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1 Introduction 

2.1 Purpose 

'In recent years there has been extensive study of the behaviour 
of complex interacting systems in such fields as engineering, 
physiology and economics. Drawing on and building upon this 
diverse body of experience, progress has been made over the 
past ten years in the development of methods for understanding 
the dynamics of ecosystems and the impact of stresses upon them, 
including stresses generated by man. These methods are subsumed 
under the heading of systems ecology. Systems ecology is based 
on the assumption that the state of an ecosystem at any partic­
ular time can be expressed quantitatively and that changes in 
the system can be described by mathematical terms,' to quote 
the expert panel on the role of system analyses of the Man and 
Biosphere Program (MAB, 1972). 
Whether this basic assumption of systems ecology can be made 
operative or not, the approach raises considerable interest 
among natural scientists. However, many outsiders venturing 
in systems ecology are confused because they are exposed to 
mathematical and computer techniques, and to the treatment of 
complex systems at a too rapid rate. This is a pity because 
the systems approach has its merits. However, these can only 
come to the fore if a dialogue can be maintained between system 
ecologists and their more experimentally inclined colleagues. 
The confusion may be reduced and the necessary dialogue stimu­
lated by introducing the motivated ecologist stepwise to one 
of the main aspects of system ecology: the analyses and simu­
lation of state determined systems. This is done in this book 
by treating in detail various ecological systems, ranging from 
simple exponential growth to plant epidemics of considerable 
complexity. Ecological, mathematical and programming aspects 
are interwoven during the treatment, and exercises have been 
set that are an integral part of the text on a second reading. 
In this way the only thing that may be new in simulation is 
the emphasis that is placed on the quantifying of the under­
lying processes, the iterative use of information and the use 
of suitable 'simulation languages' as a means of communication, 
not only between man and machine, but also between man and man. 



1.2 Some terminology 

System ecologists use and misuse many words and terms and in 
order not to add to the confusion of the reader it is necessary 
to define the common concepts: model, system and simulation. 
There are many models. A simple mathematical model is the age-
old relation of velocity (v) and the distance (s) covered by a 
falling apple, depending on the gravitational acceleration (g) 
and the time from the moment of release (t): v=gt and s=0.5gt2. 
An example of a non-mathematical model is a map. It is a sim­
plification of reality. It contains relevant information and 
allows measurements. Dependent upon the purpose of the map 
railways, lines of equal rainfall or soil types are presented. 
A scale model of a designed ship enables prediction of its 
resistance in the water. To maintain the original relations 
between viscosity, density, velocity, length etc., the laws of 
scaling must be satisfied. Of course, the internal structure 
of the ship is not modelled. A system may be defined as a limited 
part of reality with related elements. The totality of relations 
within a system is called the structure of a system: both 
models and systems have a structure and it follows from the 
definitions that a model is system. The reverse does not seem 
true. However, it may be argued that a piece of art is a model 
of a conception in the artist's mind or that an engine is a 
model of the conception of its creator. A system M is a model 
of system 0, provided that the structure is partly overlapping 
or isomorphic. Which parts of 0 are presented in M is determined 
by the requirements of relevance imposed on the model. Which 
part should not be considered follows also from the requirement 
that a model must be lucid and easy to handle. 
Examples of a system are a cell, a plant, an animal, a field 
with a crop, a forest and a farm. It is better to choose the 
boundary between system and environment such that the system 
is isolated. Often such a boundary cannot be found and then it 
should be chosen so that the environment influences the system, 
but the system itself does affect the environment as little as 
possible. To achieve this goal, one must often consider a system 
larger than seems necessary for the purpose. If for instance, 
the influence of temperature on the growth of plants is studied 
in a climate room, this climate room is part of the environment 
when its construction is so good that temperature, moisture 
content and light intensity do not depend on the size of the 
plants. In most climate rooms this requirement is not met so 
that it may be wise to treat the room itself as part of the 
system. If the resulting model is unwieldy, it may be necessary 
to characterize the interaction between plant system and 
environment by continuous measurements at the interface, for 



example, of the light intensity at the leaf surfaces, and of the 
temperature and humidity between plants. This approach erodes 
the generality of the model, but may enable better evaluation. 
A system has a pattern of behaviour which implies that the 
system changes with time, that it is dynamic. A simplified 
representation of a dynamic system is a dynamic model. An 
operational definition of simulation is the building of a 
dynamic model and the study of its behaviour. Simulation is 
useful if it increases one's insight of reality by extrapolation 
and analogy, if it leads to the design of new experiments and 
if the model accounts for most relevant phenomena. It should 
contain as few false assumptions as possible. This requirement 
does not seem stringent enough, but unfortunately false assump­
tions are almost inevitable, although more so for analytical 
solution techniques than for simulation techniques. Therefore 
with simulation our attention can be shifted from solution 
techniques to the study of behaviour of model and system. 
There has been a tendency among statisticians to restrict the 
term simulation to the study and modelling of stochastic pro­
cesses. However, then this term cannot be used in the field of 
the engineering sciences and what is even more unacceptable, 
the common usage of the word becomes restricted. 

1.3 Electrical analogues 

Many systems may be modelled by means of electrical analogues. 
For instance, a model of a falling apple might consist of an 
apparatus with two capacitors. The first one is charged with 
a current that is considered analogous to the gravitational 
acceleration and thus its potential is analogous to velocity. 
The second capacitor is charged with a current that is propor­
tional to the potential of the first and thus its potential 
is analogous to the covered distance. 

Exercise 1 
Write down the differential equations that relate the rate of 
change of the velocity (v) of a falling apple to the gravita­
tional acceleration (g) and of its distance (s) from the point 
of release to the velocity. Also write down the differential 
equation that relates the potential (e) of.a capacitor to its 
capacitance (c) and the charging current (i). Find the expres­
sions for the charging currents ij and i2 of two capacitors 
so that the potential of the first capacitor corresponds to v 
and of the second capacitor to s. 

The integration in the capacitors takes place continuously and 



simultaneously, as do velocity and distance in reality. At any 
moment the condition of the system is fully determined by the 
potentials of the capacitors. The analogous computers that have 
been developed from this principle are very useful for simula­
ting such continuous systems. 
There are, however, several problems with their use. The user 
should adapt the scale of variables to be modelled to the 
range of potential of the circuit elements and has to accept 
their inaccuracies. The resulting difficulties rapidly in­
crease with increasing size and complexity of the models and 
with preciser requirements of accuracy. 
These problems do not show up in simulation with digital com­
puters and it is very illustrative that the first 'languages' 
to simulate continuous systems on digital computers were devel­
oped to control the result of analogous machines and to facili­
tate the assessment of the scaling factors. 
Digital machines with proper simulation languages are also pre­
ferred to analogous machines when there are discontinuous ele­
ments, and when many empirical relationships are used. A large 
drawback, however, is that digital machines operate sequentially 
and discretely, whereas in many systems, continuous processes 
operate in parallel. 
In the future the disadvantages of both machines may be elimi­
nated and the advantages combined by hybrid computers in which 
digital and analogous computers are amalgamated. 

1.4 State determined systems 

As has been said, systems ecology is based on the assumption 
that the state of an ecosystem at any particular time can be 
expressed quantitatively and that changes in the system can be 
described by mathematical terms. This assumption leads to the 
formulation of state determined models in which state variables, 
driving or forcing variables, rate variables, auxiliary variables 
and output variables can be distinguished. 
State variables characterize and quantify all properties that 
describe the current state of the system. Examples of state 
variables are amount of biomass, number of animals, content of 
mineral elements in various parts of the system, amount of food, 
amount of poison, number of niches, water content, temperature 
of the soil and so on. The values of all state variables have 
to be known at the onset of simulation. In mathematical terms 
they are quantified by the contents of integrals. 
Driving or forcing variables are those that are not affected 
by processes within the system but characterize the influence 
from outside. These may be macrometeorological variables, the 
amount of food added in course of time and so on. It should be 



realized that depending on the boundaries of the system to be 
simulated, the same variables may be classified either as state 
or driving variables. 
Rate variables quantify the rate of change of the state vari­
ables. Their values are determined by the state variables and 
the driving variables according to rules formulated from the 
knowledge of the underlying ecological, physiological and 
physical processes. These processes may be so complicated that 
the calculation process becomes much more lucid when use is 
made of properly chosen intermediate or auxiliary variables. 
Output variables are the quantities which the simulation pro­
duces for the user. Sometimes they are state variables, some­
times rates and sometimes auxiliary variables that may be cal­
culated especially for the purpose. 
A model of the type considered in this book consists mainly of 
a set of prescriptions for calculating the rate variables. At 
any particular time, each rate depends only on the current 
values of the state variables and driving variables, and can 
therefore be calculated independently of all other rates. The 
only deviations from this rule that are allowed are merely 
labour-saving devices; thus, when the nature of the model 
implies that a rate R2 happens to be equal to a function of the 
rate Rl, the prescription for calculating R2 may be written in 
terms of Rl. However, strict care must be taken to avoid any 
formulation in which two or more rates are mutually dependent, 
leading to several equations with several unknowns. 
This is in accordance with experience. In a mixture of yeasts, 
the rates of growth do not depend on each other, but each one 
separately upon the state of the system, characterized by its 
own amount, the concentration of food and waste products and 
forcing variables such as temperature. The interaction between 
the growth of the yeasts in the mixture evolves in time because 
of the consumption of the same food source or production of the 
same waste products. Another illustration is a chemical reaction 
where compound C is formed from compounds A and B, the rate of 
formation of C not depending on the rate of formation of A and 
B but only on the amounts or concentrations of compound A, B 
and C that are present and the reaction constants. If, however, 
the rate of formation of A is slow, this compound is depleted 
in due course to such a level that the rate of formation of C 
adjusts to that of A. In other words, the observation that the 
rate of formation of A and C is equal is a consequence of the 
operation of the system and does not reflect a direct relation 
between both rates, that is to be modelled. Another illustration 
is presented in the form of an exercise. 



Exercise 2 
Ask two children, who are not allowed to communicate with each 
other, to stand on one side of a room and tell them to walk to 
the other side of the room at the same speed, carrying out 
independently of each other the following instructions on 
command: 
1: close eyes, 2: decide on step size, 3: take a step, 4: open 
eyes, 5: compare positions, 1: close eyes, 2: decide on step 
size, and so on. Mark the position of each child on the floor 
after each cycle of instructions. Do the children stay practi­
cally side by side? What are the variables of state? What are 
their 'rates' of change? In how many independent decision 
processes are these decided upon? It may be observed that the 
subsequent step sizes of each child are more variable in the 
beginning than at the end. Why is this so? 

1.5 Simulation languages 

Although digital computers may memorize data easily, these 
sequential and digital instruments seem most unsuitable for 
the simulation of continuous and parallel dynamic systems. The 
main feature of simulation languages, or simulation programming 
systems, is to overcome these disadvantages. 
The principle that rates of change are not mutually dependent 
but depend independently on state variables and driving vari­
ables, allows all rates of change to be calculated in any order 
at any instant of time. After all rates are calculated at one 
instant, they are used to integrate the state variables over a 
small time-interval. In this way, the model operates in semi-
parallel fashion. The simplest way of integration is by the 
Eulerian or rectilinear method in which the new value of a 
state variable at time t+At equals the old value at time t 
plus the calculated rate of change at time t times the constant 
time-interval At. 
Another feature of simulation programming systems is that all 
processes and processing details may be presented in concep-
tional rather than computational order. The programming system 
itself contains a sorting routine which orders all calculations 
and integrations in a proper algorithm. The advantages of this 
procedure are that the simulation program may be presented much 
more clearly, that a considerable variety of programming and 
conceptional errors may be detected by the programming system 
and that sub-models are easily assembled in a larger model. 
Apart from this, all simulation languages contain subroutines 
that execute operations that are often dealt with in modelling 
and facilitate the organization of data input and output. 



In this way programming systems have been developed that enable 
sophisticated use of computers by research workers without much 
training in advanced programming techniques and with a minimum 
of formal mathematical knowledge. As has been said, these pro­
gramming systems are not only intended to improve the communi­
cation between man and computer but also between research 
workers themselves. Since many simulation programs that appear 
at present can be used only by the designer himself or by very 
motivated programmers, this latter aspect of simulation lan­
guages is very important and needs to be developed still more. 
However, during the last 15 years so many different systems of 
simulation programming have become available that communication 
between scientists has not improved. But recently all languages 
seem to be gravitating towards one concept: the Continuous 
System Simulation Language (CSSL), originally defined by a 
working party of the Simulation Council (Brennan & Silberberg, 
1968). The most widely used CSSL version is at present 
CSMP III, the Continuous System Modelling Program III (IBM). 
This language as defined in IBM Users Manual SH19-7001-2 is 
used in the subsequent text. Array handling has become much 
simpler in CSMP III than in the older version of CSMP, but 
still some knowledge of FORTRAN is required. Therefore we use 
a preprocessor for array handling. 
In Appendix A a short user's guide is given for the use of the 
preprocessor. This preprocessor was developed by the computer 
centre of the Agricultural University in Wageningen and is 
available on request. The text of this book is self-explanatory 
and written to be read without the use of a manual, but for 
actual programming it is advisable to have a manual at hand. 



2 Exponential growth 

2.1 Analytical and numerical integration 

The growth rate of many populations may be proportional to the 
size of the population, either expressed in number of individ­
uals or total biomass. With simple organisms such as bacteria, 
growth is often also continuous. The growth rate at any moment 
can then be expressed by the equation: 

GR = RGR x A (2.1) 

in which RGR is the relative growth rate and A the amount of 
organisms. 

Exercise 3 
If weight is expressed in grams and time in hours, what are 
then the dimensions of A, RGR and GR? Give at least three 
environmental conditions that must always be satisfied to 
achieve a situation where the relative growth rate is indepen­
dent of the amount of organisms and time. 

In differential notation, Eqn (2.1) is written as 

dA/dT = RGR x A (2.2) 

The integrated form of this equation or the analytical solution 
when RGR is constant, is 

A = IA x e
R G R x T (2.3) 

in which IA is the amount of organisms that appear to be pre­
sent at time zero and e the base of the natural logarithm. 
Under these circumstances the amount of organisms increases 
exponentially with time. 

Exercise 4 
Calculate with a slide rule, with tabulated values of the 
function ex or with a pocket calculator, the value of A after 
0, 2, 4 up to 10 hours for RGR equal to 0.1 hour"1 and IA equal 

8 



to 1 gram. Represent the results by a graph with time along 
the horizontal axis and the amount A along the vertical axis 
and connect the points with a smooth line. Plot the results 
also on a graph with time along the horizontal axis and connect 
the points also by a line. 
What do you observe about the straightness of the second line? 
Show that this observation is mathematically correct. 

