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Chapter 1 

Introduction 

 

“To expect the unexpected shows a thoroughly modern intellect.” 

 Oscar Wilde 

 

 

What do ecosystems, financial markets, and the climate have in common? 

They can all change in abrupt, irreversible, and unexpected ways. 

 

During the 1960s and 1970s, Caribbean coral reefs had been exposed to increasing stress 

from overfishing and eutrophication (Hughes 1994). Nonetheless reefs were thought to be 

resilient ecosystems, and indeed when a hurricane damaged the reefs in 1981, corals 

appeared to recover, as they had after countless hurricanes in their history. After a couple 

of years, however, the real surprise kicked-in. Sea urchins - an efficient grazer of fleshy 

algae - suffered almost complete eradication due to a pathogen-induced disease (Lessios 

et al. 1984). Released from the urchins’ grazing control, fleshy algae started to dominate 

the reef, and corals crashed (Hughes 1994). It was an abrupt, unexpected shift that until 

today remains irreversed (Bellwood et al. 2004). 

 

In 2007, the financial sector snowballed into a crisis that still keeps the global economy 

largely in recession (The Economist, 2007). A multiple set of causes (Krugman, 2009), such 

as the credit boom, the mortgage bubble and the unregulated shadow banking system are 

now held responsible for this collapse reminiscent of the past Great Depression. However, 

the fact that the resulting systemic risk was so widely underestimated, confirms that even 

for the most well studied human institutions, our understanding of the underlying 

complexity is rather limited. It proved that the highly interlinked financial markets are not 

immune to abrupt shifts (May et al. 2008). Whether the 2007 shift will be reversible is still 

unclear. 

 

Around 12,800 years ago, one of the most dramatic climate changes in recent Earth’s 

history happened: the Younger Dryas (Rahmstorf 2002). During this period, the climate 

collapsed from a warm state to very cold conditions (Clark et al. 2002). Probably an influx 

of meltwater from Greenland’s icesheets triggered an abrupt collapse of the North 

Atlantic thermohaline circulation (Rahmstorf 1996; Stommel 1961). Centuries later, the 

collapse to the Younger Dryas was reversed, the North Atlantic circulation suddenly 

switched on, and the temperature jumped back. Since then the climate remained 

relatively stable facilitating the rise of human civilizations. However, given that the 

sensitivity of the North Atlantic circulation and other elements of the Earth system to 

anthropogenic forces is poorly known, the possibility of similar tipping events in the future 

cannot be excluded (Lenton et al. 2008). 
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While abrupt, irreversible, and unexpected changes appear to be the exception rather 

than the rule in most systems, they can clearly have great implications for society. It has 

been argued that such events may be the result of simple underlying mechanisms 

(Scheffer 2009) rather than pure chance. The fact that such mechanisms are identifiable in 

disparate systems - like ecosystems, financial markets, or the climate - suggests that, 

under certain conditions, many systems could behave in such radical and unpredictable 

ways. In the following, I will explain the essence of how this works and present an outline 

of how, in this thesis, ideas about estimating the risk of abrupt, irreversible, and 

unexpected transitions are developed and tested. 

 

Big Surprises Triggered by Small Forces 

Everyday examples illustrate that small changes in external conditions - like increasing pull 

to an elastic band - usually result in smooth responses to the state of a system - the elastic 

band expands (Figure 1.1a). Such a response is gradual, unsurprising, and reversible: once 

we relax the stretch, the elastic band regains its previous shape. 

 

In other cases, small changes in conditions may cause disproportionally strong changes in 

the state of the system (Figure 1.1b). Such marked responses around a threshold in 

conditions can still be continuous and reversible, in the sense that when conditions are 

restored to previous levels, the system returns to its former state. 

 

There are situations, however, where minute changes in conditions may trigger extreme 

discontinuous responses that are not easily reversible (Figure 1.1c). This happens when at 

a threshold, the system abruptly shifts towards a contrasting state (threshold1 in Figure 

1.1c). 

 

Such abrupt shifts triggered by small forces correspond to so-called catastrophic 

bifurcations (Gilmore 1981; Strogatz 1994; Thom 1994). Catastrophic bifurcations are 

abrupt changes in the qualitative behavior of a system that occur at specific thresholds in 

external conditions (see Glossary). Catastrophic bifurcations arise in systems with 

alternative stable states (or, in general, alternative attractors, see Glossary): systems that 

may be in more than one different configurations under the same external conditions 

(May 1977; Scheffer et al. 2001; Sutherland 1974). For instance, the two branches in 

Figure 1.1c represent two alternative stable states for the same range of conditions. 

 

How do alternative stable states arise? The tale of Shallow lakes 

Among the various systems that are considered to exhibit alternative stable states 

(Scheffer and Carpenter 2003; Beisner et al. 2003), but see (Schroder et al. 2005), shallow 

lakes are perhaps the best-documented example. Under the same conditions, a shallow 

lake may be in a clear-water state dominated by submerged aquatic vegetation or in a 

turbid-water state (Scheffer et al. 1993). The mechanism that allows the existence of 

alternative stable states in this, as well as in other systems, is the presence of a positive 

feedback (see Glossary). 



Introduction 

13 

 

 
 

Figure 1.1 System responses to smooth changes in conditions: (a) Gradual and reversible 

response: Changes in the system state occur in an expected way. (b) Abrupt and reversible 

response: The system state reacts in a continuous expected manner. (c) Abrupt and 

irreversible response: A discontinuous unexpected change of the system state takes place. 

(d) Stability landscape illustrating the transition of a system state between two alternative 

stable states. The valleys in the landscape represent the basins of attraction that 

correspond to the alternative stable states of the system. As conditions approach the 

critical threshold1, the basin of attraction shrinks till the point that only a tiny perturbation 

may tip it to the alternative state. [Thin arrows show the trajectory of the system state as 

conditions increase or decrease. Black balls represent the two alternative stable states of 

the system at the bottoms of the valleys in the stability landscape. Open circles threshold1 

and threshold2 mark the unexpected shifts that occur at critical threshold conditions 

(catastrophic bifurcations). Dotted line in panels (c) and (d) represents the border 

between the basins of attraction of the two alternative stable states: the line corresponds 

to the hilltops separating the two valleys in the stability landscape.][modified from 

Scheffer (2009)] 
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In shallow lakes, positive feedbacks that can sustain the clear-water state include effects 

of submerged aquatic vegetation on nutrient cycling, sediment stabilization, and predator-

prey interactions (Scheffer 1998), leading to clear water which in turn promotes the 

development of submerged vegetation. As a result, a shallow lake can remain in a clear-

water state even under high nutrient loading conditions. In the absence of submerged 

vegetation, however, high nutrient loading conditions promote a turbid-water state. This 

contrasting turbid-water state is also sustained by a set of positive feedbacks. For 

instance, sediment resuspension that hinders vegetation settlement and high nutrient 

availability that triggers phytoplankton blooms, both promote the stability of the turbid 

state. 

 

How do transitions between alternative stable states occur? 

Although positive feedbacks promote the existence of alternative stable states, there is 

often a critical threshold in conditions at which the feedbacks are not strong enough to 

sustain a particular state. In the example of shallow lakes, submerged vegetation cannot 

keep favorable conditions for its growth when nutrient loading levels become too high. In 

that case, the system collapses to the alternative state (Figure 1.1c, threshold1). A major 

implication of the collapse is the fact that restoring conditions below the critical threshold 

at which the shift occurred, does not lead to the recovery of the system to its former 

state. This is a direct consequence of the feedbacks that now keep the system in the 

alternative state unless another critical threshold is reached at which the new state 

cannot be sustained anymore (Figure 1.1c, threshold2). The difference between the two 

critical thresholds marks the hysteresis in the system: the disparity in the paths of shifting 

between alternative states. 

 

A simple way to illustrate the transitions between alternative stable states caused by 

smooth changes in external conditions is to think of the behavior of a system as the 

motion of a ball in a landscape of valleys and hilltops (Figure 1.1d). The position of the ball 

in the landscape represents the state of the system. The bottoms of the valleys 

correspond to the alternative states. In Figure 1.1d, two valleys exist for the same range of 

conditions. These valleys represent the basins of attraction of the two alternative stable 

states of the system, and are separated by hilltops. In which valley the ball will end up 

depends on the side of the hilltop where its path started. Obviously, the wider the basin of 

attraction is, the higher the chance will be that the ball is going to end up in it. 

Importantly, the width and the steepness of the basin of attraction also determine how 

easily a perturbation may tip the ball over the hilltop to the alternative valley. The capacity 

of the system to absorb such perturbations without shifting to an alternative state reflects 

the resilience of the state of the system (Holling 1973). In Figure 1.1d, as conditions bring 

the system close to the critical threshold1, the basin of attraction of the current state of 

the system shrinks and so does its resilience: even a tiny perturbation is enough to shift 

the sphere to the alternative valley. 
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In this thesis, I focus on transitions between alternative stable states that occur when 

changes in external conditions undermine the resilience of a system. I will refer to these 

transitions as critical transitions. 

 

Foreseeing the Unexpected 

It would be helpful if we could identify which systems under which circumstances would 

be most likely to go through a critical transition. Unfortunately, good predictive models 

are mostly lacking. In fact, as illustrated by the examples of coral reef collapse and 

financial crisis, even in relatively well-studied systems a loss of resilience preparing the 

system for a critical transition is very difficult to detect. 

 

In this thesis I explore the idea that generic rules may allow us to estimate the risk of 

dramatic events such as the outbreak of global pandemics, collapses of marine fisheries, 

or the threat of desertification even if we do not mechanistically understand the 

functioning of such complex systems. 

 

Thesis Outline 

Chapter 2 is an all-you-need-to-know review of the generic early-warning signals for 

critical transitions. It describes the notion of critical slowing down as the fingerprint of 

catastrophic bifurcations, and explains how critical slowing down causes certain statistical 

system properties to deviate prior to critical transitions. It reviews how recovery time (van 

Nes and Scheffer 2007), autocorrelation (Held and Kleinen 2004; Ives 1995), variance 

(Carpenter and Brock 2006), and low frequency spectral frequencies (Kleinen et al. 2003), 

all increase in the vicinity of a critical transition, as well as how skewness peaks due to the 

asymmetry of the system’s basin of attraction (Guttal and Jayaprakash 2008). Additionally, 

it describes potential early-warning signals estimated using spatial information rather than 

time-series. Various examples of these leading indicators are presented in cases derived 

from different fields, ranging from ecosystems and the climate to the human physiology. 

 

In Chapter 3, we propose a new leading indicator for critical transitions in spatially-

organized systems. We demonstrate that the state of neighboring patches becomes 

increasingly similar prior to a systemic shift. We show that this warning signal can be 

quantified as a rise in spatial correlation between neighboring patches, and we prove that 

it is direct consequence of critical slowing down close to bifurcation points. 

 

In Chapter 4, we crashtest autocorrelation and variance; the flagships of early-warning 

signals. Using analytical and simulation results, we investigate whether there can be cases 

where autocorrelation and variance cannot capture an approaching transition. We 

address three different cases where the performance of indicators may fail, and we 

demonstrate that autocorrelation is a more robust indicator than variance. 

 

In Chapter 5, we test at the same time whether all proposed generic leading indicators do 

signal an approaching shift in three spatially-explicit models that describe desertification 
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in semi-arid ecosystems. We measure recovery time, correlation, variance, and skewness 

prior to transition, and compare these results to specific spatial signatures before a shift, 

such as patch size distributions and pattern formation. We show that there is no silver 

bullet indicator except for rising recovery time upon perturbations. 

 

In Chapter 6, we provide the first evidence of a generic leading indicator occurring prior to 

critical transitions in a real system. We show how autocorrelation increases in the vicinity 

of eight large-scale climate shifts in the Earth’s history, and we compare our results to 

simulated time-series from models that describe the same climatic events. Our analysis 

offers a methodological framework for measuring leading indicators in time-series. 

 

The findings of the thesis are brought together in the Afterthoughts. Therein, I question 

the generality of the early-warning signals, I address their potential applicability, and I 

ponder their further development and their value for avoiding critical transitions in the 

world around us. 
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Chapter 2 

Early-warning signals for critical transitions: A review
     

 

 

 

 

 

Complex dynamical systems, ranging from ecosystems to financial markets and the 

climate, can have tipping points at which a sudden shift to a contrasting dynamical regime 

may occur. Although predicting such critical points before they are reached is extremely 

difficult, work in different scientific fields is now suggesting the existence of generic early-

warning signals that may indicate for a wide class of systems if a critical threshold is 

approaching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
This chapter is based on the paper: M. Scheffer , J. Bascompte, W. A. Brock, V. Brovkin, S. R. 

Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara (2009). Early-warning 

signals for critical transitions. Nature 461: 53-59. We are grateful to the support of Institute 

Para Limes and the South American Institute for Resilience and Sustainability Studies. 

http://www.nature.com/nature/journal/v461/n7260/full/nature08227.html
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Introduction 

It is becoming increasingly clear that many complex systems have critical thresholds—so-

called tipping points—at which the system shifts abruptly from one state to another. In 

medicine, we have spontaneous systemic failures such as asthma attacks (Venegas et al. 

2005) or epileptic seizures (Litt et al. 2001; McSharry et al. 2003); in global finance, there 

is concern about systemic market crashes (Kambhu et al. 2007; May et al. 2008); in the 

Earth system, abrupt shifts in ocean circulation or climate may occur (Lenton et al. 2008); 

and catastrophic shifts in rangelands, fish or wildlife populations may threaten ecosystem 

services (MA 2005; Scheffer et al. 2001). 

 

It is notably hard to predict such critical transitions, because the state of the system may 

show little change before the tipping point is reached. Also, models of complex systems 

are usually not accurate enough to predict reliably where critical thresholds may occur. 

Interestingly, though, it now appears that certain generic symptoms may occur in a wide 

class of systems as they approach a critical point. At first sight, it may seem surprising that 

disparate phenomena such as the collapse of an overharvested population and ancient 

climatic transitions could be indicated by similar signals. However, as we will explain here, 

the dynamics of systems near a critical point have generic properties, regardless of 

differences in the details of each system (Schroeder 1991). Therefore, sharp transitions in 

a range of complex systems are in fact related. In models, critical thresholds for such 

transitions correspond to bifurcations (Kuznetsov 1995). Particularly relevant are 

‘catastrophic bifurcations’ (see Box 2.1 for an example), where, once a threshold is 

exceeded, a positive feedback propels the system through a phase of directional change 

towards a contrasting state. Another important class of bifurcations are those that mark 

the transition from a stable equilibrium to a cyclic or chaotic attractor. Fundamental shifts 

that occur in systems when they pass bifurcations are collectively referred to as critical 

transitions (Scheffer 2009; Wissel 1984). 

 

We will first highlight the theoretical background of leading indicators that may occur in 

non-equilibrium dynamics before critical transitions, and illustrate how such indicators can 

perform in model generated time-series. Subsequently, we will review emerging empirical 

work on different systems and discuss prospects and challenges. 

 

Theory 

Critical slowing down and its symptoms 

The most important clues that have been suggested as indicators of whether a system is 

getting close to a critical threshold are related to a phenomenon known in dynamical 

systems theory as ‘critical slowing down’ (Wissel 1984). Although critical slowing down 

occurs for a range of bifurcations, we will focus on the fold catastrophe (Box 2.1) as a 

starting point. Inappropriate use of this classical model caused some controversy in the 

past (Zahler and Sussmann 1977), but it is now considered to capture the essence of shifts 

at tipping points in a wide range of natural systems ranging from cell signalling pathways 

(Bagowski and Ferrell 2001) to ecosystems (May 1977; Scheffer et al. 2001) and the 
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climate (Lenton et al. 2008). At fold bifurcation points (F1 and F2, Box 2.1), the dominant 

eigenvalue characterizing the rates of change around the equilibrium becomes zero. This 

implies that as the system approaches such critical points, it becomes increasingly slow in 

recovering from small perturbations (Figure 2.1). It can be proven that this phenomenon 

will occur in any continuous model approaching a fold bifurcation (Wissel 1984). 

Moreover, analysis of various models shows that such slowing down typically starts far 

from the bifurcation point, and that recovery rates decrease smoothly to zero as the 

critical point is approached (van Nes and Scheffer 2007). Box 2.2 describes a simple 

example illustrating this. 

 

 

 

 
 
Figure 2.1 Some characteristic changes in non-equilibrium dynamics as a system approaches a 

catastrophic bifurcation (such as F1 or F2, Box 2.1). (a, b, c) Far from the bifurcation point (a), 

resilience is large in two respects: the basin of attraction is large and the rate of recovery from 

perturbations is relatively high. If such a system is stochastically forced, the resulting dynamics 

are characterized by low correlation between the states at subsequent time intervals (b, c). (d, 

e, f) When the system is closer to the transition point (d), resilience decreases in two senses: 

the basin of attraction shrinks and the rate of recovery from small perturbations is lower. As a 

consequence of this slowing down, the system has a longer memory for perturbations, and its 

dynamics in a stochastic environment are characterized by a stronger correlation between 

subsequent states and a larger variance (e, f). Plots produced from a stochastically forced 

differential equation (May 1977) representing a harvested population: 

dX/dt=X(1−X/K)−c(X
2
/(X

2
+1)), where X is population density, K is the carrying capacity (set to 

10) and c is the maximum harvest rate (set to 1 for high resilience and 2.6 for low resilience). 
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The most straightforward implication of critical slowing down is that the recovery rate 

after small experimental perturbation can be used as an indicator of how close a system is 

to a bifurcation point (van Nes and Scheffer 2007). Because it is the rate of change close to 

the equilibrium that matters, such perturbations may be very small, posing no risk of 

driving the system over the threshold. Also, models indicate that in spatially extensive 

systems at risk of systemic collapse, small-scale experimental probing may suffice to test 

the vicinity of the threshold for such a large-scale transition. For instance, it has been 

shown that recovery times after local perturbation increase in models of fragmented 

populations approaching a threshold for global extinction (Ovaskainen and Hanski 2002). 

 

For most natural systems, it would be impractical or impossible to monitor them by 

systematically testing recovery rates. However, almost all real systems are permanently 

subject to natural perturbations. It can be shown that as a bifurcation is approached in 

such a system, certain characteristic changes in the pattern of fluctuations are expected to 

occur. One important prediction is that the slowing down should lead to an increase in 

autocorrelation in the resulting pattern of fluctuations (Ives 1995) (Figure 2.1). This can be 

shown mathematically (Box 2.3), but it is also intuitively simple to understand. Because 

slowing down causes the intrinsic rates of change in the system to decrease, the state of 

the system at any given moment becomes more and more like its past state. The resulting 

increase in ‘memory’ of the system can be measured in a variety of ways from the 

frequency spectrum of the system (Kleinen et al. 2003; Livina and Lenton 2007). The 

simplest approach is to look at lag-1 autocorrelation (Dakos et al. 2008; Held and Kleinen 

2004), which can be directly interpreted as slowness of recovery in such natural 

perturbation regimes (van Nes and Scheffer 2007). Analyses of simulation models exposed 

to stochastic forcing confirm that if the system is driven gradually closer to a catastrophic 

bifurcation, there is a marked increase in autocorrelation that builds up long before the 

critical transition occurs (Figure 2.2d). This is true not only for simple models (Dakos et al. 

2008), but also for highly elaborate and relatively realistic models of spatially complex 

systems (Lenton et al. 2009). 

 

Increased variance in the pattern of fluctuations is another possible consequence of 

critical slowing down as a critical transition is approached (Carpenter and Brock 2006) 

(Figure 2.1). Again, this can be formally shown (Biggs et al. 2009b) (Box 2.3), as well as 

intuitively understood: as the eigenvalue approaches zero, the impacts of shocks do not 

decay, and their accumulating effect increases the variance of the state variable. In 

principle, critical slowing down could reduce the ability of the system to track the 

fluctuations, and thereby produce an opposite effect on the variance (Berglund and Gentz 

2006). However, analyses of models show that an increase in the variance usually arises 

and may be detected well before a critical transition occurs (Carpenter and Brock 2006) 

(Figure 2.2). 

 

In summary, the phenomenon of critical slowing down leads to three possible early-

warning signals in the dynamics of a system approaching a bifurcation: slower recovery 

from perturbations, increased autocorrelation and increased variance. 
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Figure 2.2 Two examples of early-warning signals for a critical transition in a time-series 

generated by a model of a harvested population (May 1977) driven slowly across a bifurcation. 

Analysis of the filtered time-series (b) shows that the catastrophic transition is preceded by an 

increase both in the amplitude of fluctuation, expressed as s.d. (c), and in slowness, estimated 

as the lag-1 autoregression (AR(1)) coefficient (d), as predicted from theory. In panel (a) the 

gray band identifies the transition phase. The horizontal dashed arrow marks the width of the 

moving window used to compute the indicators shown in (c) and (d), and the gray line is the 

trend used for filtering (see Dakos et al. (2008) for the methods used). The dashed curve and 

the points F1 and F2 represent the equilibrium curve and bifurcation points as in Box 2.1 panels 

(c) and (d). 

 

Skewness and flickering before transitions 

In addition to autocorrelation and variance, the asymmetry of fluctuations may increase 

before a catastrophic bifurcation (Guttal and Jayaprakash 2008). This does not result from 

critical slowing down. Instead, the explanation is that in catastrophic bifurcations such as 

fold bifurcations (Box 2.1), an unstable equilibrium that marks the border of the basin of 

attraction approaches the attractor from one side (Box 2.1). In the vicinity of this unstable 

point, rates of change are lower (reflected in a less steep slope in the stability landscapes). 

As a result, the system will tend to stay in the vicinity of the unstable point relatively 

longer than it would on the opposite side of the stable equilibrium. The skewness of the 

distribution of states is expected to increase not only if the system approaches a 
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catastrophic bifurcation, but also if the system is driven closer to the basin boundary by an 

increasing amplitude of perturbation (Guttal and Jayaprakash 2008). 

 

 

 

BOX  2.2  |                   Cri�cal slowing down: an example

To see why the rate of recovery rate a er a small perturba�on will be reduced, 
and will approach zero when a system moves towards a catastrophic bifurca�on

point consider the following simple dynamical system, where γ is a posi�ve scaling
and a and b are parameters: 

d
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It can easily be seen that this model has two equilibria, x
1
=a and x

2
=b, of which

one is stable and the other is unstable. If the value of parameter a equals that of b,  
the equilibria collide and exchange stability (in a transcri�cal bifurca�on). 

Assuming that equilibrium x
1
 is the stable equilibrium, we can now study what 

happens if the state of the equilibrium is perturbed slightly (x = x
1
 + ε): 
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 in this case, we have 
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and, for the other equilibrium 
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If b>a then the first equilibrium has a nega�ve eigenvalue, λ
1
, and is thus stable

(as the perturba�on goes exponen�ally to zero; see equa�on (2)). It is easy to see 

from equa�ons (3) and (4) that at the bifurca�on (b=a) the recovery rates λ
1
 and 

λ
2
 are both zero and perturba�ons will not recover. Farther away from the 

bifurca�on, the recovery rate in this model is linearly dependent on the size of the

basin of a"rac�on (b−a). For more realis�c models, this is not necessarily true 

but the rela�on is s�ll monotonic and is o en nearly linear.    
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Another phenomenon that can be seen in the vicinity of a catastrophic bifurcation point is 

flickering. This happens if stochastic forcing is strong enough to move the system back and 

forth between the basins of attraction of two alternative attractors as the system enters 

the bistable region before the bifurcation (Horsthemke 2006). Such behavior is also 

considered an early-warning, because the system may shift permanently to the alternative 

state if the underlying slow change in conditions persists, moving it eventually to a 

situation with only one stable state. Flickering has been shown in models of lake 

eutrophication (Carpenter and Brock 2006) and trophic cascades (Carpenter et al. 2008), 

for instance. Also, as discussed below, data suggest that certain climatic shifts and 

epileptic seizures may be presaged by flickering. Statistically, flickering can be observed in 

the frequency distribution of states as increased variance and skewness as well as 

bimodality (reflecting the two alternative regimes) (Carpenter and Brock 2006). 

 

Indicators in cyclic and chaotic systems 

The principles discussed so far apply to systems that may be stochastically forced but have 

an underlying attractor that corresponds to a stable point (for example the classic fold 

catastrophe illustrated in Box 2.1). Critical transitions in cyclic and chaotic systems are less 

well studied from the point of view of early-warning signals. Such transitions are 

associated with different classes of bifurcations (Kuznetsov 1995). First, there are the 

bifurcations that mark the transitions between stable, cyclic and chaotic regimes. An 

example is the Hopf bifurcation, which marks the transition from a stable system to an 

oscillatory system (Strogatz 1994). Like the fold bifurcation, this bifurcation is signalled by 

critical slowing down (Chisholm and Filotas 2009): close to the bifurcation, perturbations 

lead to long transient oscillations before the system settles to the stable state. 

 

Another class of bifurcations are the non-local bifurcations (Kuznetsov 1995) that occur if 

intrinsic oscillations bring the system to the border of the basin of attraction of an 

alternative attractor. Such basin-boundary collisions (Vandermeer and Yodzis 1999) are 

not associated with particular properties of stable or unstable points that can be 

analytically defined. We know of no explicit work on early-warning signals for such 

transitions. Nonetheless, the dynamics may be expected to change in a characteristic way 

before basin-boundary collisions occur. For instance, oscillations may become ‘stretched’, 

as the system dwells longer in the vicinity of the basin boundary, where rates of change 

are slower (Rinaldi and Scheffer 2000), implying increased autocorrelation. Finally, there is 

the phenomenon of phase locking between coupled oscillators. Again, alternative 

attractors are often involved (Vandermeer et al. 2001) and the corresponding bifurcations 

are associated with critical slowing down (Leung 2000), suggesting the existence of early-

warning signals. Indeed, rising variance and flickering occur before an epileptic seizure, a 

phenomenon associated to the phase locking of firing in neural cells (see below). 

 

Spatial patterns as early-warning signals 

In addition to early-warning signals in time-series, there are particular spatial patterns that 

can arise before a critical transition. Many systems can be seen as consisting of numerous 
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coupled units each of which tends to take a state similar to that of the units to which it is 

connected. For instance, it is well known that financial markets affect each other. Also, the 

attitudes of individuals towards certain issues is affected by the attitudes of their peers 

(Holyst et al. 2002; Scheffer et al. 2003), and the persistence of species in habitat patches 

in a fragmented landscape depends on the presence of the same species in neighboring 

patches from which recolonization can happen (Bascompte and Sole 1996; Hanski 1998). 

In such systems, phase transitions may occur (Schroeder 1991; Solé et al. 1996) much as in 

ferromagnetic materials, where individual particles affect each others’ spin. As gradual 

change in an external forcing factor (for example a magnetic field) drives the system closer 

to a transition, the distribution of the states of the units in such systems may change in 

characteristic ways. For instance, scale-invariant distributions of patch sizes occur close to 

a systemic transition, and there is a general tendency towards increased spatial 

coherence, measured as increased cross-correlation (or in oscillating units, resonance) 

among units before a critical event (Schroeder 1991; Solé et al. 1996). 

 

Certain classes of spatial system deviate from this general pattern and can have other, 

more specific, indicators of imminent transitions. For instance, in systems governed by 

local disturbance (for example grazers foraging locally on vegetation patches), scale-

invariant power-law structures that are found for a large parameter range vanish as a 

critical transition is approached (Kéfi et al. 2007a). In systems that have self-organized 

regular patterns (Turing 1952), critical transitions may be signalled by particular spatial 

configurations. For instance, models of desert vegetation show that as a critical transition 

to a barren state is neared, the vegetation becomes characterized by regular patterns 

because of a symmetry-breaking instability. These patterns change in a predictable way as 

the critical transition to the barren state is approached (Figure 2.3), implying that this may 

be interpreted as early-warning signal for a catastrophic bifurcation (Rietkerk et al. 2004). 

 

In conclusion, when it comes to interpreting spatial patterns it is important to know which 

class of system is involved. Although broad classes have similar early-warning signals, 

there is no ‘one-size-fits-all’ spatial pattern announcing critical transitions. 

 

Precursors of transitions in real systems 

Most of the work on early-warning signals for critical transitions has so far been done 

using simple models, and empirical proof that critical slowing down occurs at bifurcations 

has been provided by controlled experiments with lasers (Tredicce et al. 2004) and 

neurons (Matsumoto and Kunisawa 1978). The question therefore remains of whether 

highly complex real systems such as the climate or ecosystems will show the theoretically 

expected early-warning signals. Results from elaborate and relatively realistic climate 

models including spatial dynamics and chaotic elements (Lenton et al. 2009) suggest that 

some signals might be robust in the sense that they arise despite high complexity and 

noisiness. Nonetheless, it is clearly more challenging to pick up early-warning signals in 

complex natural systems than in models. We now review some emerging results on the 

climate and ecosystems. Also, we highlight empirical successes in finding early-warning 
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signals of transitions in systems for which we have a relatively poor understanding of the 

mechanisms that drive the dynamics, such as the human brain and financial markets. 

 

 

 
 
Figure 2.3 Ecosystems may undergo a predictable sequence of self-organized spatial patterns 

as they approach a critical transition. We show the modelled response of semi-arid vegetation 

to increasing dryness of the climate. Solid lines represent mean equilibrium densities of 

vegetation. The insets are maps of the pattern: the dark colour represents vegetation and the 

light colour represents empty soil. As the bifurcation point for a critical transition into a barren 

state is approached, the nature of pattern changes from maze-like to spots. [modified from 

Rietkerk et al. (2004)] 

 

Climate 

Interest in the possibility of critical transitions in the Earth system has been sparked by 

records of past climate dynamics revealing occasional sharp transitions from one regime 

to another (Alley et al. 2003). For instance, about 34 Myr ago the Earth changed suddenly 

from the tropical state in which it had been for many millions of years to a colder state in 

which Antarctica was glaciated, a shift known as the greenhouse–icehouse transition 

(Kump 2005; Liu et al. 2009; Tripati et al. 2005) (Figure 2.4). Also, glacial cycles tend to end 

with an abrupt warming (Luthi et al. 2008; Petit et al. 1999). 

