTT model whereσ is calculated with
eqn 2.12, r 2 = 0.114 (b) HTR model whereσ is calculated with eqn 2.9 (CV), r 2 = 0.793 and (c) where
σ is separately modelled with eqn 2.10, r 2 = 0.900. Different markers represent the water potentials:
0 MPa (closed circles), -0.4 MPa (closed squares), -0.8 MPa (open circles), -1.2 MPa (grey triangles)
and -1.4 MPa (open squares). Lines represent the modelled spread (σ) for each water potential: 0
MPa (broken), -0.4 MPa (dotted), -0.8 MPa (broken dotted), -1.2 MPa (grey) and -1.4 MPa (solid).
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Fig. 2.8: Standardized residual germination for (a) the traditional HTT model (eqn 2.1), (b) HTR
model fitted using eqn 2.4, 2.7, 2.8 and 2.9 (σCV) and (c) HTR model fitted using eqn 2.4, 2.7, 2.8 and
2.10 (σLogistic).
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Fig. 2.9: Frequency distribution of residual germination for (a) the traditional HTT model (eqn 2.1),
(b) HTR model fitted using eqn 2.4, 2.7, 2.8 and 2.9 (σCV) and (c) HTR model fitted using eqn 2.4, 2.7,
2.8 and 2.10 (σLogistic).
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Fig. 2.10: Cumulative percentage of germinated
seeds (circles) of 3 replicates plotted versus time.
Lines represent germination curves as described
by the overarching HTR (solid line) and HTT
(broken line) models at 30 ◦C for 5 water poten-
tials (a-e) of 0, −0.4, −0.8, −1.2 and −1.4 MPa.
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Fig. 2.11: Observed maximum final germination
(circles) and two model predictions (lines) as a
function of temperature (T ) at five water poten-
tials (a-e). The broken line represents the tra-
ditional HTT model (eqn 2.1). The solid black
line represents the HTR model, using eqn 2.4,
2.7, 2.8 and 2.10 to modelσ. The r 2 of each indi-
vidual line per treatment is given in Table 2.1.
At 27 ◦C and -0.8 MPa final germination sud-
denly dropped (c) although we did not find a
clear cause, this outlier is probably due to an
experimental error.

Table 2.1: The r 2’s of two models for fi-
nal germination shown in Fig. 2.11.

ψ HTT 1 HTR2

0 0.744 0.735
−0.4 0.623 0.785
−0.8 0.421 0.806
−1.2 0.247 0.934
−1.4 0.106 0.877

1 6 parameter HTT (eqn 2.1)
2 13 parameter HTR (eqn 2.4, 2.7,

2.8 and 2.10)
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Discussion

This study provides a parsimonious germination curve (eqn 2.2) that is based on the premise

of a normally distributed rate. This curve (eqn 2.2) is able to summarize germination data

originating from a wide range of combinations of water potential and temperature, using

only two parameters, i.e. the mean germination rate, µ, and spread, σ. Plotting these

summary measures as function of water potential and temperature provided a clear insight

in the lack of fit of the HTT model (eqn 2.1) for Eragrostis tef (Zuccagni) Trotter).

The transparency of the data analysis presented here enabled us to increase goodness

of fit by, firstly, using a smooth curvilinear 3D response surface of mean germination rate to

temperature and water potential (eqn 2.4, 2.7 and 2.8). And secondly, by making the spread

a function of both temperature and water potential (eqn 2.9 and 2.10),σ(ψ,T ).

Temperature response

Plotting mean germination rate, µ, as a function of both water potential and temperature

confirms the finding of Gummerson (1986): at a constant temperature mean germination

rate decreases linearly with water potential. However, the response of mean germina-

tion rate to temperature shows that cardinal points
�

i.e. base (Tb), optimum (To), ceiling

(Tc) temperature and base water potential (ψb)
�

are not constants but form a continuous,

smoothly curving series of threshold points in the (T,ψ) space (Fig. 2.1, 2.4, 2.5 and 2.6).

Therefore cardinal temperatures are a function of water potential: Tb(ψ), To(ψ) or Tc(ψ)
and conversely, the base water potential is a function of temperatureψb(T ). Hence, germin-

ation inhibition at a particular threshold combination of water potential and temperature

should not be attributed exclusively to temperature falling below a minimum (Tb) or rising

above a maximum (Tc), or water potential dropping below a minimum (ψb): it is the com-

bination of temperature and water potential that matters. However, explicitly defining

base water potential as a temperature dependent variable (eqn 2.7), ψb(T ), can provide

a good description of the continuous, smoothly curving series of threshold points in the

(T,ψ) space. In essence this is similar to what Alvarado and Bradford (2002) proposed for

supra optimal temperatures; they expressed the ceiling temperature, Tc, by using eqn 2.5 to

describeψb(T ). However, by using eqn 2.7 instead of eqn 2.5 we include the sub optimal

temperature range and make the model smooth and flexible.

Our results show that not only the threshold water potential,ψb, i.e. absolute amount

of free available water required for germination, changes with temperature, but also the

progress in germination per unit of free available water changes (i.e. hydrotime). An

increasing hydrotime and thus decreasing effect per unit available water on germination

rate, is commonly accepted (Alvarado & Bradford, 2002; Finch-Savage & Leubner-Metzger,

2006) for suboptimal temperatures (Fig. 2.1e). This study, however, shows that at supra

optimal temperatures hydro time also tends to increase (Fig. 2.1f and 2.6b). In other words,

towards temperature extremes the effect per unit of additional free available water on

germination rate will decrease, which justifies the U shape used in the HTR model (eqn 2.8).
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Spread as function of both water potential and temperature

Seed physiological parameters like Tb, Tc,ψb and θH are not constant and they are not a

direct result of a single measurable molecular event. On the contrary, the values of these

parameters are the cumulative result of the combination of seed physiological phenomena

(e.g. gene transcripts, enzymes, hormones, solutes) and environmental factors (temperat-

ure, water potential, light, nitrate) (Finch-Savage & Leubner-Metzger, 2006). Each of these

process driving factors most likely follows a distribution within the seed population. It is

impossible, and in this study irrelevant, to disentangle these process driving distributions

on basis of the process outcome alone, i.e. a distribution in time to germination. There-

fore, we prefer using a distribution of the process rate itself, which can be directly derived

from each individual germination curve, viz.: the distribution of the reciprocal of time

to germination. By using this distribution, the impact of internal and external factors on

germination rate can still be represented by physiological parameters. There is, however,

no need to separately model variation in cardinal temperatures or base water potential

when the variability in the process rate itself is being modelled.

The HTT model attributes all variation in time to germination within a population of

seeds to one single physiological parameter, i.e. the spread in base water potential, σψb .

Although parameter,σψb , used in eqn 2.1 has a constant single value, the model implicitly

describes the actual spread in germination rate, σ, as a function of temperature only

(eqn 2.12). Consequently, the spread in germination rate,σ, as described by eqn 2.1 with

does not change under influence of water potential. However, according to our results on

teff (Fig. 2.7), the spread in germination rate,σ, should be a function of water potential. But,

by choosingσψb to describe the spread in time to germination, one chooses a physiological

parameter that changes with the same environmental factor that defines its existence, i.e.

water potential. Modelling the process rate itself circumvents such an awkward relation.

Final germination

The HTT modelling approach intends to capture the intrinsic physiological linkage between

the response of germination rate to temperature and water potential and the fraction of ger-

minated seeds. However, confirming data from Grundy (2000), this study clearly illustrates

that the HTT model as such did not accurately predict the final germination percentage

(Fig. 2.11). The new HTR model predicted the final germination percentage substantially

better, without including a dedicated parameter for final germination percentage. Thus,

final germination is an emerging property of two parameters: mean germination rate, µ,

and spread,σ.
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An extended version of the HTT model

Brown and Mayer (1988) warned that models of increasing complexity (i.e. more parameters

and flexibility) can provide a better fit, but at the risk of accommodating an increased

proportion of random experimental error (i.e. overfitting). It is, therefore, appropriate to

use AIC to assess whether improved model fit justifies the number of parameters (Hilborn

& Mangel, 1997; Bolker, 2008). This risk of overfitting may be further reduced by analysing

data from extensive and accurate laboratory experiments in which random error is minimal.

Nevertheless, when the new model framework is used in further research with only a

small number of data points and high experimental error, linear models can be a safer

resort to avoid false claims of prediction accuracy. Therefore in appendix 1, we offer an

extended HTT model that incorporates a spread and base temperature that changes with

water potential. Note that this notation (eqn A2.2.13) accommodates for a spread in base

temperature (Tb), because ifψ= 0 , then
σψb

θH(Tb)
=σTb and similarly

σψb

θH(Tc)
=σTc . Fitting this

discontinuous model to all data in one single regression remains statistically incorrect.

Nevertheless, this procedure has the advantage that the parameter combinations of the

model can also hold information and therefore make the overall extended HTT model more

parsimonious than the HTR model. However, according to the AIC, the goodness of fit of

the HTR compared to the extended HTT, still justifies the use of 6 additional parameters in

the HTR model compared to the extended HTT model.

Former and further research

For some species or seed batches the assumption of a normally distributed rate could be

incorrect. In such a case eqn 2.2 will not provide a satisfactory fit to the data. When this

occurs it would be necessary to implement other distributions like for example a Weibull

distribution as proposed by Watt et al. (2010).

During the current study, data were gathered under well controlled laboratory condi-

tions. Temperatures and water potentials were artificially kept constant. However, making

agronomical field predictions requires a model in which both water potential
�

ψ
�

and tem-

perature (T ) can fluctuate over time. This will involve explicitly separating and modelling

imbibition and priming at different temperatures and water potentials (Rowse et al., 1999)

and performing model validation in the field (Finch-Savage et al., 2005).

Conclusion

The HTT model has widely recognized advantages, in particular: few parameters, physiolo-

gical interpretation and a pre-packaged statistical framework that can readily be applied.

Yet, this study showed significant drawback of that framework: the usage of broken func-

tions which in this case is not biologically plausible, the violation of the requirements of the

statistical model, and the regression model as such (eqn 2.1) is sort of a "black box" causing
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loss of intuitively deriving reasons for lack of fit. Moreover, the HTT model is not suitable

under extreme conditions.

The advantage of the stepwise HTR approach proposed here is transparency. The

summary measures mean germination rate, µ, and spread,σ, provide clear insight in how

the germination behaviour of a seed population reacts to water potential and temper-

ature. By using variation in the process rate itself, variation in time to germination can

directly be derived from the data. Although the number of parameters of the HTR model

is significantly higher than the HTT model, the HTR model can fit the entire permissive

range of temperature and water potential combinations, using smooth flexible continuous

functions. It becomes, moreover, immediately clear if the model assumptions are violated

when analysing a particular data set. Additionally, the equations presented here can simply

be rewritten for a fit at sub- or supra-optimal temperatures only.
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Appendix 1

The supplementary figure in this appendix provides an example shape of eqn 2.7. The

purpose of this figure is to gain understanding in the logic of the function itself and the

interpretation of its parameters.

Fig. A1.2.12: Example shape of eqn 2.7: ψb(T ) = ψb
min�1− e a(Tb−T )��1− e b (T−Tc)

�

(solid line). The

black broken line describes the left part suboptimal temperaturesψ1
b(T ) =ψ

min
b

�

1− e a(Tb−T )� and the
grey solid line describes the right part

�

supra-optimal temperaturesψ2
b(T ) =ψ

min
b

�

1− e b (T−Tc)
��

. The
dotted line atψmin

b represents the horizontal asymptote of the two part functionsψ1
b (T ) andψ2

b (T ).
The square represents the actual minimum, which is not necessarily the same asψmin

b . The circle
represents Tb and the triangle Tc.
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Appendix 2

This appendix provides a new modified version of the HTT model that can be fitted on all

data in a single fit. To accommodate for changing Tb as function of water potential (Tb(ψ))
we introduce parameter T Tb(ψ)

o , i.e. the temperature where Tb does not further increase with

water potential. We than replace To with T Tc(ψ)
o , i.e. the temperature where Tc as function

of water potential has its lowest value (Fig. A2.2.13). Variation in germination speed is,

furthermore, made a function of water potential by introducing an exponential scaling

factor (eψ):

Probit(g) =
ψ−

�

θHT

(T−Tb)t (g )

�

+ψb · (T−Tb)
�

Tb−T
Tb (ψ)

o

�

σψb · eψ
if Tb < T ≤ T Tb(ψ)

o (A2.2.13a)

Probit(g) =
ψ−

�

θHT

(T−Tb)t (g )

�

−ψb

σψb · eψ
if T Tb(ψ)

o < T ≤ T Tc(ψ)
o (A2.2.13b)

Probit(g) =
ψ−

�

θHT

(T−Tb)t (g )

�

+ψb · (T−Tc)
�

Tc−T Tc (ψ)
o

�

σψb · eψ
if T > T Tc(ψ)

o (A2.2.13c)

where Probit(g ) is the germination percentage g , converted to probits,ψ (MPa) the water

potential, T (◦C) the temperature, the hydrothermal time constant, Tb (◦C) the median base

temperature, Tc (◦C) the median ceiling temperature, t (g ) (h) the time to germination of

a percentile g , ψb (MPa), the median base water potential, and σψb (MPa) the standard

deviation of base water potential. Application of the model is possible if base water potential

is normally distributed. The fit is achieved in one big overarching probit regression.
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Fig. A2.2.13: (a) Base water potential
�

ψb
�

(circles) and (b) hydro time constant (θH) (circles) as a
function of temperature. The solid line represents the fitted HTR model (a) Eqn 2.7 r 2 = 0.973 and (b)
Eqn 2.8 r 2 = 0.971; the broken line represents the extended HTT model (a) Eqn A2.2.13 r 2 < 0.754
and (b) Eqn A2.2.13 r 2 < 0.847.
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Table A3.2.2: The goodness of fit for different model combinations
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H
T

R

H
T

R

H
T

R

Fit procedure
Single
fit

Single
fit

Single
fit

Step
wise

Step
wise

Step
wise

Step
wise

Equations 2.1 2.1 A2.2.13

2.4
2.5
2.6

2.4
2.5
2.8

2.4
2.7
2.6

2.4
2.7
2.8

r 2 σψb 2.1 0.645 0.642 0.801 - - - -

σCV 2.9 - - 0.618 0.727 0.674 0.856

σ(ψT ) 2.10 - - 0.551 0.695 0.630 0.874

AIC × 105 σψb 2.1 1.686 1.687 1.533 - - - -

σCV 2.9 - - 1.899 1.618 1.694 1.487

σ(ψT ) 2.10 - - 1.750 1.688 1.772 1.461

∑

(residual)2

×105

σψb 2.1 7.074 7.120 3.966 - - - -

σCV 2.9 7.880 5.493 6.571 2.845

σ(ψT ) 2.10 9.402 6.155 7.484 2.505

Number of
Parameters

σψb 2.1 6 6 7 - - - -

σCV 2.9 - - - 7 9 8 11

σ(ψT ) 2.10 - - - 9 11 10 13
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Appendix 4

Table A4.2.3: Parameter estimates

Parameter H
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H
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R

Equations 2.1 2.1*1 A2.2.13
2.4, 2.5,

2.6
2.4, 2.7,

2.8
θHT 595.67 601.04 864.24 625.23 -

σψb 0.43 0.43 0.62 - -

KT 0.17 0.19 - 0.11 -

To,To(θH) or T Tc(ψ)
o 36.63 36.69 36.48 35.11 34.59

ψborψmin
b -1.55 -1.56 -1.68 -1.69 -1.63

a - - - - 0.28

b - - - - 0.42

Tb 8.27 8.26 2.47 8.54 7.04

Tc - - 49.36 - 43.72

T Tc(ψ)
o

- - 18.42 - -

θH(To) - - - - 22.77

c - - - - 0.16

d - - - - 0.39

CV - - - 0.334 0.327

α x 10−4 - - - 1.63 1.70

σmax(0) - - - 0.023 0.023

Ti - - - 22.22 22.22

Ts - - - 14.21 14.21

σminx 10−4 - - - 6.01 6.01

*1 Rowse and Savage (2003) use eqn 2.1 but model hydrotime at supra
optimal temperatures with eqn 2.6a instead of eqn 2.6b as used by
Alvarado and Bradford (2002).
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Abstract

• Background: Lodging is the permanent displacement of crop plants from their vertical

due to root or shoot failure. Lodging is a major yield constraint in panicle bearing cereal

teff (Eragrostis tef (Zuccagni) Trotter). The objective of this chapter is to analyse the causes

of lodging of teff by using, modifying and validating conventional biomechanical models.

• Methods: The model parameters were obtained from a field trial with two contrasting teff

cultivars, using novel in situ and laboratory measurements under wet and dry conditions.

Cross species model validation was done with rice (Oryza sativa L.).

• Key Results: Teff is more susceptible to root lodging than to shoot lodging, although

the data indicated that shoot strength is also insufficient. Hence, simultaneously breeding

for both improved root anchorage and shoot strength is advocated.

• Conclusions: The study showed that the lodging model, derived for the spike-bearing

cereals wheat, needed modifications in order to be able to deal with panicle-bearing plants

like teff and rice. Water adhering to plants due to rain or dew increased lodging susceptibil-

ity. To prevent underestimation of lodging susceptibility, future lodging research should be

done under completely wet conditions (water saturated soil and wetted shoots).

Key words:

teff (Eragrostis tef (Zuccagni) Trotter), lodging, water loading, rice, model, anchorage,

biomechanics, safety factor.
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Abbreviations used in this chapter

Roman
Symbols

Explanation Units Eqns.

SF safety factor 3.11

a 1 and a 2 major outer and inner diameter of the ellipse respectively m 3.10

b scaling parameter 3.11

c shape parameter 3.11

b1 and b2 minor outer and inner diameter of the ellipse respectively m 3.10

dF/dY initial slope of the force/deflection curve N/m 3.8

D root cone diameter m 3.6

E Young’s Modulus Nm−2

E I flexural rigidity Nm2 3.8 3.9

Fmax maximum force a stem can withstand before it fails N 3.7

g the acceleration due to gravity N·kg−1 3.3 3.4 3.13
3.14

hP the height of the centre of gravity of the plant m 3.4 3.11

hS the height of the centre of gravity of the shoot m 3.3 3.13

I second moment of area m4 3.9 3.10

k
dimensionless proportionality constant linking SA to τ
and D

3.6

L
distance between the supports of the three point bending
test

m 3.7 3.8

M P self weight moment of the whole plant Nm 3.1 3.4 3.5 3.14

mP fresh plant mass kg 3.4 3.14

M S self weight moment of the shoot Nm 3.2 3.3 3.5 3.13

mS fresh shoot mass kg 3.3 3.13

R the rate at which the function of hP changes over time cm·d−1 3.12

SA root anchorage strength Nm 3.1 3.6

SFA safety factor against anchorage failure 3.1

SFS safety factor against stem failure 3.2

SS maximum self weight moment Nm before shoot failure 3.2 3.7

Greek
Symbols

Explanation Units Eqns.

α constant derived by regression 3.13

β constant derived by regression 3.13

τ soil shear strength Nm−2 3.6

θ angle of the plant or shoot ◦ 3.3 3.4 3.13
3.14
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Introduction

Teff (Eragrostis tef [Zuccagni] Trotter) is a panicle bearing C4 cereal crop (Kebede et al., 1989)

originating from Ethiopia. Teff grains and flour do not contain gluten (Spaenij-Dekking

et al., 2005) and are rich in minerals, especially iron (Mengesha, 1966; Abebe et al., 2007;

Verdonschot et al., 2008). These two characteristics make teff a desirable ingredient in

health products, particularly for celiac disease patients. Teff can replace gluten containing

cereals in products like pasta, bread, beer, cookies and pancakes. Ethiopia, where teff is

the main cereal crop and food shortage a recurring phenomenon, exerts an export ban on

teff. Therefore interest rose in growing teff outside Ethiopia. Teff was recently introduced in

north western Europe (Hopman et al., 2008). As in other regions where teff is cultivated,

teff yields in the Netherlands are modest (1.0-1.5 Mg·ha−1) and quality is often low. A

major factor limiting yield and quality is lodging. Lodging can be defined as the permanent

displacement of a plant from the vertical (Berry et al., 2004). In teff, lodging frequently

occurs before the grain filling period starts. Lodging prevents the crop from ripening

properly and often results in mouldy panicles, inferior seed quality and sprouting seeds on

the panicle.

In Ethiopia, lodging of teff is also a common phenomenon and one of the causes for

the current low grain yields: the Ethiopian national average grain yield of teff is in the order

of 0.8 Mg·ha−1 (Tulema et al., 2005). This low national average is partly associated with

constraints such as water logging, drought and nutrient limitation (Tulema et al., 2005).

The yield of well fertilized unsupported plants in ‘on station’ field experiments is on average

in the order of 2.5 Mg·ha−1 (Tulema et al., 2005). Teklu and Tefera (2005), however, reported

yields up to 4.6 Mg·ha−1 for teff supported with nets to prevent lodging. Yizengaw and

Verheye (1994) consider 4.6 Mg·ha−1 as a good approximation of the yield potential of teff

under rainfed conditions in Ethiopia. The difference in yield between naturally growing

teff and supported teff implies that solving teff’s lodging problems would dramatically

increase actual yield. Lodging resistance, therefore, is the main focus in several breeding

programmes (Assefa et al., 2011; Berhe, 1973; Ketema, 1991; Hundera et al., 2000; Zhang et

al., 2001; Tefera et al., 2003; Yu et al., 2006).

Crook and Ennos (1994) developed simple equations to investigate lodging phenom-

ena in cereals. These static equations predict a relative degree of susceptibility to anchorage

failure and shoot failure, known as root and shoot lodging, respectively. According to Crook

and Ennos (1994) lodging susceptibility in cereals depends on three factors: (i) the size and

dynamics of the forces to which the plant is subjected (Pinthus and Brady, 1974); (ii) the

bending strength of the shoot and its resistance to buckling; (iii) the anchorage strength

of the root system. Although the static equations developed by Ennos and co-workers

only take factors (ii) and (iii) into account, while neglecting influences by wind, the results

corresponded well with field observations. Yet, these equations do not aim to predict the

actual onset of lodging in the field as a result of weather conditions (Baker et al., 1998).
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In this study three main issues are addressed. The first and main objective of the study

is to measure the biomechanical properties of teff in order to distinguish whether the plant

is more susceptible to shoot or root lodging. To analyze the lodging susceptibility of teff

during a Dutch growing season we designed an apparatus to assess in situ biomechanical

properties of teff. Two morphologically contrasting cultivars were studied.

The second objective is to examine the applicability of the models of Crook and Ennos

(1994) to the problem of assessing the effects of plant structure on lodging risk of teff and

rice. These authors worked with wheat, i.e. shoots with erect spikes, whereas teff has a

drooping panicle. Hence, for teff the self weight moment of an erect shoot is not zero as

is assumed in these model equations. Moreover, a second model assumption is that the

shoots as a whole behave as uniform rigid beams. This assumption is incorrect for most

rice and teff cultivars, given that their tapering shoots are known to bend under their own

weight.

The third aspect addressed is the modifying effects on lodging of water adhering to

the shoots as a due to dew or rain. Lodging of cereals often occurs as a consequence of

rainstorms (Berry et al., 2004). The common perception is that the effect of rain water

on lodging is primarily brought about via the lubricating effect on the soil, reducing root

anchorage strength (Crook and Ennos, 1993; Baker et al., 1998; Sposaro et al., 2008). Wind

gusts exercise forces on the shoot system which can lead to root lodging or shoot lodging in

firmly anchored plants. We observed that root lodging of teff also occurred in the absence

of wind when plants became wet due to dew or drizzle while the soil surface was practically

dry (Video S1)1. This points at a direct physical effect of the weight of water adhering to

the shoot on lodging. Though papers presenting more elaborate models like Baker et al.

(1998), Berry et al. (2003) and Berry et al. (2007) mention a possible influence on lodging

susceptibility of water adhering to stem, leaves and panicle, no data to verify this hypothesis

have been published; neither is adhering plant surface water accounted for in any of the

models for cereal lodging existing today.

This chapter elaborates first on the theoretical background of equations which were

used and modified during the current work. Thereafter the experimental procedures and

applied statistical methods are provided followed by the results of these experiments. The

major findings of this work are summarised and the morphology and lodging characteristics

of teff are compared with other cereals. The conclusions of this work are placed in context

and recommendations are made for breeding and further research.

Materials and methods

Theory

Crook et al. (1994) were the first to apply the concept of ‘factor of safety’ to a phenomenon

in plant science, namely lodging. The safety factor (SF ) indicates the number of times a

1Video S1 [http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03224.x/suppinfo]
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support organ can bear the self weight moment (M ) of the organ it is supporting. Crook et

al. (1994) defined a safety factor against anchorage failure (root lodging) and a safety factor

against shoot failure (shoot lodging). The safety factor against anchorage failure (SFA) is

given by:

SFA =
SA

M P
(3.1)

where SA (Nm) is the root anchorage strength, i.e. the maximum moment at θ ◦ from the

vertical that a root system can withstand before rotating further in the soil; M P (Nm) is the

self weight moment of the whole plant at θ ◦ from the vertical (eqn 3.4).

Analogous to this, the safety factor against shoot failure (SFS) is given by:

SFS =
SS

M S
(3.2)

where SS (Nm) is the maximum self weight moment which the shoot can support before it

fails and M S (Nm) is the self weight moment at θ from the vertical (eqn 3.4).

Parameters M S, M P, SA and SS can be directly measured with a dedicated device (‘lodging

meter’) or calculated with the following equations.

Under the assumption that the whole shoot behaves as a rigid beam, M S (Nm) is given

by:

M S = sinθ ·hS ·mS ·g (3.3)

where θ is the angle of inclination from the vertical, hS (m) is the height of the centre of

gravity of the shoot, mS (kg) is the mass of the shoot and g (N·kg −1) is the acceleration due

to gravity. Similarly M P (Nm) is given by:

M P = sinθ ·hP ·mP ·g (3.4)

where hP (m) is the height of the centre of gravity of the plant and mP (kg) is the mass of the

plant. Since plants often have a whimsical, three dimensional structure, hP can be hard to

obtain; alternatively M P is given by:

M P =
n
∑

i=1

M Si (3.5)

where n is the number of tillers per plant and M S (Nm) is the moment of an individual

shoot at θ ◦ from the plant’s vertical.

Root system anchorage strength is influenced by four main factors: root strength and

rigidity, the number of roots, the angle of inclination of roots and the soil shear strength
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(Ennos, 1991). Crook and Ennos (1993) developed an equation which theoretically integ-

rates these parameters. Baker (1998) replaced the theoretical proportionality constant k

with an empirical constant derived by regression. Assuming the roots will not snap, SA can

now be estimated by:

SA =τ ·D3 ·k (3.6)

where τ (Nm−2) is the soil shear strength, D (m) the root cone diameter and k is a dimen-

sionless constant.

The bending strength of the base shoot section represents the maximum self weight

moment (SS) (Nm) which the stem base can support before it fails. SS can be measured in

a three point bending test (for measuring procedure see Materials and Methods section:

"Bending tests and microscopic observations"). Considering the base stem section as a

uniform beam, SS is given by:

SS =
FmaxL

4
(3.7)

where Fmax (N) is the maximum force a stem will withstand before it fails and L (m) is the

distance between the supports in the three point bending test.

According to Crook et al. (1994) the measure for stiffness of the stem section, i.e.

flexural rigidity (E I ) (Nm2), is given by:

E I =
L3(d F/d Y )

48
(3.8)

where dF/dY (N/m) is the initial slope of the force/deflection curve, obtained from the

bending tests. Estimation of the slope (dF/dY) was restricted to the linear elastic part of the

force/deflection curve. Young’s Modulus (E) (Nm−2), the measure for material elasticity for

the stem as a composite (the higher value E, the stiffer the material), is given by:

E =
E I

I
(3.9)

where I is the second moment of area (m4) of a hollow, ellipse-shaped beam given by:

I=
π

4(a 3
1 ·b1−a 3

2 ·b2)
(3.10)

where a 1 and a 2 are the large diameter of respectively the outer and inner ellipse (m), and

b1 and b2 the short diameter of respectively the outer and inner ellipse (m).
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Field conditions and plant material

Two contrasting cultivars, coded 04T19 and Ayana were obtained from Foundation Share

(the Netherlands), cultivar 04T19 is thicker-stemmed, more robust, taller and later flowering

cultivar than cultivar Ayana; at similar plant population density (200 m−2) Ayana tillered

more profusely than 04T19. Both genotypes have been developed by mass selection from

landraces.

Seeds were hand sown in a 7 × 7 cm grid in approximately 8 mm deep holes, in a

smooth sowing bed in a sandy soil near Wageningen (the Netherlands, lat 51◦59’22”N,

5◦39’38”E) on May 23 2008. Both cultivars were grown under two conditions: without

and with support of plants through nets. Cultivars and netting treatments were set up

in a completely randomized block design containing six blocks and four treatments (two

cultivars times two levels of support).

At the two-leaf stage, plots were thinned and plants were occasionally transplanted to

obtain one plant per grid hole. Transplanted plants were labelled and discarded from the

actual observations. Plot dimensions were 0.98 m (15 plants) by 5.32 m (76 plants) resulting

in a plant population density of approximately 219 plant m−2.

Shortly after sowing a vertically moveable construction with two layers of 10 × 10

cm meshed gauze was installed in the netting treatments. Nets were raised according to

the crop height, to keep the plants as stable as possible. The outer four rows of the plots

were not sampled in consideration of atypical border effects (Scott et al., 2005). With these

restrictions, each week, plants were randomly selected from a randomly selected spot at the

top or bottom end of the plot (in order to keep the crop structure in the middle of the plot

intact during the whole experiment). Plots were bordered with at least 2 m of land planted

to maize, starting at 0.5 m from the edge of the plot. These maize plants were trimmed to

the crop height of teff.