The amount of organisms as a function of time may be found also 
by a recursive process. If, at a certain time T the amount of 
organisms equals A, the rate of growth at that moment equals 
RGR x A. During a short time-interval delta time (DELT), this 
rate of growth hardly changes, so that at time T + DELT the 
amount of organisms equals approximately A + RGR x A x DELT. 
With this new value, the rate of growth at time T + DELT can 
be calculated and so the amount of organisms at time T + 2 x DELT, 
and so on. 

Exercise 5 
Calculate the values of A after 0, 2, 4 up to 10 hours for 
RGR =0.1 hour""1 and A = 1 gram at time zero. Use time-intervals 
of 2 hours and apply the following scheme: 

TIME 
0 
2 

A 
1 
1.2 

RGR x A 
0.1 
etc 

RGR X A x DELT 
0.2 

Plot the results on the graphs of Exercise 4 and connect the 
points by straight line segments. 

A comparison of this stepwise solution and the analytical 
solution shows that the size of the population is underestimated 
by the use of the recursive solution because it is wrongly 
assumed that the growth rate remains the same during each time-
interval DELT, even though for continuous growth, the amount of 
organisms increases. It is to be expected that the discrepancy 
between the recursive and analytical solution decreases with 
decreasing time-intervals. 

Exercise 6 
Plot the results of a recursive calculation for time steps of 
1 and 0.5 hours on the graphs of Exercise 4. Derive a formula 
that gives the value of A directly after n time-intervals of 
size DELT and convert this function of n to a function of time. 
What can you say about this function when the time-interval 



DELT approaches zero? 

2.2 Simulation 

Calculations with even shorter time-intervals are very tedious 
and are better done by formulating the problem in CSMP and 
using a computer. In its elementary form, this simulation is 
the same as numerical integration of a set of differential 
equations. 
The problem in CSMP reads as follows on punched cards: 

TITLE EXPONENTIAL GROWTH 
A=INTGRL(IA,GR) 
GR=RGR*A 

INCON IA=1. 
PARAMETER RGR=0.1 
TIMER FINTIM=10.,0UTDEL=0.5,DELT=0.1 
OUTPUT A 
METHOD RECT 
END 
STOP 
ENDJOB 

The first card mentions the TITLE, which is repeated on every 
page of output. The card with the INTGRL function states that 
A equals IA at time zero and that its current value at any time 
is found by integrating GR. The fourth and fifth card give the 
value of the only INitial CONstant (IA) and of the only 
PARAMETER (RGR). The TIMER card ensures that the simulation 
is finished after 10 time-units (FINTIM), that output is given 
at every 0.5 time-unit (OUTDEL) and that intervals of 0.1 unit 
(DELT) are used for the numerical integration. 

Exercise 7 
Which variable governs the unit of time? 

It is stated on the OUTPUT card that the value of A has to 
be plotted against time and that its numerical value has to be 
given also in a table. The METHOD card indicates that the inte­
gration must be done according to the RECTilinear method of 
Euler. This is the method that was used in the previous exer­
cises. The END card defines the end of the simulation model 
and the STOP card the end of the simulation program. If the 
computation is to be repeated with a relative growth rate of 
0.2, it suffices to insert the cards PARAMETER RGR =0.2 and 

10 



END between the END and STOP cards in the above program. 
The ENDJOB card is needed as the final card of the CSMP program. 

Exercise 8 
Punch the lines of the program on cards and urge your computer 
centre to install one of the CSSL-type languages and to inform 
you on the deviation in notation between this language and the 
CSMP version used in this example. Then carry out the program. 

Some readers may not have access to a suitable computer centre 
so that a facsimile of the program and results are given in 
Fig. 1. The first page contains the program, and some additional 
information, the third page the FORTRAN subroutine 'UPDATE' 
created by CSMP and the fourth page the answers. The third page 
is mainly of interest for those readers that know some FORTRAN 
and wish to follow the way CSMP organizes the work. They may 
have also some use for several pages with information on the 
organization of the program that are not reproduced here. 

Exercise 9 
Plot the results also on the graph of Exercise 4 and compare 
the numerical results with those of the analytical solution. 
Explain why the simulated results are still underestimates. 

For simple exponential growth where the relative growth rate 

1 mCONTlNUOUS SYSTEM MODELING PROGRAM III VIM3 TRANSLATOR OUTPUTSSS 

TITLE EXPONENTIAL GROWTH 
AalNTGPL(IA,GR) 
GR*RCR»A 

INCON IA»1, 
PARAMETER RGRaO.l 
TIMER FlNTlMalO.,OUTDEL=0,5,DELT«0.l 
OUTPUT A 
METHOD RFCT 
END 
STOP 

•#* OUTPUT VARIABLE SEQUENCE ••• 
CP A 

*$$ TRANSLATION TABLE CONTENTS $$S 

MACRO AND STATEMENT OUTPUTS 
STATEMENT INPUT WORK AREA 
INTEGRATORS+MEMORY PLOCK OUTPUTS 
PARAMETERS+FUNCTICN GENERATORS 
STORAGE VARIABLES*INTEGRAT0P ARRAYS 
HISTORY AND MEMORY BLOCK NAMES 
MACRO DEFINITIONS AMD NESTED M*CPOS 
MACRO STATEMENT STORAGE 

11 

CURRENT 

8 
35 

1 • o 
5 • 0 
0 • 0/2 

21 
6 

13 

MAXIMUM 

600 
1900 

300 
400 

50 
50 
50 

125 



LITERAL CONSTANT STOPACE 
SORT SECTIONS 
MAXIMUM STATEMENTS IN SECTION 

0 
1 
2 

100 
20 

600 

$S$END OF TRANSLATOR OUTPUT$$$ 

MAIN. UPDATE.riO FORTRAN V,5(515) /KI 4-JAN-7I 17104 PACE 1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00001 
00009 
00010 
00011 
00012 
0001) 
00014 
00015 
00016 
00017 
OOOH 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00021 
00029 
00030 
00031 
00032 
00033 
00034 

SUBROUTINE UPDATE 
C 

c COMMON TIME 
l,ZZ0OO0 ,DELT ,ZZDELT ,DELMIN 
lfZZFXNT iPPDEL ,ZZPRDE ,OUTDEL 
t.ZZDELX #A ,GR ,IA 
COMMON/ZZHI5T/KEEP,NALARN,IZ0000,IZ000l 
REAL XA 
REALM ZZTINE 
EOUIYALENCE(ZZTXME,TlME ) 
CO T0(39995*39996*39997,39991)*IZ0000 

C SYSTEM SEGMENT Or MODEL 
39995 CONTINUE 

CO TO 39999 
C INITIAL SEGMENT OF MODEL 
39996 CONTINUE 

GO TO 39999 
C DYNAMIC SEGMENT OF MODEL 
39997 CONTINUE 

GR«RGR*A 
C A alNTCRL (IA ,GR 

GO TO 39999 
C TERMINAL SEGMENT OF MODEL 
39991 CONTINUE 
39999 CONTINUE 

RETURN 
END 

,ZZDELN 
,ZZOUTD 
,RCR 

,FINTIM 
tDELMAX 

CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 

1.000 '•••A ).< 

?i«e 
o.oooooc«oo 
0.50000 

1.0000 
1.3000 
2.0000 
2.3000 
3.0000 
3.3000 
4.0000 
4,3000 
3.0000 
3,3000 
4.0000 
4.3000 
7.0000 
7.3000 
0,0000 
1.3000 
9.0000 
9.5000 
10.000 

t i l l CONTINUOUS 

A 
1.0000 
1,0310 
1.1044 
1.1410 
1.2302 
1.2424 
1.3474 
1.4164 
1.4444 
1.3444 
1.6444 
1.7243 
1.4147 
1.9094 
2.0064 
2,1091 
2.2147 
2.3294 
2,4444 
2,3735 
2.7049 

SrSTEM KOPCL 

• I I I I I I I I 
! - • 1 I 1 I I I I I 
! • • • • • I 1 I I X I 1 I 
! . . . . . . . « I I I I I I I i 

INC PFnCDAM I I I VJH3 CXtCUTION OUTP"T 444 

Fig. 1 | A simulation program for exponential growth written 
in CSMP. Page 1 contains the punched program and the other 
pages are generated by the system. Page 2 contains the trans­
lation table contents. Page 3 the FORTRAN subroutine 'UPDATE1 

and page 4 the output. 
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is a constant, numerical integration or simulation is not nec­
essary because the solution may be found analytically. However, 
the analytical approach is frustrated by only slight variations 
in the system. 
For instance, the relative growth rate of a bacterial popula­
tion may depend on temperature, so that in a series of experi­
ments with a bacteria species the following observations of 
the relative growth rate could have been made: 

TEMP (°C) 0 5 
RGR (h"1) 0.0 0.04 

10 
0.07 

20 
0.17 

30 
0.19 

40 
0.26 

50 
0.25 

Exercise 10 
These are (faked) observational data. Represent the results 
on a graph and draw a smooth line through the data points. 
What are your estimates for the best fit at ten-degree-intervals? 

In many situations, bacteria populations are not exposed to a 
constant temperature; the temperature varies more or less in 
daily cycles and the question may be posed what the growth rate 
is under such conditions. Obviously, the relative growth is 
then not a constant which may be defined on a parameter card 
but a variable which is some function of temperature. To simu-
iate this situation the PARAMETER card which defines the rela­
tive growth rate is removed from the program of Fig. 1 and 
replaced by the following function statement: 

RGR = AFGEN(RGRTB,TEMP) 

This Arbitrary Function GENerator states that the value of 
RGR depends on the temperature (TEMP), according to a tabulated 
function with the table name RGRTB. Here estimates given in the 
answer of Exercise 10 are used. This function is introduced into 
the simulation program in tabulated form on a FUNCTION card: 

FUNCTION RGRTB=(0.,0.),(10.,0.08),... 
(20.,0.16),(30.,0.21),(40.,0.24),... 
(50.,0.25) 

The first number between each pair of brackets presents a 
value of the independent variable (TEMP) and the second one 
the corresponding value of the dependent variable (RGR); the 
three dots at the end of the first line indicate that the table 
is continued on the next line. The AFGEN function finds the 
value of the RGR at the current temperature by linear inter­
polation between the tabulated values: i.e. if TEMP equals 25°, 
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then RGR equals .16 + (5/10)(.21 - .16) = 0.185 

Exercise 11 
Enter the tabulated data of FUNCTION RGRTB on the graph of 
Exercise 10 and join these data points by straight lines. This 
broken line now represents the relation between RGR and TEMP 
as introduced in the simulation model. Try to match your 
smoothed curve more satisfactorily by tabulating values for 
RGR at 2.5 °C intervals. This does not seem worthwhile. Why not? 

The next step is to define how the forcing variable TEMPerature 
varies with TIME. This may also be done with a function gener­
ator: 

TEMP = AFGEN (TMPTB,TIME) 
FUNCTION TMPTB = 

These tabulated functions of forcing variables tend to be very 
long because they have to cover the whole simulated time-span 
in sufficient detail. Often it suffices to present the experi­
mental data by some mathematical function. For instance, if 
there is a daily temperature variation, a sinusoidal function 
may be used: 

TEMP = AVTMP + AMPTMP*SIN(6.2832*TIME/24.) 

The function SIN calculates the sine value of the variable in 
the argument: 6.2832 stands for 2 x TT, TIME is the simulated 
time in hours rince the start of the simulation and 24 stands 
for the hours in a day. The average temperature and the ampli­
tude of the temperature are given by 

PARAMETER AVTMP = 20.,AMPTMP = 10. 

Exercise 12 
Prepare a graph that shows the course of temperature during 
24 hours. At what time is the temperature at its maximum? 

The variable TIME is always needed in dynamic models and the 
simulation language automatically keeps track of it. 

Exercise 13 
Reason that TIME could also be kept track of by the statement: 

T = INTGRL(0.,1.) 
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A facsimile of the program and the output is given in Fig.2. 
Note that the variables RGR and GR are entered on the PRTPLT 
card between brackets. Only the printed output of these vari­
ables is requested, not a graphical display. Note also that 
the 'UPDATE1 contains all equations in computational order, 
whereas in the program itself they are presented in some 
conceptional order. It is obvious that the readability of such 
simple simulation programs depends little on the sequence of 
the equations. 
I SSfCONTIHUOUS SYSTEM MODELING PROGRAM III V1M3 TRANSLATOR OUTPUTSSS 

TITLE RELATIVE GROWTH PATE TFKPEPATURE DEPENDENT 
A*INTGRL(IA,GR) 
GR«RGR»A 
PGR«AFGEH(RGPTB,TEMF) 
TEMp«AVTMP • AMrTMP«SIN(6.2832#TIMF/24.) 

INCON I A K J . 
FUNCTION R G R T B * ( 0 . # 0 . ) , U 0 . , 0 , 0 8 ) , ( 2 0 . , 0 . l 6 ) , ( 3 0 . , 0 . 2 1 ) , . . . 