 

Uncertainty in reconstructing such dynamics remains considerable, and it is even more 

difficult to unveil the underlying mechanisms. Nonetheless, the sharpness of the shifts and 

the existence of positive feedbacks that, if strong enough, could cause self-propelling 
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change have led to the suggestion that these and other examples of rapid climate change 

could be explained as critical transitions (Alley et al. 2003; Lenton et al. 2008). Therefore, 

the reconstructed climate dynamics before such transitions are an obvious place to look 

for early-warning signals. In a recent analysis, a significant increase in autocorrelation was 

found in each of eight examples of abrupt climate change analyzed (Dakos et al. 2008) 

(Figure 2.4). 

 

Another recent study suggests that flickering preceded the abrupt end of the Younger 

Dryas cold period (Bakke et al. 2009). Although the first part of this cold episode was quite 

stable, rapid alternations between a cold mode and a warm mode characterized the later 

part, and the episode eventually ending in a sharp shift to the relatively warm and stable 

conditions of the Holocene epoch (Clark et al. 2002). After examination of longer 

timescales, it has been suggested that the increasing Pleistocene climate variability may 

be interpreted as a signal that the near geological future might bring a transition from 

glacial–interglacial oscillations to a stable state characterized by permanent mid-latitude 

Northern Hemisphere glaciation (Crowley and Hyde 2008). 

 

 

 
 
Figure 2.4 Critical slowing down indicated by an increase in lag-1 autocorrelation in climate 

dynamics. We show the period preceding the transition from a greenhouse state to an 

icehouse state on the Earth 34 Myr ago. The trends in the CaCO3 concentration time-series 

removed by filtering before computing autocorrelation (AR(1) coefficient) are represented by 

the gray line. The horizontal dashed arrow marks the width of the moving window used to 

compute the autocorrelation. [modified from Dakos et al. (2008)] 

 

Ecosystems 

In ecology, critical transitions have become a major focus of research. The existence of 

alternative attractors has been demonstrated experimentally in lakes (Scheffer and van 

Nes 2007), and a large body of work now suggests that alternative stable states separated 
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by critical thresholds also occur in ecosystems ranging from rangelands to marine systems 

(Scheffer et al. 2001; Scheffer and Carpenter 2003). Work on early-warning signals in this 

field is just emerging. As mentioned earlier, in dry regions self-organization can lead to 

particular spatial patterns under some conditions. Here the complete loss of vegetation is 

an important transition, as recovery from the barren state may require more rain than is 

needed to preserve the last patches. There is good evidence to support the idea that a 

regular pattern characterized by spots of vegetation signals the proximity of a threshold to 
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such catastrophic desertification (Rietkerk et al. 2004). Other studies show how, in line 

with model predictions, vegetation-patch size distributions lose their scale-free structures 

and become characterized by truncated power laws as a transition to a barren state is 

approached (Kéfi et al. 2007a). 

 

Early-warning signals are also being found for destabilization of exploited fish stocks. It has 

been shown that harvesting tends to lead to increased fluctuations in fish populations 

(Hsieh et al. 2006). This increase in variance is most likely due to increased intrinsic growth 

rates in the resulting populations, as older age classes are preferentially harvested and the 

younger fish have higher overall intrinsic rates of change (Anderson et al. 2008). Such 

higher growth rates lead to increased nonlinearity as they drive populations towards the 

critical transition from a stable to a cyclic or chaotic regime, as mentioned earlier. 

Asthma attacks and epileptic seizures 

Abrupt transitions in physiology include epileptic seizures and asthma attacks. In the case 

of asthma, it has been shown that human lungs can display a self-organized pattern of 

bronchoconstriction that might be the prelude to dangerous respiratory failure, and which 

resembles the pattern formation in collapsing dry-land vegetation (Venegas et al. 2005). 

 

Epileptic seizures happen when neighboring neural cells all start firing in synchrony. 

Predicting such seizures far in advance remains very difficult (Mormann et al. 2007). 

However, before the seizure becomes noticeable several characteristic changes in neural 

activity can occur. For instance, minutes before an epileptic seizure, variance in the 

electrical signal recorded by electroencephalography may increase (McSharry et al. 2003) 

(Figure 2.5). More subtle changes (reduced dimensionality of the signal) occur up to 25 

min before epileptic seizures, reflecting a continuous increase in the degree of 

synchronicity (and thus correlation) between neural cells (Elger and Lehnertz 1998). Also, 

hours before the seizure, mild energy bursts can occur in the brain followed by frequent 

symptomless seizures too small for the patients to notice (Litt et al. 2001). This resembles 

patterns of flickering in which smaller transient excursions to the vicinity of an alternative 

state precede the upcoming major shift. 

Finance 

The prediction of shifts in financial markets is a heavily researched area. In this field, the 

discovery of predictability quickly leads to its elimination, as profit can be made from it, 

thereby annihilating the pattern. As a result, although there is always some predictability 

that can be exploited by specialists (Brockner 1992; Lo et al. 2000), overall financial 

markets are notoriously difficult to predict (LeBaron 2000). Nonetheless, many papers in 

the financial literature show that market dynamics may contain information presaging 

major events (Bates 1991; Bates 1996; Hens and Schenk-Hoppe 2009). For instance, some 

events are preceded by measures of increased trade volatility (for example the spread 

between the value of put options and the value of call options (Bates 1991; Bates 1996)), 

but a ‘volatility calm’ before the abrupt change can also happen (Arvelund 2002; Bates 

1991). A prominent volatility-based early-warning signal in financial markets is the VIX, or 

‘fear’, index (Lo et al. 2000; Whaley 1993). There is also evidence of systematic 
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relationships in variance and first-order autocorrelation (Lebaron 1992), although lead–lag 

relationships tend to be erratic. Finally, increased spatial coherence may be an early-

warning of major transitions. There is evidence that correlation increases across returns to 

different stocks in a falling market and patterns embodied in options prices may serve as a 

type of early-warning indicator (Hong and Stein 2003). 

 

 

 
 
Figure 2.5 An example of the subtle changes in brain activity before an epileptic seizure that 

may be used as an early-warning signal. The epileptic seizure clinically detected at time 0 is 

announced minutes earlier in an electroencephalography (EEG) time-series by an increase in 

variance. [modified from McSharry et al. (2003)] 

 

Outlook 

As our overview shows, similar early-warning signals can appear in widely different 

systems: flickering may occur before epileptic seizures, the end of a glacial period and in 

lakes before they shift to a turbid state; self-organized patterns can signal an imminent 

transition in desert vegetation and in asthma; increased autocorrelation may indicate 

critical slowing down before all kinds of climatic transitions and in ecosystems; and 

increased variance of fluctuation may be a leading indicator of an epileptic seizure or 

instability in an exploited fish stock. Some of these complex systems are better 

understood than others. However, turning the reasoning around, it could be argued that 

the generic character of some early-warning signals suggests that these transitions may be 

somehow related to bifurcations, where universal laws of dynamical systems govern the 

pattern. 

 

The theoretical basis of the work on early-warning signals in simple models is quite strong, 

and the first results from more elaborate models suggest that similar signals may arise in 

highly complex systems (Lenton et al. 2009). Nonetheless, more work is needed to find 

out how robust these signals are in situations in which spatial complexity, chaos and 
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stochastic perturbations govern the dynamics. Also, detection of the patterns in real data 

is challenging and may lead to false positive results as well as false negatives. False 

negatives are situations in which a sudden transition occurred but no early-warning signals 

could be detected in the behavior before the shift. This can happen for different reasons. 

One possibility is that the sudden shift in the system was not preceded by a gradual 

approach to a threshold. For instance, it may have remained at the same distance from 

the bifurcation point, but been driven to another stable state by a rare extreme event. 

Also, a shift that is simply due to a fast and permanent change of external conditions (Box 

2.1 panel a of Figure) cannot be detected from early-warning signals. A second class of 

false negatives may arise from the statistical difficulty of picking up the early-warning 

signal. For instance, the detection of increased autocorrelation may require long time-

series (Bence 1995). A third difficulty arises if the external regime of perturbations 

changes over time. This may distort or counteract the expected signals. False positives 

occur if a supposed early-warning signal is not the result of approaching a bifurcation. This 

may happen by chance or may result from a confounding trend within the system or in the 

external regime of perturbations. 

 

Importantly, most of the indicators we have identified signal a wide class of impending 

transitions in complex systems. The same signals may even occur, albeit in a less 

pronounced way, as the system approaches a threshold that is not related to catastrophic 

bifurcations (Box 2.1 panel b of Figure) (Berglund and Gentz 2006). This has been shown 

for critical slowing down (van Nes and Scheffer 2007), and may also be true for 

autocorrelation and variance. Nonetheless, such non-catastrophic thresholds are related 

to the more spectacular catastrophic ones (Box 2.1), and systems may in fact move from 

one type of threshold to another. In conclusion, most early-warning signals are indicators 

of proximity to a broad class of thresholds, where small forces can cause major changes in 

the state of a complex system. 

 

The idea that critical transitions across a range of systems may be related in the sense that 

they can be described by similar equations, implying similar possible bifurcations and 

early-warning signals, implies an exciting opportunity for connecting work across 

disciplines. However, there are many challenges to be overcome. For instance, filtering 

techniques for time-series (Box et al. 2008) are necessary to increase the sensitivity of 

indicators while preventing false positives (Dakos et al. 2008), but results depend on 

parameter choices in filtering (Dakos et al. 2008; Lenton et al. 2009). Therefore, it would 

be useful to build a set of reliable statistical procedures to test whether an increase in 

autocorrelation, for example, is significant. We note also that most of the signals we have 

discussed should still be interpreted in a relative sense. For instance, although 

autocorrelation is predicted to approach unity at a fold bifurcation, measurement noise 

will tend to reduce correlations. Also, perturbations will often trigger a transition well 

before a bifurcation point is reached. Thus, although a trend in the indicators may serve as 

a warning, the actual moment of a transition remains difficult to predict. A key issue when 

it comes to practical application is the question of whether a signal can be detected 

sufficiently early for action to be taken to prevent a transition or to prepare for one (Biggs 

et al. 2009b). Understanding spatial early-warning signals better might be particularly 

useful in this respect, as a spatial pattern contains much more information than does a 
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single point in a time-series, in principle allowing shorter lead times (Guttal and 

Jayaprakash 2009). 

 

In any case, generic early-warning signals will remain only one of the tools we have for 

predicting critical transitions. In systems in which we can observe transitions repeatedly, 

such as lakes, rangelands or fields such as physiology, we may empirically discover where 

the thresholds are. Nonetheless, some extremely important systems, such as the climate 

or ocean circulation, are singular and afford us limited opportunity to learn by studying 

many similar transitions. Also, we are far from being able to develop accurate models to 

predict thresholds in most complex systems, ranging from cells to organisms, ecosystems 

or the climate. We simply do not understand all the relevant mechanisms and feedbacks 

sufficiently well in most cases. The generic character of the early-warning signals we have 

discussed here is reason for optimism, as they occur largely independently of the precise 

mechanism involved. Thus, if we have reasons to suspect the possibility of a critical 

transition, early-warning signals may be a significant step forwards when it comes to 

judging whether the probability of such an event is increasing. 
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Spatial correlation as leading indicator of catastrophic shifts
     

 

 

 

 

 

Generic early-warning signals such as increased autocorrelation and variance have been 

demonstrated in time-series of systems with alternative stable states approaching a 

critical transition. However, lag times for the detection of such leading indicators are 

typically long. Here we show that increased spatial correlation may serve as a more 

powerful early-warning signal in systems consisting of many coupled units. We first show 

why from the universal phenomenon of critical slowing down, spatial correlation should 

be expected to increase in the vicinity of bifurcations. Subsequently, we explore the 

applicability of this idea in spatially explicit ecosystem models that can have alternative 

attractors. The analysis reveals that as a control parameter slowly pushes the system 

towards the threshold, spatial correlation between neighboring cells tends to increase 

well before the transition. We show that such increase in spatial correlation represents a 

better early-warning signal than indicators derived from time-series provided that there is 

sufficient spatial heterogeneity and connectivity in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
This chapter is based on the paper: V. Dakos, E. H. van Nes, R. Donangelo, H. Fort and M. 

Scheffer (2010). Spatial correlation as leading indicator of catastrophic shifts. Theoretical 

Ecology 3(3): 163-174. We would like to thank Sasha Panfilov and Nobuto Takeuchi for valuable 

discussions, as well as Sonia Kéfi, Andrea Downing, Reinette Biggs and Jordi Bascompte for 

their valuable comments. 

http://www.springerlink.com/content/tj8670753812gv33/


Chapter 3 

34 

Introduction 

Abrupt extensive changes have been identified in a range of ecosystems (Scheffer et al. 

2001). Some of these shifts are suggested to be critical transitions between alternative 

states (Scheffer and Carpenter 2003). Such critical transitions have been described, among 

others, for lakes (Carpenter 2005; Scheffer 1998), for marine and coastal environments 

(Daskalov et al. 2007; Petraitis and Dudgeon 1999), for terrestrial communities (Handa et 

al. 2002; Schmitz et al. 2006), and for semi-arid ecosystems (Narisma et al. 2007; Rietkerk 

et al. 2004). 

 

Predicting critical transitions is a difficult task (Clark et al. 2001). However, recent 

theoretical work suggests that there may be generic leading indicators for critical 

transitions even when mechanistic insight is insufficient to build reliable predictive models 

(Scheffer et al. 2009). The underlying principle of most of these indicators is a 

phenomenon known in dynamical systems theory as ‘critical slowing down’ (Strogatz 

1994). Critical slowing down occurs in most bifurcation points when the dominant 

eigenvalue characterizing the rates of change around the equilibrium becomes zero. This 

implies that approaching such critical points the system becomes slower in recovering 

from perturbations (Held and Kleinen 2004; van Nes and Scheffer 2007; Wissel 1984). In 

reality all systems are permanently subject to disturbances. It has been shown in models 

that in such situations one should expect that there is an increase in autocorrelation (Held 

and Kleinen 2004; Ives 1995; Kleinen et al. 2003) and in variance (Carpenter and Brock 

2006) in the pattern of fluctuations as a bifurcation is approached. 

 

A major drawback of such signals is that in practice real-time detection may come too late 

to take action, as long time-series of good quality and resolution are needed (Biggs et al. 

2009b; Scheffer et al. 2009). In theory, spatial patterns may provide more powerful 

leading indicators, as they contain more information than a single data point in a time-

series (Donangelo et al. 2010; Guttal and Jayaprakash 2009). Indeed, various studies have 

shown spatial signatures of upcoming transitions. For systems that have self-organized 

pattern formation, there are specific signals (Kéfi et al. 2007a; Rietkerk et al. 2004; von 

Hardenberg et al. 2001). However, these signals tend to be specific to the particular 

mechanism involved (Pascual and Guichard 2005) and cannot be generalized to other 

systems. In a stochastic extinction-colonization model, Oborny et al. (2005) showed that 

spatial variance of population densities increases near the critical extinction threshold. In 

similar stochastic spatial metapopulation models, spatial correlation increases prior to 

species extinction as a function of occupied patches (Bascompte 2001), transient time to 

extinction diverges near the spatial threshold (Gandhi et al. 1998; Ovaskainen et al. 2002) 

and the size of maximum patches declines as habitat fragmentation increases (Bascompte 

and Sole 1996). Recently it has been shown that rising variance accompanied by a peak in 

skewness preludes the transition of an underexploited resource to overexploitation in a 

spatial model with local alternative stable states (Guttal and Jayaprakash 2009). 

 

Here we first explore whether critical slowing down might in theory generate spatial 

signals in spatially heterogeneous ecosystems that can go through a critical transition.  
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Figure 3.1 Time: Balls and cups representation of the stability properties of a system exhibiting 

alternative stable states. (a) At high resilience, small disturbances to the equilibrium are 

counterbalanced by high recovery rates back to equilibrium. As a result, when monitoring the 

state variable in time, the collected time-series is characterized by low correlation between 

subsequent values (panels c, d). (b) At low resilience, the basin of attraction shrinks and the 

system is closer to the transition point. Small disturbances not only increase the chance of 

pushing the system to the alternative state, but they are not anymore effectively damped due 

to low recovery rates back to equilibrium. The resulting time-series is highly autocorrelated 

(panels e, f). Space: Dynamics of two strongly connected units embedded in a hypothetical 

spatial system. When the system is far away from the transition (high resilience), dynamics in 

each unit are defined more by their own reaction processes than by dispersion (panel g) and 

appear weakly correlated (panel h). Close to the transition (low resilience), reaction processes 

are minimized due to critical slowing down and dispersion dominates (panel i). Units now are 

strongly correlated (panel j). 
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In particular, we propose a direct link between critical slowing down and increasing spatial 

correlation prior to a transition, analogous to what has been demonstrated in non-spatial 

systems (Scheffer et al. 2009). We show that an increase in spatial correlation can serve as 

an early-warning signal prior to a bifurcation point. Even though such divergence in long-

range coherence has been shown in phase transitions (Fisher 1974; Solé et al. 1996; 

Stanley 1971), to our knowledge there is no work that investigates this phenomenon in 

spatially-explicit ecological models of alternative stable states as the ones we use in this 

study. Furthermore, we compare spatial and temporal correlation as leading indicators of 

transitions in three different spatially-explicit models and we show that their performance 

depends on the assumptions over the underlying connectivity and heterogeneity of the 

landscape. 

 

Spatial consequences of critical slowing down 

In models bifurcations represent thresholds where a tiny change in a parameter can lead 

to a qualitative change in the behavior of the system (Strogatz 1994). At such critical 

points the dominant eigenvalue characterizing the rates of change around the equilibrium 

becomes zero. This implies that approaching such bifurcation points, the system becomes 

increasingly slow in recovering from small perturbations back to its equilibrium. In the 

case of the classical fold bifurcation, the consequences can be seen intuitively from 

stability landscapes (Figure 3.1). The size of the basin of attraction around an equilibrium 

shrinks as the bifurcation point is approached by slowly tuning a control parameter (till the 

basin of attraction of one of the two equilibria disappears; Figure 3.1a, b). However, also 

the slopes of the stability landscape representing the return rate to equilibrium 

(engineering resilience) change. As the basin shrinks, these slopes become less steep 

before they eventually flatten out at the threshold. The corresponding smooth decline in 

return rates represented by eigenvalues happens in any continuous model approaching a 

fold bifurcation (Wissel 1984), and analysis of various models shows that such slowing 

down typically starts already far from the bifurcation point (Chisholm and Filotas 2009; 

van Nes and Scheffer 2007). If one exposes such a system to stochastic perturbations 

which are normally distributed and in the limit of the equilibrium so that the linear 

approximation still holds, slowing down implies that the state of the system at any given 

moment becomes more and more like its past state, as the return rate to equilibrium goes 

to zero at the bifurcation (Figure 3.1d, f). 

 

What might be the consequence of critical slowing down in a system where we have many 

coupled units, each with alternative stable states? This may correspond for instance to a 

spatial grid of an ecosystem model with alternative stable states. If we assume that the 

conditions are different for each grid cell, i.e. the intrinsic equilibrium states of the units in 

isolation are different for each grid cell for instance due to different environmental 

conditions, then the diffusive exchange between the units will continuously tend to 

reduce such variation between cells. More precisely, the dynamics between two 

neighboring units (x1 and x2) will be governed by a reaction part (f) and a diffusion part 

governed by a diffusion rate (D): 
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= + −1
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where pi is a parameter that defines heterogeneity between the two units and c is the 

control parameter that drives the system to the transition point. The Jacobian matrix of 

this system at equilibrium * *
1 2( , )x x  is: 
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'( , , ) '( , , ) 1
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f x p c f x p c
D f x p c f x p c Dλ +

= − − − +   (eq4). 

 

When connectivity is very low, we may assume that *'( , , )
i i

D f x p c<<  which renders the 

eigenvalues of the system equal to: *

1 1 1'( , , )f x p cλ ≈  and *

2 2 2'( , , )f x p cλ ≈ . This assumption 

basically implies that the two units can be regarded as being disconnected. Under these 

conditions, each unit is governed by its own dynamics and shifts at a different critical 

threshold ci. Changes in each unit are independent from each other. As a consequence 

one would expect to find no correlation between units. 

 

When there is exchange between the units, units are no longer independent. If 

connectivity is strong, the critical thresholds at which each unit shifts converge (c1≈c2≈c*). 

When the system is far away from the transition, units are governed by both ‘reaction’ 

and diffusion processes (eq3, eq4). Close to the transition point, ‘reaction’ within each 

unit becomes smaller due to critical slowing down ( * *'( , , )
i i

f x p c → 0). On the contrary 

diffusion is independent of the proximity to the transition but depends only on the 

gradient between the two units * *

1 2( )x x− . We may thus assume that at this point 
* *'( , , )
i i

D f x p c>> , and we may neglect * *'( , , )
i i

f x p c : the eigenvalues of the system approach

1 0λ ≈  and 
2 2Dλ ≈ − . This means that the system slows down each unit and diffusion will 

dominate, equalizing differences between units with rate 2D (the second eigenvalue 

characterizes the dynamics between the two units). Now, the state in a unit will be 

strongly dependent on that of its neighbor. As a result, units will become more strongly 

correlated close to the transition (Figure 3.1g-j). 
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Methods 

Models description 

We adapt three well-studied minimal models that can have alternative stable states (Table 

3.1). The first model describes a logistically growing resource with fixed grazing rate (May 

1977; Noy-Meir 1975). It describes the transition of an underexploited system to 

overexploitation as grazing pressure crosses a threshold. The second model describes the 

nutrient dynamics of a eutrophic lake (Carpenter et al. 1999). At low nutrient input rates, 

the lake remains oligotrophic through nutrient losses to sediment or hypolimnion. At 

increased nutrient loading, there is a high recycling of nutrients from the sediment or 

hypolimnion back to the water column due to lower oxygen levels and the lake may 

suddenly become eutrophic. The third model describes the transition of a clear water 

shallow lake dominated by macrophytes to a turbid water state where macrophytes are 

practically absent (Scheffer 1998). It models the interactions between macrophyte 

coverage and turbidity of a shallow lake. 

 

By adding a dispersion term, we can extend the models in two dimensional space (Okubo 

1980). As ecosystems are usually patchy, we assume that space is discrete and the 

dynamics take place in a n × n squared lattice which consists of evenly spaced coupled 

cells (Keitt et al. 2001; Van Nes and Scheffer 2005). Each cell can individually switch to its 

alternative state and is connected with its four neighboring cells. Connectivity is modeled 

as exchange of matter or biomass among neighboring cells mimicked through a simple 

diffusive process. Spatial heterogeneity in the landscape (e.g. topographic situation, local 

hydrological differences) is introduced in the model by randomly and independently 

setting a parameter pi,j in each cell (Table 3.1). We also assume there are random 

independent disturbances in each cell. Thus, the general form of our models is: 

 

, , , 1, 1, , 1 , 1 , ,( , , ) ( 4 )i j i j i j i j i j i j i j i j i jdX f X p c dt D X X X X X dt dWσ+ − + −= + + + + − +  (eq5), 

 

where f is the deterministic equation of the non-spatial model that governs the dynamics 

of the state variable Xi,j at each cell as a function of parameter pi,j which introduces 

heterogeneity among cells, and as a function of c, the control parameter which causes 

each cell individually to switch between alternative states. D is the dispersion coefficient 

and dWi,j a white noise process independently added to each cell with a scaling factor σ 

(Table 3.1). To prevent edge effects we define periodic boundaries for the total lattice. 

 

Models analysis 

All simulations started with random initial conditions, where all cells were in the same 

state. We then increased a control parameter in small steps up till a critical value where 

the shift occurs. After each stepwise change in the control parameter we ran the model 

for 1,000 time steps to minimize transient effects. At the end of the 1,000 time steps, we 

used the last achieved local values of the state variables in each cell of the whole grid (50 

× 50 cells) to calculate the spatial correlation of neighboring cells. This index was defined 

as the two-point correlation for all pairs of cells separated by distance 1, using Moran’s co- 
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Table 3.1 Models, parameters and their values used in this study 

Model and Parameter Definition and Value 

Overharvesting model (May, 1977) 

 
,

, , 1, 1, , 1 , 1 , ,

,

( ) ( 4 )
1

p
i j

i j i j i j i j i j i j i j i jp
i j

X
dX a bX c dt D X X X X X dt dW

X
σ+ − + −= − + + + + + − +

+
 

 

Xi,j resource biomass; state variable 

K carrying capacity, (10) 

ri,j maximum growth rate, parameter introducing spatial 

heterogeneity at gridcell (i,j), (range: 0.6-1) 

c maximum grazing rate; control parameter, (1-3) 

D diffusion rate, (range: 0-1) 

σ SD of white noise, (0.1) 

dWi,j white noise; uncorrelated in each gridcell (i,j) 

Eutrophication model (Carpenter et al., 1999) 
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,
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i j i j i j i j i j i j i j i j

i j

X X
dX rX c dt D X X X X X dt dW

K X
σ+ − + −= − − + + + + − +

+
  

Xi,j nutrient concentration; state variable 

α nutrient loading rate; control parameter, (0.1-0.9) 

r maximum recycling rate, (1) 

bij nutrient loss rate; parameter introducing spatial 
heterogeneity at gridcell (i,j), (range: 0.8-1.2) 

p Hill coefficient, (8) 

D diffusion rate, (range: 0-1) 

σ SD of white noise, (0.01) 

dWi,j white noise; uncorrelated in each gridcell (i,j) 

Vegetation-Turbidity model (Scheffer, 1998) 
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h

E h
E

h V

σ+ − + −
+

= − + + + + − +

=
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Ei,j water turbidity; state variable 

Vi,j vegetation cover; state variable 

hE,ij half-saturation turbidity constant, parameter 
introducing spatial heterogeneity at gridcell (i,j), 

(range: 1-3) 

E0 background turbidity; control parameter, (2-12) 

rV maximum vegetation growth rate, (0.5) 

hV half-saturation vegetation cover constant, (0.2) 

p Hill coefficient, (4) 

D diffusion rate, (range: 0-1) 

σ SD of white noise, (0.01) 

dWVi,j white noise; uncorrelated in each gridcell (i,j) 
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efficient (Legendre and Fortin 1989): 
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      (eq6), 

 

in which we associated a weight wi,j to each pair of cells (xi, xj) which takes the value of 1 

for neighboring cells and 0 otherwise. W is the total number of pairs of neighboring cells. 

To test how parsimonious spatial correlation between neighboring cells for indicating the 

proximity to a transition is compared to spatial correlation between cells at higher 

distances, we also estimated spatial correlation at higher lags (δ up to 25). We quantified 

the increase of spatial correlation at higher distances by estimating the correlation length 

ψ from the exponential fit exp(-δ/ψ). The correlation length ψ describes the distance over 

which the behavior of a macroscopic variable is affected by the behavior of another (Solé 

et al. 1996). A growing correlation length ψ indicates that spatial correlation increases at 

longer distances. 

 

Since we were interested in comparing changes in the spatial correlation between cells to 

changes in the temporal autocorrelation within cells (another potential early-warning 

signal), we also tracked 25 randomly chosen cells (1% of the total lattice) over the last 100 

time steps of each run to estimate the temporal autocorrelation at-lag-1 (Held and Kleinen 

2004). We thus used an equal amount of information for comparison of the spatial and 

temporal indicators: 1 × 2,500 cells versus 100 × 25 cells. We calculated temporal 

autocorrelation using the mean of the autocorrelation at-lag-1 estimated at each of the 25 

sampled cells (see simulation scheme in Appendix Figure A3.1). To compare the 

performance of the spatial and temporal indicators, we quantified their trend using the 

nonparametric Kendall τ rank correlation of the control parameter and the spatial and 

temporal correlation estimates. 

 

We explored three different levels of heterogeneity (Table 3.1): (1) no spatial 

heterogeneity (pi,j equal in all cells), (2) low spatial heterogeneity (pi,j  drawn from a 

uniform distribution with low variance), and (3) high spatial heterogeneity (pi,j drawn from 

a uniform distribution with high variance). In each of these settings we studied the effect 

of different levels of connectivity (mimicked by the diffusive exchange term D=[0, 0.001, 

0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1]). 

 

Since we are interested in signals that warn before the shift, we excluded the dynamics 

during the transition from our analysis. In spatial heterogeneous systems, different cells 

may shift at different times. Therefore it is not obvious how a threshold point should be 

determined. Here, we defined a threshold simply as the point when the first cell shifted to 

the alternative state (see Appendix Figure A3.2). This ensures that we are really focusing 

on early-warning signals rather than detecting changes that occur during the shift itself. 
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All simulations and statistical analyses were performed in MATLAB (v. 7.0.1). We solved 

the stochastic equations using an Euler-Murayama integration method with Ito calculus 

(Grasman 1999). 

 

 

 
 
Figure 3.2 Overharvesting model by May (1977) implemented in a simplistic 2 cells spatial 

system. (a, b) Equilibrium values for resource biomass in both cells as a function of control 

parameter (harvesting rate c) that shifts the system from high resource biomass to low 

resource biomass. (c, d) Perturbation experiment (in both cases 15% reduction in biomass) 

showing the effect of “critical slowing down” in cell 1 for a highly connected system far and 

close to the transition. The dotted lines indicate the deterministic equilibrium value of the cell. 

(Parameters used: D=0.5 K1=10, K2=6 r=1, c=2 in c, c=1 in d). 

 

Results 

A simplified spatial scenario 

To see how critical slowing down affects dynamics in space in a transparent way, we first 

implemented the overharvesting model of May (1977) in only two cells. In this 

oversimplified spatial scenario, the two cells have different carrying capacities and are 

harvested with the same rate. When connectivity is low, each cell shifts at a different 
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harvesting rate. When the system is strongly connected, the two cells shift at the same 

harvesting pressure (Figure 3.2a, b). 