Soil tests indicated more than sufficient availability of Potassium (K) and Phosphorus

(P). Nitrogen (N) fertilizer was applied at a rate of 35 kg·ha−1 resulting in free available

mineral N of approximately 60 kg·ha−1 including dry and wet nitrogen deposition. As a

precaution to prevent manganese deficiency, sulphur-manganese (0.35 kg·ha−1 MnSO4 )

was sprayed on the foliage on June 18 and July 2 2008.

Rice (Oryza sativa L.) cultivar Quinai was used for a cross-species equation validation

(eqn 3.13). Seeds were obtained from Qingdao Agricultural University in China. Plants were

cultivated in containers with approximately 220 plants per m2 on a half strength Hoagland

nutrient solution in a climate chamber at 26/23◦C night/day temperature and 12 hours day

length under a mixture of SON-T and HPI (500 µmol·m−2·s−1).

Measurements on whole plants, shoots and panicles

The percentage of plants lodged by more than 45◦ was estimated twice per week. Crop

height, defined as the distance between the soil and average plant height on a plot, was

measured in the field before each sampling. Directly after each sampling the plants were

68



Biomechanics of teff |

3

placed in a cooled container, individually placed in moist plastic bags that were loosely

wrapped around the plants. Within 20 minutes after harvest the plants were ready for

examination in the lab. When measurements required plants to be dry, plants were dried

with strongly absorbing soft paper towels.

Following the measurements on the whole intact plants, the three biggest individual

shoots were cautiously removed from the plant. Centre of gravity of the whole plant and

of separate shoots were determined by balancing them on a thin smooth metal tube and

measuring the distance between the balance point and their base end. The gravitational

moment of plants, shoots and panicles under 0◦, 30◦, 45◦ and 60◦ was established with a

custom constructed lodging meter (Fig. 3.1), built from a sensitive digital "torque screw-

driver" (reading up to 1.5 Nm in 0.001 Nm intervals; Mecmesin Ltd, Broadbidge Heath, UK).

Plant or separate shoot fresh weight and the lengths of stem, peduncle and panicle were

recorded.

To study the impact of adhering water, plants and separated shoots were sprayed with

a plant spray until they showed water runoff. Under these standardized wet conditions,

fresh weight, the centre of gravity and gravitational moment were measured again for intact

plants and individual shoots. Wetting and drying the same stem repeatably demonstrated

that the weight increase by wetting had a maximum deviation of±7%. All measurements

made on both teff cultivars were also made on rice stems.

The number of heading plants (i.e. cereal plants that show the tip of their inflorescence)

was scored each subsequent day when heading was expected. Teff plants are mainly self-

pollinating and heading and flowering almost coincide in teff (Mengesha and Guard, 1966).

We will use the more general term flowering instead of heading; and defined the moment

of flowering for a cultivar when 50% of all the plants showed the tip of their panicle.

Bending tests and microscopic observations

After the measurements on the whole shoot the plants were kept overnight in a plastic

bag with about 10 cm water at 4 ◦C to bring the plants to a standardized turgor level. For

shoots larger than 10 cm, sections of 10 cm were taken at the basis, the geometrical midst,

80% of the stem length and of the peduncle just above the leaf sheath collar. These four

sections were subjected to a standard three-point bending test, analogous to (Oladokun and

Ennos, 2006), using a Zwick Universal Testing Machine (model BZ2.5/TS1S with positioning,

repetition accuracy ± 2 µm and accuracy of the set speed 0.02 % of Vnom ). Stem sections

were placed on two supports set 60 mm apart, while a blunt rubber probe with a diameter of

20 mm, attached to the crosshead of the Zwick, was moved down at a speed of 50 mm·min−1,

touching the stem midway between the supports and bending it. A force/displacement

graph was simultaneously recorded by a connected computer and was used to calculate

the mechanical properties of the stem section.

After the bending test, cross sections were made from all stem parts near the location

of impact by the probe. Stem cross sections were coloured with phloroglucinol (Jensen,
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1962); high resolution digital images were made under a stereo microscope. The stem tissue

layers were distinguishable and their dimensions were measured using ImageJ, version 1.42

(Rasband, 2009).

Measurements on the root system

The evening before measuring the root system, only the relevant plot locations were watered

to soil saturation. Next morning, before the actual measurements began, these plot loca-

tions were watered again and allowed to drain to field capacity under gravity for at least one

hour. This gave simulated soil conditions typical of conditions after rain and comparable

to other studies (Crook et al., 1994; Baker et al., 1998; Oladokun and Ennos, 2006; Sposaro

et al., 2008). Soil shear strengths (i.e. the maximum resistance of a soil to shearing stresses)

were measured with a shear-vane; the average was 13.1(standard error 1.7) kPa. Plants

were cut at 11 cm height. To make the remaining shoot parts (stubble) behave like a rigid

beam, a pointed light-weight hollow metal pin was placed in the middle of each stem base

joining at the bottom of the plant. Next, all stem bases and the metal pin were bundled

together with a fastener. Lastly, the stubble-pin combination was slowly pushed to an angle

of respectively 30◦, 45◦ and 60◦ from the vertical while the lodging meter (Fig. 3.1) recorded

the maximum resistance of the rooting system. Measurements were corrected for the self

weight moment of the pushing device and stubble-pin combination.

The soil core containing the bristles and rooting system was dug up and preserved in

a cooling box. In the lab, cores were pushed on a 2 cm grid pinboard and soil was gently

washed away exposing the rooting structure. Photographs were made from the root system

and root dimensions were measured with ImageJ version 1.42 (Rasband, 2009). Root plate

diameter was measured at the theoretical rotation point of the root-soil cone. Like Crook

and Ennos (1993) we estimated this rotation point to be half the plant base diameter, the

diameter of merging tillers at the soil surface, below the shoot to root transition.

Statistical analysis

SAS version 9.1.3 SP4 was used when data were statistically analysed. To test whether

the safety factor (SF) of wetted plants deviated from that of the dry plants, the data were

modelled with the PROC MIXED procedure of SAS taking wetting and time as main effects

and regarding blocks and differences between shoots from the same plant as random

effects:

SF = time +wet + time ·wet (3.11)

Assessment for significant differences was done with the least square means (LSMEANS)

statement (p=0.001).
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Fig. 3.1: Plan of the lodging meter parts are exchangeable. By pushing the turning arm the torque
screwdriver rotates in its outer housing. Rotating the screwdriver also rotates attached lodging arm or
tiller holding cup or whole plant clamp. Security spikes fix the meter in the soil. Concept based on
(Crook and Ennos, 2000).

The increase in height of the centre of gravity (hP ) (cm) of wet and dry plants with time

(t) (d) was described by Richards sigmoids (Berry et al., 1988):

hp(t ) = hpMAX
�

1−b ·exp{R · t }
�

�

1
1−c

�

(3.12)

where hpMAX (cm) is the asymptotic maximum of hP, b is a scale-dependent parameter,

R is the rate at which the function of hP changes (cm·d−1) and c is the shape parameter.

Richards sigmoids and power regression lines (eqn 3.13 and 3.14) were estimated using

PROC NLIN procedure. Whether the data of wet plants could be described by a Richards

sigmoid fitted for dry plants or whether other parameter values were necessary for wet

plants was tested with an F-test on the residual sum of squares of both models. Means in

the text are followed by their standard error in parenthesis.
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Results

Crop and plant morphology

After a precipitation event on 17 July 2008, the plants of cultivar Ayana started to deviate

from the vertical but did not exceed a displacement of 30◦. On the 30th of July 2008 we

observed severe lodging in the unsupported plots of Ayana (Fig. 3.2). Then, also some of the

unsupported plots of 04T19 started to deviate from the vertical. Within two weeks after the

start of lodging the plants in the unsupported plots of both cultivars Ayana and 04T19 were

totally root lodged, whereas plants in the supported stands were undamaged and upright.

Crop height (Fig. 3.2) and the plant’s centre of gravity (Fig. 3.3) displayed a similar

pattern of change over the season. After both crop height (Fig. 3.2) and plant fresh weight

(Fig. 3.4a) had reached their plateau level, the height of the plant’s centre of gravity still kept

increasing (Fig. 3.3) because of the continued accumulation of dry matter in the top of the

plant.

The relative weight increase over time, due to wetting was not constant but followed a

quadratic polynomial. The relative weight increase due to wetting was 25 % at the beginning

of the season,15 % in the middle and 25 % at the end of the season. The seasonal average

of the relative weight increase by wetting of cultivars Ayana and 04T19 was 18% and 15%,

respectively. Wetting also significantly increased the plant’s centre of gravity (p>0.001 )

(Fig. 3.3), although the magnitude of the effect was on average 5%.

Fig. 3.2: Development of crop height (cm) over time of cultivars Ayana (triangles) and 04T19 (squares),
either supported (closed symbols) or unsupported (open symbols). Flowering time defined as
50% flowering plants is shown for cultivar Ayana (open arrow) and cultivar 04T19 (closed arrow).
Percentage of lodged plants is indicated with the broken line for Ayana and the solid line for 04T19.
Error bars indicate standard error (n = 6) and when not visible fall within the symbol.
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Shortly after flowering tillering ceased, tiller number reaching values of 9-10 tillers

per plant for Ayana and 5 to 6 tillers per plant for 04T19. From this moment onwards the

number of viable tillers started to decrease resulting in about 7 mature basal shoots per

plant for Ayana and 3 to 4 for 04T19.

Until the lodging started in unsupported plants there were no significant differences

in the trends between the supported and unsupported plant stands for any of the charac-

teristics measured.

Fig. 3.3: Height of the centre of gravity (cm) and fitted Richards sigmoids of wet (closed symbols,
drawn line) and dry (open symbols, broken line) plants; for (a) cultivar Ayana and (b) cultivar 04T19.
Flowering time defined as 50% flowering plants is shown for Ayana (open arrow) and 04T19 (closed
arrow). Error bars indicate standard error (n = 6) and when not visible fall within the symbol.
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Fig. 3.4: (a) Average total shoot fresh weight for cultivar Ayana wet (closed triangle) and dry (open
triangle) and cultivar 04T19 wet (closed square) and dry (open square) and; (b) fresh weight of the
wet and dry panicles separately; same symbols as in (a). Flowering defined as 50% flowering plants is
shown for Ayana (open arrow) and 04T19 (closed arrow). Error bars indicate standard error (n= 6)
and when not visible fall within the symbol.
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Morphological and mechanical properties of the shoot

Teff shoots are known to bend easily under their own weight; and in combination with

the drooping panicles this will generate a gravitational moment even if the shoot base is

standing up straight. This complicates the usage of eqn 3.3 and 3.4, because these equations

assume M S and M P to be zero in a perfectly upright position. Nevertheless, measuring

the actual moment of plants or separated shoots and plotting them against the calculated

moment (eqn 3.3 and 3.4) at a particular θ ◦ did reveal a systematic deviation (Fig. 3.5a).

Plotting the deviation from the equation as a function of θ ◦ provided a correction for the

estimated M S and M P given by:

M S =α · (sinθ ·hS ·mS · g )β (3.13)

and M P is given by:

M P =α · (sinθ ·hP ·mP · g )β (3.14)

where α and β are constants derived by regression analysis. Rice and teff showed strikingly

similar values for α and β (Fig. 3.5b).

Fig. 3.5: (a) Scatter plots and regression lines of measured shoot selfweight moment (M S) versus
predicted moment of M S (eqn 3.3) at angles (θ ) of 30◦ (closed circle; solid line) and 45◦ (closed square;
broken line). (b) Deviation factor of measured M S compared to equation prediction of M S over a
range of angles (i.e. data points are slopes like presented in Fig. 3.2 a for teff plants (closed triangle),
teff shoots (closed circle) or rice shoots (open circle). Where x is represented by eqn 3.3 (shoot) and
3.4 (plant) and y=α·xβ is represented by eqn 3.13 (shoot) and 3.14 (plant).
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Between the two cultivars, there were marked differences in measured parameter

values for: bending strength (SS) (eqn 3.2 and 3.7), flexural rigidity (E I ) (eqn 3.8 and 3.9),

Young’s Modulus (E) (eqn 3.8) and stem dimensions (eqn 3.10) (Fig. 3.6). Bending strength

(SS) and flexural rigidity (E I ) increased rapidly with time but levelled off approximately 8

days after flowering in both cultivars (Fig. 3.6a,b). Shoots often failed instead of breaking

and therefore bending strength and flexural rigidity were strongly correlated (r 2=0.92).

Cultivar 04T19 showed values for both bending parameters SS and E I that were four

times higher than values measured in Ayana. In contrast, Ayana showed higher tissue

stiffness (Young’s Modulus, (Fig. 3.6c) than 04T19. Therefore predictably (eqn 3.9 and 3.10),

the second moment of area was higher for 04T19 than for Ayana as was the independently

measured stem diameter (Fig. 3.6d). Dry weight per volume of tissue (i.e. “tissue density”)

was on average higher for Ayana 0.060 (0.017) g·cm−3 than for 04T19 0.046 (0.020) g·cm−3.

In both cultivars the increase in Young’s Modulus over time coincided with an increase in

“tissue density” (r 2=0.76 for Ayana and r 2=0.83 for 04T19) (data not shown).

Stem cross sections showed an elliptic shape. The smallest width of the ellipse

(Fig. 3.6d) showed a seasonal pattern of increase comparable to the largest stem width (not

shown); the largest width of the ellipse was on average for Ayana 1.071 (0.08) times larger

than the smallest width and for 04T19 1.22 (0.14) times so.

Microscopic analysis of stem cross sections stained with phloroglucinol, showed

the lignified surface of epidermal, sclerenchymatic and parenchymatic tissue. The total

lignified tissue surface was not correlated to the Young’s Modulus (r2 <0.05 data not shown)

for both cultivars. Neither was the Young’s Modulus correlated with the cross-sectional

surface area of any of the three individual tissues. Results did not improve if cross-sectional

areas were expressed as fractions of the total stem tissue surface area (r2 <0.05 data not

shown). There was also no significant correlation between the number of vascular bundles

per unit surface area and the Young’s Modulus (r2 <0.05 data not shown).

The absolute weight increase by wetting individual shoots showed a linear increase

with time (r2 >0.96 for both cultivars; data not shown). The panicle of 04T19 contained

about 56% of the plant’s total adhering water and for Ayana this was 64%. The fraction

of adhering water present in the panicle was larger than would be expected on basis of

its length or fresh weight. Panicle length was about 30% of the total stem length in both

cultivars, the fraction of shoot fresh weight present in panicles was 0.3 for Ayana and 0.2 for

04T19.

For both cultivars the safety factor against shoot lodging (SFS) (eqn 3.2) dropped to

values close to one halfway the growth cycle (Fig. 3.7a). The shoot self weight moment

(M S) of cultivar 04T19 kept increasing whereas plant bending strength (SS) did not increase.

Therefore SFS declined to low values during the season; moreover SFS was systematically

reduced by wetting the plants. However, the absolute critical SFS value of one was not

reached (Fig. 3.7a). This implies it is unlikely that gravitational forces alone could break the

basal region of the shoots.
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The safety factor against breaking of the peduncle by its own weight was 2-3 times

higher than the SFS (data not shown).

Fig. 3.7: Factor of safety (symbols) for (a) shoot (SFS) and (b) root (SFA), during the season; for cultivar
Ayana wet (closed triangle) and dry (open triangle) and cultivar 04T19 wet (closed square) and dry
(open square). Observed lodging percentage in unsupported fields for Ayana (broken line) and 04T19
(solid line). Horizontal dotted line is the critical safety factor (SF=1). Flowering time defined as
50% flowering plants is shown for Ayana (open arrow) and 04T19 (closed arrow). Error bars indicate
standard error (n = 6) and when not visible fall within the symbol.
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Morphology and mechanical properties of the roots

Because of its small seeds teff has to be sown at a maximum depth of 10 mm, resulting in

crown roots that emerge at or above the soil surface. These crown roots form a bundle of

around 23 initially vertically growing lignified roots (Table 3.1). Approximately 1 cm below

the soil surface these root bundles started to spread out at an angle of 35◦ (Ayana) and 45◦

(04T19) from the vertical. During a short period early in the season the crown roots became

thicker (Fig. 3.8); these changes coincided with a measured increase in anchorage strength

(Fig. 3.8). In 04T19 we observed thick, rigid roots compared with the thinner, flexible roots

of Ayana. The anchorage strength of Ayana showed a low correlation (r 2 = 0.14) with the

product of the cube of root plate diameter and shear strength (eqn 3.6), whereas in 04T19

the correlation was higher (r 2 = 0.55) (Fig. 3.9). This suggests that unlike Ayana (thin roots),

04T19 (thick roots) was able to form a root-soil cone to some extent.

Until flowering, the safety factor against root lodging (SFA) was sufficiently high for

both cultivars to support the plants. Shortly after flowering, however, the safety factor

dropped below the threshold value of one (Fig. 3.7b), implying root anchorage was too

weak to prevent lodging even while only gravitational forces are taken into account, so

disregarding events of wind for instance. This calculated point in time when the average

SFA dropped below one coincided with the independently observed onset of lodging in the

field (Fig. 3.7b).

Table 3.1: Overview of estimated plant characteristics during late development of two genotypes of
teff (this study), winter wheat (Crook et al., 1994) and (Crook and Ennos, 1993)*1, and rice (Oladokun
and Ennos, 2006) and (Chuanren et al., 2004)*2.

Teff Winter wheat Rice
Ayana 04T19

Flexural rigidity (E I ) in (Nm2) 0.002 0.01 0.04 1.8
Young’s Modulus (E ) in (×10−3Nm−2) 3.8-4.2 2.4-2.7 1.8-2.6 1.2-3.0*2

Shoot diameter (mm) 1.8 3.2 4.5 6.6
Bending strength (SS) in (Nm) 0.02 0.07 0.16 2.5
Shoot length (m) 1.3 1.7 0.8 1.0
Factor of safety shoot (SFS) 1.3 2.2 6 -
Plant base diameter 10.7 13.9 - -
Angle of root inclination (θ ◦) 37 45 93-103*1 -
Lignified crown roots 23 23 6-9 100
Root plate diameter (mm) 11.3 14.9 26.3-29.5*1 -
Factor of safety root (SFA) > 1 > 1 3 5
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Fig. 3.8: Anchorage strength (SA) (closed symbols, left vertical axis) and root thickness of six thickest
roots (open symbols, right vertical axis), during the growing season. Triangles represent cultivar
Ayana and squares cultivar 04T19. Flowering time defined as 50% flowering plants is shown for Ayana
(open arrow) and 04T19 (closed arrow). Error bars indicate standard error (n = 6) and when not
visible fall within the symbol.

Fig. 3.9: Measured anchorage strength at 45◦ versus calculated anchorage strength [shear strength (τ)
· root plate diameter 3 (eqn 3.6)]; for cultivar 04T19 (open square, broken line: y= 0.46+ 0.049r 2 =
0.55, n=89) and cultivar Ayana (closed triangle, solid line: y = 0.45 + 0.042 r 2 = 0.14, n=70).
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Discussion

The results of this study show that like wheat (Crook and Ennos, 1994) and rice (Oladokun

and Ennos, 2006), teff is also most susceptible to root lodging. This study explains why

lodging was observed to occur during all years of practice since the introduction of teff in

the Netherlands (2002). Already early during development teff root anchorage strength

(SA) reached its maximum (Fig. 3.8). About two weeks later plant fresh weight reached its

plateau level (Fig. 3.4). The plant’s centre of gravity, however, kept increasing in height

due to panicle emergence, and later on grain filling (Fig. 3.3). This caused an increase in

whole plant moment (M P) until two weeks before harvest. The absolute critical safety factor

against anchorage failure of one (i.e. the moment when lodging of unsupported plants is

inevitable), was reached shortly after root anchorage strength, SA reached its maximum but

long before the maximum value of the whole plant moment, M P was reached Therefore, the

current in situ measurements of the biomechanical properties of the teff cultivars Ayana

and 04T19 indicate that, regardless of wind force, lodging of unsupported teff plants is

inevitable on sandy soils.

Plant base diameter, the diameter of joining tillers at the soil surface, and the average

root plate diameter were small compared with other cereals (Table 3.1). The plant base

diameter was, furthermore, frequently larger than the root plate diameter in both cultivars.

The root bundles did not spread out from their onset but did so after approximately 1 cm

below the soil. Since the plant base was in general larger than the root onset there was a

narrowing in plant shape at the shoot-root transition. Therefore we hypothesise that plants

were not well anchored: firstly because they were standing on bundles of flexible vertical

roots; secondly the stem did not penetrate the soil and therefore crown depth was shallow

which most likely reduces anchorage strength as Berry et al. (2000) have argued similarly

for wheat.

The value of 0.46 in teff for the dimensionless constant k (eqn 3.6) (Fig. 3.9), a scalar

serving to link shear strength and root plate diameter with anchorage strength, is similar to

values found in other cereal species: 0.43 (Baker et al., 1998) and 0.39 (Berry et al., 2006) for

wheat and 0.58 for barley (Berry et al., 2006). Each of these authors forces the line relating

anchorage strength to τD3 through the origin (Fig. 3.9). However, an intercept of zero

would theoretically imply no anchorage strength without a root plate. This is inconsistent

with reality, since the joined shoots of cereals at the bottom of the plant can form a small

plateau (plant base) in or on the soil which provides a certain degree of anchorage strength.

Reanalyzing the published data of Baker (1998) and Berry (2006) revealed intercepts of

0.058 Nm (with knew = 0.36) and 0.039 Nm (with knew = 0.36) for wheat and 0.045 Nm

(with knew = 0.54) for barley. These values are comparable to the intercepts of 0.042 Nm

(Ayana) and 0.049 Nm (04T19) which we found for the teff cultivars. In this line of thinking

a higher intercept would need to be found for the thicker stems of sunflower compared to

the smaller cereal stems; reanalysis of data of Sposaro (2008) confirmed this: an intercept

value of ca. 3.9 (Nm) was found. Therefore we argue that not only the root plate but also the
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plant base diameter can have a significant contribution to the plant’s anchorage strength.

This suggests that an additional component must be added to the equation as well as the

resistance of the root soil cone: the resistance of the plant’s stem base to being pushed

through the soil and possibly help shaping the cone. This component seems to be similar

in all the cereal species tested: around 0.05 Nm. Consequently an intercept should be

included in eqn 3.6. As a practical consequence breeding for thicker stems will most likely

also contribute to an increase of root anchorage strength.

Although teff is clearly susceptible to root lodging, the safety factor against shoot failure

for both cultivars is also low. When during a previously conducted pilot field experiment

the shoot bases were supported, the moment of lodging was postponed (unpublished

results). Such supported plants did not break but were severely bent before harvest. This

observation is in line with the current results and provides a further indication that both

the root system and the shoots should be improved in order to enhance lodging resistance.

As in wheat, teff’s bending strength and flexural rigidity rapidly increased during initial

crop development. The values of bending strength and flexural rigidity, though, are very

low compared with wheat and rice (Table 3.1). However, the Young’s Modulus is higher

in teff than in wheat, while the stem diameter is smaller in teff than in wheat. Therefore

stem rigidity (E I ) could be enhanced by increasing the stem diameter and thus the second

moment of area (I ) of teff, while preserving the current tissue density (i.e. Youngs Modulus

(E )). Furthermore teff flexural rigidity and bending strength were strongly correlated; teff

shoots are failing instead of breaking, suggesting that an increase in stem rigidity will also

increase stem bending strength.

Adhering water on stem, leaves and especially the panicle significantly reduced both

the shoot safety factor (on average Ayana 31% and 04T19 23%) and the anchorage safety

factor (on average Ayana 16% and 04T19 18%). The calculated self weight moment (eqn 3.3

and 3.4) for plant angles (θ ) smaller than 50◦underestimated the actually measured self

weight moment of both the whole plant and separated shoots (Fig. 3.5b). Since teff does

not grow a straight spike but has a panicle type of inflorescence the simple classical lodging

equations developed for wheat (Crook and Ennos, 1994) and rice (Oladokun and Ennos,

2006) are not entirely valid for the panicle bearing crops and need adjustment (eqn 3.13) or

need to be replaced by more sophisticated models such as a modified version of Berry et al.

(2006). In our opinion a future model should be able to calculate the safety factor for wet

plants at any given point along the shoot. Considering the safety factors of different sections

of the whole shoot is important as the plant’s base is not necessarily the weakest point of

the stem. According to Lebrowski (1999) the mechanical behaviour of the stems is a result

of rather complex shoot-wind interactions, where dynamic loads and thus oscillations

are involved. Therefore to be able to accurately predict the lodging moment in the field a

future model should include the effect of the forces encountered during strong winds, so

integrating the effects of wind drag that cause large deflections in any cereal. This approach

can be used to calculate the appropriate shoot dimensions for panicle bearing cereals in
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general. The model calculations of self weight moment at any point along the stem can be

verified with measurements of our lodging metre.

Based on field observations in teff we presupposed that the shoot base is the most

vulnerable shoot part in terms of lodging susceptibility. Our measurements confirmed that

the safety factor against peduncle failure was significantly higher than the safety factor

for the shoot base in both cultivars. In general the strength of the plant’s base, however,

is not necessarily the critical point for lodging. In barley (Berry et al., 2006) the peduncle

is viewed as being the weakest point along the shoot. Breaking peduncles has also been

reported in a few teff cultivars that are commonly not cultivated (Ketema, 1991).

In conclusion the in situ field measurements were able to point out the main lodging

causes of teff. To the best of our knowledge all published work on lodging in teff was

focused on the shoots; here we show that enhancing the anchorage strength of the roots has

priority over stem enhancement. Nevertheless breeding efforts should not only focus on

a wider root plate diameter and more rigid horizontally growing roots but also on shorter

and thicker stems. This study also infers that the high safety factor against shoot lodging

reported for rice (Oladokun and Ennos, 2006) is probably too optimistic. This is concluded

from both the data on rice reported in this study and from a study by Ishimaru (2008)

showing shoots rather than the roots failed during severe rain and winds.

We advocate that further biomechanical lodging research should be done under totally

wet conditions a wetted root-system as well as wetted stems, leaves and inflorescences. We

surmise that the lack of incorporation of plant surface water partially explains the mismatch

between lodging model predictions and reality (Berry et al. 2003).
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Abstract

• Background: The Ethiopian cereal teff (Eragrostis tef (Zuccagni) Trotter), traditionally

grown under short days (11-13 h) (SD), is currently introduced into NW Europe where the

early phases of the growing season are characterized by long days (LD) (15-17 h). This

chapter analyzes to what degree teff’s ontogeny and morphology is day length sensitive.

• Methods:To describe the day length response of teff regarding panicle initiation, time

to heading, number of phytomers, plant height and biomass, phytotron and greenhouse

experiments were conducted. In these experiments two Ethiopian cultivars, Gibe and

Ziquala, and two cultivars from a Dutch breeding programme, Ayana and 04T19, were

exposed to day lengths of 9, 10.5, 12, 13.5, 15, 16.5 and 18 h.

• Key Results: The Ethiopian cultivars of teff showed a stronger photoperiod response

than the Dutch cultivars. For example, time to heading for Ziquala was 88 d under LD

but 37 d under SD whereas it was for Ayana 45 d under LD and 29 d under SD. Time to

heading could be described using a smooth logistic function consisting of four biologically

interpretable parameters. Application of the same function to literature data of rice showed

the broader applicability of the approach for cereals. Not only panicle initiation, but also

development and outgrowth of the panicle were influenced by photoperiod. Plant-to-plant

variation in time to heading, the total number of phytomers per shoot, the number of

elongated internodes and biomass were higher in LD than in SD treatments for all cultivars.

• Conclusions: This chapter provides a detailed description and quantification of the

response of teff to day length. The smooth logistic function presented is generally applic-

able in short day cereals. Our findings suggest that it is feasible to breed for a teff genotype

which is well adapted to northern latitudes.

Key words:

teff (Eragrostis tef (Zuccagni) Trotter), flowering, heading, photoperiod, day length, pheno-

logy, morphology, genetic variation, adaptation
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Abbreviations used in this chapter

Symbols Explanation Units Eqns.

D day length h 4.1 4.1

Dc
critical day length, after which day length starts to have an
impact on time to heading

h 4.1 4.2

D∆
day length at which alteration of day length has the strongest
impact on change in progress to heading

h 4.1

Dm
maximum day length at which an increase in day length
increases time to heading in SDPs

h 4.2

t (D) time to heading d 4.1 4.2

tmax maximal time to heading d 4.1

tmin minimal time to heading d 4.1

tmax
−1 the inverse of the maximal time to heading d−1 4.2

tmin
−1 the inverse of the minimal time to heading d−1 4.2

LD long day h

LDP long day plant

PI
panicle initation, occurrence of a generative apical meristem
in 50% of the cases in a sample

SD short day h

SDP short day plant

SSE sum of squared error (i.e. residual) Σ(data−model)2
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Introduction

Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 cereal crop species, originating from Ethiopia.

Teff grains are rich in minerals, especially iron (Mengesha, 1966; Abebe et al., 2007; Ver-

donschot et al., 2008) and teff flour does not contain gluten (Spaenij-Dekking et al., 2005).

Gluten is a multi-protein complex in grains that can cause celiac disease in genetically

predisposed humans (Di Sabatino & Corazza, 2009). For this group and other consumers

the multipurpose grain teff is a valuable ingredient in health products. For this reason there

is an interest in growing the crop outside Ethiopia for specialty food markets. Teff can be

grown in the temperate climates of NW Europe, such as in The Netherlands. Grain yields,

however, are modest (1.0-1.5 Mg·ha−1), the harvest is (too) late in the season (approxim-

ately end of September) and the crop is sensitive to lodging (van Delden et al., 2010). In

Dutch field conditions the harvest index rarely exceeds 0.25 (personal communication from

breeders and growers). Growing teff in NW Europe would be economically more attractive

if grain yield could become at least 2.5 Mg·ha−1.