( 4 0 , # 0 . 2 4 ) , ( 5 0 . , 0 . 2 5 ) 
PARAMETER AVTMPs20.,AMPTMP*10. 
TIMER FiNTIM«48.,OUTDEL«l.,DELT=0,5 
OUTPUT A,RGR,CR 
METHOD RFCT 
END 
STOP 

• • • OUTPUT VARIABLE SEQUENCE # • • 
TEMP RGR GR A 

MAIM, UPDATE.riO rOPTKAN V .5 (515) /KI 4-JAN-70 17125 PACE 1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00001 
00009 
00010 
ooott 
00012 
00013 
00014 
00015 
00016 
00017 
00011 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00021 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 

C 
C 

SUBROUTINE UPDATE 

COMMON 
l»ZZ00OO 
uzzriNT 
1,ZZDELX 
1,RGRTB 

TIME 
,DELT 
,PRDEL 
«A 
,RGR 

,ZZDELT ,D£LMIN 
,ZZPRDE ,0UTDEL 
,GR ,1k 

itnuKic , KUK #TEMP 
COMMON/ZZHI5T/*EEP,NALARM,IZ0000,IZ0001 
REAL IA 
REAL*! ZZTIME 
EQUIVALENCEUZTXKEtTXME ) 
CO T0(39995,39996,39997,39991)»XZ0000 

C SYSTEM SEGMENT OF MODEL 
39995 CONTINUE 

CO TO 39999 
C INITIAL SEGMENT or MODEL 
39996 CONTINUE 

CO TO 39999 
C DYNAMIC SEGMENT OF MODEL 
39997 CONTINUE 

TEMPBAVTMp*AMPTNP«SXN(6.2632*T!KE/24.) 
PCR-AFCENC I,PCFTB,TEMP) 
GR«RCR«A 

C A «INTGRL (IA »GR 
GO TO 39999 

C TERMINAL SEGMENT OF MODEL 
39991 CONTINUE 
39999 CONTINUE 

RETURN 
END 

,ZZDELN 
,ZZ0UTD 
,AMPTMP 

,FINTIM 
,DELMAX 
#AVTMP 

CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
CSMPDECK 
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0.0OO0OF«00 
1 .0000 
2 , 0000 
1 .0000 
4 . 0 0 0 0 
9 , 0 0 0 0 
• , 0 0 0 0 
1 .0000 
1 ,0000 
9 . 0 0 0 0 
10 .000 
11 .000 
12 .000 
11 .000 
1 4 . 0 0 0 
I S . 0 0 0 
H . 0 0 0 
1 7 . 0 0 0 
1 1 . 0 0 0 
1 9 . 0 0 0 
2 0 . 0 0 0 
2 1 . 0 0 0 
2 2 . 0 0 0 
2 J . 0 0 0 
2 4 . 0 0 0 
2 9 . 0 0 0 
2 4 . 0 0 0 
2 7 . 0 0 0 
2 1 . 0 0 0 
2 9 . 0 0 0 
10 .000 
11 .000 
12 .000 
1 1 . 0 0 0 
1 4 . 0 0 0 
1 9 . 0 0 0 
14 .000 
17 ,000 
I t . 0 0 0 
19 .000 
4 0 . 0 0 0 
4 1 , 0 0 0 
4 2 , 0 0 0 
4 1 . 0 0 0 
4 4 . 0 0 0 
4 9 . 0 0 0 
4 4 . 0 0 0 
4 7 . 0 0 0 
4 1 . 0 0 0 

t i l l CONTINUOUS 

A 
1 ,0000 
1 .1499 
1 .1149 
1 .4971 
2 .0004 
2 . 4111 
2 .9494 
1 .4204 
4 .4094 
9 . 1 4 2 1 
4 . 4 2 1 1 
7 . 4 4 9 * 
1 .9999 
10 .449 
11 .999 
11 .111 
14 .479 
14 .001 
17 .119 
H . 7 9 4 
2 0 , 1 7 2 
2 2 . 1 2 4 
24 .719 
2 7 . 9 7 2 
1 2 . 1 9 1 
1 7 , 4 2 2 
44 .914 
9 1 , 2 1 9 
4 4 , 1 1 4 
7 1 . 1 1 0 
9 9 . 1 4 4 
114 ,42 
141 ,10 
171 .11 
204 .99 
2 4 9 . 1 7 
249 .17 
119 .19 
1 4 2 . 9 1 
4 2 1 , 0 4 
4 7 1 . 9 1 
9 1 4 . 9 9 
9 9 7 , 4 4 
4 0 1 . 1 1 
4 9 9 . 1 1 
717 .14 
7 9 7 . 0 1 
• 9 9 . 9 1 
1014 .1 

0 , 0000E*00 
I . 0 0 0 0 O 0 2 
0 , 0 0 0 0 0 0 0 

'%•• c* 
• RGft 
• A 

X — • 
X 
X 
X 
X 
X 
X 
X 
X 
X 
I " . 
X 
X 
X 
X 
X 
X 
X* 
x« 
X * 
X»-« 
X . 
IX 
IX 
I X . 
I X 
I 
1 
I 
I 
I-
I 
I 
1 
I 
I 
I 
I 
I 
I 
I-
1* 
• 
I* 
I 
1 
I 
I 
I 

• X 
X 

• X 
• X 

• X 
• X 

• X 
• X 

STITCH PODrLINC PRPC'AN III 

- I — . . - . . . - . - . — . . . . . . . . . . . 
I I • 
I 1 
I I 
I I 
X I 
I 1 
1 I 
t I 
I 1 

. 1 . . . . . . . . . . . . . . . . . . I . . . . . . . 
I I • 
I • 
X • I 
• 1 
I I 
1 I 
I I 
I I 
I I 

> I . . . . . . . . . . . . . . . . . . I . . . . . . . 
I 1 
• I 
X • 1 
J • 
I X • 
X X 
X I 
X I 
X I 

. 1 . . . . . . . . . . . . . . . . . . } . . . . . . . , 
X I 
X I 
I I 
I X 
I X • 

x*i • 
X I • • I 
X • • I 
X I . I 

.X — I — — . . . . . - • . — — I — — . — . 
X I • I 
X I • I 

X • 
I X I • 
I X I < 
• X I 
I • I 
I • 

» 1 " 1 EXECUTION OUTPUT 444 

• X 

X • 

2 0 0 . 0 
0 ,2400 

1 2 0 0 . 
FCR 
0 . 1 4 0 0 0 
0 .17294 
0 .11900 
0 . 1 9 9 1 * 
0 . 20110 
0 .20410 
0 .21000 
0 .20110 
0 .20110 
0 .19914 
0.1*900 
0 .17294 
0 .14000 
0 .11929 
0 . 1 2 0 0 0 
0 . 1 0 1 4 1 
9 . 0 H 7 4 E - 0 
I . 27297E-0 
•.OOOOOE-0 
• . 21242E-0 
9 .0TJI5E-0 
0 . 1 0 1 4 1 
0 .12000 
0 .11410 
0 .14000 
0 .17294 
0 . 1 * 9 0 0 
0 . 1 9 9 1 * 
0 . 20110 
0 . 2 0 ( 1 0 
0 . 21000 
0 . 2 0 * 1 0 
0 .20110 
0.19919 
0 ,11900 
0 ,17294 
0 .14000 
0 .11929 
0 .12000 
0 .10141 
9 .07170C-0 
I .27294E-0 
* . 000001 -0 
• . 27249E-0 
9 .07190C-0 
0 . 1 0 1 4 1 
0 .12000 
0 ,11910 
0 , 14000 

- I 
I 
X 
I 
I 
I 
I 
I 
I 
I 

• 1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- I 
r 
i 
i 
i 
i 
i 
i 
i 
i 

- i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

• i 
i 
i 
i 
i 
i 
i 
i 
i 

CR 
0 .14000 
0 . 2 0 2 1 1 
0 .29421 
0 . 1 2 1 7 1 
0 .40472 
0 .90440 
0 . 4 2 2 7 * 
• • 7 9 4 1 2 
0 . 4 * 4 4 4 

1 .0417 
1 . 1 M 1 
1 .1221 
1 .4J44 
1 .4944 
1 ,4274 
1 . 1 7 4 * 
1 .1111 
1 .1217 
1 . 1 * 4 * 
1 . 9 9 1 * 
1 . ( 4 1 1 
2 , 1090 
2 ,9742 
1 . M 4 4 
9 . 1 4 9 2 
4 ,9044 
• . 2 1 9 2 
10 .410 
11 .079 
1 4 . 2 ( 9 
20 .027 
2 4 . 2 9 1 
2 4 . ( 2 * 
11 .944 
K . 2 1 2 
4 2 , 9 2 1 
4 4 . 2 9 4 
44 ,717 
4 9 . 9 0 1 
4 4 . 2 7 2 
4 2 . M O 
42 .944 
4 4 . 9 9 4 
4 4 . M 9 
9 9 , 4 1 1 
7 4 , 2 9 1 
9 9 , 4 4 9 
129 .10 
149 .44 

Fig. 2 J A simulation program for exponential growth with a 
temperature dependent relative growth rate. 

Exercise 14 
Make reruns with a two times larger and two times smaller value 
of DELT than used in the program. Is DELT=0.5 hour a reasonable 
choice? Which values have to be entered on the parameter card 
to obtain results that are the same as those of the program 
in Fig. 1? 

2.3 Time constant and time interval of integration 

When the reaction time of a car driver is too long, accidents 
will certainly occur; The reason is that a system must be 
regulated with a reaction time shorter than the period in which 
the system can change to a certain extent. This period of time, 
which is characteristic for the behaviour of a system, is called 
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its time constant. For example, the time constant of a human 
population is about ten years, of the stock of a bakery it is 
a few hours. In a simulation model one does not speak about 
reaction time, but about time-interval of integration. However, 
because cf the feedbacks that are always present in a model, 
time interval of integration is equivalent to reaction time. 
Therefore, to obtain reliable results, a system must be simu­
lated with a time-interval of integration less than its time 
constant. How much less still depends on the type of integration 
method. 
The program, given in Fig. 1, is used to give a more precise 
indication of the time constant of a system. The only system 
parameter containing the dimension time, is the relative growth 
rate RGR. Therefore the time constant must be related to this 
parameter. Since RGR has the unit time"1, an obvious definition 
of the time constant is the inversion of the relative growth 
rate. The growth rate GR is thus defined by A/TAU where TAU is 
the time constant and equal to RGR"1. In more complicated 
systems each integral has its own time constant, but the timo-
interval of integration is limited by the smallest time constant 
that occurs in the system. A basic method to find the time 
constant of each integral in a complicated system is to reduce 
the integral equations to the following expressions: 

Al = INTGRLCIAJ, Ai/TAUx + all other influences) 
A2 = INTGRL(IA2, A2/TAU2 + all other influences) 

*t is sometimes useful to have this scheme at hand, since even 
in complicated systems one feedback loop with a small time 
constant may be clearly distinct from the rest of the system. 
Negative and positive feedbacks can be distinguished by the 
sign of TAU. In exponential growth, TAU is positive and the 
feedback is positive. In exponential decay, TAU will be negative. 
The sign of TAU is immaterial for the time-interval of integra­
tion, so that only its absolute value need be used. 
There is still the ratio of the time-interval of integration 
and the time constant of the system to be considered. In 
Exercises 5 and 6 the time constant of the system was 10 hours, 
^ time intervals of 2.1 and 0.5 h were tried. The exact solu­
tion at time 10 is also known. 

Exercise 15 
Construct a graph with A at time 10 versus DELT. Use the 
e*act solution for DELT=0. 

t is clear from the graph of the exercise that the extrapolated 
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numerical solution for DELT=0 coincides with the analytical 
solution. This graph provides a method to obtain an accurate 
solution, but instead an equation giving an estimate for the 
relative error as function of DELT would be more useful. As 
will be shown, an acceptable time interval can then be derived 
from the expression for the relative error. 

2.4 Integration method and time interval 

According to the rectilinear integration method, the value of 
integral A after one time interval equals At+At*RGR*DELT 
(in exponential growth), so that the rate at time t+DELT is 
given by RGR*(At + At*RGR*DELT). 
A better estimate for A at time t+DELT can be obtained by 
averaging the rate at time t and at time t+DELT. The average 
rate during the time interval is then RGR*(At + At*RGR*DELT/2), 
so that the corrected estimate for At+DELT becomes 
At*(l + RGR*DELT + *2* RGR2* DELT2) . This integration procedure 
is known as the trapezoidal integration method and can be 
invoked in a CSMP program by inserting the card METHOD TRAPZ 
instead of METHOD RECT. The improvement of the result of this 
method with respect to the rectilinear method is given by the 
last term *2*RGR2*DELT2*At. Of course, even this result is not 
exact, but it is a safe assumption that the deviation from the 
'true' answer is of the same order as the correction of the 
last term. Therefore the relative error that is made when 
METHOD RECT is used, is about ,2*RGR2*DELT2*At/At = *2*RGR2*DELT2 

for each time-interval of integration. Every integration step 
this relative error is added to the present one, so that after 
n integration steps the total relative error amounts about 
n*»2*RGR2*DELT2, or lj*RGR2*DELT*TIME, when n is equal to TIME/ 
DELT. 

Exercise 16 
What is, according to this equation, the largest acceptable 
time-interval in Exercise 15 when a relative error of 5 per­
cent at the end of the simulation run is acceptable? Use the 
graph, prepared in Exercise 15 and compare the results. 

The expression for the relative error of METHOD RECT is found 
by a comparison with the result given by METHOD TRAPZ. The 
trapezoidal integration method gives a result that is one 
order more accurate than the rectilinear one. Similarly, 
the relative error in TRAPZ can be estimated by comparison with 
the next better integration method, and so on. The error of 
TRAPZ turns out as 1/6*RGR *DELT3*At, so that the totai relative 
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error after n intervals of integration is given by 
1/6*RGR3*DELT2*TIME when n is equal to TIME/DELT. Hence the 
relative error is proportional to DELT2. An instructive exercise 
is now to repeat Exercise 15 with METHOD TRAPZ and time-inter­
vals of 1, 2, 5 and 10 hours. 
The principle of comparison of the result of two integration 
methods is incorporated in METHOD RKS which chooses its own 
time interval of integration. When the results of two inte­
gration methods, those of Runge-Kutta and Simpson, deviate too 
much, the time-interval DELT is halved. If the error is much 
smaller than required, DELT is doubled for the next step. 
In this way the size of the time-interval is automatically 
adapted to the time constant of the system. 
Sometimes the error criterion is not met by decreasing the 
time-interval. Then the error message 'DELT IS LESS THAN DELMIN' 
is produced, and the simulation is automatically terminated. 
Then it is advisable to look for a programming or conceptual 
error. Because of the feature of automatic adaption of the 
time-interval of integration, the method RKS is recommended 
as a standard method. 
!n the RKS method the statements of the computer programs are 
executed many times, only to obtain a preliminary estimation 
of the rates. How many times this execution is done can be 
checked by introduction of some counters into the program. 
To this end an initial segment is introduced by the card 
INITIAL, in the initial segment the counters COUNTl and COUNT2 
are set to zero. Then the part of the simulation program, that 
must be evaluated each time interval, is opened with the card 
DYNAMIC. In the last part of the DYNAMIC segment a section is 
opened with the card NOSORT to indicate that the statements 
after this card can not be sorted. It is closed with the card 
SORT. 

NOSORT 
C0UNT1=C0UNT1+1 
C0UNT2=C0UNT2+KEEP 

These statements cannot be sorted because the same variables 
occur to the left and to the right of the equal sign. Each time 
this statement is passed, COUNTl is incremented by one, and 
C0UNT2 by KEEP. The variable KEEP is an internal CSMP variable 
and has the value one if the integration step is actually 
executed, and a value zero if the statements are only executed 
f°r a preliminary evaluation. In this way both the number of 
time intervals and the number of calculations of the whole 
Program can be kept track of. A NOSORT section should not be 
bitten in the middle of a program, as then the parts above 
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and below this section are sorted separately. 