 

We tested whether critical slowing down occurs despite high connectivity by performing a 

perturbation experiment (van Nes and Scheffer 2007). Indeed, biomass in the perturbed 

cell 1 recovered slower before the transition compared to a situation far from the 

transition (Figure 3.2c, d). Note that, changes in cell 1 strongly affect dynamics of cell 2 

(Figure 3.2c). This is in line with our theoretical prediction that close to the transition, 

units become less responsive to their own dynamics and more influenced by the dynamics 

of neighboring units. Also, it can be seen that there is a conspicuous increase in similarity 

as the system approaches the transition provided that there is sufficient connectivity (D) 

(Figure 3.3a) and spatial heterogeneity (δ) (Figure 3.3b). 

Correlation in space and time 

In the previous analysis we showed that critical slowing down causes the state of two cells 

to converge close to a transition. We now explore the effect of critical slowing down in the 

complete spatial models. Simulations show that indeed spatial correlation between 

neighboring cells increased prior to the transition in a wide range of conditions for all 

three models (see Appendix Figure A3.3). For example, in the vegetation-turbidity model 

spatial correlation between neighboring cells started to increase well before the shift 

(Figure 3.4a, b). As expected, with weakly connected cells (Figure 3.4c, d), spatial 

correlation between neighboring cells did not show a strong increase before the 

transition. 

 

Interestingly, temporal autocorrelation performed in a somehow complementary way 

compared to spatial correlation (see also Appendix Figure A3.4); when connectivity was 

high, temporal autocorrelation showed a weaker trend with the control parameter 

(Kendall τ=0.26, P<0.05) than its spatial analog (Kendall τ=0.83, P<0.05) (Figure 3.4b). 

However, trends in temporal autocorrelation (Kendall τ=0.31, P<0.05) outperformed 

trends in spatial correlation when connectivity was low (Kendall τ=0.1, P>0.05) (Figure 

3.4d). 

 

To check how generic these results are, we systematically analyzed the trends in the 

spatial and temporal correlations up to the transition for a range of dispersion and 

heterogeneity conditions (Figure 3.5). The Kendall τ correlation statistic was used to 

quantify the strength of the trend of the correlation indicators for every level of dispersion 

rate. A higher value of this trend-statistic implies a more significant increase in the 

indicator prior to the transition. Despite some differences in the three models, two 

general patterns emerged: 1) high connectivity between patches favored a strong increase 

in the spatial correlation of neighbors, especially when there was inherent heterogeneity 

in the environment; 2) high environmental heterogeneity reduced the strength of the 

temporal correlation. The latter pattern is due to the fact that in this situation each cell 

shifts at a different level of the control parameter, implying that the autocorrelation 

measured at each cell is different, and consequently the estimate of their mean is noisy. 

Connectivity had no apparent effect on the trends in temporal autocorrelation. 
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Figure 3.3 Effect of connectivity (dispersion rate D) and heterogeneity (δ defined as the 

difference in the carrying capacities Ki of the two cells) on the dissimilarity between neighbors 

for increasing levels of harvesting rate (c) in the 2 cell spatial overharvesting model by May 

(1977). (a) When connectivity is high (D>0.1) cells not only shift in sync, but they are becoming 

increasingly similar prior to the transition. (b) Such increase in similarity is greater the more 

inherently heterogeneous the cells are (δ > 0). 

 

 

We checked whether an increase in spatial correlation between neighboring cells for 

indicating the proximity to a transition is more parsimonious compared to changes in 

spatial correlation between cells at higher distances. We found that spatial correlation 

also at higher lags does indeed tend to increase prior to a transition, whereas after the 

transition the correlation is limited only to a few neighboring cells (see Appendix Figure 

A3.5a, b). Such increase in long range coherence is reflected in the growing correlation 

length ψ which can also serve as leading indicator of an imminent shift (Appendix Figure 

3.5c). However, the almost 1:1 relationship between the trends of both signals strongly 

implies that spatial correlation between neighbors is a parsimonious indicator of an 

upcoming transition (Appendix Figure A3.6). 

 

Discussion 

Our analysis suggests that an increase in spatial correlation may be a leading indicator for 

an impending critical transition. Although we explored only three models explicitly, the 

fact that increased spatial correlation follows from the universal phenomenon of critical 

slowing down at bifurcations, implies that it may be a generic phenomenon for a wide 

class of transitions (van Nes and Scheffer 2007). 

 

Our results also indicate that given the same number of data-points spatial correlation 

may generally outperform indicators derived from time-series as early-warning signal, 

corroborating to the suggestion that spatial indicators may be more reliable than temporal 

indicators (Guttal and Jayaprakash 2009). However we note that the performance of both 
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spatial and temporal indicators depends on the underlying connectivity and heterogeneity 

of the landscape. For instance, temporal autocorrelation is likely to be better only in 

homogeneous environments or extremely well ‘mixed’ (connected), systems which 

effectively start behaving as a single unit (see Appendix Figure A3.7). 

 

 

 
 
Figure 3.4 An example of the evolution of spatial and temporal correlation between 

neighboring cells in the vegetation turbidity model (Scheffer, 1998). Panels (a, c) show the 

spatial mean of the system’s state variable following the slow change in the control parameter. 

The gray shaded area indicates the period before the system starts flipping. (c) Note the shift in 

the case of low connectivity is gradual, as each cell shifts almost independently from its 

neighbor. (a) The shift is abrupt when connectivity is high and the system reaches the 

transition globally. (b) Spatial correlation signals well in advance the shift of the lake to turbid 

conditions, outperforming the increase in temporal autocorrelation. (d) At low connectivity, 

spatial correlation hardly changes before the onset of transition, but the trend in temporal 

autocorrelation is stronger. Top panels are snapshots of the spatial distribution of vegetation 

cover far from the transition (high resilience), and just before the transition (low resilience). 

(Parameter values as in Table 3.1 for high heterogeneity in hE). 
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Figure 3.5 Summary of the Kendall τ rank correlation coefficients of the temporal and spatial 

leading indicators estimated for all dispersion levels and heterogeneity conditions for all three 

models. The Kendall τ statistic measures the strength of the trend of the leading temporal and 

spatial indicators before the shift of the spatial system. Significance levels for each statistic are 

summarized in Appendix Table A3.1. 

 

 

Also, spatial correlation does not work well in systems with very little connectivity (Figure 

3.4c, d). However, it should be noted that, if the environment is heterogeneous in such 

unconnected systems, temporal information from a single location will not be sufficient to 

warn for a critical transition on a large scale either, as the monitored patch might shift 

earlier or later than average. Thus, monitoring many patches is still required in such 

situations. A practical issue when it comes to optimizing monitoring strategies is that, 

using remote sensing, it may typically be much easier to obtain information for numerous 

points in space than for the same amount of points in time (e.g. 1,000 spatially spread 

sampling points versus 1,000 weekly measurements at the same spot). Still, even if spatial 

data are easier to obtain, the typical spatial and temporal resolution needed to acquire 

reliable estimates of the leading indicators remains an open question. This is because such 

scale will tend to be system specific. The spatial unit at which information is gathered in 

order to estimate spatial correlation will be determined by the scale to which processes in 
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the landscape operate. Similarly, temporal dynamics are governed by specific timescales. 

For instance, had we been monitoring plankton transitions we should be monitoring the 

dynamics in days (the generation time for most phytoplankton species). 

 

 

 
 

Figure 3.6 False positives in the performance of spatial correlation between neighbors for 

indicating the proximity to an upcoming transition in the overharvesting model of May (1977). 

(a) Spatial correlation increases as connectivity in the landscape becomes stronger both when 

the system is far (c=1) or closer to the transition (c=1.6) (Parameter values as in Table 3.1 for 

high heterogeneity in r). (b) Spatial correlation also increases as heterogeneity in the landscape 

becomes stronger regardless of the proximity to the transition (Parameter values as in Table 

3.1 for D=0.5). 

 

 

Clearly our analysis is merely a starting point when it comes to exploring the possibility of 

using an increase in spatial correlation as leading indicator for systemic shifts. In most 

cases the dispersal of seeds or animals is not only limited to neighboring cells as we 

assumed in our work. Guttal and Jayaprakash (2009) showed that the performance of 

spatial variance and spatial skewness as indicators of transitions in the same type of 

systems is insensitive to different dispersal patterns. We expect that the same will also 

hold for our results. Another simplified assumption in our models is that we have ignored 

that landscape characteristics are usually spatially correlated due to the underlying 

physical morphology or to the ecological memory that shapes the landscape (Peterson 

2002). Therefore, for instance, dispersion rates are not expected to be constant across 

space. Nor growth rates of a particular resource will be uncorrelated in space. Instead 

connectivity will differ due to fragmentation in the landscape or there will be “islands” of 

high fertility where growth rates will be higher. We tested these two assumptions and we 

found that they do not affect the performance of spatial correlation as leading indicator of 

upcoming transitions (see Appendix Figure A3.8, A3.9). 

 

One aspect to explore further is the likelihood of false positives (false alarms) or false 

negatives (no warning). For instance, it could well be that spatial correlation would also 

rise in situations which are unrelated to the proximity to a critical point (false alarms). As 
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we showed, spatial correlation is dependent on the existing connectivity and 

environmental heterogeneity. This means for instance that if connectivity increases (e.g. 

because of stronger currents, increased mixing etc), spatial correlation also becomes 

stronger (Figure 3.6a). Similarly, false alarms could result from changes in heterogeneity: if 

heterogeneity in the environment is accentuated as conditions change through time or as 

small scale disturbances increase patchiness in the landscape, this could potentially lead 

to an increase in spatial correlation producing a false warning of an impending shift 

(Figure 3.6b). Just as any early-warning signal, correlation is obviously likely to fail in 

providing early-warning (false negatives), if systems are hit by large disturbances. A global 

strong disturbance (compared to a local strong disturbance) may well tip the whole 

system to the alternative state, leaving no space for warning. To obtain a better feeling for 

the reliability of leading indicators, it would clearly be important to study their 

performance in more realistic scenarios of spatially correlated disturbances of multiple 

scales. 

 

In this study, we explicitly explored only one class of models e.g. the ones that have a fold-

bifurcation on a local level. In view of the connection to critical slowing down we expect 

spatial correlation to increase also prior to systemic shifts in systems with other 

bifurcations. For instance, the Hopf bifurcation, marking the transition of a stable to an 

oscillatory system is associated to critical slowing down (Chisholm and Filotas 2009) and so 

is the phenomenon of phase locking between coupled oscillators (Leung 2000). 

 

On the other hand, sharp transitions are also described in systems with self-organized 

spatial patterns (Kéfi et al. 2007a; Rietkerk et al. 2004; von Hardenberg et al. 2001) for 

which it is unclear whether they display slowing down. In these systems Turing instability 

points give birth to regular pattern formation (HilleRisLambers et al. 2001) or long range 

correlations characterized by power law relationships emerge before the transition due to 

short range interactions (Pascual and Guichard 2005). Clearly, it would be worthwhile 

exploring the applicability of the correlation indicators presented in this work to a wider 

class of models. 

 

Finally, we should acknowledge that although early-warning signals for regime shifts are 

potentially useful for managing transitions of real ecosystems, they still remain elusive in 

their application. Most of the proposed indicators are developed in simple ecological 

models and have not yet been tested in the field (Scheffer et al. 2009). Modeling exercises 

demonstrate that they may well fail to be used successfully in averting impending 

transitions (Biggs et al. 2009b; Contamin and Ellison 2009). One problem is the large 

amount of data needed (Carpenter et al. 2008; Dakos et al. 2008; Guttal and Jayaprakash 

2008). Another drawback is that generic early-warning signals typically do not indicate the 

proximity to the critical threshold in absolute terms (van Nes and Scheffer 2007). Instead 

they can only be used to indicate a relative change of the system’s resilience. Finally, there 

is the difficulty of moving from science to policy in a swift way (Biggs et al. 2009b; Scheffer 

et al. 2003). Management actions usually take years to implement due to institutional 

inertia or stakeholders’ conflicting interests. Nonetheless, it is encouraging that there is an 

increasing number of examples where leading indicators have been identified for real 

systems (Scheffer et al. 2009), like the marine environment (Beaugrand et al. 2008), semi-



Chapter 3 

48 

arid ecosystems (Kéfi et al. 2007a) or even climate (Dakos et al. 2008; Livina and Lenton 

2007). 

 

Our results resonate with earlier findings that long range coherence increases in 

percolating systems close to phase transitions (Pascual and Guichard 2005; Solé et al. 

1996; Stanley 1971), suggesting that changes in spatial correlation may well turn out to be 

rather generic indicators of shifts in a variety of spatio-temporal systems, like the ones in 

this study with fold bifurcations. Potential applications might range from anticipating 

epidemic outbreaks (Davis et al. 2008) and the collapse of metapopulations (Bascompte 

and Solé 1996) to warning for epileptic seizures (Lehnertz and Elger 1998) or large scale 

climate transitions (Tsonis et al. 2007). 
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Appendix 

 
Table A3.1 Kendall correlation statistics for the spatial and temporal correlation trend estimated in 

the three models analyzed in the main text. Values in bold are 2 tail significant (p<0.05). 

dispersion no heterogeneity low heterogeneity high heterogeneity 

Kendall τ 
correlation 

spatial 
correlation 

mean 
temporal 

AR1 

spatial 
correlation 

mean 
temporal 

AR1 

spatial 
correlation 

mean 
temporal 

AR1 

Overharvesting model           

0 0.035 0.889 -0.037 0.823 0.062 0.734 

0.001 -0.036 0.880 -0.075 0.825 0.066 0.618 

0.0025 0.142 0.890 0.137 0.823 0.278 0.736 

0.005 0.132 0.878 0.393 0.857 0.385 0.675 

0.01 0.335 0.889 0.456 0.827 0.633 0.755 

0.025 0.498 0.861 0.712 0.824 0.780 0.738 

0.05 0.620 0.871 0.800 0.814 0.866 0.765 

0.1 0.692 0.844 0.877 0.792 0.910 0.747 

0.25 0.726 0.796 0.905 0.746 0.932 0.712 

0.5 0.675 0.761 0.906 0.739 0.938 0.695 

1 0.674 0.690 0.912 0.697 0.939 0.654 

Eutrophication model           

0 0.035 0.446 -0.014 0.429 -0.248 0.184 

0.001 -0.009 0.497 -0.006 0.378 -0.039 0.347 

0.0025 0.059 0.447 0.033 0.427 -0.207 0.196 

0.005 0.052 0.514 0.163 0.358 -0.047 0.282 

0.01 0.110 0.455 0.178 0.430 -0.127 0.202 

0.025 0.214 0.517 0.293 0.425 0.040 0.281 

0.05 0.298 0.452 0.557 0.426 0.251 0.243 

0.1 0.350 0.522 0.723 0.374 0.544 0.221 

0.25 0.387 0.391 0.843 0.394 0.709 0.263 

0.5 0.244 0.340 0.896 0.355 0.834 0.313 

1 0.312 0.368 0.911 0.242 0.885 0.261 

Vegetation-Turbidity model         

0 -0.108 0.281 -0.058 0.152 -0.135 0.131 

0.001 0.068 0.375 0.258 0.039 0.102 0.314 

0.0025 0.374 0.225 0.347 -0.052 0.311 -0.022 

0.005 0.396 0.418 0.554 0.093 0.687 0.149 

0.01 0.419 0.352 0.649 0.053 0.658 0.017 

0.025 0.540 0.377 0.730 0.287 0.842 0.106 

0.05 0.520 0.241 0.726 0.218 0.859 0.110 

0.1 0.411 0.417 0.726 0.381 0.827 0.262 

0.25 0.426 0.245 0.686 0.370 0.870 0.217 

0.5 0.272 0.220 0.643 0.326 0.810 0.362 

1 0.326 0.256 0.617 0.330 0.828 0.308 
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Figure A3.1 Schematic description of simulation scheme and sampling protocol for the 

estimation of the spatial and temporal correlation leading indicators. 

 

 

 

 
 
Figure A3.2 Bifurcation plots along the control parameter for all models used to define 

thresholds for assigning cells in one or the other stable state. In the overharvesting model 

(panel a), cells were considered underexploited if their biomass was higher 5. In the 

eutrophication model (panel b), patches with nutrient concentration below 1 were considered 

oligotrophic. In the vegetation turbidity model (panel c), patches with vegetation cover over 

50% were considered vegetated. 
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Figure A3.3 Spatial correlation as a function of control parameter for all levels of connectivity 

(D) in the three models analyzed in the main text. 

 

 

 
 
Figure A3.4 Mean temporal correlation of the 25 sampled cells as a function of control 

parameter for all levels of connectivity (D) in the three models analyzed in the main text. 
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Figure A3.5 Spatial correlation estimated up to 25 cells distance (lags) in the overharvesting 

model of May (1977). (a) Each line in the correlogram corresponds to a value of the grazing 

rate c as the spatial system approaches the transition. The spatial correlation increases not 

only for the neighboring cells (lag 1) but extends up to approximately 15 cells distance before 

the shift. (b) After the transition the correlation is limited only to a few neighboring cells. (c) A 

growing correlation length ψ (estimated for each line in panels a, b) indicates increasing 

correlation at higher distances. (Parameter values as in Table 3.1 for D=0.5 and high 

heterogeneity in r) 
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Figure A3.6 Kendall τ coefficients of the spatial correlation of neighbors and correlation length 

indicators estimated for all dispersion levels and heterogeneity conditions for all three models. 

The Kendall τ coefficient measures the strength of the trend of the spatial correlation and 

correlation length before the shift of the spatial system. The almost 1:1 relationship between 

the trends of both indicators strongly implies that spatial correlation between neighbors (lag 1) 

is a parsimonious indicator of an upcoming transition. 

 

 

 

 

 
 
Figure A3.7 Spatial correlation of neighbors and mean temporal correlation of the 25 sampled 

cells as a function of the control parameter for an extreme high level of connectivity (D=100) in 

the overharvesting model with high heterogeneous conditions. As conjectured in the main text, 

in highly connected systems (due to high dispersal rates) spatial correlation is already high far 

away from the transition (≈0.897) and rises only slightly before the shift (≈0.946), indicating 

that its detection can prove problematic. Instead the rise in the temporal autocorrelation is 

much stronger. 
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Figure A3.8 The evolution of spatial correlation of neighbors in correlated and uncorrelated 

landscapes for two levels of connectivity (D) in the overharvesting model. Spatial correlation is 

increasing prior to the transition in both correlated and uncorrelated landscapes. The shift is 

gradual in an uncorrelated landscape but abrupt when there is underlying correlation (panel a). 

Top panels are images of the spatial distribution of resource biomass growth rates r. Dotted 

line indicates the transition. (Parameter values as in Table 3.1 for high heterogeneity in r). 

 

 

 
Figure A3.9 The evolution of spatial correlation of neighbors for different patterns of 

connectivity (D) in the overharvesting model. Dashed-dotted line: dispersion is equal to 0.25 

across the landscape. Solid line: dispersion is randomly assigned between 0.2-0.3 (mean 0.25) 

across the landscape. Dashed line: dispersion is randomly assigned between 0-0.5 (mean 0.25) 

across the landscape. Spatial correlation of neighbors is increasing prior to the transition in all 

cases. (Parameter values as in Table 3.1 for high heterogeneity in growth rates r). 
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Chapter 4 

How robust are early-warning signals for critical transitions?
     

 

 

 

 

 

Ecosystems close to a critical threshold may shift abruptly to alternative states. For 

ecosystem management it is important to predict such critical transitions. Recently it has 

been proposed to use rising autocorrelation and variance as indicators of approaching 

critical transitions. Here we explore the robustness of these indicators. We show both 

analytically and in simulations that variance may sometimes decrease close to a transition. 

This can happen when environmental factors fluctuate stochastically and the system 

becomes less sensitive to these factors near the threshold, or when critical slowing down 

reduces the system’s capacity to follow high frequency fluctuations in the environment. In 

addition, when available data is limited, variance can be systematically underestimated 

due to the prevalence of low frequencies close to a transition. By contrast, autocorrelation 

increases always towards critical transitions. We provide examples of rising 

autocorrelation and simultaneously decreasing variance in time-series prior to ancient 

climate transitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
This chapter is based on the paper: V. Dakos, E. H. van Nes, P. D’Odorico and M. Scheffer. How 

robust are early-warning signals for critical transitions? (submitted) We thank Steve Carpenter 

and William A. Brock for their valuable comments. 
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Introduction 

Some systems may occasionally change quite abruptly to a contrasting state (Hare and 

Mantua 2000; Hughes 1994; Rietkerk et al. 2002; Scheffer et al. 2001). Theoretical studies 

have suggested that such shift may occur in systems with alternative stable states in which 

the conditions change gradually towards a critical point, called a bifurcation, where the 

system becomes unstable and shifts to the alternative state. It has been recently 

suggested that such shifts may be announced in advance by generic leading indicators for 

critical transitions (Scheffer 2009). This idea is based on the fact that systems tend to show 

a phenomenon known as ‘critical slowing down’ as they approach bifurcation points 

(Scheffer 2009; Strogatz 1994; Wissel 1984) where a tiny change in conditions can lead to 

a marked qualitative change in the behavior of a system. The term critical slowing down 

refers to the fact that near these points the return time to equilibrium upon a small 

perturbation increases strongly. To illustrate the principle, consider a system that exhibits 

alternative stable states over a range of conditions (Figure 4.1). Such system will undergo 

a critical transition at point F1 when conditions (expressed by a control parameter p) cross 

a threshold (at p = p1), and the system shifts to an alternative state (Figure 4.1a). The 

return rate to equilibrium upon a small perturbation can be approximated by the 

dominant eigenvalue of the Jacobian matrix of the linearized system (Pimm and Lawton 

1977). This dominant eigenvalue smoothly declines to 0 as the system moves close to the 

critical threshold (p → p1) (Figure 4.1b). This means that the system will need increasingly 

more time to recover from a small perturbation as it comes closer to this critical point (van 

Nes and Scheffer 2007). 

 

Now consider what will happen if one exposes such a system to a permanent stochastic 

regime of perturbations. Intuitively one can imagine that the loss of the system’s tendency 

to return to its equilibrium may cause it to be simply pushed around by the stochastic 

perturbations. This effect can be seen in simulations in our example where the state of the 

system becomes more correlated to its past and drifts farther away from its equilibrium 

when the bifurcation is close (Figure 4.1f and d) compared to when the bifurcation is far 

(Figure 4.1e and d). Indeed, analytical arguments as well as simulations have suggested 

that close to a bifurcation one should expect critical slowing down to cause a rise in 

autocorrelation (Held and Kleinen 2004; Kleinen et al. 2003) and variance (Carpenter and 

Brock 2006) in stochastically forced systems. 

 

While it is an attractive idea that such changes could be used as early-warning signals (or 

‘leading indicators’) for critical transitions related to underlying bifurcations, the 

conditions under which this approach would be reliable are still poorly understood. 

Obviously, these leading indicators can only signal an upcoming transition if there is a 

gradual decrease in the dominant eigenvalue of the system. Thus, conditions should 

gradually move the system towards a bifurcation, if we want to be able to pick up a 

change in the leading indicators. Clearly, transitions between attractors induced by major 

perturbations, or chaotic dynamics far from local bifurcation points are unlikely to be 

picked up by such indicators. Even if the dominant eigenvalue decreases, statistical 

detection of the resulting change in dynamics can be challenging. Another, obvious source 

of false positives or negatives would be a systematic change in the external perturbation 
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regime over the period leading up to a shift (Scheffer et al. 2009). For instance, dynamics 

of a system under a regime of increasingly autocorrelated perturbations may appear 

increasingly autocorrelated, even if there is no approaching bifurcation. 

 

Here we explore some more intricate mechanisms that may affect the way in which 

critical slowing down translates into autocorrelation and variance of fluctuations of a 

system. First, we ask whether the way in which the stochastic environmental 

perturbations act on the system would influence how an approaching bifurcation 

translates into autocorrelation and variance of the system dynamics. Thinking in terms of 

models, stochastic forcing can be applied directly to the state of the system (e.g., 

stochastically killing portions of a population), or to any of its parameters (e.g., 

temperature fluctuations affecting process rates). Most work so far has focused on the 

first aspect (Biggs et al. 2009b; Brock and Carpenter 2006; Brock et al. 2006; Carpenter et 

al. 2009; Dakos et al. 2010; Guttal and Jayaprakash 2008; Guttal and Jayaprakash 2009; 

but see Carpenter et al. 2006, 2008). In this paper, we first examine how perturbations on 

parameters may impact the behavior of the leading indicators compared to the case of 

direct perturbations on the system state. For these two situations we derive simple 

analytical approximations for autocorrelation and variance as functions of the proximity to 

a bifurcation, and we compare the results to estimates of autocorrelation and variance 

derived from numerical simulations. We also discuss how sensitive estimators of 

autocorrelation and variance may be to limitations of our current time-series techniques. 

Lastly, we use two examples of ancient climate transitions to show how patterns in 

autocorrelation and variance may deviate prior to a shift. 

 

Methods and Models 

Perturbations of the state of a system 

To derive analytical expectations for autocorrelation and variance let us assume that the 

dynamics of a system are described by a continuous stochastic equation 

 

( , )dx f x p dt dWσ= +        (eq1), 

 

where f(x,p) is the deterministic part of the system and dW is the stochastic driver 

represented by a white noise process of mean zero and magnitude σ
2
. 

 

When a small perturbation ε pushes the state of the system a tiny bit away from 

equilibrium x* (for which f(x*,p)=0), the system returns to equilibrium with a rate 

approximately equal to the dominant eigenvalue λ(x*,p) of the linearized system: 

 
*( , )d x p dt dWε λ ε σ= +        (eq2), 

 

where λ(x*,p) is negative if x* is stable. 
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Figure 4.1 An example of a system undergoing a critical transition through a fold bifurcation F1, 

when control parameter p reaches a threshold value p1. (a) Stable and unstable equilibria as 

function of control parameter p. (b) Eigenvalues of stable and unstable equilibria (dotted lines 

denote unstable equilibria). (c-f) Sampled realizations and their first-lag correlations of a 

stochastically perturbed system: far from the bifurcation (panel c, e) and close (panel d, f) to it. 
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Equation 2 has the explicit solution (Gardiner 2003): 
* *( , ) ( , )( )

0

0

( )
t

x p t x p t s

t
e e dW sλ λε ε σ −= + ∫ , where 

the temporal variable s is integrated between time 0 (when εt=ε0) and time t. 

Autocorrelation ρε and variance σε
2
 of εt are given by 

*( , )x p t s
e

λ
ερ −=  and 

*
2

2 2 ( , )

*
( 1)

2 ( , )

x p te
x p

λ
ε

σσ
λ

= −  respectively (Gardiner 2003). 

 

For sufficiently long time-series (t→∞), we can derive approximate expressions for 

autocorrelation at-lag-1 and variance (Gardiner 2003), which explicitly depend on the 

responsiveness of the system as determined by the dominant eigenvalue λ(x*,p) (and, 

thus, by the proximity to a critical transition): 

 

*( , )(1) x peλ
ερ =         (eq3) 

 
2

2

*2 ( , )x p
ε

σσ
λ

= −         (eq4). 

 

Perturbations of parameters representing processes 

When environmental stochasticity is affecting processes in the system, we may model that 

by assuming that one of the parameters p of the system dx=f(x,p)dt becomes a random 

parameter with mean p*. If we consider that for average p* an equilibrium x* exists (i.e., 

f(x*,p*)=0), then the evolution of small disturbances around equilibrium x* can be 

approximated by the linearized system (Ripa and Heino 1999): 

 
* * * * * *( , )( ) ( , )( )x pdx f x p x x dt f x p p p dt= − + −     (eq5). 

 

Assuming that ε=x-x* and z=p-p*, where z is a Gaussian random variable with mean zero 

and magnitude σ
2
, equation 5 can be rewritten as: 

 
* * * *( , ) ( , )pd x p dt f x p dWε λ ε σ= +       (eq6) 

 

where λ(x*,p*) is the eigenvalue of the system for average parameter p*, fp(x*,p*) is the 

partial derivative of f with respect to the parameter p that is affected by environmental 

noise, and dW is a stochastic term of zero mean and unit variance that represents the 

random variable z. In this case, the effect of stochastic perturbations on the state of the 

system depends on fp(x*,p*). The factor 
*

* *( , ) = 
p

x

f
f x p

p

∂
∂

 reflects the sensitivity of the 

system to changes in the parameter p: in other words it reflects how the system is 

modulating (scaling) the magnitude of perturbations to produce an effect on its state. 
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Following the same steps as above, autocorrelation at-lag-1 is the same as equation 3, 

however variance is now also a function of fp(x*,p*): 

 
2 * * 2

2
* *

( , )

2 ( , )

pf x p

x p
ε

σ
σ

λ
= −        (eq7). 

 

Importantly, given that fp(x
*
,p

*
) may change if a control parameter brings the system 

closer to a bifurcation, variance may be amplified or dampened as the system approaches 

the bifurcation. By contrast, autocorrelation remains solely dependent on the dominant 

eigenvalue λ(x
*
,p

*
). 

 

Simulation experiments 

We tested our theoretical approximations of autocorrelation and variance in a well-

studied model that describes the shift of a harvested resource to overexploitation (May 

1977; Noy-Meir 1975). Resource biomass x grows logistically and is harvested according to 

2

2 2
( (1 ) ( )) ( , )p

x x
dx rx c dt f x p dW

K x h
σ= − − +

+
     (eq8) 

where r is the growth rate, K is the population’s carrying-capacity, h is the half-saturation 

constant and c is the grazing rate. When c reaches a certain threshold value (c ≈ 2.604), 

the system undergoes a critical transition through a fold bifurcation. When environmental 

noise is affecting directly the state variable x, white noise is added through a stochastic 

term dW with magnitude σ
2
. When environmental noise affects the parameters, dW is 

scaled by fp(x,p), which reflects how stochastic forcing translates into changes in the state; 

scaling factors fp(x,p) for growth rate r, grazing rate c, and carrying-capacity K are

( ) (1 )r
x

f x x
K

= − , 
2

2 2
( )c

x
f x

x h
= −

+
, and 

2

2
( )K

rx
f x

K
=  respectively. 