Summerfield et al. (1997) postulated that most plants originating from tropical latit-

udes are short-day plants (SDPs). Since teff originates from Ethiopia, an African country

near the equator (4-14 ◦N, 33-47 ◦E), teff is most likely a SDP. When SDPs are grown under

the long day (LD) conditions of the temperate climates of NW Europe, flowering will be

postponed (facultative SDP) or impeded (obligate SDP). Later flowering in cereals coincides

with a larger final number of leaves, i.e. more vegetative phytomers per shoot (Hay & Kirby,

1991; Yin & Kropff, 1996). This could result in a higher number of elongated internodes,

creating longer plants that are more susceptible to lodging (van Delden et al., 2010). Early

flowering could advance the grain filling period and harvest time to ca mid-August, thus

avoiding exposure to the more wet and humid conditions later in the season, associated

with increased chances of grain losses caused by grain shedding, diseases and lodging.

We postulate that day length sensitivity is the main cause of the late harvest and greatly

contributes to low grain quality and yield. Therefore the first objective of this chapter is

to analyze to what degree teff’s ontogeny and morphology are photoperiod sensitive and

the second objective is to assess whether there is sufficient genetic variation in response to

photoperiod within four selected, contrasting teff cultivars to encourage breeding for an

early flowering, day length neutral, cultivar.

If data on time to flowering is transformed to rate to flowering (i.e. time−1) before data

analysis, then discontinuous linear photoperiod response models provide a good repres-

entation of the data (Roberts & Summerfield, 1987; Summerfield et al., 1997). However,

discontinuous linear (i.e. broken stick models) are in general a crude way of describing

the response of a biological process to its environment, smooth curvilinear lines often

provide a better description of the data (Schoolfield et al., 1981; Labouriau & Osborn, 1984;

Zwietering et al., 1991; Yin et al., 1995; Orozco-Segovia et al., 1996; Yan & Hunt, 1999;

Timmermans et al., 2007). It would furthermore be convenient if the model could be fitted

directly to the data, instead of first transforming time to heading to rates of progress toward
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heading. For these reasons our third objective is to develop a smooth curvilinear func-

tion with biologically interpretable parameters that fits the data without the need of data

transformation. This curvilinear model will be compared to the conventional linear model

(Roberts & Summerfield, 1987). For this comparison not only newly gathered teff data is

used but, also literature data on rice (Best, 1961) is used as cross-species model validation.

In theory grain yields of early flowering teff cultivars do not necessarily equal grain

yields of late flowering plants, because the larger vegetative biomass produced under long

day (LD) conditions may promote the potential yield (Adams & Langton, 2005). Adams and

Langton (2005) argued that a potential yield increase, by intentionally mismatching crop

photoperiodism and growth environment, is hardly explored by breeders and farmers. This

may be for good reasons, because higher shoot biomass accumulation does not necessarily

translate into higher grain yields. Our fourth objective, therefore, is to assess whether grain

biomass and the ratio between grain and vegetative biomass is influenced by day length

under non-stress controlled conditions.

Choosing the optimal harvest time for teff is hard, because there is extensive temporal

variation in ripening within the crop. This variation is possibly related to spread in flowering

and ripening between tillers on one plant (personal communication from teff growers).

Our fifth objective, therefore, is to pinpoint the probable causes of variability in flowering

and ripening within the teff crop.

In summary this chapter provides a detailed description of the effect of day length on

ontogeny (time to panicle initiation, heading), morphology (final number of leaves, number

of internodes, tillers) and growth (shoot biomass, grain biomass, length) of four contrasting

cultivars of Eragrostis tef (Zuccagni) Trotter). The chapter, furthermore, compares a tradi-

tional linear model (Roberts & Summerfield, 1987) and a novel smooth curvilinear model

to describe time to flowering in response to photoperiod in cereals.

Materials and Methods

Plant material and growth environment

Four contrasting cultivars coded: Gibe (cultivar DZ-Cr-255), Ziquala (cultivar DZ-Cr-358),

Ayana and cultivar 04T19 were obtained from Millets Place (the Netherlands). Cultivars

Ayana and 04T19 resulted from a Dutch breeding programme by mass selection from

landraces. Cultivars Gibe and Ziquala originate from Ethiopian breeding programmes.

Cultivars Gibe and Ayana have a similar appearance, cultivar 04T19 is a thicker-stemmed,

more robust, taller cultivar and the appearance of Ziquala is intermediate between Ayana

and 04T19.

Two experiments were conducted: a growth chamber experiment with six day lengths

(of 9, 10.5, 12, 13.5, 15 and 16.5 h) and a greenhouse experiment with four day lengths (9,

12, 15 and 18 h). This chapter is primarily based on the growth chamber experiment; data

from the greenhouse experiment were used to verify the repeatability of the results.
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Plants in the six growth chambers received 8 h and 45 minutes of artificial assimilation

light provided by 400 Watt SON-T Agro Philips lamps and 400 Watt HPI-T Plus Philips lamps

(3.5 lamps·m−2). The photosynthetically active radiation (PAR) provided by the assimilation

lights was 475 ±15 µmol·m−2·s−1 at canopy level. To maintain constant radiation at the

canopy level pots were placed on a plateau that was adjustable in height. Plants in the

four greenhouses received 8 hours and 45 minutes of natural day light, after which the

greenhouses were covered with a metal hood. In both the climate chambers and the

greenhouses day length extending light was from incandescent (Philips Classictone 75 W

No. 011503) and fluorescent (Philips Master TLD 58/840 reflex new generation) lamps,

positioned in such a way that all plants received at least 14±15 µmol·m−2·s−1, well above

the threshold of 10±15 µmol·m−2·s−1 for full photoperiod response (Foggo & Warrington,

1989). The ratio of red : far-red (660 nm : 730 nm) light established by these day length

extending lights was 1.45. In all facilities the day length extending lights were turned on

5 min before the assimilation lamps. For the shortest day length (9 h) the day length

extending lights were turned off 10 min after the growth lights. The period of assimilation

light was prolonged with day length extending light to establish day length treatments of

10.5, 12, 13.5, 15, 16.5 and 18 h.

All facilities were temperature controlled by either cooling or heating, temperature was

set to 16 ◦C during the 11-h night period and to 23 ◦C for the 9-h day period that coincided

with the assimilation light period. Switching from night to day temperature and vice versa

was gradual and took 2 h, resulting in an average daily air temperature of 19.8 ◦C.

Plants were grown in round plastic pots (diameter 212 mm; height 144 mm) filled with

potting soil. Osmocote® controlled release fertilizer was mixed with the potting soil at a

rate of 7.7 g·pot−1. Approximately five teff grains were sown in each of ten holes, evenly

distributed in a grid over the pot surface. Two days after emergence the plants were thinned

to one plant per hole, i.e. ten plants per pot. Each cultivar had six replicates within a day

length treatment. This resulted in approximately 200 plants per m2. To prevent lodging

each pot was equipped with a plastic ring, fixed above the pot with a thin wooden stick that

was planted in the middle of a pot; its height was adjusted during plant growth.

Observations

For practical reasons most plant characteristics (i.e. time to heading, panicle initiation, leaf

number, internode number) regarded the plant’s main stem. Under short days the main

stem was without exception the first heading shoot, under long days (i.e. 15 h and beyond)

the two largest tillers might be heading one or two days earlier than the main stem (Ketema,

1983). For plants in the growth chambers all characteristics that were recorded for the main

stem were also recorded for the third tiller. Depending on plant density and cultivar, the

third tiller is the tiller at the highest ranked phytomer that is still of agronomic importance.

Every second day, six plants at each of the day lengths of 9, 13.5, 15 and 16.5 h were

harvested from the growth chambers. Samples were frozen. Later microscopic observations
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were done on thawed samples, determining the physiological status of the growing tip

of main stem and third tiller. The definition adopted for panicle initiation (PI) was the

occurrence of a generative apical meristem in 50% of the cases in a sample.

Teff plants are mainly self-pollinating and heading and pollination almost coincide

in teff (Mengesha & Guard, 1966). We will use the term heading instead of flowering.

Heading was defined as emergence of the tip of the inflorescence from the sheath of the

flag leaf. When three or more main stems within a single pot were heading the pot was

noted to be heading. To determine time to heading six of the ten plants per pot were

labelled and monitored daily, however, after 120 days observations became weekly and

were discontinued when all main stems and third tillers had senesced.

To facilitate leaf counting, every fourth leaf was delicately marked with a water resistant

inkmarker. A pilot study showed that there was discernable effect of plant markings on

plant development or growth.

Final main stem length was measured from the root-shoot transition to the pedicel

of the first spikelets on the peduncle. The distance between the first pedicel and the tip of

the panicle was defined as panicle length. The crop height was defined as the estimated

distance between the soil and the average top of the crop canopy (leaves or bent panicle).

To obtain plant dry weight and grain yield plants were dried at 70 ◦C until constant

weight. Grain and shoot biomass were separated using a laboratory threshing machine

with 3×9 mm sieve.

Data analysis

Two models to describe time to heading in response to day length were compared in this

study: a Gompertz curve (eqn 4.1) and a broken linear function (eqn 4.2). The logistic

Gompertz curve was derived from Zwietering et al. (1990):

t (D) = (tmax− tmin)e−e
− Dc−D

Dc−D∆
+1

+ tmin (4.1)

where variable t (D) (d) is the time to heading, variable D (h) the day length, D∆ (h) the day

length at which alteration of day length has the strongest impact on change in progress

to heading, tmin (d) the minimal time to heading, tmax (d) the maximal time to heading,

parameter Dc (h) the critical day length, i.e. the minimum day length at which day length

starts to have an impact on time to heading. Note that tmin and tmax are asymptotes and

thus parameter values are theoretical approximates of observed data.

Previously, discontinuous linear models (e.g. (Summerfield et al., 1997)) were used to

describe time to flowering. In order to fit such a linear model, data on time to flowering

have to be transformed to rate of progress toward flowering (d−1). Equation 4.2 is essentially

the same linear model as used by Summerfield et al. (1997) but, is rewritten to describe

rate of progress toward flowering at a single temperature with biologically interpretable
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parameters:

t (D)−1 = tmin
−1 if D <Dc (4.2a)

t (D)−1 =
D
�

tmax
−1− tmin

−1
�

(Dm−Dc)
+

Dc
�

tmax
−1− tmin

−1
�

(Dc−Dm)
+tmin

−1 if Dm ≤D ≤Dc (4.2b)

t (D)−1 = tmax
−1 if D >Dm (4.2c)

t (D)−1 (d−1) is the inverse of time to heading, variable D (h) the day length, Dc (h) the

critical day length at which the variable day length (D) starts to influence time to heading,

Dm (h) maximum day length at which an increase in day length increases time to heading

in SDPs, tmin
−1 (d−1) the inverse of the minimal time to heading, tmax

−1 (d−1) the inverse of

the maximal time to heading.

Equation 4.1 was directly fitted on data of days until heading. Before fitting eqn 4.2,

however, data were transformed to rates of progress (d−1) toward heading (Summerfield et

al., 1997). The purpose of these models is to describe the time to heading. Thus for statistical

and graphical comparison, eqn 4.2 fitted on transformed data, viz rates of progress (d−1),

were converted back to time (d) to heading.

Nonlinear least squares regression was used to estimate the parameters of eqn 4.1

or 4.2 in one single fitting routine. Nonlinear regression was performed with the simplex

method, using the built-in optimisation function ’fminsearch’ of Matlab (MathWorks, Nat-

ick, Massachusetts, USA) version 7.8.0.347 (R2009a). SAS version 9.1.3 SP4 (SAS Institute

Inc., Cary, NC, USA) was used for all comparisons between means. Using the PROC MIXED

procedure of SAS, day length effects on time to heading and all plant morphologic char-

acteristics were analysed. Assessment for significant differences was done with the least

square means (LSMEANS) using Tukey’s honest significance test (p ≤ 0.05). Means in the

text are followed by their standard error in parenthesis. If the standard deviation instead of

the standard error is given, then the number in parenthesis is preceded by ‘sd’.

Results

Effects of day length on time to heading

In both the growth chamber and the greenhouse experiment all four cultivars showed a

delay in time to heading with increasing day length (Table A1.4.5), day lengths between 12

and 13.5 h caused the strongest change in delay (Figs. 4.1 and 4.2). The Ethiopian cultivars

Gibe and Ziquala showed a more pronounced response to day length than the new Dutch

cultivars Ayana and 04T19 (Figs. 4.1 and 4.2; Table A1.4.5 and A2.4.6 ). Cultivar Ayana

demonstrated the shortest time to heading of all tested cultivars at day length longer than

12 h (Fig. 4.1; Table A1.4.5 and A2.4.6 ).

Heading was notably postponed by day length treatments longer than 10.5 h, thus teff

behaved as a facultative (quantitative) short day plant. However, at day lengths of 15 and
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Fig. 4.1: Time to heading of the main stem of four cultivars: Gibe (grey bar), Ziquala (white bar),
Ayana (hatched bar) and 04T19 (black bar), for six different day lengths. Treatments with the same
letter are not significantly different. Error bar represents the standard error (n = 6).

16.5 h the Ethiopian cultivar Ziquala did show obligate (qualitative) SDP characteristics,

like nubbin or barren panicles. At these LD treatments, moreover, a sizable fraction of

the main stems of the Ethiopian cultivars did not produce a panicle at all: for Ziquala

this amounted to 44% at 15 h and 28% at 16.5 h while for Gibe 6% of the main stem were

without panicle both at 15 h and 16.5 h day length. All main stems of the Dutch cultivars

had a panicle (Table 4.1). Teff has apparently no obligate vernalization requirement since

all plants became generative while temperatures were always above 15 ◦C from sowing to

heading.

Within day length treatments, time to heading was not significantly different between

the growth chamber and greenhouse experiments, except for the 15 h day length treatment

(Table A2.4.6). Post experiment measurements identified light leakage and a slightly lower

temperature in the greenhouse with 15 h day length, which is probably the cause for the

delayed flowering compared to the 15 h day length in the growth chambers. Comparing

data from the greenhouse and the growth chamber experiments revealed that times to

heading were not significantly different between the treatments with the longest day length,

i.e. 16.5 h in the growth chamber equalled 18 h in the greenhouse. An exception to this rule

was found for cv. Ziquala, which flowered on average 5 days later in the greenhouse (18 h)

than in the growth chambers (16.5h).
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Table 4.1: Spread in time to heading for the main stem or the third tiller; spread in time to heading
between the main stem and the third tiller; and the percentage of final heading main stems and third
tillers per pot (growth chamber). Means are followed by their standard error between brackets.
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Gibe 9 5.8(0.3) 100 10.2(0.3) 5.7(0.5) 97

10.5 3.8(0.5) 100 10.7(0.3) 7.8(0.9) 100
12 4.5(0.5) 100 8.5(0.3) 5.5(0.6) 97
13.5 8.2(0.6) 97 7.8(0.5) 7.8(0.6) 92
15 11.4(1.3) 94 12.5(0.4) 7.8(0.9) 89
16.5 15.2(1.1) 94 9.7(0.6) 13.8(1.1) 100

Ziquala 9 1.5(0.3) 100 11.3(0.3) 6.7(0.7) 97
10.5 2.2(0.3) 100 11.8(0.5) 7.0(1.2) 94
12 3.5(0.3) 100 9.2(0.5) 5.7(0.6) 94
13.5 6.0(0.2) 89 5.0(0.3) 22.5(0.7) 92
15 ∞ 56 ∞ ∞ 83
16.5 ∞ 72 ∞ ∞ 72

Ayana 9 4.5(0.6) 100 11.5(0.2) 6.7(0.4) 100
10.5 5.8(0.6) 100 12.0(0.5) 7.5(0.9) 97
12 5.3(0.4) 100 11.0(0.3) 4.5(0.8) 97
13.5 21.0(2.2) 100 12.0(0.6) 16.3(2.7) 94
15 17.3(2.2) 100 12.3(1.2) 19.3(1.8) 100
16.5 26.7(1.6) 100 9.7(0.6) 23.0(1.5) 100

04T19 9 1.3(0.2) 100 10.5(0.2) 3.5(0.5) 100
10.5 1.5(0.2) 100 12.7(0.7) 6.0(0.9) 86
12 2.5(0.4) 100 13.3(0.3) 8.5(1.3) 94
13.5 6.7(0.3) 100 11.8(0.5) 8.2(0.6) 89
15 4.5(0.8) 100 10.8(0.5) 8.3(0.2) 94
16.5 4.7(0.5) 100 8.3(0.4) 11.3(1.9) 86
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Table 4.2: Parameter values of eqn 4.1, eqn A3.4.3, eqn 4.2 and goodness of fit∗1 for describing time to
heading per cultivar; for the main stem and the third tiller of teff.

Cultivar Equation tmin tmax Dc Dm D∆

Sum of
squared
residual∗2

r2

Main stem

Gibe 4.2 30.8 64.0 11.0 13.6 220.5 0.974
4.1 30.9 64.6 11.6 12.2 211.0 0.975
A3.4.3 30.4 64.8 11.1 12.2 212.0 0.975

Ziquala 4.2 37.6 83.0 11.4 13.7 128.8 0.992
4.1 37.6 83.6 11.8 12.4 114 0.993
A3.4.3 37.5 83.2 11.6 12.4 122.6 0.992

Ayana 4.2 29.2 44.2 9.9 14.1 169.6 0.892
4.1 28.7 45.3 10.8 12.0 175.6 0.888
A3.4.3 28.9 44.8 10.2 12.0 169.6 0.892

04T19 4.2 40.6 61.4 11.4 13.8 103.9 0.968
4.1 40.7 62.0 11.7 12.5 98.2 0.969
A3.4.3 40.1 62.0 11.3 12.6 95.5 0.970

Third tiller
Gibe 4.2 41.3 76.8 11.3 13.8 205.5 0.976

4.1 41.4 76.4 11.7 12.5 216.5 0.975
A3.4.3 41.0 76.4 11.4 12.5 194.5 0.977

Ziquala 4.2 49.1 91.1 11.7 13.7 - -
4.1 49.1 90.4 11.9 12.6 174.8 0.986
A3.4.3 49.0 90.4 13.5 12.7 187.2 0.986

Ayana 4.2 41.5 55.5 11.0 13.7 293.9 0.827
4.1 41.1 55.4 11.5 12.1 289.2 0.829
A3.4.3 41.1 55.4 11.1 12.2 285.7 0.832

04T19 4.2 52.0 70.8 11.1 13.7 200.9 0.926
4.1 52.3 70.9 11.6 12.1 200.5 0.926
A3.4.3 48.6 72.5 9.4 11.7 185.6 0.931

∗1 Goodness of fit was calculated for the actual number of days to heading, thus after back transformation of the
linear model.
∗2 Sum of squared residual =Σ(data−model)2
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Modelling the effects of day length on time to heading

For teff the Gompertz curve (eqn 4.1) or the logistic curve (eqn A3.4.3 in Appendix 3)

described the time to heading in response to day length better than the linear model

(eqn 4.2). Based on total sum of squares the logistic model was slightly better: overall

logistic Σ(data−model)2 = 1453 (eqn A3.4.3), Gompertz Σ(data−model)2 = 1480 (eqn 4.1)

versus linear model Σ(data−model)2 = 1839 (eqn 4.2) (Table 4.2). Cross-species model

validation on literature data of the SDP rice cultivar Tjiana from Best in the same day length

range as teff (i.e. 8-24 h), again showed that the smooth curvilinear model (eqn 4.1) was

superior to the linear model on rates (Fig. 4.3). However, for this rice cultivar the Gompertz

curve (eqn 4.1) was superior to the logistic function (eqn A3.4.3) and improved the fit

statistics from r 2 = 0.993 to r2 0.996. Comparing the actual fits of eqn 4.1 and eqn A3.4.3 to

the data shows that the improved fit is due to the more appropriate shape assumptions of

the Gompertz model than the logistic model (Fig. 4.3; eqn A3.4.3). Because in teff eqn 4.1

and eqn A3.4.3 fitted almost equally well, for the sake of uniformity the Gompertz model

was plotted for both species (Figs. 4.2 and 4.3).

Fig. 4.3: Day length effects on time to heading of rice cultivar Tjiana (symbols), data of Best (1961).
Lines represent three regression models: Gompertz curve eqn 4.1 (black solid line; r 2 0.996, SSE 102),
logistic curve eqn A3.4.3 (black broken line; r 2 0.993, SSE 191), back transformed linear model eqn 4.2
(grey solid line; r 2 0.969, SSE 825).

97



| Chapter 4

Effects of day length on time to panicle initiation (PI) and final leaf

number

Compared to the obvious day length response of time to heading (Fig. 4.2 closed symbols),

the day length response of time to panicle initiation (PI) was less obvious (Fig. 4.2 open

symbols). The differences in time to PI between SD (9 h) and LD (16.5 h) were more

pronounced for the Ethiopian than for the Dutch cultivars: for Gibe the difference was 15.5

d and for Ziquala it was 11.7 d versus 4.3 d and 4.7 d for the Dutch cultivars Ayana and 04T19,

respectively. The time from PI to heading was longer under LD conditions than under SD

conditions. Consequently, day length influenced both the transition to a generative phase

and the further development and elongation of the panicle. A reason for this could be that

the flag leaf sheaths are longer at longer day length. Cultivar Ziquala had on average the

biggest difference in sheaths length between SD 158(0.8) mm and LD 177(3.8) mm. Yet, a

difference of 19 mm in sheaths length is unlikely to be the main explanation for the time

difference in panicle outgrowth between LD and SD. Because, looking at the tremendous

speed of panicle outgrowth (Fig. 4.4) during the days just before heading, a distance of 19

mm will delay heading a day or two at most but not 11.7 d. To scrutinise the phenomena

of slow panicle outgrowth at LD in more detail we counted the number of spikelets for

04T19 under SD (9h) and LD (18h) conditions. The number of spikelets produced under

LD was 961(21) (n=36) which was substantially more than 659(12) spikelets produced

under SD (n=35). The number of spikelets produced per day, averaging over time from

PI to heading was almost equal, i.e. 28 per day for LD treatments and 30 spikelets per

day for SD treatments. Even small reductions in time to heading coincided with an on

average lower number of final leaves, indicating that plant development was affected by

photoperiod (Fig. 4.2). At the moment that the apical meristem switches from a vegetative,

leaf constructing, meristem to a generative, inflorescence constructing meristem, the final

number of leaves (phytomers) is determined. Postponed PI was indeed associated with an

increase in final leaf number. Namely, under LD (16.5 h) compared to SD (9 h) extra leaves

amounted to 3.7 in Gibe and 3.2 in Ziquala versus 2.3 in Ayana and 1.7 in 04T19 leaves.

Variation in time to harvest

Here we list three sources of variation that were observed regarding time to harvest under

different day lengths.

First, teff plants within a pot were not heading at the same time (Table 4.1). The time

between the first and last heading plant within a pot was higher at long days than at short

days. There was, however, no significant correlation between the mean time to heading

and the spread within a pot.

Second, teff shoots of the same plant were not heading synchronously (Fig. 4.2,

Table 4.1). The third tiller was on average heading 10.7(0.54) days later than the main

stem under almost all day lengths (Fig. 4.2, Table 4.1). In the greenhouse the numbers

of tillers were counted both at flowering and at harvest (Table A2.4.6). We, furthermore,
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Fig. 4.4: Time after seedling emergence versus meristem length of cultivar 04T19; vegetative meristem
is represented by grey squares; generative meristem by open squares and the solid line represents the
exponential trend. The size the generative meristem (i.e. panicle) has to possess in order to appear
from the final leaf sheath is represented by the broken line. The inset is a magnification of the data of
the early growth stages.

distinguished between big agronomically important tillers and the remaining smaller tillers.

The plants kept on producing tillers and panicles until the harvest date, also when the

main stem had already senesced. These were mostly small auxiliary tillers that were formed

after flowering. Cultivars Gibe with 23 and Ayana with 22 tillers were the most extensively

tillering cultivars, whereas 04T19 with 8 tillers had overall the lowest number of tillers. This

cultivar, 04T19, was also more uniform in ripening of the panicles. There was, furthermore,

little effect of day length on tillering in any of the cultivars (Table A2.4.6).

Third, the developing panicle as such possessed a gradient in ripeness. Grains at the

panicle tip were shedding while grains close to the peduncle were still in their grain filling

stage (Photo P1.4.6 and P1.4.7).

Growth: biomass and lengths

Compared to the shortest day length treatments, all cultivars showed larger main stem

shoot biomass at day lengths between 12 and 15 h (Table 4.3). In contrast to the shoot

biomass, the biomass of the panicle (Table 4.3) and the actual grain yield in the greenhouse

(Table 4.3) were not significantly different between short and long days.
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The third tiller, which we defined as the highest ranked tiller on the main stem that

was still of agronomic importance, had an average relative contribution to grain yield of

only 15% (1%).

Gibe showed a significantly shorter main stem shoot length at short days (i.e. 9 and

10.5 h) compared to long days (i.e. 15 and 16.5 h) (Table 4.4). Longer main stem shoot

length at long days than at short days was not observed for the other cultivars. However,

the maximal crop height, which is an average over all tillers and plants per pot, did show a

systematic increase with day length for all cultivars (Table 4.4).
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Table 4.3: Day length effects on plant and main stem organ weight per cultivar. Means per cultivar
with the same group letter were not significantly different (p ≤ 0.05) (growth chamber). Means are
followed by their standard error between brackets.
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Gibe 9 0.6(0.1) C 1.3(0.1) AB 4.8(0.3) B 7.4(0.4) BC 12(0.7) BC
10.5 0.5(0.0) C 1.0(0.1) B 4.6(0.6) B 5.7(1.1) C 10(1.7) C
12 1.0(0.0) B 1.8(0.1) A 6.8(0.3) B 9.0(0.8) AB 16(1.0) B
13.5 2.0(0.1) A 1.7(0.4) AB 13(0.6) A 9.9(1.0) AB 23(1.6) A
15 2.0(0.1) A 1.9(0.2) A 14(0.8) A 11(0.9) A 24(1.7) A
16.5 2.0(0.1) A 1.4(0.3) AB 12(0.5) A 9.2(0.5) AB 22(0.8) A

Ziquala 9 1.1(0.0) D 2.2(0.1) A 6.3(0.3) C 8.6(0.6) A 15(0.8) BC
10.5 1.1(0.1) D 1.7(0.1) B 6.4(0.6) C 6.8(0.6) B 13(1.2) C
12 1.6(0.1) C 2.2(0.2) A 8.2(0.6) C 8.0(0.5) AB 16(1.0) ABC
13.5 2.9(0.1) A 0.4(0.1) C 15(0.4) B 4.0(0.4) C 19(0.5) AB
15 2.5(0.2) AB 0.0(0.0) D 18(1.9) AB 2.4(0.3) CD 20(2.0) A
16.5 2.4(0.1) B 0.0(0.0) D 19(1.8) A 1.0(0.2) D 20(1.8) A

Ayana 9 0.4(0.0) C 1.1(0.1) A 4.3(0.3) C 6.9(0.7) AB 11(0.9) BC
10.5 0.5(0.1) C 1.0(0.1) A 4.2(0.4) C 4.4(0.6) B 8.6(1.0) C
12 0.8(0.1) BC 1.7(0.1) A 6.1(0.5) BC 7.6(0.7) A 14(1.2) AB
13.5 1.1(0.1) AB 1.0(0.3) A 8.8(0.8) AB 8.4(0.7) A 17(1.4) A
15 1.3(0.2) AB 1.3(0.4) A 9.2(1.0) A 8.4(1.1) A 18(2.0) A
16.5 1.5(0.2) A 1.5(0.2) A 8.4(1.0) AB 8.3(0.5) A 17(1.3) A

04T19 9 1.8(0.0) C 2.3(0.1) A 7.3(0.3) C 6.9(0.4) A 14(0.7) C
10.5 2.1(0.1) BC 2.4(0.1) A 7.8(0.5) C 6.3(0.5) A 14(1.0) C
12 2.6(0.1) B 2.6(0.2) A 9.6(0.6) BC 7.5(0.4) A 17(1.0) BC
13.5 3.1(0.2) A 2.0(0.5) A 13(0.9) A 8.2(0.4) A 22(1.1) A
15 3.4(0.2) A 2.6(0.2) A 13(0.4) A 8.1(0.4) A 21(0.6) AB
16.5 3.1(0.1) A 2.3(0.2) A 11(0.7) AB 7.4(0.7) A 18(1.4) AB
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Table 4.4: Day length effects on plant and main stem organ length per cultivar. Means per cultivar
per temperature with the same letter were not significantly different (p ≤ 0.05) (growth chamber).
Means are followed by their standard error between brackets.