Exercise 17 
Add the discussed statements to the programs of Fig. 2. Try the 
methods RECT with DELT=0.5, TRAPZ with DELT=1, RKSFX with 
DELT=2 and the method RKS. Which combination do you prefer? 

As has been said the RKS method is preferred for convenience 
and accuracy. There are however circumstances when RKS may not 
be used. Sometimes the content of an integral has to be changed 
instantaneously. For instance, when a crop is harvested, the 
standing biomass is suddenly decreased. Contents of integrals 
can only be changed by their rates. When an integral must be 
emptied suddenly, the rate of outflow must be defined as the 
content divided by the time interval. Thus application of the 
rectilinear method gives for the content A at time t+DELT: 

A^r^rm = A*. - DELT*(A /DELT) t+DELT t t 

so that the integral is emptied indeed. In this discontinuous 
situation sophisticated integration methods cannot be used. 
For instance, the average content during the last time-interval 
is A/2, so that the use of the trapezoidal method results in 
the removal of A/2 only. A Runge-Kutta method will give even 
odder results. The rule is that the rectilinear method has to 
be used, whenever a division by DELT occurs in one of the 
definitions of the rates of change of the integrals. The 
time-interval has then to be determined by trial and error 
without help of a RKS method. 
To conclude this section a comparison of the methods RECT, 
TRAPZ and RKSFX (a Runge-Kutta/Simpson integration method 
with fixed time-interval) is given. The relative error, in 
method RECT, is given by *2*RGR2*DELT*TIME. For normalization 
it is useful to take TIME equal to the time constant, that is 
equal to RGR"1: After this period, the total amount equals the 
initial amount multiplied or divided by the number e. The 
relative error after this period becomes *j*RGR*DELT. 
It can be shown that the expression for the relative error of 
the method TRAPZ and RKSFX are 1/6*(RGR*DELT)2. and 
1/120*(RGR*DELT) respectively. The combination 
RGR*DELT = DELT/TAU gives the ratio of the time-interval and 
the time constant. In the following table the value is given 
for required relative accuracies of 10%, 1% and 0.1%. 
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RECT 
TRAPZ 
RKSFX 

10% 
0.2 
0.8 
1.9 

1% 
0.02 
0.25 
1.0 

0.1% 
0.002 
0.08 
0.6 

In method RECT the program is executed once per time-interval, 
in TRAPZ twice and in RKSFX 4 times. Therefore an accuracy as 
high as 0.1% can be obtained by 500 computations with RECT, 
by 25 computations with TRAPZ and by only seven computations 
with RKSFX. Thus RKSFX is by far preferable, if the time 

constant is known. It is also clear that with RKSFX not much 
computation time is saved by accepting an accuracy of 10% instead 
instead of 0.1%. 
Of course much more can be said about the use and misuse that 
can be made of numerical integration methods, but this goes 
beyond the scope of this book. More information can be found 
in Milne (1960). 
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3 The growth of yeast 

J.I Description of the system 

Growth is only exponential as long as the relative growth rate 
remains constant. This is usually so with yeast when it is 
grown under aerobic conditions with a sufficient supply of 
sugar and some other growth essentials. The sugar is then con­
tinuously consumed to provide the 'C skeletons' and the energy 
for the growth of new yeast cells and for maintenance of the 
yeast. The end-products, C02 and H^O, of the sugar broken down 
in the respiratory process do not pollute the environment of 
the yeast. However, if yeast grows under anaerobic conditions, 
one end-product of the respiratory processes is alcohol which 
may accumulate in the environment. This slows down and ultimately 
stops the development of yeast buds even when there is still 
enough sugar available for growth. 
Growth curves for yeast that result under such conditions are 
given in Fig. 3. It should be noted that yeast once formed 
remains because only the bud formation is affected by the alco­
hol; the yeast itself is not killed. Two of the four growth 
curves are from an experiment of Gause (1934) with monocultures 
of the yeast species Saccharomyces cerevisiae and Schizosaccha-
romyces 'Kephir'. It is obvious that the initial relative growth 
rate and the maximum volume of yeast that is ultimately formed 
is highest for the first species. 
Gause cultivated both yeast species not only in monoculture, 
but also in mixture. The results of this experiment are also 
presented in Fig. 3 by the other two curves. A comparison of 
the growth of both species in mixture with their growth in 
monoculture shows that both affected each other in the first 
situation. It was proposed by Gause that this was due to the 
formation of the same waste product, alcohol, that affected 
the bud formation of both species. In this chapter we shall 
analyse whether this explanation is acceptable by constructing 
a model that simulates the growth of two species independently 
and in mixture under the assumption that the production of the 
same harmful waste product is the only cause of interaction. 
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Schizosaccharomyces 

Volume 
of yeast 

Saccharomyces 

40 80 120 
hours 

Volume 
of yeast 

o r measured mono 
A = measured mixed 

s simulated mono 
=simulated mixed 

60 
hours 

Fig. 3 | The growth of Saccharomyces cerevisiae and Schizo-
saccharomyces 'Kephir' in monoculture and in mixture. The 
observational data were obtained by Gause (1934) and the curves 
are simulated, as explained in the text. 

3.2 Relational diagrams 

*t is sometimes advantageous to summarize the main interrela­
tions of a system in a relational diagram, and to formulate 
the quantitative aspects at a second stage of actual model 
building. Such relational diagrams may be presented in various 
Ways, but the conventions introduced by Forrester (1961) prove 
to be the most convenient in ecology, although they were first 
developed for the presentation of industrial systems. Forrester 
assigned special symbols to the various types of variables that 
may be distinguished in state determined systems. The state 
variables or the contents of integrals are presented within 
rectangles, the rates of changes within valve symbols, auxiliary 
variables within circles and parameters are underlined. The 

low of material is presented by solid arrows and the flow of 
information by dotted arrows. 
The simple system of exponential growth is drawn according to 
Forrester's conventions in Fig. 4. The amount of organisms 
l s a state variable; its value increases by a material flow, 
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RGR 

__:J 
Fig. 4 J A relational diagram of exponential growth, drawn 
according to the conventions of Forrester. 

whose rate is the growth rate. The broken line between the 
state variable and the rate shows that the rate depends (in 
some way or another) on the state variable and the other broken 
line shows that the rate also depends on a parameter which is 
here considered to be a constant. This figure contains all the 
interrelations that play a role, but does not consider their 
details. For instance, in the relational diagram, it is still 
not stated whether the growth rate is proportional to the amount 
of organisms or to some power of this amount: this information 
is given later in the simulation program. 
The relational diagram for the yeast system is presented in 
Fig. 5. There are three state variables; the amount of the first 
and second yeast species and the amount of alcohol. The lines 
of information flow show directly that the growth of yeast is 
supposed to depend on the amount of yeast, a relative growth 
rate and an auxiliary variable: a reduction factor. This reduc­
tion factor, in its turn, is given as a function of the amount 
of alcohol that is present. The relations are, of course, the 
same for both yeast species although numerical values of para­
meters and functions may be different. The amount of alcohol 
increases by the rate of alcohol production of both species. 
The alcohol production of each species is supposed to depend 
on the growth rate of the species and on an alcohol production 
factor. 
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ale. prod. 
factor 1 

f 

ale. prod, 
factor 2 

Fig. 5 J A relational diagram for the growth and interference 
of two interfering yeast species 

Exercise 18 
In Section 1.4 it is said that rates do not depend on each 
other in state determined systems. Why is the line of infor­
mation flow between the rate of growth and the rate of alcohol 
production not in contradiction with this principle? 

Relational models should contain as few details as possible, 
otherwise they are very difficult to grasp and so defeat their 
purpose. In studying them, much emphasis should be given to 
aspects that are not incorporated. For instance, in the present 
scheme there are no loops that relate the alcohol production 
directly to the amount of yeast, indicating that the cost of 
maintenance of yeast cells is not accounted for. The amount of 
sugar is also not considered because it is assumed to be always 
available in sufficient amounts. 

Exercise 19 
Incorporate the aspect of limited food supply in the relational 
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diagram 

3.3 Simulation 

The growth of the first yeast species [Saccharomyces) is now 
simulated by stating that the amount of yeast equals 

Yl = INTGRL(IY1,RY1) (3.1) 

in which 

INCON IY1 =0.45 

is the initial amount of yeast in the arbitrary units, used by 
Gause, and the rate of yeast growth is given by 

RYl = RGR1*Y1*(1.-RED1) (3.2) 

The relative growth rate is defined with 

PARAMETER RGRl = 

It was observed by Gause that in both species the formation of 
buds was completely stopped at some maximum alcohol concentra­
tion which is given as a percentage by 

PARAMETER MALC =1.5 

The dependence of the reduction factor on the alcohol concen­
tration may now be obtained with an arbitrary function genera­
tor. 

REDl = AFGEN(RED1T,ALC/MALC) 

The most elementary assumption is that bud formation decreases 
linearly with increasing alcohol concentration, which is intro­
duced with 

FUNCTION RED1T = (0.,0.),(1.,1.) 

Exercise 20 
Express REDl directly in ALC and MALC without using the function 
generator. f 

The alcohol concentration itself is the integral of the alcohol 
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production rate which is zero at the initialization of growth: 

ALC = INTGRL(IALC,ALCPl) (3.3) 
INCON IALC = 0. 

and the alcohol production rate is proportional to the growth 
rate of yeast: 

ALCP1 = ALPFl*RYl (3.4) 

Two values need to be determined now: the relative growth rate 
and the alcohol production factor. During the early stages of 
growth, RED is practically zero, so that the growth rate is 
equal to RGRl x Yl. This allows a first estimate of RGRl from 
the data in Fig. 3 for the monoculture. ALPFl follows from the 
observation that growth was terminated when the alcohol concen­
tration equalled 1.5 percent and the amount of yeast about 
13 units. 

Exercise 21 
What is a first estimate of RGRl in the correct units? What is 
the value of ALPFl in the correct units? Is this value only 
physiologically determined or does it also depend on the volume 
of water in the vessels with yeast? What is the value of IALC 
when not only the initial amount of yeast is introduced at 
initialization, but also the corresponding amount of alcohol? 
Estimate the same values for Schizosaccharomyces, it being 
known that the alcohol concentration at which the formation 
of buds is completely inhibited is also 1.5 percent. Which 
species has the larger alcohol production factor? 

The structural equations that describe the growth of the second 
species {Schizosaccharomyces) are, of course, the same as those 
for the first, so that in a model for concurrent growth it 
suffices to write them twice: once with a 1 at the end of the 
relevant symbols and once with a 2. The equation that describes 
the alcohol concentration becomes 

ALC = INTGRL(IALC,ALCP1 + ALCP2) (3.5) 

This equation holds on the condition that both species inter­
fere only with each other through the production of the same 
alcohol. 
Fig. 6 shows the resulting simulation program with MALC identi­
cal for both species and the proper data. In the main program 
IY1 and IY2 are both set to 0.45 units, so that the growth in 
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TITLE MIXED CULTURE OF YEAST 
Y1=INTGRL(IY1,RY1) 
Y2=INTGRL(IY2,RY2) 

INCON IY1=0.45,IY2*0.45 
RY1»RGR1*Y1*(1.-RED1) 
RY2»RGR2*Y2*fl.-RED2) 

PARAMETER RGR1«0.21,RGR2»0.06 
RED1=AFGEN(RED1T,ALC/MALC) 
RED2=AFGEN(RED2T,ALC/MALC) 

FUNCTION RED1T- (0 . , 0 . ) . ( 1 . . 1 . ) 
FUNCTION RED2T«(0 . ,0 . ) , (1 . ,1 . ) 
PARAMETER HALO 1.5 

ALC*INTGRL(IALC,ALCP1+ALCP2) 
ALCP1=ALPF1*RY1 
ALCP2»ALPF2«RY2 

PARAMETER ALPF1=0.12,ALPF*0.26 
INCON IALC*0. 
FINISH ALC*LALC 

LALC=0.99*MALC 
TIMER FINTIM*150.,OUTDEL*2. 
OUTPUT Y1,Y2,ALC 
END 
STOP 
ENDJOB 

Fig. 6 | A simulation program for the growth of two yeast 
species t h a t i n t e r f e r e through the production of the same waste 
product ( a lcohol) . 

the mixture is simulated. The two monocultures are simulated 
in reruns. 
FINTIM is set at 150 hours, but the two lines 

FINISH ALC = LALC 
LALC = 0.99 * MALC 

are inserted to avoid unnecessary 'number-grinding', when the 
alcohol concentration is close to its maximum. This condition 
FINISH indicates that the simulation is terminated as soon as 
the alcohol concentration reaches 99 percent of its maximum 
value. 
The relative growth rates and the alcohol production factors 
are chosen such that the results of the two experimental mono­
cultures are matched as well as possible. A comparison of the 
mixtures (Fig. 3) shows that the actual growth of Schizo-
saccharomyces is slightly more than the simulated growth. 
Barring statistical insignificance, we must conclude that both 
species do not interfere with each other's growth through the 
production of alcohol only, as assumed in the model. It may be 
that Schizosaccharomyces produces some other waste product 
that is harmful for the other or that Saccharomyces produces 
a waste product that stimulates the other. These possibilities 
cannot be distinguished from each other without additional 
information. And as long as this is not available it is a futile 
exercise to simulate such suppositions. 
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Exercise 22 
Try to reason whether a similar effect could result from the 
supposition that REDT for the species is not given by 

FUNCTION RED1T= (0.,0.),(1.,1.) 
FUNCTION RED2T= (0.,0.),(1.,1.) 

but by# for instance: 

FUNCTION RED1T= (0.,0.),(0.5,0.75),(1.,1.) (Sacch.) 
FUNCTION RED2T= (0.,0.),(0.5,0.25),(1.,1.) (Schizos.) 

If this is too difficult, you may find the answer by simulation. 

These simulation programs are conveniently amended. For instance, 
the yeast cultures may be washed continuously with water that 
contains sufficient sugar. The integral of the alcohol concen­
tration is then 

ALC = INTGRL(IALC,ALPFl*RYl + ALPF2*RY2 - ALC/WSC) 

in which the washing constant (WSC) is expressed in hours and 
presents the average residence time of the water in the vials 
with yeast, as will be shown in Section 6.4.2. 

Exercise 23 
What is in due course the alcohol concentration and the absolute 
growth rate of both yeast species for WSC equal to 10 hours? 