 

We started simulations from equilibrium and slowly increased grazing rate c until the 

system shifted to overexploitation. After each stepwise change of grazing rate, we ran the 

model for 500 time steps. We used these 500 time steps to estimate autocorrelation at-

lag-1 and variance (expressed as standard deviation) for each level of grazing rate c. We 

estimated autocorrelation at-lag-1 by fitting a first-order autoregressive model using 

package arfit in MATLAB (Schneider and Neumaier 2001). We repeated this for 200 

simulations and used average estimates for both indicators. 

 

Time-series analysis 

We estimated autocorrelation at-lag-1 and standard deviation prior to transition for two 

ancient climate records. The first transition is the end of the Younger Dryas (Clark et al. 

2002). The second record represents the sudden change of the earth from a tropical state 

without ice caps to a state with ice caps around 34 million years ago (Tripati et al. 2005). 
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We estimated the leading indicators in both records prior to transition applying an 

overlapping moving window of half the size of the record after detrending with a Gaussian 

kernel smoothing function. Full details on the methods for the time-series analysis can be 

found in Dakos et al. (2008). 

 

All simulations and statistical analyses were performed in MATLAB, R (http://www.r-

project.org/), and Mathematica. We solved the stochastic equations using an Euler-

Murayama integration method with Ito calculus in 36 integration steps for each time step. 

Parameter values used were r=1, K=10, h=1, c=[1, 3], σ=0.1, unless otherwise indicated. 

Both climate time-series represent climate data proxies and were downloaded from the 

World Data Center for Paleoclimatology, National Geophysical Data Center, Boulder, 

Colorado (http://www.ncdc.noaa.gov/paleo/data.html). 

 

 

 
 
Figure 4.2 Analytically predicted trends in autocorrelation at-lag-1 ρ(1) and variance 2

εσ  prior to 

a zero-eigenvalue transition depending on the sensitivity fp(x*,p*) of the system to noise. (a) 

Constant sensitivity fp(x*,p*) of the system to a parameter. (b) Increasing sensitivity fp(x*,p*) of 

the system to a parameter towards the transition. (c) Decreasing sensitivity fp(x
*
,p

*
) of the 

system to a parameter towards the transition. (Autocorrelation at-lag-1 ρ(1) based on equation 

3; variance 2
εσ  based on equation 7 with σ2 = 1 rescaled to the interval 0-1). 

 

Results 

Our theoretical approximations illustrate that autocorrelation at-lag-1 should depend only 

on the dominant eigenvalue characterizing the return rate to equilibrium of the system 

upon perturbations, regardless of whether environmental noise acts on the state or the 

parameters of the system. This means that as the system undergoes a transition when 

λ(x*,p) → 0, autocorrelation at-lag-1 in idealized situations is expected to reach 1 

(equation 3) (Held and Kleinen 2004; Ives et al. 2003). When perturbations affect the state 

of the system directly, variance is also predicted to increase gradually before the 

bifurcation (equation 4) (Brock and Carpenter 2006; Carpenter and Brock 2006) (Figure 

4.2a). However, when environmental stochasticity acts on a parameter of the system, the 

effect on variance is modulated by the system’s sensitivity to that parameter, 

*

* *( , ) = 
p

x

f
f x p

p

∂
∂

. Therefore, under a constant environmental noise regime, variance in the 

fluctuations of the state may either increase or decrease as the system approaches a 
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bifurcation (equation 7). Nonetheless, at the bifurcation itself, variance should approach 

infinity as long as the sensitivity of the system to the disturbed parameter is not zero (i.e. 

fp(x*,p*)
2
>0). 

 

 

 
 
Figure 4.3 Trends in leading indicators for simulated data from a model of a logistically growing 

plant population (‘resource’) driven slowly to a catastrophic collapse through gradually 

increasing grazing rates. The model is exposed to environmental stochasticity affecting the 

state variable, grazing rate c, carrying capacity K, or growth rate r. (a) Mean biomass at 

increasing grazing rate. (b) The analytically derived scaling factor representing how strongly a 

perturbation of a parameter affects the state. (c-f) Analytical and numerical estimates of 

autocorrelation and variance for stochastic forcing of the state or different parameters 

(asterisks: analytical estimates; lines: numerical estimates; black lines: autocorrelation at-lag-1; 

gray lines: variance). 
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Figure 4.2 illustrates this effect. If the sensitivity of the system to the disturbed parameter 

stays constant or increases towards the bifurcation, variance will typically increase over a 

range prior to transition (Figure 4.2b). However, the opposite can occur, if the sensitivity 

of the system to the disturbed parameter is shrinking as the system is approaching the 

transition (Figure 4.2c). Autocorrelation at-lag-1 is insensitive to this effect (Figure 4.2). 

 

Numerical simulations support these theoretical predictions (Figure 4.3). In the 

overgrazing model, trends in variance towards the bifurcation point depend on the way in 

which the sensitivity to the affected parameter (scaled by fp(x*,p*)) changes as the system 

approaches the bifurcation. While noise on most parameters has a similar effect to noise 

applied directly to the state (Figure 4.3c, d), noise on the carrying-capacity K, leads to an 

opposite trend in variance over much of the trajectory of the system towards the 

bifurcation (Figure 4.3e). Only very close to transition, the effect of critical slowing down 

overwhelms the effect of the decreasing trend in sensitivity (cf. Figure 4.2c). The 

simulations also illustrate that, as expected, autocorrelation at-lag-1, is insensitive to the 

way in which environmental noise affects the system (Figure 4.3c-f). 

Filtering effects of slowness 

In addition to the potential effect of decreasing sensitivity to parameters, there is a quite 

different mechanism that may in some situations mute variance as the system approaches 

a bifurcation. This is related to the very nature of critical slowing down. Consider an 

overall slow system (Figure 4.4). When environmental stochasticity directly affects the 

system’s state variables, the system is as if it were “pushed” around the fixed equilibrium 

(Figure 4.4a gray line). By contrast, when noise affects parameters, one can think of the 

system as ‘tracking a fluctuating equilibrium’ (in this case driven by a fluctuating carrying-

capacity K) (Figure 4.4a black line). Now, if the system is inherently slow (i.e. has low rates 

of change), it will hardly follow the fluctuations in the equilibrium and as a result its state 

may vary only little over time (Figure 4.4b black line). As critical slowing down will only 

aggravate the already limited capacity of the system to track the fluctuating environment, 

it will ‘freeze’ the state of the system even more as it approaches the bifurcation. As our 

simulations illustrate, this may smother even the increase of variance just before the 

bifurcation (Figure 4.4c, d). Again, autocorrelation is insensitive to this effect. It will 

increase prior to the shift regardless of the responsiveness of the system, even though in 

such inherently slow systems autocorrelation is obviously always very large (Figure 4.4e, 

f). 

Examples from climate dynamics 

In light of these results, we explored how estimated variance changed in the periods 

leading up to ancient climate shifts that we analyzed for autocorrelation trends earlier 

(Dakos et al. 2008). Although all time-series show an increase in autocorrelation leading 

up to the shifts, we found no consistent trends in variance (see Figure A4.1 in Appendix). 

As an example we show two transitions where autocorrelation at-lag-1 increased before 

the shift (Figure 4.5c, f), but variance did not show a consistent trend ir even decreased 

systematically prior to the transition (Figure 4.5b, e). 
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Figure 4.4 Simulations illustrating how slowing down can reduce the sensitivity of a system to 

high frequency fluctuations in the environment, preventing variance from rising in the vicinity 

of a bifurcation point. (a) Behavior of a fast responding system where environmental noise is 

affecting either the state of the system (black line) or a parameter (in this case carrying 

capacity K, gray line). Variance first drops and rises only before the transition (panel a1). 

Autocorrelation rises prior to transition independently from the source of environmental 

stochasticity (panel a2). (b) Behavior of a slow-responding system. This system is less able to 

track the constantly changing equilibrium. Slowing down, further “freezes” the system, 

preventing variance to rise in the vicinity of the bifurcation point (panel b1). Autocorrelation 

at-lag-1 is rising in a slow responding system independently from the source of environmental 

stochasticity (panel b2). 
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Figure 4.5 Examples of two ancient transitions in the climate record. (a) The exit from the 

Younger Dryas after the collapse of the thermohaline circulation, and (d) the onset of ice caps 

after a period of a warm earth with no ice on the poles. We estimated variance (panels b, e) 

and autocorrelation at-lag-1 (panels c, f) of the residuals after detrending using a Gaussian 

smooth function (gray line). Gray area denotes the period after the onset of the shift. 

 

Discussion 

The use of indicators of critical slowing down, to sense the risk of upcoming critical 

transitions in real world systems is an exciting prospect. Rising variance and 

autocorrelation are among the prime candidate indicators. However, while 

autocorrelation appears a relatively robust indicator, our results suggest that there can be 

particular conditions under which variance may decrease instead of rise prior to a 

transition. Specifically, this can happen if environmental stochasticity affects the 

‘equilibrium’ rather than the state of the system, and the effect can be aggravated if the 

systems inherent rates of change are slow relative to the frequency characteristics of the 

forcing regime. 

 

It remains difficult to judge how common distortions of the basic effect of critical slowing 

down on variance will be in practice. Obviously, stochastic perturbations will usually affect 

a system in multiple ways simultaneously. This may well tend to cause an overall increase 

of variance in most situations. Indeed, simulations with a lake ecosystem model subject to 

multiple sources of stochasticity suggest that an increase of variance may dominate the 

pattern (Carpenter and Brock 2006; Carpenter et al. 2008). On the other hand, in systems 

with multiple thresholds where interacting transitions may be at play, variance may be 

muffled prior to a shift (Brock and Carpenter 2010). Additionally, on a less fundamental 
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level, estimated variance may decrease with critical slowing down purely due to 

limitations of our data analysis techniques. As the fluctuations of the system become 

increasingly dominated by low frequencies close to a transition, there is a high chance of 

missing part of this variability simply because our time-window for estimating variance is 

limited, and also because there is an increasing risk that local detrending techniques filter 

out this slow part of the variability (see Appendix A4.1). Clearly, these issues are somehow 

more easily addressed than the fundamental mechanisms that may cause real (rather than 

perceived) variance to decrease towards a bifurcation. Nonetheless, it may be important 

to maintain a search image for these phenomena. 

 

It is interesting that with respect to the factors we explored, rising autocorrelation 

appears a robust indicator of critical slowing down. Of course this is not to say that it will 

be a flawless indicator in practice. Our results are based on the assumption that the linear 

approximation of equation 2 sufficiently describes the underlying process of the system. 

This means that we can accurately measure critical slowing down (or λ(x*,p) in equation 2) 

using autocorrelation. In case the approximation is imprecise (as it may be in most 

practical cases), a quite long generated signal may be required to estimate the dominant 

eigenvalue from autocorrelation. This is not necessary when measuring variance, which in 

principle can be done with fewer data. Moreover, as mentioned in the introduction there 

is a series of situations in which no critical slowing down can be expected prior to a radical 

shift in the state of a system, and even if there is an underlying slowing down, systematic 

trends in the stochastic regime forcing the system may distort any pattern in correlation 

or variance. For instance, large magnitude perturbations can cause a shift already far from 

the bifurcation point (Guttal and Jayaprakash 2007; Scheffer et al. 2009), or they can 

dominate the behavior of the system completely as studied in the literature of so-called 

‘noise-induced transitions’ (Horsthemke 2006). In such cases neither variance nor 

autocorrelation are expected to rise before major changes in the systems dynamics (see 

Appendix A4.2). Thus, identifying potential leading indicators in systems dominated by 

high levels of noise merits further study. 

 

Another challenging problem in real-world situations is the long time-series needed to 

detect indicators of critical slowing down. The resulting large lag times, combined with 

potentially high costs of intervening and large uncertainty will make it hard to have 

decision makers act in a timely fashion (Biggs et al. 2009b; Contamin and Ellison 2009). In 

this light, the fact that spatial information may indicate critical slowing down with much 

shorter lag times (Carpenter and Brock 2010; Dakos et al. 2010; Donangelo et al. 2010; 

Guttal and Jayaprakash 2009) is of great importance. Interestingly, the fundamental 

mechanism that translates critical slowing down into rising temporal autocorrelation will 

also cause spatial correlation to increase (Dakos et al. 2010). In addition, other spatial 

pattern changes may indicate an upcoming systemic transition in a range of systems (Kéfi 

et al. 2007a; Rietkerk et al. 2004). However, as in the leading indicators from time-series, 

we are just starting to understand the underlying mechanisms. 

 

Clearly, while the fundamental principle of critical slowing down is known in physics 

already for a long time, the search for practical leading indicators of critical transitions in 

ecology and earth science has just started. Although it is illustrative to demonstrate 
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particular model situations in which some indicators do not work (Ditlevsen and Johnsen 

2010; Hastings and Wysham 2010), in this phase it may be especially useful to try to 

understand on a more fundamental level what are the limitations of different indicators. 

Undoubtedly, there exists a family of issues related to model identification and statistical 

estimation that affect our ability to detect generic early-warning signals. Although much 

remains to be explored in this field, it seems likely that, rather than a silver bullet 

approach we will need to develop a toolkit of indicators and a good understanding of 

when each of them might be most useful. When it comes to variance, it clearly remains an 

attractive candidate, as it is a straightforward characteristic that can in principle be easily 

measured. On the other hand, our results suggest a search image for situations in which it 

may not work as an indicator of critical slowing down. 
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Appendix 
 

 

 
 
Figure A4.1 Sensitivity analysis on the trends in autocorrelation and variance prior to transition 

in the two paleoclimate records presented in the main text, for a range of moving windows and 

smoothing bandwidths. Autocorrelation shows a positive trend (positive Kendal τ coefficient) 

for both records, while variance is always decreasing prior to transition. 

 

 

Appendix A4.1: Deviations in the performance of leading indicators when measured in 

time-series due to methodological issues 

In this work, we have assumed that we can accurately estimate autocorrelation and 

variance in time-series produced by a system as it approaches a critical transition. In 

practice, there are important limitations to our data analysis capacity. Below we 

demonstrate how methodological issues in the analyses of time-series can also cause 

deviations in the estimates of leading indicators and in particular variance. For this we use 

a simple first-order autoregressive model 1t t tz zφ ε+ = +% % , where z%  is the deviation of the 

process from some mean μ ( z z µ= −% ) and tε  an error term. Variance is given by 
2

2(1 )
ε

φ
σσ

φ
=

−
 and autocorrelation by 1ρ φ=  (Box 2008). In this model, the approach to a 

critical transition occurs when φ  reaches 1 (random walk). As φ  tends to 1 lower 

frequencies start to dominate and both variance and autocorrelation rise. 
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Effects of detrending on estimators 

One aspect that we have to deal with is the occurrence of trends in our time-series. If at 

some point a trend kicks in, this will cause autocorrelation as well as variance to rise, even 

if there is no upcoming bifurcation at all. To avoid such ‘false positives’ detrending is 

required. However, detrending itself can also affect the results in unwanted ways. For 

example, if detrending is done relatively on a sufficiently fine scale that it removes major 

ups and downs in the time-series (Figure A4.2e), it may actually remove low frequencies 

fluctuations that carry important information. As close to transition low frequencies 

increase at the cost of higher frequencies, detrending may in fact cause the estimated 

variance to decrease as a result. As illustrated by our simulations (Figure A4.2), this may 

lead to a decrease in estimated variance (Figure A4.2c, d), even if real variance increases. 

Autocorrelation is not sensitive to this effect (Figure A4.2g, h). 

 

 

 
 

Figure A4.2 Time-series generated by a first-order autoregressive process approaching random 

walk. (a) Gaussian detrending accurately filtering out low frequencies (e.g. through detrending 

using a broad bandwidth (=500)). (b) Residuals after detrending c) Autocorrelation at-lag-1 

increases. (d) Variance increases. (e) Gaussian detrending effectively filtering out low 

frequencies (e.g. through detrending using a narrow bandwidth (=6)). (f) Residuals after 

detrending (g) Autocorrelation at-lag-1 increases. (h) Variance decreases. (detrending and 

estimation of variance and autocorrelation with moving window size 50% of time-series, after 

Dakos et al. (2008); time-series generated with increasing coefficient φ  from 0.5 to 0.99 in 10 

steps, error mean zero and error variance 0.25; Gray line corresponds to Gaussian detrending). 

 

Effects of limited time windows on estimators 

Another related distortion may arise from the fact available time-series may not be long 

enough to allow accurate estimates of how characteristics of the fluctuations in the 
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system change as the system approaches a bifurcation. In practice, moving time windows 

used to estimate change in variance and autocorrelation will always be limited. As critical 

slowing down causes low frequencies to start dominating the fluctuations in the system, a 

limited moving window will cause both autocorrelation and variance to show a fluctuating 

trend prior to transition (Figure A4.3b, c). More interestingly, the limited moving window 

may lead to a weak increasing trend in estimated variance compared to autocorrelation 

(Figure A4.3b, c). 

 

 

 
 
Figure A4.3 (a) Time-series generated by a first-order autoregressive process approaching 

random walk. The limited size of the moving window causes fluctuating trends in both 

autocorrelation at-lag-1 and variance. However, autocorrelation at-lag-1 (panel b, Kendall τ = 

0.549 p<0.001) shows an overall positive trend compared to variance (panel c, Kendall τ = 

0.164 p<0.001). (Detrending and estimation of variance and autocorrelation with moving 

window size of 100 points; trend removal with a Gaussian filter performed within the moving 

window with bandwidth = 10; time-series generated with increasing coefficient φ  from 0.5 to 

0.99 in 10 steps, error mean zero and error variance 0.25) 

 

 

Appendix A4.2: Leading indicators in the case of noise-induced transitions 

In this study, we restricted ourselves to the case where the magnitude of perturbations is 

relatively weak. In the case of strong perturbations on the state of a bistable system, it has 

been shown that the system jumps between the alternative attractors (Guttal and 

Jayaprakash 2007). Such phenomenon is defined as flickering and it has been suggested as 

an indicator of an approaching transition (Brock and Carpenter 2010; Scheffer et al. 2009). 
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Things, however, are different when the magnitude of perturbations affecting processes 

of the system becomes really strong. In that case, qualitative changes in the preferential 

states of the system may occur. This means that new states may appear, which do not 

correspond to the deterministic equilibria of the system (noise-induced transitions) 

(Horsthemke 2006). These new states are not equilibria in the strict sense of the word, but 

rather modes in the stationary probability distribution of the system state. The question 

that has not yet been explored is whether leading indicators would still work in the case of 

such noise-induced transitions. 

 

For this, we consider a system in which a noise-induced transition occurs when noise 

magnitude exceeds a critical value, while no bifurcation exists in the deterministic 

counterpart of the system. To this end, we use the case of a linearly harvested population 

that grows logistically (May 2001): 

 

(1 )
dx x

rx cx
dt K

= − −        (eqA1) 

 

where K is the carrying capacity, r and c are growth and harvest rate parameters, 

respectively. With no noise, this system exhibits only one stable state (x*=K(1-c/r) for r>c), 

and undergoes no bifurcation. We consider the case in which r is a Gaussian stochastic 

parameter with mean r0 and variance σ
2
. In this case equation A1 becomes 

 

0( (1 ) ) (1 )
x x

dx r x cx dt x dW
K K

σ= − − + −      (eqA2) 

 

where the effect of environmental noise on the system dynamics is determined by factor 

( ) (1 )r

x
f x x

K
= −  (see also main text). The solution of equation A2 provides the stationary 

probability distribution ps(x) of x. The maxima and minima of ps(x) are shown in Figure 

A4.4a as a function of noise intensity. In the absence of noise (i.e. σ=0) the system has a 

unimodal probability distribution that corresponds to the equilibrium of the deterministic 

part of equation A2. As σ exceeds a critical value (σc=1.18), the probability distribution 

becomes bimodal: now two modes are present (at x=0 and x>0, Figure A4.4a). Under such 

strong noise regime (σ=3), the bimodal distribution collapses to a unimodal distribution at 

which a population shifts to extinction, when harvesting rate c reaches a critical value 

(Figure A4.4b). The question is whether this transition -̶  that is possible only under a 

strong noise regime -̶  can be anticipated by an increase in autocorrelation and variance as 

the control parameter c approaches the critical point (c≈0.8). To answer this question we 

carried out numerical simulations using as initial conditions the nontrivial mode of the 

system paying particular attention to avoid measuring flickering (the repeated switches 

between the modes of the two probability distributions). Therefore, we considered only 

fluctuations of the state variable that remained within the probability distribution of the 

nontrivial equilibrium. We did this by truncating each simulation to the point at which x 

dropped below the dashed line in Figure A4.4b. We repeated this for 1,000 simulations 

and estimated the average variance and average autocorrelation at-lag-1. We found that 
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both variance and autocorrelation decrease as the system approaches the critical point 

(Figure A4.4c, d). Our results demonstrate that in the case of noise-induced transitions 

leading indicators may fail to signal the approaching transition. 

 

 

 

 

Figure A4.4 (a) Modes of stationary distribution of state variable x of equation A2 as a function 

of noise magnitude σ. Bimodality emerges only when noise magnitude exceeds a critical value 

(r0=1, K=0.3, σ=1.18, noise-induced transition). (b) Bifurcation diagram for a noise-induced 

bimodal system (σ=3) as a function of control parameter harvest rate c. (c) Average variance 

(estimated as standard deviation), and d) Average autocorrelation at-lag-1 (AR1) prior to the 

transition. (Solid lines: stable modes of stationary distributions; dashed lines: borders between 

stationary distributions of modes) 
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Chapter 5 

Slowing down in spatially patterned ecosystems                         

at the brink of collapse
     

 

 

 

 

 

Predicting the risk of critical transitions such as the collapse of a population is important 

in order to direct management efforts. In any system that is close to a critical transition, 

recovery upon small perturbations becomes slow, a phenomenon known as ‘critical 

slowing down’. It has been suggested that such slowing down may be detected indirectly 

through an increase in spatial and temporal correlation and variance. Here, we tested 

this idea in arid ecosystems, where vegetation may collapse to desert due to increasing 

water limitation. We used three models that describe desertification, but differ in the 

spatial vegetation patterns they produce. In all models, recovery rate upon perturbation 

decreased before vegetation collapsed. However, in one of the models, slowing down 

failed to translate into rising variance and correlation. This is caused by the regular self-

organized vegetation patterns produced by this model. This finding implies an important 

limitation of variance and correlation as indicators for critical transitions. However, 

changes in such self-organized patterns themselves are a reliable indicator of an 

upcoming transition. Our results illustrate that while critical slowing down may be a 

universal phenomenon at critical transitions, its detection through indirect indicators 

may have limitations in particular systems. 

 

 
 
 
 
 
 
 
 

                                                 
This chapter is based on the paper: V. Dakos, S. Kéfi, M. Rietkerk, E. H. van Nes and M. Scheffer. 

Slowing down in spatially patterned ecosystems at the brink of collapse. American Naturalist (in 

press). We thank Ilka Hoof for reading and commenting on the paper, and Sergio Rinaldi for 

valuable discussions on bifurcation theory. 

http://www.jstor.org/stable/10.1086/659945
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Introduction 

There is growing evidence that some ecosystems may occasionally undergo catastrophic 

transitions to alternative states (Scheffer et al. 2001): coral reefs can be overgrown by 

fleshy algae and shift to a degraded state (Knowlton 2004); shallow lakes may flip from a 

macrophyte dominated clear-water state to a turbid-water state due to eutrophication 

(Scheffer 1998) and arid ecosystems may lose their perennial vegetation and turn into 

desert due to increasing aridity or overgrazing (MA 2005; Reynolds et al. 2007). 

 

Close to a critical threshold for such catastrophic transitions, the resilience (sensu Holling 

1973) of an ecosystem becomes small in the sense that only a small perturbation is 

needed to tip the ecosystem to an alternative state. Intuitively, such loss of resilience 

can be understood as the shrinking of the basin of attraction around the equilibrium 

state of the ecosystem (Figure 5.1a, b). Unfortunately, our knowledge of most 

ecosystems or other system is insufficient to predict critical thresholds, while at the 

same time it is difficult to measure resilience directly (Carpenter 2003). In view of these 

limitations, an alternative approach has been recently proposed (Scheffer et al. 2009). 

 

The idea is to use generic properties of critical thresholds (in mathematical jargon, 

bifurcation points) to develop early-warning indicators that can be used as indirect 

indicators of resilience (Scheffer et al. 2009). These indicators are simple statistical 

properties that can be measured directly by monitoring the state variables of the 

system, and they all behave in predictable ways prior to transitions regardless of the 

details of the system. In other words, theory suggests that we can identify the risk of an 

upcoming transition by monitoring characteristics such as population abundances, 

nutrient concentrations, or vegetation cover in any system be it a coral reef, a lake, or a 

savanna ecosystem. 

 

The fact that these indicators change predictably prior to critical transitions is related to 

the return rate to equilibrium after a perturbation that goes to zero at most bifurcations. 

To see what this means intuitively, note that when the basin of attraction shrinks, it also 

becomes flatter (Figure 5.1a, b). This implies that the monitored state variable of the 

system - such as macrophyte cover in a lake - returns more slowly to equilibrium after a 

small perturbation (Figure 5.1b) (Wissel 1984). This phenomenon, known as critical 

slowing down (Strogatz 1994), has major consequences for the transient behavior of the 

system. A system will take longer to recover from a disturbance when it is close to a 

critical threshold (van Nes and Scheffer 2007) (Figure 5.1a1, b1). If the system is 

subjected to stochastic perturbations there are also systematic changes in its 

fluctuations. First, it will resemble its previous state more closely when it is close to a 

critical threshold (Held and Kleinen 2004; Ives 1995) (Figure 5.1a2, b2). Second, the state 

of the system will fluctuate more widely around its equilibrium close to transition 

(Carpenter and Brock 2006; Van Nes and Scheffer 2003) (Figure 5.1a3, b3). Usually, but 

not necessarily, the basin of attraction also becomes asymmetric close to a transition 

(Figure 5.1a, b) (Scheffer et al. 2009). Such asymmetry causes the state of the system to 

spend more time in the flatter part of the attraction basin (Figure 5.1a4, b4). As a result 

the distribution of system states becomes skewed nearby a transition (Guttal and 
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Jayaprakash 2008). While most of the work on leading indicators has focused on the 

analysis of time-series, the temporal indicators that signal approaching shifts have 

spatial equivalents as well. This means that we can also measure leading indicators using 

spatial information for systems such as the distribution of abundances of 

metapopulations in a fragmented habitat, or the distribution of vegetation over a 

landscape. In such cases, spatial correlation may rise (Dakos et al. 2010), spatial variance 

may increase (Donangelo et al. 2010; Guttal and Jayaprakash 2009), and spatial 

skewness will often peak (Guttal and Jayaprakash 2009) before a spatially connected 

system goes through a systemic shift to an alternative state. 

 

 

 
 
Figure 5.1 Balls and cups representation of the basin of attraction of a system with alternative 

stable states. (a) Far from transition the state of the system lies in a broad basin of attraction. 

Small disturbances to equilibrium are damped by high recovery rates back to equilibrium. As a 

result the time to recover from a disturbance is short (a1). When monitoring the state of the 

system in time, the collected time-series is characterized by low correlation between 

subsequent values (a2), low variance (a3), and low skewness (a4). (b) Close to transition the 

basin of attraction shrinks and may become asymmetric. Small disturbances increase the 

chance of shifting to the alternative state and they are not anymore effectively damped due to 

low recovery rates back to equilibrium. The time to recover from a disturbance now is long 

(critical slowing down) (b1), and the collected time-series is characterized by high correlation 

between subsequent values (b2), high variance (b3), and high skewness (b4). 
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So far, most of these indicators have been tested in relative simple models where a 

specific type of critical transition occurs (i.e. a fold or transcritical bifurcation) (Carpenter 

and Brock 2006; Guttal and Jayaprakash 2008; van Nes and Scheffer 2007). In such 

simple models the indicators work well. There are, however, other cases of critical 

transitions for which it is not yet clear whether these indicators would successfully work 

(Hastings and Wysham 2010; Scheffer et al. 2009). Spatially explicit ecosystems with 

pattern formation are such case (Rietkerk et al. 2004). 

 

Pronounced examples of such patterned ecosystems come from arid ecosystems where 

we can find a mosaic of vegetated patches and bare soil (Aguiar and Sala 1999). Climate 

change and human pressure may cause these systems to turn into barren deserts 

(Reynolds et al. 2007) with considerable consequences on the livelihoods of more than 

25% of the world’s population. Specific models have shown that the collapse of 

vegetation to bare soil can be a critical transition (Rietkerk et al. 2002). Depending on 

the spatial mechanisms that dominate in arid ecosystems, particular changes in spatial 

patterns may signal if vegetation is close to collapsing into bare ground. A class of 

models stressing local facilitation predicts changes in the size distribution of vegetation 

patches prior to desertification (Kéfi et al. 2007a; Kéfi et al. 2011). Another class of 

models stresses that when resources accumulate in the vicinity of vegetation but are 

depleted elsewhere (Rietkerk et al. 2002), regular self-organized patterns occur. In these 

models, pattern shapes are predicted to change in specific ways before the collapse to a 

desert state (Rietkerk et al. 2004; von Hardenberg et al. 2001). Remarkably, the 

universal phenomenon of critical slowing down, and the way this may translate into the 

generic leading indicators of correlation and variance, has not been studied in such 

spatially patterned systems so far. Obviously, combining generic and specific leading 

indicators in this type of spatial systems can advance our ability to anticipate critical 

transitions. 

 

Here, we address this gap in our understanding of the predictability of critical transitions 

in spatially patterned models using arid ecosystems as an example. First, we explore 

whether critical slowing down occurs before the collapse to desertification in these 

models. We then estimate both spatial and temporal early-warning indicators and 

compare them to the specific pattern-based indicators found in these systems when 

approaching a critical transition. 

 

Methods 

Three models of desertification: spatial mechanisms, patterns and transitions 

We analyzed three existing models that describe spatial dynamics of vegetation in arid 

ecosystems. All models may undergo a critical transition to a desert state, but they differ 

in the type of patterns they exhibit. All transitions are associated to hysteresis. This 

means that restoring environmental conditions to values before the transition does not 

lead to recovery of vegetation. Below we describe the mechanisms, transitions and 

patterns encountered in each model. 
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Table 5.1 Models, parameters and their values used in this study. 