C
u

lt
iv

ar

D
ay

le
n

gt
h

(h
)

N
u

m
b

er
o

f
el

o
n

ga
te

d
in

te
rn

o
d

es

St
em

le
n

gt
h

ti
ll

p
an

ic
le

(c
m

)

P a
n

ic
le

le
n

gt
h

(c
m

)

S t
em

le
n

gt
h
+

p
an

ic
le

(c
m

)

M
ax

im
u

m
cr

o
p

h
ei

gh
t

(c
m

)

Gibe 9 4.0(0.0) C 77(1.3) C 39(1.8) A 116(2.6) C 124(1.5) C
10.5 4.3(0.1) C 83(2.3) C 41(1.4) A 124(3.4) BC 152(1.1) C
12 5.2(0.1) B 98(3.5) B 48(2.0) A 146(5.4) AB 150(1.3) B
13.5 6.7(0.2) A 117(3.4) A 36(8.0) A 153(11) A 151(3.7) A
15 6.8(0.2) A 109(3.1) AB 40(5.6) A 149(6.2) A 92(1.1) A
16.5 6.7(0.2) A 107(2.7) AB 34(7.3) A 141(8.6) AB 118(2.1) A

Ziquala 9 3.9(0.1) C 99(4.0) C 54(0.9) A 153(4.5) A 134(1.5) C
10.5 3.9(0.1) C 101(2.1) C 53(0.9) A 154(2.3) A 140(4.1) B
12 4.1(0.1) C 112(1.6) B 59(0.7) A 171(2.1) A 92(1.1) B
13.5 5.8(0.1) A 136(3.9) A 26(6.3) B 162(9.8) A 114(1.5) A
15 5.8(0.2) AB 107(1.6) BC 2(1.3) C 109(1.1) B 115(2.6) A
16.5 5.3(0.2) B 103(4.0) BC 2(1.7) C 105(5.2) B 123(2.1) A

Ayana 9 3.4(0.2) B 71(3.4) A 40(3.3) A 111(3.4) A 93(1.1) C
10.5 3.9(0.2) B 78(4.6) A 43(1.0) A 121(4.5) A 109(2.0) C
12 4.5(0.1) AB 84(1.9) A 47(4.3) A 132(4.0) A 102(2.1) B
13.5 4.7(0.2) AB 79(4.6) A 32(8) A 109(11) A 104(4.4) A
15 5.3(0.4) A 83(5.7) A 45(6.2) A 128(7.5) A 117(2.1) A
16.5 5.7(0.5) A 91(7.5) A 49(2.2) A 136(9.6) A 134(3.5) A

04T19 9 3.8(0.2) C 119(2.3) AB 52(4.7) AB 170(3.4) B 107(1.1) D
10.5 3.9(0.1) C 127(2.1) AB 59(2.0) AB 186(3.7) AB 103(1.1) C
12 4.2(0.2) BC 130(2.4) A 63(2.1) A 194(4.3) A 121(0.8) C
13.5 4.3(0.1) BC 127(4.7) AB 48(4.2) B 175(8.3) AB 145(2.2) B
15 4.9(0.1) A 126(4.2) AB 56(4.8) AB 181(7.4) AB 143(1.1) B
16.5 4.6(0.2) AB 116(2.7) B 63(1.6) A 179(3.7) AB 144(2.6) A
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Discussion

Teff is a facultative (quantitative) short day plant, as shown in two independent experiments

in two different environments (i.e. greenhouses versus growth chambers). Time to panicle

initiation (PI) and flowering (heading) were notably postponed by day length treatments

longer than 10.5 h. The strongest day length response in terms of time to heading was

between 12 and 15 h for all cultivars. The Ethiopian cultivar Ziquala did show some

characteristics of an obligate (qualitative) short day response exemplified by absent or

sterile panicles and lower grain yields under long day length regimes of 15 and 16.5 h. This

cultivar, Ziquala, also showed the most pronounced day length response, heading occurred

at SD (9 h) as early as 37.3(0.2) days, whereas at LD (16.5 h) heading occurred first after

88.3(1.7) days. Among the cultivars there was significant variation in phenology, especially

at LD (16.5 h) time to heading varied considerably between Dutch and Ethiopian cultivars,

viz. from as early as 44.7(0.4) d (Ayana) to not until 88.3(1.7) d (Ziquala).

Compared to the traditional linear models on rate of progress towards flowering,

the novel curvilinear model (eqn 4.1) presented here provides a description with higher

accuracy of time to flowering in response to photoperiod. Using the same number of

parameters the Gompertz curve (eqn 4.1) explains a higher portion of variance than the

traditional linear model (eqn 4.2). The novel curvilinear model (eqn 4.1) can be directly

fitted to the data without transformation to rates. This is in contrast to the linear model

(eqn 4.2), where data transformation is required to obtain an accurate fit. The superiority of

the curvilinear model over the linear model was confirmed when these models were fitted

to the data of the SDP rice (Best, 1961). Note that we only use day lengths longer than 8 h

because shorter day lengths are irrelevant to our research question and most likely cause

stress due to the short diurnal period of photosynthesis. Fitting both models to rice data

transformed to rates shows that curvilinear model (eqn 4.1) still out performs the linear

model (eqn 4.2 and Fig. 4.5). As shown in Appendix 3 (eqn A3.4.4) the Gompertz curve and

the logistic curve have some shape assumptions, for teff these models fit equally well, but

for rice the Gompertz model was superior. Regardless of the shape assumptions our novel

model requires sufficient number of data points over the whole range of day lengths. When

data are only available over a limited photoperiod range, a linear model (eqn 4.2) would

be safer resort. Long days not only increased time to heading, but also number of main

stem leaves (i.e. vegetative phytomers), plant biomass, inter-plant variation, number of

elongated internodes and crop height increased under long days. In contrast to the shoot

biomass the grain biomass did not increase with day length.

At the moment that the apical meristem switches from a vegetative, leaf constructing

meristem, to a generative, inflorescence constructing meristem, the final leaf number

is determined. Assuming a constant plastochron, i.e. time between initiated leaves, a

delay in switch would result in a higher final leaf number. Hence, when the LDP wheat

is grown under SD conditions, then the final main stem leaf number will increase (Hay

& Kirby, 1991). Similarly, when the SDP rice is grown under LD conditions, then the final
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Fig. 4.5: Day length effects on progress towards heading of rice cultivar Tjiana (symbols), data of Best
(1961). Lines represent two regression models: Gompertz curve eqn 4.1 (black solid line; r 2 0.998, SSE
1.19 x 10−7, linear model eqn 4.2 (grey solid line; r 2 0.992, SSE 5.34 x 10−7).

leaf number will also increase (Yin & Kropff, 1996). We found corresponding results for

the SDP teff, with increasing day length the number of leaves (i.e. phytomers) increases

Fig. 4.2). Correspondingly, the early flowering teff cultivars created fewer leaves than the

late flowering cultivars. The number of tillers, however, did not increase with day length.

To harvest cereal grains in one single operation, to prevent the need for post harvest

drying and to receive high market prices, all grains within the crop need to ripen simultan-

eously. Wheat is a very uniform crop; environment, including day length, has little or no

influence on uniformity of ripening (Hay & Kirby, 1991). This is in contrast to teff grown

under LD conditions, which is not a uniform crop. There was a gradient in ripeness within

a panicle, large variation between panicles and the plant keeps on producing small tillers

even when the main stem has already senesced. Long day conditions increased plant-to-

plant variation in time to heading in Gibe, Ziquala and Ayana, but LD effects on variation in

time to heading for 04T19 were small. Synchrony of agronomically important tillers within

the plant did, however, not change much with day length for all tested cultivars.

Biomass losses by seed shedding was very high, grains were easily removed from

the panicle. Therefore, when plants were harvested they were carefully enclosed in a bag

in order to prevent grain losses and acquire accurate estimations of total grain biomass.

In a field situation seed shedding will, without a doubt, result in major yield reduction.

Moreover, also here the asynchrony in teff would increase the losses in a field situation, as

the first grains start to shed when a significant number of grains within the crop still needs

to be filled.This is not only due to plant-to-plant or shoot-to-shoot (Photo P1.4.6) variation

but also to variation within the panicle as such (Photo P1.4.7).
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On the basis of this study several teff breeding recommendations can be made. Early

flowering will reduce crop height and main stem final leaf number, thus reducing lodging

susceptibility (van Delden et al., 2010), especially under long day conditions. In NW Europe

early flowering will, moreover, circumvent the adverse weather conditions at the end of the

growing season. This study shows that breeding for early flowering under long days does

not necessarily coincide with lower grain biomass. Grain shedding should be reduced, as

was already achieved via breeding for current wheat and rice cultivars (Doust, 2007). Teff

plants make, furthermore, numerous auxiliary tillers that contributed< 4% (Table A2.4.6)

to the final grain yield. These auxiliary tillers are attached to higher node ranks of the

main stem and the most productive tillers. Their centre of mass deviates from the vertical,

hence their presence makes the plant much more susceptible to lodging (van Delden et

al., 2010). Therefore breeding should aim at reducing the number of emerging auxiliary

tillers. The modestly tillering cultivar 04T19 was also the cultivar which exhibited most

uniform grain ripening, within the panicle and between shoots and plants. Ayana with a

similar day length response, in contrast, showed both abundant tillering and non-uniform

ripening (Photo P1.4.7). These large genetic differences between cultivars suggest there is

ample genetic variation in all these traits; therefore the basis for breeding for high yielding

cultivars seems to be present.
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Appendix 1

Table A1.4.5: Day length effects on time to heading and final leaf number of the main stem and the
third tiller per cultivar. Means per cultivar with the same group letter were not significantly different
(p ≤ 0.05) (growth chamber). Means are followed by their standard error between brackets.
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Gibe 9 30.0(0.3) D 7.1(0.1) C 40.7(0.8) D 3.0(0.0) D
10.5 32.2(0.9) D 7.2(0.1) C 42.8(0.9) CD 3.3(0.1) D
12 38.7(0.7) C 8.5(0.1) B 47.2(0.8) C 4.2(0.1) C
13.5 61.5(0.9) B 10.5(0.1) A 69.3(0.9) B 6.2(0.1) B
15 62.0(1.0) B 10.6(0.1) A 74.5(1.0) A 6.4(0.2) AB
16.5 68.3(2.1) A 10.8(0.1) A 78.0(2.0) A 6.8(0.1) A

Ziquala 9 37.3(0.2) E 8.0(0.0) C 48.7(0.6) E 4.1(0.1) CD
10.5 37.8(0.3) E 8.1(0.1) C 49.7(1.1) DE 4.0(0.0) D
12 44.2(0.3) D 9.0(0.0) B 53.3(1.0) D 4.4(0.1) C
13.5 77.2(0.9) C 11.0(0.0) A 82.2(0.7) C 6.4(0.1) B
15 83.8(1.4) B 11.2(0.1) A 88.3(1.1) B 6.8(0.1) A
16.5 88.3(1.7) A 11.1(0.1) A 94.2(1.1) A 6.6(0.1) AB

Ayana 9 29.2(0.3) C 6.5(0.1) D 40.7(0.4) C 3.1(0.1) C
10.5 30.8(0.3) C 7.0(0.2) CD 42.8(0.9) BC 3.2(0.1) C
12 35.0(0.4) B 7.5(0.1) BCD 46.0(0.4) B 3.4(0.1) BC
13.5 42.0(0.7) A 7.8(0.3) ABC 54.0(0.9) A 3.9(0.2) BC
15 44.5(2.1) A 8.2(0.3) AB 56.8(2.3) A 4.2(0.3) AB
16.5 44.7(0.4) A 8.8(0.4) A 54.3(1.3) A 4.9(0.4) A

04T19 9 39.0(0.3) D 8.1(0.1) D 49.5(0.6) C 4.1(0.1) B
10.5 42.3(0.2) C 8.5(0.1) C 55.0(1.3) B 4.0(0.1) B
12 44.2(0.8) C 8.7(0.1) C 57.5(1.0) B 4.1(0.1) B
13.5 57.3(0.8) B 9.3(0.1) B 69.2(0.4) A 4.8(0.1) A
15 60.5(0.7) A 9.8(0.1) A 71.3(0.6) A 5.1(0.2) A
16.5 62.3(0.3) A 9.8(0.1) A 70.7(0.6) A 5.1(0.1) A
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Appendix 2

Table A2.4.6: Time to heading, final leaf number and number of tillers. Means per cultivar with the
same group letter were not significantly different (p ≤ 0.05) (greenhouse). Means are followed by
their standard error between brackets.
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Gibe 9 31.3(0.7) B 6.0(0.2) C 7.0(0.0) C 5.8(0.4) A 36.9(5.6) A 11.7 1
12 40.8(0.8) B 7.5(0.8) BC 8.2(0.2) B 4.7(0.2) A 22.9(2.9) B 14.5 1.7
15 71.7(1.3) A 10.7(0.5) A 11.0(0.2) A 4.5(0.5) A 17.2(2.9) B 19.5 1
18 71.7(1.2) A 8.5(0.7) AB 11.0(0.0) A 5.0(0.3) A 15.4(1.6) B 17.9 1

Ziquala 9 38.8(0.4) C 6.6(0.4) B 8.0(0.0) B 4.4(0.4) A 20.1(3.1) A 14.9 2.2
12 45.3(0.7) B 7.3(0.3) AB 8.7(0.2) B 3.6(0.3) A 12.2(2.3) AB 25.5 1
15 95.8(0.7) A 9.9(1.3) A 11.0(0.2) A 4.6(0.5) A 14.1(0.7) AB 15.7 2.9
18 93.3(0.9) A 8.0(0.6) AB 11.0(0.2) A 4.6(0.4) A 11.2(1.2) B 16.2 3.9

Ayana 9 30.5(0.5) C 5.9(0.1) B 6.5(0.2) B 4.6(0.4) A 24.2(3.2) A 14.2 1.8
12 35.5(1.0) B 6.2(0.5) B 7.2(0.3) AB 5.3(0.3) A 23.8(2.4) A 17.3 0.5
15 40.2(1.4) A 7.6(0.4) AB 7.7(0.6) AB 3.4(0.9) B 18.5(2.3) A 21.3 1.8
18 39.3(1.4) AB 8.2(0.5) A 9.2(0.7) A 5.4(1.9) A 20.5(2.3) A 13.8 1.7

04T19 9 39.3(0.3) C 4.5(0.3) AB 8.2(0.2) B *- *- *- *-
12 42.3(0.6) B 4.1(0.3) B 8.3(0.2) B 3.0(0.2) A 9.1(0.5) A 30.1 1.6
15 63.3(1.5) A 5.0(0.3) AB 9.5(0.2) A 3.3(0.3) A 7.2(0.7) A 30.1 0.2
18 62.9(1.0) A 5.7(0.6) A 10.0(0.0) A 3.6(0.2) A 7.3(1.0) A 27.5 0.2
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Appendix 3

Instead of using the implicit non-symmetrical shape assumption of the Gompertz curve,

we can also assume that the day length response is symmetrical around parameter D∆, i.e.

the inflection point of eqn 4.1. If the day length response is symmetrical around parameter

D∆, then a logistic curve derived from Zwietering et al. can be used:

t (D) =
tmax− tmin

1+ e
−2· (D−D∆)
(D∆−Dc)

+ tmin (A3.4.3)

where variable t (D) is the time to heading (d), variable D the day length (h), D∆ the day

length at which alteration of day length has the strongest impact on change in progress

to heading (h), tmin the minimal time to heading (d) , tmax the maximal time to heading

(d), parameter Dc the critical day length, i.e. the minimum day length at which day length

starts to have an impact on time to heading (h). Note that tmin and tmax are asymptotes and

thus parameter values are theoretical approximates of observed data.

The difference between the logistic curve (eqn A3.4.3) and Gompertz curve (eqn 4.1) is

that the inflection point, D∆, of eqn A3.4.3 is at the symmetric midst of the curve:

t (D∆) =
(tmax− tmin)

2
+ tmin (A3.4.4a)

and of eqn 4.1 D∆ is below the curves midst, resulting in an asymmetric logistic curve:

t (D∆) =
(tmax− tmin)

e
+ tmin (A3.4.4b)
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Appendix 4

Table A4.4.7: Shoot and grain biomass per plant. Means per cultivar with the same group letter
were not significantly different (p ≤ 0.05) (greenhouse). Means are followed by their standard error
between brackets.
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Gibe 18 9 3.6(0.12) C 1.6(1.9) AB 5.2(2.8) B 0.31(0.020) A
12 4.3(0.11) C 2.6(2.5) A 6.9(3.5) AB 0.37(0.019) A
15 6.8(0.35) A 1.8(2.8) AB 8.6(5.5) A 0.21(0.021) B
18 5.5(0.39) B 1.5(2.6) B 7.0(5.9) A 0.21(0.021) B

Ziquala 18 9 4.1(0.11) B 2.1(1.5) A 6.2(1.5) B 0.34(0.018) A
12 4.1(0.44) B 1.8(4.3) A 5.9(8.0) B 0.28(0.046) AB
15 9.0(0.69) A 2.3(5.4) A 11.3(12) A 0.19(0.029) B
18 8.6(0.87) A 2.0(2.9) A 10.6(9.1) A 0.19(0.025) B

Ayana 18 9 2.8(0.22) B 1.4(2.2) A 4.2(4.3) A 0.31(0.026) A
12 3.7(0.18) AB 1.9(3.2) A 5.6(4.6) A 0.32(0.032) A
15 5.2(0.58) A 1.5(2.2) A 6.7(7.2) A 0.22(0.022) A
18 4.5(0.67) AB 1.4(3.5) A 5.9(10) A 0.21(0.030) A

04T19 18 9 5.9(0.50) B 3.1(1.7) A 9.0(6.2) A 0.35(0.016) A
12 6.0(0.19) B 3.0(2.3) A 9.0(3.7) A 0.33(0.015) A
15 7.7(0.46) A 2.8(2.0) A 10.5(5.8) A 0.26(0.014) B
18 7.5(0.49) AB 2.7(2.1) A 10.2(6.3) A 0.26(0.013) B
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Photos P1 ��������
Fig. P1.4.6: (a) Panicles of Ayana and (b) Panicles of cultivar 04T19. Cultivar 04T19 headed later but
reached grain maturity earlier and therefore was more uniform than cultivar Ayana.

 

Photo S2. The gradient of ripeness of an average teff panicle (cultivar Ziquala) inset 
shows the difference in grain filling stage and maturity from seeds at the top of the 
panicle and at the bottom. 
 

  

Fig. P1.4.7: The gradient of ripeness of an average teff panicle (cultivar Ziquala) inset shows the
difference in grain filling stage and maturity from seeds at the top of the panicle and at the bottom.
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Abstract

• Background: The theory on the phyllochron under constant diurnal temperature and

day length conditions is still controversial. Many studies have highlighted inaccuracies in

predictions of the timing of appearance between two successive leaves (i.e. phyllochron)

in the field. This chapter provides an accurate description of the fundamental concepts

on the timing of leaf appearance in the cereals teff (Eragrostis tef (Zuccagni) Trotter), rice

(Oryza sativa L.) and wheat (Triticum aestivum L.).

• Methods: We grew four teff cultivars under constant temperature conditions at six differ-

ent day lengths. To assess the effect of temperature on rice phyllochron, we re-analysed lit-

erature data on four rice cultivars grown at five temperatures. Furthermore newly gathered

data on timing of leaf appearance of outdoor-grown wheat was analysed.

• Key Results: There are two consecutive phases differing in phyllochron, phyllochron 1

(p1) and phyllochron 2 (p2), with p1 < p2. The effect of temperature on p1 and p2 can be

normalised with the linear thermal time concept.

• Conclusions: Day length has no significant effect on the values of p1 and p2. The switch

from p1 and p2 is abrupt and the difference between soil and air temperature can not

account entirely for difference between p1 and p2.

Key words:

teff (Eragrostis tef (Zuccagni) Trotter), rice, wheat, leaf appearance, phyllochron, develop-

ment rate, morphology.
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Abbreviations used in this chapter

Roman
Symbols

Explanation Units Eqns.

L number of appeared leaves 5.1

L c number of leaves at the time of the phyllochron switch 5.1

L s initial (start) leaf number 5.1

p
phyllochron, i.e. duration between the appearance of two
successive leaves

d 5.3

P
phyllotherm, i.e. duration between the appearance of two
successive leaves

◦Cd

p1 phyllochron 1 ◦Cd 5.1

P1 phyllotherm 1 d 5.1

p2 phyllochron 2 ◦Cd 5.1

P2 phyllotherm 2 d 5.1

PI
panicle initation, occurrence of a generative apical meristem
in 50% of the cases in a sample

po time to leaf appearance at the optimum temperature d 5.4

Tb base temperature for leaf appearance ◦C 5.3 5.4

Tc ceiling temperature for leaf appearance ◦C 5.4

T∆ the theoretical difference between air and soil temperature ◦C 5.5

TD day temperature ◦C

t (L) time to appearance of leaf L d 5.1

To optimum temperature for leaf appearance ◦C 5.4

TN night temperature ◦C

Z dummy variable 5.2

Greek
Symbols

Explanation Units Eqns.

β0
intercept in a linear regression equation relating day length
and phyllotherm

◦Cd 5.6

β1
slope of change in a linear regression equation relating day
length and phyllotherm

◦Cd·h−1 5.6

βP2

exact prediction for the time to final leaf rank (regression
variable)

d 5.2

θT thermal time constant ◦Cd 5.3
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Introduction

In cereals, duration in days (d) between the appearance of two successive leaves is com-

monly termed phyllochron (symbolised with small letter ‘p ’); phyllotherm (symbolised

with capital letter ‘P’) is the corresponding time in degree days (◦Cd) above a threshold

minimum or base temperature, Tb, and below an optimum temperature, To (Cao & Moss,

1989a; Bonhomme, 2000). Above the optimum temperature, To, phyllotherm can be calcu-

lated using a threshold maximum or ceiling temperature, Tc (Porter & Gawith, 1999). In the

temperature range between base and optimum temperature it is commonly assumed that

the phyllochron for all successive leaves is constant under constant temperature conditions.

It is furthermore assumed that the phyllotherm is constant under variable temperature

conditions (White et al., 1990; Ellis et al., 1993; Jamieson et al., 2008). On the basis of

this assumption one linear function should be able to describe the increase in number of

appeared leaves over time expressed in degree days (◦Cd). However, Cao and Moss (1991)

concluded that: ‘the use of a constant value for phyllochron in dynamic crop models of

wheat leaf development is not appropriate for all circumstances.’ Earlier, the suggestion was

made that phyllochron is related to the rate of photoperiod change at seedling emergence

(Baker et al., 1980) or that the thermal/photo ratio (the ratio of daily degree-days to day

length) for the week following seedling emergence (Cao & Moss, 1989b) affected the phyllo-

chron. Jame et al. (1998) concluded for wheat and barley that the mismatch between field

observations and simulated leaf appearance can be solved by incorporating a curvilinear

relation between effects of temperature and photoperiod on leaf appearance rate. However,

several studies found a sudden, instead of a gradual, change in cereal phyllochron. This

sudden change was observed around the time the apical meristem switches from vegetative

to generative development, e.g. for rice (Oryza sativa L.) (Nagai, 1963; Baker et al., 1990)

and for wheat (Triticum aestivum L.) (Baker et al., 1986; Boone et al., 1990).

The observed change in phyllochron could be a direct result from a change in tem-

perature experienced by an apex. Because, an apex below or close to the soil surface can

experience a temperature that significantly differs from the air temperature (Jamieson et al.,

2008). Hence, soil temperature may be the better predictor of phyllochron until internode

extension lifts the apex above ground. Consequently wrong assumptions on meristem

temperature lead to inaccurate predictions of development rate.

Although Baker et al. (1980), Jame et al. (1998) and Jamieson et al. (2008) gave different

reasons for variation in phyllochron, all these studies assume that phyllochron is constant

under conditions of constant diurnal day length and temperature. This contradicts the

findings that Yin and Kropff (1996) made in a pot experiment with submerged rice (Oryza

sativa L.). They showed that under conditions of constant day length and temperature,

i.e. pot water temperature equalled air temperature, phyllochron was not constant during

plant development. Streck et al. (2008) acknowledged this observation and correspondingly

modelled retardation of leaf appearance rate as a smooth function of plant age. However,
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considering their residual plots, the model adjustment of Streck et al. (2008) only accounted

for part of the systematic gap between data and model predictions.

In this chapter, we postulate that the switch from vegetative to generative development

relates to a slower outgrowth of leaves. The biological background for this hypothesis is as

follows. Florigen, is a putative mobile signal that moves from an induced leaf to the apical

meristem and causes flowering (Corbesier & Coupland, 2006). A candidate for encoding

florigen is the FLOWERING LOCUS T (FT) gene found in the LDP Arabidopsis (Kobayashi

et al., 1999). An ortholog of the FT gene, termed Heading date 3a (Hda3), is the florigen

candidate in the SDP rice (Tamaki et al., 2007). Not only does FT expression result in early

flowering, it also reduces leaf growth in both tomato (Lifschitz et al., 2006) and Arabidopsis

(Teper-Bamnolker & Samach, 2005). Lifschitz et al. (2006) suggested that ‘floral transition

and growth attenuation, instead of being the consequence of one another, are two facets

of the same cellular responses’. If this postulate is applicable to cereals, i.e. leaf growth is

attenuated when the plant reaches a generative stage, then the phyllochron would increase

at the moment of panicle initiation. This hypothesis contradicts the current concept of a

constant phyllochron.

Therefore in this chapter we will first test the hypothesise that there are two consecutive

phases differing in phyllochron, called phyllochron 1 (p1) and phyllochron 2 (p2), with (p1)

< (p2). In order to test this hypothesis we develop a model framework that can identify

putative changes in phyllochron under constant environmental conditions.

If indeed under constant conditions the developmental response changes, then the

base temperature (Tb) and thermal time constant (θT) of the two phyllochrons would also

differ. Therefore our second hypothesis is that the impact of temperature on p1 and p2

can be normalised with the linear thermal time concept. However, if indeed there are two

phyllochrons, then the thermal time parameters Tb and θT will differ between p1 and p2.

To test this hypothesis literature data of four rice cultivars grown at five temperatures (Yin

& Kropff, 1996) were re-examined.

Third, we hypothesise that even if the correct apex meristem temperature is used, cer-

eal phyllotherm is not constant under constant conditions. The difference between soil and

air temperature could nullify a putative change in phyllotherm. Therefore we will calculate

the temperature difference required to equalize phyllotherm 1 (P2) and phyllotherm 2 (P2).
This temperature difference will then be compared to the difference between soil and air

temperature measured under controlled conditions in teff.

Fourth, we hypothesise that day length has no significant effect on the value of the

phyllochron or phyllotherm itself. The time of panicle initiation is often under the regime

of day length. Therefore day length may have an effect on the timing of the switch between

P1 and P2. To this hypothesis leaf appearance data and data on timing of panicle initiation

from four teff cultivars grown under six constant day length regimes were used.

In summary, over the past decades many studies have highlighted inaccuracies in

predictions of the timing of appearance of successive leaves (Cao & Moss, 1991; Kirby, 1995)

(McMaster & Wilhelm, 1995; Jame et al., 1998; Jamieson et al., 2008). As a vital condition for
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making accurate predictions in the field, the fundamental concepts on the timing of leaf

appearance obtained under constant temperatures need to be correct. Yet, as explained,

divergent views exist on this matter. Towards finding a biological mechanism; the main

objective of this chapter is to provide an accurate description of the fundamental concepts

on the timing of leaf appearance under conditions of constant diurnal temperature and day

length. Note that the approach used in this study will not identify a biological mechanism on

a molecular level. For molecular biologist this study will merely point in a direction to look.

For plant crop physiologist and crop modelers the study outcome can contribute to a better

conceptualization of crop behaviour. We use new data on teff (Eragrostis tef (Zuccagni)

Trotter) and previously published data of Yin and Kropff (1996) on rice, both crops are

grown under constant diurnal temperature and day length conditions. Additionally, we

examine spring wheat grown outdoors (thus under varying temperature and photoperiod

conditions) during the summer in the Netherlands.

Materials and Methods

Plant material and growth environment

Teff

Four teff cultivars
�

i.e. Gibe (cv. DZ-Cr-255), Ziquala (cv. DZ-Cr-358), Ayana and cv. 04T19

obtained from Millets Place (the Netherlands))
�

were grown in pots in growth chambers

with day lengths of 9, 10.5, 12, 13.5, 15 and 16.5 h·d−1. All facilities could be cooled and

heated, day temperature (TD) of 23 ◦C was set to coincide with the assimilation light period

of 9 h hours and night temperature (TN) was set to 16 ◦C for 11 h·d−1. Transitions from night

to day temperature and vice versa were gradual and took 2 h·d−1 per transition, resulting

in an average daily air temperature of 19.4 ◦C. The soil temperature was measured but not

controlled, irrigation water was regulated to be at the same temperature as the air in the

growth chamber.

Rice

Published data of Yin and Kropf (1996) on four rice cultivars were used. Main treatment

characteristics are summarized here; for more details we refer to (Yin, Kropff & Goudriaan,

1996) and (Yin & Kropff, 1996). Four rice cultivars (IR36, IR72, IR64616H and Nipponbare)

were grown at five constant temperature regimes (22, 24, 26, 28 and 32 ◦C) and four diurn-

ally fluctuating TD/TN temperature regimes (26/22, 30/22, 22/26 and 22/30 ◦C). In each

diurnally fluctuating regime, TD and TN were imposed for 12 h d−1. The photoperiod was

maintained throughout the experiment at 12 h d−1, coinciding with the period of TD. Rice

plants were grown in pots in each environment from seedling emergence to flowering. The

pot water temperature was controlled to be the same as the air temperature.
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Wheat

In an outdoor experiment conducted under natural weather conditions in Wageningen, the

Netherlands (51◦58’ N) from April to August 2006, spring wheat (Triticum aestivum L., cv.

Minaret) plants were grown in containers of 70 × 90 cm, holding a soil layer approximately

35 cm deep. The containers were arranged closely together to ensure canopy homogeneity,

and surrounded by guard containers to prevent border effects. Both soil and air temperature

were measured.

Observations

For teff, each regime contained per cultivar six pots with ten plants each. Three plants per

pot were used for observations. For rice each regime × cultivar combination contained

two pots in each of which one plant was measured. For wheat, 10 plants per treatment

were used for leaf appearance observations. In all species leaf appearance rate was based

on the plant’s main stem. A leaf was recorded as appeared when the tip of the leaf had

emerged from the sheath of the preceding leaf. Leaf appearance was recorded daily during

initial stages of development and the frequency was reduced to at least twice a week in later

stages of plant development. Final leaf number is defined as the number of leaves that have

appeared on a particular shoot until the shoot was heading (i.e. final leaf number is the

number of vegetative phytomers on a shoot).