3.4 Logistic growth 

The simulation program in Section 2.2 was developed from the 
differential equation form. The differential equation form for 
the present problem will now be derived from the structural 
equations of the simulation program, but only for situations 
where the reduction factor is inversely proportional to the 
alcohol concentration so that (1-RED) may be replaced by 
(1-ALC/MALC). Since the alcohol concentration is equal to the 
amount of yeast times the alcohol production factor according 
to the Eqns (3.3) and (3.4), it is then possible to rewrite 
Eqn (3.2) in differential equation form as 

dY/dT=RGR x Y x (1-Y/YM) (3.6) 

in which Y is the amount of yeast, T is the time and YM stands 
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for the maximum amount of yeast. This equation may be integrated 
and then becomes 

YM 
Y = V3.7) 

1+Ke-RGRxT 

Exercise 24 
Express YM in MALC and ALCPF. What are the values of YM for 
both species of yeast? Show by differentiation that Eqn (3.7) 
is an integrated form of Eqn (3.6). Express the initial amount 
of yeast in the constant K and YM of Eqn (3.7). Calculate the 
time course of the growth of Saccharomyces and compare the 
result with the simulated course. Why does the differential 
equation only hold for situations where the initial amount of 
yeast is very small, whereas the simulation program is gener­
ally valid? (see also Exercise 21). 

The growth curve that is described by the differential equation 
and also presented by the simulated growth curves for the 
monoculture yeast in Fig. 3 is called the logistic growth curve, 
This S-shaped curve is symmetrical, but this symmetry hinges 
on the assumption of inverse proportionality between the reduc­
tion factor of growth and the amount of growth that has been 
made. Especially Lotka (1925) and Volterra (1931) generalized 
the logistic differential equation for interfering species 
with the following set of differential equations: 

dYl/dT = Rl x Yl x (1 - Al x Yl - Bl x Y2) 
dY2/dT = R2 x Y2 x (1 - A2 x Yl - B2 x Y2) 

In general this set of differential equations cannot be inte­
grated into analytical expressions for Yl and Y2 as functions 
of time and therefore it is wiser to leave such simplifying 
approaches alone and to formulate the problem directly in 
terms of a simulation model. 

Exercise 25 
Show to what extent the simulation model for mixed growth of 
yeast is covered by this set of differential equations. Express 
the constants Rl, R2, Al, A2, Bl and B2 in the constants RGR1, 
RGR2, ALPFl, ALPF2 and MALC. Which constants of the differen­
tial equations are the same? Do they remain the same in situa­
tions where a species produces a waste product which is harmful 
for the other species only? 
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4 Interference of plants 

4.1 Replacement series 

The interference of plant species in the field is most con­
veniently studied by experiments based on the replacement 
principle. 
Thus experimental plots are divided into small equal areas, 
usually squares. A seed of the first species is placed in each 
square of one plot and a seed of the second species in each 
square of another. In this way monocultures of the two species 
are obtained. On another plot, the seeds of both species are 
placed alternatively in the squares to create a mixture in 
which half of the space is allotted to one species and the 
other half to the other. Other mixtures may be obtained by 
allotting the individual squares to the species in other pro­
portions. The relative seed density of a species in a mixture 
is now defined as the seed density of the species in the mix­
ture divided by its seed density in the monoculture. Obviously, 
the sum of the relative seed densities zj + z2 then equals 
always 1. The yields of the species in monocultures are repre­
sented by the symbols Mj (zj = 1, z2 = 0) and M2 (zj = 0 , z2 = 1) 
and the yield of each species in the mixture by Oj and 02, 
Instead of a single seed also n seeds of the one species or m 
seeds of the other may be placed on each square, for instance 
when the individual plants of the species are of different 
sizes. 
An experiment is now considered where the individual squares 
are so large that the two species do not interfere with each 
other. The seed densities are then low and the yields of both 
species consequently small. But M^ and M2 are of course not 
necessarily the same. Here the yield of each species in the 
mixture may be represented by 

zi z2 

0 _ M a n d 0 = M (4.1) 
zl+z2 zl+z2 

The linearity is due to the seeds being so far apart that the 
plants do not interfere with each other. 
The yields may be expressed in dry weight per unit surface or 
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number of seeds per unit surface for seed-forming species. In 
the latter case the relative reproductive rate of the species 
may be defined as 

Oi/zi 
ai2 = 5J7i7 = Ml/M2 (4-2) 

and appears to be equal to the ratio of the yield of the 
species in monoculture. If a ^ is lr the species match each 
other.' if 0112 *s greater than 1, species 1 gains on species 2: 
the latter eventually disappears from the mixture, if the har­
vested mixture is resown repeatedly at the original density. 
What happens if the individual squares on the experimental 
plots are made smaller and smaller? Then the seed rates of 
both species increase accordingly and so do the yields. But 
this is not the only effect. At a certain stage the space al­
lotted to each seed is so small, that the plants interfere with 
each other. If the species have equal competitive ability one 
species will not infringe upon the space allotted to the other 
and Eqn (4.1), resulting in a linear relation between seed rate 
and yield of the species in the mixture, is still valid. How­
ever, one species usually has more competitive ability and will 
infringe upon the space allotted to the other. Then the yield 
of this species in the mixture is higher than expected and that 
of the other species is lower. 
Many experiments of this type have been done and the result of 
one of them with barley and oats is given in Fig. 7. Here the 
squares were of two sizes: in one experiment 310 cm2 was allot­
ted to each seed and in the other 31 cm2, with the wide planting, 
barley infringed somewhat on the space of oats, but the yield 
curves were still practically straight. With the narrow planting, 
however, the yield of barley in the mixtures was relatively high 
and of oats relatively low, indicating that barley was by far 
the strongest competitor. The results of this and many other 
experiments with barley and oats (de Wit, 1960) show that the 
relative yield total of the mixtures, defined by 

RYT = Ol/Ml + 02/M2 (4.3) 

is practically equal to one. When RYT equals one, the species 
are mutually exclusive. This equality may be considered the 
operational definition of 'competing for the same niche1, to 
use a term out of the field of animal ecology. The relative 
reproductive rate for seed producing species is now not equal 
to the ratio of the yields in the monoculture but may be ex­
pressed by 
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Fig. 7 | Seed yields in number of kernels per m2 in a replace­
ment experiment of barley and oats at two densities of sowing 
(de Wit, 1960). 

0l/2l 

°12 = 02/z2 
* = k12(M1/M2) (4.4) 

in which kj2 is the relative crowding coefficient and charac­
terizes to what extent one species infringes upon the space 
allotted to the other. Eqn (4.3)(with RYT = 1) and Eqn (4.4) 
may be combined and replaced by 

Ol = 
ki2zx 

kl2zl + z2 
Mi and 02 = 

k1 2Z! + z2 

M2 (4.5) 

These equations are similar to (4.1), except for the relative 
crowding coefficient which weights the relative frequency of 
sowing. Similar relations hold when biomass yields are con­
sidered, except that the relative reproductive rate loses its 
meaning. 
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Exercise 26 
Show that the equations (4.5) are consistent with the equations 
(4.3) and (4.4). In the following table the data, used to draw 
Fig. 7(left side), are given (kernels m~ ) 

z,_ 0 0.2 0.4 0.6 0.8 1. 
b 

Barley 0 4270 8050 9920 10670 12100 
Oats 16200 11400 5800 3200 1330 0 

Calculate RYT in the four mixtures as well as k and a^o' 
Which species has the highest yield in monoculture and which 
species gains in competition? 

The yield curves in Fig. 7 have been calculated by assuming 
that the relative crowding coefficient is independent of the 
relative seed frequencies and that RYT = 1; the agreement 
between the curves and the experimental data over the whole range 
of frequencies show that this is a fair assumption. The con­
stancy of the relative crowding coefficient has been confirmed 
by the analyses of many other experiments (de Wit, 1960; 
van den Berg, 1968), so that it is reasonable to state the 
following. If the relative yield total in replacement experi­
ments equals about 1 over the whole range of seed frequencies, 
then the relative crowding coefficient may be considered inde­
pendent of these seed frequencies. 
Of course there are also situations where the species do not 
exclude each other, so that the relative yield total does not 
equal 1. The equations (4.5) cannot be applied in such situa­
tions. For instance, legumenous species and grass are not 
mutually exclusive when the first obtains its nitrogen from the 
air through nitrogen-fixing Rhizobium bacteria and the second 
from the soil and from the first species (de Wit et al., 1966). 
The relative yield total (RYT) may be also greater than one 
when one species has a longer growing period than the other. 
On the other hand, it has been shown that RYT is smaller than 
one when one species contains a virus which is harmful to the 
other (van den Bergh, 1968; Sandfaer, 1970). 

4.2 Density of sowing 

Replacement experiments between two species and density of 
sowing experiments of single species have much in common, as 
is conveniently illustrated by considering the results in 
Fig. 8 of replacement experiments between barley and oats at 
different pH values of the soil. As far as the relative crow­
ding coefficient is concerned, the two species matched each 
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other at a pH of 4. However, at a pH of 3.7, the relative 
crowding coefficient of oats with respect to barley was about 2, 
although the yields of the two species in monoculture were 
still the same as at the higher pH. Obviously a lower pH affects 
the competitive ability of barley. This effect was detrimental 
to yield when oats were around to claim the space, but not in 
monoculture. At a pH of 3.2 the situation was still worse: the 
relative crowding coefficient of oats with respect to barley 
increased to 3, whereas the yield of barley decreased to a low 
level. The physiological cause of the phenomenon is that the 
root development of barley is much more sensitive to low pH 
than of oats. The most extreme situation was reached at a still 
lower pH. Here the relative crowding coefficient of oats with 
respect to barley increased up to 20, whereas the barley did 
not grow at all, as reflected by its zero yield in monoculture. 
Such a replacement experiment of barley and oats in situations 
where barley does not grow at all is, in fact, an experiment 
on the density of sowing of oats. In other words density of 
sowing experiments" are a limiting case of replacement experi­
ments. Therefore the equations (4.5) not only describe the 
results of competition experiments, but those of density of 
sowing experiments as well. It is only necessary to give them 
a more suitable form. 
As one species of the replacement series does not grow at all, 
the second equation "may be omitted. The remaining equation is 
still in an unsuitable form because it is formulated in terms 
of relative seed frequencies and refers also to the species 
that is not sown or did not grow at all. A more suitable form 
is obtained when Zi/Zm is substituted for z\ and (Zm - Zi)/Zm 
for 22 in which Zm is the maximum seed rate used in the experi-

a 
100 kernels 

120^ 

• = barley 
• =oats 

60-

1z0 05 
Q-5 zb 1 

1 z 0 0.5 
9 5 2b 1 0 

1 z0 0.5 

kob=20 

0.5 zb 1 6 0.5 zb 1 
0.5 0 1 z. 0.5 0 

Fig. 8 | Replacement experiments of barley and oats at different 
pH-KCl values of the soil: 4, 3.7, 3.2, 3.1 for a, b, c, d, 
respectively (de Wit, 1960) 
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ments and expressed in absolute units, i.e. plants m~2. When 
the subscripts 1 are omitted, the first equation of (4.5) be 
becomes 

_ B x Z _ . . _. 
° " BTTT-l °m (4.6) 

Exercise 27 
Derive this formula and express the constants B and Om in the 
relative crowding coefficient k and seed rate Zm and the yield M. 

In Eqn (4.6) 0m and B are independent of the density of sowing Z. 
The dimension of Z is number of plants m~2 or a similar unit. 
Om is the theoretical maximum yield, in g m"2 for instance, 
that is obtained when the seed density is very high and B x Om 
is the yield of a single plant growing alone. B itself has the 
dimension of m2 plant"* and may be considered the amount of 
space that is occupied by a single plant growing alone. The 
value of O/Om has a lower limit of 0 and an upper limit of 1. 

Exercise 28 
Construct a graph from Eqn (4.6) for Om = 100, B = 0.05 and Z 
ranging from 0 to 100. Draw the asymptote Om and the initial 
slope B x Om of the curve. Mark along the horizontal axis the 
position where the yield is half of the maximum yield Om. Mark 
also the distance 1/B along the horizontal axis. Give now 
expressions for: 

Lim(O) = ... 
Z-*oo 
Lim(0/Z) = ... 
Z+0 
Lim(O/0m) = ... 
Z-K) 
Lim(0/Om) = ... 
Z-* oo 

The result of a spacing experiment with subterranean clover 
harvested at various times after planting is given in Fig. 9. 
Om increases monotonously with time. The rate of increase of 
this parameter presents in principle the growth rate of a closed 
crop surface from the beginning of growth onwards. Under fa­
vourable conditions it may be expected that Om increases with 
about 20 g m~2 day "*, this being the potential growth rate 
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g dry matter days 

20-

200 
plants/sq. link 

Fig. 9 | A spacing experiment with subterranean clover 
(Donald, 1963) , harvested at various times after planting. 

of most agricultural crops in the Netherlands (de Wit et al., 
1970). The value of B also increases monotonously with time; 
it represents the (calculated) ability of a single plant to 
occupy space during its growth and this ability is strongly 
affected by the stage of development and the distribution of 
photosynthesis products over the various plant organs. 
Baeumer & de Wit (1968) did a spacing experiment with barley 
and oats on a soil well supplied with nutrients and water. 
Rows of plants, rather than single plants, were grown at dis­
tances of 25 and 100 cm, that means with seed densities of 4 
and 1 row per metre. The dry matter yield was determined at 
four stages. The results of this experiment are summarized in 
Table 1. 

Exercise 29 
Calculate the values of B and Om for barley and oats on the four 
harvesting dates by using Eqn (4.6). What are the units of B 
and Om? The calculated value for Om on the first date is un­
reliable. Why is this so? Is there a combination of B and 0m 

that is much more accurate? Draw graphs of B and Om against 
time. Linearize the curves for Om, omitting the data points for 
the first harvesting date and recalculate B for the value of 
Om estimated in this way. 
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Table 1 The dry biomass yield in g m~2 of barley and oats, 
sown at 25 and 100 cm on 2 May 1966. Emergence and seedling 
establishment was completed on 15 May. Field experiment IBS 975, 
1966. 

Date of 
harvest 

7 June 
21 June 
5 July 

19 July 

Barley 
25 cm 

117 
426 
588 
858 

at 
100 cm 

36 
223 
341 
496 

Oats at 
25 cm 100 cm 

81 
319 
503 
789 

22 
142 
263 
516 

There is also a graphical method to make a first estimate of 
B and Om from the yields at different densities. Then O"1 

(ordinate) must be plotted against Z""1 (abscissa) . Since 
according to Eqn (4.6) the result should be a straight line, 
a fit by eye is easy. This method is convenient when experimen­
tal results of more than two densities are available. 