Model and Parameter Definition, Value and Unit 

  

‘local-positive feedback’ model (modified from Guttal & Jahaprakash, 2007) 

 

wi,j water moisture level in each gridcell (i,j), mm 
Bi,j vegetation biomass in each gridcell (i,j), g 

D exchange rate, 0.05 d-1 

λ water consumption rate by vegetation, 0.12 g-1 d-1 

ρ maximum vegetation growth rate, d-1 

Bc vegetation carrying capacity, 1 g 

μ maximum grazing rate, 2 d-1 

BO half saturation constant of vegetation consumption, 1 (-) 

R mean annual rainfall, range: 0.8 - 2 mm d-1 
(control parameter that 

determines the collapse of vegetation at a critical value) 

σw standard deviation of white noise on water moisture, 0.01 

σB standard deviation of white noise on vegetation biomass, 0.25 
dWi,j white noise; uncorrelated in each gridcell (i,j) 

  

‘local-facilitation’ model (Kéfi et al, 2007) 

 

w{0,+} colonization probability of an unoccupied site 

w{-,0} regeneration probability of a degraded site 
w{+,0} mortality probability of an occupied site 

w{0,-} degradation probability of an unoccupied site 
ρ+ density of vegetated sites 

qi|j clustering vegetation intensity probability of finding a site j in state i (+,0,-) 
m mortality probability of a vegetated site, 0.1 (-) 

f local facilitation strength: maximum effect of a neighboring vegetated site 
on the regeneration of a degraded site, 0.9 (-) 

β ‘intrinsic seed production rate per vegetated site’ x 'survival probability' x 
'germination probability' 

ε establishment probability of seeds on {o}-site in a system without 
competition 

b b (=β*ε) measures the severity of the environmental conditions. A lower b 

value reflects a higher aridity level, range: 0.3 - 1 (-) (control parameter that 

determines the collapse of vegetation at a critical value) 

δ fraction of seeds globally dispersed, 0.1 (-) 
g competitive effect of the global density of {+}-sites on the establishment of 

new individuals 
c β*g,  0.3 (-) 

r regeneration probability of a {-}-site without vegetated sites in its 
neighborhood, 0.0001 (-) 

d degradation probability of {o}-sites, 0.2 (-) 

,
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The first model is based on the vegetation model by Guttal and Jayaprakash (2007) and 

Shnerb et al. (2003) (Table 5.1, eqs 1a-b). We made this model spatially explicit by 

defining it as a stochastic lattice differential equation model (LDE) (Chow et al. 1996). In 

such a model, space is represented by a two dimensional lattice of coupled patches 

(Keitt et al. 2001; van Nes and Scheffer 2005). In each patch, vegetation B grows 

logistically and has a loss rate due to grazing. Vegetation growth depends on water 

availability w. When annual rainfall decreases, water scarcity reduces vegetation growth. 

At some point, vegetation growth cannot compensate for losses to grazing, and a patch 

shifts to its alternative overgrazed desert state. Biomass and water are exchanged 

between neighboring patches at rate D. Therefore a patch with high biomass will have 

the tendency to ’leak’ biomass to its neighboring sites, which results in a positive effect 

on its neighbors (in terms of biomass gain) but in a negative effect on the site itself 

(Figure 5.2a1). If this diffusive effect is very strong, differences between patches tend to 

be smoothed out and the ecosystem as a whole remains in a homogeneously vegetated 

state (Figure 5.2a2), until conditions force all patches to flip to the desert state through 

synchronized ‘fold bifurcations’ at each patch (Figure 5.2a3) (van Nes and Scheffer 

2005). (Bifurcations are parameter values where the qualitative behavior of a system 

 

Table 5.1 continued 

 

‘scale-dependent feedback’ model (modified from Rietkerk et al., 2002) 

 

P plant density, g m-2 

W soil water, mm 

O surface water, mm 
c conversion of water uptake to plant growth, 10 g mm-1 m-2 

gmax maximum specific water uptake, 0.05 mm g-1 m-2 d-1 

k1 half-saturation constant of specific plant growth and water uptake, 5 mm 
Dp plant dispersal, 0.1 m-2 d-1 

α maximum infiltration rate, 0.2 d-1 

k2 saturation constant of water infiltration, 5 g m-2 

WO water infiltration rate in the absence of plants, 0.2 (-) 
rw specicific water loss due to evaporation and drainage, 0.2 d-1 

Dw diffusion coefficient of soil water, 0.1 m2 d-1 

DO diffusion coefficient of surface water, 100 m2 d-1 

d specific loss of plant density due to mortality, 0.25 d-1 

Δ Laplacian operator for diffusion 

R rainfall, range: 0.05 - 2 mm d-1 
(control parameter that determines the 

collapse of vegetation at a critical value) 

σ standard deviation of white noise, 0.01 
dW white noise 

max

1

2
max

2 1

2

2
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changes fundamentally.) The important mechanism in this model is a positive feedback 

that causes each patch to have alternative stable states (undergrazed vegetated state or 

overgrazed desert state). For this reason, in the rest of the paper we refer to this model 

as ‘local-positive feedback’ model. 

 

The second model is a stochastic cellular automaton (CA) (Kéfi et al. 2007b) (Table 5.1, 

eqs 3a-c) with discrete time steps. An ecosystem is represented by a lattice composed of 

cells, which can only be in one of three states: vegetated (+), empty (o) or degraded (-). 

Empty cells are cells whose soil is still fertile. Degraded cells are cells with eroded soil 

unsuitable for recolonization. The basic processes in this model are captured by four 

transformations: colonization of empty cells, mortality of vegetation, degradation of 

empty cells, and regeneration of degraded cells. Each of these four transformations can 

occur with a certain probability at each time step (Table 5.1, eqs 2a-d). The colonization 

and regeneration probabilities of a patch are positively affected by the presence of 

vegetation in its four neighboring cells (Figure 5.2b1). Because of this facilitating effect 

we will refer to this model hereafter as the ‘local-facilitation’ model. The facilitation 

leads to the formation of clusters of vegetated gridcells and these patches have size 

distributions that can be described by a power law (Figure 5.2b2) (Kéfi et al. 2007a; Kéfi 

et al. 2011). The size of the clusters is dependent on the ecological conditions (such as 

rainfall or grazing pressure). Under favorable conditions giant clusters span the lattice 

from one edge to the other (Kéfi et al. 2011). The point where these giant clusters break 

down is called the ‘percolation point’. When conditions become even harsher, a 

transition point is reached where all vegetation goes extinct (Figure 5.2b3). 

 

The third model is a stochastic version of a partial differential equations model (PDE) 

describing the dynamics of vegetation biomass, soil water and surface water 

(HilleRisLambers et al. 2001; Rietkerk et al. 2002) (Table 5.1, eqs 3a-c). Plants, P, grow 

depending on soil water availability and are lost due to mortality or grazing. Surface 

water, O, is supplied by rainfall and lost due to infiltration in the soil and runoff. Soil 

water, W, is surface water that infiltrated in the soil after rain events and is taken up by 

plants or lost by runoff. Plants, soil water and surface water are all assumed to diffuse in 

two-dimensional space. In this model, the infiltration rate of water in the soil is higher in 

areas with vegetation than in bare soil, leading to accumulation of water under 

vegetation and to its depletion further away: a scale-dependent feedback. In other 

words, vegetation has a local-positive effect on itself and on its immediate surroundings, 

but a negative effect further away (Figure 5.2c1). For this reason, in the rest of the 

paper, we refer to this model as ‘scale-dependent feedback’ model. This scale-

dependent feedback leads to the formation of regular vegetation patterns (Figure 5.2c2, 

c3), through a so-called ‘Turing instability’ (Turing 1952). At the Turing instability the 

feedback is just strong enough to form patterns (HilleRisLambers et al. 2001; Rietkerk et 

al. 2002; von Hardenberg et al. 2001). Patterns show a distinct sequence of shapes from 

gaps to labyrinths and to spots with decreasing rainfall. When water availability 

becomes limited, vegetation cannot sustain itself and the ecosystem undergoes a 

second transition point: that of collapse into desert (Figure 5.2c3). 
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Figure 5.2 Schematic representation of the effect of vegetation on its environment, the 

patterns formed, and the dynamics of vegetation as function of environmental harshness. (a) 

‘Local-positive feedback’ model: (a1) a vegetated site with high vegetation biomass has 

positive effect on its environment but negative effect on itself due to ‘leak’ of biomass to 

neighboring sites. The positive effect diminishes with distance. (a2) No patches form, only 

irregular clustering of biomass. (a3) Spatial vegetation mean biomass with decreasing rainfall 

R. (b) ‘Local-facilitation’ model: (b1) a vegetated site has positive effect at its direct vicinity 

with no cost on itself. (b2) Irregular vegetation patches form. (b3) Spatial vegetation density 

(fraction of vegetation sites occupied) with decreasing aridity b. (c) ‘Scale-dependent 

feedback’ model: (c1), a vegetated site has positive impact on itself and its surroundings, but 

negative feedback further away because local accumulation of water means that is depleted 

further away. (c2) Regular vegetation patterns form. (c3) Spatial vegetation mean density 

with decreasing rainfall R. Regardless of the spatial mechanisms in each model, there is a 

critical point at which vegetation collapses (gray shaded area). (Fold bifurcation: point at 

which total vegetation shifts to desert; Percolation point: break-up of giant cluster that spans 

the whole lattice; Turing instability: onset of regular pattern formation. Embedded panels are 

spatial snapshots of vegetation before desertification. Dotted gray lines indicate the 

hysteresis loop present in all systems.) 
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Simulations and analyses 

Parameter values of the three models and their units are given in Table 5.1. We used 

parameter values such that the transition of vegetation to desertification is 

discontinuous (‘catastrophic’). In all models, we assumed homogeneous conditions, i.e. 

parameter values are the same everywhere in space. For each model, we selected a 

parameter that describes aridity (see Table 5.1), as this drives desertification in arid 

ecosystems. In the ‘local-positive feedback’ and ‘scale-dependent feedback’ models the 

level of aridity is directly determined by rainfall (parameter R, low rainfall leads to low 

vegetation growth), whereas in the ‘local-facilitation’ model aridity is indirectly 

determined by the establishment probability of new vegetation (parameter b, high 

aridity leads to low vegetation establishment). In all models we changed these control 

parameters in small steps. We started simulations from a complete vegetated state in all 

models. We discarded transients and continued the simulations in each step using the 

last stationary state as initial condition. We repeated this until the control parameters 

reached a critical threshold at which vegetation collapsed. 

 

We first examined whether critical slowing down occurs before all transition points in all 

models. As there are no formal analytical solutions for all transitions that could enable 

us estimate critical slowing down by the dominant eigenvalue of the system (Scheffer et 

al. 2009), we followed a numerical approach (van Nes and Scheffer 2007). After the 

ecosystem reached equilibrium, we removed 10% of the total vegetation biomass, cover 

or density according to model, and estimated the recovery time to equilibrium (with an 

accuracy of 0.01%) by simulation. We did this along the whole pathway to collapse of 

vegetation for all models. 

 

For the calculation of the spatial indicators, we used equilibrium values of vegetation 

biomass, cover or density according to model for each level of control parameter up to 

collapse of vegetation. In the case of the ‘local-facilitation’ model, we first determined 

the vegetation cover by summing the vegetated cells using a 4×4-cells non-overlapping 

moving filter along the lattice. We estimated spatial correlation between neighbors, 

spatial variance, and spatial skewness. Spatial correlation between-neighbors was 

defined as the two-point correlation for all pairs of neighboring cells using Moran’s 

coefficient (Legendre and Fortin 1989). Skewness was estimated as the third moment 

about the mean, 
3

3

( )E x µ
σ
−

, where µ is the mean of x, σ is the standard deviation of x, and 

E(.) is the expectation operator. 

 

In addition to spatial indicators, we also followed the evolution of temporal correlation, 

variance and skewness. To this end, for each level of control parameter, we estimated 

autocorrelation at-lag-1, variance, and skewness of total vegetation biomass, cover or 

density from the last 1,000 points of the produced time-series. We calculated 

autocorrelation at-lag-1 by fitting an autoregressive model of first order using the arfit 

package in MATLAB (Neumaier and Schneider 2001). To compare the performance of 

both spatial and temporal indicators, we quantified their trends using the nonparametric 

Kendall τ rank correlation of the control parameter and the spatial and temporal 
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correlation estimates. A Kendall τ coefficient that was significantly different from zero 

(p<0.025) specified whether the indicators increased or decreased before each transition 

point. 

 

All simulations and statistical analyses were performed in MATLAB v7.1.0246 (The 

Mathworks). We solved the stochastic equations of the ‘local-positive feedback’ model 

in a 100×100 cells lattice using an Euler-Murayama integration method with Ito calculus. 

We used a stochastic asynchronous update algorithm for the ‘local-facilitation’ model in 

a 400×400 cells lattice. The ‘scale-dependent feedback’ model was implemented in a 

128×128 cells lattice and solved using a semi-implicit method (Janssen et al. 2008). The 

stochastic part of the ‘scale-dependent feedback’ model was solved using an Euler-

Murayama integration method with Ito calculus. We assumed periodic boundaries in all 

models.  

 

 

 
 

Figure 5.3 Critical slowing down approximated by recovery time before the collapse of 

vegetation in all three models. Recovery time was estimated by a pulse perturbation 

experiment as the time for mean plant density to recover back to equilibrium after a 10% 

reduction in plant densities in the whole lattice. [Results based on simulations in a 64x64 

lattice for the ‘local-positive feedback’ and ‘scale-dependent feedback’ models. All other 

parameters as presented in the main text.] 

 

Results 

Critical slowing down prior to transitions 

We first checked whether critical slowing down was present before each transition point 

in all models. In all models we found an increase in time needed for recovery as the 

ecosystem approached the critical point of collapse to a desert state (Figure 5.3). 

Similarly, recovery times increased before the Turing instability point in the ‘scale-

dependent feedback’ model (Figure 5.3c). All these points belong to the type of 

transitions where critical slowing down is expected to occur: they represent ‘local’ 

bifurcations of stable equilibria that become unstable (Dakos et al. 2010; Judd and Silber 

2000; Kéfi et al. 2007a). Interestingly, critical slowing down occurred also before the 

vegetation collapse in the ‘scale-dependent feedback’ model, despite the fact that this 
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transition represents a more complicated kind of bifurcation. Specifically it corresponds 

to a ‘global’ bifurcation where a stable spatial periodic attractor (the regular vegetation 

patterns) collapses to a uniform desert state. Obviously the percolation point in the local 

facilitation model cannot be detected by critical slowing down as this point does not 

correspond to a bifurcation that would imply a change in the stability of the ecosystem. 

 

Spatial leading indicators prior to transitions 

For the transitions where critical slowing down was at play, we tested whether spatial 

correlation, variance and skewness also increased (see Table A5.1 in the Appendix). In 

the ‘local-positive feedback’ model, all of these spatial indicators showed clear positive 

trends before the transition (Figure 5.4a1-3) similar to those observed in previous 

studies (Dakos et al. 2010; Guttal and Jayaprakash 2009). Close to collapse, slowly 

decaying fluctuations of vegetation resulted in an increase in spatial variance. As these 

fluctuations took place in an increasingly asymmetric basin of attraction, spatial 

skewness changed as well (it became negative because vegetation biomass distributions 

skewed towards low biomass values). 

 

In the ‘local-facilitation’ model, the three spatial indicators behaved more-or-less the 

same as in the ‘local-positive feedback’ model (Figure 5.4b1-3). Far from the transition, 

environmental conditions sustained large areas of vegetation cover leading to low 

spatial variance (Figure 5.4b1). Spatial skewness was negative, as distributions of 

vegetation cover were skewed towards low values (Figure 5.4b2). As aridity increased, 

areas of high vegetation cover broke into smaller parts: vegetation cover distributions 

became symmetric and, therefore, variance increased and skewness became zero. 

Approaching the transition skewness turned positive, because now, areas of high 

vegetation cover became scarce. Variance of vegetation cover also rose towards the 

transition only to drop just before the shift. Spatial correlation between-neighbors 

gradually increased up to the transition (Figure 5.4b3). As expected no special change 

occurred before the percolation point. In addition to spatial correlation, variance and 

skewness, changes in patch size distributions also indicated proximity to desertification 

(Figure 5.5a). 

 

In the ‘scale-dependent feedback’ model, the onset of pattern formation at the Turing 

instability point was again announced by an increase in spatial correlation between-

neighbors and variance (Figure 5.4c1-3) as would be expected in view of the critical 

slowing down we found (Figure 5.3c). Spatial skewness, remained constant (Figure 

5.4c2), as there is no alternative attractor (bare ground) before the onset of pattern 

formation. Despite the presence of critical slowing down, spatial correlation or variance 

did not increase prior to the collapse of vegetation in the ‘scale-dependent feedback’ 

model (Figure 5.4c1-3). There was an increase in spatial skewness. However, this was 

driven by the increasing number of bare cells in the lattice due to gradual loss of 

vegetation rather than due to an asymmetric basin of attraction. Spatial variance stayed 

high as patterns evolved from gaps to labyrinths, but decreased when spots emerged 

and dropped just before the ecosystem turned into desert (Figure 5.4c1). Spatial 
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correlation of vegetation density was high and dropped only close before the collapse, 

when the regularity in the shape of the patterns became weaker (Figure 5.4c3). While 

spatial correlation and variance did not change as the ecosystem approached this 

transition, the sequence in the shape of vegetation patterns clearly indicated the 

upcoming collapse (Figure 5.5c). 

 

 
 
Figure 5.4 Spatial variance, spatial skewness, and spatial correlation between neighbors as 

function of increasing harshness in the environment up to desertification (gray shaded area). 

Spatial indicators are estimated using final values of all cells at the end of the simulation for 

each level of the control parameter (rainfall in ‘local-positive feedback’ and ‘scale-dependent 

feedback’ models; aridity in ‘local-facilitation’ model). Open circles indicate: (a1-3) the point 

at which vegetation shifts to barren state in the ‘local-positive feedback’ model (Fold 

bifurcation); (b1-3) the point at which patches of vegetation that span the lattice from one 

edge to the other disappear in the ‘local-facilitation’ model (Percolation point); (c1-3) the 

onset of regular vegetation patterning in the ‘scale-dependent feedback’ model (Turing 

instability). 

 

Temporal leading indicators prior to transitions 

In addition to spatial correlation, variance and skewness, we estimated temporal 

autocorrelation (at-lag-1), variance and skewness for the total vegetation cover in all 

models (Figure 5.6). In the ‘local-positive feedback’ and ‘local-facilitation’ models, auto- 
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Figure 5.5 System-specific indicators. (a) ‘Local-facilitation’ model: Evolution of patch size 

distributions. As conditions become harsher, big vegetated patches disappear and their 

distribution is characterised by a truncated power law. Statistical properties of the changing 

distributions are summarized in Figure A5.1 in the Appendix. (b) ‘Scale-dependent feedback’ 

model: Spatial configuration of vegetation before the Turing instability for decreasing rainfall 

(R). Note the slight emergence of patterns before the Turing instability (R ≈ 1.25, scale in all 

panels is comparable). (c) After the Turing there is a specific sequence of pattern shapes: 

gaps, labyrinth, spots and the gradual loss of spots till the system collapses. 

 

 

correlation (at-lag-1) and variance increased towards the transition (Figure 5.6a1, a3, b1, 

b3). Temporal skewness did not change in any of the two models (Figure 5.6a2, b2). In 

the ‘scale-dependent feedback’ model, all temporal indicators failed to signal upcoming 

desertification (Figure 5.6c1-3). Peaks in variance of total vegetation density after the 

Turing instability occurred almost when patterns changed from gaps to labyrinths to 
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spots (Figure 5.6c1). Similarly but less clearly, peaks in skewness after the Turing 

instability were related to transitions in the sequence of patterns (Figure 5.6c2). 

Autocorrelation (at-lag-1) after the Turing instability remained high and fluctuated 

slightly as more cells became bare before the transition (Figure 5.6c3). Interestingly, the 

onset of pattern formation at the Turing instability was preceded by increasing 

autocorrelation (at-lag-1) (Figure 5.6c3). Variance and skewness, however, showed no 

trend (Figure 5.6c1, c2). 

 

 

 
 
Figure 5.6 Temporal variance, temporal skewness, and temporal autocorrelation (at-lag-1) as 

a function of increasing harshness in the environment up to desertification (gray shaded 

area). Temporal indicators are estimated from the last 1,000 points of total vegetation 

biomass, cover or density for each level of control parameter (rainfall in ‘local-positive 

feedback’ and ‘scale-dependent feedback’ models; aridity in ‘local-facilitation’ model). Open 

circles indicate: (a1-3) the point at which vegetation shifts to barren state in the ‘local-

positive feedback’ model (Fold bifurcation); (b1-3) the point at which patches of vegetation 

that span the lattice from one edge to the other disappear in the ‘local-facilitation’ model 

(Percolation point); (c1-3) the onset of regular vegetation patterns in the ‘scale-dependent 

feedback’ model (Turing instability). 
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Discussion 

Critical transitions are large self-propelling changes in the state of a system induced by 

small changes in external conditions (Scheffer 2009). Given that critical transitions occur 

unexpectedly and may have drastic and irreversible consequences, the ability to 

estimate their risk is of utmost societal and economic importance. Early-warning signals 

for critical transitions offer such opportunity (Scheffer et al. 2009). If detected early in 

advance (Biggs et al. 2009b), they can help to navigate away from unpleasant surprises. 

 

It has been suggested that the universal phenomenon of critical slowing down close to 

critical transitions will in practice translate into early-warning signals, i.e. a rise in 

correlation and variance (Scheffer et al. 2009). In this study, we show that this is not 

always true. We found that the shift of arid ecosystems to desert in a ‘scale-dependent 

feedback’ model with self-organized regular patterns is not announced by a rise in 

correlation or variance despite the fact that critical slowing down does happen. This was 

the only exception. We found a rise in correlation and variance in space (and less clearly 

in time) to precede the collapse of vegetation in the two other arid ecosystem models 

we used. Moreover, we identified similar signatures before the onset of pattern 

formation that mark the transition of a complete vegetation cover to regular patches of 

vegetation in the ‘scale-dependent feedback’ model (Table 5.2). 

 

The failure of correlation and variance to announce the shift to desert in the ‘scale-

dependent feedback’ model suggests that there may be considerable deviations in the 

behavior of generic indicators in this or similar classes of spatially organized systems 

when compared to the other two model systems we studied. These deviations appear to 

be associated with the presence of self-organized regular patterns, which are a 

consequence of the way feedbacks operate in space for these classes of systems. 

 

In the ‘local-positive feedback’ model, spatial processes are governed by diffusion 

between neighboring sites (Figure 5.2a1). Close to transition, random losses of 

vegetation in each site take longer to be compensated; the vegetation dynamics slow 

down and diffusion starts to dominate the patterns. As a result, each site becomes more 

influenced by biomass dispersed from its neighbors (Dakos et al. 2010). Such strong 

neighbor effects lead to increasing spatial clustering of vegetation (Figure 5.2a2). This 

translates into elevated correlation and variance before a transition. 

 

In the ‘local-facilitation’ model, regeneration of a degraded site depends on the 

presence of vegetation next to it (Figure 5.2b1). When aridity increases, colonization of 

empty sites by vegetation becomes more difficult (“slows down”) and just as in the ‘local 

positive feedback’ model the regeneration of vegetation in the degraded sites will be 

influenced more strongly by the presence of vegetated neighbors. As a result, local 

facilitation becomes the dominant force that leads to clustering around existing irregular 

patches (Figure 5.5a), again translating into an increase in correlation and variance prior 

to transition to desertification. 

 



 

 

Table 5.2 Summary of the performance of leading indicators in the three models used. 

 Model 

Indicator 

‘local-positive feedback’ 'local-facilitation' ‘scale-dependent feedback’ 

up to 

transition point 

up to 

percolation point 

from percolation to 

transition point 

up to Turing 

instability 

from Turing instability 

to transition point 

Critical Slowing Down + + + + + 

Generic      

Spatial correlation + + + + fails 

Spatial variance + + + fails fails 

Spatial skewness + + + fails + 

Temporal correlation + + + + fails 

Temporal variance + + + fails fails 

Temporal skewness fails fails fails fails fails 

System-specific      

Patch size distributions 
not applicable 

(no patches) 
+ + 

not applicable                 

(no patches) 

not applicable                            

(one size patches) 

Pattern shapes 
not applicable 

(no patches) 

not applicable 

(irregular patterns) 

not applicable 

(irregular patterns) 

not applicable 

(no patterns) 
+ 
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Things work differently in the ‘scale-dependent feedback’ model with its distinct regular 

vegetation patterns (Figure 5.2c). High regularity of the patterns simply translates into 

high correlation and variance. As rainfall decreases towards the shift, patterns change in 

shape, but their regularity remains high and so does correlation and variance. Only just 

before the transition when the regularity of the patterns starts breaking up, correlation 

and variance decrease. 

 

Although regular pattern formation appears to mask the performance of variance and 

correlation as leading indicators in the ‘scale-dependent feedback’ model, the shape of 

the patterns themselves reveals much information on the proximity to the upcoming 

transition (Rietkerk et al. 2004). This may be true for the entire class of ecosystems that 

exhibit self-organized pattern formation, ranging from bogs (Eppinga et al. 2009) to 

mussel beds (van de Koppel et al. 2005). Similar pattern-based indicators specific to 

certain classes of systems may be deviations in power laws in systems with scale-

invariant patches (Pascual and Guichard 2005), such as the ones produced by the ‘local-

facilitation’ model (Figure 5.5a) (Kéfi et al. 2007a). Although such pattern-based 

indicators may sometimes be enough to announce specific types of transitions, 

combining them with correlation and variance may help to reduce the possibility of false 

alarms. For example, changes in the statistical properties of patch size distributions 

(such as a decrease in skewness of patch sizes, see Appendix Figure A5.1) together with 

an increase in skewness of vegetation cover (Figure 5.4b2) may yield a more robust 

indicator of an approaching transition than any of those indicators alone. More 

importantly, pattern-based and generic indicators complement each other. In systems 

with self-organized regular patterns, changes in the shape of the patterns can be used 

for announcing desertification (Figure 5.5c), whereas generic indicators (in particular 

spatial correlation) can signal the onset of pattern formation: the transition to the 

appearance of the first degraded sites in the ecosystem (Figure 5.4c3). 

 

The failure of the correlation and variance to signal collapse in systems with self-

organized regular patterns suggests that there may be more cases in which these 

indirect indicators of resilience can fail to signal the risk of upcoming transitions. 

Obviously, we cannot expect such leading indicators to signal the proximity of transitions 

that are not associated to critical slowing down (Scheffer et al. 2009). However, our 

results show that even if critical slowing down is present, it may not be reflected by 

rising correlation or variance. By contrast, the recovery time required for the system to 

return to equilibrium after a disturbance appears to be a robust indicator of critical 

slowing down (Figure 5.3). Indeed, recent work on a similar model system with pattern 

formation confirms that recovery time upon disturbance increases before desertification 

(Bailey 2011). 

 

In conclusion, recovery time upon local perturbation experiments may be the most 

generic and robust indicator of critical slowing down before a transition (van Nes and 

Scheffer 2007). While elevated correlation and variance may often serve as indirect 

indicators of critical slowing down, the presence of self-organized regular patterns can 

suppress change in such indicators. In this particular situation, changes in the patterns 

themselves are the best indicator of an upcoming transition. 
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Appendix 

Supplementary Statistics 

Table A5.1 Kendall τ rank correlation statistics for spatial and temporal leading indicators 

estimated in the all models. Asterisks indicate significant trends (p<0.025). 
 

 

 
Kendall τ                   

rank correlation 

'local-positive 

feedback' 
'local-facilitation' 'scale-dependent feedback' 

up to 
transition 

point 

up to 
percolation 

point 

from percolation 
to transition 

point 

up to 
Turing 

instability 

from Turing 
instability to 

transition point 

Spatial Indicators 

correlation 0.768* 0.702* 0.940* 0.912* -0.741* 

variance 0.975* 0.973* 0.798* -0.631* -0.360* 

skewness -0.610* 0.880* 0.986* -0.025 1.000* 

Temporal Indicators 

correlation 0.654* 0.819* 0.654* 0.524* -0.176* 

variance 0.686* 0.755* 0.301* -0.446* -0.214* 

skewness 0.041 0.108 0.147 -0.013 -0.167 

 

 

 

 
 

Figure A5.1 Statistical properties of patch size distributions in the ‘local-facilitation’ model. 

(a) Spatial clustering increased (clustering was estimated as 
|q

ρ
++

+
 where 

|q+ +  is the conditional 

probability of finding a vegetated cell next to a vegetated cell and ρ+  the fraction of 

vegetated cells in the total grid (van Baalen 2000)). (b) Patch size variance declined up to the 

transition point. (c) Patch size skewness exhibited a dual behavior: it rose till the percolation 

point as the number of large patches decreased and the number of small patches increased. 

After the percolation point, skewness dropped as the large patches broke down into small 

ones. The lack of vegetated patches in the ‘local-positive feedback’ model and the regularity 

of the patches in the ‘scale-dependent feedback’ model makes such estimation not feasible in 

these two models. 
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Chapter 6 

Slowing down as an early-warning signal                                      

for abrupt climate change
     

 

 

 

 

 

In the Earth’s history, periods of relatively stable climate have often been interrupted by 

sharp transitions to a contrasting state. One explanation for such events of abrupt change 

is that they happened when the earth system reached a critical tipping point. However, 

this remains hard to prove for events in the remote past, and it is even more difficult to 

predict if and when we might reach a tipping point for abrupt climate change in the 

future. Here we analyze eight ancient abrupt climate shifts and show that they were all 

preceded by a characteristic slowing down of the fluctuations starting well before the 

actual shift. Such slowing down, measured as increased autocorrelation, can be 

mathematically shown to be a hallmark of tipping points. Therefore, our results imply 

independent empirical evidence for the idea that past abrupt shifts were associated to the 

passing of critical thresholds. Since the mechanism causing slowing down is fundamentally 

inherent to tipping points, it follows that our way to detect slowing down might be used as 

a universal early-warning signal for upcoming catastrophic change. As tipping points in 

ecosystems and other complex systems are notoriously hard to predict in other ways, this 

is a promising perspective. 
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Introduction 

The relative constancy of the climate over the past 10,000 years is exceptional in view of 

the large variability found in reconstructions of almost all periods before. Particularly 

noteworthy in the records of past climate dynamics are occasional sharp transitions from 

one state to another. Such transitions happened at various time-scales (Alley et al. 2003). 

