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General Introduction 

Heparin and Heparan sulfate 
 

The glycosaminoglycans (GAGs) are important bioactive polysaccharides due to their role in 

cell adhesion, chemokine signaling, biochemical cascades, signal transduction and even 

pathogen recognition (Linhardt and Toida 2004; Bishop, Schuksz et al. 2007). They are un-

branched and negatively charged polysaccharides, composed of a repetition of disaccharide 

units (Table 1). GAGs are present in most of the vertebrate cells, where they are synthesized 

by glycosyltransferases (GTs) from activated monosaccharides (UDP-sugars) (DeAngelis 

2002). Some of these GAGs such as hyaluronic acid, chondroitin sulfate and heparin are 

commonly used in health care.  

 
Table 1. Disaccharide composition of GAG polysaccharide. The monosaccharides present in GAGs 

are: glucuronic acid (GlcUA); N-acetylglucosamine (GlcNAc), galactose (Gal), N-acetylgalactosamine 

(GalNAc), and iduronic acid (IdoUA). 

 

Heparin is used since the middle of the 1930’s as an anticoagulant compound to prevent blood 

clotting during surgery. Anticoagulant heparin is also administrated in other therapeutic 

applications including kidney dialysis and acute coronary syndromes (Rabenstein 2002), and 

it is used as adjuvant and coating compound in medical devices to avoid blood coagulation.  

Worldwide, about 40 tons of pharmaceutically grade heparin product is annually produced 

and used (Peterson, Frick et al. 2009). Most of this heparin product is isolated from animal 

derivatives (Liu, Zhang et al. 2009) (Fig. 1). Due to the harsh process conditions to isolate the 

heparin, the amount of waste produced, the shortage of raw materials of animal origin (Petitou 

and van Boeckel 2004), and the potential safety risk that represents the use of animal 

derivatives (Guerrini, Beccati et al. 2008; Liu, Zhang et al. 2009), the trend is to progressively 

replace this traditional production system. A small fraction of the anticoagulant heparin 

product is obtained by chemical synthesis (Choay, Petitou et al. 1983; Petitou and van 

Boeckel 2004). The synthetic heparin anticoagulant products are expensive, and despite the 

fact that these products are well defined and homogenous, they increase the risk of 

complications due to their long half time in the body. For these reasons, the chemical 

Glycosaminoglycans Disaccharide units 
Hyaluronan -4GlcUAβ1-3GlcNAcβ1- 

Keratan -3Galβ1-4GlcNAcβ1- 
Chondroitin -4GlcUAβ1-3GalNAcβ1- 
Dermatan -4IdoUAβ1-3GalNAcβ1- 
Heparosan 

(precursor of heparin/heparan sulfate) -4GlcUAβ1-4GlcNAcα1- 
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synthesis is not expected to take over the market of the traditionally produced heparin (Liu, 

Zhang et al. 2009). 

 

 
Figure 1. Chart flow of the production of pharmaceutically grade anticoagulant heparin: from 

animal derivatives to medical applications.  

 

In addition to its anticoagulant effect, heparin has a therapeutic potential for the treatment of 

cancer (Yip, Smollich et al. 2006) and the prevention of virus infections (Rusnati, Vicenzi et 

al. 2009). Heparan sulfate (HS), an analog of heparin which is not used yet in medical 

applications, has the same therapeutic potential as heparin (Bishop, Schuksz et al. 2007). 

Heparin and heparan sulfate biological activity is influenced by the polymer chain length, the 

sugar unit composition, and the sulfation patterns. Thus, the utilization of Hep/HS drugs in 

new therapeutic settings requires the availability of well defined heparin and heparan sulfate-

like molecules. Since the traditional production system using animal derivates does not yield 

homogenous and well defined products, and the chemical synthesis of heparin oligomers is 

laborious and not economically feasible for the synthesis of heparin longer than 

hexasaccharides, there is a general interest in developing alternative systems that control each 

of synthesis step of Hep/HS in order to produce well defined structures.  

 

Hep/HS biosynthesis in mammalian cells 
 
In mammalian cells, the biosynthesis of heparin and heparan sulfate takes place in the Golgi 

apparatus and involves many enzymatic steps (Rabenstein 2002; Gorsi and Stringer 2007). As 

shown in figure 2, Hep/HS chains are initiated by the synthesis of a tetrasaccharide linker 

composed of one glucuronic acid (GlcUA), two galactoses (Gal), and one xylose (Xyl). The 

xylose residue is covalently bound to a serine of a core protein (Xylβ1-O-Ser). The linker, 

GlcUAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser, serves as template for the synthesis of the 

unsulfated precursor of both the Hep- and HS-proteoglycans (Hep-PGs and HS-PGs). 

However, the core proteins differ for Hep- and HS-PGs; heparin polysaccharide is attached to 

a serglycin, while heparan sulfate can be linked to distinct proteins such as for example 
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syndecans, perlecans, and glypicans depending on its cellular location (Salmivirta, Lidholt et 

al. 1996). 

 

 
 

 
 

Figure 2. Multi-steps synthesis of heparin (Hep) and heparan sulfate (HS). The synthesis of 

Hep/HS is initiated by the polymerization of a tetrasaccharide linker: GlcUAβ1-3Galβ1-3Galβ1-4Xylβ1-O-

Ser. Then, heparin and heparan sulfate are synthesized by a cascade of catalytic steps.  

 

The unsulfated precursor of Hep/HS is known as heparosan (Table 1 and Fig. 3). Heparosan is 

polymerized by glycosyltransferases belonging to the EXT (hereditary multiple exostosin) 

and EXT-like families (EXTL) (McCormick, Duncan et al. 2000; Gorsi and Stringer 2007). 

The glycosyltransferases EXT1 and EXT2 catalyze alternatingly the transfer of the N-

acetylglucosamine (GlcNAc) and GlcUA residues from UDP-sugars to the growing polymer 

chain. 

 

 
 

Figure 3. Heparosan structure. Heparosan is the unsulfated precursor of heparin (Hep) and heparan 

sulfate (HS) and it is constituted of a repetition of glucuronic acid (GlcUA) and N-acetylglucosamine 

(GlcNAc) disaccharide unit (-4GlcUAβ1-4GlcNAcα1-). 
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Once heparosan elongation is terminated, the GlcNAc residues are randomly N-deacetylated 

into N-glucosamine (GlcN), prior to be N-sulfated into GlcNS by the dual action of the N-

deacetylase/N-sulfatase (NDST) enzyme (Bame, Lidholt et al. 1991; Bame, Reddy et al. 

1991). Following the N-deacetylation/N-sulfation step, some of the GlcUA residues are 

converted into iduronic acid (IdoUA) residues by the action of the glucuronyl C5-epimerase 

(Hepsi). The C5-epimerase converts GlcUA into IdoUA when the GlcUA residue is attached 

to the reducing end of a GlcNS residue (marked with *). Thus, only the GlcUA residues 

present in GlcNS*-GlcUA-GlcNS and GlcNS*-GlcUA-GlcNAc can be converted into IdoUA 

(Rabenstein 2002). Then, the polysaccharide chain is O-sulfated by three O-sulfotransferases 

(OST): the 2-OST, the 6-OST, and the 3-OST. These enzymes transfer a sulfate group to the 

oxygen molecules of distinct saccharide residues. The uronic acid residues (GlcUA and 

IdoUA) are sulfated in C2 position by the 2-OST. The 6-OST and the 3-OST catalyze the O-

sulfation of the glucosamine units (GlcNAc, GlcN, and GlcNS) on the C6 and C3 position, 

respectively (Rabenstein 2002).  

At the end of the synthesis, endo-β-D-glucuronidase cleaves randomly the heparin chain 

(60000 - 100000 Da) at the GlcUA residues (Rabenstein 2002). Due to the uneven repartition 

of GlcUA residues, it results in a polydisperse mixture of smaller heparin chains (5000 - 

25000 Da) (Lindahl, Feingold et al. 1986; Rabenstein 2002). Unlike heparin, heparan sulfate 

is not extensively cleaved by the β-glucuronidase and thus mostly HS-PGs are found in the 

mammalian cells (Rabenstein 2002).  

The sulfation pattern of the HS-PG chain is critical for the biological activity and the 

interaction with specific ligands such as for example the fibroblast growth factor (FGF) 

family (Lamanna, Baldwin et al. 2006; Gorsi and Stringer 2007). For a long time it was 

assumed that the sulfation patterns of HS resulted from the sulfotransferase catalytic activity 

only. However, it was found that endosulfatase (SULF) participate also in the heparan sulfate 

sulfation pattern by reducing the amount of O-sulfate groups, mainly in position C6 

(Lamanna, Baldwin et al. 2006; Gorsi and Stringer 2007). It is not fully understood yet which 

domains of the heparan sulfate are considered as substrate for SULF, but it was observed that 

the modification of the sulfation pattern by SULF is essential to confer HS-PG its biological 

activity (Lai, Sandhu et al. 2008).  

 

Hep/HS structure and biological activity 
 

During each of these Hep/HS synthesis steps, the heparosan polysaccharide is modified 

randomly and partially (Rabenstein 2002). Many enzymes and isoforms are involved in the 
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synthesis of heparin and heparan sulfate, which result in distinct complex saccharide 

structures (Table 2). The structural diversity of heparin and heparan sulfate polymers is large 

due to the amount of disaccharide unit and sulfation pattern combinations. In addition to the 

primary structure, the flexibility of the heparin and heparan sulfate chains and the van der 

Waals interactions with proteins add an additional complexity to these GAGs (Coombe and 

Kett 2005). 

 
Table 2. Disaccharide units present in heparin and heparan sulfate.  

 

 

Heparin and heparan sulfate polysaccharides differ in their structural organization, 

disaccharide composition, and also degree of sulfation. Heparan sulfate is composed of three 

domains: the non-sulfated block (NA) made of GlcUA-GlcNAc repeats, the intermediate 

block (NA/NS) more sulfated than NA and composed of GlcNAc and GlcNS in combination 

with GlcUA, and the highly sulfated block (NS) (Rabenstein 2002) (Fig. 4). In heparan sulfate 

the NA domain is the most abundant, the number of GlcNAc and GlcNS are about the same, 

and the number of IdoUA residue is lower than the GlcUA residues (Coombe and Kett 2005). 

Heparin is only composed of the NS-like domain and is therefore highly sulfated. More than 

80% of the Heparin polysaccharide is N-sulfated, and the O-sulfated groups are even more 

present than the N-sulfated groups (Gallagher and Walker 1985; Gallagher, Lyon et al. 1986). 
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Heparin is mainly composed of GlcNS and IdoUA; 70% of the heparin composition found in 

porcine intestinal mucosa is composed of the disaccharide units (IdoUA(2S)-GlcNS(6S)).  

 

 
Figure 4. Heparan sulfate polysaccharide organization. The legend of the monosaccharide units is 

presented in Fig. 2. NA, NS/NA and NS stand for the non-sulfated block, the intermediate block, and the 

highly sulfated block, respectively. 

 

For both heparin and heparan sulfate, the O sulfation pattern ensure biological activity (Gorsi 

and Stringer 2007; Peterson, Frick et al. 2009). The IdoUA residue is also very important 

because it interferes in the binding affinity of the polysaccharide with proteins. Indeed, unlike 

the GlcN and GlcUA residues present in the “chair” conformation, the IdoUA residues 

oscillate rapidly between the “chair” and the “skew-boat” conformations (Coombe and Kett 

2005). This ability to adopt conformational changes enhances the binding of the Hep/HS 

polymers to protein. In the cell matrix and on the cell surface, the interactions between protein 

and Hep/HS-PG depend on the specific composition of these latter. Thus, the polymer chain 

length, the disaccharide unit combinations and the sulfation patterns dramatically influence 

the Hep/HS biological activity.  

Hep/HS polymers are involved in many physiological process (Linhardt and Toida 2004). A 

mouse animal model in which the enzymes involved in the heparan sulfate synthetic pathway 

had been knockout, revealed that each steps in synthesis of HS-PG, from the polymerization 

to the post-polymerization modifications, are critical to ensure a good embryo development 

(Coombe and Kett 2005). Since, heparin-like structures bind to a multitude of proteins 

involved in a variety of biological functions, these molecules have a large therapeutic 

potential. In addition to their well known anticoagulant activity, these molecules appear to be 

also promising in the treatment of cancer and virus infection (Coombe and Kett 2005; Yip, 

Smollich et al. 2006; Rusnati, Vicenzi et al. 2009). 

 

Pharmaceutical applications of Hep/HS 

Anticoagulant activity 

Endogenous heparin and HS-PG participate in the inhibition of the blood coagulation cascade. 

While their basal anticoagulation activity in the body is rather low, when heparin is 

administrated by injection it exhibits a high anticoagulant activity (Rabenstein 2002). Heparin 
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anticoagulant activity is mainly due to its interaction with antithrombin, known as a 

proteinase inhibitor involved in the blood coagulation cascade. When antithrombin comes in 

contact with the unique heparin pentasaccharide sequence (-GlcNAc(6S)-GlcUA-

GlcNS(3S,6S)-IdoUA(2S)-GlcNS(6S)-), it changes its conformation into an active form 

which results in the inhibition of the blood coagulation cascade (Lindahl, Feingold et al. 

1986). Only 1/3 of the heparin extracted from animal derivates has this specific structure. The 

6-O and 3-O sulfation pattern is essential for the binding of heparin to antithrombin (Peterson, 

Frick et al. 2009). The IdoUA does not bind with antithrombin, but it facilitates the binding of 

heparin polymer by increasing the flexibility of the chain (Casu, Petitou et al. 1988). The 

requirement for IdoUA in order to facilitate the binding to antithrombin is size dependent. 

Heparin-like chains of about 10 monosaccharide residues do not need IdoUA or IdoUA(2S) to 

exhibit anticoagulant activity (Chen, Jones et al. 2007). 

 

Potential applications in cancer treatment 

Heparan sulfate-proteoglycans are involved in many aspects of cancer development from cell 

growth to metastasis. It was reported that the deregulated synthesis of HS-PGs, as well as the 

deregulated expression of the enzymes involved in the HS-PG post-polymerization 

modifications and degradation, contribute to the different steps of tumor progression 

(Sanderson, Yang et al. 2004; Yip, Smollich et al. 2006).  

In normal physiological conditions, the HS-PGs present on the cell surface serve as co-

receptor for several growth factors and thus induce cell proliferation. In cancer cells, it was 

observed that the changes in the expression of the HS-PGs present on the cell-surface lead to 

the reduction of cell adhesion (Yip, Smollich et al. 2006) which promote cell invasion, cancer 

progression, and angiogenesis (Götte, Joussen et al. 2002). In addition, deregulation of the 

heparanase (β-endoglucuronidase) activity on the cell surface and in the cell matrix, results in 

the degradation of HS-PGs that favors cell invasion and metastasis (Yip, Smollich et al. 

2006). The silencing of the heparanases reduced metastasis and tumor angiogenesis (Cohen, 

Pappo et al. 2006). 

In cancer, the anticoagulant activity of heparin affects tumor progression by decreasing the 

angiogenesis and by having an antimetastasic effect (Yip, Smollich et al. 2006). Several 

animal studies suggest that heparin antimetastasic activity is based on the anticoagulant 

activity, the inhibition of heparanase (Bar-Ner, Eldor et al. 1987), the interference with HS-

PG interactions (Ludwig, Boehme et al. 2004). Yet, although it is not well understood how 

heparin interferes in the angiogenesis process, it was observed that heparin modulates the 

expression and the function of the angiogenic growth factors and inhibitors (Casu, Vlodavsky 

et al. 2007). Depending on the heparin molecular weight, the biological activity differs 
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(Bishop, Schuksz et al. 2007). High molecular weight heparin enhances the binding of the 

growth factors to their receptors and thus promotes angiogenesis, while low molecular weight 

heparin has the opposite effect by inhibiting their binding. The use of low molecular weight 

heparin during the treatment of patients suffering from cancer, improved their life time (Yip, 

Smollich et al. 2006; Lazo-Langner, Goss et al. 2007). This result confirms the beneficial 

effect of heparin molecules during cancer treatment. The use of anticoagulant heparin in 

therapy against cancer is not suitable due to the high risk of hemorrhagic complications. To 

circumvent these complications, non-anticoagulant Hep/HS molecules but still exhibiting 

anti-tumoral activity have been produced (Casu, Vlodavsky et al. 2007). Yip et al, reviewed 

different therapeutic strategies using GAGs against cancer progression (Yip, Smollich et al. 

2006). Currently, inhibitors of the enzymes involved in the Hep/HS synthesis and 

degradation, and also competitive inhibitors of angiogenic factors such as heparin-like 

molecules are being investigated for their therapeutic effect in cancer treatment.  

 

Potential applications to prevent virus infection 

In addition to the anticoagulant and antitumoral activities, Hep/HS are of interest for the 

prevention of virus infections. Viral infections are often initiated by the binding of viruses to 

proteoglycans such as HS-PGs localized on the cell surface (Saphire, Bobardt et al. 2001; 

Rusnati, Vicenzi et al. 2009). It was observed that the basic amino acid residues of viral 

proteins interact with the negatively charged sulfated/carboxyl groups of the HS-PG chains, 

prior to the cell entry (Lee, Pavy et al. 2006). Thus, the aim of antiviral compounds is to 

hinder the interaction between the viral proteins and the components of the cell surface. A 

powerful antiviral drug should have a high affinity for the virus and binds to it before the 

virus binds to the proteoglycan localized on the cell surface (Rusnati, Vicenzi et al. 2009). 

The antiviral activity of heparin and heparan sulfate against DNA and RNA viruses such as 

human immunodeficiency virus (HIV) (Baba, Snoeck et al. 1988) and as well flaviviruses 

(Chen, Maguire et al. 1997; Lee, Pavy et al. 2006) has been reported already since many 

years. Since HS-PG are implicated in virus cell entry, heparin-based antiviral agents 

disrupting the interaction between the HS-PG and the viral proteins (Saphire, Bobardt et al. 

2001; Lee, Pavy et al. 2006) are promising compounds. Preclinical in vitro studies showed 

that heparin-like compounds can inhibit HIV, herpes simplex virus (HSV) and human 

papilloma virus (HPV) infections (Rusnati, Vicenzi et al. 2009) and also are active against 

dengue and encephalitic flaviviruses (Baba, Snoeck et al. 1988; Chen, Maguire et al. 1997; 

Lee, Pavy et al. 2006). It was observed that the antiviral activity of Hep/HS can also be 

modulated by varying the degree of epimerization, sulfation or/and the chain length (Chen, 

Maguire et al. 1997; Rusnati, Vicenzi et al. 2009). Depending on the virus, the interaction 
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with the HS-PG is different (Coombe and Kett 2005) and thus the structure of potential 

antiviral compounds should be investigated against each viral species. 

Production of Hep/HS pharmaceutical 

compounds 

Recovery of active compounds from animal derivatives  

In 2008, the market of anticoagulant heparin products represented a turn over of about 4.3 

billion euros and showed an annual growth rate of 5 to 10% from 2003 to 2008. The major 

players involved in this worldwide market are Sanofi-Aventis –France– (68%), 

GlaxoSmithKline –UK– (8%), Pfizer Inc –USA– (7%), Leo Pharma (4%), Novartis, Rovi, 

Boehringer Ingelheim, Abbot, and others. (personal communication, MSD-Oss). MSD-Oss; 

formally known as Organon, is also an important player by producing 8 to 10% (in heparin 

units) of the heparin market. About 80% of the unfractionated heparin produced by MSD-Oss 

is sold to GlaxoSmithKline and Sanofi-Aventis in order to be used as starting material for low 

molecular weight heparin.  

 

Most of the commercialized anticoagulant heparin products are obtained from pig intestine 

mucosa as starting material (Liu, Zhang et al. 2009). The first step of this industrial process is 

the pre-hydrolysis of the raw material using proteolytic enzymes at room temperature (Liu, 

Zhang et al. 2009). The pre-hydrolysis is followed by a hydrolysis at 50-75°C for about 6 h. 

The temperature is raised by the addition of 1 to 3 volumes of hot aqueous solvent (80-100°C) 

to the reaction mixture. The digested mixture is then cooled down to ambient temperature 

before proceeding to the recovery of heparin. Heparin is a polyanionic molecule and it is 

therefore extracted from the hydrolysate by using an anion exchange resin. The adsorbed 

heparin is eluted with a high salt solution (Houdenhoven. van 1999), and recovered from the 

eluant by ethanol precipitation. 

From pig mucosa, a mixture of polydisperse heparin polysaccharides of 5000 to 30000 Da is 

recovered (Rabenstein 2002). In order to suit the medical requirements, low molecular weight 

heparin 4000 to 6000 Da is produced from the native unfractionated heparin. Heparin 

fractionation can be done by chemical cleavage using nitrous acid or by enzymatic cleavage 

using heparinase. The low molecular weight heparin products represent the largest part of the 

heparin product sells. In the US market, the low molecular weight heparin product Lovenox 

(Adventis) corresponds to 70% of the heparin product sells (Liu, Zhang et al. 2009). 
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Chemical synthesis of heparin products  

Chemical synthesis of Hep/HS tetra- and pentasaccharide was introduced for the first time by 

Choay and co-workers (Choay, Petitou et al. 1983). In the 80’s, the collaboration between 

Sanofi-Synth/labo and Organon (currently MSD-Oss) resulted in the synthesis of a heparin 

synthetic analog pentasaccharide (Choay, Petitou et al. 1983; Petitou and van Boeckel 2004). 

From this work, and after about ten years of a successful clinical development, Sanofi 

commercialized in 2002 a specific heparin anticoagulant pentasaccharide motif known as 

fondaparinux (brand name Arixtra, Sanofi-Synthelabo). Despite the fact that the production of 

synthetic heparin requires many steps, multi-kilogram synthesis of highly pure compound is 

performed in industry (Petitou and van Boeckel 2004). 

 

Alternative method for the production of Hep/HS polymers  

As an alternative to the extraction from animal derivates and the chemical synthesis of 

heparin anticoagulants, (chemo)enzymatic catalysis could be used to produce defined Hep/HS 

chains (Lindahl, Li et al. 2005). The enzymes involved at each step of the Hep/HS synthesis 

(Fig. 2) have been isolated from mammalians cells or microorganisms, expressed and 

characterized as recombinant proteins in E. coli (Peterson, Frick et al. 2009) in order to be 

used for the production of well defined Hep/HS polymers. During the biosynthesis of 

Hep/HS, the synthesis of heparosan determines the chain length and the size distribution of 

the Hep/HS polymers.  

 

Heparosan production strategies 

Extraction of heparosan from microorganisms 

GAGs are present in the polysaccharide capsule of some microorganisms in order to mimic 

the host polysaccharides and to attenuate the immune response during infection (Roberts 

1996). Until now, heparosan polymer has been found in the capsule of the pathogenic bacteria 

Escherichia coli K5 (Vann, Schmidt et al. 1981), Pasteurella multocida Type D (Pandit and 

Smith 1993; Rimler 1994), and Avibacterium paragallinarum (Wu, Chen et al. 2010). 

Heparosan production has only been reported for E. coli K5, and large scale fermentation 

enabled the recovery of 15 g of heparosan per liter of culture (Wang, Ly et al. 2010) (Fig. 

5A). It was found that during the fermentation and the purification processes, lyases cleave 

heparosan K5 polymers. This lyase activity results in a heterogeneous heparosan polymer 

mixture of about 1.5 kDa and 16 kDa (about 8 and 80 monosaccharides) (Manzoni 1996; 
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Manzoni, Rollini et al. 2004). Despite the fact that this production strategy is cost effective, 

neither the heparosan chain length nor the incorporation of analog sugar residues can be 

controlled.  

 

Synthesis of heparosan using recombinant enzymes  

Recombinant heparosan synthases from mammalians and drosophila 

In mammalians, the synthesis of heparosan is catalyzed by glycosyltransferases belonging to 

the EXT (hereditary multiple exostosin) and EXT-like (EXTL) family. EXT1 and EXT2 

catalyze the elongation of heparosan chains. Together EXT1 and EXT2 form an active hetero-

complex, and their simultaneous expression in recombinant cells resulted in their full catalytic 

activity (Senay, Lind et al. 2000). The complex EXT1/2, as well as only EXT1 were able to 

elongate in vitro K5 heparosan acceptors by adding some extra sugar units (10 to 20 sugar 

units) (Busse and Kusche-Gullberg 2003). Unlike EXT1, no significant transferase activity 

was observed when EXT2 was incubated in the absence of EXT1 (McCormick, Duncan et al. 

2000). Kim et al. (2003), observed that the purified EXT1/2 complex synthesized heparosan 

polymers of about 170 kDa in the presence of GlcUA-Gal-O-C2H4NH-benzyloxycarbonyl, 

and of about 200 kDa in the presence of glypican-I core protein or α-trombomodulin 

proteoglycan as template molecules (Kim, Kitagawa et al. 2003). 

In drosophila, a family of homolog proteins to the mammalians EXT is involved in the 

synthesis of heparosan: TTV, SOTV and BOTV (Bellaiche, The et al. 1998; Izumikawa, 

Egusa et al. 2006 ).  

 

Recombinant heparosan synthases from Escherichia coli K5 

In E. coli K5, the synthesis of heparosan is mainly regulated by the glucosaminyl transferase 

KfiA (Hodson, Griffiths et al. 2000; Chen, Bridges et al. 2006) and the glucuronyl transferase 

KfiC (Griffiths, Cook et al. 1998), which transfer monosaccharide units to the non-reducing 

end of the heparosan growing chain. Sugiura et al, (2010) expressed KfiC and KfiA in E. coli 

BL21 (DE3) and showed that KfiC does not exhibit a transferase activity when incubated 

without KfiA in the presence of substrate and template molecules (Sugiura, Baba et al. 2010). 

In contrast, KfiA exhibited acetylglucosaminyl transferase activity when incubated in the 

absence of KfiC. In addition, they observed that the presence of an excess of KfiA increased 

the polymerization activity, while an excess KfiC had no effect on the GlcNAc transferase 

activity. Heparosan chains of about 10 kDa and 20 kDa were synthesized by the complex 
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KfiA/KfiC after 8 h and 18 h of incubation in the presence of heparosan oligosaccharides (7-

mer), respectively. 

Recombinant heparosan synthases from Pasteurella multocida Type D 

Unlike in E. coli K5, in P. multocida Type D the synthesis of heparosan is controlled by a 

bifunctional glycosyltransferase; the heparosan synthase PmHS1. PmHS1 and PmHS2, which 

is a PmHS1 cryptic homolog, were expressed as recombinant proteins in E. coli (May, Zhang 

et al. 2001; DeAngelis and White 2002). Despite their high amino acid level homology (73 

%), the recombinant PmHS1 and PmHS2 exhibit different polymerization properties 

(DeAngelis and White 2004; Sismey-Ragatz, Green et al. 2007). PmHS1 synthesized 

heparosan polymers with an average molecular weight of 800 kDa, while heparosan chains of 

28 kDa were polymerized by PmHS2. In the presence of heparosan oligosaccharide templates 

PmHS1 synthesized heparosan with a lower molecular weight and a lower size distribution, 

while the addition of templates had almost no effect on the PmHS2 polymerization process 

(Sismey-Ragatz, Green et al. 2007).  

Site directed mutagenesis was applied on the two conserved DXD amino acid domains of 

PmHS1 (Kane, White et al. 2006), and two PmHS1 single action transferase mutants were 

obtained. It was found that both the PmHS1 glucuronyl transferase and PmHS1 

acetylglucosaminyl transferase, incubated separately, were capable to transfer GlcUA and 

GlcNAc residue to a heparosan template molecule, respectively. This finding might be of 

interest to control heparosan polymer synthesis. Indeed, a tight control of the hyaluronan (-

4GlcUAβ1-3GlcNAcβ1-) (DeAngelis, Oatman et al. 2003), and chondroitin (-4GlcUAβ1-

3GalNAcβ1-) (Sugiura, Shimokata et al. 2008) oligosaccharide synthesis was achieved by 

immobilizing each of the respective single action transferase on distinct columns, and by re-

circulating the reaction mixtures (Fig. 5B).  

In addition, PmHS2 exhibits interesting polymerization characteristic since it was observed to 

transfer modified sugars such as N-acetylglucosamine residues having different acyl chain 

length in the C2 position (Sismey-Ragatz, Green et al. 2007). Heparosan analogs might confer 

new biological properties to heparin and heparan sulfate.  

 

Production of heparosan using recombinant bacteria  

The production of heparosan by recombinant bacteria has not been reported yet, but it was 

shown to be a successful method to produce hyaluronan (Fig. 5C). Hyaluronan, also known as 

hyaluronic acid, is a GAG composed of the same sugar units as heparosan but with different 

glycoside linkages (-4GlcUAβ1-3GlcNAcβ1-).  
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The expression of the Streptococcus equisimilis hyaluronan synthase hasA gene and the UDP-

glucose dehydrogenase gene, in Bacillus subtilis permitted to recover from the supernatant 

multi-grams of hyaluronan (1.1 to 1.2 MDa) per liter culture (Widner, Behr et al. 2005). This 

production yield was comparable to the yield observed with Streptococcus equisimilis strains 

(7 g/L) a natural producer of hyaluronan (Kim, Yoo et al. 1996). The fact that hyaluronan 

synthase from Pasteurella multocida has been expressed into recombinant E. coli (Yu and 

Stephanopoulos 2008; Mao, Shin et al. 2009) and succeeded in the production of hyaluronan, 

is promising for the production of heparosan using P. multocida heparosan synthase into 

recombinant E. coli. 

 

 
Figure 5. Overview of heparosan production strategies. A). E. coli fermentation for the extraction of 

capsular heparosan. B). Synthesis of heparosan by recombinant heparosan synthases (controlled 

synthesis of heparosan oligosaccharides using immobilized single action transferases). C). Production 

of heparosan polysaccharides using recombinant bacteria  

 

Conclusion 

In the preceding paragraphs, we described different methods used to synthesize heparosan 

polymers. Table 3 gives an overview of the advantages and disadvantages of each strategy. 

Despite the fact that the isolation of heparosan from bacterial capsule is economically 

advantageous, E. coli K5 is a human pathogen. Thus, rounds of random mutagenesis should 

be applied to decrease its virulence (Kim, Yoo et al. 1996) in order to use it for the production 

of pharmaceutical compounds. In addition, the production of heparosan from bacterial capsule 

does not enable to control the chain elongation and disaccharide unit composition (Roman, 

Roberts et al. 2003). The use of recombinant bacteria is interesting since non-pathogenic 

microorganisms can be used, and regulated expression of engineered heparosan synthases 

could enable a partial control of the polymer synthesis. However, with the current knowledge 

the polymer chain length cannot be controlled yet (Chen, Marcellin et al. 2009).  
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Despite the requirements for the expensive UDP-sugars, the use of biocatalysts to synthesize 

heparosan appears to be the best strategy to control the chain length and to incorporate 

unnatural sugar units.  

 
Table 3. Advantages and disadvantages of heparosan production strategies. 

 

Methods 
A 

Extraction from E. coli 
K5 

B 
Recombinant heparosan 

synthase 

C 
Recombinant bacteria 

Advantages 
- UDP-sugars 
produced by E. coli 
- Cost effective 

- Control polymer length  
(immobilized enzyme: 
disaccharide to 20-mers/ non-
immobilized enzyme:  
20 to 800 kDa) 
- Process free of contamination 

- UDP-sugars produced 
by recombinant bacteria 
- non pathogenic bacteria 
- Cost effective 

Disadvantages 
- Polymer length not 
controlled 
- E. coli K5 pathogen 

- Need UDP-sugar 
- Not cost effective 

- Polymer length not 
controlled 

Next focus 
- Strain improvement 
(virulence, yield, lyase 
activity, etc.) 