Exercise 30 
How can Om and B be found from such a graph? What is a disad­
vantage of the method? 

m 
row 

1.0- * « barley 
o .oats 

0.75-

0.25-

0.5-

Fig. 10 | Time functions of B and OM for barley and oats, 
calculated from the data in Table 1. 
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The calculated curves of B and Om against time for barley and 
oats are given in Fig. 10. Barley grows somewhat better at low 
temperatures and its value of B increases during the early part 
of the growing season more rapidly than for oats. Hence, when 
both species are grown together, barley occupies relatively 
more space and by the time oats gets around to claim its share, 
all the space is already occupied. Therefore the competitive 
ability of barley in a mixture with oats is usually higher. 
It may be possible to calculate the mutual interference of both 
species in a mixture from the course of B and O^, as determined 
from density experiments with one species. 

4.3 Simulation of plant interference 

To arrive at a simulation program for the interference of plants, 
it is necessary to distinguish the correct state variables and 
to find expressions for their rate of change. A convenient state 
variable is the relative space that is occupied by the species, 
defined as the yield (0) of the species, divided by the maximum 
yield (0m) obtained at very high seed density. This relative 
space is according to Eqn (4.6): 

RS = B ** . (4.7) 
B x Z + 1 

The term relative space is preferred because the term relative 
yield for this quotient would lead to confusion with the term 
relative yield used in the analyses of replacement series. The 
value of RS ranges from 0 to 1. 
The rate of change of the state variable may be found by dif­
ferentiating RS with time and rearranging the expression. The 
result is 

d(RS) dB/dT 
_ ^ 1 = U D ^ U x RS x (1 . RS) ( 4 - 8 ) 

This equation is very similar to the equation for logistic 
growth, derived in Section 3.4; the two main differences being 
the maximum value of 1 for the state variable and the non-
constancy of the 'relative growth rate'. 

Exercise 31 
Derive the expression for d(RS)/dT. For this purpose, Eqn (4.7) 
is differentiated, taking into account that B is a variable 
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function and Z a constant function of time. Eqn (4.7) is then 
used again to eliminate Z. What is the dimension of (dB/dT)/B? 
Does this relative rate of change increase or decrease with 
time? What is the expression for B against time when the rela­
tive rate of change is constant? 

Eqn (4.8) holds for one species. The factor (1 - RS), which 
may range from practically 1 in the beginning to practically 0 
at the end of the growth period, characterizes the reduction 
of growth under influence of the space that is occupied. When 
two species are growing together, a situation may be vizualized 
where plants do not distinguish between occupation of space by 
one species or the other. Then the relative spaces may be added 
as to their influence on the growth of each species so that the 
following set of equations characterize the situation: 

d(RSl) dBl/dT „„, . ,f „„„. 
—T-—- = —-; X RSI x (1 - SRS) 

dT Bl 

d(RS2) dB2/dT 
dT B2 

SRS = RSI + RS2 

x RS2 x (1 - SRS) 

Exercise 32 
Construct a relational diagram of this type of plant inter­
ference. 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON DBI1*0 ,0047 ,PBI2=0 .0033 ,FS I1*0 ,002 ,RSI2=0 ,002 

RSUINTGPLCRSI1, (DB1/B1)*RS1*(1, -SRS)) 
RS2=INTCRL(RSI2#(DB2/B2)«RS2*(1.-SRS)) 
B1«AFGEN(BTB1,TIME) 
B2»AFGEN(BTB2,TIME) 
DB1»DERIV(DBI1,B1) 
DB2«DERIV(DBI2,B2) 
01sRSl»AFGEH(0MTBl,TIME) 
02»RS2»AFGEN(OMTB2#TIME) 
SRSsRSWRS2 

PRINT RSI,RS2,SRS,01,02 
TIMER FINTIM»65,,PRDELs5. 
FUNCTION OMTBl»(0.,0.),(23.,377.),(37.,612.),(5l,,780.),(65.,ll32,) 
FUNCTION OMTB2s<0.,0,),(23.,333.),(37.,552,),(51.,724.),(65.,956,) 
FUNCTION BTBlx(6.,0.001),(23.,0.11)/(37,,0,574),(51.#0.778),(65.,0,778) 
FUNCTION BTB2«(0.,0.001),(23.,0.076),(37.,0.346),(51.,0.571),(65.,1.17) 
END 
STOP 
ENDJ0B 
Fig. 11 J A simulation program for interference of two plant 
species that do not distinguish between the occupation of space 
by one species or the other. 
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The two differential equations are the basis for a simulation 
program of two species grown in a mixture, which is presented 
in Fig. 11. 

The function tables for B and Om are those for the barley (1) 
and oats(2) experiment of Table 1. DERIV is the only new func­
tion that is introduced. This function calculates the deriva­
tive of the second argument, here the value of dB/dT from the 
function of B against time. Like an integral, the derivative 
has to be initialized and this initial value is given as the 
first argument of the function. 

Exercise 33 
Why is it necessary to set the value of B slightly above 0 at 
emergence? Initialize RSIl, RSI2, DBIl and DBI2. Is it neces­
sary to initialize the derivative functions accurately? 
Compare the results of the simulation graphically with those 
of the actual competition experiment in Table 2. 

Table 2 The dry biomass yield in 
g m"2 of barley and oats, sown 
alternately in rows 25 cm apart. 
Field experiment IBS 975, 1966. 

Date of 
harvest 

7 June 
21 June 

5 July 
19 July 

Mixture 
Barley 

62 
235 
375 
512 

Oats 

30 
142 
165 
308 

Inspection of the experimental data in Table 2 shows that barley 
occupied much more space than oats in the mixture although both 
species were planted alternately in rows. The simulated results 
given in the answer to Exercise 33 prove that this better per­
formance may be explained by the more favourable course of the 
B curve for barley during early growth. The higher values of B 
for oats later are ineffective in the mixture because too much 
space is already occupied by the barley at the early stages of 
growth and at this sowing density. 
Although this simple model of interference holds for mixtures 
of some species, it does not always hold in situations where 
species exclude each other. For instance, in mixtures of short 
and long peas, it makes a large difference to the short peas, 
whether the space is occupied by other short peas or by long 

41 



peas. In the latter case, practically all light is intercepted 
by the long neighbours so that the growth of the short peas is 
almost suppressed. Experimental and simulated results of a 
competition experiment with these species are given in Fig. 12. 
To obtain the simulated curves A, it was assumed that the simple 
model as used in this section for barley and oats was valid. 
The difference between actual and simulated results is so large 
that this supposition must be rejected. The curves B were 
obtained by assuming that the relative space of each species 
may be weighted according to their respective heights (Hi and 
H2) which differed at the end about threefold. This weighting 
was done according to the equations 

SRS1 = RSI + (H2/H1) 
SRS2 = (H1/H2) x RSI 

x RS2 
+ RS2 

for the sums of the relative spaces. In this way the different 
light interception is accounted for in a first approximation. 
The much better agreement shows that this explanation is reason­
able for the bad performance of the short peas in the mixture. 
In situations where species interfere in other ways than by 
mutual exclusion, it is of course futile to construct a model 
of competitive interference on basis of data obtained in mono­
culture only. 

g dry m a t t e r 

nrv 

500-

250-

o-J 

o = long peas — = observed 
• = short peas = simulated 

500-

250-

6/7 6/21 7/5 7/19 6/7 6/21 7/5 7/19 

Fig. 12 j Observed and simulated growth of long and short peas 
in a mixture. 
A: without weighting according to height. 
B: with weighting according to height. 
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4.4 Further modelling aspects 

4.4.1 The INDEX and MACRO feature 

The simulation programs for yeast growth in the previous chapter 
and for plant competition in this chapter are given for two 
species but may be extended to more species. For a mixture of 
n species, the relevant structural equations must be written 
n times. Many repeated statements, however, make the program 
less clear and often introduce errors, especially if it is 
necessary to change the structure. Hence it is better that 
statements are repeated by the computer. The INDEX feature is 
suitable for this purpose. If for instance, two plant species 
are competing, the equations for the relative space (RS) are 
written as 

RS'1,2' = INTGRMRSI'l^^DB'l^'/B'l^^RS'l^'Ml.-SRS)) 

This statement is an order for the preprocessor (Appendix A) 
to write the equation twice: once with number 1 attached to the 
symbols, once with number 2. All variables that are different 
for each species obtain an appropriate number by order of the 
index '1,2' and all variables, that are the same for the two 
species, like SRS, remain the same. These variables have to be 
defined on their own, in this case by 

SRS = RSI + RS2 

A summation of this type can be written more concisely by 

SRS = SUMl(RS*1,2') 

The other equations that describe the growth are given in 
Fig. 13, which contains a full program for competition between 
two species. The initial values for the relative space and the 
slopes of B are defined on parameter cards by 

INCON RSI11,2* = , 
INCON DBI'1,2' = , 

The four functions must be given separately in FUNCTION tables. 
The corresponding CSMP program that is written by the pre­
processor on the basis of this text, is also given in Fig. 13. 
Here it can be clearly seen that the INDEX feature is an order 
for repeated writing or defining of similar texts, parameters 
or output. For more than two species, i.e. four, the statement 

43 



TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON DBI'1,2'=0.0047,0.0033 
INCON RSI'1,2 # »0.002,0.002 

RS'l,2'«INTGRL(RSI'tr2',(DB'i,2'/B # l,2 # )»RS't.2 # #(l.-SRS)) 
B ' 1 , 2 # «AFGEN(BTB #1,2',TIME) 
DB'l#2'snERIV(DBI'l,2'fB'l,2#) 
0'1,2'«AFGEN(0MTBM ,2',TH'.E) 
SRSsRSl • PS2 

TIMER FINTIM«65.,PRDEL»5. 
FUNCTION BTB1*0.,0.001,23.,0.11/37.,0.574,51.#0.778,65.,0.778 
FUNCTION BTR2*0.,0.001,23.,0.076,37.,0.346,51.,0.571,65.,1.17 
FUNCTION OMTB1*O.,O.,23.,377.,37.,612.,51.,70O.,65.,U32. 
FUNCTION OMTB2s0.,O.,23.,333.,37.,552.,51.,724.,65.,956. 
PRINT RS'l,2',SRS,OM,2' 
END 
STOP 
ENDJOB 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON DBI1*0.0047,DBI2=0.0033 
INCON RSIlaO,002,RSI2*0.002 
RSlaINTGRL(RSIl,(DBl/Bl)#RSl»(l.-SRS)) 
RS2»INTGRL(RSI2,(DB2/B2)»RS2»(1.-SRS)) 
B1«AFGEN(BTB1,TIM£) 
B2»AFGEN(BTB2,TIME) 
D B 1 B D E R I V ( D B I 1 , B 1 ) 
DB2sDERIV(DBl2,B2) 
0 1 « A F G E N ( 0 M T B 1 , T I M E ) 
02«AFGEN(OMTB2,TIME) 

SRSsRSl • RS2 
TIMER FINTIM*65.,PRDEL*5. 
FUNCTION BTB1=0.,0.001,23.,0.11,37.,0.574,51.,0.778,65.,0.778 
FUNCTION BTB2aO.,0.001,23.,0.076,37.,0.346,51.,0.571,65.,1.17 
FUNCTION OMTBlsO.,0.,23.,377.,37.,612.,51.,780.,65.,1132. 
FUNCTION OMTB2*0.,0.,23.r333.,37.,552.,51.,724.,65.,956. 
PRINT RSl,RS2,SPS,Ol#02 
END 
STOP 
ENDJOB 
Fig. 13 J A simulation program for interference of two plant 
species, written by using the INDEX feature and the CSMP program 
compiled from this by the preprocessor. 

RS'1,4' = 

generates equations for RSI, RS2, RS3 and RS4. 

Exercise 34 
Write a program for the growth of four yeast species in a 
mixture, using the INDEX feature. 

A similar result may be obtained by using the MACRO feature. 
In a MACRO, a part of a process is described in general terms. 
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Every time a MACRO is called upon, CSMP writes its full text 
with the appropriate symbols. A MACRO is therefore not an order 
to execute a particular computation, but an order to write a 
part of a simulation program. Just as in a normal simulation 
program, it is not necessary to present the structural state­
ments in computational order and it may well be that various 
parts of the MACRO are scattered throughout the computational 
program after the sorting process. The MACRO for the growth of 
a plant species may read as follows: 

MACRO 0,RS = GROWTH(BTB,OMTB,DBI,RSI) 
RS = INTGRL(RSI,(DB/B)*RS*(1.-SRS)) 
B = AFGEN(BTBJIME) 
DB = DERIV(DBI,B) 
0 = RS*AFGEN(OMTB,TIME) 

ENDHAC 

The first line indicates that there is a MACRO 'GROWTH1, in 
which it is stated how the relative space and the yield (RS 
and 0) depend on functions, variables and initial constants, 
given or calculated elsewhere in the CSMP program. The ENDMAC 
line indicates the end of the MACRO. Within the MACRO, the 
equations of the last section are given but with the numbers 
1 and 2 omitted. 
The MACRO is invoked by the sentence 

01,RSI = GR0WTH(BTB1,0MTB1,DBI1,RSI1) 

for species 1 and 

02,RS2 = GR0WTH(BTB2,0MTB2,DBI2,RSI2) 

for species 2. 
A program for competition between two species and the inter­
mediate CSMP program that is generated are presented in Fig. 14. 
Detailed comparison of the text shows that three classes of 
names for variables, parameters and tables can be distinguished. 
First, those that are mentioned in the statement: these replace 
the dummy names at corresponding places in the MACRO definition. 
Secondly, those that are used within and outside the MACRO: 
these remain unchanged and are not necessarily mentioned in 
the invoking line. Thirdly, there are dummy names that are used 
only within the MACRO: these are replaced by unique names of 
the type ZZ... in order to avoid double definitions. 
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Exercise 35 
Make a detailed comparison of the 'intermediate' CSMP program 
written with the MACRO feature, the CSMP program written with 
the INDEX feature and the original CSMP program for competition 
between two species. It is only in this way that all logical 
aspects of the MACRO operations can be understood. 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON PBI1*0.0047,DBI2*0.033,RSI1=0.002,R5I2»0.002 
MACRO 0,RSsGROWTH(BTB,OMTB,DBI,RSI) 

RS*INTGRL(RSI,(DB/B)*RS«(1.-SRS)) 
BsAFGEN(BTB,TIME) 
DB*DERIV(DBI,B) 
0*AFGEN(OMTB,TIME) 