For instance, about 34 million years ago the earth changed suddenly from the tropical 

state in which it had been for hundreds of millions of years to a state with ice-caps, a shift 

known as the greenhouse-icehouse transition (Kump 2005; Tripati et al. 2005) (Figure 

6.1a). A prominent feature of the climate cycles that followed is the abrupt termination of 

most glacial periods (Petit et al. 1999) (Figure 6.1c, e, g, i). Zooming in on a finer time-scale 

shows that there are sharp shifts too. A well known example is the Younger Dryas period, 

when just after the recovery from the last glacial maximum the climate at Greenland 

relapsed to very cold conditions for many centuries and then suddenly jumped back to a 

more than ten degrees warmer state (Clark et al. 2002) (Figure 6.1m). An even more 

recent abrupt climate shift is the sudden shift of North Africa from a savanna-like state 

with scattered lakes to a desert state about 5,000 years ago (deMenocal et al. 2000) 

(Figure 6.1o). 

 

Proposed explanations for these and other examples of abrupt climate change usually 

invoke the existence of thresholds in external conditions where the climate system is 

particularly sensitive, or even has a tipping point (Lenton et al. 2008), similar to that of a 

canoe where one leans over too much to one side. In models such tipping points 

correspond to bifurcations (Kuznetsov 1995) where at a critical value of a control 

parameter an attractor becomes unstable, leading to a shift to an alternative attractor. 

The underlying mechanism causing such extreme sensitivity at particular thresholds is 

typically a positive feedback. The earth system is notoriously riddled with such positive 

feedbacks (Lawton 2001; Rial et al. 2004; Woodwell 1998). Unfortunately, the 

explanations for abrupt climatic change in the past remain rather hypothetical as they are 

difficult to test. Even if the proposed mechanisms seem plausible, our capacity to model 

these systems accurately is too limited to conclude with reasonable certainty that tipping 

points are involved. This is particularly worrisome in view of the possibility of hitting upon 

a tipping point as current climate change proceeds. Although most climate scientists 

would acknowledge that possibility, we are simply unable to predict if and when future 

climate change might bring us to a critical threshold (Alley et al. 2003). Even though 

climate models are rapidly improving, the chances that we will soon be able to predict 

potential tipping points with sufficient accuracy seem negligible. A similar situation exists 

in ecology where the existence of thresholds for catastrophic shifts has been shown for a 

range of systems (Scheffer et al. 2001), but prediction of such shifts has remained elusive. 

 

In the face of our limited mechanistic insight it would be invaluable to have another way 

to find out whether past abrupt climate change was related to the crossing of critical 

thresholds, and to know if parts of our current climate system may be approaching such a 

threshold. A possible clue that we explore here, is to use the theoretical finding that, as a 

rule, dynamical systems become ‘slow’ when a critical point is approached as conditions 

are gradually changing. In technical terms the mechanism is that the maximum real part of 
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the eigenvalues of the Jacobian matrix tends to zero as a bifurcation point is approached 

(Strogatz 1994). As a result the dynamical system becomes increasingly slow in recovering 

from small perturbations (Strogatz 1994; van Nes and Scheffer 2007; Wissel 1984). 

 

Although an ideal way to test if a system is slowing down (van Nes and Scheffer 2007) 

would be to study its response to small experimental perturbations, this is obviously of 

little use for analyzing past climate change. An alternative is to interpret fluctuations in 

the state of a system as its response to natural perturbations. Slowing down should then 

simply be reflected as a decrease in the rates of change in the system, and therefore as an 

increase in the short-term autocorrelation in the time-series (Ives 1995). Various authors 

have elaborated methods to detect slowing down associated to a shift in model-generated 

time-series of the thermo-haline circulation (Held and Kleinen 2004; Kleinen et al. 2003; 

Livina and Lenton 2007). Kleinen et al. (2003) analyzed spectral properties, and Held and 

Kleinen (2004) focused on autocorrelation as a statistic to detect slowing down before the 

transition. Livina and Lenton (2007) suggested an approach inspired by a technique for 

detecting long-term memory in a time-series. Despite the interest in this field, so far no 

significant signs of slowing down before a shift have been shown on real data. 

 

Here we analyze the change in autocorrelation in time-series of eight ancient events of 

abrupt climate change reconstructed from geological records (Figure 6.1, see Methods 

section) to examine if the climate system slows down when a critical threshold is 

approached. Since we are interested in the possibility of using such information as an 

early-warning signal we used only data from before the actual transition (shaded bands in 

Figure 6.1) to scan for slowing down. Details of the time-series and the identification of 

the period before the shift can be found in the Appendix (Table A6.1). 

 

Methods 

Data sources 

We used examples of climatic transitions that have been widely interpreted as significant 

shifts in the climate record and for which underlying positive feedbacks have been 

suggested as mechanistic explanation. We have not pre-selected the examples on the 

basis of preliminary results from our own analyses. The time-series used represent climate 

data proxies derived from different sources. All were downloaded from the World Data 

Center for Paleoclimatology, National Geophysical Data Center, Boulder, Colorado, 

(http://www.ncdc.noaa.gov/paleo/data.html). The terrigenous dust record was accessed 

from (http://www.ldeo.columbia.edu/~peter/Resources/data.html) the personal webpage 

of P.B. deMenocal. Full details on the data records used are given in Table A6.1 of the 

Appendix. 

 

Data selection 

We used only points in the record that correspond to the period prior to the transition 

(Table A6.1). The exact transition points were determined by eye and all were roughly 
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equal to those cited in the original papers where the records appeared. We have chosen 

the transition points conservatively, in the sense that we avoided including points that 

were part of the transition itself. This is important, as due to increased serial correlation 

inclusion of such points would bias the estimate of our slowing down indicator. In a few 

cases, double values for the same date occurred in the original files. Those were averaged 

to provide a single value for each chronology. 

 

Interpolation 

We used linear interpolation to transform the climate records to time-series with 

equidistant data. This allows us to use the time-series analysis approaches suggested 

earlier for detecting slowing down (Held and Kleinen 2004; Ives et al. 2003; Kleinen et al. 

2003) on real reconstructed climate records. 

 

Detrending 

To filter out long trends and to achieve stationarity we subtracted a Gaussian kernel 

smoothing function from the data and used the remaining residuals for the estimation of 

the autoregressive coefficient at lag 1. We chose a bandwidth in such a way that we do 

not over-fit while still removing the long-term trends visible in the records. The same 

treatment was applied also to the simulated time-series and the original records without 

interpolated points (see Table A6.2 and A6.3). Figure A6.2 in the supplement shows the 

interpolated, filtered time-series and the resulting residual time-series of Figure 6.1a, m, i 

of the main text for visual inspection. 

 

Autocorrelation 

The autocorrelation at lag 1 was computed by fitting an autoregressive model of order 1 

(AR1 model of the form xt+1=α1xt+εt, by an ordinary least squares (OLS) fitting method) 

applied on the data points within a sliding window of fixed size up to the transition point. 

In each case we took a sliding window of half the size of the interpolated time-series. We 

tested for evidence of slowing down by estimating the nonparametric Kendal rank-

correlation τ statistic on the estimates of the autoregressive coefficients α1 (details in 

Appendix). 

 

Model generated time-series 

We used a stochastic one dimensional energy balance climate model forced by relative 

incoming radiation to simulate data of ocean temperature that reflect a transition to an 

icehouse earth (Fraedrich 1978) (Figure 6.2a). The thermo-haline circulation dynamics are 

generated by the CLIMBER-2 climate model of intermediate complexity (Figure 6.2c). The 

data series on desertification in Western North Africa (Figure 6.2e) was produced using a 

stochastic version of the climate box model (Brovkin et al. 1998) forced by reconstructed 

solar irradiance and atmospheric CO2 concentration. See Appendix for the model details. 
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Surrogate data 

For each time-series we tested the likelihood of obtaining our computed trend statistics 

(Kendall’s τ rank correlation) by chance, using 1,000 surrogate time-series of the same 

length as the filtered simulated and real data in three different ways. Firstly, we 

bootstrapped our data sets by shuffling the original residual time-series and picking data 

with replacement to generate surrogate records of similar distribution (mean and 

variance). Secondly, we produced a surrogate time-series that had the same Fourier 

spectrum and amplitudes as the original sets (Theiler et al. 1992). Lastly, we created 

surrogate data sets produced by an autoregressive model of order 1 with the same 

variance, mean and autocorrelation at lag 1 with the residuals time-series starting from 

the same initial value as in the original series (Theiler et al. 1992). For each surrogate set, 

we computed the trend detection statistic. We then calculated the probability that our 

estimates of the trend statistic would be observed by chance as the fraction of the 1,000 

surrogate series scoring the same value or a higher one. The probability distributions for 

the model and data trend statistic as well as details on how we produced the surrogate 

sets are summarized in the Appendix (see Table A6.4, Figure A6.3). 

 

Results and Discussion 

Evidence for critical slowing down 

In all examples of abrupt climate change we analyzed, autocorrelation showed an increase 

in the period before the shift (Figure 6.1 lower panels in each pair), suggesting that these 

climate systems did indeed slow down before the abrupt change, as expected 

theoretically for systems approaching a tipping point. All the trends were significant as 

measured by the Kendall rank correlation coefficient τ, but the strength of the correlation 

varied among cases. There was a marked increase in slowing down before the end of the 

greenhouse Earth (Figure 6.1b), the end of the Younger Dryas (Figure 6.1n) and the end of 

glaciation I (Figure 6.1j). Autocorrelation moderately increased before the end of 

glaciation IV, III and the desertification of North Africa (Figure 6.1d, f, p), whereas the end 

of the Bølling-Alleröd (Figure 6.1l) and the end of glaciation II (Figure 6.1h) showed weak 

signs of slowing down. We explored the likelihood that our method would find such 

results by chance, i.e. without an underlying critical slowing down causing the pattern, by 

studying the occurrence of trends in computer generated surrogate time-series (see 

Methods section). The approach was to generate large numbers of randomized time-

series with characteristics similar to the analyzed stretches of climate series before 

episodes of abrupt change, and see in how many cases our analysis would find an increase 

in autocorrelation by chance. These analyses (see Appendix, Table A6.4 and Figure A6.3) 

indicated that the probability of finding the increase in autocorrelation detected in the 

data by chance is very low for the three transitions that showed the strongest slowing 

down (end of greenhouse Earth, end of Younger Dryas, and end of glaciation I). 
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Figure 6.1 (previous page) Eight reconstructed time-series of abrupt climate shifts in the past: 

(a) the end of the greenhouse Earth, (m) the end of the Younger Dryas, (k) the Bølling-Alleröd 

transition, (o) the desertification of North Africa, (i) the end of the last glaciation and (g, e, f) 

the ends of earlier glaciations. In all cases the dynamics of the system slow down before the 

transition, as revealed by an increasing trend in autocorrelation (lower panels b, d, f, h, j, l, n, 

p). The gray bands identify transition phases. The arrows mark the width of the moving 

window used to compute slowness. The smooth gray line through the time-series is the 

Gaussian kernel function used to filter out slow trends. Data in (a) come from tropical Pacific 

sediment core records, data in (m) are from the Cariaco basin sediment, data in (k) come from 

the Greenland GISP2 ice core, data in (o) from the sediment core ODP Hole 658C off the West 

coast of Africa, and data presented in (c, e, g, i) are from the Antarctica Vostok ice core (full 

details in Appendix Table A6.1). 

 

 

These records have the most detailed data (all > 450 data points). The other time-series 

are much less detailed (all < 150 data points), and our surrogate data analyses suggest 

higher probabilities of finding the observed trends by chance in those cases. The lower 

number of points in some of the series, obviously makes the results less reliable, not only 

because of the small number of points per se, but also because the resolution can be 

insufficient to capture the short-term autocorrelation. This is especially so in the case of 

the desertification of North Africa, where the points are spaced almost a century apart 

which may well be too short to capture the interactive dynamics of vegetation and 

monsoon supposed to drive the dynamics. The scarcity of points in the record (Np=30 

prior to the transition) results in residuals of alternating positive and negative values and 

in estimates of the autoregressive coefficient α1 that show a negative autocorrelation 

(Figure 6.1p). 

 

To weigh the combined uncertainties, and look at the overall picture, we computed the 

probability of finding the complete set of P-values by chance, using Fisher's combined 

probability. This combined probability appears to be very small (P<0.003) irrespective of 

the approach taken to generate surrogate data (Table A6.4). 

 

Robustness of results to the choice of methods 

The results obviously depend upon choices made in the data processing (see Methods 

section). Two important parameters are the bandwidth used in the function for filtering 

and the size of the sliding window used to compute the autocorrelation. We performed an 

extensive analysis of the sensitivity of outcomes to the choice of these parameters for our 

three longest time-series. The results indicate that the observed increase in 

autocorrelation before the climate shifts is a rather robust outcome. Actually, this analysis 

shows that we could have obtained more significant trends by tailoring these parameters 

for the specific series (Figure A6.4). We also explored whether interpolation used to 

generate equidistant data for the time-series analyses might have caused spurious trends 

in autocorrelation. Estimates of autocorrelation on the non-interpolated data gave 

roughly similar results (Table A6.3) (see also Appendix). 
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Figure 6.2 (previous page) Three simulated abrupt climate transitions. (a) transition to an 

icehouse Earth, (c) collapse of the thermo-haline circulation, (e) desertification of North Africa 

(see Appendix for details on simulations). As in the reconstructed real dynamics, the transition 

is preceded by slowing down as revealed by increased autocorrelation (panels b, d and f). The 

gray bands identify the transition phases. The arrows mark the width of the sliding window 

used to compute slowness. The smooth gray line through the time-series is the Gaussian kernel 

function used to filter out slow trends. All models pass a fold bifurcation F as a control 

parameter is slowly changing (relative radiation, freshwater forcing and insolation 

respectively). In the case of the ocean circulation and desertification model (panels c and e), 

there are also alternative attractors present implying hysteresis (dashed line), if the change in 

the control variable would be reversed upon the shift. Points F1 and F2 are saddle-node 

bifurcation points. 

 

Comparison to model results 

Approaching the problem from a different angle, to check whether the theoretically 

predicted critical slowing down may indeed be expected to be visible from autoregressive 

coefficients in climate data, we also used our methods to analyze simulation results from 

climate models that were slowly driven across a known threshold (Figure 6.2). The models 

deal with three quite different systems: the North-African paleo-monsoon system, the 

thermo-haline circulation, and the earth temperature as affected by the ice-albedo 

feedback. Model details and references are given in the Methods section and in the 

appendix. In all cases our indicator picked up an increase in slowness, comparable to that 

found in the geological records. Also, the results of bootstrap analyses and sensitivity 

analyses applied to model results are comparable to those from our climate data sets 

(Appendix, Figure A6.3 and A6.4 and Table A6.4). This lends further support to the idea 

that the patterns detected in the data do indeed correspond to critical slowing down as 

predicted by the theory. 

 

Perspectives 

It may seem rather surprising that all cases of sharp climate shifts we analyzed were 

announced well before they happened by changes in the pattern of fluctuations. Indeed, 

our bootstrap analysis shows that roughly half of the positive trends in autocorrelation 

may well have arisen by chance (the desertification of North Africa, the Bølling-Alleröd 

transition and the end of glaciations II and III). Nonetheless, our analyses also show that 

the combined probability of finding these trends is extremely low. Furthermore, the close 

similarity to what can be shown in climate models suggests that the patterns in the data 

may indeed represent the slowing down of a system approaching a tipping point. 

 

Our results have profound implications for climate science. So far, support for the idea 

that tipping points can be the explanation for dramatic climatic shifts in the past has been 

based on models of specific mechanisms. Although compelling cases have been built, 

there is always considerable uncertainty as it is simply very difficult to prove what has 

been the mechanism behind such events in the far past. The slowing down that our 

analysis suggests does not point to any specific mechanism. Rather, it is a universal 
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property of systems approaching a tipping point. Therefore it represents an independent 

line of evidence, complementing model-based approaches suggesting that tipping points 

exist in the climate system. Clearly, this is an important insight as it implies that in 

principle internal feedbacks can propel the climate system through an episode of rapid 

change once a critical threshold is reached. 

 

Obviously, detection of critical slowing down has two faces. In the hindsight it may help to 

tease out whether past dynamics may be explained by the existence of critical thresholds. 

With respect to predicting future climate change it may give us an indication of whether 

we are entering a situation in which the parts of the earth system may amplify rather than 

buffer human induced climate change. Clearly, there are challenges and limitations. Long 

time-series of sufficient quality are needed, and resolution needs to be sufficient to 

capture the characteristic timescale of the internal dynamics of the system. Similarly, good 

detrending is challenging but critically important, as unfiltered trends may lead to patterns 

in autocorrelation that are not related to the systems dynamical response to 

perturbations we wish to probe. An important fundamental limitation we should keep in 

mind, is that slowing down will only occur if the system is moving gradually towards a 

threshold. Therefore, transitions caused by a sudden large disturbance without a 

preceding gradual loss of resilience will not be announced by slowing down. Certainly, 

current trends in atmospheric carbon are rather fast compared to the dynamics of ice-

caps and ocean heat contents, and fluctuations of such variables may therefore not show 

detectable slowing down on century scales. By contrast, slowing down could possibly be 

detected in faster subsystems that might have tipping points such as regional atmospheric 

circulation patterns. 

 

In view of our current inability to predict potential abrupt climate shifts (Alley et al. 2003), 

having slowing-down as a clue for detecting whether such parts of the climate system may 

be approaching a threshold is a marked step forward in projecting future climatic changes. 

 

Putting our results in an even wider perspective, it is important that slowing down is a 

universal property of systems approaching a tipping point. This implies that our 

techniques might in principle be used to construct operational early-warning systems for 

critical transitions in a wider range of complex systems where tipping points are suspected 

to exist, ranging from disease dynamics and physiology to social and ecological systems. 
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Appendix 

Derivation of model simulated data 

Our simulated data presented in Figure 6.2 of the main text, come from 3 climate models 

of different complexity. 

 

a) We used a simple 1 dimensional climate model (Fraedrich 1978; Fraedrich 1979) to 

simulate a transition from a greenhouse to an icehouse earth (Figure 6.2a). The model has 

temperature, T, as the only state variable which represents the average temperature of an 

ocean on a spherical planet subjected to radiative heating (Fraedrich 1978) according to 

the equation: 

 

4
0 0

1 1 1
{ (1 )}

4 4

dT
T I bT I a

dt c
εσ µ µ= − + + −   with ap=a-bT   (eqA6.1) 

 

where ε is effective emissivity, μ is relative intensity of solar radiation, Io is solar 

irrandiance, c is a constant thermal inertia and ap is the planetary albedo. Parameters a 

and b define a linear feedback between ice and albedo variability and temperature. In this 

simple climate system, there is one internal equilibrium of nonglacial conditions, which, 

when Io drops below a certain threshold, there is a runaway effect to ice climate through a 

fold bifurcation. 

 

We extended the deterministic skeleton of the model by including a stochastic term 

following the general form of a stochastic differential equation: 

 

( , ) ( )dx f x dt x dWθ σ= + ,      (eqA6.2) 

 

where x is the state variable, f is the deterministic part of the model which depends on the 

control parameter θ, and σ scales the amount of noise that is introduced in the model 

with dW a Wiener process. In this climate model, we used as control parameter the 

relative radiation μ. We produced time-series by decreasing the control parameter μ 

linearly with time from 1 to 0.9524, allowing a transition from a warm to a cold climate. 

We used σ equal to 0.003 (applied multiplicatively on the state variable) and all the rest of 

the parameter values as they appear in Fraedrich (1978). We changed the original 

timescale of the model (=1 sec) by rescaling time with a factor of δ=20x10
6
 (new 

timescale=0.6342 years). Simulations were performed in MATLAB v.7.1.0246 using an 

Euler-Murayama method to solve the stochastic equation with Ito calculus. 

 

b) The thermo-haline circulation model simulation presented here is produced from the 

CLIMBER-2 model (Ganopolski et al. 2001; Petoukhov et al. 2000) which is a coupled 

climate model of intermediate complexity. The ocean component originates from the 

module by Stocker et al. (1992). A freshwater forcing at 44° northern latitude is applied; 

the average forcing is superimposed with a Gaussian white noise time-series. The 50,000 

yrs transient run sees a linear increase in atmospheric CO2 from 280 ppm to 800 ppm, 

implying an increased average freshwater forcing. 



Chapter 6 

102 

c) The deterministic climate model of the desertification of North Africa (Figure 6.2c) 

(Brovkin et al. 2003) was extended by accounting for the synoptic component synw  of 

vertical velocity w at the top of the planetary boundary layer (see eq. A6.4 (Brovkin et al. 

2003)): 
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and the synoptic component synU  of the Hadley circulation potential U: 
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(eqA6.4) 

 

which allows for the contribution from the synoptic-scale baroclinic and barotropic 

atmospheric eddies with characteristic timescales from 2 to 10 days. mW  is the vertical 

velocity in the mean monsoon circulation and hw is the vertical velocity associated with 

the mean Hadley circulation, 0U  is the mean Hadley circulation potential, TB and TL are 

surface air temperature at the southern box boundary and over land, respectively, 0
BT  and 

0
LT  are their reference values, KT is a vertical macro-eddy diffusion coefficient in the free 

troposphere, H0 is a scale height for the atmospheric density, ),( wσξ 0  and ),( Uσξ 0  are 

normally-distributed stochastic variables with a zero mean and variances σw and σU, 

respectively, and w
tsk , w

slk  and U
synk  are model parameters which reflect partial 

contributions from the corresponding physical processes. 
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 in equation A6.3 

describe the components of the synoptic-scale vertical velocity perturbation attributed to 

tropical storms and squall lines, respectively. These parameterizations assume that 

tropical storms form, when the temperature exceeds a critical threshold Tcr (assumed to 

be 26°C (Gray 1968)), while the squall lines are mainly generated due to the lower 

troposphere wind shear in the African Easterly Jet associated with a temperature gradient 

BL TT −  between Sahara and the Gulf of Guinea (Cook 1999). Parameters w
tsk  and w

slk  were 

assigned 0.2 and 0.8 respectively, which reflects partial contributions to the synoptic-scale 

variability from the tropical storms and squall lines based on the empirical data (Grist and 

Nicholson 2001; Joseph 2003). The value of the variance σw was assigned 0.1 (Petoukhov 

et al. 2008). 
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The synoptic term of the Hadley circulation potential (eq A6.4) includes a contribution 

from the synoptic variability, 0Uk U
syn , due to the synoptic-scale perturbations of the zonally 

averaged wind, and from the term associated with the local fluctuations of the Hadley 

circulation, which is assumed to be proportional to the local horizontal temperature 

gradient, ),( U

BL

BLU
syn

TT

TT
Uk σξ 0

000
−
−

. Parameters U
synk  and σU were set equal to 0.05 and 0.1, 

respectively, based on empirical data (Petoukhov et al. 2008). 

 

Derivation of paleoclimate proxy data 

As we were interested in measuring slowing down before the transition, we restricted our 

analysis to the period just prior to the transition in both simulated and proxy records. The 

exact parts of the original time-series that we selected for our analysis, together with the 

size of the original record and data sources are presented in Table A6.1. Since the exact 

selection of the part of the record is critical for the outcome of our analysis, we were 

careful to avoid points that were part of the transition. Due to increased serial correlation 

as the transition trend begins, including such points would bias the estimate of the AR(1) 

coefficient. 

 

Data analyses: interpolation, detrending and estimation of autocorrelation at lag 1 

We applied the same analyses both to the simulated data and the real paleoclimate proxy 

records. Since the available paleoclimate data were of unequal density, we used linear 

interpolation to make our records equidistant (Table A6.2). However, as indicated in the 

main text, interpolation can create spurious trends in autocorrelation. A positive trend in 

autocorrelation could occur as an artefact of interpolation, if the density of points would 

decrease towards the shift (and hence the role of interpolation would increase). 

Therefore, we checked the evolution of the time intervals in the original records and 

compared them to the equidistant time intervals of the interpolated records (Figure 6.1). 

In general, the time intervals of the interpolated data sets was of similar magnitude as the 

time intervals in the original time-series close to the transition. Only in Figure A6.1a (the 

end of the greenhouse Earth), did the time between subsequent data points decrease 

towards the shift. However this happened at the very end, and can therefore not be 

responsible for the long term increasing autocorrelation trend detected. In any case, as 

shown in the next section, we analyzed the sensitivity of our results to interpolation 

systematically for all time-series. 

 

We removed slow trends in the original records by applying a Gaussian kernel smoothing 

function (based on the Nadaraya-Watson kernel regression estimate (Hastie and Tibshirani 

1990)) over the interpolated record prior to the transition and subtracted it from the 

interpolated record to obtain the residual time-series (Figure A6.2). The choice of the size 

of the bandwidth is important in this process. We picked bandwidths such that we do not 

overfit our data but yet filter out the slower trends in the records. 

 



 

 

 

Table A6.1 Paleoclimate proxy data with details over the interpolation applied, the number of interpolated points before the transition used in 

the analyses and the respective approximate timescale after interpolation. 

paleo record Origin climate proxy (units) 
time range 

(kyrs BP) 

time of 

transition 
N dataset 

end of greenhouse Earth ODP tropical Pacific core 1218 CaCO3 (%) (39-32) x103 34 x106 482 a 

Bølling-Alleröd transition GISP2 ice core Temperature (oC) 21-14.6 15000 147 b 

end of Younger Dryas Cariaco basin core PL07-58PC Grayscale (0-255) 12.5-11.2 11600 2652 c 

desertification of N. 

Africa 
ODP Hole 658C Terrigenous dust (%) 8.3-4.8 7500 40 d 

end of glaciation I Vostok ice core d2H (%) 58.8-12 17000 591 e 

end of glaciation II Vostok ice core d2H (%) 151-128 135000 258 e 

end of glaciation III Vostok ice core d2H  (%) 270-238 242000 149 e 

end of glaciation IV Vostok ice core d2H  (%) 385.3-324.6 334100 126 e 

a
Tripati, A., et al. 2005. Eocene Greenhouse-Icehouse Transition Carbon Cycle Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 

# 2005-056. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. 

b
Alley, R.B.. 2004. GISP2 Ice Core Temperature and Accumulation Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013. 

NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. 

c
Hughen, K., et al. 2000. Cariaco Basin 2000 Deglacial 14C and Gray Scale Data, IGBP PAGES/World Data Center A for Paleoclimatology Data Contribution Series 

#2000-069.NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. 

d
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Table A6.2 Paleoclimate proxy data with details over the interpolation applied, the number of 

interpolated points before the transition used in the analyses and the respective approximate 

timescale after interpolation. 

paleo record interpolation 
N points after 

interpolation 

time interval after 

interpolation (years) 

end of greenhouse Earth Linear 462 0.01 x106 

Bølling-Alleröd transition Linear 132 46 

end of Younger Dryas Linear 2111 0.5 

desertification of North Africa* None 30 88 

end of glaciation I Linear 513 82 

end of glaciation II Linear 150 108 

end of glaciation III Linear 122 230 

end of glaciation IV Linear 100 522 

*original record is already interpolated 

 

 

In Kleinen et al. (2003) the changes in power spectra were used as an indicator for the 

proximity to thresholds, tested in a 1D model of the thermohaline circulation of the north 

Atlantic. The spectrum is equivalent to the full autocorrelation function. Here, according 

to Held and Kleinen (2004), the spatial dynamics become degenerate at the transition, 

leading to the observation of the critical mode in arbitrary generic 1D time-series. By 

assuming time-scale separation at the bifurcation, we can use only the first entry of the 

autocorrelation function, i.e. the lag-1 information; in that sense the current method is 

more parsimonious. To calculate the autocorrelation at lag 1, which is an estimator of the 

slowing down of the system (van Nes and Scheffer 2007), we fitted an autoregressive 

model of order 1 (AR1) on data that are included within a sliding window of half the size of 

the record prior to the transition. The AR1 ansatz (Held and Kleinen 2004) is of the form 

xt+1=α1xt+εt, fitted by an ordinary least squares method (OLS) with Gaussian random error 

εt. Note that we calculated no intercept, because we are fitting the AR1 model on the 

detrended residuals with mean zero. Although there have been modifications to the AR1 

ansatz (Livina and Lenton 2007), where the authors utilized detrended fluctuation analysis 

(DFA), we used the degenerate fingerprinting approach (Held and Kleinen 2004), because 

of its most direct relation to generic bifurcations and straightforward applicability. 

 

Finally, to determine the evolution of the AR1 estimates before the transition we used the 

nonparametric Kendall τ rank correlation coefficient to check against the null hypothesis 

of randomness for a sequence of measurements against time (Mann 1945). 

 

All analyses were implemented in MATLAB v7.1.0246 (Mathworks Inc) and in R v2.4.1 (R 

project for Statistical Computing). Specifically, we used for a) the linear interpolation, the 

function interp1 (MATLAB), b) the detrending of the records, the function ksmooth (R), c) 

the estimates of the autoregressive coefficients, the function ar.ols (R), d) the calculation 

of the trend statistic, the function cor.test (R) for the Kendall τ correlation statistics 

together with the P values (two-tailed with α=0.05). 
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The effect of interpolating on the results 

We also explored the estimates of our trend statistic on the original records without 

interpolating missing values. Obviously, working with non equidistant data violates the 

basic assumptions behind time-series analysis. However, we pursue it only as an extra 

check on the robustness of our results. Thus, we treated the original time-series as 

equidistant, we removed the slow trends (using the same bandwidth for the Gaussian 

filter as we did in their interpolated counterparts) and estimated the autoregressive 

coefficients at lag 1 within a sliding window of half the size of the time-series. In all eight 

cases, our positive trend from the interpolated records are similar to those from the 

original time-series (Table A6.3). In all cases the trend statistic was of the same order of 

magnitude, and while there were 3 cases where interpolated records yielded a stronger 

increase in the AR(1) coefficient than the non-interpolated ones (end of greenhouse Earth, 

end of Younger Dryas, end of glaciation II), there were 3 other cases where the opposite 

was observed (end of glaciation I, III, end of Bølling-Alleröd) and one in which there was 

no real difference (glaciation IV). 