- UDP-sugar production system 
- To be investigated for 
the production of 
heparosan 

 

Thesis outline 
 

Due to their involvements in many physiological processes and their large potential for 

medical applications, Hep/HS are interesting polysaccharides. Since their biological activity 

depends on their structure and composition, the utilization of Hep/HS based drugs in new 

therapeutic settings will require the synthesis of well defined heparin and heparan sulfate-like 

molecules. Here, the polymerization of heparosan was studied in detail in order to be able to 

control the polymer elongation and thus regulate the chain length and size distribution of 

Hep/HS polymers. PmHS2 was considered as a promising candidate since it exhibits both an 

acetylglucosaminyl and a glucuronyl transferase activity (DeAngelis and White 2004; Kane, 

White et al. 2006) and it can use modified UDP-sugars to elongate heparosan (Sismey-

Ragatz, Green et al. 2007). Therefore, in order to control enzymatically the synthesis of 

heparosan, the polymerization mechanism of the Pasteurella multocida heparosan synthase 2 

-PmHS2- was studied in detail.  

 

In Chapter 2, the incubation parameters influencing the PmHS2 polymerization activity are 

described. It was observed that the UDP-sugar concentration influences the PmHS2 

polymerization activity with respect to the polymer chain length and size distribution.  

 

Using site-directed mutagenesis techniques, two functional and active PmHS2 single action 

transferases (PmHS2-GlcUA+ and PmHS2-GlcNAc+) were obtained from PmHS2. In Chapter 
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3, these two single action transferases were used to investigate the PmHS2 polymerization 

process in more detail. Not only the overall UDP-sugar concentration influences the polymer 

molecular weight but also the amount of each UDP-sugar. In addition, PmHS2 was found to 

exhibit glycoside hydrolase activity.  

 

In Chapter 4, the influence of the each transferase activity and each UDP-sugar concentration 

on the polymerization process was studied. For this purpose, the polymerization process was 

investigated in the presence of non-equimolar PmHS2 single action transferase 

concentrations, and a fractional factorial design (4 variables and 3 levels) was also included. 

In addition, the heparosan chain elongation was controlled by re-circulating the reaction 

mixture from one column with immobilized PmHS2-GlcUA+ to another column with 

immobilized PmHS2-GlcNAc+, and vise versa.  

 

A general assay using agarose gel electrophoresis analysis to screen a library of PmHS2 

mutants for their ability to synthesize polysaccharides is described in Chapter 5. The isolation 

of thermostable PmHS2 mutants validated this assay. In addition, the effect of a C-terminus 

tag on PmHS2 stability was investigated. 

 

In Chapter 6, the obtained results are discussed with respect to the control of heparosan 

elongation and size distribution. In addition, (chemo)enzymatic alternative production 

systems to synthesize defined heparin and heparan sulfate molecules are discussed.  
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In vitro synthesis of heparosan using 
recombinant Pasteurella multocida 

heparosan synthase PmHS2  
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Abstract 
 
 
 
 

In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by 

glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-

glucuronic acid. As heparin like molecules represent a great interest in the pharmaceutical 

area, the cryptic Pasteurella multocida heparosan synthase PmHS2 found to catalyze 

heparosan synthesis using substrate analogs has been studied. Here, we report an efficient 

way to purify PmHS2 and to maintain its activity stable during 6 months storage at -80°C 

using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide 

sugar, purified PmHS2 synthesized polymers up to an average molecular mass of 130 kDa. 

With 5 mM of UDP-GlcUA and 5 mM UDP-GlcNAc an optimal specific activity, from 3 to 6 

h of incubation, was found to be about 0.145 nmol/µg/min and polymers up to an average of 

102 kDa were synthesized in 24 h. In this study we show that the chain length distribution of 

heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. 

It was observed that low substrate concentrations favor the formation of high molecular 

weight heparosan polymer with a low polydispersity while high substrate concentration did 

the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1 and 

PmHAS are discussed.  
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Introduction 
 

Bioactive carbohydrates play an important role in many organisms. In vertebrates they are 

implicated in many physiological processes and biological functions at the molecular level 

from gene expression to protein regulation and interaction (Jackson, Busch et al. 1991). 

Therefore some of these carbohydrates, especially glycosaminoglycans (GAGs), are of great 

interest in medicine. GAGs are linear polysaccharides, sulfated or not, made of repeated 

disaccharides units of hexose or hexuronic acid and N-acetyl-hexosamine. The GAG 

heparosan (-4GlcUAβ1-4GlcNAcα1-) is the unsulfated precursor of heparin. Heparin acts as 

an anticoagulant and is known for its use in surgery to prevent e.g. vein thrombosis 

(Rabenstein 2002). Recent studies have evidenced that the molecular weight of heparin 

greatly influences its biological activity (Rabenstein 2002). Low molecular weight heparin 

ranging from 2.4 kDa to 5.4 kDa (8 to 18 monosaccharides units) may have an anti-tumor 

effect by reducing or suppressing tumor growth and metastasis in some cases (Castelli, Porro 

et al. 2004; Norrby 2006; Lee 2007). This finding implies that a tight control of the molecular 

weight of heparin and heparin-like molecules during production seems to be the clue to 

enlarge its therapeutic use. However the current ways to produce heparin and low molecular 

weight heparin are far from being optimal with respect to the control of the chain length 

distribution. Monodisperse heparin fractions with low molecular weight are difficult to obtain 

from animal tissue and the chemical synthesis of polymers longer than 6 units is not 

economically feasible (Chen, Bridges et al. 2006).  

In vivo GAGs are polymerized by glycosyltransferase (GT) enzymes that catalyze the 

polymer elongation through stepwise addition of α-linked uridine nucleotide sugars. 

Depending on the polysaccharide structures, the polymerization involves GT able to perform 

an inverting (αàβ) or a retaining (αàα) mechanism (Coutinho, Deleury et al. 2003). The 

polymerization step involving the (αàβ) mechanism is well known, however, the mechanism 

(αàα) is less described and still remains not fully understood. Due to the nature of the 

heparosan polymer, the heparosan synthase exhibits both of these mechanisms to elongate 

heparosan chains.  

Bacterial capsules composed of heparosan have been reported in Escherichia coli K5 (Vann, 

Schmidt et al. 1981) and Pasteurella multocida Type D (Pandit and Smith 1993; Rimler 1994; 

DeAngelis, Gunay et al. 2002). In E. coli K5, the synthesis of heparosan is regulated by 4 

genes, KfiA, KfiB, KfiC, and KfiD, located on the same operon. However only two of them, 

KfiA and KfiC, encoding respectively for the N-acetylglucosaminyl transferase and for the D-

glucuronyl transferase seem to be involved in the elongation of heparosan polymers 
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(Griffiths, Cook et al. 1998; Hodson, Griffiths et al. 2000; Chen, Bridges et al. 2006). 

Different from what is observed in E. coli, in P. multocida Type D the synthesis of heparosan 

is performed by only one enzyme with two glycosyltransferase activities; the heparosan 

synthase PmHS1. The P. multocida Type D heparosan synthase gene pmhssA also known as 

pmhs1 located on the putative capsule locus was cloned and PmHS1 active proteins were 

expressed (DeAngelis and White 2002). Based on homology with pmhssA a cryptic gene 

pmhssB (described also as pglA) encoding for an active recombinant heparosan synthase 

PmHS2 was discovered in P. multocida Type A, D and F (May, Zhang et al. 2001; DeAngelis 

and White 2002). Characterization of recombinant PmHS1 and PmHS2 enzymes showed that 

despite their high amino acid level homology (73%), the enzymes differ considerably with 

respect to their kinetic properties and the molecular weight distribution of the synthesized 

heparosan polymers (DeAngelis and White 2004; Sismey-Ragatz, Green et al. 2007).  

Kinetic studies on both P. multocida heparosan synthase enzymes report an initiation rate and 

an elongation rate of 2.6 and 76 pmol/µg/min respectively for PmHS1 while 5.2 and 28 

pmol/µg/min were observed for PmHS2 (Sismey-Ragatz, Green et al. 2007). When incubated 

without acceptor the polymerization properties of PmHS1 and PmHS2 were largely different 

with respect to molecular weight of the synthesized polymer. PmHS1 synthesized heparosan 

polymers with an average molecular mass of 800 kDa while heparosan of 28 kDa were 

observed when PmHS2 was used as a catalyst. The addition of heparosan oligosaccharide 

acceptors lowered the molecular weight of heparosan polymers synthesized by PmHS1 while 

it had almost no effect on the PmHS2 polymerization process. Sismey-Ragatz et al., 2007, 

also showed that contrary to PmHS1, PmHS2 is able to synthesize glycosaminoglycan 

polymers with new biological properties using unnatural donor sugar analogs. These heparin 

analog molecules with potentially new biological activities represent a great interest to 

enlarge therapeutic uses. It was indeed observed that depending on the sugar substitution, 

digestion of the polymer by heparinase III could be avoided (Sismey-Ragatz, Green et al. 

2007).  

Because of the above-mentioned polymerization properties PmHS2 was investigated in detail 

in this study. An efficient way to express, purify and store the PmHS2 enzyme is reported. 

The PmHS2 polymerization activity in time, as well as the heparosan polymer elongation 

process have been characterized by use of a coupled enzyme assay, agarose gel 

electrophoresis and HPSEC analysis. The influence of parameters such as the nucleotide 

sugar, the cofactor and the UDP concentrations on the enzyme activity and the product 

molecular weight are described. In this report we show that PmHS2 is capable of synthesizing 

heparosan polymers with a high Mw and that heparosan polymer average Mw and size 
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distribution can be controlled by the initial nucleotide sugar concentration present in the 

polymerization reaction.  

 

Experimental Procedures 

Cloning, expression and purification of recombinant P. multocida heparosan 

synthase 2 

Based on the sequence of the Pasteurella multocida Type D heparosan synthase cryptic gene 

pmhssB (GenBank acc. No. AY292200), the pmhssB forward primer 5΄-

CGCCATGAAGGGAAAAAAAGAGATG-3΄ and reverse primer 5΄-

GGATCCTTATAAAAAATAAAAAGGTAAAC-3΄ were designed. Using a High Fidelity 

PCR mix (Roche) on genomic DNA isolated from a Pasteurella multocida Type D (Strain 

number: 40456 from the Wageningen-UR Central Veterinary Institute collection) the pmhssB 

open reading frame (ORF) was amplified by 30 cycles of PCR (94°C, 30 sec; 60°C, 30 sec; 

72°C, 1 min). The PCR fragment was ligated into pCR-BluntII vector and transformed into E. 

coli Top10 cells (Invitrogen). The identity of the pmhssB gene was confirmed by sequencing 

(Base Clear B.V). Using the forward primer 5΄-CACCATGAAGGGAAAAAAAGAGATG-

3΄ and the reverse primer 5΄-TAAAAAATAAAAAGGTAAACAGGGGATA-3΄, pmhssB 

fragments were obtained by applying 30 cycles of PCR (94°C, 30 sec; 55°C, 30 sec; 72°C, 1 

min) which were cloned in the pET101-D-TOPO expression vector (Invitrogen). 

The pET101-D-TOPO vector allowing the fusion of a V5 epitope and a C terminal His-tag to 

the pmhssB fragment was first transferred into the E. coli Top10. Subsequently positive 

plasmids were isolated and transformed into the E. coli BL21*(DE3) expression strain 

(Invitrogen). Recombinant protein was expressed according to the manufacturer’s instruction. 

Briefly, a culture inoculated with an overnight pre-culture was grown in LB ampicillin (50 

µg/ml) media at 37°C under shaking condition (250 rpm). When the OD600 was around 0.6 the 

protein expression was induced by addition of 0.5 mM isopropyl b-D-1-thiogalactopyranoside 

(IPTG) and growth was continued for 2 h at 30°C/250 rpm. Cells were harvested by 

centrifugation (Allegra 6R centrifuge. Beckman Coulter. Rotor: GG-3.8A.) at 5°C/3000 g/20 

min and the pellet was stored at -80°C. For enzyme purification the pellet (from 75 ml 

culture) was thawed on ice and resuspended in 4 ml phosphate buffer (50 mM NaH2PO4 and 

300 mM NaCl, pH 8) before being sonicated 4x30 sec on ice with a sonication tip (Vibra cell. 

Sonic and materials INC, output control set on 40). Prior to centrifugation at 5°C/18000 g/15 

min (Eppendorf centrifuge 5417R), MgCl2 was added to the lysate to a final concentration of 

6 mM (Kane, White et al. 2006). After centrifugation, the supernatant was kept on ice for 
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further purification and the pellet was discarded. In order to perform optimal His-tag 

purification, imidazole was added to the supernatant to a final concentration of 10 mM. To 4 

ml of supernatant, 1 ml of 50% Ni-NTA super-flow resin slurry (Qiagen) was added and 

gently mixed for 1 h at 4°C on a rotating shaker. The resin slurry and supernatant mix was 

washed with increasing imidazole concentrations respectively 10 mM and 20 mM. To allow 

the elution of PmHS2, 250 mM of imidazole was present in the elution buffer. The first 3 

eluted fractions of 1 ml known to have the highest PmHS2 concentrations were pooled and 

then desalted by gel filtration using a PD10 column with Sephadex G-25 Medium resin (GEA 

Healthcare) with 50 mM Tris, pH 7.2 as eluent. Ethylene glycol to a final concentration of 1 

M was added to the desalted PmHS2 fraction before storage at -80°C. 

Purity of the PmHS2 desalted fraction was monitored by 10% SDS-PAGE stained with 

SimplyBlue Safe Stain (Invitrogen) and the protein content was quantified by the BCA 

method (Pierce) using BSA as reference.  

 

Characterization of the PmHS2 polymerization process  

Standard polymerization conditions 

Unless noted, polymerization assays with a final volume between 30 to 200 µl contained 40 

mM Tris pH 7.2, 4 mM MnCl2, 4 mM MgCl2, 5 mM UDP-glucuronic acid (UDP-GlcUA), 5 

mM UDP-N-acetylglucosamine (UDP-GFlcNAc) and 55-60 µg/ml of 95% pure PmHS2 

enzyme. The reaction occurred in the dark at 30-32°C under mild shaking conditions for time 

ranging from 1.5 to 48 h depending on the experiment. In order to study the effect of different 

parameters the composition of the polymerization mix was changed. Modifications in the 

standard incubation conditions are stated in the legend to the figures.  

Note that in this study no oligosaccharide acceptor was added to the polymerization reaction.  

 

Determination of the heparosan polymer chain length and polydispersity 

After synthesis, the reactions were quenched at 99°C for 10 min and then cooled on ice. The 

polymer chain length and the size distribution of the synthesized products were assessed by 

agarose gel electrophoresis and by high performance size exclusion chromatography 

(HPSEC) analysis. For gel analysis the samples were mixed with glycerol to a final 

concentration of 12%, loaded on a 2% (w/v) agarose gel and run for 2 h at 50 V in Tris-

acetate EDTA buffer (TAE buffer) (Lee and Cowman 1994). The gels were stained overnight 

in the dark in 50% ethanol / 0.005% Stains-All (Sigma). The destaining of the gels was 

carried out in pure water for 30 min in the dark followed by an exposure to the light till 
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background discoloration. Images from the gel were acquired with a BioRad GS-800 

calibrated densitometer and analyzed by the Quantity One program. Selected hyaluronan 

molecular mass markers ranging from 27 kDa to 495 kDa (Select-HALoLadder, Hyalose, 

Oklahoma, USA) were used to estimate the heparosan molecular weight. Since Stains-All 

tends to over-stain the polysaccharides on an agarose gel it is was difficult to estimate the 

average molecular weight of the polymers in an accurate way by this type of analysis. 

Alternatively the size distribution and the molecular weight of the polymers were analyzed by 

High Performance Size Exclusion Chromatography (HPSEC) on a SpectraSystem HPLC 

(Thermo Separation Products, USA) using three TosoHaas TSK-gel columns in series (4000, 

3000, and 2500 PWx1, 300x7.5 mm; TosoHaas, Japan) preceded by a TSK PWx1 guard 

column (TosoH, Japan). Samples (20 µL) were injected and eluted at 30oC using 0.8 ml/min 

NaNO2 (0.2 M). Detection was performed using a Shodex RI 71 refractive index detector 

(Showa Denko K.K., Japan). Hyaluronan molecular mass standards of respectively 30 kDa, 

160 kDa, and 262 kDa were used for calibration. From the logarithmic model fitting the 

elution time of the hyaluronan molecular weight standards we established the following 

equation: Mw = Mi = exponential [(elution time - 27.811)/(-1.4765)]. By assuming that 

heparosan and hyaluronan elution patterns are comparable, the molecular weight of the eluted 

samples (Mi) was determined by applying the equation mentioned above. The molecular 

weight distribution (polydispersity index PDI) was determined using the following formula: 

PDI = Mw / Mn 
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The RI signal, known to be proportional to the relative amount of eluted product, was 

considered as being equivalent to the amount of polymer chains (Ni) of molecular weight Mi.  

 

Determination of PmHS2 specific activity 

The polymerization reaction was performed with 95% pure PmHS2 and in presence of 

nucleotide sugars. Both nucleotide sugars (UDP-glucuronic acid and UDP-N-

acetylglucosamine) were added in equimolar ratio and in sufficient amount in order to initiate 

the polymerization and enable us to follow the elongation process in time by means of the 

coupled enzyme assay and agarose gel analysis. The activity of PmHS2 was assessed by 

measuring the UDP formation with a non continuous spectrophotometric assay at 340 nm 

(Gosselin, Alhussaini et al. 1994; Krupa, Shaya et al. 2007). In this assay the UDP released 
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from the conversion of the nucleotide sugars during the polymerization is coupled via 

pyruvate kinase (PK) and lactate dehydrogenase (LDH) to the oxidation of NADH into 

NAD+. With 0.3 mM NADH as initial concentration and in presence of UDP, the NADH 

conversion into NAD+ was established to be linear. According to the stoichiometric equation 

1 mM UDP will convert 1 mM NADH. This was confirmed with preliminary experiments in 

which the NADH/UDP conversion ratio was found to be 1.016. 

Due to the degradation of nucleotide sugars at high temperature, heat shock was not used to 

quench the reactions. Polymerization reactions were stopped by immersion in liquid nitrogen 

and stored at -20°C. Prior to the UDP measurement, the samples were thawed on ice and 

diluted to contain less than 0.3 mM of UDP. No residual PmHS2 activity was detected using 

this procedure. The following compounds were added to the diluted samples: 0.3 mM NADH, 

2 mM PEP (phospho(enol) pyruvic acid trisodium salt heptahydrate 98%. Across organic, 

Belgium), 112.5 mM KCl, and 25 U/ml LDH (L-lactate dehydrogenase from Rabbit muscle. 

Fluka). The mix with a final volume of 140 µl was pre-incubated in a Tecan Safire 

thermostated spectrophotometer during 10 min at 30°C and its absorbance was measured at 

340 nm. The assay was performed in microtiterplate wells (UV-star plate 96 wells, flat 

bottom, Greiner bio-one). After the pre-incubation, PK (pyruvate kinase from rabbit muscle. 

Sigma) was added to a final concentration of 10 U/ml. The final reaction volume was 150 µl. 

The OD was measured at 340 nm for 30 min at 30°C. A stable absorbance indicated full 

conversion of the UDP. The pre-incubation and incubation absorbance data were combined to 

calculate the amount of UDP released in the polymerization reactions and thus, estimate the 

enzymatic activity using the conversion ratio of 1.016. All experiments were performed in 

independent duplicate; the average is presented in the “Results” section.  

 

Identification of the polymer chains synthesized by PmHS2 

The identification of the polymer obtained by enzymatic activity of the recombinant PmHS2 

was carried out using Heparinase III from Flavobacterium heparinum (Sigma). Heparinase III 

is known to specifically cleave at the α1-4 linkage between the hexosamine and glucuronic 

acid residues of heparosan and heparan sulfate. First the polymerization assay was quenched 

at 99°C for 30 min then Heparinase III (0.5 U/µl in 0.05 M sodium phosphate buffer pH 7.6) 

was added to it and the mixture was incubated for 24 h at 30°C (DeAngelis, Gunay et al. 

2002). The samples obtained after polymerization and incubated with and without Heparinase 

III were analyzed on a 2% (w/v) agarose gel. Full degradation of the polymer confirmed the 

identity of PmHS2 synthesized product as being heparosan polymers (data not shown). 
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Results 

Cloning, expression and purification of the recombinant P. multocida heparosan 

synthase PmHS2 

The Pasteurella multocida pmhssB gene was cloned and PmHS2 recombinant proteins 

expressed using the vector pET101 in E. coli BL21*(DE3) strain. After sonication of the cell 

suspension, 15-20% of PmHS2 protein was found in the soluble fraction (Fig. 1). Most of the 

PmHS2 remained in the membrane fraction. After Ni-NTA purification and PD10 desalting 

steps we estimated the purity of PmHS2 enzyme to be about 95% based on SDS-PAGE gel 

analysis. BCA assay showed that 5 to 10 % of pure PmHS2 enzyme was lost during the PD10 

desalting step. We estimated that about 7 ± 1 mg of 95% purified PmHS2 was obtained from 

a 1 L of E. coli culture after 2 h of induction at 30°C.  

 

 
Figure 1. SDS-PAGE analysis of recombinant PmHS2 protein. E. coli 

protein fractions were separated on a 10% polyacrylamide gel and stained 

with SimplyBlue Safe Stain (Invitrogen). The expressed PmHS2 is present 

in the total E. coli cell fraction (dilution x4) (lane1), in the soluble fraction 

after cold sonication and centrifugation (dilution x2) (lane2) and in the His-

tag purified and PD10 desalted fraction (dilution x1) (lane3). The 

approximate protein molecular mass (around 77 kDa) was estimated by 

comparison with the SeeBlue Plus2 Prestain (Invitrogen) molecular mass 

standard (lane 4). 

 

 

 

Characterization of the PmHS2 polymerization process 

Storage stability of PmHS2 

The storage stability of PmHS2 was determined by comparing the catalytic activity of the 

newly extracted and purified PmHS2 enzyme with the PmHS2 enzyme stored at -80°C. The 

catalytic activity of PmHS2 was estimated by gel electrophoresis analysis of the 

polymerization products obtained under standard conditions. Addition of MnCl2 and MgCl2 to 

the storage buffer increased enzyme instability at -80°C. Under these storage conditions a 

significant loss of activity was observed after 3 weeks at -80°C. Addition of ethylene glycol 

to a final concentration of 1 M in the storage buffer was crucial to ensure the enzyme stability. 

With ethylene glycol, both the activity of the enzyme expressed as the amount of nucleotide 
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sugars converted by PmHS2 after 24 h of incubation at 30°C and the chain length of the 

synthesized heparosan were the same before and after 6 months at -80°C (Fig. 2). After 1 year 

of storage a decrease of about 10 to 20% of the enzymatic activity was observed. SDS-PAGE 

analysis showed that PmHS2 was not degraded during the storage at -80°C (data not shown). 

 

Process stability during the polymerization  

In the presence of 55-60 µg/ml of 95% pure PmHS2 and 20 mM of each UDP-sugar we 

observed that PmHS2 maintained at least 80% of its initial activity during the incubation time 

from 24 to 48 h. After 24 h of incubation in the presence of 5 mM or 20 mM of both UDP-

sugar PmHS2 converted comparable amount of nucleotide sugars. According to these results 

we assumed that PmHS2 process stability was constant for 24 h under the assay conditions 

used. Thus, we considered 24 h of incubation as being the reference time point to study the 

influence of different parameters such as the divalent metal ion, the nucleotide sugar and the 

UDP concentrations on the polymerization activity. 

 

 
 
Figure 2. Influence of the time of storage at -80°C on PmHS2 polymerization activity. After several 

months of storage at -80°C, purified PmHS2 (55-60 µg/ml) was thawed on ice and its activity was 

assayed in the standard polymerization buffer described in the Materials and Methods section. Enzyme 

activity expressed as the amount of substrate converted after 24 h of incubation at 30°C was determined 

using the coupled enzyme assay. 100% activity corresponds to the amount of substrate converted by 

freshly extracted enzyme.  

 

Influence of the divalent metal ions Mn2+ and Mg2+ 

Divalent metal ions such Mn2+ and Mg2+ have been described as being cofactors of some 

glycosyltransferases (Markovitz, Cifonelli et al. 1959; Stoolmiller and Dorfman 1969). 

DeAngelis and White, 2004, showed that in the case of PmHS2, Mn2+ is the optimal divalent 
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metal ion to support the polymerization but Mg2+ also contributes to the substrate conversion 

(DeAngelis and White 2004). To study the influence of these divalent metal ions on the 

PmHS2 catalytic activity, an equimolar mixture of MnCl2 and MgCl2 ranging from 0 to 16 

mM was investigated (Fig. 3). The polymerization was not initiated in absence of metal 

cofactor. PmHS2 activity after 24 h of reaction time was optimal with 4 mM of both MgCl2 

and MnCl2. With 0.5 mM of MgCl2 and 0.5 mM of MnCl2, a 40% decrease of the activity was 

found. In the range from 2 mM to 6 mM of each divalent metal ion, a decrease of activity of 

not more than 10% was observed. In presence of 8 mM to 16 mM of each divalent metal ion a 

decrease of activity, respectively, about 20 to 50% was observed. Not only the amount of 

substrate converted in 24 h was affected by the cofactor concentrations but also the average 

polymer molecular mass. Based on agarose gel electrophoresis analysis, PmHS2 incubated in 

presence of 4 mM of Mg2+ and 4 mM of Mn2+ synthesized heparosan polymers with an 

average of 102 kDa while 30-40 kDa heparosan polymers were obtained in presence of 10 

mM of each ion. 
 

 

 
Figure 3. Effect of the MnCl2 and MgCl2 concentration on PmHS2 activity. Enzymatic activity of 

purified PmHS2 (55-60 µg/ml) was assayed in the standard polymerization buffer described in the 

Materials and Methods section with an equimolar mixture of divalent metal ions (MnCl2 and MgCl2) 

ranging from 0 to 16 mM. 100% activity corresponds to the amount of substrate converted after 24 h of 

incubation at 30°C in presence of 4 mM of MnCl2 and 4 mM of MgCl2. The data represent the average of 

three independent experiments ± SD.  

 

Influence of the nucleotide sugar concentrations 

Since for each mole of nucleotide sugar converted 1 mole of UDP is released, the free UDP 

generated during the polymerization reaction was used to estimate the substrate conversion by 

PmHS2. The molecular mass and the size distribution of heparosan polymer were determined 
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by agarose gel electrophoresis and HPSEC using hyaluronan polymers standards (27 kDa to 

495 kDa).  

Nucleotide sugars, UDP-GlcUA and UDP-GlcNAc, mixed in an equimolar ratio, were added 

to the polymerization buffer in a sufficient amount to initiate the polymerization and enable us 

to follow the elongation process in time by means of the coupled enzyme assay and agarose 

gel analysis. In order to study the influence of the nucleotide sugar concentration on the 

polymerization process, substrate concentrations of 1 mM, 5 mM, and 20 mM of both UDP-

GlcUA and UDP-GlcNAc were added to the polymerization reaction with purified PmHS2.  

 

 
 
Figure 4. Influence of the substrate concentration on PmHS2 activity during 180 min to 360 min 

of incubation. Purified PmHS2 (55-60 µg/ml) was assayed in the standard polymerization buffer 

described in the Materials and Methods section with increasing substrate concentration ranging from 1 

mM up to 20 mM of both nucleotide sugars. The specific activity observed during 180 min to 360 min of 

incubation for the following substrate concentrations 1 mM (Δ), 5 mM (○), and 20 mM (•) of both UDP-

GlcUA and UDP-GlcNAc was respectively about 0.080, 0.145, 0.128 nmol/µg/min.  

 

It is important to notice that for the 3 equimolar nucleotide sugar concentrations chosen in this 

study the specific activity of PmHS2 remained constant from 180 min to 360 min (3 h to 6 h) 

of incubation despite the decrease of available nucleotide sugars and the subsequent increase 

in UDP a possible inhibitor of the polymerization reaction (Fig. 4) (Tlapak-Simmons, Baron 

et al. 2004; Baggenstoss and Weigel 2006). 

We observed that the substrate concentration influenced PmHS2 polymerization process in 

two distinct manners. First, as shown in figure 4, the substrate concentration influenced the 

specific activity of the enzyme. The highest activity of 0.145 nmol/µg/min was observed 

between 180 min to 360 min of incubation when 5 mM of each UDP-sugar were added. 

Adding 20 mM of each nucleotide sugar lowered PmHS2 specific activity to 0.128 

nmol/µg/min. At a lower substrate concentration, 1mM of UDP-GlcUA and 1 mM of UDP-
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GlcNAc, the specific activity was about 0.080 nmol/µg/min. In this last case, based on the 

amount of substrate converted per unit of time, we calculated that the nucleotide sugars were 

totally converted after about 8 h of incubation.  

Secondly the substrate concentration greatly influenced the molecular weight and the size 

distribution of the heparosan polymers synthesized by PmHS2. Both agarose gel 

electrophoresis and HPSEC analysis showed that PmHS2 elongated high molecular weight 

heparosan polymers when incubated in presence of 1 mM of each nucleotide sugar while 

lower molecular weight products were obtained when incubated with 5 mM or 20 mM of each 

UDP-sugar (Fig. 5A and 5B). Also the polydispersity of the formed heparosan was influenced 

by the UDP-sugar concentrations, a low substrate concentration resulted in a lower 

polydispersity. HPSEC analysis showed that in presence of 1 mM, 5 mM, and 20 mM of both 

UDP-GlcUA and UDP-GlcNAc the average molecular mass of the heparosan formed was 

respectively 130 kDa; 102 kDa, and 45 kDa. These data showed an inverse correlation 

between the nucleotide sugar concentration and the polymer chain length. Depending on the 

initial conditions PmHS2 lengthened heparosan chains to a different polymerization degree. 

In presence of 1 mM of each nucleotide sugar, polymers with an average of 650 

monosaccharide units were synthesized, in comparison to 225 monosaccharide units per 

polymer when incubated in the presence of 20 mM of each UDP-sugar.  

 

 
Figure 5. Influence of the substrate 

concentration on PmHS2 
polymerization process. Purified 

PmHS2 (55-60 µg/ml) was incubated at 

30°C in the standard polymerization 

buffer described in the Materials and 

Methods section with increasing 

substrate concentration (UDP-GlcUA 

and UDP-GlcNAc). (A) Depending on 

the substrate concentration and 

incubation time, heparosan polymer 

chain length and size distribution was 

analyzed on 2% (w/v) agarose gels 

stained with Stains-All. (B) HPSEC 

analysis of the synthesized heparosan 

after 24 h of incubation in presence of 1 

mM, 5 mM and 20 mM of both UDP-

GlcUA and UDP-GlcNAc. The average 

molecular mass and polydispersity (PDI) of heparosan polymers were respectively: (Δ) 130 kDa (PDI 

=1.04), (○) 102 kDa (PDI =1.36), and (•) 45 kDa (PDI =1.52). 
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Table 1 shows for each studied substrate concentration, the relation between the amount of 

nucleotide sugars converted after 3 h of incubation and the corresponding average polymer 

molecular weight observed on agarose gel electrophoresis. From these data we have 

calculated the amount of heparosan polymer chains present in each sample and their 

elongation rate.  

The following equation was used to determine the amount of heparosan polymer chains 

(nmole PTn) initiated during the first 3 h of incubation in a 100 µl reaction volume per µg of 

PmHS2. 

 

 

 

During the first 3 h of polymerization we calculated that about 9 times less heparosan 

polymer chains were initiated and elongated with 1mM of UDP-GlcUA and 1 mM of UDP-

GlcNAc compared to 20 mM of both UDP-sugars. 

Assuming that only the oligosaccharides present after 3 h of polymerization reaction will be 

elongated, in other words by neglecting the initiation of new polymers, we calculated the 

elongation rate per polymer chain. For this calculation the PmHS2 specific activity values 

previously determined for a period of incubation between 3 to 6 h were used (Fig. 4).  