Microscopic observations in teff on the transition of the apical meristem from veget-

ative to generative, i.e. panicle initiation (PI) were done every second day on 6 plants per

regime × cultivar combination. For these destructive observations additional pots were

randomized within the experimental setup of teff. For more detail on observations of PI we

refer to the materials and methods section in Chapter 4.

Modelling framework and statistical analysis

In this chapter we will abbreviate the units of phyllochron from d·leaf−1 to d, and for

phyllotherm from ◦Cd·leaf−1 to ◦Cd.

In order to calculate the phyllotherm in cereals, a base temperature (Tb) is needed.

For rice the base temperature was set to 10 ◦C (Yin & Kropff, 1996). For wheat the base

temperature was set to 0 ◦C (Amir & Sinclair, 1991). The base temperature for teff was

estimated to be 7.8 ◦C. This estimation was done by plotting the development rate of the

first 5 leaves of cv. Ayana against temperatures of 16.3, 18.3, 18.8, 19.3, 19.8 and 24.3 ◦C.

Linear extrapolation to a development rate of 0 identified the base temperature (Appendix

1 Fig. A1.5.9).
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To test our first hypothesis, time required for each individual leaf to appear was

described using:

t (L) = P1 · L−P1 · L s if Lc < L (5.1a)

t (L) = t (L c)+P2 · L−P2 · L c if Lc ≥ L (5.1b)

if P2 is detected and thus both eqns 5.1a and 5.1b apply, then it can further be derived that:

P1 =
t (L c)

L c− L s
(5.1c)

where variable t (L) is the time in ◦Cd to appearance of leaf L; P1 the first phyllotherm (◦Cd);

L the number of appeared leaves; P2 the second phyllotherm (◦Cd); L c the number of leaves

at the time of the phyllochron switch t (L c), L c may be beyond the final leaf number in

which case the regression is restricted to eqn 5.1a. Appearance of the first leaf was not

recorded for each individual plant and since not all plants showed their first leaf exactly at

t = 0, estimation of the parameter for the initial (start) leaf number, L s, was allowed to vary

between values of 0.5 and 1.5. Note that eqn 5.1 can be expressed both in degree days and in

chronological time. In the first case phyllotherm (P in ◦Cd) is calculated and in the second

case phyllochron (p in d). Note, furthermore, that we describe time to leaf appearance for

individual plants rather than averages or lumped data of a number of plants.

An F-test (Appendix 2; A2.5.7) was used to determine whether the data could best

be described using one phyllotherm (eqn 5.1a), or two phyllotherms (both eqns 5.1a and

5.1b). In order to obtain a reliable parameter value for P2, appearance data from at least

two successive leaves needed to be available. When the parameter value for P2 was based

on one leaf rank only, no value was assigned to P2, but still the presence of a switch in

phyllotherm was recorded. If the data were best described with one phyllotherm (eqn 5.1a)

then a test was done to investigate whether the time of appearance of the last leaf deviated

significantly from the regression line describing leaf appearance versus time. This was done

by including an exact prediction
�

βP2

�

for the time to final leaf rank in eqn 5.1a. Using a

dummy variable (Z ) equal to one for the final leaf rank and equal to zero for all preceding

leaves, the value of parameter βP2 was estimated using regression analysis. If a student t-test

indicated (Appendix 2; A2.5.8) that parameter βP2 was significantly higher than zero then,

the time of appearance of the last leaf deviated significantly from the average phyllotherm.

t (L) = P1 · L−P1 · L s+Z ·βP2 (5.2)

Additionally we recorded whether the residual of the predicted time to appearance of the

final leaf was smaller (negative) or bigger (positive) than predicted by eqn 5.1a.
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To test our second hypothesis, the relation between temperature and the parameters

of eqn 5.1 was described by rewriting the linear thermal time model as:

p =
θT

(T −Tb)
(5.3)

where p represents variable p1 or p2 (d) of eqn 5.1, Tb is the base temperature (◦C) where

time to leaf appearance is infinite, θT is the thermal time constant (◦Cd), i.e. phyllotherm 1

or 2.

If permitted on basis of an F-test the 3 parameter beta function instead of the linear

thermal time model (eqn 5.3) was used:

p (T ) = po







�

T −Tb

To−Tb

�

To−Tb
Tc−Tb

�

Tc−T

Tc−To

�







α

(5.4)

where p represents variable p1 or p2 (d) of eqn 5.1; T the temperature (◦C); Tb the base

temperature (◦C) set to 10 ◦C for rice (Yin & Kropff, 1996); Tc the ceiling temperature (◦C) set

to 42 ◦C for rice (Yin & Kropff, 1996); To the optimal temperature (◦C) at which the largest

value i.e. po of variable p is reached; α is a shape parameter. Note that both paramters Tb

and Tc are fixed, consequently this eqn 5.4 has only three variables, i.e. To, po and α.

To test our third hypothesis, the time in ‘normalised days’ phyllotherm was calculated

and divided by the average temperature. This was appropriate because, Tb of wheat is gen-

erally assumed to be zero (Amir & Sinclair, 1991) and during the experiment temperatures

did not drop below 7 ◦C. For both teff and rice it was possible to express the time to leaf

appearance (phyllochron) in days (d) instead of degree days (◦Cd) for the reason that the

experimental facilities maintained the same average day temperature throughout the entire

experiment. The temperature increase (T∆) needed to equalize the slope of phyllotherms,

P1 and P2, was estimated by:

T∆ =
p2−P1

p1
(5.5)

where T∆ is the theoretical difference between air and soil temperature (T∆ = Tsoil−Tair)
(◦C), p2 is the second phyllotherm (◦Cd), P1 the first phyllotherm (◦Cd) and p1 phyllochron

(d).

To test our fourth hypothesis the relation between day length and the parameters of

eqn 5.1, were described using a standard linear model:

θT =D ·β1+β0 (5.6)

where the thermal time constant, θT, represents the value of parameter P1 or P2 (◦Cd) of

eqn 5.1 and D the day length in hours, β1 the slope of change (◦Cd·h−1) and β0 the intercept
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(◦Cd). Note that when parameter β1 is not significantly different from zero there is no day

length effect and thus β0 equals θT.

Nonlinear least squares regression was performed with the simplex method, using the

built-in optimisation function ‘fminsearch’ of Matlab (MathWorks, Natick, Massachusetts,

USA) version 7.8.0.347 (R2009a). In order to prevent fminsearch to convergence to a local

minimum the fit was repeated with 10 different combinations of initial parameter values.

These 10 combinations were based on a selection of the lowest sum of residuals in a

population of 104 randomly chosen parameter combinations (all within logical biological

boundaries). SAS version 9.1.3 SP4 (SAS Institute Inc., Cary, NC, USA) was used for all

comparisons between means. Assessment for significant differences was done with the

least square means (LSMEANS) using Tukey’s honest significance test (p ≤ 0.05). Means in

the text are followed by their standard error in parenthesis.

Results

Phyllochron is not constant during plant development

Plotting leaf rank of teff, rice and wheat against time required for an individual leaf to appear,

revealed that duration between the appearances of two successive leaves
�

phyllochron

(d) or phyllotherm (◦Cd)
�

is not constant for all leaf ranks (Fig. 5.1). For lower ranked

leaves, however, duration between the appearance of two successive leaves was constant
�

phyllochron 1 (p1) or phyllotherm 1 (P1)
�

. And similarly there was a constant duration

between the appearance of two successive higher ranked leaves
�

phyllochron 2 (p2) or

phyllotherm 2 (P2)
�

. Equations 5.1a and 5.1b gave a good description of the duration (◦Cd)

between the appearance of two successive leaves, viz. for teff on average r 2 = 0.995, rice on

average r 2 = 0.998 and for wheat on average r 2 = 0.995 (e.g. Fig. 1). The good fit on this

leaf appearance data of individual plants, confirmed our first hypothesis viz: the existence

of two phyllotherms. Whether or not an actual value was attributed to phyllotherm 2 (P2)

or phyllochron 2 (p2) depended on the leaf rank at which the switch occurred (L c) and the

final main stem leaf number. For teff the final leaf number depended, on day length and

cultivar (Table 5.1 and Fig. 5.2).

Here we explain the testing of first hypothesis in more detail. Our identification

method for a putative second phyllotherm requires a sufficient number of degrees of

freedom (Fig. 5.3). The number of degrees of freedom is directly related to the final leaf

number. Therefore at lower final leaf numbers the second phyllochron might remain

undetected. In fact, in the majority of the cases where only one phyllochron was detected,

the residual of the last leaf was positive. On basis of a normally distributed error this was not

to be expected. In other words, depending on temperature and day length our measuring

and modelling approach did not always allow us to observe or quantify phyllotherm 2 (Fig.

2). However, the existence of parameter βP2 and the systematically higher and positive

residuals of the last leaf are a strong indication of an increase in time to leaf appearance
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for the higher ranked leaves (Fig. 5.4). The switch between phyllotherm 1 and 2 was for

all cultivars and species around leaf rank 6 to 8 with exception of rice cultivar Nipponbare

where the phyllochron switch occurred at leaf rank 4 to 5 (Table 5.2). For all individual

wheat and rice plants a value for phyllotherm 2 (P2) could be assigned (Table 5.3 and

A3.5.6), except for the rice cultivar Nipponbare. For this rice cultivar attribution of a value

to parameter was not possible to one plant at 24 ◦C and one at 26 ◦C. For this rice cultivar

attribution of a value to parameter p2 was not possible to one plant at 24 ◦C and one at

26 ◦C. For teff the number of times a value for parameter P2 could be obtained increased

with increasing leaf number and increasing leaf number was itself a function of day length

(Table 5.1 and Fig. 5.2).

The temperature response of parameters p1 and p2

Our second hypothesis was that the impact of temperature on parameters p1, and p2 can

be normalised with the linear thermal time concept. But that the thermal time parameters

Tb and θT will differ between p1 and p2. Equation 5.3 provided a good description of the

relation between the parameters p1 and p2, and temperature (Fig. 5.5 and Table 5.4). The

good fit of eqn 5.3 indicates that phyllochron at different temperatures can be normalised

using the thermal time concept. However, since there were two phyllochrons we obtained

two values for θT. A value resulting from fitting parameter p1, in which case θT = P1, and a

value resulting from fitting parameter p2, in which case θT = P2 (Table 5.4). The values of

the thermal time parameters Tb and θT, moreover, not only differed between the first and

second phyllochron but also differed between cultivars (Fig. 5.5 and Table 5.4).

A change in apex temperature can not explain the phyllochron switch

Our third hypothesis was that the difference between soil and air temperature
�

T∆ =
Tsoil−Tair

�

could not nullify a putative change in phyllotherm. Therefore the temperature

difference (T∆) required to equalize phyllotherm 1 (P1) and phyllotherm 2 (P2)was calcu-

lated for each species with eqn 5.3. For teff we used a base temperature, Tb, of 7.8 ◦C to

calculate phyllotherm. The resulting average value of T∆ was 10.0(0.39) ◦C, calculated using

all day lengths and teff cultivars (Table 5.1). In other words the air temperature should have

differed by 10.0 (0.39) ◦C from the soil temperature to provide a single phyllotherm. If we

used a rather high Tb e.g. 10 ◦C, then we still obtained a value for T∆ of 9.2(0.31) ◦C. The

measured average difference between soil and air temperature was 0.39 ◦C. For rice, water

temperature (Twater = Tsoil in eqn 5.3) equalled the air temperature, therefore the actual

value of T∆ should be close to zero. In rice, however, the calculated value of T∆ (Tb = 10◦C)

to explain phyllotherm differences was 18.2(1.6) ◦C, averaged over all temperature regimes

and cultivars (Table 5.2). In wheat the value of T∆ (Tb = 0◦C) was estimated to be 11.8(1.7)
◦C on average.
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Fig. 5.1: Time required for a leaf to appear, in ◦Cd calculated with (T −Tb) ·p
�

(a) for teff Tb = 7.8
◦C,(b) for rice Tb = 10 ◦C and (c) for wheatTb = 0 ◦C

�

, plotted against leaf rank counted acropetally.
Data points of each species represent leaf appearance data from a single representative main stem.
Data points represented by closed squares are based on air temperature and are described with
eqn 5.1a and 5.1b (solid line); open squares represent time required on basis of both soil and later
air temperature (broken line eqn 5.1a and 5.1b); open circles are equal to the closed squares under
the assumption that the second phyllochron, i.e. experiencing air temperature, is the representative
pace of leaf appearance (dotted line calculated using eqn 5.5). The temperature required to lift the
data points of the first phyllochron to the dotted line is the theoretical difference between air and soil
temperature, T∆. The grey line in (b) is the model y = x b from Yin and Kropf (1996), expressing time
in days in contrast to degree days as in the original publication.
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Fig. 5.2: Phyllotherm values in ◦Cd for phyllotherm 1 (P1) (open circles) and for phyllotherm 2 (P2)
(closed squares) plotted against day length for four teff cultivars (a-d). Average final number of leaves
is shown in boxes. For parameter P1 n = 18, for parameter P2, n is given at the top of each panel as a
fraction of the total population. Parameter values and goodness of fit are given in Table 5.5.
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Fig. 5.3: Example of the relative minimal difference between phyllotherm 1, P1, and phyllotherm 2, P2,
required within our model framework to assign a value to the second phyllotherm, P2, as a function
of final leaf number for teff cultivar cv. 04T19.

The effect of day length on phyllotherm

Our statistical analysis indicated that day length in teff did not affect the duration of either

phyllotherm 1 (P1) or phyllotherm 2 (P2) (Fig. 5.2). As the temperatures in all greenhouses

were the same, the data expressed in phyllochron (Table 5.1) are comparable to the data

expressed in phyllotherm (Fig. 5.2). There was furthermore no significant systematic

relation between day length and parameters L c and t (L c). However, if the weight of the

individual data points (i.e. number of observed switches per day length) was neglected,

then phyllotherm seemed to increase with day length (Fig. 5.2). Moreover based on such

an analysis of trend, the number of leaves at the switch, L c, seemed to increase as did the

time needed for the switch, t (L c), to appear. Phyllochron 1, in contrast, is even in such an

analysis of trend unaffected by day length.

Clustering parameter values per cultivar showed that there was no significant differ-

ence between cultivars in parameter P1 or P2 in teff. However, the Dutch cultivars, Ayana
�

265(7.7) ◦Cd
�

and cv. 04T19
�

265(5.6) ◦Cd
�

, needed significantly less time to switch phyl-

lochrons (t (L c)) compared to the Ethiopian cultivars, Ziquala
�

293(6.2) ◦Cd
�

and Gibe
�

289(7.0) ◦Cd
�

. The average number of leaves (L c) at the moment of the switch was also

significantly smaller for Ayana
�

6.9(0.14)
�

and 04T19
�

6.9(0.10)
�

compared to Ziquala
�

7.5(0.11)
�

and Gibe
�

7.6(0.12)
�

.

Since the phyllotherm switch could also be a consequence of the meristem switching

from vegetative to generative development, i.e. panicle initiation (PI), the time to PI at each
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Fig. 5.4: Fraction of teff plants, of all cultivars, with a putative phyllotherm 2 (P2). The fractions
are grouped per final leaf number and consist of three categories: (i) plants for which a second
phyllotherm was identified (black part of the bar), (ii) plant for which an additional parameter, βP2

(eqn 5.2), was justified to describe the time to appearance of the last leaf (grey part of the bar) and (iii)
plants for which parameters P2 and βP2 were not justified but for which eqn 5.1a, P1, underestimated
the last leaf (positive residuals) (white part of the bar).

day length was plotted against time to phyllotherm switch (t (L c)). However, no significant

one to one correlation between t (L c) and time to panicle initiation (PI) could be found. The

moment the plant started elongating its internodes was also not correlated with time to

phyllochron switch (t (L c)). We did find, however, a systematic one to one relation between

parameter L c (eqn 5.1) and the number of appeared leaves observed at PI plus one leaf

rank, r 2 = 0.991 (Fig. 5.6). This indicates that after the first leaf following PI, leaves appeared

slower than the leaves before PI.
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Fig. 5.5: Phyllochron values in days for phyllochron 1
�

p1
�

(open symbols) and for phyllochron 2
�

p2
�

(closed symbols) plotted against temperature for four rice cultivars (a-d). Constant temperatures
are represented by squares, both averages of 24◦C and 26◦C represent weighted means of diurnally
fluctuating temperatures (TD/TN) with low day temperature 22/26 or 22/30 ◦C (triangles) and high
day temperature 26/22 or 30/22 ◦C (circles). All groups of data were best described using a linear
thermal time model (eqn 5.3), except p2 of Nipponbare (panel (a) closed symbols), where the addi-
tional parameter of the beta model (eqn 5.4) was justified. For all individual rice plants a value for
phyllotherm 2 could be assigned, except for one Nipponbare plant at 24 ◦C and one at 26 ◦C. Thus n
=2 for all data points except for p2 of Nipponbare at 24 ◦C and 26 ◦C, where n = 1. Final leaf numbers
are given in Table 5.2, parameter values and goodness of fit are given in Table 5.4.

Fig. 5.6: Leaf rank after panicle initiation (PI)
plus one versus calculated leaf rank at phyl-
lochron switch (parameter L c) estimated by
eqn 5.1 (circles) for four teff cultivars at four
day length regimes (9, 13.5 15 and 16.5 h) and
2 temperature regimes (16.3 and 19.4 ◦C) r 2 =
0.991.
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Table 5.2: Final number of leaves and parameter values of eqn 5.2 and 5.5 for four rice cultivars
at five different temperature regimes. Means per cultivar with the same letter are not significantly
different (p ≤ 0.05). Note that no significant differences within cultivar were found for the final
leaf numbers and parameter L c.

C
u

lt
iv

ar

Te
m

p
er

at
u

re
(◦

C
)

p
1
(d

)*1

p
2
(d

)*2

L
c
(d

)*3

t(
L

c
)(

d
)*4

T ∆
(◦

C
)*5

at
T b
=

10
◦ C

*6

F
in

al
le

af
n

o.

IR36 22 4.8(0.02) A 10.6(0.05) A 7.7(0.02) 31.9(0.09) A 14.6(0.23) A 10.5(0.50)

24 4.4(0.10) AB 10.0(0.42) A 7.7(0.15) 28.2(0.55) AB 17.2(1.88) A 10.5(0.22)
26 4.0(0.05) BC 8.7(0.14) A 7.7(0.29) 26.7(1.37) AB 16.1(0.54) A 10.7(0.42)
28 3.8(0.08) C 8.8(0.25) AB 7.5(0.21) 24.0(0.79) BC 23.3(1.85) A 10.0(0.00)
32 3.2(0.07) D 6.4(0.90) B 7.1(0.52) 19.2(1.94) C 22.1(5.28) A 10.0(1.00)

IR72 22 4.7(0.08) A 13.0(1.00) A 7.9(0.25) 32.2(1.53) A 20.8(1.56) AB 11.0(0.00)
24 4.4(0.11) AB 11.5(0.33) A 7.5(0.06) 28.7(0.92) AB 22.4(0.81) AB 10.7(0.21)
26 4.1(0.02) BC 9.4(0.14) B 7.3(0.16) 25.5(0.95) BC 20.8(0.57) B 11.2(0.31)
28 3.7(0.00) CD 7.9(0.30) B 7.7(0.01) 24.4(0.05) CD 20.3(1.45) AB 11.0(0.00)
32 3.5(0.04) D 7.8(1.05) B 7.5(0.00) 21.1(0.08) D 30.5(7.11) A 11.0(0.00)

Nippon 22 5.6(0.00) A 12.0(0.00) A 6.9(0.00) 32.0(0.00) A 7.6(0.00) A 8.0(0.00)
24 5.0(0.07) A 4.9(0.98) B 3.6(0.78) 11.9(2.74) A 4.4(0.98) A 7.5(0.34)
26 4.1(0.14) B 5.6(1.29) B 4.6(1.30) 14.5(5.07) B 6.4(2.04) A 7.7(0.42)
28 3.6(0.05) BC 5.0(0.00) AB 5.8(0.23) 16.8(1.17) BC 7.4(0.36) A 8.0(0.00)
32 3.1(0.33) C 4.8(0.20) AB 5.9(0.59) 14.6(2.64) C 12.4(1.75) A 9.5(0.50)

IR64616H 22 4.9(0.15) A 12.6(1.15) A 7.7(0.06) 31.3(0.54) A 20.0(3.41) A 11.5(0.50)
24 4.3(0.04) B 11.4(0.52) A 7.6(0.05) 28.5(0.34) B 21.9(1.54) A 10.8(0.31)
26 4.1(0.06) C 10.7(0.28) AB 8.2(0.27) 28.9(1.27) C 25.9(1.28) A 11.0(0.26)
28 3.4(0.14) D 8.2(0.05) BC 7.5(0.17) 22.7(0.40) D 23.3(0.87) A 11.0(0.00)
32 3.4(0.10) D 7.8(0.75) C 8.1(0.51) 23.6(2.24) D 25.7(0.34) A 11.0(0.00)

*1 p1 first phyllochron (◦Cd) (eqn 5.1)
*2 p2 second phyllochron (◦Cd) (eqn 5.1)
*3 L c number of leaves at the time of the phyllochron switch (eqn 5.1)
*4 t (L c) time at L c(eqn 5.1)
*5 T∆ theoretical difference between air and soil temperature (◦C) to equalize p1 and

p2 (eqn 5.5)
*6 Tb base temperature (◦C) (eqn 5.3)
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Table 5.3: Final number of leaves and parameter values of eqn 5.2 and 5.5 for wheat (n = 16). For
symbol explanation see footnote Table 5.2
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Minaret 64.8(0.22) 131.2(9.80) 5.9(0.10) 321.5(6.10) 11.8(1.70) 8.3(0.10)

Table 5.4: Parameter values for four rice cultivars of the linear thermal time model (eqn 5.3)
and beta model (eqn 5.4) used in Fig. 5.5.

Parameter p1 as a function of
temperature (Linear model)

Parameter p2 as a function of
temperature (Linear model)

Cultivar r 2 θT
*1 Tb

*2 r 2 θT
*1 Tb

*2

IR72 0.806 146.4 10.9 0.814 106.3 0.00
IR36 0.701 188.2 4.74 0.872 102.9 0.49
IR64616H 0.661 197.1 6.65 0.879 92.3 2.97

Parameter p2 as a function of
temperature (Beta model)

r 2 α*3 To
*4 po

*5

Nipponbare 0.883 62.9 10.9 0.623 3.45 29.2 0.222

*1 θT phyllotherm (◦Cd) (eqn 5.3)
*2 Tb base temperature (◦C) (eqn 5.3)
*3 α shape parameter (eqn 5.4)
*4 To optimal temperature (◦C) (eqn 5.3)
*5 po phyllochron, p , at To (eqn 5.3)

Table 5.5: Parameter values of linear model (eqn 5.6) for teff, used in Fig. 5.2.

Parameter p1 as a function
of day length

Parameter p2 as a function
of day length

Cultivar *1
∑

(residuals)2 β1
*2 β0

*3 *1
∑

(residuals)2 β1
*2 β0

*3

Gibe 1764 0 46.6 25298 -2.1 139.2

Ziquala 1109 0 45.8 33505 0 111.6
Ayana 1184 0 44.7 45060 0 99.7
04T19 1295 0 46.9 37868 0 96.8

*1 Note that sum of squared residuals are given instead of r 2 because in most cases
there was no parameter value for slope of change β1

*2 β1 slope of change (◦Cd·h−1) (eqn 5.6)
*3 β0 intercept (◦Cd) (eqn 5.6) ∗ Note that if β1 = 0 then β0 = θT
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Discussion

The results of this study show that for the cereals teff, rice and wheat there are two consecut-

ive developmental phases differing in phyllotherm. Within the two phases the phyllotherm

is constant for each leaf. Therefore we can describe time to leaf appearance for all leaf ranks

using two phyllotherms plus two parameters representing the moment and leaf rank at the

switch between the two phyllotherms (eqn 5.1). We hypothesize that our model for time to

leaf appearance (eqn 5.1) can fill the systematic gap between data and model predictions of

Streck et al. (2008). Re-examining the data of Yin and Kropff (1996) for the higher range of

sub optimal rice temperatures revealed, furthermore, for rice that phyllochron can be nor-

malised using a linear thermal time model (eqn 5.3). In more detail, the linear 2-parameter

thermal time concept (eqn 5.3) is the most parsimonious way of accurately describing

phyllochron as a function of temperature, except for phyllochron 2 of Nipponbare, where

the more extensive 3-parameter beta model (eqn 5.4) was justified on the basis of an F-Test

(Fig. 5.5 and Table 5.4).

It is unlikely that the difference between soil and air temperature is in itself the only

explaining factor for the difference between phyllotherm 1 and 2. The temperature dif-

ference, T∆, needed to equalize the two phyllochrons is much higher than the measured

difference between soil and air temperature in teff. Moreover, in the rice experiments water

temperature equalled air temperature and still our calculations indicate that large values

of T∆ are required to equalize the two phyllotherms. Although choosing a higher base

temperature lowered the value for T∆, extremely high base temperatures still gave values for

T∆ that could not be explained by a soil − air temperature difference alone. Nevertheless

we do still advocate accounting for the effects of both soil and air temperature on the

development of the shoot system (i.e. meristem and outgrowing leaves) in experiments

and models. We conclude, though, that phyllotherm differences can persist when taking

such effects into account.

Day length had no significant effect on the value of phyllotherm 1 (P1) in teff; on the

other hand phyllotherm 2 (P2) seemed to be sensitive to day length (Fig. 5.2). Nevertheless,

based on our data no clear systematic relation between photoperiod and P2 could be

discerned. Detection of phyllotherm 2, i.e. establishing a parameter value P2, depended

on final leaf number (Fig. 5.4) and final leaf number, at constant temperature, is mainly

determined by day length (Fig. 5.2). In other words, the alleged day length effect on

phyllotherm 2 (P2) is confounded with final leaf number.

The question arises what did cause the sudden change in phyllotherm and phyl-

lochron? Increase in sheath length with leaf rank could be an explaining factor for the

existence of two phyllochrons. Because the longer the sheath, the longer a leaf has to

elongate before it visually appears. However, for leaf ranks higher than L c, the sheath

length is more or less constant in both teff and wheat (Fig. 5.7). Panicle initiation and the

phyllotherm switch did not exactly coincide and we did not identify day length effects on

phyllotherm 1. As argued before, the effects of day length on phyllotherm 2 are ambiguous.
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Fig. 5.7: Leaf rank plotted against sheath length of (a) teff cultivar 04T19 and (b) wheat cultivar
Minaret. Data originate from an additional greenhouse experiment in containers and the wheat
experiment as described in materials and methods.

In other words, our results do not pin point a particular environmental factor that explains

the existence of two phyllotherms. Because the switch in phyllotherm is rather sudden, the

hypothesis of a increase in phyllochron as a result of ageing is unlikely to be true for teff,

rice and wheat. However, the sudden switch in phyllochron does indicate that there is a

trigger signal for leaf appearance retardation at later stages of plant development.

We did find a systematic one to one relation between parameter L c and the number of

main stem leaves at PI plus one, r 2 = 0.991 (Fig. 5.6) indicating that from the second leaf

following PI onwards, leaves appeared slower than the leaves before PI. Consequently, the

timing in days (or degree days) of PI can be estimated by subtracting the value of p1 (or

P1) from the value of t (L c). From a physiological perspective this seems logical. As at the

moment of PI, the leaf in the sheath of the appearing leaf is already substantially developed.

Therefore a signal that retards leaf development will not have a clear observable effect on

time to leaf appearance, i.e. parameter t (L c). Such a putative signal can, however, effect
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the smaller leaves that will undergo substantial cell division in the near future. Although

the evidence seems rigorous, one has to bear in mind that unlike the leaf appearance data,

these are data averaged over a number of plants which individually differ in L c. The PI

data is based on the observation that 3 out of 6 randomly chosen plants per cultivar per

day length regime contained a generative main stem meristem. No observations on leaf

appearance could be done on the plants for which the meristem switch was observed due to

the destructive nature of these observations. Thus, we did not establish a direct (biological)

link for individual plants between the observations of PI and an increase in time to leaf

appearance.

Although, in all the cases we studied a clear phyllochron switch was present, we note

that leaf appearance data from the climate chamber experiment of Jamieson et al. (2008)

with wheat cultivar Rongotea did not demonstrate an explicit switch in phyllochron. It is

possible that the absence of a phyllochron switch in cultivar Rongotea is due to the relatively

small leaf size of its final leaves, i.e. factor 2 to 3 smaller than e.g. cultivar Avalon (Lawless

et al., 2005). On the other hand it could be that in particular wheat cultivars the signal for

leaf retardation is completely absent, or that these cultivars are simply not sensitive to this

signal. Apart from any putative cultivar effect, we speculate that when authors did not

observe the sudden switch in phyllochron this could be for two other reasons: either the

environmental conditions induced low final number of leaves (making it harder to observe

the switch (Fig. 5.3), or authors bulked data originating from different individual plants.

Since there is plant-to-plant variation in the timing of the switch, t (L c), the leaf number at

the switch, L c, the final leaf number and the second phyllotherm, P2, bulking data from

different plants will result in a more curvilinear smooth transition between phyllotherm 1

and 2 (Fig. 5.8).

Therefore, for a whole population of plants, it is not necessarily inappropriate to

describe the appearance of successive leaves over time with a smooth curvilinear power

equation (Yin & Kropff, 1996) (Fig. 5.8). However, such a model implies a gradual change in

phyllotherm for an individual plant, but as this study shows the change in cereal phyllo-

therm is rather sudden for individual plants, hence the term phyllotherm switch.

In this chapter we provided equations to describe the phyllochron of cereals over time.