 

 
Table A6.3 Summary of trend statistic for the original (non interpolated) and interpolated paleo 

records, and their probabilities (P). In the case of the desertification of North Africa the original 

data were already interpolated. 

record 

N points 

original/ 

interpolated 

bandwidth 

size 

original 

K τ (P) 

interpolated 

K τ (P) 

end of greenhouse Earth 461/ 462 25 0.5 (<10-4) 0.83 (<10-4) 

end of Younger Dryas 2110/ 2111 100 0.34 (<10-4) 0.69 (<10-4) 

end of glaciation I 512/ 513 25 0.85 (<10-4) 0.8 (<10-4) 

Bølling-Alleröd transition 131/ 132 25 0.37 (<10-4) 0.27 (0.001) 

end of glaciation II 149/ 150 25 0.08 (0.31) 0.17 (0.27) 

end of glaciation III 121/ 122 10 0.67 (<10-4) 0.43 (<10-4) 

end of glaciation IV 99/ 100 50 0.51 (<10-4) 0.52 (<10-4) 

desertification of North Africa 88/ 88 10 0.58 (0.001) 0.58 (0.001) 

 

Analysis of surrogate time-series 

To test for the likelihood of obtaining estimates of trend statistics by randomness, we 

created surrogate time-series by 3 different ways. 

 

a) We bootstrapped our data sets by reshuffling the order of the detrended original time-

series and by picking data with replacement to generate surrogate records of similar 

probability distribution (mean and variance) (Efron and Tibshirani 1986) (H0 1). 
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Figure A6.2 Effects of filtering on the records shown in Figure A6.1 in the main text. (Upper 

panels) Data points prior to the transition and the Gaussian kernel filter used for detrending. 

(Lower panels) The residual time-series after subtracting the trend (gray line). Records shown 

correspond to the panels of Figure A6.1 in the main text. 
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Figure A6.3 Probability distributions of the estimated trend statistic (Kendall’s τ) of the ranked 

order test, under three alternative H0 hypotheses for a set of 1,000 surrogate time-series. 

Under H01, data sets are generated after bootstrapping the residual time-series records, under 

H02 new data sets are produced with similar distribution and Fourier spectra as the residual 

time-series and under H03 the surrogate time-series have been produced from a autoregressive 

model with similar autocorrelation at lag 1, mean and variance as in the residual records. Red 

lines indicate the limit over which the surrogate trend statistics are higher than the trend 

statistics of the original residual records. From this subset, only values of significance P equal or 

higher to the original record are used to estimate the likelihood of acquiring trend statistic 

estimates of similar magnitude. 

 

 

b) We produced surrogate time-series with same autocorrelations and same probability 

distribution as the data, to test against the H0 hypothesis that our data sets are a 

realisation of a Gaussian linear stochastic process (Schreiber and Schmitz 1996; Schreiber 

and Schmitz 2000) (H0 2). We did this by replicating data of the same Fourier spectrum 

and amplitudes as of the original set using the MATLAB function generate_iAAFT 

(Gautama et al. 2004). 

 

c) To test against the H0 hypothesis that the data are produced by a colored noise process 

with similar variance, mean and autocorrelation at lag 1 with the original detrended time-
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series (Theiler et al. 1992) (H0 3), we generated surrogate sets by an AR1 model 

xt+1=α1xt+α0+σεt, where α1=A(1), σ
2
=v(1-α1

2
), α0=μ(1-α1), with v the variance, μ the mean, 

A(1) the autocorrelation at lag 1 from the original residual time-series (estimated by using  

function acf as implemented in R), and σ a scaling factor for the Gaussian random error εt. 

We estimated the probability that our estimates of the trend statistic would be observed 

by chance as the fraction of the 1,000 surrogate series scoring the same value or a higher 

one. Specifically for the Kendall τ, we estimated this probability as the number of cases in 

which the statistic was equal or higher than the estimate of the original record, *( )τ τ≥P . 

We also estimated the combined probability for observing the trend statistic estimate in 

each the H0 hypotheses test by chance. For this, we used the Fisher's combined probability 

test (Sokal and Rohlf 1995) to estimate the X
2
 statistic, given by: 

 

2
2

1

2 ln( )
k

k i

i

X P

=

= − ∑         (eqA6.5) 

 

where k is the amount of tests (here k=8) and P the probabilities estimated for each H0 

hypotheses test (Table A6.4). The combined probability for the X
2
 statistic was given by a 

chi-square distribution with 2k degrees of freedom. 

 

The probability estimates for the model and data trend statistic under the three different 

H0 hypotheses are shown in Table A6.4. The probability of by chance acquiring a similar 

trend estimate as in the original record differs from case to case. In the case of the 

models, the probabilities were consistently very low (P<0.05). Similarly low probabilities 

were estimated in the records of the transitions of the greenhouse Earth, the Younger 

Dryas and the glaciation I (Figure A6.3). In the shorter time-series the probabilities of 

finding the observed trends by chance is much higher. Nonetheless the combined 

probability of finding positive trends in all eight data-series is obviously very low (Table 

A6.4). 

 

Robustness against choice of window size and filtering resolution 

The results of our analyses are obviously influenced by the standard deviation (defined by 

bandwidth size) used in the kernel function for filtering and the size of the sliding window 

used to compute autocorrelation. In the latter there is a trade-off between time-

resolution and reliability of the estimate. Smaller windows allow one to track short-term 

changes in autocorrelation. However, the small number of data points in the window 

makes the estimate of autocorrelation less reliable. The filtering poses another trade-off. 

A too wide filter does not remove slow trends that may lead to spurious autocorrelation. 

 

Especially, at the ends of the time-series the deviation becomes obvious if a too wide 

kernel size is used. A too narrow filter removes the short-term fluctuations that we intend 

to study for signs of slowing down. A systematic sensitivity analysis for our three longest 

time-series and the model results indicates that the results are quite robust, and that 
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actually we could have obtained more significant trends by tuning the parameters for the 

specific series (Figure A6.4). 

 

 

 

Table A6.4 Probability of acquiring the estimated values for the trend statistic (Kendall’s τ) of the 

original and simulated residual time-series under three alternative H0 hypotheses for a set of 1,000 

surrogate time-series. Under H0 1, data sets are generated after bootstrapping, under H0 2 new 

data sets are produced with similar distribution and Fourier spectra as the residual time-series and 

under H0 3 the surrogate time-series have been produced from a autoregressive model with 

similar autocorrelation at lag 1, mean and variance as in the residual records. Values marked with 

one asterisk refer to a probability less or equal to 0.1, values with two asterisks refer to a 

probability of less or equal to 0.05. In italics, the combined probability for obtaining the estimated 

probabilities for each hypothesis is provided. 
 

(N=1000 surrogate sets) H0 1 H0 2 H0 3 

original record (residuals) Kendall τ Kendall τ Kendall τ 

end of greenhouse Earth 0.014** 0.004** 0.011** 

end of Younger Dryas 0.086* 0.03** 0.055* 

end of glaciation I 0.013** 0.011** 0.021** 

Bølling-Alleröd transition 0.367 0.340 0.332 

end of glaciation II 0.402 0.397 0.386 

end of glaciation III 0.247 0.235 0.234 

end of glaciation IV 0.186 0.043** 0.125 

desertification of North Africa 0.140 0.165 0.091* 

Fisher's combined probability 0.002847 0.000206 0.001278 

    

simulated record (residuals)    

energy balance climate model <10-4** 0.002** <10-4** 

Saharan vegetation model 0.002** 0.001** 0.006** 

ocean circulation model 0.003** <10-4** <10-4** 
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Figure A6.4 Contour plots of the effect of sliding window size and kernel filter size on observed 

trends in autocorrelation for the original and simulated data measured by Kendall’s τ. Stars 

indicate the parameter choice used in the analyses. We visually inspected the fit of the kernel 

filter line, and demarcated where the kernel width becomes too large to follow the trend in the 

data (dashed vertical lines in contour plots). Histograms give the frequency distribution of the 

trend statistic for the scanned parameter area to the left hand side of the dashed line. 
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Chapter 7 

Afterthoughts 

 

The history of ecology is marked by a constant effort to find general rules that can explain 

patterns in nature (May 2004; Solé and Bascompte 2006). While the high complexity of 

ecological systems makes this search difficult, the “mirror world of math” (May 2001; 

Scheffer 1999) sometimes enables us to gain insight in mechanisms that would have 

otherwise remained elusive. In this thesis, I translate reflections from this mirror world of 

math into features that may serve as early-warnings for critical transitions in ecological 

systems. In these afterthoughts, I ponder the limitations of this approach but also its 

potential extensions. 

 

Can we foresee the Unexpected? 

Indicators that may signal the proximity to points at which catastrophic shifts between 

alternative stable states occur can be classified roughly in two categories (Table 7.1) 

(Chapter 2): 

A. Generic indicators related to critical slowing down  

This class includes indicators that are a direct consequence of critical slowing down. 

Mathematically, critical slowing down is linked to the fact that the dominant eigenvalue of 

the system becomes zero at a bifurcation point (Wissel 1984). In practice, it implies that a 

system becomes slow in returning to equilibrium upon a perturbation. Critical slowing 

down is a generic phenomenon that is associated with loss of stability prior to non-

catastrophic bifurcations (known in physics as second-order transitions, see Glossary) 

(Horsthemke 2006; Solé et al. 1996; Strogatz 1994) as well as catastrophic bifurcations (or 

first-order transitions) (Chapter 2). Critical slowing down translates into the three flagships 

of leading indicators for critical transitions: increasing recovery time upon disturbance 

(van Nes and Scheffer 2007), rising variance (Carpenter and Brock 2006), and growing 

autocorrelation or power spectral reddening (Held and Kleinen 2004; Ives 1995; Kleinen et 

al. 2003) in the pattern of fluctuations of a system. 

 

Critical slowing down in combination with interactions in space can also give rise to spatial 

indicators that are in a way the equivalents of the above temporal indicators. For example, 

spatial interactions may cause an increase in spatial correlation between neighboring sites 

in a patchy or modular environment, because diffusion processes dominate as critical 

slowing down makes individual sites ‘lethargic’ prior to transition (Chapter 3). Other 

suggested spatial indicators that can arise from critical slowing down are an increase in 

spatial variance (Donangelo et al. 2010; Guttal and Jayaprakash 2009) and changes in the 

spatial spectrum frequencies as detected by Discrete Fourier Transform (Carpenter and 

Brock 2010). 
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B. System-specific indicators  

The second class includes leading indicators that are not directly related to the universal 

phenomenon of critical slowing down, and therefore tend to be more system-specific 

(Chapter 2). For instance, as the boundary of the stability basin is approaching the 

equilibrium from one side, the resulting asymmetry in the basin of attraction around the 

equilibrium may lead to a skewed frequency distribution of states, derived from dataseries 

collected in time (Guttal and Jayaprakash 2008) or space (Guttal and Jayaprakash 2009). 

Other more system-specific signals include changes in self-organized regular spatial 

patterns (Rietkerk et al. 2004) or in the frequency distribution of patch sizes (Kéfi et al. 

2007a) (Chapter 2). Also ‘flickering’ - the frequent flipping between alternative states 

(Berglund and Gentz 2006) - can in a sense be seen as a precursor of a permanent 

transition to an alternative state. Flickering causes an increase in variance (Carpenter and 

Brock 2006) and is reflected in bimodality of the frequency distribution of states prior to a 

critical transition. In a similar way, flickering in space (random local shifts between 

alternative states) may give rise to bimodality in the frequency distribution of local states 

sampled over a larger area. 

 

Table 7.1 Early-warning signals for critical transitions  

indicator temporal spatial mechanism 

increase in recovery time +1,2,3 +4 critical slowing down 

increase in correlation +5,6 +7,8 critical slowing down 

increase in variance +9 +10,11,12 critical slowing down 

reddening of power-
spectrum 

+13 as Discrete Fourier 
Transform14 critical slowing down 

peak in skewness +15 +11 asymmetry in potential field 

flickering +9 as stagnation18 
stochastic forcing triggering 
shifts between alternative 

attractors 

changes in pattern formation - +16 scale dependent feedbacks 

deviations in power law of 

patch size distributions 
- +17 robust criticality                                  

with local interactions 

    
1Wissel 1984 7Dakos et al 2010 13Kleinen and Held 2003 
2Gandhi et al 1998 8Bascompte 2001 14Carpenter and Brock 2010 
3van Nes and Scheffer 2007 9Carpenter and Brock 2006 15Guttal and Jayaprakash 2008 
4Dakos et al 2011 10Oborny et al 2005 16Rietkerk et al 2004 
5Ives 1995 11Guttal and Jayaprakash 2009 17Kéfi et al 2007 
6Held and Kleinen 2004 12Donangelo et al 2010 18van Nes and Scheffer submitted 
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While these classes of indicators provide a potentially rich toolbox for estimating the risk 

of an approaching critical transition, we still lack a coherent understanding of when and 

where different early-warnings may be expected to signal an upcoming transition. 

Changes in recovery time, correlation and variance (all in time and space) are expected to 

be universal phenomena close to bifurcation points (Chapter 2). However, recent 

modeling studies have pointed to examples where early-warning signals could not be 

detected before a transition (Carpenter et al. 2009; Ditlevsen and Johnsen 2010; Hastings 

and Wysham 2010). Do these observations imply that there are specific conditions under 

which the leading indicators would fail? Are some generic indicators less generic than 

expected? Chapters 4 and 5 are a first attempt towards addressing such concerns. 

 

For increases in variance as an indicator of critical slowing down, we identified at least 

three cases where it may not occur in systems approaching a bifurcation (Chapter 4): a) 

when environmental factors fluctuate stochastically and the system becomes less 

sensitive to these factors near the transition, b) when critical slowing down reduces the 

system’s capacity to follow high frequency fluctuations in the environment, and c) when 

data limitations lead to spurious trends due to the prevalence of low frequencies close to 

a transition. In these cases, observed variance may decrease instead of increase. While 

variance may thus be a less generic indicator than expected, we found autocorrelation to 

increase towards a transition in all these cases, suggesting that it is a robust indicator of 

slowing down (Chapter 4). Our comparative analysis of all proposed temporal and spatial 

indicators using spatial semi-arid ecosystem models (Chapter 5) also illustrates that the 

detection of indicators of critical slowing down may be problematic in particular systems. 

Although we identified critical slowing down before all types of transitions, the only 

indicator that could capture critical slowing down was recovery time upon perturbation. A 

limitation of this indicator is that it requires perturbation experiments, which may be risky, 

as they can push the system permanently to the alternative attractor (van Nes and 

Scheffer 2007), or are simply impossible to conduct when the scale of the system is too 

large (Chapter 2). In short, our findings point to the conclusion that there is no silver bullet 

indicator. Therefore, the best way forward is probably to expand our toolbox of indicators 

and develop a good understanding of when each of them might be most useful. 

 

Despite the first promising evidence for early-warnings from real systems (Drake and 

Griffen 2010; Chapter 6), there is still a long list of conditions that probably need to be 

satisfied in order to allow the detection of approaching thresholds. Almost all theoretical 

studies on leading indicators (including this thesis) assume: 

• weak stochastic disturbances following a distribution that remains constant 

(Chapter 2-6); 

• a homogenous spatial environment (Guttal and Jayaprakash 2009) (Chapter 4); 

• little observation error (Carpenter and Brock 2010); 

• constant parameter values (Chapters 2-6); 

• a slowly changing driving variable that we can monitor (Chapters 2-6); 

• a threshold that corresponds to a catastrophic bifurcation (Chapters 2-6); 

• a single threshold rather than multiple thresholds (Brock and Carpenter 2010); 

• abundant data of high resolution without gaps (Chapters 2-6). 
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Clearly, such conditions are rarely met in nature. Therefore, while the prospect of 

foreseeing the risk of critical transitions in ecosystems using generic early-warning signals 

seems exciting, we still need a better understanding of the conditions under which early-

warnings can be applied in reality. 

 

The Limits to Early-warnings and the Challenge ahead 

A Measure of Resilience? 

In the afterthoughts of his famous book on ‘Stability and Complexity in Model Ecosystems’ 

(May 2001), Bob May questioned whether we would ever be able to quantify “the volume 

of state space into which the system may be perturbed without catastrophic collapse” 

(aka resilience sensu Holling (1973)). May identified there that a fundamental problem of 

measuring resilience sensu Holling (see Glossary) lies in its multidimensional nature (May 

2001). How can we quantify the magnitude of disturbance that a system is capable to 

absorb both in state space (e.g. an instant extinction event) and in parameter space (e.g. a 

sudden change in nutrient recycling rate)? Could early-warning indicators measure the 

ecological resilience (Holling 1996) of a system? 

 

Put simply, ecological resilience is determined by the size and height of the system’s basin 

of attraction (Box 7.1) (Holling 1973). The chance of a given disturbance to push the state 

of the system over the border of its basin of attraction depends not only on how wide the 

basin is, but also on the steepness of the basin’s slope. The slope of the basin of attraction 

defines the rate with which the system recovers from a disturbance. Recovery rate is a 

measure of stability for a system (Pimm 1984), and is also viewed as an alternative notion 

of resilience termed engineering resilience (see Glossary) (Holling 1996). Critical slowing 

down related leading indicators are directly related to engineering resilience, and they 

cannot be regarded as direct measures of ecological resilience. However, based on the 

observation that the relationship between ecological resilience and engineering resilience 

is almost linear in most simple models, as well as in a few complex model examples (van 

Nes and Scheffer 2007), critical slowing down related leading indicators may serve as 

indirect indicators of ecological resilience. Although, this family of indicators can provide 

the seeds for developing novel ways to answer May’s unanswered question and tackle 

Holling’s biggest challenge, we still have to deal with the problem that a real system is 

characterized in many dimensions, and that these dimensions are often quite 

incomparable in terms of their units and characteristic time scales. 

 

Signaling Bistability? 

Although most of the discussion on early-warning signals revolves around their potential 

as indicators of catastrophic shifts between alternative states, the same signals can also be 

identified in cases where there is no switch to an alternative state. Whether the system is 

approaching a catastrophic or non-catastrophic bifurcation, or even a non-catastrophic 

transition with no bifurcation (Figure 7.1a-c), a drop in recovery rate may take place as 

expressed by a decreasing eigenvalue (Figure 7.1a1, b1, c1). The reason behind the drop in 
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eigenvalue in all these cases is the same: a nonlinearity in the rates of change of the 

system close to the threshold causes small deviations around equilibrium to be absorbed 

more slowly (Figure 7.1a2, b2, c2). Thus, slowing down and its derived indicators will occur 

in a broad class of situations where no catastrophic threshold exists (Chapter 2). 

 

 

 
 

 

This brings us to the broader question of how we may know that the system is bistable 

and therefore that an approaching threshold signaled by slowing down may be 

catastrophic? For bistability a strong positive feedback is required (see Introduction). 

Scheffer and Carpenter (2003) proposed some methods to judge from data whether a 

system has alternative stable states. The only reliable indicators of bistability, however, 

are essentially based on visiting the alternative attractor. Therefore, the proposed early-

warnings cannot be used to signal bistability. This is true not only for the critical slowing 

down related indicators (van Nes and Scheffer 2007; Chapter 2), but also for the range of 

indicators derived from spatial patterns (Kéfi et al. 2010; Kéfi et al. 2007a; Kéfi et al. 2011; 

van de Koppel and Crain 2006). Perhaps, perturbation experiments towards different 

directions in state space can in theory help to map asymmetries in recovery rates that 

could signal directions of proximate boundaries to alternative basins of attraction. Novel 

potential analysis techniques may contribute to this (Livina et al. 2010). However, since 

visiting the alternative states is required to know that they are there, only patterns such as 

hysteresis in the response to a control variable, or the emergence of bimodality in the 
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frequency distribution of states in time or space (e.g. due to ‘flickering’) can be 

interpreted as signals of bistability. Thus, a direct link between the occurrence of leading 

indicators and bistability simply cannot be expected. 

 

 

 

Figure 7.1 Critical slowing down prior to catastrophic and non-catastrophic transitions. (a) 

Catastrophic bifurcation. (b) Non-catastrophic bifurcation. (c) Non-catastrophic transition with 

no bifurcation. (a1-c1) The eigenvalues tend to zero as the conditions bring the system to the 

critical threshold. (a2-c2) Rates of change for all models at threshold. Note that small 

disturbances around equilibrium are absorbed with a rate almost equal to zero. The system at 

this point shows the maximum degree of slowing down. (Black dots stable equilibria; white 

dots unstable equilibria; gray dots equilibria at transition point) 

 

Different Transitions, same Warnings? 

The above discussion implies that we do not have leading indicators that are specific to 

critical transitions. Slowing down appears to be a generic phenomenon prior to a very 

broad class of transitions. Transitions due to bifurcation points (catastrophic or non-

catastrophic) are associated by eigenvalues that approach zero (Strogatz 1994; Thompson 

2002). This means that we should in principle be able to find indicators of slowing down 
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before this broad class of zero-eigenvalue local bifurcations. Transitions due to very high 

levels of noise (noise-induced transitions) are also expected to be preceded by critical 

slowing down (Horsthemke 2006; Leung 1988). However, whether critical slowing down 

will translate into the proposed leading indicators prior to this type of transitions remains 

unclear (Chapter 4). Transitions also occur around more complex classes of bifurcations, 

such as the ones involving shifts between cyclic and chaotic regimes, phase-locking, or 

collisions of trajectories with basin boundaries (global bifurcations) (Leung 1998; Chapter 

2). For these transitions we still need to identify whether critical slowing down occurs, and 

- if it does - whether it can be translated into a usable indicator (Box 7.2). 

 

There are also marked transitions that may not be associated with bifurcation points. For 

instance, gradually increasing magnitude of disturbances can eventually push a system to 

cross the basin boundary and switch to an alternative attractor. Such a transition will 

often be announced by rising skewness (Guttal and Jayaprakash 2008; Chapter 2). Another 

example occurs in ‘slow-fast’ limit cycles. Consider for instance the case of a fast growing 

resource under the control of a slowly changing consumer, as in the classic case of spruce 

budworm dynamics (Ludwig et al. 1978) (Box 7.2 panel b). Although the system is not 

formally crossing a bifurcation point, the trajectory of the resource undergoes repeated 

abrupt shifts. These shifts can be considered as catastrophic transitions for the fast 

changing variable. Indeed, at the transitions the eigenvalue of the fast changing variable 

goes to zero (Box 7.2 panel b). This illustrates that even transitions in the transient 

dynamics of a system may be preceded by the proposed leading indicators. 

 

In conclusion, while a truly generic family of indicators seems to exist for a very broad 

class of transitions, there is a flip side to this genericity. Although the leading indicators 

tell us that something important may be about to happen, they do not tell us what 

precisely that ‘something’ may be. Thus, next to the indicators, knowledge of the 

underlying mechanisms is important to put the signals in the right context. 

 

The Distance to Transition? 

In theory, as the dominant eigenvalue of the system tends to zero at a critical transition, 

autocorrelation reaches unity (Chapter 2, 4). Therefore, the difference between the 

current autocorrelation and one, should quantify the distance to the transition. This would 

be true, if the transition occurred exactly at the bifurcation point. In a stochastic 

environment, however, this never happens, as the system shifts always before the actual 

bifurcation. Moreover, recovery rates are system specific in the sense that even in the 

absence of any bifurcation slow systems have a slow recovery rate than fast systems. 

Therefore, early-warnings can only be relative measures of proximity to a critical 

transition. In other words, they are not predictive tools, but can be used within particular 

systems to rank situations according to the risk of an upcoming shift. For instance, 

different reefs could be ranked in terms of their apparent resilience, or a long time-series 

can be used to see if resilience of a system may be increasing or decreasing. Although 

specific thresholds in indicators have been proposed to signal an increased likelihood of a 

transition (e.g. a spectral density ratio of low to high frequencies that passes 1 (Biggs et al. 
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2009b)), such critical indicator levels seem unlikely to be transferrable across different 

systems. 

 

Although absolute values of indicators may remain difficult to interpret, combining 

different indicators can often help to obtain further information. For instance, in some 

systems an increase in variance combined with a peak in skewness may be an unequivocal 

signal of an approaching catastrophic shift (Guttal and Jayaprakash 2009). Also, combining 

spatial and temporal indicators (Chapter 5), or comparing indicators to estimates from null 

models (Kéfi et al. 2011) may help to estimate the risk of a nearby transition. 

 

Towards an applied science of Early-warnings 

Clearly, we are only starting to see where and how early-warning signals can be best 

picked up. It is obvious that the detection of early-warnings will always be easier in some 

systems than in others. In general, the feasibility of detecting early-warning signals will 

greatly depend on the controllability and the scale of the system. For instance, critical 

slowing down has been quantified successfully in a series of experiments in various fields 

ranging from chemistry (Kramer and Ross 1985) and lasers (Tredicce et al. 2004) to human 

movement control (Kelso et al. 1986; Scholz et al. 1987). Environmental systems are of 

course much more challenging to control for this kind of experiments, but also there we 

have small ’closed’ systems with defined boundaries (e.g. lakes) that may be better 

candidates to study early-warning signals than ‘open’ systems (e.g. oceans). 

 

Time scales are another important aspect. Systems with fast time scales simply offer 

better possibilities to collect data, and tend to be more suitable for manipulation and 

experimentation. For instance, measuring recovery time in perturbation experiments for 

transitions in fast components of human physiology (e.g. migraine) may yield better 

results than conducting the same experiments in coral reefs, or than performing 

experiments on relevant scales in the climate system; a task that is simply impossible. In 

addition to the feasibility of experimentation due to scale, also the singularity of such 

large-scale systems makes the estimation of leading indicators more difficult compared to 

systems for which we have many instances (e.g. lakes), where this modularity allows the 

provision of multiple sources of information. 

 

Obviously, certain indicators will also be more reliable than others in estimating the risk of 

an upcoming transition. Probably, when the system permits experimentation, recovery 

time from perturbations is the most straightforward and easily measured indicator of 

critical slowing down (Chapter 5). On the other hand, a growing number of studies offer 

promising results for other indicators as well. Increasing autocorrelation has been found in 

ancient climate transitions (Livina and Lenton 2007; Chapter 6), correlation and skewness 

rose in extinction experiments (Drake and Griffen 2010), deviations in power laws were 

identified in overgrazed semi-arid ecosystems (Kéfi et al. 2007b), and increased variance 

has been shown in overexploited fish populations (Hsieh et al. 2006) as well as in other 

marine regime shifts (Beaugrand et al. 2008). In addition to these mainly ecological 

examples, there is also work in epileptic seizures (McSharry et al. 2003), the onset of Self-
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Organized Criticality (SOC) in earthquakes (Ramos 2010), meltdowns in financial systems 

(Gorban et al. 2010), pattern formation in asthma attacks (Venegas et al. 2005), and the 

‘death’ of buzzwords in the Web (Neuman et al. 2010). 

 

In addition to an expanded collection of empirical studies, we definitively need further 

development in the theory of the existing leading indicators, as well as search for others 

(Gonzalez et al. 2011; Lim and Epureanu 2011; Mayer et al. 2006) (Box 7.2). So far, we 

have analyzed early-warnings in a range of ecological models that describe eutrophication 

(Carpenter and Brock 2006), predator-prey cycles (Chisholm and Filotas 2009), 

competition (Chisholm and Filotas 2009), desertification (Chapter 5), trophic cascades 

(Carpenter et al. 2008), resource-competition (Carpenter et al. 2009), Allee effects 

(Takimoto 2009), and overexploitation (Guttal and Jayaprakash 2008; van Nes and 

Scheffer 2007; Chapter 3, 4). Most of these studies are based on simple models and have 

neglected more complex behaviors or more complicated topologies, such as the ones 

encountered in most ecological networks (Box 7.2). It will be important to expand the 

range of models we are studying to include more complex situations, if we want to bridge 

the gap between the overly simple minimal models and reality. In addition to such models, 

experimental data and retrospective studies should be conducted in order to test and 

improve our existing protocols (Chapter 6) for analyzing data in search of early-warning 

signals. 

 

Can we avoid the Unexpected? 

No doubt ‘forewarned is forearmed’. However, knowing the risk of an approaching 

transition may be a necessary but not sufficient condition for avoiding it. This implies that 

early-warnings can at best be only part of the solution to the sustainable management of 

ecosystems as well as other systems at the brink of collapse. 

 

The reason why it is difficult to avoid an unexpected transition is not only that early-

warnings are not predictive tools or that they may be detected too late (Biggs et al. 2009b; 

Contamin and Ellison 2009), but also that we face a deep uncertainty when it comes to 

managing ecological systems. This uncertainty results from a combination of stochastic 

factors, imprecise model forecasts, insufficient data, hidden nonlinearities (Carpenter 

2003; Clark et al. 2001), and the constantly evolving interactions of the socio-ecological 

aspects of a system (Chapin et al. 2009; Margalef 1997). 

 

One approach for avoiding the Unexpected in face of this uncertainty is the development 

of policies based on a precautionary principle (Rockström et al. 2009; Scheffer 2009). Also 

we may try to match biophysical and sociopolitical windows of opportunity (Biggs et al. 