At an incubation time Tn we estimated the total amount of nucleotide sugar converted (nmole 

TTn). 

 

 

For each incubation time Tn, the average polymerization degree for each polymer chain could 

be determined (DP Tn). 

TnTnTn P nmole/ T nmoleDP =  

 

From the DPTn, the average Mw of the heparosan polymer chains at Tn could be assessed. 

ridemonosacchaTnTn MwDPMw ×=  

 

The average number of monosaccharide units transferred per min and per heparosan polymer 

chain (UMS, equal to elongation rate) has been estimated for the elongation phase using the 

equation:  

 

 

The calculated elongation rate was about 3.6 monosaccharide unit/min/heparosan chain 

versus 0.6 monosaccharide unit/min/heparosan chain respectively with 1 mM versus 20 mM 
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of each UDP-sugar. Thus, at low substrate concentration both a decrease in number of 

polymer chains and an increase in elongation rate per heparosan chain result in longer 

polysaccharides. 

Finally based on our assumptions and the calculations we determined the average heparosan 

polymer Mw (kDa) that should be synthesized after 6 h of polymerization. 

 

ridemonosacchaTnTn average MwDPMw ×=  

 

We were able to describe PmHS2 polymerization behavior in presence of different substrate 

concentrations. However, the calculated average heparosan Mw after 6 h of incubation are 

higher than what is observed on agarose gel electrophoresis (Table. 1). For example, in 

presence of 1 mM of each UDP-sugar, we calculated that after 6 h of incubation heparosan 

polymers should have an average molecular mass of 198 kDa, while on agarose gel heparosan 

polymers of about 120 ± 10 kDa were observed. The difference between the calculated and 

the observed data is even more significant if we consider 24 h of incubation. The increased 

tailoring of the spots (Fig. 6B) indicated enhanced polydispersity due to initiation of new 

heparosan chains at the same time as the elongation of heparosan polymers.  

To conclude, the effect of the nucleotide sugar concentration on PmHS2 polymerization 

process can be described thanks to equations estimating the amount of polymer chains 

initiated and their approximate molecular weight. However, the results suggest that the 

estimation can be further improved when taking into account that during the elongation, the 

initiation of new polymer chain occurs.  
 

Table 1. Influence of the nucleotide sugar concentration on the PmHS2 polymerization process. 

The polymerization reaction was performed in 100 µl reaction volume containing 55-60 µg/ml purified 

PmHS2. The detail of the calculation is presented in the Result section. 

 
a. The polymer average molecular mass (± estimated error) was determined using agarose gel 

electrophoresis analysis in comparison with hyaluronan molecular weight marker as a reference. 

b. Refers to the calculated average number of monosaccharide units transferred per min and per 

heparosan polymer chain.  

UDP-
GlcUA 
UDP-
GlcNAc 
mM 

UDP-sugar 
converted 
per 
microgram 
PmHS2 
(nmol, 3 h 
incubation) 

Observed 
average 
heparosan 
molecular 
mass (kDa, 
3 h 
incubation)a 

Heparosan 
chain initiated 
per microgram 
PmHS2 (nmol, 
3 h incubation) 

Calculated 
UMS 

b
 

Calculated 
average 
heparosan 
molecular 
mass (kDa, 
6 h 
incubation)a 

Observed 
average 
heparosan 
molecular 
mass (kDa, 
6 h 
incubation)a 

1 8 ± 0.20 70 ± 5 0.022 3.6 198 120 ± 10 
5 11 ± 0.70 28 ± 2 0.082 1.8 84 60 ± 5 
20 10 ± 0.50 10 ± 2 0.200 0.6 33 25 ± 2 
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PmHS2 polymerization process in time 

The polymerization process in time was investigated with 55-60 µg/ml of 95% pure PmHS2 

using the optimal nucleotide sugar concentrations to get the highest specific activity (5 mM of 

each UDP-sugar). The quantification of free UDP was used to determine the amount of 

nucleotide sugar converted in time. We observed that the PmHS2 polymerization process 

could be divided into phases depending on the specific activity observed in time (Fig. 6A). 

These polymerization phases have been studied and characterized for the enzyme specific 

activity, the product molecular weight synthesized and the polymer size distribution. The 

polymerization starts with the synthesis of short oligosaccharide from nucleotide sugars. This 

phase called initiation is quite short and in the case of PmHS2 “the level of de novo initiation” 

is low (Sismey-Ragatz, Green et al. 2007). As shown in Table. 1, we observed a correlation 

between the UDP-sugar concentrations and the amount of heparosan polymer chain initiated. 

Following the initiation, the short heparosan chains synthesized will be elongated. This phase 

is usually referred as the elongation phase and is characterized by a constant ratio of 

nucleotide sugar conversion over the time  (ΔP/ΔT). Between 2 h and 12 h of incubation the 

enzyme specific activity was about 0.100 ± 0.01 nmol/µg/min (Fig. 6A.). This corresponds to 

a transfer of 1.2 monosaccharide unit/min/heparosan chain. The average molecular mass of 

representative polymer samples increased significantly in time from 61 kDa (PDI= 1.25) after 

4 h to 102 kDa (PDI= 1.36) after 24 h of incubation meaning that about 500 monosaccharide 

units in average have been incorporated into each polymer chain. However, as noticed before 

the increase in polydispersity in time showed that initiation of new chains and elongation 

proceed simultaneously (Fig. 6B). The last phase observed is characterized by a sudden level 

off of the enzyme activity. After about 12 to 13 h of incubation, the specific activity of 

PmHS2 slowed down to about 0.020 ± 0.005 nmol/µg/min (Fig. 6A). Between 12 h and 24 h 

the polymer size only slightly increased in contrast with an increase in polydispersity (Fig. 

6B).  
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Figure 6. Analysis of PmHS2 polymerization process in time. The PmHS2 (55-60 µg/ml) enzymatic 

activity, incubated during 28 h at 30°C, was analyzed with standard assay conditions as described in the 

Materials and Methods section. At many time points the amount of substrate converted was determined 

using the coupled enzyme assay. (A) The specific activity for the elongation phase (2-12 h) and the level 

off were respectively 0.100 ± 0.010 nmol/µg/min and 0.020 ± 0.005 nmol/µg/min. Five independent 

experiments were completed for each data set, their average ± SD is presented. (B) The molecular 

weight distribution of heparosan polymer in the samples was analyzed by 2% (w/v) agarose gels stained 

with Stains-All. 

 

Inhibition of the PmHS2 polymerization process by UDP 

UDP has been reported to inhibit GT enzymes activity (Markovitz, Cifonelli et al. 1959; 

Stoolmiller and Dorfman 1969; Tlapak-Simmons, Baron et al. 2004; Baggenstoss and Weigel 

2006). When added to the polymerization buffer prior to the synthesis, UDP showed severe 

inhibition of the PmHS2 activity. The inhibition level of 5 mM of UDP on the polymerization 

activity was around 50% with 5 mM or 20 mM of each nucleotide sugar (Fig. 7A). In the 

range of 8 to 10 mM of UDP the level of inhibition was dependent on the nucleotide sugar 

concentration (Fig. 7B).  

With 5 mM of each nucleotide sugar the complete inhibition of the PmHS2 polymerization 

activity was observed in presence of 8 mM UDP, while with 20 mM of each nucleotide sugar 

the full inhibition was obtained with 10 mM of UDP. These results suggest that UDP 
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inhibition is somehow related to the concentration of nucleotide sugars present in the reaction 

assay. The inhibitory UDP concentration does not seem to be reached during the first hours of 

incubation. We indeed observed that from 2 to 12 h of incubation, the UDP rise and the 

decrease of substrate availability did not affect PmHS2 specific activity (Fig. 4 and Fig. 6A). 

To conclude, the inhibition by UDP does not seem to occur when the UDP concentration is 

below or equal to 4 mM.  

 

 
 
Figure 7. Effect of initial UDP concentration on PmHS2 activity. Purified PmHS2 (55-60 µg/ml) was 

assayed in the standard polymerization buffer described in the Materials and Methods section with 

increasing initial UDP concentrations from 0 mM to 10 mM. (A) The nucleotide sugar concentration of 

both UDP-GlcUA and UDP-GlcNAc was respectively 5 mM (○) and 20 mM (•). After 24 h of incubation 

at 30°C the amount of substrate converted by PmHS2 in presence of UDP was determined using the 

coupled enzyme assay. (B) Samples from both series were analyzed on a 2% (w/v) agarose gel stained 

with Stains-All.  
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Discussion 
 

In this report we describe the successful cloning of the P. multocida Type D heparosan 

synthase-2 gene (pmhssb) and the expression of the corresponding PmHS2 protein into E.coli 

BL21*(DE3) using pET101 as an expression vector. Protein expression and purification 

allowed the recovery of 7 ± 1 mg of 95% pure and active PmHS2 enzyme per liter of culture. 

This level of PmHS2 enzyme recovery after purification, which is stable for at least 6 months 

when stored at –80°C, has not been described so far. 

We found that, in absence of divalent metal ions, PmHS2 did not exhibit activity and that 

cofactor concentration added in excess inhibit the enzymatic activity. The optimal cofactor 

concentration for PmHS2 polymerization activity was determined to be 4 mM of both Mn2+ 

and Mg2+. This finding support the classification reviewed by Coutinho et al. 2003 that 

PmHS2 belongs to the GlycosylTransferase-A (GT-A) superfamily due to the requirement for 

divalent metal ions in order to be active and its DXD amino acid conserved domains.  

Polymerization reactions catalyzed by the recombinant PmHS2 showed 3 distinct 

polymerization phases. PmHS2 initiates the polymerization process by the synthesis of short 

oligosaccharides using nucleotide sugars. For PmHS2, the initiation phase has been described 

to have a slow “de novo” initiation rate (Sismey-Ragatz, Green et al. 2007). We demonstrated 

that for PmHS2 the nucleotide sugar concentrations during the initiation phase play an 

important role in the average Mw and the polydispersity of the resulting heparosan polymers. 

Low substrate concentrations favor the formation of higher molecular weight polymers with a 

lower polydispersity while high substrate concentrations do the opposite. 

On one hand we assume that in an early stage of the polymerization the PmHS2 enzyme has 

more affinity for oligomers than for nucleotide sugars. On the other hand we also hypothesize 

that in presence of a low substrate concentration the probability for PmHS2 to encounter a 

synthesized heparosan oligomers instead of a nucleotide sugar is relatively high. A lower 

substrate concentration causes less heparosan chains to be initiated. Consequently lesser 

heparosan polymers to be elongated and thus, it will result in the synthesis of longer 

heparosan polymer chains. This polymerization phenomenon is similar to what has been 

observed with PmHAS and PmHS1 in presence of oligosaccharide acceptors. For both 

enzymes, the affinity for the oligosaccharide acceptor was higher than for activated 

monosaccharides. In addition, a decrease in oligosaccharide acceptor concentration resulted in 

polymer chains with a higher Mw, while an increase in acceptor lowered the average Mw of 

the polymer formed (Jing and DeAngelis 2004; Sismey-Ragatz, Green et al. 2007). We 

demonstrated that for PmHS2 the initiation is a determinant step in the polymer synthesis. 

During this phase the amount of heparosan chains initiated is regulated by the nucleotide 
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sugar concentration. Another conclusion from this experiment is that PmHS2 is a non-

processive enzyme. With a processive enzyme the dissociation of the polymer and the enzyme 

implicates the end of the chain elongation. The amount of chains initiated will not differ 

depending on the nucleotide sugar concentrations and thus, low substrate concentrations will 

result in shorter polysaccharides. At the opposite, with a non-processive enzyme such PmHS2 

the addition of a single monosaccharide to the growing chain is followed by the dissociation 

of the polymer from the enzyme. The polymer is re-capture before proceeding to the transfer 

of new monosaccharide unit. As in presence of low substrate concentration PmHS2 initiates 

less chains it leads to higher molecular weight products. 

The substrate concentration also influenced the specific activity of the PmHS2 enzyme during 

the elongation phase. The highest activity was observed by adding 5 mM of each UDP-sugar, 

from 3 to 6 h of incubation the specific activity was found to be about 0.145 ± 0.010 

nmol/µg/min. In this research, the specific activity observed for PmHS2 is considerable 

higher than the elongation rate of 28 pmol/µg/min that has been reported so far for PmHS2 

(Sismey-Ragatz, Green et al. 2007). When using the optimal nucleotide sugar concentration 

PmHS2 showed an elongation phase of about 10 h and under these conditions the polymers 

chains were elongated with average up to 500 to 550 monosaccharides units in 24 h.  

Although we have observed that at the first stage of the polymerization that the enzyme has 

more affinity towards products with a higher molecular weigh both the elongation and the 

initiation of new heparosan chain occur simultaneously. Weigel, 2002, stipulated that despite 

the fact that in theory non-processive enzyme could elongate the polymer chains till infinite, it 

has not been observed. Due to the increase of the polymer chain length and the polymer 

concentration, interaction between the non reducing end of the polymer chains and the 

enzyme become more difficult in time. As the system enzyme/polymer is becoming more 

rigid it will favor the initiation of new polymer chains from nucleotide sugars or short 

oligosaccharides that are more mobile than longer chains (Weigel 2002). This phenomenon 

supports the fact that new heparosan chains are also initiated while the elongation of polymer 

occurs. As newly elongated heparosan oligomers cannot obtain the same molecular weight as 

the previously synthesized heparosan polymers during the incubation time it results in a 

broader molecular weight distribution and therefore, a higher polydispersity. 

In many studies UDP was found to be an inhibitor of glycosyltransferase activity (Markovitz, 

Cifonelli et al. 1959; Stoolmiller and Dorfman 1969; Tlapak-Simmons, Baron et al. 2004; 

Baggenstoss and Weigel 2006). PmHS2 also is inhibited by UDP. The UDP inhibition is 

influenced by the nucleotide sugar concentration; high substrate concentrations reduce the 

UDP inhibition. We observed that the specific activity of PmHS2 remained constant during 

the incubation period from 2 to 12 h despite the decrease of available nucleotide sugars and 

the subsequent increase in UDP. This showed that the UDP concentration present in the 
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polymerization assay has to reach a certain concentration limit which seems to be above 4 

mM in order to be an inhibitor of PmHS2 activity.  

To summarize, we observed that purified PmHS2 is able to synthesize relatively long 

heparosan polymers with a molecular mass up to 130 kDa. In the presence of 5 mM of each 

UDP-sugar a maximal specific activity of 0.145 nmol/µg/min was found. We showed 

evidence that a change in the initial nucleotide sugar concentrations influenced the final 

product molecular weight and polydispersity and confirmed that PmHS2 is a non-processive 

enzyme. Future studies on heparosan synthase will allow us to develop an in-vitro production 

system in which heparosan polymer chain length can be controlled. 

 

Abbreviations 
GAG, glycosaminoglycan; UDP, uridine diphosphate; GlcUA, glucuronic acid; GlcNAc, N-

acetyl-D-glucosamine; GT, glycosyltransferase; HPSEC, high performance size exclusion 

chromatography; OD, optical density; PmHS2, Pasteurella multocida heparosan synthase 2; 

HS1, heparosan synthase 1; HAS, hyaluronan synthase  
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Abstract 
 
 
 

 

Heparosan synthase catalyzes the polymerization of heparosan (-4GlcUAβ1-4GlcNAcα1-) by 

transferring alternatively the monosaccharide units from UDP-GlcUA and UDP-GlcNAc to 

an acceptor molecule. Details on the heparosan chain initiation by Pasteurella multocida 

heparosan synthase PmHS2 and its influence on the polymerization process have not been 

reported yet. By site directed mutagenesis of PmHS2, the single action transferases PmHS2-

GlcUA+ and PmHS2-GlcNAc+ were obtained. When incubated together in the standard 

polymerization conditions, the PmHS2-GlcUA+/PmHS2-GlcNAc+ showed comparable 

polymerization properties as determined for PmHS2. We investigated the first step occurring 

in heparosan chain initiation by the use of the single action transferases and by studying the 

PmHS2 polymerization process in the presence of heparosan templates and various UDP-

sugar concentrations. We observed that PmHS2 favored the initiation of the heparosan chains 

when incubated in the presence of an excess of UDP-GlcNAc. It resulted in a higher number 

of heparosan chains with a lower average molecular weight or in the synthesis of two distinct 

groups of heparosan chain length, in the absence or in the presence of heparosan templates, 

respectively. These data suggest that PmHS2 transfers GlcUA from UDP-GlcUA moiety to a 

UDP-GlcNAc acceptor molecule to initiate the heparosan polymerization; as a consequence 

not only the UDP-sugar concentration but also the amount of each UDP-sugar is influencing 

the PmHS2 polymerization process.  

In addition, it was shown that PmHS2 hydrolyzes the UDP-sugars; UDP-GlcUA being more 

degraded than UDP-GlcNAc. However, PmHS2 incubated in the presence of both UDP-

sugars favors the synthesis of heparosan polymers over the hydrolysis of UDP-sugars.  
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Introduction 
 

Due to its extensive use in the medical area, the world market of heparin is yearly increasing 

with about 15%. In 2009, it represented a turnover of approximately 6 billion dollars. Heparin 

is mainly used in surgery to prevent vein thrombosis but is also administrated in a number of 

settings including kidney dialysis and acute coronary syndromes (Rabenstein 2002). In 

addition, recent studies have shown that heparin and derivatives such as low molecular weight 

heparin may have a larger therapeutic potential. For example, it was observed that low 

molecular weight heparin improved the survival of patient suffering from cancer (Lazo-

Langner, Goss et al. 2007). However, due to the risk of hemorrhagic complications heparin 

cannot be used as an anticancer therapeutic agent, and thus analog molecules that do not 

exhibit anticoagulant properties should be used. The biological activity of heparin and heparin 

like molecules is influenced by the disaccharide repeat composition, the chain length, and the 

sulfation patterns (Casu, Vlodavsky et al. 2007). The use of recombinant enzymes to 

synthesize heparin and analogs could enable a tight control of the polymer chain length, of the 

UDP-sugars incorporated, and of the sulfation patterns.  

Heparin is produced in a cascade of enzymatic reactions where initiation, polymerization, N-

deacetylation/N-sulfation, C5-epimerization, and O-sulfation take place in a coordinated 

manner. Heparosan, the unsulfated and un-epimerized precursor of heparin, is constituted of 

the repeating disaccharide unit (-4GlcUAβ1-4GlcNAcα1-). In nature, apart from vertebrates, 

heparosan polymers can be found in microorganisms. Heparosan is present in the 

polysaccharide capsule of certain pathogenic bacteria in order to protect them against the host 

immune system during infection. In Pasteurella multocida Type D, an animal pathogen, 

heparosan is synthesized by the heparosan synthase PmHS1.  

PmHS1 and PmHS2 (the cryptic homolog of PmHS1), have been characterized and both 

recombinant enzymes exhibit different polymerization properties (DeAngelis and White 

2002; DeAngelis and White 2004; Sismey-Ragatz, Green et al. 2007). PmHS2 is a non-

processive glycosyltransferase containing a glucuronyl transferase (GlcUA+) and a N-

acetylglucosaminyl transferase (GlcNAc+) activity. Each of the catalytic transferase domain 

contains a DXD amino acid motif, considered to be the key residue involved in the substrate 

binding and the catalysis (Charnock and Davies 1999; Pedersen, Tsuchida et al. 2000). The 

inactivation of the catalytic domain by substitution of both aspartic acids (D) by asparagines 

(N) has been described for P. multocida hyaluronan synthase PmHAS (Jing and DeAngelis 

2000; Jing and DeAngelis 2003) and for PmHS1 (Kane, White et al. 2006). Here we describe, 

based on amino acid sequence homology with PmHS1 and with Escherichia coli heparosan 
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synthase KfiC and KfiA (Griffiths, Cook et al. 1998; Hodson, Griffiths et al. 2000; Chen, 

Bridges et al. 2006), the construction of the two PmHS2 single action transferases (PmHS2-

GlcUA+ and PmHS2-GlcNAc+). Both the characterization of the single action transferases and 

a detailed study of the polymerization process of PmHS2 allowed us to investigate the 

initiation process of heparosan chains. Until now, details on the first step occurring in 

heparosan polymerization have not been described. Here, we report how the heparosan chain 

initiation influences the overall polymerization process. 

 

Experimental Procedures 

Site directed mutagenesis of P. multocida pmhssB, the gene encoding for PmHS2 

Site directed mutagenesis using specific primer sets was performed to introduce mutations in 

the DXD amino acid motif of each PmHS2 transferase domain. The positions of the point 

mutations in pmhssB (GenBank acc. No. AY292200) were based on amino acid homology 

with PmHS1 (Kane, White et al. 2006) and E. coli KfiC and KfiA (Griffiths, Cook et al. 1998; 

Hodson, Griffiths et al. 2000; Chen, Bridges et al. 2006). The primers forward FWGlcUA 5΄-

CTTTCAAAATAGTAATGATGTATGTCATCATG-3΄ and reverse RVGlcUA 5΄-

CATGATGACATACATCATTACTATTTTGAAAG-3΄ were designed to allow the 

substitution D215N/D217N in the glucuronyl transferase domain leading to PmHS2-

GlcNAc+. To obtain the PmHS2-GlcUA+, the primers forward FWGlcNAc 5΄-

CCTGTAATGATAACATTATCTATCCAAGCG-3΄ and reverse RVGlcNAc 5΄-

CGCTTGGATAGATAATGTTATCATTACAGG-3΄ enabled the substitution D479N/D481N 

in the N-acetylglucosaminyl transferase domain. The double transferase knock out (PmHS2-

nul) was obtained by using as DNA template pmhs2-GlcUA+ and the primer set 

FWGlcUA/RVGlcUA.  

To introduce the nucleotide modification into the pmhssB gene, two PCR reactions of 30 

cycles (94°C/30 sec, 60°C/30 sec, 72°C/1 min) amplified pmhssB into two distinct fragments, 

both of them containing the mutations. The different primer combinations are presented in 

Table 1. The two fragments were linked by their overlapping ends and the DNA strands were 

complemented by 10 cycles of overlap PCR (94°C/30 sec, 65°C/30 sec, 72°C/2 min). Finally 

the modified gene was amplified by 30 cycles of PCR (94°C/30 sec, 60°C/30 sec, 72°C/2 

min) and for each gene: pmhs2-GlcUA+, pmhs2-GlcNAc+ and pmhs2-nul, the full length was 

obtained using the primer set FWHS2 5΄-

CGTAGGATCCATGAAGGGAAAAAAAGAGATG-3΄ and RVHS2 5΄-

GCATGAGCTCTAAAAAATAAAAAGGTAAACAGG-3΄. Each PCR fragment was ligated 
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into the pET101 vector and transformed into E. coli BL21*(DE3) expression strain 

(Invitrogen). The nucleotide sequencing of the mutants confirmed the amino acid 

substitutions in both DXD motifs.  
 

Table 1. Primer combinations for the site directed mutagenesis of P. multocida pmhssB (pmhs2). 

The amino acid modifications occurred at the DXD motif; (-) and (+) stand for unmodified and modified 

DXD motif, respectively.  

 

Gene/Protein D215N/ 
D217N 

D479N/ 
D481N Primer combinations 

pmhs2/PmHS2 - - FWHS2-RVHS2 

pmhs2-GlcUA+/PmHS2-GlcUA+ - + FWHS2-RVGlcNAc / FWGlcNAc-RVHS2 

pmhs2-GlcNAc+/PmHS2-GlcNAc+ + - FWHS2-RVGlcUA / FWGlcUA-RVHS2 

pmhs2-nul/PmHS2-nul + + a FWHS2-RVGlcUA / FWGlcUA-RVHS2 

a. DNA template = pmhs2-GlcUA+ 

 

Expression and purification of the PmHS2 recombinant proteins  

The expression and the purification of the recombinant proteins: PmHS2-GlcUA+, PmHS2-

GlcNAc+, PmHS2-nul, was done in the same way as previously described for PmHS2 

(Chapter 2).  

 

Determination of PmHS2 enzyme activities 

For the standard polymerization conditions, the polymerization reaction with a final volume 

between 30 µl and 600 µl contained 40 mM Tris-HCl pH 7.15, 4 mM MnCl2, 4 mM MgCl2, 

UDP-GlcUA, UDP-GlcNAc and freshly purified recombinant PmHS2 enzymes (PmHS2, 

PmHS2-nul, PmHS2-GlcUA+, PmHS2-GlcNAc+). The amount of UDP-sugar and enzymes 

varied with the experiments; details are mentioned in the legend to the figures. The reactions 

were performed in the dark at 30-32°C under mild shaking conditions for times ranging from 

30 min to 24 h. 

Heparosan templates (35 kDa; PDI = 1.17) were synthesized using the standard 

polymerization condition. The polymerization reaction was quenched by heating (99°C/30 

min), and subsequently was centrifuged (18000xg/15 min) in order to discard the denaturated 

enzymes. The synthesized heparosan chains were used as templates and were added to a new 

enzymatic reaction (end concentration 0.55±0.05 µM), when appropriate.  
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The polymerization and the hydrolysis activities of PmHS2 enzymes (PmHS2, PmHS2-nul, 

PmHS2-GlcUA+ and PmHS2-GlcNAc+) were assessed by a coupled enzyme assay, gel 

electrophoresis, high performance anion exchange chromatography (HPAEC), high 

performance size exclusion chromatography (HPSEC) analysis, and matrix-assisted laser 

desorption-ionisation time of flight mass spectrometry (MALDI-TOF MS). The enzymatic 

reactions were not quenched by heat shock but were stopped by immersion in liquid nitrogen 

and stored at -20°C prior to analysis. All samples were analyzed at least in duplicate. 

 

Coupled enzyme assay 

The UDP-sugars conversion was quantified by measuring the NADH reduction into NAD+ at 

340 nm in a coupled enzyme assay (Gosselin, Alhussaini et al. 1994; Krupa, Shaya et al. 

2007). The assay was performed in the same way as previously described (Chapter 2).  

 

Gel electrophoresis 

To analyze the heparosan polymers formed during the enzymatic reactions, the quenched 

samples were mixed with glycerol to a final concentration of 12% (v/v). The samples were 

loaded on 2% (w/v) agarose gel and the gels were run for 2 h at 50 V in Tris-acetate-EDTA 

(TAE) buffer, and then were stained overnight in the dark in a ethanol/Stains-All buffer. The 

destaining was carried out in pure water as we previously described.  

In addition, Novex 20% Tris Borate-EDTA (TBE) polyacrylamide gels (Invitrogen) were 

used depending on the experiment. The gels were run for 45 min at 200 V in Tris-Boric acid-

EDTA (TBE) buffer, and then were stained 45 min in the dark in a Stains-All buffer 

according to the recommendations of Sigma-Fluka. Briefly, to prepare the staining buffer, a 

stock solution (0.1% (w/v) Stains-All in formamide (100%)) was added in a 1:10 ratio to a 

dilution buffer (Tris 45 mM pH 9.2, formamide 7.5% (v/v), isopropanol 25% (v/v)). The TBE 

gels were destained in pure water for 30 min in the dark. 

To estimate heparosan molecular mass with gel electrophoresis analysis, hyaluronan polymers 

of 30 kDa, 160 kDa and 262 kDa (Hyalose), or a selected hyaluronan molecular mass marker 

ranging from 27 kDa to 495 kDa (Select-HALoLadder, Hyalose) were used.  

 

High performance anion exchange chromatography (HPAEC) analysis 

The composition of the reaction mixture (UDP-sugars and monosaccharides) was analyzed by 

HPAEC using an ICS-3000 Ion Chromatography HPLC system equipped with a CarboPac 

PA-1 column (2 x 250 mm) in combination with a CarboPac PA guard column (2 x 25 mm) 



 

 63 

Polymerization initiation and activity of PmHS2 

and a pulsed electrochemical detector in pulsed amperometric detection mode (Dionex, 

Sunnyvale, USA). The standards were purchased from Sigma, unless indicated, UMP (uridine 

monophosphate disodium salt Mw 368.15), UDP-GlcUA (UDP-glucuronic acid trisodium salt 

Mw 646.2), UDP-GlcNAc (UDP-N-acetylglucosamine sodium salt Mw 651.3), GlcUA (D-

glucuronic acid Mw 194.14), GlcNAc (N-acetyl-D-glucosamine Mw 221.21. Merck), and 

UDP (uridine diphosphate disodium salt hydrate Mw 448.18 + aq. Biochemika). All samples 

were injected and analyzed in duplicate. 

For the HPAEC analysis performed in condition 1, a flow rate of 0.3 ml/min was used with 

the following gradient: 0-26 min at 16 mM NaOH, 26-33 min at 16-100 mM NaOH, 33-78 

min at 0-1000 mM sodium acetate in 100 mM NaOH, 78-83 min at 1000 mM sodium acetate 

in 100 mM NaOH. Under these conditions, N-acetylglucosamine, glucuronic acid, and UDP-

GlcNAc eluted at 8 min, 44 min and 67 min, respectively, and UDP-GlcUA was not detected. 

Alternatively, for combined UV and electrochemical detection the above described HPAEC 

system was equipped with a VWD-3100 single wavelength detector (Dionex, Sunnyvale, 

USA) and the pulsed electrochemical detector in series. In this case (condition 2), a flow rate 

of 0.3 ml/min was used with the following gradient: 0-2 min at 5 mM NaOH, 2-27 min at 0-

875 mM sodium acetate in 5 mM NaOH, 27-32 min at 875-950 mM sodium acetate in 5 mM 

NaOH, 32-37 min at 950 mM sodium acetate in 5 mM NaOH. First UV-detection was 

performed at 260 nm and hereafter 500 mM NaOH (0.2 ml/min) was added to the eluate in 

order to enable the electrochemical detection. Under these conditions, GlcUA, UMP, UDP-

GlcNAc, UDP, and UDP-GlcUA eluted at 11 min, 21 min, 24 min, 27 min, and 34 min, 

respectively.  

 

High performance size exclusion chromatography (HPSEC) analysis 

The size distribution and the molecular weight of the polymers were analyzed by HPSEC on 

an Ultimate 3000 (Dionex, Sunnyvale, USA) using three TosoH Bioscience TSK-gel columns 

in series (4000, 3000, and 2500 Super AW, 150 x 6.0 mm) preceded by a TSK AW-L guard 

column (35 x 4.6 mm;TosoH Bioscience, Japan). Samples (20 µL) were injected and eluted at 

40oC using 0.6 ml/min 0.2 M NaNO3. All samples were injected and analyzed in duplicate. 

Detection was performed using a Shodex RI 101 refractive index detector (Showa Denko 

K.K., Japan). Selected hyaluronan molecular mass markers (Hyalose) of respectively 30 kDa, 

160 kDa and 262 kDa were used for calibration. For each HPSEC analysis, the molecular 

weight (Mi) and the size distribution (polydispersity index, PDI) of the samples were 

determined by fitting the elution time of the hyaluronan molecular weight markers to a 

logarithmic model (Chapter 2). 
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Matrix assisted laser desorption-tie-of-flight mass spectrometry (MALDI-TOF MS) 

analysis 

An Ultraflex workstation (Bruker Daltonics, Germany) equipped with a 337 nm laser was 

operated in the negative mode and calibrated with a mixture of peptide standards from Bruker 

Daltonics. Ions were accelerated with a 20 kV voltage after a delayed extraction of 180 ns. 

Detection was performed using the reflector mode. Samples were 10 times diluted in the 

matrix solution containing 10 mg/mL 2,5-dihydroxybenzoic acid in 50% (v/v) acetonitrile. 

For analysis 2 µL of the mixure was transferred to a MALDI-sample plate and dried under a 

stream of warm air.  

 

Results 
 

The DXD amino acid motif, present in each transferase catalytic domain of 

glycosyltransferases such as PmHS2, is involved in the UDP-sugar binding through 

interaction with the ribose of the UDP molecule and with the divalent metal ions (Charnock 

and Davies 1999; Pedersen, Tsuchida et al. 2000). The substitution of both aspartic acids (D) 

by asparagines (N) in the DXD motif of the catalytic domain of each transferase results in a 

loss of charge and as a consequence inactivates the modified transferases.  