We did not identify a biological mechanism that causes this switch. Based on our results we

postulate that there is a feedback mechanism between the leaves and the meristem. In short

day plants florigen levels are expected to be low under long day conditions. Yet, although not

significant, the parameter value of phyllotherm 2 increased with day length. This is not to

be expected if florigen itself is the cause of leaf outgrowth retardation. Therefore in contrast

to Lifschitz et al. (2006) who suggested that ‘floral transition and growth attenuation are two

facets of the same cellular responses in tomato’, we argue that there might be an additional

or indirect mechanism that under pins leaf outgrowth retardation in cereals. It would be

interesting to know what the underlying mechanism for the phyllotherm switch is. Is the

phyllotherm switch the result of source-sink relations between leaf and meristem? Does it

involve sugar signalling or is there some other active signal? And like Thiagarajah and Hunt
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Fig. 5.8: Average time required for a leaf to appear (d) for teff plotted against leaf rank counted
acropetally. Closed symbols represent a short day length (9 h); open symbols represent long day
length (18 h); circles represent a high temperature (24.3 ◦C) and squares a low temperature (19.3 ◦C);
error bar represent minimal and maximal time to leaf appearance (n = 1-18). The lines represent the
model from Yin & Kropff (1996).

(1982) questioned for maize, what physiological reason causes phyllotherms to be more or

less constant at different temperatures and day lengths?

In conclusion, the time between the appearances of successive leaves (i.e. phyllochron)

is not constant. For the cereals teff, rice and wheat there are two consecutive developmental

phases differing in phyllochron (i.e. phyllochron and/or phyllotherm 1 and 2). The effect

of temperature on rice phyllochrons 1 and 2 can be normalised using the thermal time

concept. Day length had, furthermore, no systematic effect on phyllotherm 1 and 2 in teff.

The switch between phyllotherm 1 and 2 is abrupt and the difference between soil and air

temperature is not the single explaining factor for the delayed outgrowth of the higher leaf

ranks.
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Appendix 1

Fig. A1.5.9: Base temperature Tb (open triangle) estimated on basis of time−1 to appearance for leaf 2
(open circles); leaf 3 (closed circles); leaf 4 (open squares) and leaf 5 (closed squares) of cultivar Ayana
plotted against the temperatures:16.3, 18.3, 18.8, 19.3, 19.8 and 24.3 ◦C. Lines represent simple linear
regression lines used to extrapolate to a rate of zero, where Tb = 7.8◦C
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Appendix 2

Here we explain the used statistical tests in more detail. The following test statistic (Fisher’s

F-test) was used to test the significance of two additional model parameters (i.e. eqn 5.1a

versus using both eqn 5.1a and 5.1b):

F =

�

SSEsimple−SSEextended

dfsimple−dfextend

�

�

SSEextended

dfextend

� (A2.5.7)

where SSEsimple is the sum of squared error of eqn 5.1a (simple model) and SSEextended is

the combined sum of squared error of eqn 5.1a and 5.1b (extended model); dfsimple and

dfextended are the degrees of freedom for the simple and extended model, i.e. number of

leaves minus total model parameters, for eqn 5.1a and 5.1b. Using a F probability density

function the corresponding p-value was obtained. If the p value was smaller than or equal

to 0.05, we concluded that the extended model was significantly better than simple model.

If the p value was higher than 0.05, we concluded that there was no compelling evidence

justifying the additional two of parameters of the extended model and thereby accepting

the simple two parameter model.

The following test statistic (student t-test) was used to test the significance of parameter βF

(eqn 5.2).

t =
βF−0

se
�

βF
� (A2.5.8)

whereβF is a parameter of eqn 5.2 and seβF is the standard error of the parameter calculated

on basis of the regression standard error matrix. Using a student t probability density

function the corresponding p-value was obtained. The null hypothesis βF = 0 was rejected

when the p-value was less than 0.05.
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Appendix 3

Table A3.5.6: Final number of leaves and parameter values of eqn 5.2 and 5.5 for four rice
cultivars at five different temperature regimes. Means per cultivar with the same letter are
not significantly different (p ≤ 0.05). Note that no significant differences within cultivar were
found for the final leaf numbers and parameters P2 and L c
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IR36 22 57.2(0.2) BC 126.6(0.6) 7.7(0.0) 382.8(1.1) A 10.5(0.5)
24 57.9(1.6) C 129.1(8.9) 7.0(0.4) 345.3(26.0) A 10.5(0.2)
26 61.9(1.0) BC 124.0(2.8) 6.8(0.4) 357.9(27.2) A 10.7(0.4)
28 66.2(1.4) AB 152.1(9.9) 7.2(0.4) 411.7(34.9) A 10.0(0.0)
32 70.0(1.5) A 140.8(19.8) 7.1(0.5) 423.3(42.8) A 10.0(1.0)

IR72 22 55.3(0.0) C 151.2(7.2) 7.8(0.1) 373.5(5.4) A 11.0(0.0)
24 61.4(1.8) BC 159.4(4.3) 7.5(0.1) 394.2(17.3) A 10.7(0.2)
26 65.2(1.0) AB 149.9(2.2) 7.3(0.2) 408.0(15.2) A 11.2(0.3)
28 66.9(0.0) AB 142.2(5.4) 7.7(0.0) 439.9(0.8) A 11.0(0.0)
32 71.5(0.0) A 170.5(23.1) 7.5(0.0) 464.6(1.8) A 11.0(0.0)

Nippon 22 62.4(0.0) A 102.0(0.0) 5.7(0.0) 290.1(0.0) A 8.0(0.0)
24 61.8(2.2) A 69.0(13.9) 3.8(0.8) 175.0(41.3) A 7.5(0.3)
26 64.0(2.0) A 65.9(20.9) 3.9(1.2) 192.4(64.0) A 7.7(0.4)
28 63.9(0.9) A 90.0(0.0) 5.8(0.2) 303.0(21.0) A 8.0(0.0)
32 64.9(3.3) A 101.2(0.0) 5.5(0.2) 286.0(23.5) A 9.5(0.5)

IR64616H 22 56.6(0.9) D 150.6(13.8) 7.7(0.1) 375.1(6.5) AB 11.5(0.5)
24 60.6(0.6) CD 155.6(7.3) 7.5(0.1) 390.2(7.5) B 10.8(0.3)
26 65.1(0.9) B 170.4(4.5) 8.2(0.3) 462.6(20.3) A 11.0(0.3)
28 62.4(0.6) BC 143.1(4.5) 7.2(0.4) 390.1(25.8) AB 11.0(0.0)
32 71.5(0.0) A 155.1(1.1) 7.7(0.1) 473.4(4.1) AB 11.0(0.0)

*1 P1 first phyllotherm (◦Cd) (eqn 5.1)
*2 P2 second phyllotherm (◦Cd) (eqn 5.1)
*3 L c number of leaves at the time of the phyllochron switch (eqn 5.1)
*4 t (L c) time at L c(eqn 5.1)
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General discussion

The general objective of the work described in this thesis was to examine some of the

major yield constraints of teff, thus helping breeders to identify targets for breeding high

yielding cultivars for cultivation in the Netherlands. Together with this practical objective,

I also wanted to advance current understanding of seed physiology, biomechanics and

phenology of cereals and teff in particular. In the future the gained ecophysiological

knowledge of teff could be used to underpin crop management measures and provide

detailed breeding advice. This chapter will place the findings in this context and starts

with a discussion on modelling and understanding of plants in general. Then for each

research topic (germination (Chapter 2), lodging (Chapter 3), phenology (Chapters 4 and 5)

the findings are summarised and future research directions towards a generic model for

field-grown teff are described. This is followed by a discussion on the implications of the

research findings for breeders. Finally I will discuss the best strategy for further scientific

research on teff in order to increase grain yields in the Netherlands.

Modelling: a tool to conceptualise

As a plant biologist I am eager to understand the functioning of plants in relation to their

environment. To help improve this understanding, a plant or a crop can be described as a

system. A system is defined as a limited part of reality. This limited part of reality can be

divided into interrelated elements. These elements can be further sub-divided, and this

can be repeated until the elements become elementary particles. And from bottom-up,

interacting, interrelated, or interdependent elements forming an integrated whole can

be defined as a system. Chaitin (2006) argues "comprehension is compression." In my

view, to understand (i.e. comprehend) a system, means to conceptualize its features to a

certain extent. A concept can be defined as a general idea derived or inferred from specific

instances or occurrences in reality (possibly represented in the form of schemes, tables,

figures and equations) (American Heritage Dictionary of the English Language). Accord-

ing to De Wit (1924-1993) a model is simplified representation of a system capturing its

essential features and serving a defined purpose. If the purpose of a model is to create

understanding of system to a certain extent, a model should be a conceptualisation of

a system. A model of a system can be constructed by describing correlations between

system elements (e.g. seed and water potential). Model components are concepts that

represent system elements, or groups of interdependent system elements, and thus often

represent subsystems themselves (e.g. seed and water potential). The behaviour of the

constructed model allows the modeller to generate understanding of the system in ques-

tion. Comparing model behaviour and the observed reality can demonstrate the gained

understanding of a system. If the model describes the system in its original environment

(which was used to construct the model) adequately, but the model fails to describe the

system in a new environment, then the understanding of reality is proven to be too simple.

In contrast, a model is too complex (i.e. unnecessarily hinders understanding) when a
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simpler model provides the same insights in the functioning of reality as a more complex

model (Occam’s razor). Model simulation studies can envisage new knowledge on system

behaviour, without having observed such behaviour in reality.

Empirical and mechanistic models

A distinction can be made between empirical models and mechanistic models (Box & Hill,

1967; Thornley, 1976). An empirical model represents a summary of a certain system state.

This system state (e.g. flowering, germination) is determined by a fixed empirical correlation

with one or more system modulators (e.g. time, environmental factors). This class of models

is based on observation, rather than on postulates and theory. Structuring and summarising

numerous observations on system characteristics and system behaviour can lead to novel

(empirical) insights on a system, i.e. the field of statistics. Empirical models are often

easier to interpret than mechanistic models because empirical models generally have fewer

parameters (Hunt, 1979). Empirical models reflect little of the mechanisms that underlie,

or explain system behaviour.

Mechanistic models generally comprise elements that are at least one aggregation

level deeper than the aggregation level of the system that is being modelled. Dynamic

mechanistic models can describe multiple system states in time and space resulting from

integrated feedback loops which are affected by system modulators. Mechanistic models

can portray systems behaviour and emerging (not yet observed in reality) properties, which

may well be unexpected and even counterintuitive (Yin & Struik, 2010). Thus, as discussed

for empirical models, mechanistic models can also lead to new insights on a system. The

level of understanding in mechanistic, opposed to empirical models, is generally deeper.

Biologically interpretable model parameters: a contribution to

conceptualisation

A parameter in a model can be biologically interpreted if the parameter represents a par-

ticular state or concept of a biological system (e.g. minimal temperature for germination

(Tb), Chapter 2). Additionally, parameters are also biologically interpretable when para-

meters modify the state of a biological system in a conceptual manner (e.g. growth rate).

For physiologists Biologically interpretable parameters contribute to the ease and level

of understanding of the system under research. The biological parameters used in this

thesis are introduced to advance our understanding of cereals and teff in particular. This

advanced understanding can contribute to the breeders concept of a high yielding teff

cultivar, as will be discussed.
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Models in this thesis

In this thesis several observations under controlled environmental conditions of the plant

Eragrostis tef were presented. In order to summarize the data resulting from these observa-

tions, the data were compressed using empirical regression models. These models were

mostly non-linear logarithmic equations. Linear models can, however, still be a useful

representation of reality. For example by using broken linear functions (as used in Chapter

4) a sudden change in the system (plant) can be convincingly portrayed. In a crop situation

single plants are elements (members) of a population, i.e. the crop. The crop can be re-

garded as a system with plants as elements. In contrast to using broken linear functions

for single plants, in a crop situation the sum of the sudden changes of individual plants

was best summarized using an empirical smooth continuous function (Fig.5.8). In this

thesis I aimed to design and use regression models in such a way that they give an accurate

and clear representation of the data at hand, by using only a limited number of paramet-

ers. I furthermore, attempted to design regression models with biologically interpretable

parameters (see next paragraph).

Research findings and their limitations

In this section I will discuss some of the biological parameters that were used and com-

puted for teff. I will summarize the findings per research topic (germination, lodging and

phenology) and for each topic I make recommendations for future research to eventually

create a dynamic crop model.

Germination

As discussed in Chapter 1, viable teff seed can fail to germinate as a result of sub-optimal

or supra optimal temperatures and adverse water potentials in the top layer of the soil.

Subsequently bad seedling establishment can reduce crop yields later in the season (For-

cella et al., 2000). In Chapter 2 of this thesis a model framework was presented in order

to describe the ability of teff to germinate under different combinations of fixed temper-

ature and water potential. We showed that the postulate of a normal distribution of seed

germination rate can describe the time course of seed germination at any combination of

temperature and water potential. Final germination percentage and lag phase are emer-

ging from the combination of mean germination rate and its variation among seeds in a

population. The biological concept that emerges from this model is that germination rate

is not linearly related to temperature and that the biological parameter for minimal and

maximal temperature for germination (base and ceiling temperature) depends on water

availability (water potential). Conversely, the minimal water potential required for germina-

tion depends on temperature. We introduced the novel hydrothermal rate (HTR) approach,

which overcomes fitting problems for teff seed germination that we encountered using the
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conventional hydrothermal time (HTT) modelling approach (Alvarado & Bradford, 2002).

In order to extrapolate this modelling framework to a field situation, the model needs to be

extended on at least three points.

Firstly, the HTR model accurately describes the time to germination for a particular

combination of water potential and temperature, but it remains to be tested whether

the sum of rates in progress towards germination under fluctuating conditions follows

directly from the rate of progress under static conditions. For example high temperatures

could damage the seed and therefore delay or completely inhibit germination at a future

moment in time. Optimal temperatures in combination with low water potentials that

prevent germination can advance the progress towards germination (priming). Priming can

enhance the speed of seed germination under permissive germination conditions (Dahal

& Bradford, 1990). In other words, there could be some progression or regression towards

germination that is not yet captured by our modelling framework.

Secondly, in Chapter 2 we discussed germination and not emergence. In a field

situation seedling emergence is the prime indicator of crop establishment and seed ger-

mination is not. Germination is, however, the key component of emergence. We chose to

research germination instead of emergence because seed germination is a less arbitrarily

measured than seedling emergence. Another practical reason is that temperature and water

potential can be better and more uniformly regulated for germinating seeds than for emer-

ging seedlings. As recommended by the International Seed Testing Association (ISTA), we

defined germination as the moment that the radicle had reached a length of 2mm instead of

the moment the radical just protruded the seed. By using a radicle length of 2mm instead of

radical protrusion, a germinated seed is more likely to also become a viable seedling. This

makes the association between germination and emergence potentially simpler, but not

necessarily simple. Sowing depth, diseases, herbivores, oxygen availability, seed reserves,

and soil properties all affect the moment of and variation in seedling emergence in the

field.

Thirdly, the experiments were done with one variety (Gibe Dz-Cr-255). Although this

Gibe is a reasonably representative variety for Ethiopian teff, we observed in preliminary

experiments that there were some differences in time to germination between varieties (and

seed batches). Thus, in order to create a generic teff germination model, more varieties and

seed batches have to be tested. Based on our results, there is no need to include dormancy

or imbibition as separate factors in a future emergence model for teff. We did not observe

any dormancy in the period from 2004 until present, and judging from the fast germination,

within 1 day at higher temperatures, imbibition period in teff is negligibly short. In other

words, imbibition is currently already effectively captured the modelling framework. Which

is not surprising judged on the small seed size of teff.
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Lodging

Analysis of the biomechanical properties of teff showed that teff is very susceptible to

lodging. In contrast to the current conventional ideas of teff breeders, in Chapter 3 we

assessed that not only the shoots of teff are prone to lodging but also the roots are a major

factor in the lodging process on Dutch sandy soils. Furthermore we showed that water

adhering to the shoots increases lodging susceptibility. To transform this model into a

more dynamic mechanistic (explanatory) model under fluctuating field conditions several

extensions are required.

Firstly, the location of the centre of gravity of a mouldable object (e.g. bending shoot

with a drooping panicle) is not static, as suggested by the conventional lodging models

developed for wheat (Crook & Ennos, 1994). Another assumption of the conventional

modelling approach is that shoots can be interpreted as uniform rigid beams. However, teff

shoots dimensions vary considerably (internodes taper and successive nodes are thicker

than the internodes on which they’re attached), and shoots are not rigid. These two

observations make the assumption of a uniform rigid beam a crude interpretation of reality.

In a dynamic situation with a tapering shoot, the plant’s base is not necessarily the weakest

point of the shoot. A future model should be able to identify the weakest point at any

location along the shoot. This could be done by measuring bending properties, density

(weight) and dimensions at several places along the shoot; and subsequently integrating

these properties into a dynamic finite element model that is capable of handling large

deflections.

Secondly, according to Lebrowski (1999) the mechanical behaviour of the stems is

a result of rather complex shoot-wind interactions, where dynamic loads and resulting

oscillations include the effect of the forces encountered during strong or oscillating winds.

Future models should, therefore, integrate the effects of wind drag that cause small and

large oscillating deflections in any cereal.

Thirdly, all measurements on the bending properties were done with ‘fully turgored

cells’, at one sowing density and one type of fertilizer management. However, in the field

drought, sowing density and fertilizer application can significantly modify the bending

properties of the plant (Mulder, 1954). Incorporation of the effects of bending properties,

together with wind drag, plant oscillations and a safety factor at any point along the shoot

into our framework would enable us to accurately calculate the appropriate shoot dimen-

sions for panicle bearing cereals in general. With such a model a better risk assessment can

be made and trade-offs in plant resource investment can be calculated.

Fourthly, the lodging experiments were conducted on one sandy soil with low shear

strength; soil shear strength is a factor that influences the risk of lodging but its effects

have not been fully addressed in this thesis. Also, the roots of teff were in some occasions

not strong enough to form a proper cone. Further research should include the bending

properties of the roots and their relation to shear strength and cone formation in order to

expand model validity to a wider range of cultivation conditions.
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Phenology

In Chapter 4 we showed that day length has no systematic effect on the timing of appearance

of successive leaves. Day length does, however, determine the final number of leaf ranks that

is formed on the main stem. Furthermore, we identified a rather sudden switch in speed of

leaf emergence. This switch seemed to be independent of temperature and might be related

to the moment of panicle initiation (Fig. 5.6). Chapter 5 provides a detailed description and

quantification of the response of teff to day length. We found that the Ethiopian cultivars

Ziquala (DZ-Cr-358) and Gibe (DZ-Cr-255) showed a stronger photoperiod response than

the two new Dutch cultivars (Ayana and 04T19). Not only panicle initiation, but also

development and outgrowth of the panicle were influenced by photoperiod. Plant-to-plant

variation in time to heading, the total number of phytomers per shoot, the number of

elongated internodes and biomass were higher in long day than in short day treatments for

all cultivars. To obtain an accurate prediction of phenology in the field for any location on

the globe (under non-stress growth conditions) at least three aspects should be addressed.

Firstly, we identified the day length response to constant day length regimes. In reality

day length gradually changes over time, which can be a signal per se. In other words, the

response to day-length may be altered by the speed of change in day length (Constable

& Rose, 1988; Bonhomme et al., 1991; Clerget et al., 2004; Ile et al., 2007), and may differ

between an increasing day length and an decreasing day length. Thus it remains to be

tested whether progress towards heading under changing day length conditions follows

directly from the sum of progress under static conditions, i.e. the phytotron. The response

to day length, moreover, differs during the course of plant development. Reciprocal transfer

experiments that are not published in this thesis (Van Delden et al., 2009), showed that teff

cultivars differ in their ‘photo period sensitive phase (PSP)’ and photo period insensitive

phases: ‘basic vegetative phase (BVP)’ and ‘post photo period phase (PPP)’. Whether a

model based on constant day length could become an accurate enough model describing

phenology in the field for teff remains to be researched.

Secondly, we tested the response to day length by using light as a signal. In our

experiments photosynthetically active radiation (PAR) of the day length extending light

was low. This was done in order to prevent a possible confounded effect of PAR with the

day length extending signal. In the field changes in day length coincide with changes in

PAR. The combined effect of the day length signal and PAR may result in a different day

length response than the one we established in our phytotrons. Especially because there

are indications of interaction between day length and light use efficiency regarding biomass

accumulation (Adams & Langton, 2005).

Thirdly, in a field situation temperature will also affect time to heading. This thesis

did not discuss the relation between temperature and time to heading or leaf emergence.

We did, however, perform some experiments involving temperature treatments. These

experiments showed that under short day conditions all four tested teff cultivars required

approx. 1.5 times more time to flowering at 16 ◦C compared to 19 ◦C. Under long day

conditions, however, cultivar Ayana only required approx.1.1 times more time to flowering,
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and the other three teff cultivars required approx. 1.3 times more time to flowering at 16
◦C compared with 19 ◦C. One of the concepts can be used to explain this different effect of

temperature under long days compared to short days is the change in photoperiod sens-

itivity during plant development. It has been shown that different photoperiod sensitive

phases also differ in their sensitivity to temperature (Yin, 1996). Under different day lengths

the duration of these phases will change and thus also the effect of temperature on the

progress towards flowering will change. If temperature effects of teff are to be determined,

the experimental design should comprise a large number of temperature treatments above

a large number of replicates per treatment be on replicates at more temperatures and day

lengths instead of more replicates within one temperature environment. Time to flowering

(heading) is often found to have a different response to temperature compared with ger-

mination and leaf appearance (Yin & Kropff, 1996; Porter & Gawith, 1999). Therefore the

temperature response of germination cannot be used in modelling time to heading, but

according to Parent et al. (2010) might be useful in modelling leaf appearance.

Research implications for breeders

In the previous sections research findings were summarized and recommendations for

future research were provided per specific research topic. The general objective of this thesis

was helping breeders to identify targets for breeding high-yielding cultivars for cultivation

in the Netherlands. Working with teff for several years and being involved in brainstorming

sessions with the teff breeders provided me the opportunity to identify these breeding

targets. Although all breeding efforts listed below are in my opinion required and most of

them are interrelated, I attempted to list them in order of priority:

I: Time to flowering should be reduced. Flowering should occur before the end of June, to

allow a proper seed filling and ripening period. Breeding for earliness should be done in

the Netherlands. We showed a strong relation between earliness and short days. Therefore

early teff cultivars identified in the Netherlands (long days) are most likely also early in

Ethiopia (short days), while the inverse is unlikely.

II: Lodging is a major problem in the Netherlands. It reduces grain quantity and quality.

Breeding for shorter, thicker shoots and stronger roots with a wider root plate would

significantly reduce the lodging problem. The current model, despite the above highlighted

simplicity, provides an adequate tool to assess progress towards this goal with any new

accession. The lodging metre is an excellent tool to quantify lodging resistance.

III: Grain shedding should be reduced; teff grains should be longer and stronger attached

to the panicle.

IV: Base temperature of teff phenology should be lowered in order to decrease time to

flowering (I), achieve a good seedling establishment early in the season, and be more

competitive with weeds.
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V: Crop uniformity should be increased. That is plant-to-plant, shoot-to-shoot and grain-

to-grain variation should be reduced. Uniform seedling emergence, less extensive tillering,

no axillary branches and somewhat more condensed panicles, result in a more uniform

crop with higher yields.

VI: Grain quality of teff should be preserved. The mistake of aiming only for a quantitative

increase in yield has been made previously in e.g. hemp (Ranalli, 2004) and wheat (Fan

et al., 2008). This mistake should not be repeated, so markers for good baking quality,

protein and nutrient composition should be identified. Marker identification for backing

quality is not very simple, because I suspect a strong Genotype by Environment by Manage-

ment Interaction (GxExM). This can result in different markers between different growth

environments.

According to Assefa et al. (2011) rusts are an increasing problem in Ethiopia. In our

experiments in the Netherlands incidence of pathogens damage was higher in the lodged

plots than in the plots with supported plants. Susceptibility to nematodes could cause

problems in some rotation schemes and reduce anchorage strength to some degree. But

at the moment breeding against these diseases is not a priority as it is unlikely that these

factors currently form a major yield constraint in the Netherlands.

Breeding for a high yielding teff cultivar

An accurate dynamic model, based upon the empirical models in this thesis could be used

for more detailed prototyping or ideotyping1. Ideotyping could further detail the ‘breed-

ers’concept of a high-yielding cultivar. However, the breeding targets listed in the previous

section can already contribute to breeding for a high yielding teff cultivar in the Netherlands.

Although I am not a plant breeder, based on literature and experience I have some ideas

on how to achieve the identified breeding targets. Here I will provide a brief summary of

approaches to reach these breeding targets. In the past 10 years Dutch breeders already

have obtained a wide range in germplasm by mass selection from landraces. The straight-

forward mass selection techniques of repeated resowing early flowering mass-harvested

plants resulted in several early cultivars, as exemplified by cultivar Ayana (Chapter 3-5). In

other words, the breeding target for early heading (I) has already been reached to a great

extent. Currently even earlier cultivars are tested in field trials. Early heading is breeding

priority number one, because it is related to all of the listed breeding targets. In regard to

lodging (II), early heading plants produce fewer elongated internodes (Chapter 4), resulting

in shorter plants. Shorter plants are potentially less susceptible to lodging. Early heading

also circumvents adverse weather conditions later in the season and thereby reduces seed

shedding (III) and increases grain quality (VI). Aside from photoperiod response, early

heading can also result from a lower base temperature (IV). A lower base temperature can

increase the growing season, by making early sowing possible and can herewith increase

1An ’ideotype’ of teff is a description of the genetic traits that optimize yield for a given set of constraints.
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the yield potential. Simple breeding techniques, like screening for seeds that are able to

germinate at low temperatures, can contribute to early heading (I) and better seedling

establishment resulting in a more uniform crop (V).

Berhe (1975) discovered that cross pollination in teff is possible and detailed breeding

techniques for intra-specific hybridisation. Currently the early heading cultivars have thin

shoots, a narrow root plate and are extensively tillering. Identifying markers for earliness

could assist hybridisation between early cultivars (e.g. Ayana) and tall, robust cultivars (e.g.

04T19). The introduction of early heading genes to cultivar 04T19 will most likely shorten

this cultivar in height.

In TILLING, traditional chemical mutagenesis is followed by high-throughput screen-

ing for particular point mutations (Henikoff et al., 2004). This novel non-transgenic PRC-

based method is designed to identify and introduce hereditable genetic variation in genes

that affect the relevant traits (Syngenta-Foundation, 2011). TILLING is already successfully

used to improve crops such as maize (Till et al., 2004), barley (Comai & Henikoff, 2006), rice

(Till et al., 2007) and wheat (Slade et al., 2005). Breeding material of Dutch breeders could

serve as excellent starting material for these techniques. Köhler et al. (2003) identified a

genetic mechanism that is related to seed abortion in Arabidopsis. Screening for these

genetic mechanisms in teff, combined with the TILLING approach could result in teff

cultivars with seeds that are firmly attached to the panicle Assefa et al. (2011) reported

that the TILLING technic resulted in the cloning of two dwarfing genes for teff. However,

as we argue in Chapter 3, not only improving shoot dimensions but also improving the

root system is important in breeding for lodging resistance. Phenotypic screening for

resistance to root lodging could be done by simply measuring crown root diameter, root

plate diameter and counting crown root number. In later breeding stages the lodging meter

(Fig. 3.1) could assist in finding varieties that are even more resistant to root lodging. I like

to stress, however, that during early breeding stages these screenings should be done in a

crop situation. High yielding solitary plants do not necessarily result in a high yielding crop

(Donald, 1967). Plant morphological characteristics like height and root plate diameter

may differ between solitary plants and plants in a crop.

Having summarised these breeding technics, the question arises whether research

time and energy is best spent by making more complex dynamic models? Although crop

models can help creating an ideotype, these models are not able to physically create the

desired plant. In my opinion, however, creating (mechanistic) dynamic models will be

beneficial to breeders, in the sense that breeders will know in more detail what to breed

for. Breeding for earliness, for example, can cause that plant become too short (Berry et al.,

2004), flower too early or produce too few leaves. This can reduce grain yields. Estimating

the optimal shoot dimensions, time of heading and leaf number for a non-lodging high-

yielding cultivar is most effectively done using dynamic crop models. Additionally these

models could be used as management support tools in teff cultivation.

150







References

Abebe Y, Bogale A, Hambidge KM, Stoecker BJ, Bailey K, Gibson RS. 2007. Phytate, zinc,
iron and calcium content of selected raw and prepared foods consumed in rural Sidama,
Southern Ethiopia, and implications for bioavailability. Journal of Food Composition
and Analysis 20: 161-168.

Adams SR, Langton FA. 2005. Photoperiod and plant growth: a review. The Journal of
Horticultural Science and Biotechnology 80: 2-10.

Alexander RM. 1981. Factors of safety in the structure of animals. Science Progress 67:
109-130.

Alvarado V, Bradford KJ. 2002. A hydrothermal time model explains the cardinal temperat-
ures for seed germination. Plant, Cell and Environment 25: 1061-1069.

Amir J, Sinclair TR. 1991. A model of the temperature and solar-radiation effects on spring
wheat growth and yield. Field Crops Research 28: 47-58.

Amogne S. Kasaye Z. Bekele E. 2000. Tef pathology research in Ethiopia. In: EARO. Editor:
Hailu Tefera City: Addis Abeba. Ethiopia pp: 215-222.

Assefa K, Yu JK, Zeid M, Belay G, Tefera H, Sorrells ME. 2011 Breeding tef (Eragrostis tef ):
conventional and molecular approaches. Plant Breeding 130: 1-9.

Ayele M, Dolezel J, Van Duren M, Brunner H, Zapata Arias FJ. 1996. Flow cytometric analysis
of nuclear genome of the Ethiopian cereal tef. Genetica 98: 211-215.