2010) in order to minimize delays in decision-making (Scheffer et al. 2003). A quite 

different approach known as resilience thinking (Walker and Salt 2006) accepts that 

surprises will always happen and focuses at building resilience to maintain essential 

aspects of the functioning of a system in the face of change (Gunderson and Holling 2001), 

and stresses the importance of developing adaptive capacity to changing conditions 

(Berkes et al. 2003). 
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Acknowledging that early-warning signals may be at best a modest addition to the toolbox 

for sustainability, the finding that we may be able to probe resilience in even the largest 

and most complex systems is exciting. Despite the fact that we are still in the early stages 

of their development, the perspectives of these new tools may well increase with the 

potential of integrating multiple sources of information (experimental, field studies, 

historical data, remote sensing, modeling) (Biggs et al. 2009a; Carpenter 2003), with 

improved use of statistics of extreme events (Albeverio et al. 2006; Ellison and Agrawal 

2005), and innovative ways of using information technology (SRC 2010; Galaz et al. 2010). 

 

 

In this thesis, I looked into the mirror world of math to find that simple patterns tend to 

mark the behavior of systems prior to an unexpected transition. In the worst case such 

patterns are an illusion in the real world, an inevitable consequence of our human 

tendency to see patterns even where they do not exist (Clark et al. 2001). In the best case, 

the results from the mirror world of math can put us on the track of a widely applicable 

theory of early-warnings for critical transitions. Finding out which of the two is true is 

surely worth the effort. 
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Glossary 

 

Alternative stable states Different (multiple) states (equilibria) of a system under the 

same external conditions. The state to which a system 

converges is path-dependent. 

 

Attractor The dynamic regime to which a system converges after 

some time. Examples of attractors: point, cyclic (periodic), 

quasiperiodic, chaotic 

 

Basin of attraction  Set of initial conditions that lead to a particular state 

(equilibrium). 

 

Bifurcation A critical threshold in conditions at which the qualitative 

behavior of a system changes. 

 

Bistability The case where two alternative stable states exist. 

 

Catastrophic bifurcation Bifurcation where the current state of a system disappears 

and the system is forced to move to an alternative state. 

 

Catastrophic shift An abrupt shift in the state of a system induced by a small 

perturbation that pushes the system across the border of 

the basin of attraction. 

 

Critical transition Abrupt shift in the behavior of a system when certain 

parameters reach a threshold. Most pronounced example is 

a catastrophic bifurcation. 

 

Critical slowing down The phenomenon that the return time of a disturbance 

back to equilibrium increases close to a bifurcation. 

 

Eigenvalue (dominant) Maximum factor that expresses how much linearized 

deviations from equilibrium diverge in time. It 

approximates the recovery rate back to equilibrium after a 

perturbation. 

 

Equilibrium The condition at which competing processes are balanced. 

At a stable equilibrium, a system returns to it upon a small 

perturbation. At an unstable equilibrium, a system moves 

away from it upon a small perturbation. 
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Fold bifurcation The threshold (in a parameter) at which a stable and an 

unstable equilibrium collide. It marks the disappearance of 

both equilibria. 

 

Hysteresis As conditions are changing in a bistable system, the system 

remains on the same state until a catastrophic bifurcation is 

reached at which it shifts to the alternative state. If 

conditions are changed in the opposite direction, the 

system jumps back to the original state only until it meets 

another catastrophic bifurcation. The distance (in 

parameter space) between the two catastrophic 

bifurcations defines the size of the hysteresis. The bigger 

the size, the more difficult for a catastrophic shift to be 

reversed. 

 

Leading indicators          

(for critical transitions) 

Divergence of the statistical properties in the pattern of 

fluctuations of a system close to a critical transition. 

 

Positive feedback A process through which something has a positive effect on 

itself. 

 

Regime shift A sharp change from one regime (state) to a contrasting 

one. A regime is a dynamic ‘state’ of a system: it can be a 

stable point or a cycle.  

 

Resilience (ecological) The magnitude of disturbance a system can tolerate before 

it shifts into a different state. 

 

Self-organized patterns Patterns in space that emerge from the interaction 

between many units. 

 

Transition Discontinuous (first-order): Abrupt change in the qualitative 

behavior of a system. 

Continuous (second-order): Smooth change in the 

qualitative behavior of a system. 

Noise-induced: Change in the qualitative behavior of a 

system in the presence of high noise intensity. 

 

Threshold A point where the system is very sensitive to changing 

conditions. 

 

Tipping point A point where the system may flip to another state. 
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Summary 

 

Complex systems ranging from ecosystems to financial markets and the climate may have 

tipping points where a sudden shift to a contrasting regime can occur. As such critical 

transitions can have dire consequences, being able to predict them is very important. 

However, predicting critical points is extremely difficult. This thesis explores the idea that 

generic early-warning signals may allow us to estimate the risk of an approaching critical 

transition for a wide class of systems even if we lack mechanistic understanding of their 

functioning. 

 

Work in different disciplines suggests that there are indicators that can be used to signal 

the risk of an upcoming catastrophic shift (Chapter 2). Most of these indicators are 

considered generic because they are related to critical slowing down: the universal 

phenomenon of decreasing return rate to equilibrium in the vicinity of critical (bifurcation) 

points. Due to critical slowing down, recovery time, autocorrelation, variance, and low 

frequencies, may all increase as a system moves slowly towards a critical transition. 

Additionally, other more system-specific indicators exist. Skewness can increase due to 

the asymmetry of the system’s basin of attraction; self-organized spatial patterns can 

change in characteristic ways; and the size distribution of spatial patches can change, if a 

system approaches a transition. Examples of all of these leading indicators have been 

found in cases ranging from ecosystems and the climate to the human physiology. 

 

A common handicap in the identification of leading indicators in time-series is that lag 

times for detection are typically long. The consequence is that reaction time can be 

insufficient to prevent a shift. In Chapter 3 we show that increased spatial correlation may 

serve as a powerful early-warning signal in systems consisting of many coupled units. We 

demonstrate that the interaction of critical slowing down with diffusion causes spatial 

correlation to increase as the system approaches a systemic transition. We further 

explored the idea of using spatial correlation as an early-warning indicator in three 

spatially-explicit ecosystem models with alternative attractors. The analysis revealed that 

as a control parameter slowly pushes the system towards the threshold, spatial 

correlation between neighboring units in a modular system tends to increase well before 

the transition. We also showed that such an increase in spatial correlation represents a 

better early-warning signal than indicators derived from time-series provided that there is 

sufficient spatial heterogeneity and connectivity in the system. 

 

In Chapter 4 we explore the robustness of the two most studied early-warning indicators 

for time-series: autocorrelation and variance. We found both analytically and in 

simulations that variance may sometimes decrease rather than increase close to a 

transition. This can happen when the system becomes less sensitive to environmental 

fluctuations near the threshold, or when critical slowing down reduces the system’s 

capacity to follow high frequency fluctuations in the environment. In addition, variance 

can become systematically underestimated close to a transition due to the prevalence of 
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low frequencies that cannot be picked up correctly in the limited length of the time-series 

that tend to be available for such analyses. By contrast, we found autocorrelation to be a 

robust indicator, in the sense that it always increased towards critical transitions. Our 

analytical approach reveals how this difference in robustness between variance and 

autocorrelation can be understood. 

 

While autocorrelation appears to be a robust indicator for critical transitions, there are 

still transitions and systems where the supposedly generic leading indicators have not yet 

been tested. Chapter 5 is the first study that brings together all generic and system-

specific indicators both in time and space in order to test their feasibility in announcing 

upcoming transitions. We explored this idea in arid ecosystem models, where vegetation 

may collapse to desert due to increasing water limitation. In particular, we used three 

models that describe desertification, but differ in the spatial vegetation patterns they 

produce. Strikingly, we found that in all models post-perturbation recovery time increased 

before vegetation collapsed. However, in one of the models slowing down failed to 

translate into rising variance and correlation. This occurred in the model where regular 

self-organized vegetation patterns were present. This finding implies an important 

limitation to the use of variance and correlation as indicators for critical transitions. 

However, changes in such self-organized patterns themselves are a reliable indicator of an 

upcoming transition. Our results illustrate that while slowing down may be a universal 

phenomenon at critical transitions, its detection through indirect indicators may be 

problematic in particular systems. 

 

Chapter 6 puts theory into practice for the case of ancient abrupt climate shifts. In the 

Earth’s history, periods of relatively stable climate have often been interrupted by sharp 

transitions to a contrasting state. These abrupt climate shifts may correspond to critical 

transitions at tipping points. However, this is hard to prove for events in the remote past. 

We analyzed eight ancient climate shifts and showed that they were all preceded by an 

increase in autocorrelation indicating slowing down starting well before the actual shift. 

These results constitute the first independent empirical evidence for the idea that past 

abrupt shifts were associated to the passing of critical thresholds. 

 

In the Afterthoughts I conclude that since critical slowing down is a fundamental feature 

of a broad class of bifurcations, various indicators of slowing down can potentially be used 

as generic early-warning signals for upcoming catastrophic shifts. In addition, other more 

system-specific signals exist. None of these signals can predict when a transition is going 

to occur, or whether the upcoming transition will be catastrophic. Rather, the indicators 

should be seen as tools for probing the resilience of a system. As loss of resilience can 

pave the way for surprising transitions, the indicators discussed in this thesis offer a new 

perspective to foresee when we should expect the Unexpected. 
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Samenvatting 

 

Complexe systemen zoals ecosystemen, de financiële markt en het klimaat, kunnen 

kantelpunten hebben, waarbij er plotseling een overgang naar een contrasterende 

toestand kan optreden. Omdat zulke bifurcatiepunten mogelijk ernstige gevolgen kunnen 

hebben, is het wenselijk om ze te kunnen voorspellen. Een dergelijke voorspelling is echter 

buitengewoon moeilijk. Dit proefschrift onderzoekt of er generieke 

waarschuwingssignalen bestaan, die ons in staat kunnen stellen om het risico van 

naderende bifurcatie te voorspellen, zelfs als we het precieze mechanisme niet kennen. 

 

Onderzoek in verschillende disciplines suggereert, dat er indicators bestaan die kunnen 

worden gebruikt om het risico op een catastrofische bifurcatie in te schatten (Hoofdstuk 

2). De meeste van deze signalen worden als generiek beschouwd, omdat ze zijn 

gerelateerd aan ”critical slowing down”. Dit is een universeel fenomeen, dat optreedt in 

de buurt van bifurcatiepunten, waarbij de systemen na verstoring vertraagd terugkeren 

naar hun evenwicht. Normaliter zal, naarmate een systeem langzaam naar een bifurcatie 

beweegt, de hersteltijd na een verstoring, de autocorrelatie, de variantie en de lage 

frequenties in het signaal toenemen door critical slowing down. Bovendien bestaan er ook 

andere, meer systeemspecifieke indicatoren. Bijvoorbeeld wanneer een systeem een 

bifurcatiepunt nadert, kan een asymmetrische verdeling van de toestandsvariabele 

ontstaan, die veroorzaakt wordt door een toenemend asymmetrisch aantrekkingsgebied, 

(“basin of attraction”), In andere systemen met ruimtelijke zelfgeorganiseerde patronen. 

kunnen die patronen op een karakteristieke wijze veranderen. Voorbeelden van zulke 

indicatoren zijn aangetroffen in systemen variërend van ecosystemen, het klimaat tot 

menselijke fysiologie. 

 

Een algemeen probleem met het bepalen van indicatoren voor bifurcaties met behulp van 

tijdreeksen, is dat er relatief veel data nodig is om de indicatoren met voldoende 

nauwkeurigheid te bepalen. Als gevolg hiervan kan de tijd om de omslag te voorkomen 

onvoldoende zijn. In Hoofdstuk 3 laten we zien dat toenemende ruimtelijke correlatie kan 

dienen als krachtig en vroegtijdig waarschuwingssignaal voor bifurcaties in systemen die 

ruimtelijk gekoppeld zijn door uitwisseling. We laten theoretisch zien, dat de ruimtelijke 

correlatie toeneemt, als het systeem een bifurcatie benadert. Dit gebeurt door de 

interactie tussen critical slowing down en diffusie. Vervolgens hebben we in drie ruimtelijk 

expliciete ecologische modellen (met alternatieve evenwichten) onderzocht of ruimtelijke 

correlatie ook in de praktijk als waarschuwingssignaal bruikbaar zou kunnen zijn. De 

analyse toont aan, dat wanneer de verandering van een parameter het systeem langzaam 

naar een bifurcatie brengt, de ruimtelijke correlatie tussen naburige punten reeds ver vóór 

het omslagpunt de neiging heeft toe te nemen. Ook laen we zien, dat een dergelijke 

toename in ruimtelijke correlatie beter werkt dan indicatoren die van tijdreeksen afgeleid 

zijn (maar alleen als voldoende ruimtelijke heterogeniteit en connectiviteit is). 
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In Hoofdstuk 4 onderzoeken we de robuustheid van de twee meest bestudeerde 

waarschuwingsindicatoren voor tijdreeksen: autocorrelatie en variantie. We tonen zowel 

analytisch als door simulaties aan, dat variantie soms kan afnemen in plaats van toenemen 

dichtbij een bifurcatie. Dit kan gebeuren al het systeem dichtbij de bifurcatie minder 

gevoelig wordt voor beïnvloeding in de omgeving, of wanneer critical slowing down de 

capaciteit van het systeem om te reageren op snelle (i.e. hoogfrequente) verstoringen 

vermindert. Daarnaast kan de variantie dichtbij een omslagpunt systematisch worden 

onderschat, door de lage frequenties die daar veel voorkomen. Deze lage frequenties 

kunnen dan niet goed worden opgepikt in de beperkte lengte van de tijdreeksen die over 

het algemeen beschikbaar zijn voor dergelijke analyses. Daarentegen bleek autocorrelatie 

een robuuste indicator, omdat die altijd toenam in de richting van een omslagpunt. We 

laten in een analytische benadering zien hoe dit verschil in robuustheid tussen variantie en 

autocorrelatie kan worden verklaard. 

 

Alhoewel autocorrelatie een robuuste indicator voor bifurcatiepunten lijkt te zijn, zijn de 

waarschuwingsindicatoren nog niet getest voor alle overgangen en systemen. Hoofdstuk 5 

is de eerste studie die alle universele en systeemspecifieke indicatoren voor zowel 

ruimtelijke als temporele systemen bij elkaar brengt, en hun bruikbaarheid voor het 

voorspellen van kritische overgangen test. Hiervoor hebben we drie modellen van aride 

ecosystemen gebruikt, waarin bij toenemend watertekort vegetatie wordt verdrongen 

door woestijn. De modellen beschrijven alle drie woestijnvorming, maar verschillen in de 

ruimtelijke vegetatiepatronen die ze produceren. Opvallend was dat bij alle modellen de 

hersteltijd van de vegetatie na een verstoring langer werd bij toenemende watertekorten 

en dreigende instorting van de vegetatie. Echter, in één model werd deze vertraging niet 

vertaald in toenemende variantie en correlatie, namelijk in het model met regelmatige 

vegetatiepatronen. Dit is een belangrijke beperking voor de toepasbaarheid van variantie 

en correlatie als indicatoren voor een omslag. Gelukkig zijn veranderingen in de patronen 

zelf  al een goede indicator voor een op handen zijnde omslag. Onze resultaten illustreren 

dat hoewel critical slowing down een universeel fenomeen is bij bifurcaties, de detectie 

ervan door middel van indirecte indicatoren in sommige systemen problematisch kan zijn. 

 

Hoofdstuk 6 brengt de theorie in praktijk voor de casus van abrupte omslagen in het 

paleoklimaat. In de geologische geschiedenis van de aarde worden perioden met een 

relatief stabiel klimaat onderbroken door scherpe overgangen. Deze abrupte overgangen 

kunnen door bifurcaties veroorzaakt zijn. Echter, dit is natuurlijk moeilijk te bewijzen voor 

gebeurtenissen in het verre verleden. We hebben acht historische klimaatveranderingen 

geanalyseerd, en aangetoond dat ze alle werden voorafgegaan door toename 

autocorrelatie in het signaal. Dit wijst op het optreden van kritische vertraging, ver vóór 

het optreden van de daadwerkelijke omslag. Deze resultaten vormen de eerste 

onafhankelijke empirische aanwijzijng voor de stelling dat abrupte veranderingen van het 

paleoklimaat verband houden met het passeren van bifurcatiepunten. 

 

In de Nabeschouwingen (Afterthoughts) concludeer ik dat diverse indicatoren van 

vertraging in het herstel van verstoringen potentieel kunnen worden gebruikt als 

generieke waarschuwingssignalen voor op handen zijnde catastrofische omslagen. Dit is te 

verwachten omdat critical slowing down een fundamenteel kenmerk is bij verschillende 
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soorten bifurcaties. Bovendien bestaan er ook andere, meer systeemspecifieke signalen. 

Echter, geen van de signalen kan voorspellen wanneer een overgang daadwerkelijk zal 

plaatsvinden, of dat de komende bifurcatie een kritisch omslagpunt zal zijn. De indicatoren 

zouden veeleer als gereedschap voor het onderzoeken van de veerkracht van een systeem 

moeten worden gezien. Een afname van de veerkracht van een systeem kan de kans op 

verrassende kantelpunten vergroten. De indicatoren die in dit proefschrift worden 

besproken, bieden een nieuw perspectief om te voorzien wanneer we het onverwachte 

zouden kunnen verwachten. 
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Περίληψη 

 

Πολύπλοκα συστήματα, όπως οικοσυστήματα, χρηματοπιστωτικές αγορές, ή ακόμη και 

το ίδιο το κλίμα, μερικές φορές πλησιάζουν σε κάποιο κρίσιμο όριο στο οποίο μπορεί να 

συμβεί μια ξαφνική μετάπτωση από την τρέχουσα κατάσταση προς ένα διαμετρικά 

αντίθετο καθεστώς. Καθώς τέτοιες μεταπτώσεις μπορεί να έχουν ολέθριες συνέπειες, 

είναι πολύ σημαντική η δυνατότητα να τις προβλέψουμε. Ωστόσο, η πρόβλεψη τέτοιων 

μεταπτώσεων είναι εξαιρετικά δύσκολη. Η παρούσα διατριβή εξετάζει το κατά πόσο θα 

μπορούσαμε να αναπτύξουμε γενικά σήματα έγκαιρης προειδοποίησης, τα οποία θα μας 

επέτρεπαν να υπολογίσουμε το ενδεχόμενο μιας επερχόμενης “κρίσιμης” μετάπτωσης 

για μια ευρεία κατηγορία συστημάτων, ακόμη και όταν οι λεπτομέρειες της λειτουργίας 

τους δε μας είναι πλήρως κατανοητές. 

 

Μελέτες από διάφορους επιστημονικούς κλάδους υποστηρίζουν την ύπαρξη δεικτών 

έγκαιρης προειδοποίησης (early-warning signals) που μπορούν να χρησιμοποιηθούν για 

να επισημάνουν το ενδεχόμενο μιας επερχόμενης καταστροφικής “κρίσιμης” μετάπτωσης 

(critical transition) (Κεφάλαιο 2). Οι περισσότεροι από αυτούς τους δείκτες θεωρούνται 

γενικοί, επειδή σχετίζονται με την επονομαζόμενη “κρίσιμη επιβράδυνση” (critical 

slowing down), δηλαδή το καθολικό φαινόμενο της μείωσης του ρυθμού αποκατάστασης 

ισορροπίας πριν από μία μαθηματική διακλάδωση (bifurcation point). Εξαιτίας της 

κρίσιμης επιβράδυνσης, ο χρόνος αποκατάστασης (return time), η αυτοσυσχέτιση 

(autocorrelation), η διακύμανση (variance), και οι χαμηλές συχνότητες (low spectral 

density), συνήθως αυξάνονται, καθώς το σύστημα πλησιάζει σταδιακά προς το κρίσιμο 

σημείο μίας απροσδόκητης καταστροφικής μετάπτωσης. Εκτός από τους γενικούς 

δείκτες, υπάρχουν άλλοι, περισσότερο ειδικοί δείκτες. Επειδή η συμμετρία της λεκάνης 

ισορροπίας στην οποία βρίσκεται ένα σύστημα μεταβάλλεται, καθώς ένα σύστημα 

πλησιάζει μία επικείμενη κρίσιμη μετάπτωση, η κατανoμή της μεταβλητής που 

περιγράφει την τρέχουσα κατάσταση του συστήματος μπορεί να γίνει ασύμμετρη. Για ένα 

σύστημα που κατανέμεται στο χώρο με συγκεριμένο είδος μοτίβων, το σχήμα των 

μοτίβων μπορεί να αλλάξει με συγκεκριμένο τρόπο, εφόσον το σύστημα πλησιάζει προς 

μια επικείμενη κρίσιμη μετάπτωση. Κατά ανάλογο τρόπο, και η κατανομή του μεγέθους 

των μοτίβων μπορεί να μεταβληθεί. Παραδείγματα όλων αυτών των δεικτών έγκαιρης 

προειδοποίησης έχουν παρατηρηθεί σε οικολογικά συστήματα και το κλίμα, καθώς και 

στην ανθρώπινη φυσιολογία. 

 

Ένα κοινό μειονέκτημα του προσδιορισμού των δεικτών έγκαιρης προειδοποίησης σε 

χρονοσειρές είναι η μεγάλη διάρκεια που απαιτείται για την ανίχνευσή τους. Ως 

αποτέλεσμα, ο διαθέσιμος χρόνος αντίδρασης για την αποτροπή μιας κρίσιμης 

μετάβασης μπορεί να είναι ανεπαρκής. Στο Κεφάλαιο 3 δείξαμε πως η αύξηση της 

συσχέτισης μεταξύ γειτονικών μονάδων στο χώρο μπορεί να χρησιμεύσει ως ένα ισχυρό 

σήμα έγκαιρης προειδοποίησης σε συστήματα που αποτελούνται από πολλές 

συζευγμένες μονάδες στο χώρο. Αποδείξαμε ότι η αλληλεπίδραση μεταξύ της “κρίσιμης 

επιβράδυνσης” και του φαινομένου της διάχυσης έχει ως αποτέλεσμα την αύξηση της 
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συσχέτισης στο χώρο, καθώς το όλο σύστημα προσεγγίζει μια κρίσιμη μετάπτωση. 

Περαιτέρω, διερευνήσαμε τη χρήση της χωρικής συσχέτισης ως δείκτη έγκαιρης 

προειδοποίησης σε τρία μοντέλα οικοσυστημάτων με εναλλακτικά σημεία ισορροπίας. Η 

ανάλυση έδειξε ότι, καθώς μία παράμετρος “σπρώχνει” σιγά σιγά το σύστημα προς το 

κρίσιμο σημείο μετάπτωσης, η συσχέτιση μεταξύ γειτονικών μονάδων στο χώρο 

αυξάνεται πολύ πριν από τη μετάπτωση. Δείξαμε επίσης ότι μια τέτοια αύξηση της 

συσχέτισης στο χώρο αποτελεί καλύτερο σήμα έγκαιρης προειδοποίησης σε σχέση με 

άλλους δείκτες που προέρχονται απευθείας από την χρονοσειρά, με την προϋπόθεση ότι 

η χωρική ετερογένεια και σύζευξη στο σύστημα είναι επαρκής. 

 

Στο Κεφάλαιο 4 μελετήσαμε την αξιοπιστία των δύο πιο διαδεδομένων δεικτών έγκαιρης 

προειδοποίησης για χρονοσειρές: την αυτοσυσχέτιση και τη διακύμανση. Βρήκαμε, τόσο 

με αναλυτικές μεθόδους όσο και με προσομοιώσεις, ότι η διακύμανση μπορεί μερικές 

φορές να μειωθεί αντί να αυξηθεί πριν από μία κρίσιμη μετάπτωση. Αυτό μπορεί να 

συμβεί όταν το σύστημα γίνεται λιγότερο ευαίσθητο στις διακυμάνσεις του 

περιβάλλοντος κοντά στο κρίσιμο σημείο μετάπτωσης, ή όταν, λόγω της κρίσιμης 

επιβράδυνσης, μειώνεται η ικανότητα του συστήματος να ακολουθήσει διαταραχές 

υψηλής συχνότητας στο περιβάλλον. Επιπλέον, η διακύμανση μπορεί να υποτιμηθεί 

συστηματικά πριν από μία κρίσιμη μετάπτωση λόγω της επικράτησης χαμηλών 

συχνοτήτων που δεν μπορούν να εντοπιστούν σωστά στο περιορισμένο μήκος 

χρονοσειρών που συνήθως είναι διαθέσιμες για τέτοιου είδους αναλύσεις. Αντιθέτως, 

βρήκαμε πως η αυτοσυσχέτιση είναι αξιόπιστος δείκτης έγκαιρης προειδοποίησης, με την 

έννοια ότι πάντοτε αυξάνει πριν από μία κρίσιμη μετάπτωση. Η αναλυτική μας 

προσέγγιση επιτρέπει να κατανοήσουμε τις συνθήκες υπό τις οποίες προκύπτει αυτή η 

διαφορά στην αξιοπιστία μεταξύ διακύμανσης και αυτοσυσχέτισης. 

 

Παρόλο που η αυτοσυσχέτιση φαίνεται να είναι αξιόπιστος δείκτης έγκαιρης 

προειδοποίησης για κρίσιμες μεταπτώσεις, εξακολουθούν να υπάρχουν μεταπτώσεις στις 

οποίες δεν έχουν δοκιμαστεί ακόμη οι γενικοί δείκτες έγκαιρης προειδοποίησης. Το 

Κεφάλαιο 5 είναι η πρώτη μελέτη που συγκεντρώνει όλους τους γενικούς και ειδικούς 

δείκτες τόσο σε χώρο- όσο και χρόνο- σειρές, προκειμένου να αξιολογηθεί η 

αποτελεσματικότητα τους ως προάγγελλοι επερχόμενων μεταπτώσεων. Διερευνήσαμε 

αυτήν την ιδέα σε μοντέλα χερσαίων άνυδρων οικοσυστημάτων, όπου η βλάστηση 

μπορεί να καταρρεύσει λόγω περιορισμένων υδατικών πόρων. Πιο συγκεκριμένα, 

χρησιμοποιήσαμε τρία μοντέλα ερημοποίησης, τα οποία διέφεραν ως προς το είδος των 

χωρικών προτύπων βλάστησης που παράγουν. Βρήκαμε ότι, σε όλα τα μοντέλα, ο χρόνος 

αποκατάστασης ισορροπίας μετά από μία διαταραχή αυξήθηκε, πριν καταρρεύσει η 

βλάστηση. Ωστόσο, σε ένα από τα μοντέλα η κρίσιμη επιβράδυνση απέτυχε να 

μεταφραστεί σε αύξηση της διακύμανσης και της αυτοσυσχέτισης. Αυτό συνέβη στο 

μοντέλο όπου η βλάστηση αυτο-οργανώνεται σε συμμετρικά πρότυπα στο χώρο. Το 

εύρημα αυτό υποδηλώνει ένα σημαντικό περιορισμό στη χρήση της διακύμανσης και της 

αυτοσυσχέτισης ως δείκτες για κρίσιμες μεταπτώσεις. Ωστόσο, αλλαγές στο σχήμα των 

προτύπων στο χώρο αποτελούν από μόνα τους αξιόπιστο δείκτη για μια επερχόμενη 

μετάπτωση. Τα αποτελέσματά μας δείχνουν ότι ενώ η κρίσιμη επιβράδυνση μπορεί να 

είναι καθολικό φαινόμενο πριν από κρίσιμες μεταπτώσεις, ο εντοπισμός της μέσω 

έμμεσων δεικτών μπορεί να είναι προβληματικός σε ορισμένα συστήματα. 
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Το Κεφάλαιο 6 επιχειρεί να εφαρμόσει τη θεωρία στην πράξη στην περίπτωση κάποιων 

απότομων παλαιοκλιματικών αλλαγών. Στην ιστορία της Γης, διάφορες περίοδοι με 

σχετικά σταθερό κλίμα συχνά διακόπτονταν από απότομες μεταβάσεις σε αντίθετες 

συνθήκες. Αυτές οι απότομες αλλαγές του κλίματος ίσως αντιστοιχούν σε κρίσιμες 

μεταπτώσεις σε κρίσιμα σημεία μαθηματικών διακλαδώσεων. Ωστόσο, αυτό είναι 

δύσκολο να αποδειχθεί για γεγονότα που έλαβαν χώρα στο μακρινό παρελθόν. Στο 

κεφάλαιο αυτό, αναλύσαμε οκτώ απότομες παλαιοκλιματικές αλλαγές και βρήκαμε 

αύξηση αυτοσυσχέτισης σε όλες, γεγονός που υποδηλώνει πως σε όλες τις περιπτώσεις 

υπήρξε κρίσιμη επιβράδυνση πολύ πριν την μετάπτωση. Τα αποτελέσματα αυτά 

συνιστούν την πρώτη ανεξάρτητη μελέτη βασισμένη σε εμπειρικά στοιχεία που 

υποστηρίζει την ιδέα ότι προηγούμενες απότομες κλιματικές αλλαγές ήταν συνδεδεμένες 

με κρίσιμες μεταπτώσεις. 

 

Στον Επίλογο καταλήγω στο συμπέρασμα ότι, δεδομένου ότι η κρίσιμη επιβράδυνση 

είναι θεμελιώδες χαρακτηριστικό μιας ευρείας κατηγορίας μαθηματικών διακλαδώσεων, 

οι έμμεσοι δείκτες της επιβράδυνσης μπορούν δυνητικά να χρησιμοποιηθούν ως γενικά 

σήματα έγκαιρης προειδοποίησης για επερχόμενες καταστροφικές μεταπτώσεις. 

Υπάρχουν, επίσης, άλλα, περισσότερο ειδικά σήματα. Παρόλα αυτά, κανένα από αυτά τα 

σήματα δεν μπορεί να προβλέψει το πότε πρόκειται να συμβεί μία μετάπτωση ή το κατά 

πόσο η επικείμενη μετάπτωση θα είναι καταστροφική. Αντίθετα, οι δείκτες αυτοί είναι 

απλώς εργαλεία διάγνωσης της ανθεκτικότητας ενός συστήματος. Καθώς η απώλεια 

ανθεκτικότητας ενός συστήματος μπορεί να οδηγήσει σε απροσδόκητες μεταπτώσεις, οι 

δείκτες που εξετάζονται στην παρούσα διατριβή προσφέρουν μια νέα προοπτική 

διάγνωσης του πότε μπορούμε να προσμένουμε το απροσδόκητο. 
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