ENDMAC 
Ol,RSlsGROWTH(BTBl,OMTBl,DBIl,PSIl) 
02,RS2*GROWTH(BTB2*OMTB2,DBI2,RSI2) 
SRSsRSI + PS2 

TIMER FINTIMs65.,PFD£L*5. 
FUNCTION BTBlsO.,0.001,23.#0,11,37.,0.574,51.#0.778,65.,0.778 
FUNCTION BTB2=0.,0.001,23.,0.076,37.,0.346,51.,0.571,65.,1.17 
FUNCTION OMTB1*0.,0.,23.#377.,37.,612.,51.,780.,65.,U32. 
FUNCTION OMTB2c0.,0.,23.#333.,37.,552.,51.,724.,65.,956. 
PRINT PS1,RS2,SRS,01,02 
END 
STOP 
ENDJ0B 

TITLE COMPETITION BETWEEN BARLEY AND OATS 
INCON DBIISO.0047,DBI2«0.033,RSI1=0.002,RSI2=0.002 

ZZ1000»AFGEN(BTB1,TIME) 
ZZ1001*DERIV(DBI1,ZZ1000) 
SRSsRSl + RS2 
ZZ1003«(ZZ1001/ZZ1000)«RS1#(1.-SPS) 
RSUINTGPLIR5I1,ZZ1003) 
ZZ1004«AFCEN(BTB2,TIME) 
ZZ1005«DERIV(DBI2,ZZ1004) 
ZZ1007«(ZZ1005/ZZ1004)#RS2*(1.-5RS) 
RS2SINTGRL(RSI2,ZZ1007) 
01BAFGEN(0MTB1,TIME) 
02*AFGEN(OMTB2,TIMF) 

TIMER FINTlM*65.,PRDELa5. 
FUNCTION BTB1«0.,0.001,23.,0.11,37.,0.574,51.#0.778,65.,0.778 
FUNCTION BTB2»0.,0.001,23.,0.076,37.,0.346,51.#0.571,65.,1.17 
FUNCTION OMTB1*0.,0.,23.#377.,37.,612.,51.,780.,65.,1132. 
FUNCTION OMTB2*0.,0.,23.#333.#37.,552.,51.,724.,65.,<*56. 
PRINT R51,RS2,5RS,01,02 
END 
STOP 
ENDJOB 
Fig. 14 I A simulation program for the interference of two plant 
species written by using the MACRO feature. The intermediate 
CSMP program, produced by the CSMP compiler is also given. The 
text of this intermediate program is not printed by the computer, 

46 



Exercise 36 
Only for readers that are familiar with FORTRAN. 
What are the principal differences between a MACRO and a SUB­
ROUTINE? 

One may wonder why two methods are being developed to make 
simulation programs more lucid and to avoid repeated writing 
of structural statements, especially as these methods seem very 
much alike. However these methods are only similar in the con­
text of the present small programs which are written for illus­
trative purposes. Later it will become evident that each method 
has its own field of use. 

4.4.2 The INITIAL and DYNAMIC section 

The initial values for the relative space (RS) and the deriva­
tive of the space occupied by a single growing plant (DB) must 
be calculated before the simulation models discussed in the 
previous sections can be applied. To avoid errors and again to 
promote the clarity of the simulation, it is advantageous to 
incorporate this computation in the simulation program. Again 
it is convenient to use a MACRO, in which it is defined how 
RSI and DBI depend on the distance of sowing (DIST) and the 
function for B (BTB): 

MACRO RSI,DBI = BEGIN(BTB,DIST) 
RSI = BI/(BI+DIST) 
BI = AFGEN(BTB,0.) 
DBI = (AFGEN(BTB,DELT)-BI)/DELT 

ENDMAC 

Exercise 37 
Derive the expression for RSI from Eqn (4.7). Can it be further 
simplified? Why is it possible to use the METHOD RKS, even when 
a division by DELT occurs? 

The computational procedure, contained in this MACRO, has to 
be done only once for each species before the actual simulation 
is started. For this purpose an initial section of the simu­
lation model is made, starting with an INITIAL card and ending 
with a DYNAMIC card. 
The above MACRO is invoked twice within this INITIAL section. 
After this initial section, the normal dynamic structural 
statements of the simulation program are entered. 
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Exercise 38 
Write a simulation program for the growth of three barley cul-
tivars, assuming that B for the second variety and 0m for the 
third variety increase half as fast with time as for the first 
variety. Assume that the species are sown in rows 40 cm apart 
in a 1:1:1 ratio. Be careful about the value of DIST. Make use 
of the MACROS and the INITIAL section. Write the same program 
with the INDEX feature. 
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5 Growth and competition of Paramecium 

5.1 Description of the system 

Paramecia are protozoa: unicellular organisms that live in 
water and feed on bacteria. Gause (1934) did a series of ex­
periments with the species P.aurelia and P.caudatum in mono­
culture and in mixture to study the principles of their mutual 
interference. The species were grown in test tubes with 5 cm3 

of Oosterhout's balanced physiological solution, buffered at 
pH 8.0. The medium was changed daily by centrifuging to separate 
the protozoa from the liquid with the waste products and the 
remaining food. A standardized amount of bacteria was added in 
the new solution as daily food. Just before centrifuging, the 
solution was carefully stirred and one tenth of the volume of 
liquid was taken out in which the number of protozoa were 
counted. Hence at the beginning of each day the number of 
protozoa was about nine-tenths of the number at the end of the 
day before. 

Exercise 39 
Why not exactly nine-tenths? 

Two series of experiments were done, in the one loop experiment 
one standardized loop of bacteria was given each day and in 
the half-loop experiment a half of the standardized loop of 
bacteria was given. In both series, the species were grown in 
monoculture and in mixture. The monocultures were started with 
20 protozoa of the species concerned and the mixed culture 
with 20 protozoa of each species. 
The number of protozoa counted in the sample throughout a 
period of 16 days are given in Table 3. 

Exercise 40 
Plot the results on graphs and save these for a first estima­
tion of parameters, later on. 

The number of protozoa in the monoculture reached a maximum 
and stayed there, just as for yeast. The growth of yeast 
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Table 3 Numbers as sampled by Gause 

Day of the 

experiment 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Monoculture 

P.aurelia 
0.5 cm3 

one half 
loop loop 

2 
6 

24 
75 

182 
264 
318 
373 
396 
443 
454 
420 
438 
492 
468 
400 
472 

2 
3 

29 
92 

173 
210 
210 
240 
— 

— 

240 
219 
255 
252 
270 
240 
249 

P,caudatum 
0.5 cm3 

one half 
loop loop 

2 
6 

31 
46 
76 

115 
118 
140 
125 
137 
162 
124 
135 
133 
110 
113 
127 

2 
5 

22 
16 
39 
52 
54 
47 
50 
76 
69 
51 
57 
70 
53 
59 
57 

Mixed culture 

P.aurelia 
0.5 cm3 

one half 
loop loop 

2 
10 
29 
68 

144 
164 
168 
248 
240 
— 

281 
— 

300 
— 

— 

260 
294 

2 
4 

29 
66 

141 
162 
219 
153 
162 
150 
175 
260 
276 
285 
225 
222 
220 

P, 
0 

O] 

.caudatum 

.5 cm3 

ne half 
loop loop 

2 
5 

15 
32 
52 
40 
32 
36 
40 
32 
20 
30 
12 
16 
20 
12 
9 

2 
8 

20 
25 
24 
— 

— 

— 

21 
15 
12 
9 

12 
6 
9 
3 
0 

ceased because of the accumulation of waste products. But this 
cannot be the cause of stabilization here, since the waste pro­
ducts were removed every day by centrifuging. It stands to 
reason that here the ultimate size of the population was limited 
by the daily food supply. In the equilibrium situation this 
supply was then just sufficient to maintain the population and 
to replace the ten percent that was removed by sampling. In the 
mixed culture one of the species vanished, whereas the other 
survived at the same level as in monoculture. This competitive 
phenomenon has to be understood by a further analysis of the 
system. 
To arrive at a quantitative description of the relevant growth 
and death processes, some assumptions have to be made. First 
it is assumed that a fixed ratio exists between the number of 
newly grown protozoa and the amount of food that is consumed. 
This ratio is called the conversion factor of food (CONVF) and 
has the dimension of number of protozoa per loop of bacteria. 
Second, it is assumed that there is a natural death rate which 
is proportional to the number of protozoa, so that it can be 
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characterized by a constant relative death rate (RDR), which 
is independent of the density. The rate of food consumption 
(CNRT) is assumed to be proportional to the number of protozoa 
(H), the density of food (FOOD) in the medium and the rate at 
which the protozoa search the water for food (RSW). The density 
of food is the amount of food (AFOOD) divided by the volume. 
However, the rate of food consumption per protozoa cannot 
exceed the maximum digestion rate of food (MRDIG). 

Exercise 41 
Determine the dimensions of the mentioned state, rate, and 
auxiliary variables and parameters and classify these according 
to type. Use as basic units: day, loop, protozoon, volume of 
test tube. 
Construct a relational diagram for the growth of one protozoa 
species, taking into account that every day the population is 
sampled and the food is renewed. Show that the assumption of a 
constant relative death rate is mathematically equivalent to 
the assumption that food is needed to maintain the protozoa. 

5.2 A simulation program 

As done previously for the competition between plants, the 
dynamics of one species will be described in a MACRO, which is 
then invoked for each species with the appropriate names. The 
output variables of the MACRO are the number of protozoa (H), 
the rate of food consumption (CNRT) and the size of the sample 
(SPLE). The input variables are the rate of searching the 
water (RSW), the conversion factor of food (CONVF), the maximum 
digestion rate (MRDIG), the relative death rate (RDR) and the 
initial size of the population (HI). The moment of feeding and 
sampling (FDTIME) and the density of food (FOOD) are the same 
for both species, so that these are defined in structural 
statements outside the MACRO and do not appear in the MACRO 
definition. 
The MACRO is as follows: 

MACRO H,CNRT,SPLE=GROWTH(RSW,CONVF,MRDIG,RDR,HI) 

The amount of protozoa is now defined by 

H=INTGRL(HI,AGR) 

The actual growth rate (AGR) is the difference between the net 
growth rate (NGR) and the rate of sampling (RSAM): 
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AGR=NGR-RSAM 

and the net growth rate (NGR) is the difference between the 
gross growth rate minus the natural death rate (DR): 

NGR=CNRT*CONVF-DR 
DR=RDR*H 

In calculating the consumption rate of food (CNRT), the maximum 
digestion rate must be accounted for. An AMIN1 function can be 
used, which takes the minimum of its arguments: 

CNRT=H*AMINl(MRDIG,RSW*FOOD) 

Exercise 42 
Draw a graph of the consumption rate of food (CNRT) against 
the density of food (FOOD) for arbitrary values of MRDIG, RSW 
and H. How does this graph change with changing MRDIG, H or 
RSW. For which value of FOOD does CNRT equal zero and for which 
value of FOOD does NGR equal zero? Reason why this expression 
does not contain the amount of protozoa (H). 

The calculation of the rate of sampling (RSAM) raises some 
problems because it is a discontinuous process. The sampling 
occurs only once a day and is zero for the rest of the time. 
The sample size is defined with 

SPLE=FDTIME*0.1*H 

in which FDTIME, as defined outside the MACRO, is one during 
one time-step at the end of the day and otherwise zero. To let 
the sampled quantity vanish during one time-step, the rate of 
sampling must be defined as the size of the sample divided by 
the time-step DELT: 

RSAM=SPLE/DELT 

as is seen from calculating (see also Section 2.4) 

Ht+At = Ht - < ° - 1 H
t / A t ) A t 

The MACRO is now terminated with 

ENDMAC 

In the main program, the MACRO is called for twice: once for 
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the species P.aurelia 

HA,CNRTA,SPLEA=6R0WTH(RSWA,C0NYFA,MRDIGA,RDRA,HIA) 

and once for the species P.caudatum 

HC,CNRTC,SPLEC=GROWTH(RSWC,C0NVFC,MRDIGC,RDRC,HIC) 

In the main program FDTIME is defined by 

FDTIME=IMPULS(1.,1.) 

This function has the value 1 at the moment indicated by the 
first argument and subsequently at intervals defined by the 
second argument. The rest of the time, the function equals zero. 
The variable FDTIME is used within the MACRO to define the 
moments of sampling and outside the MACRO also to replenish 
the food at daily intervals, according to 

PARAMETER VOLUME*1 
FEED=FDTIME*(L-AFOOD)/DELT 
AFOOD=INTGRL(L,FEED-CNRTA-CNRTC) 
FOOD = AFOOD/VOLUME 

L is amount of food given daily after removal of the food that 
is left over from the previous day and either equal to 1 or 
0.5 loop of bacteria. The amount of food during the day is 
continuously diminished by consumption by the P.aurelia and 
P.caudatum species, but only once a day replenished to the 
original level. 

Exercise 43 
Why is VOLUME equal to 1 rather than 5? Why is it advisable 
to distinguish between AFOOD and FOOD? 

Due to the discontinuity in the food supply and in the sampling 
it is necessary to integrate according to the 

METHOD RECT 

and to specify DELT also on the TIMER card: 

TIMER FINTIM=16, DELT=0.01, 0UTDEL=1 
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Exercise 44 
Why is METHOD RECT used here, and not METHOD RKS? 

For comparison with Gause's data it suffices to print the size 
of the samples SPLEA and SPLEC each day, but a more frequent 
printing of population numbers is necessary to study the 
behaviour of the simulated populations within a day. To complete 
the program all initial values and parameters must be defined 
on parameter cards. 
There are eight parameters: CONVF, RSW, RDR and MRDIG that have 
to be derived from the experimental data and must be substituted 
in the simulation program. In principle, these can be found by 
trial and error, using some goodness of fit criterion to the 
observational data. But such a procedure can be started only 
in practice when the order of magnitude of all the variables 
concerned are known from a preliminary analysis of the data. 

Exercise 45 
Why? 