Bach, H. 2005. The pink dot that turns green. Available: http://www.michaelbach.de/
ot/col_lilacChaser/index.html Last accessed: 24-02-2011

Baker CJ, Berry PM, Spink JH, Sylvester-Bradley R, Griffin JM, Scott RK, Clare RW. 1998. A
method for the assessment of the risk of wheat lodging. Journal of Theoretical Biology
194: 587-603.

Baker CK, Gallagher JN, Monteith JL. 1980. Daylength change and leaf appearance in winter
wheat. Plant, Cell and Environment 3: 285-287.

Baker JT, Allen LH, Boote KJ, Jones P, Jones JW. 1990. Developmental responses of rice to
photoperiod and carbon dioxide concentration. Agricultural and Forest Meteorology 50:
201-210.

Baker JT, Pinter Jr PJ, Reginato RJ, Kanemasu ET. 1986. Effects of temperature on leaf
appearance in spring and winter wheat cultivars. Agronomy Journal 78: 605-613.

Ball P. 2007. Physicists bid farewell to reality? Available:http://www.nature.com/news/
2007/070416/full/news070416-9.html#comments. Last accessed:22-02-2011.

153

http://www.michaelbach.de/ot/col_lilacChaser/index.html
http://www.michaelbach.de/ot/col_lilacChaser/index.html
http://www.nature.com/news/2007/070416/full/news070416-9.html#comments.
http://www.nature.com/news/2007/070416/full/news070416-9.html#comments.


| References

Batlla D, Benech-Arnold R. 2010. Predicting changes in dormancy level in natural seed soil
banks. Plant Molecular Biology 73: 3-13.

Bekele E, Fido R, Tatham A, Shewry P. 1995. Heterogeneity and polymorphism of seed
proteins in tef (Eragrostis tef ). Hereditas 122: 67-72.

Belay G, Tefera H, Tadesse B, Metaferia G, Jarra D, Tadesse T. 2006. Participatory variety
selection in the Ethiopian cereal tef (Eragrostis tef Experimental Agriculture 42: 91-101.

Berhe T. 1973. Prospects for improving (Eragrostis tef by mutation breeding. In Umwelt-
forschung GfS-u. Nuclear techniques for seed protein improvement. Vienna: Interna-
tional Atomic Energy Agency 297-303.

Berhe T. 1976. Brighter prospects for improving (Eragrostis tef ) by breeding. In PPS. Re-
search Co-ordination Meeting of the Seed Protein Improvement Programme. Vienna,
Austria: International Atomic Energy Agency. 129-135.

Berry GJ, Cawood RJ, Flood RG. 1988. Curve fitting of germination data using the Richards
function. Plant, Cell & Environment 11: 183-188.

Berry PM, Griffin JM, Sylvester-Bradley R, Scott RK, Spink JH, Baker CJ, Clare RW. 2000.
Controlling plant form through husbandry to minimise lodging in wheat. Field Crops
Research 67: 59-81.

Berry PM, Sterling M, Baker CJ, Spink J, Sparkes DL. 2003. A calibrated model of wheat
lodging compared with field measurements. Agricultural and Forest Meteorology 119:
167-180.

Berry PM, Sterling M, Mooney SJ. 2006. Development of a model of lodging for barley.
Journal of Agronomy and Crop Science 192: 151-158.

Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ, Tams AR, Ennos
AR, Donald LS. 2004. Understanding and reducing lodging in cereals. Advances in
Agronomy 84: 217-271.

Best R. 1961. Some aspects of photoperiodism in rice (Oryza sativa L.). In: Elsevier, Amster-
dam 87 pp.

Bierhuizen JF, Wagenvoort WA. 1974. Some aspects of seed germination in vegetables.
1. The determination and application of heat sums and minimum temperature for
germination. Scientia Horticulturae 2: 213-219.

Bonhomme R, Derieux M, Kiniry JR, Edmeades GO, Ozier-Lafontaine H. 1991. Maize leaf
number sensitivity in relation to photoperiod in multilocation field trials. Agronomy
Journal 83: 153-157.

Bonhomme R. 2000. Bases and limits to using ’degree day’ units. European Journal of
Agronomy 13: 1-10.

Boone MYL, Rickman RW, Whisler FD. 1990. Leaf appearance rates of two winter wheat
cultivars under high carbon dioxide conditions. Agronomy Journal 82: 718-724.

154



References |

Box GEP, Hill WJ. 1967. Discrimination among mechanistic models. Technometrics 9: 57-71.

Bradford KJ. 1990. A water relations analysis of seed germination rates. Plant Physiology 94:
840-849.

Bradford KJ. 1995. Water relations in seed germination. In: Kigel J, Galili G eds. Seed
development and germination. New York: M. Dekker, 351-396.

Brown RF, Mayer DG. 1988. Representing cumulative germination: 2. The use of the Weibull
function and other empirically derived curves. Annals of Botany 61: 127-138.

Burnham KP, Anderson DR. 2002. Model selection and inference: A practical information-
theoretic approach. New York, USA: Spinger-Verlag.

Cao W, Moss DN. 1989a. Temperature effect on leaf emergence and phyllochron in wheat
and barley. Crop Science 29: 1018-1021.

Cao W, Moss DN. 1989b. Temperature and daylength interaction on phyllochron in wheat
and barley. Crop Science 29: 1046-1048.

Cao W, Moss DN. 1991. Phyllochron change in winter wheat with planting date and envir-
onmental changes. Agronomy Journal 83: 396-401.

Castellani E. 1948. Anthracnose of teff. Nuovo Giornale Botanico Italiano 55: 142-144.

Chaitin G. 2006. The Limits of Reason. Scientific American 294: 74-81.

Chantre GR, Batlla D, Sabbatini MR, Orioli G. 2009. Germination parameterization and
development of an after-ripening thermal-time model for primary dormancy release of
Lithospermum arvense seeds. Annals of Botany 103: 1291-1301.

Chuanren D, Bochu W, Pingqing W, Daohong W, Shaoxi C. 2004. Relationship between
the minute structure and the lodging resistance of rice stems. Colloids and Surfaces B:
Biointerfaces 35: 155-158.

Clerget B, Dingkuhn M, Chantereau J, Hemberger J, Louarn G, Vaksmann M. 2004. Does
panicle initiation in tropical sorghum depend on day-to-day change in photoperiod?
Field Crops Research 88: 21-37.

Comai L, Henikoff S. 2006. TILLING: practical single-nucleotide mutation discovery. The
Plant Journal 45: 684-694.

Constable GA, Rose IA. 1988. Variability of soybean phenology response to temperature,
daylength and rate of change in daylength. Field Crops Research 18: 57-69.

Corbesier L, Coupland G. 2006. The quest for florigen: a review of recent progress. Journal
of Experimental Botany 57: 3395-3403.

Costanza S, Dewet J, Harlan J. 1979. Literature review and numerical taxonomy of (Eragrostis
tef ) Economic Botany 33: 413-424.

155



| References

Covell S, Ellis RH, Roberts EH, Summerfield RJ. 1986. The influence of temperature on seed
germination rate in grain legumes: I. A comparison of chickpea, lentil, soyabean and
cowpea at constant temperatures. Journal of Experimental Botany 37: 705-715.

Crook MJ, Ennos AR, Sellers EK. 1994. Structural development of the shoot and root systems
of two winter wheat cultivars, Triticum aestivum L. Journal of Experimental Botany 45:
857-863.

Crook MJ, Ennos AR. 1993. The mechanics of root lodging in winter wheat, Triticum
aestivum L. Journal of Experimental Botany 44: 1219-1224.

Crook MJ, Ennos AR. 1994. Stem and root characteristics associated with lodging resistance
in four winter wheat cultivars. Journal of Agricultural Science 123: 167-174.

Dahal P, Bradford KJ. 1990. Effects of priming and endosperm integrity on seed germination
rates of tomato genotypes: ii. germination at reduced water potential. Journal of
Experimental Botany 41: 1441-1453.

Dahal P, Bradford KJ. 1994. Hydrothermal time analysis of tomato seed germination at
suboptimal temperature and reduced water potential. Seed Science Research 4: 71-80.

Davy JB. 1913. Teff (Eragrostis abysinnica Schrad.). Bulletin of Miscellaneous Information
1913: 32-39.

Di Sabatino A, Corazza GR. 2009. Coeliac disease. The Lancet 373: 1480-1493.

Donald CM. 1967. The breeding of crop ideotypes. Euphytica 17: 385-403.

Doust A. 2007. Architectural evolution and its implications for domestication in grasses.
Annals of Botany 100: 941-950.

Ellis RH, Qi A, Summerfield RJ, Roberts EH. 1993. Rates of leaf appearance and panicle
development in rice (Oryza sativa L.): a comparison at three temperatures. Agricultural
and Forest Meteorology 66: 129-138.

Ennos AR. 1991. The mechanics of anchorage in wheat Triticum aestivum L. : ii. Anchorage
of mature wheat against lodging. Journal of Experimental Botany 42: 1607-1613.

Erkossa T, Mamo T, Kidane S, Abebe M 2000. Response of some durum wheat landraces to
nitrogen application on Ethiopian vertisols. In: The Eleventh Regional Wheat Workshop
for Eastern, Central and Southern Africa. City: Addis Ababa. Ethiopia. pp: 229-238.

Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. 2008. Evidence
of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace
Elements in Medicine and Biology 22: 315-324.

Feddes RA. 1972. Effects of water and heat on seedling emergence. Journal of Hydrology 16:
341-359.

Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of germination.
New Phytologist 171: 501-523.

156



References |

Finch-Savage WE, Rowse HR, Dent KC. 2005. Development of combined imbibition and
hydrothermal threshold models to simulate maize and chickpea seed germination in
variable environments. New Phytologist 165: 825-837.

Finch-Savage WE, Steckel JRA, Phelps K. 1998. Germination and post-germination growth
to carrot seedling emergence: predictive threshold models and sources of variation
between sowing occasions. New Phytologist 139: 505-516.

Foggo MN, Warrington IJ. 1989. The influence of photosynthetically active radiation and
vernalization on flowering of deschampsia flexuosa Deschampsia flexuosa L. Trin. (Po-
aceae). Functional Ecology 3: 561-567.

Forcella F, Benech Arnold RL, Sanchez R, Ghersa CM. 2000. Modeling seedling emergence.
Field Crops Research 67: 123-139.

Gebreselassie A. 1985. Control of growth and development in teff (Eragrostis tef (Zucc)
Trotter) and nigerseed (Guizotia abyssinia Cass.): by day length, temperature and plant
growth regulators. ). PhD thesis. University of London. City: London. UK. 301 pp.

Graziani A, Steinmaus SJ. 2009. Hydrothermal and thermal time models for the invasive
grass, Arundo donax. Aquatic Botany 90: 78-84.

Grundy AC, Phelps K, Reader RJ, Burston S. 2000. Modelling the germination of Stellaria
media using the concept of hydrothermal time. New Phytologist 148: 433-444.

Gummerson RJ. 1986. The effect of constant temperatures and osmotic potentials on the
germination of sugar beet. Journal of Experimental Botany 37: 729-741.

Hardegree SP, Emmerich WE. 1990. Effect of polyethylene glycol exclusion on the water
potential of solution-saturated filter paper. Plant Physiology 92: 462-466.

Hardegree SP. 2006. Predicting germination response to temperature. i. cardinal-temperature
models and subpopulation-specific regression. Annals of Botany 97: 1115-1125.

Hay RKM, Kirby EJM. 1991. Convergence and synchrony-a review of the coordination of
development in wheat. Australian Journal of Agricultural Research 42: 661-700.

Hegarty TW. 1976. Effects of fertilizer on the seedling emergence of vegetable crops. Journal
of the Science of Food and Agriculture 27: 962-968.

Henikoff S, Till BJ, Comai L. 2004. TILLING. Traditional Mutagenesis Meets Functional
Genomics. Plant Physiology 135: 630-636.

Hilborn R, Mangel M. 1997. The ecological detective: confronting models with data. Prin-
ceton: Princeton University Press. 330 pp.

Hilhorst HWM, Toorop PE, Donald LS 1997. Review on Dormancy, Germinability, and
Germination in Crop and Weed Seeds. Advances in Agronomy 61: 111-165.

157



| References

Hundera F, Nelson LA, Baenziger PS, Bechere E, Tefera H. 2000. Association of lodging and
some morpho-agronomic traits in (Eragrostis tef (Zucc) Trotter). Tropical Agriculture 77:
169-173.

Hunt R. 1979. Plant growth analysis: the rationale behind the use of the fitted mathematical
function. Annals of Botany 43: 245-249.

Ile EI, Craufurd PQ, Asiedu R, Battey NH. 2007. Duration from vine emergence to flowering
suggests a long-day or rate of change of photoperiod response in white yam. Environ-
mental and Experimental Botany 60: 86-94.

Ioannidis JPA. 2005. Why Most Published Research Findings Are False. PLoS Med 2: e124.

Ishimaru K, Togawa E, Ookawa T, Kashiwagi T, Madoka Y, Hirotsu N. 2008. New target for
rice lodging resistance and its effect in a typhoon. Planta 227: 601-609.

Jame YW, Cutforth HW, Ritchie JT. 1998. Interaction of temperature and daylength on leaf
appearance rate in wheat and barley. Agricultural and Forest Meteorology 92: 241-249.

Jamieson P, Brooking I, Zyskowski R, Munro C. 2008. The vexatious problem of the variation
of the phyllochron in wheat. Field Crops Research 108: 163-168.

Jensen WA. 1962. Botanical histochemistry. principles and practice, W.H. Freeman and
Company, San Francisco and London. 408 pp.

Jones BMG, Ponti J, Tavassoli A, Dixon PA. 1978. Relationships of the Ethiopian cereal T’ef
(Eragrostis tef (Zucc) Trotter: evidence from morphology and chromosome number.
Annals of Botany 42: 1369-1373.

Katan MB. 2007. Does industry sponsorship undermine the integrity of nutrition research?
PLoS Med 4: e6.

Kebede H, Johnson RC, Ferris DM. 1989. Photosynthetic response of Eragrostis tef to
temperature. Physiologia Plantarum 77: 262-266.

Kebreab E, Murdoch AJ. 1999. Modelling the effects of water stress and temperature on
germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany 50:
655-664.

Ketema S. 1991. Germplasm evaluation and breeding work on teff Eragrostis tef in Ethiopia.
Series: Plant Genetic Resources of Ethiopia. Debre Zeit. Ethiopia. pp: 323-328.

Ketema S. 1983. Studies of Lodging, Floral Biology and Breeding Techniques in Tef (Era-
grostis tef (Zucc.) Trotter). PhD thesis. University of London. City: London. UK. 122
pp.

Ketema S. 1997. Tef, (Eragrostis tef (Zucc) Trotter. Rome. Italy: Bioversity International. 50
pp.

Keuls M, Garretsen F. 1982. Statistical analysis of growth curves in plant breeding. Euphytica
31: 51-64.

158



References |

Kidanu S, Tanner DG, Mamo T. 1999. Effect of nitrogen fertiliser applied to tef on the yield
and N response of succeeding tef and durum wheat on a Highland Vertisol. African Crop
Science Journal 7: 35-46.

Kirby EJM. 1995. Factors affecting rate of leaf emergence in barley and wheat: Symposium
on the pyllochron. Crop Science 35: 11-19.

Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. 1999. A Pair of Related Genes with
Antagonistic Roles in Mediating Flowering Signals. Science 286: 1960-1962.

Krasnokutskii VP, Konstanc GG. 1939. Teff and its feeding value. Sotsialisticheskoe Zernovoe
Khozyaistvo 6: 91-98.

Labouriau LG, Osborn JH. 1984. Temperature dependence of the germination of tomato
seeds. Journal of Thermal Biology 9: 285-294.

Larsen SU, Bailly C, Côme D, Corbineau F. 2003. Use of the hydrothermal time model
to analyse interacting effects of water and temperature on germination of three grass
species. Seed Science Research 14: 35-50.

Lawless C, Semenov MA, Jamieson PD. 2005. A wheat canopy model linking leaf area and
phenology. European Journal of Agronomy 22: 19-32.

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed
Y. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and
flowering and substitute for diverse environmental stimuli. Proceedings of the National
Academy of Sciences 103: 6398-6403.

MAQ 2011. Meteorology and Air Quality (MAQ). Available: http://www.met.wau.nl/
Last accessed:02-02-2011.

Marshall B, Squire GR. 1996. Non-linearity in rate-temperature relations of germination in
oilseed rape. Journal of Experimental Botany 47: 1369-1375.

Mclaughlin NB, Bowes GR, Thomas AG, Dyck FB, Lindsay TM, Wise RF. 1985. A new design
for a seed germinator with 100 independently temperature controlled cells. Weed
Research 25: 161-173.

McMaster GS, Wilhelm WW. 1995. Accuracy of equations predicting the phyllochron of
wheat. Crop Science 35: 30-36.

Mengesha MH, Guard AT. 1966. Development of the embryo sac and embryo of teff. Cana-
dian Journal of Botany 44: 1071-1075.

Mengesha MH. 1966. Chemical composition of teff Eragrostis tef compared with that of
wheat, barley and grain sorghum. Economic Botany 20: 268-273.

Michel BE. 1983. Evaluation of the water potentials of solutions of polyethylene glycol 8000
both in the absence and presence of other solutes. Plant Physiology 72: 66-70.

Mulder EG. 1954. Effect of mineral nutrition on lodging of cereals. Plant and Soil 5: 246-306.

159

http://www.met.wau.nl/


| References

Nagai I. 1963. Growth and performance of rice varieties under controlled temperature and
photoperiod conditions. International Rice Commission Newsletter Special Issue: 71-85.

Ni BR, Bradford KJ. 1992. Quantitative models characterizing seed germination responses
to abscisic acid and osmoticum. Plant Physiology 98: 1057-1068.

Nicora EG. 1939. Eragrostis tef adventitious in Mendoza. Revista Argentina de Agronomía 6:
123-126. NMA 2011. National Meteorological Agency (NMA). Available: http://www.
ethiomet.gov.et/ Last accessed:02-02-2011.

Oladokun MAO, Ennos AR. 2006. Structural development and stability of rice Oryza sativa
L. var. Nerica 1. Journal of Experimental Botany 57: 3123-3130.

Orozco-Segovia A, González-Zertuche L, Mendoza A, Orozco S. 1996. A mathematical model
that uses Gaussian distribution to analyze the germination of Manfreda brachystachya
in a thermogradient. Physiologia Plantarum 98: 431-438.

Parent B, Turc O, Gibon Y, Stitt M, Tardieu F. 2010. Modelling temperature-compensated
physiological rates, based on the co-ordination of responses to temperature of develop-
mental processes. Journal of Experimental Botany 61: 2057-2069.

Pinthus MJ, Brady NC. 1974. Lodging in wheat, barley, and oats: The phenomenon, its
causes, and preventive measures. Advances in Agronomy 25: 209-263.

Porter JR, Gawith M. 1999. Temperatures and the growth and development of wheat: a
review. European Journal of Agronomy 10: 23-36.

Ragge DR. 1977. A new genus of bush-cricket causing damage to cereal crops in Ethiopia.
Journal of Natural History 11: 509-513.

Ranalli P. 2004. Current status and future scenarios of hemp breeding. Euphytica 140:
121-131.

Rasband W 2009. ImageJ 1.42. Available:http://rsbweb.nih.gov/ij/index.html
Last accessed:03-02-2009.

Roberts EH, Summerfield RJ. 1987. Measurement and prediction of flowering in annual
crops. In: Manipulation of Flowering. Editor: Atherton JG. Butterworths. City: London.
pp: 17-50.

Rowse HR, Finch-Savage WE. 2003. Hydrothermal threshold models can describe the
germination response of carrot and onion seed populations across both sub- and supra-
optimal temperatures. New Phytologist 158: 101-108.

Rowse HR, McKee JMT, Higgs EC. 1999. A model of the effects of water stress on seed
advancement and germination. New Phytologist 143: 273-279.

Schaminée JHJ, Hennekens SM, Ozinga WA. 2007. Use of the ecological information system
SynBioSys for the analysis of large datasets. Journal of Vegetation Science 18: 463-470.

160

http://www.ethiomet.gov.et/
http://www.ethiomet.gov.et/
http://rsbweb.nih.gov/ij/index.html


References |

Schoolfield RM, Sharpe PJH, Magnuson CE. 1981. Non-linear regression of biological
temperature-dependent rate models based on absolute reaction-rate theory. Journal of
Theoretical Biology 88: 719-731.

Scott DI, Tams AR, Berry PM, Mooney SJ. 2005. The effects of wheel-induced soil compac-
tion on anchorage strength and resistance to root lodging of winter barley (Hordeum
vulgare L.). Soil and Tillage Research 82: 147-160.

Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D. 2005. A reverse genetic,
nontransgenic approach to wheat crop improvement by TILLING. Nature Biotechnology
23: 75-81.

Spaenij-Dekking L, Kooy-Winkelaar Y, Koning F. 2005. The ethiopian cereal tef in Celiac
disease. New England Journal of Medicine 353: 1748-1749.

Sposaro MM, Chimenti CA, Hall AJ. 2008. Root lodging in sunflower. Variations in anchorage
strength across genotypes, soil types, crop population densities and crop developmental
stages. Field Crops Research 106: 179-186.

Streck NA, Bosco LC, Lago I. 2008. Simulating Leaf Appearance in Rice. Agronomy Journal
100: 490-501.

Stretch C, Kebreab T, Edwards SB. 1980. The biology and control of the Welo bush-cricket,
Decticoides brevipennis Ragge, a pest of cereals in Ethiopia. SINET 3: 21-36.

Summerfield RJ, Ellis RH, Craufurd PQ, Aiming Q, Roberts EH, Wheeler TR. 1997. Envir-
onmental and genetic regulation of flowering of tropical annual crops. Euphytica 96:
83-91.

Syngenta-Foundation 2011. Tef cereal improvement for Ethiopia Available:http://www.
syngentafoundation.org/index.cfm?pageID=529 Last accessed:01-02-2011.

Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. 2007. Hd3a Protein Is a Mobile
Flowering Signal in Rice. Science 316(5827): 1033-1036.

Tefera H, Assefa K, Belay G. 2003. Evaluation of interspecific recombinant inbred lines of
Eragrostis tef X Eragrostis pilosa. Journal of Genetics and Breeding 57: 21-30.

Teklu Y, Tefera H. 2005. Genetic improvement in grain yield potential and associated
agronomic traits of tef Eragrostis tef. Euphytica 141: 247-254.

Teper-Bamnolker P, Samach A. 2005. The Flowering Integrator FT Regulates SEPALLATA3
and FRUITFULL Accumulation in Arabidopsis Leaves. Plant Cell 17: 2661-2675.

Tenner C. 2004. The Millennium Seed Bank. Curtis’s Botanical Magazine 21: 91-94.

Thiagarajah MR, Hunt LA. 1982. Effects of temperature on leaf growth in corn (Zea mays).
Canadian Journal of Botany 60: 1647-1652.

Thornley JHM. 1976. Mathematical models in plant physiology: a quantitative approach to
problems in plant and crop physiology. London ; New York : Academic Press. 313 pp.

161

http://www.syngentafoundation.org/index.cfm?pageID=529
http://www.syngentafoundation.org/index.cfm?pageID=529


| References

Till B, Cooper J, Tai T, Colowit P, Greene E, Henikoff S, Comai L. 2007. Discovery of chemically
induced mutations in rice by TILLING. BMC Plant Biology 7: 19.

Till B, Reynolds S, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C, Enns L,
Odden A, Greene E, Comai L, Henikoff S. 2004. Discovery of induced point mutations in
maize genes by TILLING. BMC Plant Biology 4: 12.

Timmermans BGH, Vos J, van Nieuwburg J, Stomph TJ, van der Putten PEL. 2007. Ger-
mination rates of Solanum sisymbriifolium: temperature response models, effects of
temperature fluctuations and soil water potential. Seed Science Research 17: 221-231.

Tulema B, Zapata F, Aune J, Sitaula B. 2005. N fertilisation, soil type and cultivars effects on
N use efficiency in tef (Eragrostis tef Zucc. Trotter). Nutrient Cycling in Agroecosystems
71: 203-211.

Van Delden SH, Stomph TJ, Vos J, Brouwer G. 2009. The photo-thermal control of flowering
in teff (Eragrostis tef (Zucc) Trotter). Comparative Biochemistry and Physiology Part A:
Molecular, Integrative Physiology 153: S198.

van Delden SH, Vos J, Ennos AR, Stomph TJ. 2010. Analysing lodging of the panicle bearing
cereal teff Eragrostis tef. New Phytologist 186: 696-707.

Vavilov NI. 1951. The origin, variation, immunity and breeding of cultivated plants : selected
writings of N.I. Vavilov. New York: Ronald Press Company.

Verdonschot C, Matthijssen F, Weijers W, Wardenaar F. 2008. Teff: feiten en cijfers: het ijzer-
en calciumgehalte van twee Nederlandse teff producten onderzocht. Voeding NU 10:
21-23.

Wang R, Bai Y, Tanino K. 2005. Germination of winterfat (Eurotia lanata (Pursh) Moq.)
seeds at reduced water potentials: testing assumptions of hydrothermal time model.
Environmental and Experimental Botany 53: 49-63.

Watt MS, Xu V, Bloomberg M. 2010. Development of a hydrothermal time seed germination
model which uses the Weibull distribution to describe base water potential. Ecological
Modelling 221: 1267-1272.

White PJ, Cooper HD, Earnshaw MJ, Clarkson DT. 1990. Effects of low temperature on the
development and morphology of rye (Secale cereal) and Wheat (Triticum aestivum).
Annals of Botany 66: 559-566.

Yan W, Hunt LA. 1999. An Equation for Modelling the Temperature Response of Plants using
only the Cardinal Temperatures. Annals of Botany 84: 607-614.

Yin X, Kropff MJ, Goudriaan JAN. 1996. Differential Effects of Day and Night Temperature
on Development to Flowering in Rice. Annals of Botany 77: 203-213.

Yin X, Kropff MJ, McLaren G, Visperas RM. 1995. A nonlinear model for crop development
as a function of temperature. Agricultural and Forest Meteorology 77: 1-16.

162



References |

Yin X, Kropff MJ. 1996. The Effect of Temperature on Leaf Appearance in Rice. Annals of
Botany 77: 215-221.

Yin X, Kropff MJ. 1996. Use of the Beta function to quantify effects of photoperiod on
flowering and leaf number in rice. Agricultural and Forest Meteorology 81: 217-228.

Yin X, Struik PC. 2010. Modelling the crop: from system dynamics to systems biology.
Journal of Experimental Botany 61: 2171-2183.

Yin X. 1996. Quantifying the effects of temperature and photoperiod on phenological
development to flowering in rice. PhD thesis. Wageningen University. City: Wageningen.
the Netherlands. 173 pp.

Yizengaw T, Verheye W. 1994. Modelling production potential of tef (Eragrostis tef ) in the
central highlands of Ethiopia. Soil Technology 7: 269-277.

Yu JK, Sun Q, Rota Ml, Edwards H, Hailu T, Sorrells ME. 2006. Expressed sequence tag
analysis in tef Eragrostis tef (Zucc.) Trotter). Genome 49: 365-372.

Zerihun T. 1996. The agro-ecology and production technology of tef (Eragrostis tef ). Abera
Deresa: 2-19.

Zewdu AD, Solomon WK. 2007. Moisture-dependent physical properties of teff seed. Biosys-
tems Engineering 96: 57-63.

Zhang D, Ayele M, Tefera H, Nguyen HT. 2001. RFLP linkage map of the Ethiopian cereal tef
Eragrostis tef (Zucc.) Trotter. Theoretical and Applied Genetics 102: 957-964.

Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van’t Riet K. 1991. Modeling of
bacterial growth as a function of temperature. Applied and Environmental Microbiology
57: 1094-1101.

Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K. 1990. Modeling of the bacterial
growth curve. Applied and Environmental Microbiology 56: 1875-1881.

163





Dankwoord

Dit promotietraject was alles behalve een ‘one-man-show’, veel mensen hebben me gehol-

pen tijdens de tocht op weg naar dit eindresultaat. Naast nieuwe inzichten in een aantal

wetenschappelijke vraagstukken, hebben we een schat aan hoogwaardige data verzameld.

Op zowel theoretisch als praktisch vlak heb ik genoten van een overweldigende behulp-

zaamheid van zowel mensen binnen WUR als tot ver daarbuiten. Ik wil iedereen die heeft

bijgedragen dan ook hartelijk danken voor hun inzet en de hoge kwaliteit van het werk dat

ten grondslag ligt aan deze thesis. Een aantal mensen wil ik in het bijzonder bedanken.

Op de eerste plaats het Teff-project team, met binnen WUR Jan Vos als projectleider,

dagelijks begeleider en co-promotor; Gerard Brouwer; Ans Hofman en Peter van der Putten

als onderzoeksassistenten; Tjeerd-Jan Stomph als begeleider en co-promotor; Wopke van

der Werf en Xinyou Yin als begeleiders en natuurlijk mijn promotor Paul Struik. Buiten WUR,

de hele STW gebruikerscommissie met in het bijzonder Nol Mulder en Lo Turkensteen als

veredelaars en teff experts van Stichting Share en Roland Ennos van Manchester University

als legeringsexpert.

Jan, je deur was altijd open, je reageerde bliksemsnel op vragen en corrigeerde vlot en

geïnteresseerd mijn stukken. Je straalde altijd rust en kalmte uit en hielp me zoeken naar de

hoofdlijnen in het bos van de details. Je hebt me veel ruimte, advies en vertrouwen gegeven,

bedankt!

Gerard, de hoeveelheid data die je hebt verzameld is enorm en de kwaliteit is zeer hoog.

Dit komt mede omdat je actief meedacht met de opzet en uitvoering van experimenten.

Bovendien werkte je zeer serieus en toegewijd. Je hebt menig weekend en avond in de kas

doorgebracht, dit is bewonderenswaardig! Daarnaast heeft je werk- en levenservaring mij

enorm geholpen in tijden dat ik teveel hooi op mijn vork nam. Hartelijk dank!