In order to understand more about the polymerization of heparosan chains, PmHS2-GlcUA+, 

PmHS2-GlcNAc+ and PmHS2-nul were constructed by site directed mutagenesis. The 

characterization of the single action transferases and a detailed analysis of the PmHS2 

polymerization process enable us to understand the initiation of the heparosan polymerization 

process.  

 

Expression and purification of the PmHS2 recombinant proteins 

Both the expression level of the recombinant proteins and the recovery level after purification 

were higher for PmHS2-nul, PmHS2-GlcUA+ and PmHS2-GlcNAc+ than for PmHS2. PmHS2 

was stable at least for 6 months at -80°C (Chapter 2), while in contrast, the polymerization 

activity of the combined PmHS2-GlcUA+/PmHS2-GlcNAc+ decreased around 50% after 1 

week of storage at -80°C. 
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Polymerization activity of the combined PmHS2-GlcUA+/PmHS2-GlcNAc+ 

PmHS2-GlcUA+ or PmHS2-GlcNAc+, incubated separately in the presence of both UDP-

sugars for 24 h did not synthesize heparosan polymers; neither did PmHS2-nul. However, 

PmHS2-GlcUA+ and PmHS2-GlcNAc+ incubated together in the presence of both UDP-

sugars showed polymerization activity as determined by gel electrophoresis (Fig. 1). Thus, 

site directed mutagenesis of one DXD motif inactivated only the modified transferase domain 

but maintained the function of the other transferase. 

 

 
 
Figure 1. Influence of the UDP-sugar concentration on the polymerization process of the 

combined PmHS2 single action transferases. PmHS2-GlcUA+/PmHS2-GlcNAc+ (1/1) (45 µg/ml of 

each) were incubated together for 24 h in the presence of 1 mM, 5 mM and 20 mM of each UDP-sugar, 

respectively. The chain length and size distribution of heparosan polymer is assessed with a Novex 20% 

TBE gel. 

 

Just as previously observed with PmHS2 (Chapter 2), PmHS2-GlcUA+/PmHS2-GlcNAc+ 

favored the formation of high molecular weight heparosan polymers with a low polydispersity 

in the presence of low UDP-sugar concentrations. The opposite was observed in the presence 

of high UDP-sugar concentrations. The specific activity of a 1/1 mixture of PmHS2-

GlcUA+/PmHS2-GlcNAc+ was constant for at least 8 h in the presence of 5 mM UDP-GlcUA 

and 5 mM UDP-GlcNAc. The specific activity of the PmHS2-GlcUA+/PmHS2-GlcNAc+, 

measured in the period from 100 to 500 min, was in average 0.06 nmol/µg/min (nmol UDP-

sugar converted/µg protein/min) and was 2-fold lower than the PmHS2 specific activity 

which was about 0.12 nmol/µg/min.  
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Influence of the incubation temperature on the polymerization activity 

A rise in the incubation temperature from 30°C to 38-40°C resulted, after 4 h of incubation, in 

a 5-fold increase of the PmHS2 polymerization activity based on the UDP-sugar conversion 

(Fig. 2). Agarose gel analysis of the polymerization product showed that the incubation 

temperature did not influence the overall molecular weight distribution of heparosan 

polymers. Independently of the incubation temperature, within the range from 30°C to 39°C, 

the polymerization activity leveled off when about 450 nmol of UDP-sugar had been 

converted. The absence of polymerization activity at incubation temperatures above 47°C 

suggests the inactivation of PmHS2.  

The polymerization activity of the single action transferases (PmHS2-GlcUA+/PmHS2-

GlcNAc+) increased by 1.6-fold when the incubation temperature was raised from 30°C to 

35°C. Complete inactivation of the enzymes was observed at 40°C and at higher 

temperatures.  

 

 
 
Figure 2. Influence of the incubation temperature on the polymerization activity of PmHS2 and of 
the combined PmHS2-GlcUA+/PmHS2-GlcNAc+. The activity of PmHS2 (□) or the single action 

transferases incubated together (■) was determined in the presence of 5 mM of each UDP-sugar. The 

UDP-sugar conversion after 4 h of incubation at temperatures from 22°C to 49°C was assayed by the 

coupled enzyme assay, 100% activity corresponds to the highest UDP-sugar conversion observed on 

the temperature range. The maximal conversion was 54.0 ±3.5 nmol/ µg (□) for PmHS2 and 8.0 ±0.7 

nmol/ µg (■) for PmHS2-GlcUA+/PmHS2-GlcNAc+. 
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Hydrolysis activity of PmHS2 

The reaction mixtures of the PmHS2 enzymes (PmHS2, PmHS2-nul, PmHS2-GlcUA+ or 

PmHS2-GlcNAc+) incubated for 24 h in the presence of both UDP-sugars or in the presence 

of only one UDP-sugar were analyzed by HPAEC. 

The HPAEC analysis (condition 2) of PmHS2 incubated with UDP-GlcUA, showed the 

presence of free glucuronic acid (electrochemical detection) and the presence of free UDP 

(UV detection). When PmHS2 was incubated in the presence of UDP-GlcNAc, free N-

acetylglucosamine and free UDP were also observed. Analysis of the reaction mixtures by the 

coupled enzyme assay also revealed the presence of UDP. Reaction mixtures incubated 24 h 

in the presence of inactivated enzymes (99°C/15 min) and UDP-sugars were also analyzed by 

HPAEC analysis (condition 2) and by the coupled enzyme assay. The UDP-sugars (UDP-

GlcUA and UDP-GlcNAc) degradation was not observed by HPAEC, and the analysis of the 

reaction mixtures by the coupled enzyme assay confirmed the absence of UDP. These results 

indicate that active PmHS2 is capable of hydrolyzing the UDP-sugars. The PmHS2 single 

action transferases (PmHS2-GlcUA+ or PmHS2-GlcNAc+) are also able to hydrolyze the 

UDP-sugars (HPAEC condition 1) (Fig. 3).  

The degradation of UDP-GlcNAc was mainly observed in the reaction mixtures containing 

PmHS2 or PmHS2-GlcNAc+. Unexpectedly, also a low degree of hydrolysis of UDP-GlcNAc 

was observed in the presence of PmHS2-GlcUA+ (Fig. 3B) or PmHS2-nul (data not shown).  

The hydrolysis of UDP-GlcNAc by PmHS2, in the absence of UDP-GlcUA, took place within 

the first 30 min of incubation. After 24 h of incubation about 0.03 mM to 0.05 mM of UDP-

GlcNAc were converted into N-acetylglucosamine and UDP. The conversion represents about 

12 to 20% of the initial concentration (0.25 mM). In the presence of higher UDP-GlcNAc 

concentrations, PmHS2 did not hydrolyze a higher amount of UDP-GlcNAc.  

The hydrolysis of UDP-GlcUA was only observed in the reaction mixture in the presence of 

PmHS2 or PmHS2-GlcUA+ (Fig. 3). The hydrolysis activity of the UDP-GlcUA by PmHS2 

increased progressively in time. After 24 h of incubation, 0.15 mM to 0.20 mM UDP-GlcUA 

was converted which represents about 60 to 80% of the initial concentration (0.25 mM). As 

observed with UDP-GlcNAc, the hydrolysis of UDP-GlcUA did not exceed 0.25 mM even 

when higher UDP-GlcUA concentrations were added to the reaction mixture. 

In the presence of both UDP-sugars (0.25 mM /0.25 mM) the polymerization of heparosan 

was favored and the PmHS2 hydrolysis activity was reduced (Fig. 3A). The hydrolysis of 

UDP-GlcNAc was not detected during the first 5 h of incubation, and after 24 h the amount of 

UDP-GlcNAc hydrolyzed represented less than 4% of the initial UDP-GlcNAc concentration. 

The hydrolysis of the UDP-GlcUA did not increase between 3 h and 24 h of incubation and 

represented around 5% of the initial concentration.  
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Figure 3. High performance anion exchange chromatography to assess PmHS2-enzymes 

hydrolysis activity. A). Purified PmHS2 (55-60 µg/ml) and B). Purified single action transferases (80-90 

µg/ml) (PmHS2-GlcUA+ or PmHS2-GlcNAc+) were incubated in the presence of both UDP-sugars or 

with only one UDP-sugar (0.25 mM). Each reaction mixture was analyzed by HPAEC (condition 1) after 

24 h of incubation. Sample [1] is the inactivated PmHS2 (99°C/15 min) incubated in the presence of 

UDP-GlcNAc/UDP-GlcUA. The samples [2, 3, 4] are the reaction mixtures of active PmHS2 enzymes 

(PmHS2, PmHS2-GlcUA+, or PmHS2-GlcNAc+) incubated with: [2] UDP-GlcNAc/UDP-GlcUA, [3] UDP-

GlcNAc, and [4] UDP-GlcUA, respectively. The monosaccharides GlcNAc, GlcUA, and the UDP-GlcNAc 

eluted after 8 min, 44 min and 67 min, respectively (arrows).  

 

PmHS2-GlcNAc+ or PmHS2-GlcUA+ in the presence of both UDP-sugars  

We showed that the elongation of heparosan polymers occurred only when PmHS2-GlcUA+ 

and PmHS2-GlcNAc+ were incubated together. After 24 h of incubation in the presence of 0.5 

mM of each UDP-sugar, the reaction mixtures of PmHS2-GlcUA+ (glucuronyl transferase) 

incubated alone, and as well PmHS2-GlcNAc+ (N-acetylglucosaminyl transferase) were 

analyzed by HPAEC by UV absorbance and by electrochemical detection. Only for PmHS2-

GlcUA+ incubated with both UDP-sugars, the HPAEC analysis (condition 2) showed the 

presence of an additional product eluting at 29 min (Fig. 4A). This product was observed with 

UV and electrochemical detection. For the PmHS2-GlcNAc+ reaction mixture, no additional 
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product was detected with the HPAEC analysis, even when non-equimolar UDP-sugar 

concentrations were used (Fig. 4B).  

 

 
 
Figure 4. High performance anion exchange chromatography analysis of the reaction mixture of 

each single action transferase (PmHS2-GlcUA+ or PmHS2-GlcNAc+) using electrochemical and 

UV detection (HPAEC condition 2). A). PmHS2-GlcUA+ and B). PmHS2-GlcNAc+ (80-90 µg/ml) were 

incubated for 24 h in the presence of 1 mM UDP-GlcUA and 1 mM UDP-GlcNAc. In the presence of 

PmHS2-GlcUA+ (A), an additional product [∗] eluted around 29 min; the product was detected by both 

electrochemical and UV detection. Using HPAEC condition 2, the degradation of UDP-GlcUA was 

observed and it resulted in the formation of UMP and a degradation product [D].  

 

In addition, the reaction mixtures of both the PmHS2-GlcUA+ and the PmHS2-GlcNAc+ were 

analyzed by normal phase thin layer chromatography (TLC) (silica gel 60 F254. Merck) with 

butyl alcohol/acetic acid/water (1.5:1:1) (Sismey-Ragatz, Green et al. 2007) and the products 

were detected by shadowing with UV light. Only in the reaction mixture incubated with 

PmHS2-GlcUA+, we observed an additional product being more polar than the UDP-sugars 

(UDP-GlcUA Rf 0.24 and UDP-GlcNAc Rf 0.30). This additional product (Rf 0.18) was 

extracted from the TLC, resuspended in pure water and analyzed by MALDI-TOF MS (Fig. 

5). It showed a m/z of 782 which corresponds to a UDP-disaccharide containing a glucuronic 
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acid sugar unit and a N-acetylglucosamine sugar unit. In addition, the presence of mono- and 

di- sodium UDP-disaccharides was also observed by mass spectrometry (m/z 804 and 826) in 

the unpurified reaction mixture. Subsequently, the product was re-run by HPAEC (condition 

2) and it was found to elute at 29 min; this confirmed that it is the additional product observed 

in the unpurified reaction mixture (data not shown). 

 

 
 
Figure 5. Matrix assisted laser desorption/ionization time-of-flight mass spectrum of the PmHS2-

GlcUA+ unpurified reaction mixture with a zoom view from 390-850 m/z.  PmHS2-GlcUA+ reaction 

mixture was incubated for 24 h in the presence of both UDP-sugars. The reaction mixture is composed 

of UDP [A], UDP-GlcUA [B], UDP-GlcNAc [C] and the synthesized UDP-disaccharide [D]. For each of 

the compound: [X] is [compound X - H], [X1] is [sodium compound X - H] and [X2] is [disodium 

compound X - H]. In the insert is presented the MALDI-TOF mass spectrum of the UDP-disaccharide 

isolated from the TLC analysis, with a zoom view from 750-850 m/z. 

 

PmHS2 polymerization process in the presence of non-equimolar UDP-sugar 

concentrations and heparosan template 

In order to determine whether one of the two UDP-sugars favors the heparosan chain 

initiation, the PmHS2 polymerization process was studied in the absence or in the presence of 

heparosan template (35 kDa) in combination with non-equimolar UDP-sugars concentration.  

The influence of non-equimolar UDP-sugar concentrations on the heparosan chain length 

elongation and its size distribution was investigated (Table. 2). 
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Table 2. Influence of the UDP-sugar concentration on the average molecular mass and size 

distribution of heparosan polymers. High performance size exclusion chromatography analysis of 

heparosan polymers synthesized by PmHS2 (55-60 µg/ml) after 24 h of incubation in the presence of 

equimolar and non-equimolar UDP-sugar concentrations (mM). Estimated polydispersity index (PDI) is 

calculated as (Mw/Mn in which Mw, average molecular mass (kDa) and Mn, number average molecular 

weight (kDa). 

UDP-GlcUA/UDP-GlcNAc Mn Mw PDI = Mw/Mn 

5/5 40 65 1.63 

0.25/0.25 115 135 1.17 

5/0.25 45 55 1.22 

0.25/5 20 25 1.25 
 

In agreement with what has been previously observed in the absence of heparosan template 

(Chapter 2), PmHS2 polymerized longer heparosan chains when incubated with low UDP-

sugar concentrations. Heparosan chain with an average molecular mass of 135 kDa and 65 

kDa were synthesized in the presence of 0.25 mM of each UDP-sugar or 5 mM, respectively 

after 24 h of incubation. Differences in heparosan polymers initiation and elongation were 

also observed when PmHS2 was incubated in the presence of non-equimolar UDP-sugar 

concentrations. PmHS2 incubated in the presence of 5 mM UDP-GlcUA / 0.25 mM UDP-

GlcNAc elongated heparosan polymers up to 55 kDa while in the presence of 0.25 mM UDP-

GlcUA / 5 mM UDP-GlcNAc the observed molecular mass was around 25 kDa. We 

calculated that PmHS2 initiated about 2.2-fold more heparosan chains when incubated in the 

presence of an excess of UDP-GlcNAc than with an excess of UDP-GlcUA. Non-equimolar 

UDP-sugar concentrations in the range from 0.25 mM to 20 mM of each UDP-sugar were 

added to PmHS2. In the presence of an excess of UDP-GlcNAc it was observed that after 3 h 

of incubation more heparosan chains were initiated, resulting after 24 h of incubation in 

heparosan polymers with a lower average molecular weight. The opposite was observed in the 

presence of an excess of UDP-GlcUA. 

In addition, the influence of non equimolar UDP-sugar concentrations on the PmHS2 

polymerization process was determined using the coupled enzyme assay to quantify the UDP-

sugar conversion. It is known that the amount of UDP-sugars converted during the 

polymerization process is determined by the availability of the limiting UDP-sugar. After 3 h 

of incubation in the presence of 5 mM UDP-GlcNAc and a limiting concentration of UDP-

GlcUA (from 0.1 mM to 0.5 mM), PmHS2 fully converted the available UDP-sugars; in the 

presence of 1 mM UDP-GlcUA about 63 ±8% of the available UDP-sugars were converted 

(Fig. 6). In contrast, with an excess of UDP-GlcUA (5 mM) and a limiting concentration of 



 

 72 

Chapter 3 

UDP-GlcNAc (0.1 mM to 2.5 mM) only about 42 ±6 % of the UDP-sugars were converted 

after 3 h. After 24 h of incubation, the amount of UDP-sugar converted in order to polymerize 

heparosan was similar in the samples whether PmHS2 was incubated with an excess of UDP-

GlcNAc or an excess of UDP-GlcUA. These results indicate that the presence of an excess of 

UDP-GlcNAc stimulates the PmHS2 polymerization activity during the first hours of 

incubation, but due to the restricted availability of UDP-GlcUA, the elongation activity levels 

off sooner. An excess of UDP-GlcUA slows down the polymerization activity but does not 

inhibit the overall heparosan synthesis process.  

 

 
Figure 6. Conversion of UDP-sugars by PmHS2 in the presence of equimolar and non-equimolar 

UDP-sugar concentrations. The polymerization activity after 3 h of incubation was assayed by the 

coupled enzyme assay and expressed in % of UDP-sugar converted (100% corresponds to the limiting 

UDP-sugar concentration present at time zero). The UDP-sugar in excess was added to a 5 mM 

concentration and the limiting UDP-sugar to a concentration from 0.10 to 2.50 mM. 

 

To confirm the fact that UDP-GlcNAc favors the heparosan chain initiation, PmHS2 

polymerization process was investigated in the presence of heparosan template (35 kDa) (Fig. 

7). The HPSEC analysis of the PmHS2 reaction mixture incubated for 3 h in the presence of 

heparosan template and 5 mM of each UDP-sugar revealed the presence of two products (25 

kDa and 65 kDa). It was previously reported that PmHS2 initiates and elongates 

simultaneously heparosan polymers (Chapter 2), therefore the presence of these products 

suggests that PmHS2 synthesized new heparosan polymers (25 kDa) and also elongated the 

heparosan templates resulting in longer polymers (65 kDa). After 6 h of incubation, the 

difference between the molecular mass of the two polymer groups was less visible; it resulted 

in an increase of the overall polydispersity. In the reaction mixture of PmHS2 incubated 

during 3 h with a lower UDP-sugar concentration (0.25 mM), only heparosan polymers of 130 

kDa were observed. In the presence of 5 mM UDP-GlcNAc / 0.25 mM UDP-GlcUA in 
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combination with heparosan template, PmHS2 polymerized two distinct heparosan polymer 

groups with an average molecular mass of 30 kDa and 75 kDa as products of the initiation 

and the elongation of templates, respectively. When an excess of UDP-GlcUAc was added, 

only one heparosan polymer group of about 65 kDa was synthesized after 3 h of incubation. 

The same results were obtained when using longer heparosan templates (50 kDa). 

These results indicate that PmHS2 incubated with an excess of UDP-GlcNAc can initiate and 

elongate heparosan chains simultaneously. When using a limiting concentration of UDP-

GlcNAc, PmHS2 cannot initiate new heparosan chains but can only elongate the templates.  

 

 
 
Figure 7. PmHS2 polymerization process in the presence of “heparosan template”. Heparosan 

template of 35 kDa (PDI=1.17) was added to the PmHS2 (55-60 µg/ml) polymerization reaction in the 

presence of equimolar and non-equimolar UDP-sugar concentrations (0.25 mM and 5 mM). A). 2% 

agarose gel electrophoresis analysis of reaction mixtures after 3 h and 24 h of incubation. [T] heparosan 

template (10-fold concentrated), [Reference] polymerization reaction in the absence of template and 

with 5 mM of each UDP-sugar. For the polymerization reactions incubated in the presence of template, 

sample [GlcUA] was obtained with an excess of UDP-GlcUA, [GlcNAc] with an excess of UDP-GlcNAc, 

[High] was obtained with a high concentration (5 mM) and [Low] with a low concentration (0.25 mM) of 

each UDP-sugar, respectively. B). The corresponding reaction mixtures (3 h of incubation) were also 

analyzed by HPSEC. The reaction mixture incubated with template and an excess of UDP-GlcNAc [A] 

(30 kDa and 75 kDa), an excess of UDP-GlcUA [B] (65 kDa), and with 5 mM [C] (25 kDa and 65 kDa) or 

0.25 mM [D] (130 kDa) of each UDP-sugar, respectively. In addition, the reaction mixture incubated in 

the absence of template [E] and 1-fold concentrated template [F] were also analyzed by HPSEC. 
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Discussion 
 

By applying site directed mutagenesis on the DXD amino acid motifs of PmHS2, single action 

transferases (PmHS2-GlcUA+ and PmHS2-GlcNAc+) were successfully obtained. Just as 

observed with PmHS2 (Sismey-Ragatz, Green et al. 2007) (Chapter 2), PmHS2-GlcUA+ and 

PmHS2-GlcNAc+ incubated together, in the absence of heparosan templates, are able to 

synthesize heparosan polymers. In addition, the PmHS2 single action transferases synthesize, 

in the presence of low UDP-sugar concentrations, high molecular weight heparosan polymers 

and thus depict the same polymerization behavior as PmHS2 (Chapter 2). During the 

incubation period from 2 h to 8 h, the specific activity of the single action transferases was 

around 0.06 nmol UDP-sugar converted/µg protein/min whereas the specific activity of 

PmHS2 was around 0.12 nmol UDP-sugar converted/µg protein/min. Nevertheless, despite 

their slower activity it cannot be concluded that PmHS2-GlcUA+/PmHS2-GlcNAc+ are less 

active than PmHS2. Indeed Williams et al., (2006) reported for PmHAS that each transferase 

domain might exhibit different specific activity (Williams, Halkes et al. 2006). In order to be 

able to compare the polymerization activity of the single action transferases with PmHS2, it is 

needed to estimate the activity of each transferase catalytic domain separately. Moreover, the 

specific activity should be expressed in nmol UDP-sugar converted/mole of active 

transferase/min as both catalytic domains cannot be active at the same time due to the 

stepwise addition of UDP-sugars. 

A rise in the incubation temperature from 30°C to 40°C resulted in a 5-fold increase of 

PmHS2 polymerization activity. The level-off of PmHS2 polymerization activity observed 

after the conversion of about 4.5 mM of UDP-sugar, is independent of the incubation 

temperature within the range from 30°C to 39°C. The level off is probably due to UDP 

inhibition as we have observed previously that PmHS2 polymerization activity was inhibited 

by UDP concentration above 4 mM (Chapter 2).  

 

Hydrolysis activity by PmHS2 

We have shown that PmHS2 was capable of hydrolyzing UDP-sugars into UDP and the 

corresponding sugar residue when incubated in the presence and in the absence of acceptor 

molecules. PmHS2 hydrolyzes more UDP-GlcUA than UDP-GlcNAc. Heat inactivated 

PmHS2 did not hydrolyze the UDP-sugars.  

Sugiura et al., (2007) reported that in the absence of enzyme, the metallic ion Mn2+ participate 

in the hydrolysis of UDP-GlcUA at the pyrophosphate bonds resulting in the production of 

UMP and a monosaccharide unit (Sugiura, Shimokata et al. 2007). Here, we also observed in 
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the absence of PmHS2 the hydrolysis of UDP-GlcUA into UMP and a sugar residue. 

However, it appeared that the presence of active or inactive PmHS2 stabilizes UDP-GlcUA. It 

is assumed that PmHS2 probably entraps or binds MnCl2 and therefore prevents the role of 

Mn2+ in the hydrolysis of UDP-GlcUA. The unexpected hydrolysis of UDP-GlcNAc by 

PmHS2-nul and PmHS2-GlcUA+ was probably due to a partial inactivation of the N-

acetylglucosaminyl transferase catalytic domain. Kane et al., (2006) reported for PmHS1 that 

the transferase catalytic domains were not completely inactivated by the amino acid 

substitution of the DXD motif. They observed that PmHS1 single action transferase mutants 

conserved about 1 to 2% of relative specific activity for the mutated transferase domain 

(Kane, White et al. 2006). A rise in the UDP-sugar concentration did not increase the degree 

of hydrolysis by PmHS2.  

The addition of both UDP-GlcUA and UDP-GlcNAc to the reaction mixture results in a 

reduction of the hydrolysis of both UDP-sugars. It is concluded that the hydrolysis reaction is 

slow compared to the heparosan elongation process. Thus, in the standard incubation 

condition and in the presence of both UDP-sugars, the hydrolysis is not favored by PmHS2 

and can be neglected. 

The glycoside hydrolases or glycosidases (EC 3.2.1.-) and the glycosyltransferases (EC 

2.4.x.y) are well described in literature and their catalytic mechanisms show similarities at the 

exception of the acceptor molecules; being a water molecule with the glycoside hydrolases 

(Perugino, Trincone et al. 2004; Hancock, Vaughan et al. 2006; Vetting, Frantom et al. 2008). 

For both classes of enzymes, the catalytic mechanism is done according to an acid/base 

reaction orchestrated by two amino acid residues. One residue acts as an acid catalyst and the 

other residue as a base catalyst. Based on the similarities, the glycosidic hydrolysis of the 

UDP-sugars by both the inverting and the retaining transferases of PmHS2 might be due to a 

nucleophilic attack by a water molecule at the transferase catalytic domain. The hydrolase 

activity has been described for the glycosyltransferase α3GT (Zhang, Wang et al. 2001) and 

the glucosyltransferases Toxin A and Toxin B (Ciesla and Bobak 1998). Until now, the 

hydrolysis of UDP-sugars by glycosyltransferases involved in the polymerization of 

glycosaminoglycans has not been reported and it is unknown if other enzymes exhibit this 

mechanism. In view of our results the glucuronyl transferase catalytic domain is more 

sensitive to the hydrolytic attack than the N-acetylglucosaminyl transferase domain. 

Despite the fact that the hydrolysis rate is rather low, PmHS2 is more versatile than expected. 

Thus based on the literature, PmHS2 might be of interest to synthesize activated sugars. 

Indeed it was observed that glycoside hydrolases engineered into glycosylsynthases were 

capable to synthesize new and valuable compounds for therapeutic applications (Shaikh and 

Withers 2008 ), and that versatile glycosyltransferases were found to exhibit additional 
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activity such being able to synthesize rare nucleotide activated sugars (Perugino, Trincone et 

al. 2004; Zhang, Griffith et al. 2006).  

 

Initiation of the heparosan polymer by PmHS2-enzymes 

The reaction mixtures of PmHS2-GlcUA+ or PmHS2-GlcNAc+ were analyzed by HPAEC by 

electrochemical detection and UV absorbance. The absorbance in UV light is more sensitive 

than the electrochemical detection for UDP-sugars due to the presence of the UDP-group 

(Orellana and Mohnen 1999). Therefore, the presence of a larger peak with UV detection, as 

with electrochemical detection shows the presence of an UDP group. 

HPAEC analysis showed that PmHS2-GlcUA+, incubated in the presence of both UDP-

sugars, catalyzed the formation of an additional product visible with both chemical and UV 

detection. The UV-signal was much stronger indicating the presence of a UDP-group. The 

presence of this additional product was also confirmed by TLC analysis. The MALDI-TOF 

MS analysis of the TLC purified product showed a m/z of 782, corresponding to a UDP 

moiety containing a glucuronic acid and a N-acetyl glucosamine unit. In contrast, with 

PmHS2-GlcNAc+ no additional products were observed even in the presence of non-

equimolar UDP-sugar concentrations. 

PmHS2 elongates heparosan chains by adding sugar units at the non-reducing end of the 

polymer (DeAngelis and White 2004; Sismey-Ragatz, Green et al. 2007). As a consequence 

the UDP presents in the chain belongs to the first acceptor molecule. Based on the literature 

and the results obtained, it is concluded that PmHS2-GlcUA+ catalyzes the formation of 

GlcUA-GlcNAc-UDP by transferring GlcUA to UDP-GlcNAc acceptor molecules and 

therefore initiates heparosan chains. Interestingly, Talpak et al., (2005) reported that PmHAS 

catalyzed the formation of the GlcUA-GlcNAc-UDP disaccharide, but the disaccharide 

GlcNAc-GlcUA-UDP was not observed (Tlapak-Simmons, Baron et al. 2005). 

Therefore, it would be interesting to determine if these P. multocida glycosyltransferases are 

only capable to initiate polymer chains by using one of the two UDP-sugars as acceptor, or 

whether this result is a reflection of a competition between the two UDP-sugars for the 

acceptor and donor site. 

The study of PmHS2 polymerization process in the presence of different concentrations of 

UDP-sugars showed that an excess of UDP-GlcNAc increased the UDP-sugar conversion 

during the first hours of the polymerization process, and favored the synthesis of a higher 

number of polymer chains, resulting in chains with a smaller molecular weight. With an 

excess of UDP-GlcUA, we observed that PmHS2 polymerization activity was reduced during 

the first 6 h of incubation probably by inhibiting the initiation or by hampering the elongation, 

nevertheless it did not inhibit the overall heparosan synthesis process. 
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In the presence of heparosan template and an excess of UDP-GlcNAc it was observed that 

PmHS2 initiates and elongates heparosan polymers simultaneously. While in the presence of 

an excess of UDP-GlcUA PmHS2 elongates exclusively the heparosan template. 

Based on the results obtained in the tested conditions with the PmHS2 single action 

transferases and with PmHS2, it clearly appears that UDP-GlcNAc is involved in the 

initiation of heparosan chains. We conclude that PmHS2 initiates heparosan chains using 

UDP-GlcNAc as the acceptor molecule and as a consequence not only the UDP-sugar 

concentration but also the ratio of UDP-sugar concentrations is an important parameter for the 

PmHS2 polymerization process.  

Moreover, it was concluded that UDP-GlcNAc and the heparosan template have about the 

same affinity for the acceptor binding site. The PmHS2 initiation and polymerization process 

is different from PmHS1 and PmHAS. Indeed, PmHS1 and PmHAS elongated polymers with 

a narrow size distribution when short oligosaccharide templates were added to the reaction 

mixture while in the absence of oligosaccharide template more polydisperse polymers were 

formed (Jing and DeAngelis 2004; Sismey-Ragatz, Green et al. 2007). Williams et al., (2006) 

reported that for PmHAS the binding affinity at the acceptor binding site is higher for short 

oligosaccharides than for monosaccharides (Williams, Halkes et al. 2006). Therefore, in the 

presence of oligosaccharide templates the polymerization reaction is more efficient as the 

initiation step does not take place and only the elongation of the templates occurs.  

Based on our results, it appears that the heparosan chain initiation by PmHS2 in contrast with 

PmHS1 and PmHAS, is not controlled by the acceptor binding site affinity for short 

oligosaccharide but by the amount and the ratio of UDP-GlcNAc present in the 

polymerization reaction. According to the results obtained with polysaccharide heparosan 

template (35 kDa), we speculate that in the presence of short heparosan oligosaccharide 

templates and an excess of UDP-GlcUA, PmHS2 will only elongate the short templates 

resulting in heparosan polymers with a narrower size distribution. However, more research is 

needed to confirm this hypothesis. 

 

In summary, we showed that PmHS2 is an enzyme with two glycosyltransferase activities and 

two UDP-sugar hydrolase activities. The fact that PmHS2 is able to hydrolyze UDP-sugars 

could open new perspectives in the field of UDP-sugar regeneration. With the single action 

transferases (PmHS2-GlcUA+ and PmHS2-GlcNAc+) and PmHS2, we demonstrated that the 

first step of the in vitro synthesis of heparosan is driven by the transfer of the GlcUA from the 

UDP-GlcUA moiety to a UDP-GlcNAc acceptor molecule. Knowing which UDP-sugar 

initiates the polymerization reaction could enable the regulation of heparosan synthesis by the 

use of modified oligosaccharide templates and might result in the synthesis of heparosan 

analog molecules. Experimental design approaches in which the amount of each PmHS2 
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single action transferases and UDP-sugars are variables could enable us to have a better 

understanding of how the elongation of heparosan polymer is regulated. In the future it should 

help us to determine the reaction conditions leading to heparosan polymers with specific 

molecular weight and narrow size distribution.  
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Abstract 
 
 
 
 
Pasteurella multocida heparosan synthase PmHS2 is a dual action glycosyltransferase that 

catalyzes the polymerization of heparosan polymers in a non-processive manner. The two 

PmHS2 single action transferases, obtained previously by site-directed mutagenesis have been 

immobilized on Ni(II)-nitrilotriacetic acid (Ni-NTA) agarose during the purification step. A 

detailed study of the polymerization process in the presence of non-equimolar amounts of 

PmHS2 single action transferases revealed that the glucuronyl transferase (PmHS2-GlcUA+) 

is the limiting catalytic step of the PmHS2 polymerization process. Using experimental design 

it was determined that the N-acetylglucosaminyl transferase (PmHS2-GlcNAc+) plays an 

important role in the control of heparosan elongation depending on the number of heparosan 

chains and the UDP-sugar concentrations present in the reaction mixture. 