Tjeerd-Jan, ook jouw deur stond wagenwijd open en je reageerde ad-hoc op mijn

vragen. We hebben regelmatig interessante discussies gevoerd over teff, planten en het

leven. Het aantal hypotheses dat ontstond tijdens deze discussies is doorgaans niet binnen

één promotietraject te testen. Bedankt voor je creativiteit en toewijding!

Paul, ik heb genoten van onze discussies over de stellingen. Ondanks de enorme

hoeveelheid werk die op uw schouders rust was de responstijd van de stukken die ik

opstuurde onvoorstelbaar kort. Ik kon altijd langskomen voor advies over wat dan ook,

geweldig!

165



| Dankwoord

Wopke, ik heb een hoop van je geleerd: parsimonie in systeemdenken, probleem

benadering, Matlab en een andere kijk op schrijven. Dit alles terwijl je ‘officieel’ niet eens

mijn begeleider bent. Je directe, oprechte en soms primaire reacties bevielen me uitstekend

en gaven vaak kleur aan mijn werkdag.

Xinyou, I could always turn to you for advice on mathematics or statistics. You are very

modest and I think you underestimate the help you have given me. In my opinion you

have earned a co-authorship on at least one of our articles, but I admire your principles on

co-authorship.

Roland, thanks for your advice and saving me tons of time by showing me how to keep

it simple.

Ans, bedankt voor je advies en hulp. In een dagelijkse werkomgeving met bijna alleen

kerels was het fijn om zo nu en dan het perspectief van een vrouw te horen.

Peter, je hebt gezorgd voor een vliegende start en stond altijd klaar voor uitleg. Je hebt

me de kneepjes van het vak geleerd, dit heeft de experimenten tot een succes gemaakt.

Nol en Lo, zonder jullie was dit project er niet geweest. Door jullie deskundigheid

hebben jullie in een paar jaar tijd enorme sprongen kunnen maken bij de veredeling van

teff. Jullie nieuwe variëteiten en cultivars waren van onschatbare waarde bij het uitvoeren

van de experimenten. Ondanks de grote tegenslagen die jullie hebben ervaren zijn jullie

met opgeheven hoofd doorgegaan, dit verdient veel respect.

Ik wil graag alle medewerkers van Unifarm bedanken die aandeel in mijn proeven

hebben gehad. Tijdens de lunch en koffie waren er vaak prachtige verhalen en werden soms

zeer ludieke acties uitgehaald, leuk. In het bijzonder wil ik Ralph Post, Henk Meurs, Gerrit

Huisman, Teus van der Pol en zoon, Ton Blokzijl, Frans Bakker, Eddy de Boer, Gerard Derks,

John van der Lippe, Andre Maassen, Ruud Lamers, Wim Lieftink, Henk van Roekel, Teus van

den Brink, Andries Siepel, Teade Stoker, Johan Derksen, Herman Meurs, Teus Bleijenberg,

Rene Alles en Anton Vels bedanken. Het was een mooie tijd, bedankt!

Een aantal studenten zijn van grote betekenis geweest bij het verzamelen van data.

Erwin, bedankt voor je inzet en je fantastische dataset. Laura, bedankt voor al het werk dat

je zo nauwkeurig hebt uitgevoerd. Michiel, bedankt voor al de metingen die je hebt gedaan.

Shuhang, thanks for the shear strength and plant measurements. Further, I like to thank my

Ethiopian students Tadele, Adugna and Gezahegn for telling me all about teff in its natural

habitat and helping me with conducting some of the experiments.

166



Dankwoord |

Gerrit Gort en Jacques Withagen, bedankt voor jullie advies over statistiek. Arjen,

Hennie, Dine en Oscar, bedankt voor het beschikbaar stellen van jullie labs en uitleg over

machines en methodieken.

Bij dezen wil ik alle collega’s op de Haarweg, Radix en daarbuiten bedanken. Jullie

schoten wanneer nodig te hulp, zorgden voor plezier, advies, gezelschap en trokken me

af toe helemaal los van mijn thesis. Met name Sander, Lenny, Michiel, Ilse, Myriam, Rik,

Pepijn, Barbara, Huub, Lammert, Aad, Pytrik, Nico, Ken, Martin, Bart, Maaike, Bert J., Bert

R., Eelco, Peter, Madeleine, Maya, Frank, André, Maryia, Sjanie, Wampie, Ton, Koop en Gon.

Daarnaast wil ik Johan van Leeuwen hartelijk danken voor zijn interesse en advies. And of

course all the FLOP-members, thanks for your inspiration!

Ben, de inzichten en energie die jij me hebt laten ontdekken zijn niet met papier te

vangen, hartelijk dank!

Ik wil natuurlijk ook al mijn vrienden die ik heb leren kennen in Wageningen en Didam

(o.a. de Argonauten, de Knuffels, de Miepjes en de Diemse duifjes en alle aanhang) bedan-

ken! De inhoudelijke maar ook ontspannende discussies met Martin, Gert-Jan, Wanne,

Jasper, Jeroen, Christiaan en Corstiaen hebben significant bijgedragen aan de vorming van

dit proefschrift, bedankt!

Ook mijn paranimfen, Pieter-Jelte en Jochem wil ik hartelijk bedanken. Pieter, je vriend-

schap en hoogbegaafde boerenverstand schoten meer dan eens te hulp en zelfs tijdens

mijn verdediging kan ik op je rekenen, super mooi! Jochem je hebt me van een hoop advies

en inzicht voorzien, ik kon altijd bij je terecht met vragen over wat dan ook, bedankt! Het

is een geruststellende gedachte om samen met jullie op het podium te staan tijdens mijn

verdediging.

Pap, Mam, Robby, Maaike, Frank, Rixt en Bendt het is nu echt klaar! Bedankt voor jullie

steun en bijdrage! Oma en mijn hele familie in Leeuwarden en ver daarbuiten, bedankt.

Ook mijn ‘familie’ in Didam, in het bijzonder Eef, Cockie, Sjoerd, Kiki, Wouter, Jolette en

Bikkel, hartelijk dank!

Anne bedankt voor je interesse, begrip, zorg, geduld, liefde en de talloze weekenden die

we samen in de kas en op het veld doorbrachten.

167





Summary
Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 annual grass species (Poaceae) originating

from Ethiopia. Teff cultivation in the Netherlands is thought to be economically interesting

because teff grains and flour are rich in iron and do not contain gluten. Gluten is a multi-

protein complex in seeds that can cause coeliac disease in genetically predisposed humans.

The absence of gluten in teff grains, make teff a desirable ingredient in health products,

particularly for coeliac disease patients. Teff can replace gluten containing cereals in

products such as pasta, bread, beer, cookies and pancakes.

This project was funded by the Dutch technology foundation (STW) with the objective

to gain scientific knowledge on teff, and facilitate a successful introduction of teff into

Dutch agriculture. The research topics in this thesis were chosen in consultation with

breeders, farmers, food technologists, crop physiologists and agronomists. At the start of

this project Dutch teff yields were modest (1.0 - 1.5 Mg·ha−1). The sowing and harvest date

were (too) late in the season and the crop is sensitive to lodging. For teff to be economical

feasible in the Netherlands yield have to be in the order of 2.5 - 3.0 Mg·ha−1.

The general objective of the work described in this thesis was to detail some of the

major yield constraints of teff, thus helping breeders to identify targets for breeding high

yielding cultivars for cultivation in the Netherlands. Together with this practical objective, I

also wanted to use the research described in this thesis to advance current understanding

of seed physiology, biomechanics and phenology of cereals and teff in particular. Therefore,

although the main model species in this thesis is teff, for several plant traits an explicit

comparison was made to wheat (Triticum aestivum L.) and rice (Oryza sativa L.), using

published and newly gathered data.

In the introduction (Chapter 1) I postulate several constraints for high teff grain yields

in the Netherlands. On the basis of these constraints we chose four research topics for this

thesis. We studied seed germination (Chapter 2), lodging resistance (Chapter 3), day length

response (Chapter 4), and the pattern of leaf appearance over time (Chapter 5).

Seed germination (Chapter 2)

Viable teff seed can fail to germinate as a result of sub-optimal or supra optimal tempera-

tures and lack of free available water (i.e. low water potential) in the top layer of the soil.

In chapter 2 we discuss a study on teff germination in response to temperature and water

potential. Experimental data on seed germination were obtained at 17 temperatures and 5

water potentials, using a complete factorial design with 3 replications. The experiments

resulted in a highly discriminating data set. Hydrothermal time models are commonly used

to describe such a data set. Hydrothermal time models can describe germination at the

permissive range of temperatures and water potentials resonably well. These models may,

169



| Summary

however, fail at the extremes of the range of conditions that allow germination. Therefore

we presented a modified framework to describe teff seed germinaton. In this modified

model framework we postulate a normal distribution of seed germination rate. This postu-

late can explain the time course of seed germination at any combination of temperature

and water potential. Final germination percentage and lag phase are emerging properties

of the modelled mean germination rate and its variation among seeds in a population.

Cardinal temperatures in this framework are a smooth function of water potential and,

conversely, the cardinal water potential is a smooth function of temperature. Numerous

authors encountered difficulties when parameters for cardinal temperatures or cardinal

water potentials contained a spread. To circumvent these difficulties we simply modelled

the spread in germination as a function of both temperature and water potential. The

newly developed framework gives better predictions of seed germination than alternative

models. It uses smooth continuous functions and, moreover, describes several biological

interactions that are not captured by the conventional hydrothermal time models. Unlike

the hydrothermal time models, the framework evades statistical problems of degree of

freedom inflation.

Lodging (Chapter 3)

Teff is susceptible to lodging, in both Ethiopia and the Netherlands. Lodging is the perma-

nent displacement of crop plants from their vertical due to root or shoot failure. Lodging

is believed to be a major yield constraint in teff. The causes of lodging are analysed and

discussed in Chapter 3 of this thesis. The analysis of lodging was done by using, modifying

and validating conventional biomechanical models. The model parameters were obtained

from a field trial with two contrasting teff cultivars (Ayana and 04T19). During this field

trial we used novel in situ and laboratory measurements under wet and dry conditions.

We showed that teff is more susceptible to root lodging than to shoot lodging; although

the data indicated that shoot strength is also insuffcient. Hence, simultaneously breeding

for both improved root anchorage and shoot strength is advocated. The study showed

that the conventinal lodging model, derived for the spike-bearing cereal wheat, needed

modifcations in order to be able to deal with panicle-bearing plants like teff and rice. Water

adhering to plants due to rain or dew increased calculated lodging susceptibility. To prevent

underestimation of lodging susceptibility, future lodging research should be done under

completely wet conditions (water saturated soil and wetted shoots). Cross species model

validation for shoot lodging was done with rice and showed similar results.

Time to flowering (heading) (Chapter 4)

The long day length in the Netherlands may increase the time to flowering in teff. As a

consequence of late flowering the grain ripening period partly takes places under adverse

weather conditions later in the season. Teff plants are mainly self-pollinating and heading

and pollination almost coincide. From here on we will use the term heading instead of
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flowering. Heading was defined as emergence of the tip of the inflorescence from the sheath

of the flag leaf. We conducted several phytotron and greenhouse experiments to describe

the day length response of teff regarding: time to panicle initiation, time to heading, number

of phytomers, plant height and biomass. In these experiments, two Ethiopian cultivars,

Gibe and Ziquala, and two cultivars from a Dutch breeding programme, Ayana and 04T19,

were exposed to day lengths of 9, 10.5, 12, 13.5, 15, 16.5 and 18 h. Our results showed that

heading in teff was significantly delayed by long days. Teff is therefore a short day plant; not

only panicle initiation, but also development and outgrowth of the panicle were influenced

by photoperiod. Plant-to-plant variation in time to heading, the total number of phytomers

per shoot, the number of elongated internodes and biomass were higher in long day than

in short day treatments, for all cultivars. In this chapter we provide a detailed description

and quantification of the response of teff to day length. We presented a smooth logistic

function with biologically intrepretable parameters. This function is generally applicable in

short day cereals as shown for rice. Our findings suggest that it is feasible to breed for a teff

genotype which is well adapted to northern latitudes of e.g. the Netherlands.

Phyllochron (Chapter 5)

The relatively low average temperatures and long day lengths in the Netherlands compared

to Ethiopia could prolong the developmental stages of the crop. Phyllochron, defined as the

time interval between the appearance of two successive leaves, is a widely used indicator

of the rate of crop development before heading. In Chapter 5 we analysed the response of

teff phyllochron to day length and the response of rice phyllochron to temperature. The

theory on the phyllochron under constant diurnal temperature and day length conditions

is still controversial. Many studies have highlighted inaccuracies in predictions of the

timing of appearance between two successive leaves (i.e. phyllochron) in the field. This

chapter provides an accurate description of the fundamental concepts on the timing

of leaf appearance in teff, rice and wheat. We grew four teff cultivars under constant

temperature conditions at six different day lengths. To assess the effect of temperature

on rice phyllochron, we re-analysed literature data on four rice cultivars grown at five

temperatures. Additionally, newly gathered data on timing of leaf appearance of outdoor-

grown wheat was analysed. There are two consecutive phases differing in phyllochron,

phyllochron 1 (p1) and phyllochron 2 (p2), with p1 < p2. The effect of temperature on

p1 and p2 can be normalised with the linear thermal time concept. Day length has no

systematic effect on the values of p1 and p2. The switch from p1 to p2 is abrupt and the

difference between soil and air temperature can not account entirely for difference between

p1 to p2. After re-evaluation of literature data this abrupt increase in phyllochron seemed

to be also present in both wheat and rice. The sudden increase in phyllochron might be

related to the moment of panicle initiation and the switch per se is most likely independent

of temperature.
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Discussion (Chapter 6)

In Chapter 6 the research findings are placed in the context of the general objective of this

thesis. This chapter begins with a discussion on modelling and understanding of plants

in general. Then for each research topic (germination (Chapter 2), lodging (Chapter 3),

phenology (Chapters 4 and 5) the findings are summarised and future research directions

towards a generic model for field-grown teff are described. This is followed by a discussion

on the implications of the research findings for breeders. Six breeding targets emerged from

this discussion: I: Early flowering; II: Reduction of lodging susceptibility; III: Reduction

of grain shedding; IV: Lowering of the base temperature; V: Increasing crop uniformity;

VI: Maintaining grain quality. Breeding advice on how to reach these targets is provided.

Aside from classical breeding techniques, which are still very useful for teff, using molecular

breeding techniques (like TILLING, i.e. chemical mutagenesis followed by high-throughput

screening for particular point mutations) is the best strategy to increase grain yields in the

Netherlands. Although crop models can help creating an ideotype, these models are not

able to physically create the desired plant. In my opinion, however, creating (mechanistic)

dynamic models will be beneficial to breeders, in the sense that breeders will know in more

detail what to breed for. Breeding for earliness, for example, can cause plants becoming too

short, flower too early or produce too few leaves. This can reduce grain yields. Estimating

the optimal shoot dimensions, time of heading and leaf number for a non-lodging high-

yielding cultivar is most effectively done using dynamic crop models. Additionally these

models could be used as management support tools in teff cultivation.
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Samenvatting
Eragrostis tef is een eenjarige C4 grassoort (Poaceae), die zijn oorsprong in Ethiopië vindt.

Teffteelt in Nederland wordt geacht economisch haalbaar te zijn omdat, teffgraan en -meel

rijk zijn aan ijzer en geen gluten bevatten. Gluten is een multi-eiwit complex, dat coeliakie

kan veroorzaken bij mensen die hier (genetisch) vatbaar voor zijn. Het ontbreken van gluten

in teffgraan, maakt teff een geschikt ingrediënt in gezondheidsproducten, in het bijzonder

voor coeliakie-patiënten. Granen, die gluten bevatten, kunnen worden vervangen door teff

en wel in producten als pasta, brood, bier, koekjes en pannenkoeken.

Dit project werd gefinancierd door de Nederlandse Technologiestichting STW. STW

wilde naast het ontwikkelen van wetenschappelijke kennis over teff, ook via dit onderzoek

de introductie van teff als nieuw gewas voor de Nederlandse landbouw faciliteren. De on-

derwerpen van dit promotieonderzoek werden gekozen in overleg met veredelaars, boeren,

voedingstechnologen, plantfysiologen en agronomen. De Nederlandse teff-opbrengsten

aan het begin van dit project waren bescheiden (1.0-1.5 Mg·ha−1). De zaai- en oogstdatum

waren (te) laat in het seizoen. Daarnaast bleek teff zeer gevoelig voor legering. Legering

is het omvallen van stengels in een gewas als gevolg van wortel- of stengelfalen. Om een

winstgevend gewas in Nederland te worden, dient de opbrengst van teff in de orde van 2.5 -

3.0 Mg·ha−1 te zijn.

De overkoepelende doelstelling van de werkzaamheden -beschreven in dit proefschrift-

was het identificeren en het nauwkeurig beschrijven van de factoren, die limiterend zijn

voor de graanoogst van teff. Inzicht in de oogstlimiterende factoren zou veredelaars kun-

nen helpen bij het identificeren van concrete veredelingsdoelen voor teff. Het behalen

van deze veredelingsdoelen zou uiteindelijk kunnen leiden tot een hoogproductief teff

gewas onder Nederlandse teelt omstandigheden. Samen met dit praktische doel wilde

ik de fenologische (i.e. de relatie tussen een periodiek biologisch fenomeen en klimato-

logische omstandigheden), zaad fysiologische en biomechanische kennis van granen in

het algemeen en teff in het bijzonder uitbreiden. Daarom heb ik naast teff, wat diende als

belangrijkste modelsoort, ook onderzoek gedaan naar verscheidene planteigenschappen

van tarwe (Triticum aestivum L.) en rijst (Oryza sativa L.). Hiervoor heb ik gebruik gemaakt

van zowel gepubliceerde als zelf vergaarde gegevens. In de inleiding (hoofdstuk 1) heb ik

de voornaamste beperkingen gepostuleerd die hoge opbrengsten voor teff in Nederland

in de weg staan. Op basis van deze beperkingen hebben wij vier onderzoeksonderwerpen

gekozen. De onderwerpen van dit proefschrift zijn: zaadkieming (hoofdstuk 2), legering

(hoofdstuk 3), daglengterespons (hoofdstuk 4) en het patroon van bladverschijning in de

tijd (hoofdstuk 5).
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Zaadkieming (Chapter 2)

Als de temperatuur sub- of supra-optimaal is en/of wanneer de waterbeschikbaarheid

(waterpotentiaal) in de toplaag van de bodem niet toereikend is, dan kiemen teffzaden niet.

In dit hoofdstuk bestudeerden we de kiemkracht van teff in relatie tot temperatuur en water-

potentiaal. Onze gegevens zijn afkomstig uit een experiment met een volledig factoriëel

proefontwerp, betreffende 17 temperaturen en 5 waterpotentialen met 3 herhalingen. Dit

experiment resulteerde in een zeer uitgebreide set met kiemgegevens. Een dergelijke ge-

gevensset wordt doorgaans beschreven met hydrothermale tijdmodellen. Hydrothermale

tijdmodellen kunnen kieming in het voor kieming geschikte bereik van temperaturen en

waterpotentialen redelijk goed beschrijven. Echter, deze modellen falen doorgaans in het

beschrijven van kieming in de extremen van het permissieve bereik van temperaturen

en waterpotentialen. Daarom hebben we een aangepast modelraamwerk voor zaadkie-

ming van teff ontwikkeld. In dit gewijzigde model postuleren we een normale verdeling

van de kiemsnelheid van het zaad. Door gebruik te maken van dit postulaat kunnen

we het tijdsverloop van kieming onder alle gebruikte combinaties van temperatuur en

waterpotentiaal beschrijven. De duur van de periode tot de eerste zaden kiemen en het

uiteindelijke kiempercentage volgen uit de gemodelleerde gemiddelde kiemsnelheid en

de variatie in kiemsnelheid tussen de zaden in een populatie. Kardinale temperaturen (i.e.

optimum-, basis- en plafondtemperatuur voor kieming) zijn in ons modelraamwerk een

continue functie van de waterpotentiaal. Omgekeerd is de kardinale waterpotentiaal (basis

waterpotentiaal) een continue functie van temperatuur. Verschillende wetenschappers

ondervonden moeilijkheden, toen ze een spreiding toekende aan parameters voor de kar-

dinale temperaturen en/of aan de kardinale waterpotentiaal. Om deze moeilijkheden te

omzeilen, hebben we de spreiding in tijd tot kieming gemodelleerd als een functie van

zowel de temperatuur als de waterpotentiaal. Dit nieuwe modelraamwerk geeft een betere

beschrijving van zaadkieming dan alternatieve modellen. Het raamwerk maakt gebruik van

een flexibele continue functie en beschrijft bovendien een aantal biologische interacties

die niet worden beschreven door de conventionele hydrothermale tijdmodellen. In tegen-

stelling tot de conventionele hydrothermale tijdmodellen, bezit ons modelraamwerk wel

een statistisch correcte analyse van de gegevens.

Legering (hoofdstuk 3)

Zowel in Ethiopië als in Nederland is teff gevoelig voor legering. Legering wordt beschouwd

als een belangrijke opbrengstbeperkende factor in teff. Door het aanpassen en valideren

van conventionele biomechanische modellen hebben we een analyse van legering uit-

gevoerd. In dit hoofdstuk wordt deze analyse besproken. De modelparameters werden

verkregen uit een veldproef met twee contrasterende teff cultivars (Ayana en 04T19). In

deze veldproef maakten we gebruik van nieuwe in situ - en laboratoriummetingen onder

natte en droge omstandigheden. We toonden aan, dat teff vatbaarder is voor wortelfalen

dan voor stengelfalen. Echter, onze gegevens toonden ook duidelijk aan dat de stengels
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van teff niet sterk genoeg zijn. Vandaar ons advies aan veredelaars om gelijktijdig op zowel

wortelstelsel- als stengelsterkte te veredelen. De conventionele modellen die legering be-

schrijven, zijn afgeleid zijn uit experimenten met tarwe, een gewas met een rechtstandige

aar. Deze conventionele legeringsmodellen hebben grote aanpassingen nodig om de juiste

beschrijving te geven van pluim-dragende planten zoals teff en rijst. Water, dat aan planten

hangt als gevolg van regen of dauw, verhoogt significant de vatbaarheid voor legering. Om

een structurele onderschatting van legering te voorkomen, moet toekomstig onderzoek

worden gedaan onder volledig natte omstandigheden: zowel een water verzadigde bodem

als bevochtigde scheuten. Intersoortelijke modelvalidatie is gedaan met rijst (Oryza sativa).

De resultaten van rijst waren vergelijkbaar met de resultaten van teff.

Tijd tot bloei (pluimverschijning) (hoofdstuk 4)

Het Nederlandse groeiseizoen kent lange dagen, in vergelijking tot het Ethiopische groei-

seizoen. Deze langere dagen kunnen de tijd tot bloei in teff drastisch verlengen. Als gevolg

van deze latere bloei vindt de graanrijping deels plaats onder slechte weersomstandig-

heden aan het einde van het groeiseizoen. Teffplanten zijn voornamelijk zelfbestuivend;

de verschijning van de pluim en de bloei vallen vrijwel samen. De definitie van pluim-

verschijning is: het verschijnen van de pluim uit de schede van het vlagblad. Omdat de

pluimverschijning beter waar te nemen is dan de bloei, wordt in de rest van deze tekst

de term pluimverschijning in plaats van bloei gebruikt. Door middel van verschillende

fytotron- en kasexperimenten hebben we de daglengte-reactie van teff beschreven voor:

tijd tot pluiminitiatie, tijd tot pluimverschijning, het aantal fytomeren, de planthoogte

en de bovengrondse plantmassa. In deze experimenten stelden we twee cultivars (Gibe

en Ziqual) uit Ethiopië en twee cultivars (Ayana en 04T19) afkomstig uit een Nederlands

veredelingsprogramma, bloot aan daglengtes van: 9, 10.5, 12, 13.5, 15, 16.5 en 18 uur. Onze

resultaten lieten zien, dat de tijd tot het verschijnen van de pluim aanzienlijk werd verlengd

onder invloed van lange dagen. Teff is dus een ‘kortedagplant’. Niet alleen pluimverschij-

ning maar ook de ontwikkeling en uitgroei van de pluim werden sterk beïnvloed door

de fotoperiode. Plant-tot-plant variatie in de tijd tot pluimverschijning, het totale aantal

phytomeren per scheut, het aantal gestrekte internodiën en de bovengrondse plantmassa

namen toe onder invloed van lange dagen ten opzichte van korte dagen. In dit hoofdstuk

geven we een gedetailleerde beschrijving en kwantificering van de daglengte-respons van

teff. We presenteren een continue logistische functie met biologisch interpreteerbare para-

meters. Deze functie is waarschijnlijk algemeen toepasbaar in de ‘kortedaggranen’ zoals

we aantoonden in rijst. Onze bevindingen suggereren dat het mogelijk is, om via veredeling

te komen tot een teffgenotype dat aangepast is aan de noorderbreedte van Nederland.

Phyllochron (hoofdstuk 5)

In vergelijking met Ethiopië zijn de temperaturen in Nederland laag en zijn de daglengtes

lang. Hierdoor kan het Nederlandse groei seizoen de eerste ontwikkelingsstadia van teff
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significant vertragen. Phyllochron, gedefinieerd als het tijdsinterval tussen het verschijnen

van twee opeenvolgende bladeren, is een veel gebruikte indicator voor het ontwikkelings-

tempo voor de bloei. In dit hoofdstuk analyseren we de reactie van teff-phyllochron op

daglengte en de reactie van rijst-phyllochron op temperatuur. De theorie over de lengte

van het phyllochron onder constante dagtemperatuur en daglengte is nog steeds controver-

sieel. Veldstudies laten onjuistheden zien in de huidige manier, waarop de chronologie van

bladverschijning (phyllochron) wordt beschreven. Dit hoofdstuk geeft een nauwkeurige

beschrijving van de fundamentele concepten met betrekking tot bladverschijning in teff,

rijst en tarwe. We hebben vier teff cultivars blootgesteld aan zes verschillende daglengtes

bij een constante dagtemperatuur. Om het effect van temperatuur op rijst phyllochron te

onderzoeken hebben we literatuurgegevens van vier rijst cultivars bij vijf temperaturen

geanalyseerd. Bovendien hebben we gegevens over het phyllochron van in de buitenlucht

(in containers) geteelde tarwe geanalyseerd. Het bleek dat in alle drie de granen twee op-

eenvolgende fasen in phyllochron waar te nemen zijn: phyllochron 1 (p1) en phyllochron 2

(p2), met p1 < p2. Het effect van de temperatuur op p1 en p2 kan worden genormaliseerd

met het lineaire ‘thermisch- tijdsconcept’. Daglengte heeft geen systematisch effect op de

waarden van p1 en p2. De omschakeling van p1 naar p2 is abrupt en het verschil tussen

bodem- en luchttemperatuur verklaart niet volledig het verschil tussen p1 en p2. De plotse-

linge toename van phyllochron kan worden gerelateerd aan het moment van pluiminitiatie.

De plotselinge verandering is op zichzelf waarschijnlijk onafhankelijk van de temperatuur.

Discussie (hoofdstuk 6)

In dit hoofdstuk worden de resultaten van het onderzoek geplaatst in de context van de

algemene doelstelling van dit proefschrift. Het hoofdstuk begint met een discussie over

het modelleren en begrijpen van planten in het algemeen. Dan worden de bevindingen

voor elk onderzoeksonderwerp, te weten kiemkracht (hoofdstuk 2), legering (hoofdstuk 3)

en fenologie (hoofdstukken 4 en 5), samengevat. Hierna worden potentiele onderzoekslij-

nen uiteengezet om tot een generiek teffteelt-model te komen. Deze uiteenzetting wordt

gevolgd door een discussie over de implicaties van de onderzoeksresultaten voor verede-

laars. Uit deze discussie komen zes veredelingsdoelstellingen voort: I: Vroege bloei; II:

Het reduceren van legeringsvatbaarheid; III: Reduceren van zaaduitval uit de pluim; IV:

Verlaging van de basistemperatuur; V: Verhogen van gewasuniformiteit; VI : Handhaving

van graankwaliteit. Over de manier waarop deze veredelingsdoelen te bereiken zijn, wordt

in dit hoofdstuk gediscussieerd. Afgezien van de klassieke veredelingstechnieken -die nog

altijd zeer nuttig voor teff zijn- kunnen moleculaire veredelingstechnieken (zoals TILLING,

dwz chemische mutagenese, gevolgd door high-throughput screening voor interessante

puntmutaties) zeer behulpzaam zijn bij het verhogen van de huidige teff-graanopbrengst in

Nederland. Hoewel gewasgroeimodellen kunnen helpen bij het creëren van een ideotype,

zijn deze groeimodellen logischerwijs niet in staat om de gewenste plant fysiek te creëren.

Echter, naar mijn mening, zal het creëren van (mechanistische) dynamische modellen vere-
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delaars wel degelijk kunnen helpen bij het fysiek creëren van de gewenste plant. Modellen

kunnen veredelaars in groter detail een concept van de ideale plant onder verschillende

groeicondities voor ogen stellen. Veredeling voor vroegheid kan er bijvoorbeeld toe leiden

dat planten te kort worden, te vroeg bloeien en te weinig bladeren produceren. Dit kan

de graanopbrengst negatief beïnvloeden. Om tot een hoog renderende cultivar te komen,

kunnen de optimale plantafmetingen, optimale tijd tot pluimverschijning en het optimale

aantal bladeren op de scheuten, het best worden geschat met behulp van (mechanistische)

dynamische gewasgroeimodellen. Bovendien kunnen deze modellen worden gebruikt bij

het ontwikkelen van teeltadviezen voor teff.
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