Furthermore, for the first time, the controlled synthesis of heparosan oligosaccharides using 

alternately immobilized PmHS2 single action transferases is reported. It is shown that 

heparosan oligosaccharides are synthesized by PmHS2-GlcUA+ and PmHS2-GlcNAc+ in the 

absence of template molecules in the reaction mixture.  
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Introduction 
 

Heparin (Hep) and heparan sulfate (HS) are analog molecules belonging to the 

glycosaminoglycan (GAG) family. Hep/HS polymers are ubiquitous in mammalian cells and 

are involved in many physiological processes (Rabenstein 2002; Linhardt and Toida 2004). 

Heparin is a well known pharmaceutical compound that is used in large amounts in surgery 

for its anticoagulant properties. Heparan sulfate, an analog of heparin, is not used yet for 

therapeutic purposes, but it is considered to have a large potential for medical applications 

(Rabenstein 2002; Lindahl 2007). Currently, the pharmaceutically grade heparin 

anticoagulant products are mainly obtained from animal tissues, and some are chemically 

synthesized. Since these systems do not enable the production of a large range of well defined 

Hep/HS oligomers and polymers, alternative processes to control Hep/HS synthesis are of 

interest (Laremore, Zhang et al. 2009).  

Heparosan is the unsulfated precursor of heparin and heparan sulfate in mammalians. In the 

pathogenic bacteria Escherichia coli K5 (Vann, Schmidt et al. 1981), Pasteurella multocida 

Type D (Pandit and Smith 1993; Rimler 1994), and Avibacterium paragallinarum genotype II 

(Wu, Chen et al. 2010) heparosan is a component of the polysaccharide capsule. Heparosan 

can be produced either by extracting it from microorganisms or by using recombinant 

enzymes in vitro. Large scale fermentation to produce heparosan has been only reported for E. 

coli K5 and enabled the recovery of 15 g/L of heparosan (Wang, Ly et al. 2010). Despite the 

fact that this production strategy is cost effective, neither the heparosan chain length nor the 

incorporation of modified and analog sugar residues can be controlled.  

Heparosan can also be synthesized in vitro using recombinant heparosan synthases. 

Heparosan synthases from mammalians (EXT1 and EXT2) (McCormick, Duncan et al. 2000; 

Kim, Kitagawa et al. 2003), drosophila (TTV, SOTV, and BOTV) (Bellaiche, The et al. 1998; 

Izumikawa, Egusa et al. 2006 ), E. coli K5 (KfiA and KfiC) (Griffiths, Cook et al. 1998; 

Hodson, Griffiths et al. 2000; Sugiura, Baba et al. 2010), and P. multocida Type D (PmHS1 

or PmHS2) (Sismey-Ragatz, Green et al. 2007) (Chapter 2) have been characterized. The 

EXT (EXT1 and EXT2) and Kfi (KfiA and KfiC) heparosan synthases are mono-action 

transferases that catalyze only one transferase activity. In addition, they need to form a 

complex to exhibit polymerization activity. In contrast, PmHS heparosan synthases (PmHS1 

and PmHS2) are both dual action glycosyltransferases exhibiting a glucuronyl transferase and 

a N-acetylglucosaminyl transferase activity. PmHS single action transferase enzymes (PmHS-

GlcUA+ and PmHS-GlcNAc+) were obtained by applying site-directed mutagenesis on the 

DXD motif of PmHS1 (Kane, White et al. 2006) or PmHS2 (Chapter 3). The PmHS2-GlcUA+ 
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and PmHS2-GlcNAc+ incubated together in the absence of templates polymerized heparosan 

chains (Chapter 3). 

 

There is a close relationship between the Hep/HS structures and their biological activity. 

Thus, during the synthesis of heparin and heparan sulfate it is important to control the 

heparosan polymerization since it determines the chain length and size distribution of the 

Hep/HS polymers. Recently, the controlled synthesis of heparosan-like oligosaccharides has 

been reported by applying alternately the activity of the glycosyltransferases KfiA (N-acetyl-

D-glucosaminyl transferase) and PmHS2 (N-acetylglucosaminyl transferase and glucuronyl 

transferase) in the presence of UDP-sugars and a disaccharide acceptor (GlcUA-AnMannose) 

(Liu, Xu et al. 2010). Due to the dual action of PmHS2, the synthesis had to be carefully 

monitored. The controlled synthesis of glycosaminoglycan hyaluronan and chondroitin 

oligosaccharides has also been reported. Immobilized P. multocida hyaluronan synthase 

PmHAS single action transferases (DeAngelis, Oatman et al. 2003) and immobilized E. coli 

chondroitin polymerase K4CP single action polymerases (Sugiura, Shimokata et al. 2008) 

synthesized monodisperse 20-mer hyaluronan chains and 16-mer chondroitin chains from 

short oligosaccharide templates, respectively.  

 

Here we report the use of an immobilized-metal affinity chromatography (IMAC) technique 

for the immobilization of PmHS2 single action transferases (PmHS2-GlcNAc+ and PmHS2-

GlcUA+). PmHS2 enzymes immobilized with Ni(II)-nitriloacetic acid (Ni-NTA) agarose were 

characterized for their polymerization activity, stability, and ability to elongate step by step 

heparosan oligosaccharides. We show that PmHS2 single action transferases can be used to 

control the synthesis of heparosan oligosaccharides. 

 

Experimental Procedure 

Protein expression, purification, and immobilization 

The genes pmhs2-GlcUA+, and pmhs2-GlcNAc+, were ligated into pET101 and transformed 

in E. coli BL21*(DE3) (Invitrogen) (Chapter 3). The recombinant proteins PmHS2-GlcUA+, 

and PmHS2-GlcNAc+ were expressed with a V5-epitope and a polyhistidine tag (His-Tag) at 

their C-terminus. 

The protein expression and the protein recovery procedures were performed as previously 

described (Chapter 2 and 3). The soluble fraction (4 ml) obtained from 100 ml of induced E. 

coli culture was added to 1 ml of agarose Ni-NTA slurry (50% agarose/50% buffer) (Qiagen). 



 

 87 

Controlled synthesis of heparosan  

In order to immobilize PmHS2-GlcUA+ and PmHS2-GlcNAc+ on Ni-NTA agarose, the His-

Tag purification was slightly modified. The elution step (phosphate buffer, 250 mM of 

imidazole) was omitted and the subsequent desalting step (PD10 column) was removed. 

Instead, the column was washed and equilibrated 5 times with Tris-HCl (50 mM, pH 7.15), 

followed by 3 times with Tris-HCl (50 mM, pH 7.15), Mn2+/Mg2+ (11 mM/11 mM). Prior to 

be stored at 4°C or to be used in polymerization assay, 0.50 ml to 1.75 ml of Tris-HCl (50 

mM, pH 7.15), Mn2+/Mg2+ (4 mM/4 mM) was added to the column.  

The amount of protein immobilized onto the Ni-NTA resin was determined by a 

bicinchoninic acid (BCA) assay (Pierce) using bovine serum albumin (BSA) as the standard. 

The efficiency of the protein binding during the washing steps and the storage was evaluated 

by SDS-PAGE analysis (Chapter 2). 

 

Polymerization assay 

Standard polymerization conditions 

The polymerization reaction with a final volume between 30 µl and 200 µl contained 40 mM 

Tris-HCl (pH 7.15), 4 mM MnCl2, 4 mM MgCl2, UDP-GlcUA, UDP-GlcNAc, and freshly 

PD10-purified or immobilized recombinant PmHS2 single action transferases. The amount of 

UDP-sugar and enzymes varied with the experiments; details are mentioned in the legend of 

the figures. The reactions were performed in the dark at 30-32°C under mild shaking 

conditions ranging from 2 h to 24 h. 

In order to compare the enzyme stability when stored at 4°C, the same amount of PD10-

purified and immobilized single action transferases was resuspended in 3.5 ml buffer. 

Immobilized PmHS2 single action transferases were stored in the presence of Tris-HCl (50 

mM, pH 7.15), Mn2+/Mg2+ (4 mM each), while the PD10-purified enzymes were stored in the 

presence or in the absence of ethylene glycol (1 M) and metal ions (Mn2+/Mg2+, 4 mM each).  

 

Experimental design 

To determine the relationship between the ratio of transferases, the UDP-sugar 

concentrations, and the heparosan size distribution, samples were prepared according to a 

fractional factorial design of 4 variables with each 3 levels (34-1). Preliminary experiments 

were performed to determine the lowest PmHS2 single action transferase and UDP-sugar 

concentrations needed to obtain activity. From these results, the concentrations for each 

variable were determined (Table 1). 
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This experimental design consisted in the preparation of 27 reaction mixtures in which 

different combinations of UDP-sugars and PmHS2 single action transferase concentrations 

were added (Table 2). The samples were incubated for 4 h to avoid the complete conversion 

of the UDP-sugar when low UDP-sugar concentrations were present; each reaction mixture 

was analyzed for UDP content (coupled enzyme assay) and polymer chain length (high 

performance size exclusion chromatography).  

 
Table 1. Variables used for the fractional factorial design of 4 variables and 3 levels (34-1). The 

variables x1 and x2 are the PmHS2 single action transferase concentrations (µg/ml), and x3 and x4  are 

the UDP-sugar concentrations (mM), respectively. 

 

  Variables 

  x1 

PmHS2-GlcNAc+ 
x2 

PmHS2-GlcUA+ 
x3 

UDP-GlcUA 
x4 

UDP-GlcNAc 

Le
ve

ls
 low 7 7 0.5 0.5 

medium 21 21 2.75 2.75 
high 34 34 5 5 

 

To analyze the data it was decided to use the so-called response surface methodology 

described by Box and Draper (Box and Draper 1987). The analysis of the data was done by 

performing a linear regression in which 15 parameters (main effects, quadratic effects, and 

interaction effects) were taken into account. The response variable (y) was modeled using the 

following equation: 

 

y = b0 + b1 x1 + b2 x2 + b3 x3 + b4 x4 + b5 x1
2 + b6 x2

2 + b7 x3
2 + b8 x4

2
 + b9 x1x2 + b10 x1x3 + b11 

x1x4 + b12 x2x3 + b13 x2x4 + b14 x3x4  

 

In this case: y is the heparosan molecular weight, b0 is the intercept, b1 to b14 the regression 

coefficients and x1, x2, x3, and x4 are the variables: PmHS2-GlcNAc+, PmHS2-GlcUA+, UDP-

GlcUA, and UDP-GlcNAc concentration, respectively. The estimation of the regression 

coefficients was done by least squares regression. 

The calculation of the so-called Mallow’s Cp criterion was used to determine the best fit for 

this model. The Mallow’s Cp criterion is calculated by taking into account the fit of the model 

and giving penalties for each additional parameter used to fit a model to the data. Thus, the 

best model to represent the data is obtained when the Mallow’s Cp is at the lowest value. The 

visualization of the response is given by a contour plot (Result section). In practice, the 

response variable can only be visualized as a function of two independent variables. 
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Therefore, cross-sections at different levels of the two others variables were made. The 

visualization is done using the mathematical software package Matlab. 

 
Table 2. Variable combinations of the 3 levels experiment plan design. The variables x1 and x2 

stands for PmHS2-GlcNAc+ and PmHS2-GlcUA+ concentrations (µg/ml) and the variables x3 and x4 

stands for UDP-GlcUA and UDP-GlcNAc concentrations (mM), respectively. The PmHS2 single action 

transferases were added to a concentration of 7, 21, and 34 µg/ml; and the UDP-sugars to an end 

concentration of 0.5, 2.75, and 5 mM. 

 

 
 

Controlled elongation of heparosan oligosaccharides  

PmHS2 single action transferases (0.8 ± 0.05 mg/ml agarose) were immobilized, using Ni-

NTA resin, on two separate columns: PmHS2-GlcUA+ (column A) and PmHS2-GlcNAc+ 

(column B) (Fig. 1). Each incubation step was performed during 3 h in the dark under shaking 

conditions at 32°C. The first incubation step resulting in the synthesis of UDP-heparosan 

dimers was conducted in column A (Chapter 3). In order to favor the chain initiation, the 

UDP-sugars were progressively added every 30 min into the column during the 3 h of 

incubation (final concentration 3.25 mM UDP-GlcUA and 6.50 mM UDP-GlcNAc). At the 
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end of the incubation the reaction mixture was released of column A, and was heat inactivated 

(15 min at 65°C) to avoid the possible presence of any residual enzyme activity, before being 

loaded onto column B. The reaction mixtures were transferred from column A to column B in 

an alternating manner to elongate heparosan oligosaccharides to a defined polymerization 

degree; UDP-GlcUA or UDP-GlcNAc were added to column A or B, respectively. In between 

each incubation cycle, the reaction mixtures were heat inactivated and the columns were 

washed with 2 x 1 ml of Tris-HCl (40 mM, pH 7.15), 4 mM Mn2+, 4 mM Mg2+. 

 

 
 
Figure 1. Schematic representation of the procedure for the step by step elongation of 

heparosan oligosaccharides. The first step is the initiation of the heparosan chain (GlcUA-GlcNAc-

UDP) by PmHS2-GlcUA+ (column A) in the presence of both UDP-GlcUA and the acceptor molecule, 

identified as UDP-GlcNAc (Chapter 3). Prior to be incubated with PmHS2-GlcNAc+ (column B), the 

reaction mixture was heat treated (65°C/15 min) to prevent residual enzyme activity. Successive 

incubation cycles of the reaction mixture (UDP-sugars and oligosaccharide acceptors [heparosan]-

GlcNAc-UDP) enable to control the synthesis of heparosan oligosaccharides.  

 

Analysis of the polymerization activity 

For the analysis of the polymerization activity, the same procedures as described before have 

been used (Chapter 2). 

Coupled enzyme assay 

Samples were quenched by immersion in liquid nitrogen and the UDP-sugars conversion was 

quantified by measuring the NADH reduction into NAD+ at 340 nm in a coupled enzyme 

assay (Gosselin, Alhussaini et al. 1994; Krupa, Shaya et al. 2007).  
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Gel electrophoresis  

Heparosan oligomers/polymers synthesized during the enzymatic reactions were analyzed by 

Novex 20% Tris Borate-EDTA (TBE) polyacrylamide gel (Invitrogen) and 2% (w/v) agarose 

gel electrophoresis. The sample preparation, the gel electrophoresis parameters, and the 

staining procedures were done according to Chavaroche et al., (Chapter 3). A selected 

hyaluronan molecular mass marker ranging from 27 kDa to 495 kDa (Select-HALoLadder, 

Hyalose) was used to estimate the heparosan molecular weight.  

 

High performance size exclusion chromatography (HPSEC) analysis 

The size distribution and the molecular weight of the heparosan polymers were analyzed by 

HPSEC on an Ultimate 3000 (Dionex, Sunnyvale, USA) using three TosoH Bioscience TSK-

gel columns in series (4000, 3000, and 2500 Super AW, 150 x 6.0 mm) preceded by a TSK 

AW-L guard column (35 x 4.6 mm;TosoH Bioscience, Japan) as previously described 

(Chapter 3). For each HPSEC analysis, the molecular weight and the size distribution of the 

samples were determined by fitting to a logarithmic model the elution time of the hyaluronan 

molecular mass markers (30, 160 and 262 kDa. Hyalose) (Chapter 2). 

 

High performance anion exchange chromatography (HPAEC) analysis 

The composition of the reaction mixture (UDP-sugars and heparosan oligosaccharides) was 

analyzed by HPAEC using an ICS-3000 Ion Chromatography HPLC system equipped with a 

CarboPac PA-1 column (2 x 250 mm), in combination with a CarboPac PA guard column (2 x 

25 mm), a VWD-3100 single wave detector (Dionex, Sunnyvale, USA), and a pulsed 

electrochemical detector in pulsed amperometric detection mode (Dionex, Sunnyvale, USA) 

in series. The same elution conditions as previously described were used (Chapter 3). The 

presence of a peak with UV detection, as with electrochemical detection shows the presence 

of an UDP group (Orellana and Mohnen 1999). 

 

Matrix assisted laser desorption-time-of-flight mass spectrometry (MALDI-TOF MS) 

analysis 

An Ultraflex workstation (Bruker Daltonics, Germany) equipped with a 337 nm laser was 

operated in the negative mode and calibrated with a mixture of peptide standards from Bruker 

Daltonics. Ions were accelerated with a 20 kV voltage after a delayed extraction of 180 ns. 

Detection was performed using the reflector mode. Samples were 10 times diluted in the 

matrix solution containing 10 mg/ml 2,5-dihydroxybenzoic acid in 50% (v/v) acetonitrile. For 
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analysis 2 µl of the mixture was transferred to a MALDI-sample plate and dried under a 

stream of warm air.  

 

Results  
 

The PmHS2 single action transferases (PmHS2-GlcUA+ and PmHS2-GlcNAc+) were 

immobilized on Ni(II)-nitrilotriacetic acid (Ni-NTA) agarose during the purification 

procedure. The effect of the immobilization on the polymerization activity and stability was 

determined first. The parameters influencing the PmHS2 polymerization process and the 

heparosan chain elongation were studied. Therefore, non-equimolar amounts of immobilized 

PmHS2-GlcUA+ and PmHS2-GlcNAc+ were incubated together in the presence of UDP-

sugars. A fractional factorial design was included to determine the influence of PmHS2-

GlcUA+, PmHS2-GlcNAc+, UDP-GlcUA, and UDP-GlcNAc concentrations. 

Moreover as a proof of concept, we showed that PmHS2-GlcUA+ and PmHS2-GlcNAc+, 

immobilized onto separate columns, enabled to control the synthesis of heparosan 

oligosaccharides.  

 

Enzyme immobilization 

By comparing the amount of PmHS2-GlcUA+/PmHS2-GlcNAc+ protein immobilized onto 

Ni-NTA agarose and recovered after the PD10 purification step it was found that per volume 

of induced E. coli culture the amount of immobilized enzyme and PD10-purified enzymes 

were comparable based on the protein assay. It was determined that about 0.36 mg of PmHS2 

transferases were immobilized per 1 ml of Ni-NTA slurry (50% agarose/50% buffer). The 

SDS-PAGE gel analysis of the fractions washed from the column after storage at 4°C, 

revealed the presence of a small quantity of protein, suggesting protein leaching. Thus, in 

order to avoid possible contamination of each column by undesired PmHS2 enzyme activities, 

the reaction mixtures were heat inactivated for 15 min at 65°C before being applied from 

column A to column B, and vise versa (Fig. 1). 
 

The immobilized PmHS2 single action transferases were more stable during storage at 4°C 

than the PD10-purified single action transferases (Fig. 2). The activity of the immobilized 

PmHS2 single action transferases was stable during 2 days of storage. After 2 weeks of 

storage at 4°C, the immobilized PmHS2 single action transferases exhibited about 75% of the 

polymerization activity observed with the freshly immobilized enzymes (t = 0 h). After 50 
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days of storage, the PmHS2 single action transferases exhibited about 60% of their initial 

activity (t = 0 h). The PD10-purified single action transferases were not stable at 4°C; after 1 

day of storage the activity decreased to about 50%, and after 1 week only 10% of the activity 

remained. The addition of ethylene glycol and metal ions (MgCl2 and MnCl2) in the buffer 

(Tris-HCl 50 mM. pH 7.15) did not improve the enzyme stability of the PD10-purified single 

action transferases. Furthermore, immobilization did not hamper the polymerization process 

catalyzed by the PmHS2 single action transferases. Indeed, the specific activity of the PmHS2 

single action transferase was comparable whether the enzymes were immobilized or PD10-

purified. The polymerization activity of the PD10-purified PmHS2-GlcUA+ and PmHS2-

GlcNAc+, incubated together at 32°C for 2 to 8 h in the presence of 5 mM UDP-sugars, was 

about 0.065 nmol/min/µg protein, similar as previously reported (Chapter 3). Under the same 

incubation condition, immobilized PmHS2 single action transferases added together exhibited 

comparable catalytic efficiency, about 0.070 nmol/min/µg protein.  

 

 
 

Figure 2. Storage stability of immobilized and PD10-purified PmHS2 single action transferases. 
The PmHS2 single action transferases (25-30 µg/ml of each transferase) were incubated together for 24 

h in the presence of 5 mM of each UDP-sugar (n immobilized and  PD10-purified PmHS2 single 

action transferases). The amount of UDP-sugar converted after 24 h of incubation at 32°C was 

quantified by the coupled enzyme assay. The polymerization activity of the fresh immobilized and PD10-

purified enzymes (t = 0) was set as 100%. 

 

Influence of the transferase domains on the polymerization activity 

We previously reported that the heparosan chain elongation by PmHS2 is influenced by the 

UDP-sugar concentrations (Chapter 2 and 3). Here, in order to determine the influence of the 

PmHS2 transferases on the heparosan initiation and elongation, the polymerization process of 
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non-equimolar amount of immobilized PmHS2 single action transferases (3 to 48 µg/ml of 

each transferase) incubated with 1 mM or 5 mM of each UDP-sugar was investigated. The 

polymerization activity observed in the presence of the same amount of immobilized PmHS2-

GlcUA+ and PmHS2-GlcNAc+ (12 µg/ml of each PmHS2 transferase) was used as reference. 

The polymerization process was influenced by the respective concentrations of PmHS2-

GlcUA+ or PmHS2-GlcNAc+ present in the reaction mixture (Fig. 3 and 4). The results 

showed that both single action transferases differ in catalytic efficiency.  

 

 
 
Figure 3. Polymerization activity of non-equimolar amount of PmHS2 single action transferases. 

Non-equimolar concentration of immobilized PmHS2-GlcUA+ and PmHS2-GlcNAc+ (E1/E2 in which E1 

is ranging from 3 to 48 µg/ml and E2=12 µg/ml) were incubated for 4 h in the presence of 1 mM (A) and 

5 mM (B) of each UDP-sugar (UDP-GlcUA and UDP-GlcNAc). The amount of UDP-sugars converted 

after 4 h of incubation was determined by the coupled enzyme assay. The polymerization activity 

observed in the presence of immobilized PmHS2-GlcUA+ and PmHS2-GlcNAc+ (12 µg/ml of each 

transferase, E1/E2 =1) was set at 100% relative activity. These results have been obtained from 

triplicate experiments; the standard deviation is ± 3 -10%. 
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When incubated in the presence of PmHS2 single action transferase ratio below 1 (3 to 6 

µg/ml E1 and 12 µg/ml E2), the polymerization process was hampered resulting in a low 

polymerization activity (Fig. 3). In the presence of low concentrations PmHS2-GlcUA+ or 

PmHS2-GlcNAc+, it is likely that both the initiation and the chain elongation of heparosan 

polymers are hindered, resulting in the synthesis of heparosan chain concentrations below the 

detection limit of the agarose gels (Fig. 4).  

When the reaction mixtures were incubated in the presence of PmHS2 single action 

transferase ratio above 1 (E1/E2 >1), the polymerization efficiency was influenced by the 

concentration of the respective transferases. In the presence of an excess of PmHS2-GlcUA+ 

(from 12 up to 48 µg/ml) and 1 mM of each UDP-sugar, the polymerization efficiency 

increased proportionally to the increase of PmHS2-GlcUA+ concentration (Fig. 3A). Indeed, 

in the presence of 36 µg/ml PmHS2-GlcUA+ and 12 µg/ml PmHS2-GlcNAc+, the 

polymerization efficiency increased 2.5 times in comparison to the equimolar concentration of 

PmHS2-GlcUA+ and PmHS2-GlcNAc+. The polymerization efficiency also increased 

proportionally to the increase of PmHS2-GlcUA+ concentration in the presence of 5 mM of 

each UDP-sugar (Fig. 3B). However, it was observed that for high PmHS2-GlcUA+ 

concentrations (36 µg/ml to 48 µg/ml) and a PmHS2-GlcNAc+ concentration of 12 µg/ml, the 

polymerization efficiency leveled off.  

Agarose gel electrophoresis analysis of the reaction mixtures (PmHS2-GlcUA+/PmHS2-

GlcNAc+) showed that increasing amounts of PmHS2-GlcUA+ (below 36 µg/ml) resulted in 

the synthesis of a higher number of heparosan chains but with the same molecular weight and 

size distribution (Fig. 4A). This suggests that the incorporation of GlcNAc and GlcUA 

residues occurred at the same velocity for each heparosan chain. However, heparosan 

polymers with a lower molecular weight were synthesized in the presence of 5 mM UDP-

sugars and 4-fold more the amount of PmHS2-GlcUA+ than PmHS2-GlcNAc+. Probably, the 

too high number of heparosan chains initiated by PmHS2-GlcUA+ either inhibited or 

saturated PmHS2-GlcNAc+, resulting in the incapability of the PmHS2-GlcNAc+ to elongate 

all the chains at the same velocity.  

When PmHS2-GlcNAc+ was added in excess to the incubation mixtures (from 12 to 48 

µg/ml), the polymerization efficiency did not increase (Fig. 3). The same observation was 

made in reaction mixtures incubated with 1 mM or 5 mM of each UDP-sugar. Agarose gel 

electrophoresis analysis showed that independently of the PmHS2-GlcNAc+ concentrations 

(from 12 to 48 µg/ml), the same number of heparosan chains were initiated and elongated to 

the same length (Fig. 4B). These results suggest that the PmHS2-GlcUA+ activity is limiting 

the overall polymerization efficiency.  
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Figure 4. Agarose gel of heparosan polymers synthesized in the presence of non-equimolar 

amount of immobilized PmHS2 single action transferases. The reaction mixtures were incubated for 

4 h in the presence of 5 mM of each UDP-sugar (UDP-GlcUA and UDP-GlcNAc) and non-equimolar 

concentration of PmHS2-GlcUA+ and PmHS2-GlcNAc+ (E1/E2 ratio ranging from 0.25 to 4, in which 

E1=3 to 48 µg/ml and E2=12 µg/ml, respectively).  

 

Experimental design analysis 

To be able to control heparosan polymer elongation using PmHS2 glycosyltransferases, the 

effect of combined parameters on PmHS2 polymerization process were investigated using a 

fractional factorial design with 4 variables (3 levels (34-1) for each variable). Thus, 27 reaction 

mixtures were prepared in which different combinations of UDP-sugar and immobilized 

PmHS2 single action transferase concentrations were added (Table 2). The reaction mixtures 

were analyzed by the coupled enzyme assay to monitor the polymerization efficiency (data 

not shown), and they were also analyzed by HPSEC to assess the polymer elongation process.  

Using the Mallow’s Cp criterion, the analysis of the 27 reaction mixtures showed that 8 

parameters (R2 0.848) were needed to obtain the best fitting model. The following equation 

describes the influence of the single action transferase concentrations and UDP-sugar 

concentrations on the heparosan elongation process:  

heparosan molecular mass = -24.82 + 2.24 [PmHS2-GlcNAc+] + 1.07 [PmHS2-GlcUA+] + 

2.34 [UDP-GlcNAc] -0.03 [PmHS2-GlcNAc+]2 -1.77.E-02 [PmHS2-GlcUA+]2 - 8.57 

[PmHS2-GlcNAc+][UDP-GlcUA] - 0.16 [PmHS2-GlcNAc+][UDP-GlcNAc] + 0.57 [UDP-

GlcUA][UDP-GlcNAc] 
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This model showed that the four variables (PmHS2-GlcUA+, PmHS2-GlcNAc+, UDP-GlcUA, 

and UDP-GlcNAc concentrations) influenced the polymerization activity with respect to the 

heparosan molecular weight. It was found that only the PmHS2-GlcNAc+ (x1), PmHS2-

GlcUA+ (x2), and UDP-GlcNAc (x4) concentrations are represented as main effect. In 

addition, the coefficient for the PmHS2-GlcNAc+ concentration is higher than for the PmHS2-

GlcUA+ concentration. Despite the fact that the UDP-GlcUA concentration (x3) was not 

represented as a main effect, the interaction effects showed that UDP-GlcUA concentration 

influences the heparosan elongation. The analysis of the contour plot visualization obtained 

from this analysis is presented in figure 5.  

In reaction mixtures incubated with increasing concentrations of PmHS2-GlcUA+ (7, 21, or 

34 µg/ml) and a constant concentration of PmHS2-GlcNAc+ (Fig. 5, from left to right), it was 

observed that the polymer molecular weight was neither influenced by the UDP-sugar 

concentration nor by the PmHS2-GlcUA+ concentrations (Fig. 5A, 5B, and 5C). Nevertheless, 

the increase of PmHS2-GlcUA+ concentration resulted in the synthesis of a higher number of 

heparosan chains and higher polymerization efficiency, as observed using the coupled enzyme 

assay (data not shown). In the presence of a low PmHS2-GlcUA+ concentration (7 µg/ml), the 

polymerization was hampered as it can be assessed by the blue color trend (Fig. 5A); this is 

probably due to the low number of heparosan chain initiated. 

In the reaction mixtures incubated in the presence of increasing PmHS2-GlcNAc+ 

concentrations (7, 21, or 34 µg/ml) in combination with a constant concentrations of PmHS2-

GlcUA+ (Fig. 5, from top to bottom), resulted in different polymer elongation profiles as 

function of the UDP-sugar concentration present in the reaction mixture (Fig. 5D, 5E, and 

5F). A constant concentration of PmHS2-GlcUA+ in the reaction mixture implies the initiation 

of the same number of heparosan chains at a given UDP-sugar concentration. Thus, the 

polymerization trend observed is mainly the result of the PmHS2-GlcNAc+ concentration. In 

the presence of a low concentration of PmHS2-GlcNAc+ (7 µg/ml), the longest heparosan 

polymers were synthesized when incubated with high UDP-sugar concentrations (Fig. 5D). 

The fact that the polymerization occurred in the presence of a high UDP-sugar concentration 

suggests that PmHS2-GlcNAc+ required a high concentration of heparosan oligosaccharides 

to perform its catalytic activity. Therefore, it was assumed that the affinity of the GlcNAc 

acceptor site is low. For the intermediate concentration of PmHS2-GlcNAc+ (21 µg/ml), it 

seemed that the synthesis of long heparosan polymers was favored in the presence of either 

high or low equimolar UDP-sugar concentrations (Fig. 5E). While the production of long 

heparosan chains and the polymerization activity was hampered in the presence of low UDP-

GlcNAc concentrations combined with high UDP-GlcUA concentrations; incubation 

conditions which were determined to be not suitable to initiate heparosan chains (Chapter 3). 

In the presence of high PmHS2-GlcNAc+ (34 µg/ml) concentrations, the longest polymers 
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were obtained when incubated in the presence of low UDP-sugar concentration (Fig. 5F). 

Low UDP-sugar concentrations result in the synthesis of a lower number of heparosan chains 

(Chapter 2), which may avoid the saturation of the PmHS2-GlcNAc+ acceptor site, and thus 

favor the elongation process. 

 

 
 
Figure 5. Contour plot visualization of the statistical analysis of the PmHS2 single action 

transferase polymerization activity with respect to the polymer molecular weight. The reaction 

mixtures were prepared according to a fractional factorial design with 4 variables and 3 levels (34-1) for 

each variable (immobilized PmHS2-GlcUA+ and PmHS2-GlcNAc+ (µg/ml), UDP-GlcUA, and UDP-

GlcNAc (mM)). After 4 h of incubation at 32°C, the heparosan average molecular mass (kDa, presented 

in the scale at the right of each graph) was determined by high performance size exclusion 

chromatography (HPSEC). The data were visualized using the mathematical software package Matlab.  

 

Controlled elongation of heparosan oligosaccharides  

It was observed that PmHS2 polymerization process is influenced by both transferase 

activities and both UDP-sugar concentrations, rendering the control of heparosan chain 

elongation difficult.  

PmHS2-GlcUA+ was reported to initiate heparosan chains when incubated in the presence of 

both UDP-sugars (Chapter 3). This implies that PmHS2-GlcUA+ is active without forming a 

protein complex with PmHS2-GlcNAc+. To determine if PmHS2-GlcNAc+ is also active as a 
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single function transferase, and thus to evaluate if the PmHS2-single action transferases could 

be used to elongate step by step heparosan oligosaccharides in the absence of template 

molecules, PmHS2-GlcUA+ and PmHS2-GlcNAc+ were immobilized on separate columns. 

The reaction mixture was incubated in each column and recycled from one column (A) to the 

other (B) in order to elongate heparosan step by step (Fig. 1). The analysis of the reaction 

mixture using HPAEC, Maldi-Tof MS, and 20% TBE gel electrophoresis (data not shown) 

showed that heparosan oligosaccharides with a defined length could be synthesized by the 

PmHS2 single action transferases. It was observed with HPAEC analysis that the odd 

numbered oligosaccharides (non-reducing end GlcNAc) eluted earlier than the even numbered 

oligosaccharides (non-reducing end GlcUA). Indeed, the trisaccharide GlcNAc-GlcUA-

GlcNAc-UDP eluted at 25.8 min, while the disaccharide GlcUA-GlcNAc-UDP eluted at 28.8 

min. The monitoring of the reaction mixture after each incubation step showed that the 

oligosaccharides were completely elongated during each incubation step (Fig. 6). Using 

HPAEC and Maldi-Tof MS analysis, it was observed that at the end of the incubation time 

with PmHS2-GlcUA+ only odd numbered oligosaccharides were present in the reaction 

mixture, while only uneven numbered oligosaccharides were found after incubation with 

PmHS2-GlcNAc+. 

 

 
Figure 6. High performance anion exchange chromatography analysis of the first and second 

incubation cycle on the PmHS2-GlcUA+ and the PmHS2-GlcNAc+ column, respectively. 

Heparosan disaccharides (DP2) were released from the PmHS2-GlcUA+ column (column A; 0.5 mg 

PmHS2-GlcUA+/ml reaction, incubation step 1) and heparosan trisaccharide (DP3) from the PmHS2-

GlcNAc+ column (column B; 0.5 mg PmHS2-GlcNAc+/ml reaction, incubation step 2), and a mixture of 

heparosan disaccharides (DP2) and tetrasaccharides (DP4) from the PmHS2-GlcUA+ column 

(incubation step 3). The UMP, UDP-GlcNAc, UDP, and UDP-GlcUA eluted after 21.1, 23.5, 26.0, and 

33.6 min, respectively. The annotation DPX stands for “degree of polymerization X”, in which X 

represents the number of monosaccharide units. 
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After nine successive incubation cycles in PmHS2-GlcUA+ and PmHS2-GlcNAc+ columns, 

the reaction mixture released from PmHS2-GlcUA+ column showed that only even numbered 

heparosan oligosaccharides (disaccharides to octasaccharides, DP2 to DP8 respectively) were 

produced (Fig. 7). The disaccharides GlcUA-GlcNAc-UDP (DP2) eluted after 28.8 min (m/z 

782.6) (Chapter 3), the others heparosan oligosaccharides constituted with 4 (m/z 1160.3), 6 

(m/z 1539.0), and 8 (m/z 1918.0) monosaccharide units eluted after 29.4, 30.0, and 30.6 min, 

respectively.  

As observed with HPAEC and Maldi-Tof MS, the heparosan disaccharides produced after the 

first incubation cycle on PmHS2-GlcUA+ (cycle 1) were completely converted into 

trisaccharide when incubated with PmHS2-GlcNAc+ (cycle 2). The reaction mixture released 

from the PmHS2-GlcUA+ (cycle 3) contained disaccharides and tetrasaccharides. This result 

showed that the initiation of new chains occurred during each incubation step on PmHS2-

GlcUA+.  

 

 
Figure 7. High performance anion exchange chromatography analysis of the reaction mixture 
released from the PmHS2-GlcUA+ column (column A). Even numbered heparosan oligosaccharide 

mixture from disaccharides up to octasaccharides was synthesized by the immobilized PmHS2 single 

action transferases (0.5 mg/ml PmHS2-GlcUA+ and 0.5 mg/ml PmHS2-GlcNAc+), as shown in Fig.1. 

The reaction mixture was obtained after 9 successive incubation cycles (last incubation cycle on column 

A). The annotation DPX stands for “degree of polymerization X”, in which X represents the number of 

monosaccharide units. 
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Discussion 

Immobilization of PmHS2 single action transferases 

PmHS2-GlcUA+/PmHS2-GlcNAc+ were successfully immobilized on Ni(II)-nitrilotriacetic 

acid (Ni-NTA) agarose during the purification step. The use of immobilized-metal affinity 

chromatography (IMAC) such as Ni-NTA agarose is frequently reported for the purification 

of protein but its usage for immobilization purpose is not common (Liu, Zhang et al. 2002). 

However, absorption or affinity immobilizations such as IMAC do not strongly bind the 

catalyst and leaching can occur after storage, and during the washing and the incubation 

process. An alternative to prevent leaching is the immobilization by covalent coupling, but 

there is a risk of enzyme activity loss. Immobilization strategies could be further investigated 

to optimize the process.  

 

Influence of the transferase domains on the polymerization activity  

The PmHS2 polymerization process was investigated in the presence of different ratios 

PmHS2-GlcUA+ and PmHS2-GlcNAc+. It was found that both transferase domains do not 

exhibit the same catalytic efficiency.  

Here we report that the addition of an excess of PmHS2-GlcUA+ in comparison to PmHS2-

GlcNAc+ increased the polymerization activity, while an excess of PmHS2-GlcNAc+ did not 

influence the catalytic efficiency. The results suggested that glucuronyl transferase (PmHS2-

GlcUA+) catalytic activity is the limiting step in the overall polymerization process, either by 

controlling the amount of chain initiated and by exhibiting per heparosan chain a slow and a 

constant rate in transferring GlcUA residue in comparison to the GlcNAc transfer by PmHS2-

GlcNAc+. We previously reported that for a same amount of protein, the specific activity of 

PmHS2-single action transferases was 2-fold lower than for PmHS2 (Chapter 3). Based on the 

results presented here, this was due to a 2 times lower concentration of active PmHS2-

GlcUA+ in the reaction mixture compared to PmHS2. Thus, the PmHS2 single action 

transferases exhibit similar polymerization efficiency as PmHS2. 

We also observed that N-acetylglucosaminyl transferase (PmHS2-GlcNAc+) is either 

saturated or inhibited in the presence of too high number of chains. This may explain why 

PmHS2 synthesizes low molecular weight heparosan polymers in the presence of high UDP-

sugars concentrations (Chapter 2). 
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Experimental design analysis 

The analysis of the experimental design showed that the 4 variables: PmHS2-GlcUA+, 

PmHS2-GlcNAc+, UDP-GlcUA, and UDP-GlcNAc concentrations influence the heparosan 

elongation. This is in agreement with what have been reported previously for the PmHS2 

polymerization process (Chapter 2 and 3). It was observed that the polymer chain length and 

size distribution is mainly determined by the number of chain initiated which depends on the 

concentration of UDP-sugar concentrations (Chapter 2), on the number of acceptor molecules 

(UDP-GlcNAc) (Chapter 3), and on the number of acceptor sites (PmHS2-GlcUA+). The 

heparosan chain length is also influenced by the catalytic efficiency of the transferases to 

elongate heparosan chains. The PmHS2-GlcNAc+ was found to play a critical role in the 

heparosan chain length, by being saturated or inhibited in the presence of a too high number 

of chains. 

 

Controlled elongation of heparosan oligosaccharides  

We showed that PmHS2 single action transferases are independent and do not need complex 

formation with each other to exhibit activity. This represents a great advantage over the 

mammalians heparosan synthases (EXT1 and EXT2) (McCormick, Duncan et al. 2000; Kim, 

Kitagawa et al. 2003) and the E. coli heparosan synthases (KfiC and KfiA) (Griffiths, Cook et 

al. 1998; Hodson, Griffiths et al. 2000; Sugiura, Baba et al. 2010) to control the elongation of 

heparosan.  

For the first time, immobilized PmHS2 single action transferases have been used to elongate 

step by step heparosan oligosaccharides. It was observed for each incubation step that the 

heparosan oligosaccharides were completely elongated; since only PmHS2-GlcUA+ is capable 

to initiate heparosan chains (Chapter 3), this resulted in the presence of only even numbered 

heparosan oligosaccharides with PmHS2-GlcUA+ and only odd numbered oligosaccharides 

with PmHS2-GlcNAc+. In addition, the controlled synthesis of GAGs have not been reported 

yet in the absence of template (DeAngelis, Oatman et al. 2003; Sugiura, Shimokata et al. 

2008; Liu, Xu et al. 2010). This approach is of interest since the production of template 

molecules is expensive and laborious. Production of templates either by chemical hydrolysis 

(Sismey-Ragatz, Green et al. 2007) or enzymatic degradation (Ernst, Langer et al. 1995) of 

heparosan K5 polysaccharides is not a well controlled process, and thus to obtain 

monodisperse heparosan molecules a fractionation step is required. In addition, heparin lyases 

cleave the glycosidic bond via an elimination reaction resulting in the formation of 

oligosaccharides containing unsaturated uronic acid residues at the non-reducing end 
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terminus. In order to use the templates for polymerization, the saturated uronic acid residues 

need to be removed using mercuric salts (Ludwigs, Elgavish et al. 1987).  

Synthesis of heparosan disaccharides from nucleotide sugars requires the incubation of 

PmHS2-GlcUA+ in the presence of both UDP-sugars (Chapter 3). The production of a 

mixture of heparosan oligosaccharides is due to the initiation of new heparosan chains for 

each elongation step with PmHS2-GlcUA+. This shows that both UDP-GlcNAc and UDP-

GlcUA are present in the reaction mixture. Thus, to synthesize monodisperse heparosan 

oligosaccharides, the incubation conditions enabling to reach the complete conversion of the 

UDP-GlcNAc by PmHS2-GlcNAc+ should be determined to avoid the presence of both UDP-

sugars when incubated with PmHS2-GlcUA+. Furthermore, at the end of the second 

incubation step, the purification of the heparosan trisaccharides to be used as templates, could 

facilitate the production of monodisperse heparosan polymers during the step by step 

elongation. 

 

Conclusion 

To summarize, we found that both UDP-sugars and both transferases influence the 

polymerization with respect to the catalytic efficiency and the polymer molecular weigh. The 

glucuronyl transferase (PmHS2-GlcUA+) catalytic activity is limiting the overall 

polymerization process activity and the N-acetylglucosaminyl transferase (PmHS2-GlcNAc+) 

influences the polymer elongation depending on the number of chains to elongate and the 

UDP-sugar concentrations present in the reaction mixture. A more detailed analysis of the 

kinetic parameters should help to further optimize the polymerization conditions to control 

heparosan chain length and size distribution. 

We also showed, for the first time, that immobilized PmHS2 single action transferases 

incubated on two separate columns in the absence of template molecules are capable to 

elongate step by step heparosan oligomers. PmHS2-GlcUA+ and PmHS2-GlcNAc+ are not 

only independent transferases, but they can also use modified UDP-sugars to elongate 

heparosan (Sismey-Ragatz, Green et al. 2007; Liu, Xu et al. 2010). These properties are of 

interest to facilitate the in vitro synthesis of Hep/HS-like products (Liu, Xu et al. 2010) and to 

enlarge the potential of heparin and heparan sulfate biological activity (Sismey-Ragatz, Green 

et al. 2007). 
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Abbreviations 
The abbreviations used are: UDP, uridine diphosphate; UDP-GlcUA, UDP-glucuronic acid; 

UDP-GlcNAc, UDP-N-acetylglucosamine; PmHS2, Pasteurella multocida heparosan 

synthase 2, HS1, heparosan synthase 1; HAS, hyaluronan synthase; CS, chondroitin synthase; 

HPAEC, High performance anion exchange chromatography; HPSEC, High performance size 

exclusion chromatography; MALDI-TOF MS, Matrix-assisted laser desorption-ionisation 

time of flight mass spectrometry; PmHS2-GlcUA+, PmHS2 glucuronyl transferase; PmHS2-

GlcNAc+, PmHS2 N-acetylglucosaminyl transferase. 
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Abstract 
 
 
 
 
Agarose gel electrophoresis is commonly used to analyze negatively charged polysaccharides 

such as glycosaminoglycans. Here, we describe for the first time the use of an agarose gel 

electrophoresis assay to screen a Pasteurella multocida heparosan synthase -PmHS2- mutant 

library for its ability to polymerize heparosan. The PmHS2 mutant library was created by 

error prone PCR and about 1000 mutants were screened for increased thermostability. Some 

of the identified PmHS2 variants showing improved thermostability compared to the parental 

PmHS2 enzyme were purified, and further characterized. It was found that the C-terminus 

amino acid tag is influencing the stability of PmHS2 when incubated above 40°C. In the 

absence of a C-terminus tag, PmHS2 optimum temperature was increased by 10°C and the 

catalytic efficiency was 2 times higher at the optimum temperature.  
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Introduction 
 

Glycosaminoglycans (GAGs) are un-branched and negatively charged polysaccharides that 

are involved in many physiological processes such as cell adhesion, chemokine signaling, 

biochemical cascades, signal transduction, and even pathogen recognition (Linhardt and 

Toida 2004). These polysaccharides are present in most of the vertebrate cells, where they are 

polymerized by glycosyltransferases (GTs) from activated nucleoside diphosphate 

monosaccharides (UDP-sugars) (DeAngelis 2002). GAGs such as hyaluronan, chondroitin 

sulfate, and heparin are commonly used in health care and have a large therapeutic potential. 

Since GAGs are present in vertebrate cells, the pharmaceutically grade GAG products have 

been, and are still, extracted from animal tissues. However, due to the harsh process 

conditions needed to recover the active compounds, the amount of waste produced, the 

shortage in raw materials of animal origin (Petitou and van Boeckel 2004), and the potential 

safety risk that represents the use of animal derivatives (Guerrini, Beccati et al. 2008; Liu, 

Zhang et al. 2009), the trend is to replace this traditional production system by sustainable 

bio-processes (Liu, Zhang et al. 2009). Nowadays, the pharmaceutically grade hyaluronic acid 

is already produced in a bioprocess using recombinant bacteria (Widner, Behr et al. 2005). To 

produce GAG oligo and polymers the (chemo)enzymatic synthesis of GAGs is also being 

investigated (Kuberan, Beeler et al. 2003; Kuberan, Lech et al. 2003). 

 

In order to enzymatically polymerize GAG-like polymers at industrial scale, recombinant 

GAG-synthases exhibiting improved catalytic properties should be developed. The aim for 

industrial purposes is to obtain GAG-synthases exhibiting a higher catalytic efficiency, using 

a broader substrate range (Weïwer, Sherwood et al. 2008), having an increased stability to 

elevated temperatures, solvent, and pH, and also being less sensitive to inhibitors such as 

UDP (Tlapak-Simmons 2004; Baggenstoss and Weigel 2006) (chapter 2). Applying directed 

evolution to improve biocatalyst characteristics is commonly used (Bornscheuer and Pohl 

2001) and was shown to be successful with some GTs (Aharoni, Thieme et al. 2006; Persson 

and Palcic 2008; Yang, Rich et al. 2010). The development of suitable assays for the 

screening of mutant libraries is important to identify mutated enzymes of interest.  

Several procedures are available to study the enzymatic activity of GTs. Biochemical assays 

such as coupled enzyme assay (Gosselin, Alhussaini et al. 1994; Krupa, Shaya et al. 2007), 

pH sensitive/colorimetric assay (Deng and Chen 2004; Persson and Palcic 2008), and assays 

using radiolabelled UDP-sugars (Palcic and Keiko 2001) enabled to assess GTs catalytic 

activity. The GTs that catalyze the formation of oligo- and polysaccharides, such as the GAG-
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synthases, can also be characterized by analyzing the polymer formation using high 

performance size exclusion chromatography (HPSEC) (Chapter 2) in combination with 

MALLS (Sismey-Ragatz, Green et al. 2007), high performance anion exchange 

chromatography (HPAEC) (Chapter 3), agarose and polyacrylamide gel electrophoresis (Lee 

and Cowman 1994; Ikegami-Kawai and Takahashi 2002; Volpi and Maccari 2006), 

fluorophore-assisted carbohydrate electrophoresis (FACE) (Calabro, Hascall et al. 2000; 

Kooy, Ma et al. 2009), thin layer chromatography (TLC) (Abeling, Rusch et al. 1996; Zhang, 

Xie et al. 2007), or mass spectrometry (Sismey-Ragatz, Green et al. 2007). Among all these 

analytical procedures, only a few are suited for the screening of mutant libraries, which 

represents the analysis of a large number of samples. The use of an ultra high throughput 

method using fluorescence activated cell sensing (FACS) (Aharoni, Thieme et al. 2006; Yang, 

Rich et al. 2010), and a pH-indicator high-throughput assay (Persson and Palcic 2008), were 

reported for the screening of GTs that catalyze the transfer of one monosaccharide to an 

acceptor molecule. However, screening of GTs mutant libraries involved in the synthesis of 

polysaccharides such as the GAG-synthases has not been described yet.  

 

Here, we report for the first time the screening of a GAG-synthase mutant library. 

Biocatalysts with increased thermostability are generally also more stable to other denaturing 

factors (Eijsink, Gáseidnes et al. 2005), therefore it is of interest to increase the 

thermostability of biocatalysts for industrial purposes. The negatively charged GAG polymers 

are known to migrate as a function of their charge during gel electrophoresis, and can be 

stained to determine their molecular weight and amount (Volpi and Maccari 2006). Thus, we 

used agarose gel electrophoresis to screen a Pasteurella multocida heparosan synthase 

PmHS2 mutant library for variants with increased thermostability. The PmHS2 variants 

showing improved stability to elevated temperatures were characterized in more detail to 

obtain information about the thermostability of PmHS2. 

 

Experimental Procedures 

Mutant library construction 
Random mutagenesis was performed using the error-prone PCR GeneMorph II Random 

Mutagenesis Kit (Stratagene), known to exhibit a minimal mutational error bias. The error-

prone PCR (epPCR) reaction mixture was prepared according to the manufacturer’s 

instructions. The pmhs2 (pmhssB. GenBank acc. No. AY292200) gene ligated into pET101-

TOPO (Invitrogen) was used as template (about 5 ng/µl PCR reaction) and amplified by 30 

cycles (95°C/30 sec, 59°C/1 min, 72°C/2 min).  
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To amplify pmhs2, the forward primer 5΄-CGTAGGATCCATGAAGGGAAAAAAA 

GAGATG-3΄ and the reverse primer 5΄-GCATGAGCTCTAAAAAATAAAAAGGT 

AAACAGG-3΄ (gold quality primers. 80% purity. Eurogentec) adding BamHI and SacI 

restriction sites, respectively, were used. The PCR product was digested, gel purified, and 

ligated into pET101 vector (1:1 molar ratio) using the BamHI and SacI restriction sites. Note 

that the commercially available pET101-TOPO (Invitrogen) has been adapted for this 

experiment in order to contain the BamHI restriction site. 

The ligation mixture was electroporated in E. coli electrocompetent TOP10 cells (Invitrogen) 

and plated on LB/ampicilin (100 µg/ml) agar plates. After overnight incubation at 37°C, about 

4500 colonies were obtained. The mutants were pooled by washing the plates with LB broth, 

and the cell suspension was diluted to reach a 1.6 OD600. After centrifugation, the supernatant 

was discarded and the pellets (2 ml aliquot) were stored at -20°C.  

Plasmid DNA was isolated from the pellet, gel purified and used to transform E. coli BL21* 

(DE3) expression cells (Invitrogen). Ampicillin tolerant colonies were checked by PCR and 

positive colonies were selected to constitute the PmHS2 mutant library (1100 ±50 mutants).  

The mutation rate of this PmHS2 library was determined by sequencing 95 randomly selected 

pmhs2 mutants (800 bp/gene) (Base Clear, The Netherlands).  

 

Screening of the PmHS2 mutants: polymerization activity and thermal tolerance 
To each 96-wells microtiterplates (U shape bottom, Greiner) containing 200 µl LB 

broth/ampicillin (50 µl/ml), 94 individual PmHS2 mutants and two parental PmHS2 were 

transferred and were grown overnight at 37°C/200 rpm (preculture). Fresh cultures (183 µl) 

were inoculated with 7 µl of the preculture and incubated for 3.5 h at 37°C/240 rpm. The 

protein expression was induced with IPTG (0.5 mM) and conducted for 3 h at 30°C under the 

same shaking conditions. In order to facilitate the handling after induction, the cultures were 

transferred from the microtiterplates to PCR-plates (96-wells, Greiner), centrifuged for 10 

min at 6000xg, washed with 100 µl Tris-HCl (pH 7.15), and centrifuged a last time before 

being stored at -80°C.  

To each thawed cell pellet obtained from 200 µl culture, 20 µl of polymerization reaction 

mixture was added (40 mM Tris-HCl (pH 7.15), 4 mM MgCl2, 4 mM MnCl2, 5 mM UDP-

GlcUA, 5 mM UDP-GlcNAc) and incubated during 18 h at 32°C/80 rpm. At the end of the 

polymerization reaction, 8 µl of 70% glycerol/loading dye was added to each reaction 

mixture; the PCR-plates were shortly centrifuged and stored at -20°C. For the analysis, the 

reaction mixtures (8 µl) were loaded on 2% (w/v) agarose gel using a multi-channel pipette, 

and were run for 40 min at 50 V (migration of approximately 2.5 cm). Each agarose gel (104 
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wells. 12 cm x 12 cm. i-MyRun.N/Cosmo Bio.Japan) enabled to analyze 96 samples (94 

PmHS2 mutants + 2 parental PmHS2) for the presence of synthesized heparosan polymers. 

The 2% (w/v) agarose gels were stained by Stains-all and destained as previously described to 

assess the heparosan product synthesis (Chapter 2).  

 

The PmHS2 variants exhibiting a polymerization activity after 18 h at 32°C, were selected in 

order to proceed to a second selection round to isolate thermostable PmHS2 variants. For this 

purpose, the crude enzymes were exposed for 15 min at 56°C, and then incubated 18 h at 

32°C to perform polymerization of heparosan (referred as polymerization conditions). The 

heat exposure was done in a PCR machine with a hot sealing to avoid condensation. 

 

Characterization of thermostable PmHS2 mutants 
PmHS2 variants found to synthesize more heparosan polymers than the crude parental 

PmHS2 after 15 min exposure at 56°C and 18 h polymerization, were expressed in a larger 

culture (100 ml) and purified in order to be characterized as previously described (Chapter 2). 

The enzymatic activity and thermostability of the PmHS2 mutants were determined using the 

coupled enzyme assay (Gosselin, Alhussaini et al. 1994) and the heparosan products were 

analyzed with 2% (w/v) agarose gel electrophoresis (Chapter 2). The amount of purified 

protein was evaluated by SDS-PAGE analysis and by a bicinchoninic acid (BCA) assay 

(Pierce) using bovine serum albumin (BSA) as the standard (Chapter 2). 

 

Directed mutagenesis of parental PmHS2 
In order to investigate which mutation(s) contributed in the increase of thermal stability, 

primer sets were designed to modify step by step the parental PmHS2 according to the 

mutations observed with the PmHS2 mutants. 

The nucleotide modifications were introduced into the pmhs2 gene using the primer sets 

presented in Table 1. Each PCR fragment was ligated into the pET101-TOPO vector, 

transformed in E. coli Top10 and subsequently in E. coli BL21*(DE3) expression strain 

(Invitrogen). Amino acid changes and deletions of the mutants were confirmed by DNA 

sequencing (Base Clear, The Netherlands).  
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Table 1. Primer sets for mutagenesis of the parental PmHS2.  

The PmHS2-(S182C) was constructed using PCR and overlapping PCR techniques such as previously 

described (Chapter 3). The primers FW1/RV1 were used to amplify Fragment 1, the FW2/RV2 for 

Fragment 2, and pmhs2-(S182C) was obtained by overlapping Fragments 1 and 2 using FWHS2-

tag/RVHS2-tag. 

 

PmHS2 variants Forward and reverse primer sets 
(FW an RV, respectively) 

PmHS2-tag FW. 5΄-CACCATGAAGGGAAAAAAAGAGATG-3΄ 
RV. 5΄-TAAAAAATAAAAAGGTAAACAGGGG-3΄ 

PmHS2-(Δ6aa N-terminus) FW. 5΄-CACCAGAAGGGAAAAAAAGAGATG-3΄ 
RV. 5΄-TAAAAAATAAAAAGGTAAACAGGGG-3΄ 

PmHS2-(S182C) 
 

FW1. 5΄-CACCATGAAGGGAAAAAAAGAGATG-3΄ 
RV1. 5΄-GACTTTGCATGTCGTATTCGC-3΄ 
 
FW2. 5΄-GCGAATACGACATGCAAAGTC-3΄ 
RV2. 5΄-TAAAAAATAAAAAGGTAAACAGGGG-3΄ 

PmHS2-(Y649I, ΔL651,Δ32aa-
tag C-terminus) 

FW. 5΄-CACCATGAAGGGAAAAAAAGAGATG-3΄ 
RV. 5΄-TAAAAAATAAAAGGTAAACAGGGG-3΄ 

PmHS2-(Δ32aa-tag C-
terminus) 

FW. 5΄-CACCATGAAGGGAAAAAAAGAGATG-3΄ 
RV. 5΄-TTATAAAAAATAAAAAGGTAAACAGGG-3΄ 

PmHS2-(Y649I, DL651) FW. 5΄-CACCATGAAGGGAAAAAAAGAGATG-3΄ 
RV. 5΄- AAAAATAAAAGGTAAACAGGGG-3΄ 

 

Results 
Set up of the screening assay  
Purification of enzymes is laborious and costly; therefore it cannot be applied for the 

screening of a mutant library harboring a large number of variants. Thus, assays using crude 

enzymes instead of purified enzymes are of interest to screen mutant libraries. Here, both the 

crude and purified PmHS2 were found to be capable to synthesize heparosan polymers when 

incubated in polymerization conditions, based on agarose gel analysis.  

The polymerization activity (18 h at 32°C) of the crude and purified PmHS2 after 15 min 

exposure between 40°C and 54°C were analyzed. The inactivation of the enzyme was 

determined using coupled enzyme assay (data not shown). It was observed that the 

polymerization activity of purified PmHS2 decreased by about 50% when the reaction 

mixture was exposed at 49°C, and it was completely inactivated at temperatures above 

51.6°C. The inactivation of the crude PmHS2 was also investigated by the coupled enzyme 

assay but it was not possible to measure the amount of UDP-sugars converted due to the 
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presence of a high background signal. The fact that the coupled enzyme assay is not suitable 

to analyze the polymerization activity of crude GTs was also mentioned by Persson and Palcic 

(2008).  

Agarose gel electrophoresis is a good method to determine the molecular weight and the size 

distribution of heparosan products synthesized by purified PmHS2 (Fig. 1A) (Chapter 2). 

Here, it was observed that crude (PmHS2 present in E. coli cell crude extract) is capable to 

synthesize heparosan polymers when incubated in the presence of both UDP-sugars. While 

the negative control, E. coli cells that do not express PmHS2, did not synthesize any polymers 

when incubated in the presence of UDP-GlcUA and UDP-GlcNAc. In contrast with the 

purified PmHS2, the polymer molecular weight and size distribution of heparosan polymers 

synthesized by crude PmHS2 cannot be determined; but it was found that agarose gels can be 

used to asses the presence and the quantity of heparosan polymers in the reaction mixture, and 

also to investigate the thermal stability of PmHS2 (Fig. 1B).  

Based on the heparosan product synthesized, it was found that the purified PmHS2 was more 

sensitive to heat than the crude PmHS2. The activity of the purified PmHS2 was completely 

inactivated after an exposure at 51.6°C (Fig. 1A), while heparosan polymers were still 

synthesized by crude PmHS2 after an exposure at 54.4°C (heparosan polymer = dark spot) 

(Fig. 1B). This result shows that agarose gel electrophoresis can be used to analyze the 

polymerization activity and to investigate the thermal stability of crude PmHS2.  

 

 
 
Figure 1. Thermostability of crude and purified parental PmHS2. The polymerization activity of 

purified (A) and crude (B) parental PmHS2 in the standard polymerization condition (32°C/18 h) was 

evaluated after exposure of the reaction mixture for 15 min between 40.7°C and 58.9°C (first lane, DNA 

marker). The synthesized heparosan product was analyzed by 2% agarose gel (40 min/50 V)/Stains-all 

staining. In both agarose gels (A and B), the dark spots observed are heparosan polymers.  
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Library mutation rate  
A PmHS2 mutant library of approximately 1000 mutants was created. The sequencing of 95 

randomly selected active and inactive mutants (800 bp from the FW-T7 priming site) showed 

that about 1.45 mutations per Kb occurred. Based on sequencing results, it was assumed that 

about 2 amino acid substitutions were present per PmHS2 protein. In addition, sequencing 

revealed the presence of mutants (about 7%) exhibiting a deletion of a base pair in the 

forward primer site due to the quality of the purchased primers, and that 3% of the parental 

pmhs2 (DNA template pmhs2-TOPO cloning sites) were present in this PmHS2 library. 

Furthermore, it was observed that due to the preference for certain mutations or the 

enrichment of the library because of the two steps cloning, about 6% duplicates of PmHS2 

variants were present in this PmHS2 library.  

 

Screening of the mutant library 
Since agarose gel electrophoresis was demonstrated to be a suitable method to analyze the 

polymerization activity and thermal inactivation using crude PmHS2, this method was used to 

screen the PmHS2 mutant library for thermostable variants.  

In order to improve the thermal stability of enzymes without loosing their polymerization 

activity at 32°C, two screening rounds were carried out (Eijsink, Gáseidnes et al. 2005). The 

first round aimed to distinguish the active from the non-active PmHS2 mutants; thus the 

PmHS2 library was only incubated in polymerization conditions (18 h at 32°C), without heat 

exposure. It was found that about 33% of the 1000 PmH2 mutants were active; for the other 

67% the absence of polymerization product suggested their inactivation in the tested 

conditions. Among the active PmHS2 mutants, approximately 20% were found to be at least 

as active as the crude parental PmHS2 based on the amount of heparosan product stained with 

Stains-all.  

For the second round only the 330 active PmHS2 mutants were selected and their 

polymerization activity was analyzed after an exposure at 56°C prior to 18 h incubation for 

polymerization. When exposed at 56°C, the crude parental PmHS2 did not synthesize 

heparosan, while about 70 PmHS2 mutants were still able to synthesize heparosan (Fig. 2). 

From the 70 thermostable PmHS2 mutants, nine mutants showing the highest thermostability 

based on the amount of heparosan products synthesized, were further analyzed. These 

enzymes, such as PmHS2-M2A8, PmHS2-M2D10, PmHS2-M2E4, and PmHS2-M2H5, were 

purified and characterized for thermal stability.  
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Figure 2. Screening of the PmHS2 mutant library for thermostable variants. Example of a 2% 

agarose gel electrophoresis (12 cm x 12 cm; first lane. DNA marker) obtained from the screening of 94 

crude PmHS2 mutants and 2 crude parental PmHS2. The polymerization activity (18 h/32°C) of PmHS2 

variants exposed for 15 min at 56°C was analyzed. The thermostable PmHS2 variants showing the 

highest product yield were selected for further analysis; they are indicated with arrows.  

 

Characterization of PmHS2 thermo stable mutants 
The PmHS2 mutants showed comparable expression and recovery levels as the parental 

PmHS2. The polymerization activity of the purified PmHS2 mutants was investigated by the 

coupled enzyme assay at incubation temperatures ranging from 32°C to 64°C. Most of the 

selected PmHS2 mutants had an increased optimal temperature in comparison to PmHS2. The 

temperature optimum after 4 h of incubation was found to be 38°C for parental PmHS2 and 

PmHS2-M2A8, 40°C for PmHS2-M2H5, and 45°C for PmHS2-M2D10 and PmHS2-M2E4. 

Thus, the optimal temperature was about 7°C higher for PmHS2-M2D10 and PmHS2-M2E4, 

than for the parental PmHS2 (Fig. 3). PmHS2-M2A8, PmHS2-M2E4, and PmHS2-M2H5 

converted at least 2 times less UDP-sugars than PmHS2, indicating a decrease in the 

polymerization activity in comparison to the parental PmHS2. The polymerization efficiency 

of PmHS2-M2D10 and PmHS2 was comparable when incubated at their respective optimum 

temperatures, revealing that PmHS2-M2D10 overall catalytic efficiency was not decreased 

but was only shifted as a function of the temperature. PmHS2-M2D10 was used for further 

analysis. 
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Figure 3. Temperature optimum of PmHS2 and the PmHS2 mutants. The purified PmHS2 and the 

PmHS2 mutants (M2A8, M2D10, M2E4 and M2H5) were incubated for 4 h at temperatures in between 

32°C and 56°C. The amount of UDP-sugar converted after 4 h of incubation was assessed by the 

coupled enzyme assay. The PmHS2 activity at 38°C was set to 100% activity for comparison. 

 

The thermal stability of the purified parental PmHS2 and PmHS2-M2D10 was also compared 

after 15 min exposure between 32°C and 56°C. Using the coupled enzyme assay it was 

determined that the parental PmHS2 polymerization activity decreased about 60% when 

pretreated for 15 min at 50.5°C, while PmHS2-M2D10 still exhibited 90% of its activity. 

PmHS2 was completely inactivated after 15 min incubation at 53°C; PmHS2-M2D10 

pretreated at 53°C still exhibited 50% of polymerization activity. The analysis of the 

polymerization product on 2% agarose gel confirmed these results (Fig. 4).  

 

 
 
Figure 4. Thermal stability of parental PmHS2 and PmHS2-M2D10. Agarose gel electrophoresis 

analysis of the polymerization reaction mixture (18 h/32°C) of purified PmHS2 and PmHS2-M2D10 after 

15 min exposure between 32°C and 56°C (first lane. DNA marker). 
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Analysis of the PmHS2-M2D10 mutations contributing to the increase of thermal 
stability 
The PmHS2-M2D10, found to be more thermostable than the other mutated PmHS2 enzymes, 

was sequenced. Sequencing revealed that PmHS2-M2D10 exhibited several mutations (Table 

2). PmHS2-M2D10 contained a cysteine (C) instead of a serine (S) at position 182 (S182C). 

In addition, the forward primer (5΄-CGTAGGATCCATGAAGGGAAAAAAAGAGATG-3΄) 

had a deletion of the base thymine (T) in the “ATG” start codon. This was not due to a 

mistake during the design of the primers but was due to the quality of the primers. About 6% 

of the primers seemed to contain this mistake. Fortunately, the open reading frame was 

conserved, and this deletion resulted only in the deletion of the first six amino acids (aa) at the 

N-terminus (Δ6aa N-terminus). The reverse primer (5΄-

GCATGAGCTCTAAAAAATAAAAGGTAAACAGG-3΄) contained also a deletion due to 

the primer quality which leaded in the removal of an adenine (A) in the underlined region. It 

resulted in the change of a tyrosine (Y) into isoleucine (I) at position 649 (Y649I), the 

deletion of a leucine (L) at position 651 (ΔL651), followed by the insertion of a stop codon. 

Thus, the PmHS2-M2D10 mutant did not have a C-terminus composed of 32 amino acids 

including a V5-epitope and a His-tag (Δ32aa-tag C-terminus).  

Site directed mutagenesis was applied on the parental PmHS2 (PmHS2-tag) in order to 

investigate which mutation was responsible for the increase in thermal stability of PmHS2-

M2D10. The following PmHS2 enzymes were constructed: PmHS2-(Δ6aa N-terminus), 

PmHS2-(S182C), PmHS2-(Y649I, ΔL651, Δ32aa-tag C-terminus), and PmHS2-(Y649I, 

ΔL651). All mutated enzymes were expressed, purified and characterized for their 

polymerization activity and thermal stability (data not shown). When incubated in 

polymerization conditions (32°C/24 h), the PmHS2-(Δ6aa N-terminus), the PmHS2-(Y649I, 

ΔL651), and the PmHS2-(Y649I, ΔL651, Δ32aa-tag C-terminus) showed comparable activity 

as the parental PmHS2, while the PmHS2-(S182C) showed a lower activity. At the exception 

of the PmHS2-(Y649I, ΔL651, Δ32aa-tag C-terminus), all the PmHS2 variants showed a 

lower thermostability than PmHS2-M2D10. Thus, the analysis of all the PmHS2 variants 

mentioned above showed that the decrease of activity at 32°C of PmHS2-2D10 is due to the 

amino acid change in position 182 (S182C), and that the increase of thermal stability is 

related to the deletion of the C-terminus tag (Fig. 5). Thus, PmHS2-(Δ32aa-tag C-terminus) 

was cloned and characterized for its thermostability. PmHS2-(Δ32aa-tag C-terminus) is in fact 

not a mutated version of PmHS2, but the native PmHS2 and is referred to as PmHS2-wild 

type (PmHS2-WT) (Table 2). 
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Table 2. Details of the PmHS2-M2D10 mutations compared to the parental PmHS2. 
The parental PmHS2 (PmHS2-tag) was used as template for the error prone PCR. The changes and 

deletions of amino acid are underlined. 

 N-terminus S182C C-terminus 

PmHS2 
(PmHS2-tag) MKGKKEMTQI ANTTSKVRV FTDLIPCLPFYFL-KGEL(aa)n-V5epitope-

6His-Stop 

PmHS2-M2D10 Δ6aa - MTQI ANTTCKVRV FTDLIPCLPFIFΔ-Stop 

PmHS2-WT 
(PmHS2-Δ32aa-tag 

C-terminus) 
MKGKKEMTQI ANTTSKVRV FTDLIPCLPFYFL-Stop 

 

Characterization of the PmHS2-WT (PmHS2-(Δ32aa-tag C-terminus)) 
Despite the absence of the His-tag, the PmHS2-WT could be purified on a Ni-NTA resin (Fig. 

5A). This result suggests that the 19 histidines present in PmHS2 enable the protein to bind 

non-specifically to the resin. In addition, the purified PmHS2-WT was found to have a higher 

purity than the parental PmHS2 (PmHS2-tag) after the purification step on Ni-NTA column.  

PmHS2-WT exhibited the same polymerization behavior as PmHS2-tag with respect to the 

polymer elongation when incubated at 32°C in the presence of equimolar UDP-sugar 

concentrations ranging from 0.25 to 20 mM of each UDP-sugars (Fig. 5B) (Chapter 2). The 

PmHS2-tag and PmHS2-WT specific activity were similar, about 0.14 nmol of UDP-sugar 

converted/µg PmHS2/min, during 2 to 8 h of incubation at 32°C. However, the 

thermostability was improved; PmHS2-WT was completely inactivated after 15 min exposure 

at temperature 61°C, while PmHS2-tag was inactivated after heat exposure at 53°C (Fig. 5C). 

The characterization of the PmHS2-WT enzyme activity at temperatures above 32°C showed 

that the absence of a C-terminus tag increased the temperature optimum of PmHS2-WT by at 

least 10°C (Fig. 6D). After 4 h incubation at temperatures below 40°C, the polymerization 

activity was similar for PmHS2-WT and PmHS2-tag. When incubated above 40°C, PmHS2-

WT polymerization increased with the temperature, while PmHS2-tag activity decreased 

untill being completely inactivated at 47°C. The PmHS2-WT enzyme activity was inactivated 

at 60°C, and the optimum incubation temperature of PmHS2-WT was found at 50°C. PmHS2-

WT converted twice the amount of UDP-sugar when incubated at its optimum temperature, 

resulting in the accumulation of about 9 mM of UDP in the reaction mixture. This suggests 

that PmHS2-WT is less sensitive to UDP inhibition than PmHS2-tag (Chapter 2).  
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Figure 5. Characterization of the purified PmHS2-(Δ32aa-tag C-terminus) referred as PmHS2-WT 

in comparison with PmHS2-tag. A). 20% SDS-PAGE gel of PmHS2-tag and PmHS2-WT. Lane 1 

crude cell extract and lane 2 soluble fraction, respectively. B). 2% agarose gel electrophoresis analysis 

of the polymerization product synthesized after 24 h of incubation at 32°C in the presence of equimolar 

UDP-sugar concentrations (0.25 to 20 mM of each UDP-sugar). C). The amount of UDP-sugar, 

converted by the PmHS2-tag and PmHS2-WT after 15 min exposure between 42°C up to 64°C prior to 

24 h of incubation at 32°C for polymerization, was quantified by the coupled enzyme assay. The 

polymerization activity observed at 32°C was set to 100% activity for both the PmHS2-tag and PmHS2-

WT. D). Temperature optimum of PmHS2-tag and PmHS2-WT. Enzymes were incubated for polymer 

synthesis at temperatures in between 32°C and 64°C for 4 h. The amount of UDP-sugar converted was 

assessed by the coupled enzyme assay. The polymerization activity of the PmHS2-tag at 39°C was set 

to 100% activity.  

 

Discussion 
 

GAG-synthase mutant libraries have not been reported yet due to the difficulty to have a good 

assay to screen the mutants of interest. Here, we report that heparosan polymers synthesized 

by crude PmHS2 can be analyzed by agarose gel electrophoresis. Thus, it was possible to 

screen 1000 PmHS2 mutants obtained by error prone PCR for improved thermostability using 

agarose gel electrophoresis. Despite the low rate in mutations, the level of inactivation of 

PmHS2 variants after the first screening round was high since 70% of the PmHS2 mutants 

were inactivated. This observation may suggest that PmHS2 integrity is highly sensitive to 

amino acid changes. For the second screening round, the analysis of the polymerization 
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activity of crude enzymes exposed at 56°C for 15 min, enabled to identify 70 PmHS2 mutants 

with an increased resistance to heat in comparison to the parental PmHS2. Among the nine 

selected and further analyzed PmHS2 mutants, it was observed that not all the crude PmHS2 

variants selected showed an improved thermostability after purification. The cell extract was 

found to protect against the denaturation of PmHS2 when exposed to elevated temperatures, 

thus it is critical to characterize the mutants isolated with the screening assay after their 

purification. Nevertheless, it seems that the amount of heparosan product observed by agarose 

gel electrophoresis analysis is a good indication of the increased stability. Crude PmHS2 

variants capable to synthesize large amount of heparosan were found to be more thermostable.  

Only the PmHS2-M2D10 mutant showed comparable polymerization efficiency as the 

parental PmHS2, and had a polymerization temperature optimum 7°C higher. Furthermore, 

PmHS2-M2D10 stability to heat exposure increased about 4°C, in comparison to PmHS2. 

DNA sequencing of PmHS2-M2D10 revealed the presence of several mutations: Δ6aa N-

terminus, S182C, Y649I, ΔL651, and Δ32aa C-terminus resulting in the deletion of the C-

terminus protein tag. Directed mutagenesis was applied on the parental PmHS2 to determine 

which amino acid changes increased the thermostability. For example, PmHS2-(S182C) had a 

reduced polymerization activity and a lower thermostability, suggesting the role of the cystein 

in the incorrect folding of PmHS2 (Kumari, Tlapak-Simmons et al. 2002). The deletion of the 

C-terminus tag enabled to increase the thermostability and the catalytic activity of PmHS2 

(PmHS2-WT) at higher temperatures. It was found that in the absence of a C-terminus tag, 

PmHS2 optimum temperature was increased by 10°C, and that at this temperature the 

polymerization activity was 2 times higher. The overall polymerization mechanism between 

32°C and 40°C was not influenced by the presence or the absence of the C-terminus tag. The 

use of immobilized-metal affinity chromatography (IMAC), such as Ni-NTA agarose, is 

frequently reported for the purification of proteins (Liu, Zhang et al. 2002). The His-tag is 

commonly used at the N-/C-terminus of recombinant enzymes since it is referred as being 

nondestructive, usable under mild elution conditions and having little interference on protein 

folding (Gaberc-Porekar and Menart 2001). Here, we observed that the C-terminus tag 

(KGEL(aa)n-V5epitope-6His-tag) did not influence the polymerization activity of PmHS2 at 

temperature below 40°C, but that it decreased PmHS2 thermostability when incubated above 

40°C. Thus, this suggests that at elevated temperature the C-terminus tag affects the folding of 

PmHS2, leading to its denaturation.  

 

Here we have shown that agarose gel electrophoresis assay is a suitable method for the 

screening of GAG-synthase mutant libraries. At this moment only few methods have been 

developed to screen GTs mutant libraries either using recombinant E. coli cell-based assays 
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(Aharoni, Thieme et al. 2006; Yu, Tyo et al. 2008; Park, Park et al. 2009; Yang, Rich et al. 

2010), crude cell extract (Persson and Palcic 2008), or purified enzymes (Gosselin, Alhussaini 

et al. 1994). For the screening of mutant libraries there is a real interest to have an assay with 

a limited amount of steps to reduce the labor and the cost. Ultra high throughput assay using 

cell-based assays are very efficient (108 mutants/day), they require little labor and are 

relatively cheap (Aharoni, Thieme et al. 2006). However, such in vivo systems cannot be used 

to select for enzymes with improved stability, and they seem to be limited for screening of 

GAG-synthases since only the chain initiation step could be assessed (Aharoni, Thieme et al. 

2006). A general pH-indicator assay using crude enzymes has been reported for the screening 

of an α-1,3-galactosyltransferase mutant library (Persson and Palcic 2008). This assay, 

described by the authors as a general method for the screening of any GT mutant library, 

could be suitable for the screening of GAG-synthases after optimization of the polymerization 

reaction buffer. In our opinion, agarose gel electrophoresis assay is highly valuable for the 

screening of GAG-synthases mutant libraries. Indeed, the analysis of the crude enzyme 

polymerization reaction by agarose gel electrophoresis has many advantages. Firstly, the use 

of crude enzyme to assess the activity of a library of mutants saves a lot of labor and reduces 

the experimental cost. The fact that there is not a prerequisite for the reaction buffer enables 

to perform the polymerization reaction in the biocatalysts’ optimal conditions. In addition, 

this screening strategy seems to be suitable for the screening of mutant libraries for increased 

stability to temperature, pH, and solvent stability, and as well for their capability to use 

modified UDP-sugars as substrate. For example, agarose gel electrophoresis assay could be 

used to select for heparosan synthases capable of transferring both IdoUA and GlcUA 

residues (Weïwer, Sherwood et al. 2008), or modified sugar residues (Liu, Xu et al. 2010). 

Furthermore, agarose gel assay is easy, does not require the use of expensive equipments, and 

it can be performed in any molecular biology and biochemistry laboratories. Therefore, this 

assay has a large potential for the screening of GAG-synthases, and probably also for the 

screening of any glycosyltransferases (GTs) involved in the synthesis of negatively charged 

polysaccharides. 

 

To summarize, we have developped a general assay using agarose gel electrophoresis analysis 

to screen a library of mutated PmHS2 for increased thermostability. The screening of a GAG-

synthase mutant library is reported here for the first time. Our method has a large potential 

and could be used for the screening of any GAG-synthase mutant libraries for improved 

catalytic properties. In addition, we showed that PmHS2 enzymes are not stable to amino acid 

changes and that the C-terminus tag (V5 epitope and His-tag), generally considered as having 

no influence on the protein stability, has a strong effect on PmHS2 thermal stability and 

catalytic efficiency at elevated temperatures. 
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Abbreviations 
UDP, uridine diphosphate; UDP-GlcUA, UDP-glucuronic acid; UDP-GlcNAc, UDP-N-

acetylglucosamine; PmHS2, Pasteurella multocida heparosan synthase 2; epPCR, error-prone 

PCR. 
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A part of this Chapter is in preparation for publication as a Review article. 
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Introduction 
 
Heparin (Hep) and heparan sulfate (HS) are important bioactive polysaccharides due to their 

involvement in many physiological processes (Linhardt and Toida 2004; Bishop, Schuksz et 

al. 2007). In addition to the well described antithrombotic activity of heparin, in-vitro studies 

showed that heparin, as well as heparan sulfate molecules have a potential for the treatment of 

cancer (Yip, Smollich et al. 2006) and for the prevention of virus infections (Rusnati, Vicenzi 

et al. 2009). The biological activity of Hep/HS is determined by their polymer chain length, 

saccharide unit composition, and sulfation pattern.  

Currently, anticoagulant heparin is obtained from animal derivatives or chemical synthesis 

which results in the production of a limited range of molecules. Therefore, for the 

development of well defined Hep/HS-based drugs, (chemo)enzymatic production systems 

controlling tightly each of the Hep/HS synthesis steps are of interest. 

In this research, the polymerization of heparosan has been studied in order to obtain new 

insight in the controlled enzymatic synthesis of heparin and heparan sulfate. Among the 

described heparosan synthases (Chapter 1), the glycosyltransferase heparosan synthase 2 –

PmHS2– from Pasteurella multocida was the biocatalyst of choice due to its ability to exhibit 

both acetylglucosaminyl and glucuronyl transferase activities (DeAngelis and White 2004) 

and its capability to use modified UDP-sugars which is of interest for the synthesis of defined 

Hep/HS-like polymers (Sismey-Ragatz, Green et al. 2007; Liu, Xu et al. 2010)  

 

In this chapter is discussed how PmHS2 can be used to control the heparosan synthesis. The 

PmHS2 polymerization mechanism is compared with the polymerization mechanism of other 

GAG-polymerases and glycosyltransferases. Then, the modification steps following the 

polymerization of heparosan polysaccharide are described and it is explained briefly how they 

can be used in a (chemo)enzymatic system to synthesize well defined Hep/HS 

polysaccharides. As an example, the outline of a (chemo)enzymatic system to produce 

anticoagulant Hep/HS-like compounds is described. Finally, the perspectives for the synthesis 

of novel and defined Hep/HS molecules using alternative production systems are discussed 

based on the recent advancements and discoveries in this field. 
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Control of heparosan chain length and size 

distribution 

 Parameters influencing the polymerization process 

PmHS2 is a member of the glycosyltransferase (GT) family, more specifically of the 

glycosyltransferase-A (GT-A) superfamily due to its requirement for divalent metal ions and 

its conserved DXD amino acid domains (Coutinho, Deleury et al. 2003) (Chapter 2). 

Polymerases belonging to the GT family are separated in two classes depending on their 

polymerization mechanism: processive and non-processive GTs (Weigel and DeAngelis 

2007). Processive GTs release the polymer chain only when the elongation is accomplished. 

This implies that the polymer cannot bind anymore to the acceptor site once the chain 

termination has taken place. While with non-processive GTs, the polymer chain is released 

from the acceptor site after the transfer of each sugar residue. Thus, the polymer chain needs 

to bind again to the acceptor site in order to be elongated with an additional sugar unit 

(Weigel 2002). In theory, with non-processive GTs the polymer could be elongated 

indefinitely (Weigel 2002).  

 

To control the elongation of GAG polymers, it is important to obtain more knowledge about 

the different elongation processes. Among the GTs, the polymerases involved in the synthesis 

of the GAG hyaluronan are an exception since both processive and non-processive GTs are 

reported, depending on the organisms from which they are isolated (Weigel and DeAngelis 

2007). The synthesis of the GAG heparosan has only been reported with non-processive 

heparosan synthases.  

 

Processive glycosyltransferases 

As mentioned before, for processive GTs, once the polymer chain is released from the 

acceptor site, the polymer elongation cannot take place any longer. Thus, the polymer 

molecular weight is determined by the chain termination, which depends on the polymer 

binding/retention energy at the acceptor site. Thus, Weigel (2002) suggested that 

modifications of the binding retention/energy would dramatically influence the molecular 

weight of the product (Weigel 2002). In addition, the ratio between the acceptor site and the 

UDP-sugar concentration also influences the polymer molecular weight by determining the 

number of polymer chains initiated (Jing and DeAngelis 2004 ), and the number of sugar units 

distributed among the chains. It was also observed that unbalanced concentration of UDP-
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sugars (Cartee, Forsee et al. 2000; Forsee, Cartee et al. 2000; Ventura, Cartee et al. 2006; 

Chen, Marcellin et al. 2009) induces chain termination, and thus play a crucial role in the 

polysaccharide chain length.  

 

Non-processive glycosyltransferases 

Unlike with the processive GTs, for the non-processive GTs the polymer molecular weight is 

not determined by the chain termination since the polymer chains can re-bind to the acceptor 

site (Weigel 2002).  

It was observed that the UDP-sugar concentration present in the reaction mixture also 

influences the polymer molecular weight and size distribution. In the presence of low UDP-

sugar concentrations, P. multocida PmHS2 initiated only a small number of chains, resulting 

in polymers with a high molecular weight and a narrower dispersity (Chapter. 2). At higher 

UDP-sugar concentrations, more chains but with a lower molecular weight were synthesized. 

This might be explained by the fact that PmHS2-GlcNAc+ acceptor/donor sites are saturated 

with a too high number of heparosan chains (Chapter 4).  

In addition, PmHS2 initiates heparosan chains only by transferring a GlcUA to a UDP-

GlcNAc acceptor molecule. Thus, the glucuronyl catalytic site concentration (Chapter 4) and 

the UDP-GlcNAc concentration (Chapter 3) influences the number of heparosan chain 

synthesized. In the presence of an excess of UDP-GlcUA in comparison to UDP-GlcNAc 

concentration, less chains were synthesized resulting in a higher molecular weight product. 

The opposite was observed in the presence of an excess of UDP-GlcNAc (Chapter 3). The 

influence of non-equimolar UDP-sugar concentrations on the amount of polymer chains 

initiated and as consequence on the polymer chain length, was also reported for the synthesis 

of heparosan in E. coli K5 (Roman, Roberts et al. 2003).  

For the non-processive P. multocida GAG synthases PmHS1 (heparosan synthase) (Sismey-

Ragatz, Green et al. 2007) and PmHAS (hyaluronan synthase) (Jing and DeAngelis 2004), it 

was reported that the ratio between UDP-sugar and oligosaccharide template concentrations 

had a large effect on the polymer chain length and size distribution. PmHS1 and PmHAS 

exhibited a higher affinity at the acceptor site for short oligosaccharides than for UDP-sugars. 

Thus, the addition of oligosaccharide templates in the reaction mixture enabled to avoid the 

polymer chain initiation step, and favored the polymer elongation resulting in a product with a 

narrower chain length distribution (Jing and DeAngelis 2004) (Sismey-Ragatz, Green et al. 

2007). By controlling the amount of PmHAS/UDP-sugar/hyaluronan templates, PmHAS 

synthesized defined hyaluronan polymers with a molecular weight in the range of 16 kDa to 2 

MDa and a polydispersity of about 1.0 - 1.2 (Jing and DeAngelis 2004). In contrast with 

PmHS1 and PmHAS, it was observed that PmHS2 did not exhibit a higher affinity for the 
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templates than for the UDP-sugars (Sismey-Ragatz, Green et al. 2007) (Chapter 3). With 

PmHS2, it appeared that the polymer chain initiation is not controlled by the affinity of the 

acceptor binding site for short oligosaccharides, but by the affinity for UDP-GlcNAc present 

in the polymerization reaction (Chapter 3). Based on the results obtained in Chapter 3, it is 

believed that PmHS2 incubated in the presence of short heparosan oligosaccharide templates 

and an excess of UDP-GlcUA will only elongate the short templates resulting in heparosan 

polymers with a narrower size distribution.  

The polymer elongation is also influenced by the increase of the reaction mixture viscosity 

(Chapter 2) (Weigel 2002).  

 

 Step by step elongation for controlled synthesis of heparosan oligosaccharides 

For the GTs belonging to the GT-A superfamily (Coutinho, Deleury et al. 2003) it has been 

shown that the substitution of both aspartic acids (D) by asparagines (N) in the DXD amino 

acid motif, results in the inactivation of the catalytic domains. The fact that bi-functional 

glycosyltransferases can be engineered into two single action transferases has been reported 

for GAG-synthases (Jing and DeAngelis 2000; Jing and DeAngelis 2003; Kane, White et al. 

2006; Sugiura, Shimokata et al. 2008). 

In this study it was observed that PmHS2-GlcUA+ (glucuronyl transferase) and PmHS2-

GlcNAc+ (acetyglucosaminyl transferase) incubated together elongated heparosan polymers 

in the absence of template molecules (Chapter 3). In addition, as a proof of concept, it was 

shown that PmHS2-GlcUA+ and PmHS2-GlcNAc+ immobilized on separate columns can 

synthesize step by step defined heparosan oligosaccharides (Chapter 4). This showed that 

PmHS2-GlcUA+ and PmHS2-GlcNAc+ do not need to form a complex together to exhibit 

catalytic activity. In this respect, the P. multocida heparosan synthases are an exception 

among the known heparosan synthases (Table 1). Indeed, the glucuronyl transferases EXT2 

(Senay, Lind et al. 2000; Busse and Kusche-Gullberg 2003) and KfiC (Sugiura, Baba et al. 

2010) are not capable to transfer the GlcUA residue to a template molecule when they do not 

form a protein complex with their acetyglucosaminyl transferases EXT1 and KfiA, 

respectively.  
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Table 1. Comparison of the polymerization processes of heparosan polymerases.  
 

Source Heparosan 
synthases 

Recombinant 
expression in 

E. coli 

Template 
requirement 

Complex 
formation 

Heparosan 
kDa Ref 

Mammalians EXT1 & EXT2 — 
peptide 

synthetic 
aglycon 

+ 200 

(Senay, Lind 
et al. 2000; 
Busse and 
Kusche-

Gullberg 2003) 

E. coli K5 KfiA & KfiC + heparosan K5 + 20 
(Sugiura, 

Baba et al. 
2010) 

P. multocida 
Type D 

PmHS1 + — — 800 (Kane, White 
et al. 2006) 

PmHS2 + — — 130 Chapter 2 

PmHS2 
GlcUA+ 
PmHS2 
GlcNAc+ 

+ — — 30-100 Chapter 3 

 

The synthesis of heparosan oligosaccharides during the step by step synthesis, described in 

Chapter 4, revealed that heparosan oligomers can be synthesized in a controlled manner and 

in the absence of template molecules by PmHS2 single action transferases. The absence of 

templates complicates the synthesis of monodisperse heparosan oligosaccharides due to the 

incubation of PmHS2-GlcUA+ in the presence of both UDP-sugars to initiate heparosan 

chains. This contributes in the synthesis of a mixture of heparosan oligosaccharides. 

Therefore, the use of oligosaccharide templates (DeAngelis, Oatman et al. 2003; Sugiura, 

Shimokata et al. 2008) or UDP-disaccharides (Liu, Xu et al. 2010), avoiding the chain 

initiation during the step by step elongation, should also favor the production of monodisperse 

heparosan products using PmHS2 single action transferases in contrast with the native 

PmHS2 (double action transferase). Nevertheless, being able to synthesize step by step 

heparosan in the absence of templates represents advantage since templates molecules do not 

need to be synthesized or produced. Thus, to avoid the initiation of new heparosan chains 

during the elongation cycles, either in the presence or in the absence of templates, it is 

important to ensure that the reaction mixture is UDP-GlcNAc free when incubated with 

PmHS2-GlcUA+ (Chapter 3). The incubation step in the presence of PmHS2-GlcNAc+ does 

not influence the monodispersity of the product since PmHS2-GlcNAc+ cannot initiate 

heparosan chains.  
 

What to be investigated next in the heparosan synthesis field?  

PmHS2 appeared to exhibit a large potential to control heparosan polymerization with respect 

to the polymer molecular weight and the incorporation of modified sugar residues. High 
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molecular mass heparosan chains (100 - 130 kDa) with a narrow distribution (PDI = 1.03 - 

1.10) can be obtained by incubating PmHS2 in the presence of 0.25 mM to 1 mM of each 

UDP-sugar (Chapter 2 and Chapter 3). Heparosan oligosaccharides of about 2 to 10 sugar 

units, can be synthesized using immobilized PmHS2 single action transferases (Chapter 4). In 

addition, PmHS2 is able to elongate heparosan using modified sugar residues such as UDP-

GlcNAc with modified acyl chain (Sismey-Ragatz, Green et al. 2007) and UDP-GlcNTFA 

(Liu, Xu et al. 2010). These modified heparosan polymers exhibit different behavior towards 

heparosan lyase (Sismey-Ragatz, Green et al. 2007) and enable to control the sulfation pattern 

facilitating the in vitro synthesis of heparin and heparan sulfate (Liu, Xu et al. 2010).  

 

Thus, PmHS2 and the PmHS2 single action transferases (PmHS2-GlcUA+, PmHS2-GlcNAc+) 

can be used to synthesize heparosan with specific chain length and modified sugar residues. 

However, in order to further enlarge the potential of PmHS2 biocatalysts for the synthesis of 

well defined heparosan polymers and to successfully produce them at large scale and low 

costs, new hurdles have to taken.  

 

Reduction of heparosan synthesis cost 

UDP-GlcUA and UDP-GlcNAc used to synthesize heparosan are commercially available but 

expensive (€ 1000/g, sigma catalog). Chemical synthesis of UDP-sugars is laborious due to 

the high number of catalytic steps involved that results in a low yield and turns the kilogram 

scale production in a non-economically feasible process (Zhao and van der Donk 2003).  

In nature, the UDP-sugars pathways are present in almost any living organisms offering a 

large diversity of biocatalysts (Bülter and Elling 1999). To reduce the synthesis costs inherent 

to UDP-sugars, several strategies using biocatalysts have been explored to produce UDP-

sugars (De Luca, Lansing et al. 1995; Liu, Zhang et al. 2002; Shao, Zhang et al. 2002; Zhao 

and van der Donk 2003) and to recover the released UDP. Instead of using recombinant 

enzymes to produce UDP-sugars, the yeast Saccharomyces cerevisiae (Ying, Chen et al. 

2009) and engineered E. coli were used as cell factory (Mao, Shin et al. 2006). The coupling 

of metabolically engineered bacteria, E. coli and Corynebactrium ammoniagenes, also has 

been reported to produce UDP-sugars (Tabata, Koizumi et al. 2000).  

 

Up to now, systems to recover UDP and synthesize UDP-sugars are not economically feasible 

enough to produce UDP-sugars in high yield and at industrial scale. The production of UDP-

GlcUA and UDP-GlcNAc at low cost should be one of the main focuses in the development 

of (chemo)enzymatic Hep/HS production systems.  
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Protein engineering of PmHS2 

As discussed before, the production of modified heparosan polymers is of interest for the 

synthesis of a large variety of defined Hep/HS (Sismey-Ragatz, Green et al. 2007; Liu, Xu et 

al. 2010). Recombinant heparosan synthases exhibiting improved catalytic properties should 

be developed for the enzymatic synthesis of Hep/HS-like polymers at industrial scale. These 

enzymes should have a higher catalytic efficiency, an increased stability to temperature, 

solvent, pH and also to be less sensitive to inhibitor compounds such as UDP (Chapter 2). In 

addition, there is interest to enlarge the substrate range of heparosan synthases in order to 

synthesize novel well defined polysaccharides (Weïwer, Sherwood et al. 2008). The 

improvement and evolvement of biocatalysts can be done either by random (Chapter 5) or site 

directed mutagenesis. In Chapter 5, an agarose gel electrophoresis assay based on the 

detection of the synthesized heparosan polymers in the reaction mixture was used to screen a 

library of crude PmHS2 mutants. Analysis of the polymerization mixture enables to incubate 

biocatalysts in their optimal buffer condition, and the use of crude enzymes saves time and 

lowers the cost inherent to protein purification. This assay has a large potential to screen any 

GAG-synthase mutant libraries for increased stability and for the capability to use modified 

UDP-sugars as substrates (Weïwer, Sherwood et al. 2008).  

 

PmHS2 versatility  

It was observed that PmHS2 is capable of hydrolyzing UDP-sugars into UDP and 

monosaccharide residue (Chapter 3). When PmHS2 single action transferases are 

immobilized in the presence of UDP-sugars in order to elongate step by step heparosan; it 

results in UDP-sugars hydrolysis. UDP-sugars are expensive, thus it is critical to determine 

the optimal incubation conditions in which the hydrolysis is reduced, and the elongation is 

favored. On the other hand, the fact that PmHS2 exhibits glycosyltransferase and glycoside 

hydrolase activity suggests its versatility, which might be of interest to synthesize valuable 

compounds (Chapter 3) (Hu and Walker 2002; Perugino, Trincone et al. 2004; Zhang, Griffith 

et al. 2006; Shaikh and Withers 2008 ). Therefore, the potential of PmHS2 to synthesize 

UDP-sugars could be investigated. 
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Chemo/enzymatic synthesis of defined Hep/HS 

products 

The different catalytic steps 

The (chemo)enzymatic synthesis of heparin and heparan sulfate polymers is of interest to 

replace the currently used production systems and to synthesize well defined Hep/HS chains 

for other medical applications. Hep/HS alternative production systems such as the 

(chemo)enzymatic synthesis, can be seen as a “construction game” in which building blocks, 

in this case catalytic steps (Chapter 1), can be added and removed in order to obtain a large 

variety of defined polymers. In each of the catalytic steps, enzymes and their isoforms modify 

the polysaccharide chains in a stereo and regio specific manner, which results in the complex 

and unique structure of heparin and heparan sulfate. All the catalytic steps of the Hep/HS 

synthesis have been identified and many of biocatalysts involved have been isolated from 

mammalian cells, expressed in E. coli as recombinant proteins (Peterson, Frick et al. 2009), 

and have been characterized with respect to their potential to be used in an in vitro system to 

produce defined Hep/HS polymer chains. A brief overview of each of the (chemo)enzymatic 

steps that could be used to produce defined Hep/HS compounds is given in this paragraph. 

 

Synthesis of heparosan 

The first step in the synthesis of heparin and heparan sulfate is the polymerization of the 

polysaccharide backbone heparosan [-4GlcUAβ1-4GlcNAcα1-]n. Currently, heparosan can be 

obtained by extraction from the bacterial polysaccharide capsule or using biocatalytic 

synthesis (Chapter 1). To produce defined heparosan polymers with respect to the control of 

the polymer molecular weight (Chapter 2, 3, 4) and the incorporation of modified UDP-sugars 

(Sismey-Ragatz, Green et al. 2007; Liu, Xu et al. 2010), the use of biocatalysts is the most 

promising method; their application is described in the previous paragraphs. 

 

N-deacetylation and N-sulfation of heparosan 

The first step of the post-polymerization modification of heparosan polysaccharide is the N-

deacetylation/N-sulfation of the N-acetylglucosamine (GlcNAc) groups. This step is catalyzed 

by the dual action N-deacetylase/N-sulfatase (NDST) enzyme in the presence of 3'-

phosphoadenosine 5'-phosphosulfate (PAPS) as sulfate donor. The PAPS concentration 

determines the N-deacetylation and N-sulfation pattern of the Hep/HS polymer defined as 
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highly N-sulfated (NS), non N-sulfated (NA) and intermediately N-sulfated (NS/NA) 

(Carlsson, Presto et al. 2008). However, the control of the degree of N-deacetylation/N-

sulfation by adding PAPS to the reaction mixture is not economically feasible (Zhao and van 

der Donk 2003).  

By applying site-directed mutagenesis on NDST, single action N-deacetylase (NDase) 

(Kakuta, Sueyoshi et al. 1999; Duncan, Liu et al. 2006) and single action N-sulfotransferase 

(NST) (Berninsone and Hirschberg 1998) were obtained. These single action NDase and NST 

have the potential to be use to modulate in vitro the N-deacetylation/N-sulfation step.  

Yet, to successfully catalyze at industrial scale a controlled N-deacetylation/N-sulfation using 

biocatalysts, incubation conditions in which the NDST step and the regeneration of PAPS can 

simultaneously be performed have to be optimized (Saribas, Mobasseri et al. 2004). When 

heparin-like polymers (highly N-deacetylated and N-sulfated) are required, the N-

deacetylation and N-sulfation can be chemically catalyzed (Kuberan, Beeler et al. 2003; 

Lindahl, Li et al. 2005).  

 

Glucuronyl C5-epimerization of the N-deacetylated and N-sulfated heparosan 

After the NDST step, some of the GlcUA residues are converted into IdoUA by glucuronyl 

C5-epimerase. The in vitro catalysis of this step is difficult to control using biocatalysts due to 

the fact that soluble C5-epimerase catalyzes a reversible reaction leading to a mixture of 

GlcUA (65%) and IdoUA (35%) residues (Hagner-Mcwhirter, Lindahl et al. 2000; Li and 

Lijuan 2010). In addition, the C5-epimerase recognition for the substrate is highly dependent 

on GlcUA neighboring residues, which limits the variety of epimerization patterns obtained, 

and it is still unclear what the C5-epimerase substrate prerequisites are in order to convert 

GlcUA into IdoUA (Li and Lijuan 2010).  

Since, the IdoUA residue is important to ensure the biological activity of Hep/HS by 

increasing the flexibility of the polymer chains, it is critical to control the incorporation of 

IdoUA into the Hep/HS chains. The discovery or the protein engineering of glucuronyl C5-

epimerases capable to catalyze a larger substrate range, such as observed for alginate 

epimerase (Valla, Li et al. 2001), is of interest to diversify the epimerization pattern for the 

production of novel and defined Hep/HS molecules. On the other hand, since the chemical 

catalysis of GlcUA into IdoUA does not represent a useful method, an alternative is to use 

chemically synthesized UDP-IdoUA as a substrate in the synthesis of heparosan (Weïwer, 

Sherwood et al. 2008).  
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O-sulfation of the epimerized heparosan 

The last catalytic step in the production of Hep/HS polymers is the O-sulfation of the 

epimerized heparosan by O-sulfotransferes: the 2-OST, 6-OST, and 3-OST. The O-

sulfotranferases require the sulfate donor PAPS to catalyze the sulfation at the oxygen groups. 

It was shown that immobilized O-sulfotransferases catalyze successfully the O-sulfation of 

the Hep/HS polymers when incubated in the presence of the PAPS regeneration system (aryl 

sulfotransferase-IV and p-nitrophenyl sulfate (Burkart, Izumi et al. 2000)) (Chen, Avci et al. 

2005). 

Although the O-sulfation can also be performed chemically (Naggi, De Cristofano et al. 

2001), the use of O-sulfotransferases to catalyze this step is favored to obtain defined 

sulfation patterns. A large number of O-sulfotransferase isoforms is available; they all 

catalyze different substrates resulting in the synthesis of a variety of defined sulfation patterns 

(Habuchi, Tanaka et al. 2000).  

 

Outline of a (chemo)enzymatic system to produce anticoagulant Hep/HS  

Anticoagulant “neoheparin” has been produced by applying chemical modifications, at the 

exception of the enzymatic C5-epimerization, on E. coli K5 heparosan (Lindahl, Li et al. 

2005). Since chemical modifications are not regio- and strereo-specific, there is an interest to 

use biocatalysts to tightly control the modifications of heparosan polysaccharides (Kuberan, 

Beeler et al. 2003; Chen, Avci et al. 2005). Here, an outline of a (chemo)enzymatic system for 

the production of anticoagulant Hep/HS products, is presented. 

 

The role of IdoUA is dependent on the chain length of the Hep/HS polysaccharides. Although 

the presence of IdoUA residues is critical for the antiviral activity (Rusnati, Vicenzi et al. 

2009) and for the anticoagulant activity of the heparin pentasaccharides (Chen, Jones et al. 

2007), it was found that heparin-like molecules composed of 8 to 10 monosaccharides exhibit 

anticoagulant activity without the presence of IdoUA residues (Kuberan, Beeler et al. 2003; 

Chen, Jones et al. 2007). The O-sulfation of the Hep/HS polymers can occur even in the 

absence of the IdoUA residues within the chain (Kuberan, Beeler et al. 2003; Chen, Jones et 

al. 2007). Thus for the production of anticoagulant heparin-like product, the C5-epimerization 

catalytic step is not critical and can be omitted.  

 

The first step in the (chemo)enzymatic process (Fig. 1) is the polymerization of heparosan 

oligomers with a length of 8 to 10 monosaccharides (Chen, Jones et al. 2007) by immobilized 

PmHS2 single action transferases (Chapter 4). Immobilized PmHS2-GlcUA+ initiate 
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heparosan oligosaccharides (Chapter 3). To guarantee the synthesis of monodisperse 

heparosan oligosaccharides, the complete conversion of the UDP-sugars and removal of the 

oligosaccharides has to be carefully monitored during the different alternating incubation 

cycles with PmHS2-GlcUA+ and PmHS2-GlcNAc+. Since anticoagulant heparin is highly N-

deacetylated and N-sulfated, the heparosan oligosaccharides are chemically N-deacetylated by 

hydrazinolysis at 100°C or alkaline treatment with 2 M NaOH at 60-65°C. N-sulfation is done 

using trimethylamine sulfure trioxide (Kuberan, Beeler et al. 2003; Lindahl, Li et al. 2005). 

The NDST step is followed by the 6-O and 3-O sulfation of the oligosaccharides by 

immobilized sulfotransferases (Chen, Avci et al. 2005). During the O-sulfation step, the 

sulfate donor PAPS is regenerated by the use of aryl sulfotransferase-IV (AST-IV EC. 

2.8.2.1.) and p-nitrophenyl sulfate (Burkart, Izumi et al. 2000). The PAPS regeneration at the 

same time as the O-sulfation occurs enables to reduce the production cost by about 1000-fold 

(Chen, Avci et al. 2005).  

After each step (polymerization, NDST and O-sulfation) the heparosan oligosaccharides are 

recovered by anion exchange chromatography (Kuberan, Beeler et al. 2003) and lyophilized 

prior to be desalted using gel filtration (DeAngelis, Oatman et al. 2003).  

 

 
 

Figure 1. Schematic representation of a (chemo)enzymatic process for the production 

of anticoagulant heparin-like products.  
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General conclusions and perspectives 
Nowadays, there is still a need for a better understanding of the heparin and heparan sulfate 

structure/activity relationship. The Hep/HS structures involved in physiological pathways are 

being identified and elucidated in order to set up new therapeutic strategies for the treatment 

of cancer and the prevention against virus infection. For this purpose, large libraries of 

unusual Hep/HS-like molecules are screened for their biological activities using newly 

developed microarray devices (De Paz and Seeberger 2008; Park, Lee et al. 2008; Liu, Palma 

et al. 2009; Powell, Zhi et al. 2009). Chinese hamster ovary (CHO) cells are also used to 

synthesize and study the biological interactions of heparan sulfate in physiological processes 

(Zhang, Lawrence et al. 2006). Moreover, an artificial Golgi apparatus is currently being 

developed for nano-scale production of unusual Hep/HS molecules (Martin, Gupta et al. 

2009).  

In the past decades, biosynthetic pathways of Hep/HS polymers have been extensively 

investigated. The enzymes involved in the Hep/HS biosynthesis have been isolated, cloned, 

expressed as recombinant proteins, and characterized for their catalytic activity (Peterson, 

Frick et al. 2009). The use of these biocatalysts in order to (chemo)enzymatically synthesize 

defined Hep/HS polymers has been studied. 

Here, the potential of heparan synthases to synthesize in a controlled manner heparosan has 

been evaluated. For this purpose, the P. multocida heparosan synthase PmHS2 polymerization 

mechanism was studied, and it resulted in major contributions in the field of heparosan 

synthesis. It was found that the heparosan chain length and size distribution is mainly 

determined by the number of chains initiated which depends on the concentration of UDP-

sugars (Chapter 2), on the number of acceptor molecules (UDP-GlcNAc) (Chapter 3), and on 

the number of acceptor sites (PmHS2-GlcUA+) (Chapter 4). It was also found that PmHS2-

GlcNAc+ plays a critical role in the heparosan chain length by being saturated or inhibited in 

the presence of a too high number of chains (Chapter 4). A fine tuning of all the parameters 

could enable to control heparosan polysaccharide elongation. In addition, it was shown that 

immobilized PmHS2 single action transferases can be used to synthesize step by step 

heparosan oligosaccharides in the absence of template molecules (Chapter 4). This is an 

advantage since templates do not need to be produced, thus reducing the cost and the labor of 

the heparosan oligosaccharide synthesis. Although immobilized PmHS2 single action 

transferases are suitable to synthesize at industrial scale heparosan oligosaccharides, the 

optimization of the step by step synthesis is required to avoid the production of a mixture of 

oligosaccharides (Chapter 4). Finally, an agarose gel electrophoresis assay based on the 

analysis of the heparosan products synthesized by crude enzymes was evaluated for the 

screening of a PmHS2 mutant library for improved thermostability. This agarose gel assay has 
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a large potential to screen heparosan synthase mutant libraries with improved characteristics 

for the large scale production of novel and defined Hep/HS molecules.  

 

The production of anticoagulant heparin using (chemo)enzymatic systems, instead of using 

the traditional production method is an interesting approach. However, some hurdles have to 

be taken to be able to produce large amount of anticoagulant heparin products at industrial 

scale. One of the biggest challenges in the (chemo)enzymatic synthesis is to reduce the 

production cost of heparosan, either by recovering UDP for regenerating UDP-sugars or by 

producing UDP-sugars at low price. Furthermore, it is critical to optimize the step by step 

elongation of heparosan oligosaccharides in order to synthesize monodisperse products.  

For the production of Hep/HS-based molecules to be used in novel therapeutic applications, 

both the elucidation of interesting Hep/HS structures and the optimization of each 

(chemo)enzymatic synthesis step is needed. A special effort should be made to understand 

and control the N-deacetylation/N-sulfation step, as well as the C5-epimerization step. This 

will result in the synthesis of well defined Hep/HS polysaccharides to be used in the treatment 

of cancer and in the prevention against virus infection. 
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Heparin (Hep) and heparan sulfate (HS) are highly sulfated and complex glycosaminoglycan 

polysaccharides involved in many physiological processes. There is a close relationship between the 

Hep/HS structures and their biological activity; and it was reported that these polymers have a large 

potential for medical applications. Heparin is worldwide used as an anticoagulant compound to 

prevent blood clotting during surgery. Heparan sulfate, an analog of heparin, is not used yet for 

therapeutic purposes.  
The utilization of Hep/HS-based drugs in new therapeutic settings requires the synthesis of well 

defined heparin and heparan sulfate-like molecules. Since neither the extraction from animal derivates, 

nor the chemical synthesis, are suitable for the production of a large variety of defined Hep/HS 

polymers, there is a general interest in developing alternative systems enabling to tightly control 

Hep/HS synthesis. Heparin and heparan sulfate alternative production systems can be seen as a 

“construction game” in which the building blocks or catalytic steps can be incorporated in order to 

obtain polymers with specific and defined final structure.  

In mammalian cells, the heparin and heparan sulfate polymers are synthesized by a cascade of 

enzymatic reactions, in which enzymes and their isoforms catalyze stereo- and regio- specifically the 

modification of polysaccharide chains resulting in the complex and unique Hep/HS structure (Chapter 

1). Up to now, all the catalytic steps of the Hep/HS synthesis have been identified; a good control of 

each of them will enable the production of defined Hep/HS polymers. During the synthesis of heparin 

and heparan sulfate, the polymerization of the polysaccharide backbone, known as heparosan, 

determines the chain length and the size distribution of these polymers. Here, the Pasteurella 

multocida heparosan synthase PmHS2, a bacterial enzyme catalyzing the formation of heparosan 

polymers, was studied in detail in order to develop methods to control the polymer elongation. 

 

Recombinant PmHS2 enzyme obtained after expression in Escherichia coli was characterized for its 

polymerization mechanism. In Chapter 2, parameters influencing the PmHS2 polymerization activity 

are described. It was observed that the metallic ions Mn2+/Mg2+ are required for the PmHS2 

polymerization activity, and that UDP, a by-product of the polymerization reaction, is an inhibitor of 

PmHS2. In addition, it was shown that the UDP-sugar concentrations influenced the PmHS2 

polymerization process with respect to the polymer chain length and size distribution. In the presence 

of low UDP-sugar concentrations, PmHS2 synthesized heparosan polymers with a high average 

molecular weight and a narrow size distribution. While, in the presence of high UDP-sugar 

concentrations, low molecular heparosan polymers with broader distribution were synthesized by 

PmHS2.  

Using site directed mutagenesis techniques, two functional and active PmHS2 single action 

transferases (PmHS2-GlcUA+ and PmHS2-GlcNAc+) were obtained. These two single action 

transferases were used to investigate in detail the heparosan polymerization process catalyzed by 

PmHS2. In Chapter 3 is described that only the UDP-GlcNAc is used as acceptor molecule to initiate 
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heparosan chains. As a consequence, it was observed that not only the UDP-sugar concentration 

influences the polymer molecular weight but also the proportion of each UDP-sugar. In addition, it 

was found that PmHS2 is able to hydrolyze UDP-sugars; suggesting the versatility of PmHS2. 

In Chapter 4, it was observed that each of the two transferase domains have a different influence on 

the overall polymerization process with respect to catalytic efficiency and polymer elongation. In 

addition, the PmHS2 single action transferases were immobilized and the elongation of heparosan 

oligosaccharides was controlled step by step by re-circulating the reaction mixture from the PmHS2-

GlcUA+ to PmHS2-GlcNAc+ columns, respectively. The synthesis of heparosan oligosaccharides was 

successful, showing that PmHS2 single action transferases do not need to form a complex to be active 

and to elongate heparosan. 

In Chapter 5, a PmHS2 mutant library created by error-prone PCR was screened for increased 

tolerance to elevated incubation temperatures, using a general agarose gel electrophoresis assay. The 

identification of thermostable PmHS2 variants validated this screening method. The influence of a C-

terminus tag on PmHS2 thermal stability and polymerization activity was investigated. 

 

In Chapter 6, the results obtained are discussed with respect to the control of heparosan elongation and 

size distribution. In addition, an overview is given on each of the catalytic step needed to synthesize 

heparin and heparan sulfate in a (chemo)enzymatic system. Recent advancements and discoveries in 

this field, as well as the perspectives concerning the synthesis of heparin and heparan sulfate 

molecules are presented. It is clear that the future will be an interesting and an exciting time 

concerning research on the synthesis of well defined Hep/HS oligomers and polymers. 
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Heparine (Hep) en heparan sulfaat (HS) zijn veelvuldig gesulfateerde en complexe 

glycosaminoglycaan polysachariden, die in vele fysiologische processen betrokken zijn. Er is een 

nauwe verwantschap tussen de Hep/HS structuren en hun biologische activiteit, en het is beschreven 

dat deze polymeren een grote potentie hebben voor medische toepassingen. Heparine wordt 

wereldwijd gebruikt als een antistollingsmiddel dat het klonteren van bloed voorkomt gedurende de 

operatie. Heparan sulfaat, een variant van heparine, is nog niet gebruikt voor therapeutische 

doeleinden. 

 

Voor het gebruik van Hep/HS-gebaseerde medicijnen in nieuwe therapeutische toepassingen is  de 

synthese van goed gedefinieerde heparine en heparan sulfaat-achtige moleculen noodzakelijk. 

Aangezien noch de extractie uit dierlijk weefsel noch de chemische synthese geschikt zijn voor de 

productie van een grote variëteit van gedefinieerde Hep/HS polymeren, is er een algemene interesse 

in het ontwikkelen van alternative systemen die nauwkeurig gecontroleerde synthese van Hep/HS 

mogelijk maken. Alternative productie systemen van heparine en heparan sulfaat kunnen gezien 

worden als een “bouw spel”, waarbij de bouwstenen of katalytische stappen kunnen worden 

gecombineerd om zo polymeren te verkrijgen met specifieke en gedefinieerde eindstructuren. 

  

In dierlijke cellen worden heparine en heparan sulfaat polymeren gesynthetiseerd door een reeks van 

enzymatische reacties, waarin enzymen en hun isovormen stereo- en regio-specifieke modificaties op 

de polysacharideketen katalyseren, resulterend in de complexe en unieke Hep/HS structuur 

(Hoofdstuk 1). Tot nu toe zijn alle katalytische stappen van de Hep/HS synthese geïdentificeerd; een 

goede controle van elk van hen zal de productie van gedefinieerde Hep/HS polymeren mogelijk 

maken. Gedurende de synthese van heparine en heparan sulfaat is het de polymerisatie van de 

polysacharide keten (bekend als heparosan), die de de keten lengte en de distributie van de grootte 

van deze polymeren bepaalt. In dit proefschrift was de Pasteurella multocida heparosan synthase 

PmHS2, een bacterieel enzym dat de formatie van heparosan polymeren katalyseert, in detail 

bestudeerd om zo een methode te onwikkelen om polymeerverlenging te reguleren. 

 

Recombinant PmHS2 enzym, verkregen na expressie in Escherichia coli, werd gekarakteriseerd op 

het polymerisatiemechanisme. In Hoofdstuk 2 zijn de parameters beschreven die de PmHS2 

polymerisatieactiviteit beïnvloeden. Er werd geobserveerd dat de metaalionen Mn2+/Mg2+ nodig zijn 

voor de PmHS2 polymerisatieactiviteit en dat UDP, een bijproduct van de polymerisatiereactie, een 

remmer is van PmHS2. Daarnaast werd getoond dat de UDP-suikerconcentraties de PmHS2 

polymerisatieproces, met betrekking tot de polymeerketenlengte en de distributie van de ketenlengte, 

beïnvloeden. In de aanwezigheid van lage UDP-suikerconcentraties synthetiseerd PmHS2 heparosan 

polymeren met een groot gemiddelde molecuulgewicht en een smalle ketenlengtedistributie. 
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Daarentegen worden er in de aanwezigheid van hoge UDP-suikerconcentraties kleine moleculaire 

heparosan polymeren met bredere distributie gesynthetiseerd door PmHS2.  

 

Via site directed mutagenesis technieken zijn twee functionele en actieve PmHS2 transferase 

mutanten met enkelzijdige activiteit (PmHS2-GlcUA+ en PmHS2-GlcNAc+) verkregen. Deze twee 

‘single action’ transferases werden gebruikt om in detail de heparosan polymerisatieproces, 

gekatalyseerd door PmHS2, te onderzoeken. In Hoofdstuk 3 is beschreven dat alleen de UDP-GlcNAc 

wordt gebruikt als acceptormolecuul om heparosan ketens te initiëren. Dit heeft tot gevolg dat niet 

alleen de UDP-suikerconcentratie het molucuulgewicht van de polymeer beïnvloedt, maar dat ook de 

proportie van elke UDP-suiker van belang is. Verder werd er gevonden dat PmHS2 in staat is om 

UDP-suikers te hydrolyseren; dit geeft de veelzijdigheid van PmHS2 aan. 

 

In Hoofdstuk 4 werd er geobserveerd dat elk van de twee transferase domeinen een verschillende 

invloed heeft op het gehele polymerisatieproces met betrekking tot de katalytische efficiëntie en 

polymeerverlenging. Vervolgens werden de PmHS2 ‘single action’ transferases geïmmobiliseerd en 

de verlenging van heparosan oligosachariden werd stap voor stap gecontroleerd door het re-circuleren 

van het reactiemengsel van de PmHS2-GlcUA+ naar de PmHS2-GlcNAc+ kolom, respectievelijk. De 

synthese van heparosan oligosachariden was succesvol, wat aantoonde dat PmHS2 ‘single action’ 

transferases niet een complex hoeven te vormen om actief te zijn en om heparosan te verlengen. 

 

In Hoofdstuk 5 was een PmHS2 mutant bibliotheek, gecreëerd via error-prone PCR, gescreend voor 

de toegenomen tolerantie van verhoogde incubatietemperaturen via een algemene agarose gel 

electrophorese assay. De identificatie van thermostabiele PmHS2 varianten valideerde deze screening 

methode. De invloed van een C-terminus tag op de thermostabiliteit van PmHS2 en 

polymerisatieactiviteit werd onderzocht. 

 

In Hoofdstuk 6 worden de verkregen resultaten bediscussiëerd met betrekking tot de controle op 

heparosanverlenging en de distributie van de ketenlengte. Daarnaast wordt er een overzicht gegeven 

op elk van de katalytische stappen die nodig zijn om heparine en heparan sulfaat in een 

(chemo)enzymatisch systeem te synthetiseren. Recente vooruitgang en ontdekkingen in dit veld, naast 

de perspectieven die de synthese van heparine en heparan sulfaat moleculen biedt, zijn getoond. Het is 

duidelijk dat de toekomst een interessante en spannende tijd zal zijn omtrent het onderzoek in de 

synthese van goed gedefinieerde Hep/HS oligomeren en polymeren. 
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L’héparine et le sulfate d’héparan sont des polysaccharides appartenant à la famille des 

glycosaminoglycanes (GAG). Ils sont présents en grande quantité dans notre organisme où ils 

sont impliqués dans plusieurs fonctions physiologiques. Il a été observé que leur structure 

définit leur activité biologique.  

L’héparine est connue pour son activité anticoagulante; elle est utilisée en médecine et en 

chirurgie afin d’éviter les thromboses. Le sulfate d’héparan n’est pas encore utilisé à des fins 

thérapeutiques, mais il est, au même titre que l’héparine, considéré comme ayant un grand 

potentiel en médecine. 

Lorsque l’on considère les méthodes traditionnelles de production de l’héparine, soit par 

extraction à partir de tissus animaux ou soit par synthèse chimique, aucune de ces méthodes 

n’est adaptée pour la production de molécules bien définies et spécifiques. Il est pour cette 

raison, important de développer des méthodes alternatives de productions qui permettent de 

contrôler chaque étape de la synthèse de l’héparine et du sulfate d’héparan pour produire des 

molécules définies et ainsi assurer l’utilisation de l’héparine et du sulfate d’héparan dans de 

nouvelles thérapies.  

 

Chez les mammifères, l’héparine et le sulfate d’héparan sont synthétisés par une cascade de 

réactions enzymatiques dans lesquelles les enzymes et leurs isoformes catalysent de façon 

spécifique les polysaccharides; ce qui résulte en la synthèse de molécules définies et 

complexes (Chapitre 1). Jusqu'à présent toutes les étapes de la synthèse ont été identifiées; un 

bon contrôle de chacune d’entre elles rendra possible la synthèse de molécules spécifiques 

d’héparine et de sulfate d’héparan. Ainsi, les méthodes alternatives de production de 

l’héparine et du sulfate d’héparan peuvent être vues comme un jeu de construction dans lequel 

chaque « block » peut être ajouté ou non, afin d’obtenir la parfaite structure à la fin de la 

synthèse. La synthèse commence par l’élongation du polysaccharide précurseur de l’héparine 

et du sulfate d’héparan connu sous le nom d’héparosan. L’héparosan détermine la longueur de 

la chaîne et la distribution des polymères d’héparine et de sulfate d’héparan. 

 

Ici, l’enzyme Pasteurella multocida heparosan synthase PmHS2, qui synthétise l’héparosan a 

été étudiée afin de contrôler l’élongation des chaines d’héparosan. L’enzyme recombinante 

PmHS2 a été obtenue après expression dans Escherichia coli et a été caractérisée pour ses 

capacités à contrôler la synthèse d’héparosan. Dans le Chapitre 2, les paramètres qui 

influencent l’activité de polymérisation de PmHS2 sont décrits. Il a été reporté que les ions 

métallique Mg2+ et Mn2+sont indispensables à l’activité de PmHS2, et que l’UDP (uridine 

diphosphate) produit pendant la consommation du substrat, inhibe la réaction de PmHS2. De 

plus, la concentration en substrat (UDP-monosaccharide) influence la longueur des chaînes 

d’héparosan et la distribution des polymères synthétisés. En présence de peu de substrat, 
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PmHS2 synthétise de longs polymères d’héparosan ayant une faible distribution, alors qu’en 

présence d’une grande quantité de substrat, des polymères de plus petite taille et avec une plus 

large distribution sont synthétisés. 

En utilisant des méthodes de mutagenèse dirigée sur PmHS2, deux actives et fonctionnelles 

mono transférases (PmHS2-GlcUA+ et PmHS2-GlcNAc+) ont été obtenues. Ces deux 

enzymes ont permis d’étudier en détail le mécanisme de polymérisation de PmHS2. Le 

Chapitre 3 décrit le fait que le substrat UDP-GlcNAc (UDP-N-acetylglucosamine) est le 

premier accepteur utilisé pour initier la synthèse des chaînes d’héparosan, et que le substrat 

UDP-GlcUA (UDP-acid glucuronique) est le premier monosaccharide donneur. Ainsi la 

concentration en substrat n’est pas le seul paramètre à influencer la réaction, mais la 

proportion de chacun des UDP-monosaccharide (UDP-GlcNAc et UDP-GlcUA) est aussi 

importante. Il a été aussi observé que l’enzyme PmHS2, en plus d’être une 

glycosyltransférase, est aussi une UDP-hydrolase. Cette caractéristique suggère la versatilité 

de PmHS2; ce qui pourrait être intéressant pour la synthèse d’importantes molécules. 

Dans le Chapitre 4, les mono transférases PmHS2 (PmHS2-GlcUA+ et PmHS2-GlcNAc-) ont 

été immobilisées sur deux différentes colonnes. Après leur immobilisation, les mono 

transférases ont été utilisées pour allonger étape par étape la chaîne d’héparosan en re-

circulant la réaction d’une colonne à l’autre. La synthèse d’oligomères d’héparosan est 

possible et démontre que les mono transférases PmHS2-GlcUA+ et PmHS2-GlcNAc+ n’ont 

pas besoin de former un complexe enzymatique pour être active et allonger héparosan. Il a été 

aussi montré que les deux mono transférases influencent différemment l’activité enzymatique 

et l’élongation des chaînes d’héparosan.  

Le Chapitre 5 décrit l’utilisation de gel d’agarose pour analyser une librairie de mutants de 

PmHS2 créée en utilisant la technique de PCR à erreur. L’isolation de variants de PmHS2 

plus stables à une hausse de la température d’incubation a permis de valider cette méthode. 

L’influence du «tag» protéique présent à l’extrémité C-terminale de PmHS2, sur la stabilité 

thermale et l’activité enzymatique de PmHS2 a été évaluée. 

 

Les résultats obtenus sont discutés en fonction de leur contribution pour contrôler l’élongation 

d’héparosan (Chapitre 6). Toutes les étapes nécessaires pour synthétiser (chemo) 

enzymatiquement l’héparine et le sulfate d’héparan sont détaillées. Les récentes découvertes 

faites dans ce domaine sont présentées avec une attention particulière concernant le contrôle 

de la synthèse de l’héparine et du sulfate d’ héparan. Il semble évident que les dix prochaines 

années vont être fleurissantes dans le domaine de la synthèse de molécules spécifiques 

d’héparine et de sulfate d’héparan. 
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