5.3 Preliminary estimation of parameters 

Gause observed that at first the medium remained opaque during 
the whole day, but that later the medium became transparent 
within a few hours after the addition of new food. From this 
he concluded that all food was consumed rapidly, once the size 
of the population was not far from its maximum. Hence there is 
sufficient time for digestion and searching so that the maximum 
size of the population does not depend on the rate of digestion 
of the food or on the rate of searching water. Instead it 
depends only on the amount of food given, the conversion factor 
for food, the relative death rate and the rate of sampling. 
About H x (RD+0.1) number of protozoa die or are sampled and 
CONVF x L number grow in the monoculture in a day when the 
daily food is consumed completely. 
In equilibrium situation, these quantities are equal so that 
CONVF x L = Heq x (RDR + 0.1). 
This equation contains two unknowns; CONVF and RDR, so that 
another equation is necessary to estimate their values. This 
second equation can be obtained by considering the growth rate 
(GR) at the moment that three-quarters of the maximum population 
size is reached, because Gause observed that the food was 
exhausted well within a day at this density. The growth rate 
may be estimated by 
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GR = CONVF x L - 0.75 x Heq x (RDR + 0.1) 

Combining both equations allows a first estimate of CONVF and 
RDR. 
The rate of searching the water (RSW) and the maximum rate of 
digestion (MRDIG) are estimated from the dynamics of the popu­
lations at the beginning of the experiment. During the early 
stages, the number of protozoa is so small that the concentra­
tion of bacteria stays practically the same during the whole 
day. The data show that the initial growth rates of the 0.5 
and 1 loop series with P.aurelia are about the same so that 
the.maximum digestion rate is at least reached at the 0.5 loop 
concentration. In other words, at this level 

MRDIG = 0.5 x RSW 

but instead of 0.5 a lower value could be more appropriate. 
This is again an equation with two unknowns, so that another 
equation is necessary to make a first estimate of both para­
meters. This second equation can be obtained by considering 
the initial relative growth rate of the 1 loop series. This 
relative growth may be estimated from the experimental data 
and is equal to 

RGR = MRDIG X CONVF - RDR - 0.1 

at least as long as the bacterial concentration is so high that 
the maximum digestion rate is maintained during the day. 
For P.caudatum the relative growth rate of the 1 loop series 
is higher than of the 0.5 loop series, so that there is no 
certainty that the maximum rate of digestion is reached at a 
bacterial concentration of 1 loop per volume. A first estimate 
of the parameters may be obtained here by assuming that 

MRDIG = 1 x RSW 

but instead of 1, a higher value could be more appropriate. 

Apart from the uncertainty about the exact value of the constant 
in the equation for the maximum digestion rate, the estimation 
procedure is also unfavourably affected by the large scattering 
of the data. This makes it difficult to arrive at a value for 
the initial relative growth rate. It is therefore still worth­
while to inspect the system for other interrelations between 
the constants. These are obtained from the observation that 
the maximum number of P.aurelia in both the 1 loop and 0.5 loop 
series is about 4 times higher than the number of P.caudatum 
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so that probably the P. aurelia individuals are about 4 times 
smaller. Thus, it is logical to assume at first that the 
conversion factor of food with the unit protozoon loop"* is 
4 times larger for P. aurelia and that the maximum rate of 
digestion in the unit loop protozoon"1day"1 is 4 times 
smaller. 

Exercise 46 
Take the graphs that were drawn for the monocultures in 
Exercise 40 and estimate for both species and both series, 
the maximum population size (Heq), the growth rate (GR) at the 
moment that the population equals 0.75 of the maximum and the 
initial relative growth rate (RGR). Calculate the parameter 
CONVF, RDR, MRDIG and RSW for both species and both series 
independently with the 2 x 2 equations given. Make first 
estimates of these parameters for both species, taking the 
size of the individual protozoon into account. Try to find as 
many reasons why these first estimates may be considerably in 
error. 

5.4 Final determination of parameters 

There are many reasons why the first estimates, especially of 
the rate of searching and the maximum rate of digestion are 
very rough indeed. It is therefore necessary to improve on these 
by comparing the results of simulation runs with the actual 
results. In principle the results of the monocultures should 
only be used for this purpose, but the scattering of the obser­
vational data is so large that it is very difficult to estimate 
the parameters with sufficient accuracy. Fortunately, the 
results of the competition experiments are also available to 
improve the estimates. When these results are used, it is 
implied that the interference between both species as proposed 
in the model is correct. Thus a comparison between simulated 
and actual results of the competition series cannot be used to 
validate this assumption. However, the large scattering of the 
observational data necessitates this way of working. 
Further simulations show that the course of P.caudatum in the 
mixture as characterized by the time at which the maximum 
population size is reached and the rate of its decline in later 
stages, is especially governed by the ratio between the searching 
rates of the water by both species and by the ratio of the rel­
ative death rate and the conversion factors. In other words, 
the differences between both species in this respect are espe­
cially manifest in the competitive situation. 
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Exercise 47 
Explain why this is so. 
Finalize also the simulation program and try to find better 
estimates of the parameters by trial and error. 

After a considerable amount of experimentation with the simu­
lation program the best agreement between simulated and actual 
results, as judged visually on graphs was obtained with the 
parameter values listed in Table 4. 

Table 4 Parameter values for P.aurelia(A) and P.caudatum(C) 

Relative 
death rate (RDR) 
Conversion 
factor (CONVF) 
Saturation 
level (MRDIG) 
Rate of searching 
water (RSW) 

0.45 0.45 -1 

3000 750 

day 

prot.loop""1 

.56xl0"3 2.25xl0~3 loop.prot"1day"1 

.006 .006 volume, prot.-1 day"*1 

number 
sampled 

240 

160 

Raurelia number 
sampled Rcaudatum 

p 

12 15 
days days 

Fig. 15 J Simulated and observational results for the half loop 
experiment with P.aurelia and P.caudatum. 

The simulated and observational data for the half loop series 
are summarized in Fig. 15, to show that within the limits of 
accuracy governed by the scattering of the data there is a good 
agreement and that the results can at least be understood by 
assuming that the species only affect each other by competing 
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for the same food. The ratio area to weight of protozoa and 
with this their mobility and the chance of meeting bacteria, 
influences their competitive ability. Therefore the largest 
species, P.caudatum, loses in competition, less bacteria being 
available for the larger animal per unit biomass of protozoa. 
Being small is obviously a competitive advantage when the con­
centration of bacteria is small. At higher concentrations, the 
consumption is governed by the maximum rate of digestion which 
is four times larger for the four times larger species. Thus 
the species match each other in this respect. 
In the analysis of the original experiments of Gause, we took 
into account that during the early stages the concentration of 
protozoa was so small that the food level hardly decreased 
during the day and that during later stages the food was rapidly 
depleted. Although not observed by Gause, we are now in a posi­
tion to consider in more detail the daily course of food con­
centration and number of protozoa because these have been simu­
lated. Some of these simulated results are presented in Fig. 16 
for further inspection. 

=population 
(arbitrary scale^ 

=food 

t 

1day in the beginning 1 day in the end 

Fig. 16 | Simulated course of growth and food supply of a 
Paramecium species in monoculture during a day at the beginning 
and the end of the experiment. 

Exercise 48 
Why is the growth of protozoa during the beginning of the ex­
periments nearly exponential? Why, at the end of the experiment, 
is the maximum size of the population at some time during the 
day, larger than the population size, observed at the end of 
the day? Which is higher, death through natural causes or 
throug sampling? 
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5,5 Stochastic aspects 

The simulation program presented in the previous sections is 
fully deterministic and does not explain at all the large 
scatter of the observational data. There are, however, two 
stochastic phenomena that are accessible for further analysis. 
These are the sampling process and the death process. 
As far as the sampling process is concerned, it was assumed 
that exactly 1/10 of the population is taken away when 1/10 
of the solution is removed. However this assumption is not 
true. The protozoa are, after stirring, randomly distributed 
throughout the solution so that either more or fewer protozoa 
than the average may actually be found. To simulate the actual 
number that are in the sample, this number must be drawn out of 
a probability function around the average. Since the number of 
protozoa may be small, the probability function of Poisson 
is used. 
This function can be introduced into the simulation program by 
replacing the statement for the sample size in the MACRO GROWTH: 

SPLE=FDTIME*0.1*H 

by the statements 

AVSMP=0.1*H 
SPLE=POISS(P,AVSMP,1.) 

The first statement calculates the size of the average sample 
at every time-interval and the second statement invokes a 
MACRO called POISS that assigns an appropriate random number 
to the sample size. The value of the first variable in this 
argument is an odd number, to be specified on a parameter card 
(outside the MACRO) and is necessary to start the process of 
generating random numbers. The second variable in the argument 
is the average number of protozoa in the sample and the number 1 
indicates that the sample is taken with an interval of one day. 
As far as the death process is concerned, the amount of protozoa 
that die during one time-step (AD) is on the average: 

AD=H*RDR*DELT 

and the random number that dies is accordingly 

RD=POISS(P,AD,DELT) 

The third variable in the argument is DELT because death occurs 
every time-step. The rate of dying is now calculated from the 
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amount that dies by dividing again by DELT with 

PR=RD/DELT 

These three statements replace the statement 

DR=RDR*H 

in the original MACRO GROWTH. 
Results of some simulations are presented in Fig. 17, which 
shows the growth of P.caudatum in the half loop series. The 

number 
sampled 
70 T o 

x x 
•"""* * * • * o 

o o 
° x x 

x 

or measured sample 
-= deterministic simulation 
• = deterministic sample.but 

stochastic death process 
= both stochastic sampling, 

and death process 

1 — ' i 1 p 

3 6 9- 12 15 
days 

Fig. 17 | Observational and simulated results of P.caudatum 
in the half loop experiment under various assumptions regarding 
the operation of random processes 

solid line is the growth curve obtained by deterministic simu­
lation. The Roman crosses are the simulated results with a 
deterministic sampling process and a random death process and 
the Greek crosses present the simulated results that are ob­
tained with a stochastic sampling and stochastic death process. 
The open dots are the observed data. It must be concluded from 
these results that the main contribution to the variability 
is due to the method of sampling and that the quality of the 
experiment would have been very much improved if some method 
of measuring the whole population had been introduced. 
The scattering due to the stochastic sampling is much larger 
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than due to the stochastic death process, although about 45 
percent of the population dies during one day and only 10 per­
cent is sampled. A simple calculation can explain this. Let the 
equilibrium population be 1000 individuals. The average sample 
size is then 100 and the standard deviation is according to 
the binomial probability function /0.9x0.1x1000 =9.5. Each day 
an average of 450 individuals dies out of 1000 and the standard 
deviation of this number is /0.45x0.55x1000 = 16. Because one 
tenth is sampled, the standard deviation is reduced to 1.6, 
which is only one sixth of the standard deviation caused by 
the sampling process itself. Moreover, the death process is 
distributed over the day so that some deviation may be even 
levelled by negative feedback throughout the day. 

Exercise 49 
Explain now why the scattering of the observational data for 
P.aurelia is much smaller than for P.caudatum. 

5.6 The programming of probability functions 

To simulate stochastic processes, CSMP contains a so-called 
random generator that generates numbers between 0 and 1 out 
of a standard uniform probability function and a Gaussian 
generator that generates numbers out of a normal probability 
function with a specified average and standard deviation. The 
language does, however, not contain a Poisson generator. Such 
a generator can be most conveniently introduced by the user 
in the form of a MACRO. In this section the content of this 
MACRO is described. Unfortunately it is only understandable 
for the reader who has some knowledge of FORTRAN and probability 
calculus. 

The heading is: 

MACRO N=POISS(P,MEAN,PERIOD) 

DO loops and IF statements as such cannot be sorted by CSMP, 
so that the statements are given in computational order. This 
is indicated by the card: 

PROCEDURAL 

The invoked MACRO is then sorted within the main program with 
the names for P, MEAN and PERIOD as input and N as output. 
If the time is not equal to n times PERIOD, the sampling need 
not be executed and N equals zero: 
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N=0 
IF(IMPULS(0.,PERIOD).LT.0.5) GO TO 1 

whereby 1 is a CONTINUE statement at the end of the MACRO and 
LT means 'less than1. If the expectation value is larger than 
25, the Poisson distribution is sufficiently approximated by 
a Gauss distribution with a standard deviation equal to the 
square root of the average. 

IF(MEAN.LT.25) GO TO 2 
N=GAUSS(P,MEAN,S0RT(f1EAN)) 
GO TO 1 
2 CONTINUE 

The Gauss function is a CSMP function that executes the random 
choice out of a normal distribution. P can be any odd integer. 
The second and the third argument represent the average and 
the standard deviation, respectively. 
Below a number of 25, the deviation between the Poisson distri­
bution and the Gauss distribution becomes too large. To execute 
the selection from the Poisson distribution a number is first 
drawn between 0 and 1 according to a standard uniform proba­
bility function. This is done by a CSMP function: 

LOT=RNDGEN(P) 

P is again the odd integer. 
Then this number is used to read the output from a cumulative 
Poisson distribution function. The cumulative Poisson distri­
bution is obtained by a series development. The probability 
of a number to be smaller than or equal to 0, 1, 2, 3... is 
given by e~z(l+z/l!+z2/2!+z3/3I...) where z is its average. 
The program is as follows: 

SUM=1 
PR0D=1 
EMINZ=EXP(-MEAN) 
DO 4 J=l,100 
IF(LOT.GT.SUM*EMINZ) GO TO 3 
N=J-1 
GO TO 1 
3 CONTINUE 
PR0D=PR0D*MEAN/J 
SUM=SUH+PROD 
4 CONTINUE 

Then the MACRO is concluded by 
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1 CONTINUE 
ENDMAC 

The PROCEDURAL card also ensures that all statements of the 
MACRO are sorted as one block at a place where P, MEAN and 
PERIOD are available and N is needed, as indicated by the 
MACRO definition card. 
By using a Poisson probability distribution function which is 
for higher numbers replaced by the Gaussian function, numbers 
higher than the total number of individuals in the population 
may be drawn. This problem does not exist when the sampling 
process is formulated on basic principles. 
For this purpose, the protozoa in the solution are considered 
analogous to the black balls and the volumes of water equal 
to the volume of protozoa analogous to the white balls in the 
traditional jar with coloured balls. The following symbols can 
now be defined: 
N: the total number of volume elements and n: the number drawn, 
B: the total number of protozoa and b: the number drawn (black 

balls), 
W: the total number of volume elements water and w: the number 

drawn (white balls). 
Hence, N = B + W and n = b + w. . 
According to basis theory, the number of combinations of 
drawing a number of n balls out of a total of N is: 

N! 
(N-n)!n! ( 5 , 1 ) 

Similar expressions hold for the white and black balls, so that 
the number of combinations of drawing b black balls and w white 
balls equals the product 

B! W! 
(B-b)!b! (W-w)'w! 

(5.2) 

To obtain the probability of obtaining b black and w white balls 
in the sample, this expression must be divided by the total 
number of combinations. This gives 

§J .. W! (N-n)!n! 
(B-b)!b! X (W-w)!w! N! K ' ' 

In the present situation, the volume of water is infinite with 
respect to the volume of paramecia, so that W and w are infinite 
with respect to B and b. 
Hence when a fraction f of the volume is sampled the total 
number of volume elements (water and protozoa) is fixed accor­
ding to 
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n = f .N 

Since also W = N - B and w = n - b, expression (5.3) for the 
probability can be transformed into 

B.'(N-B).'(f'N).'((l-f)-N): 
(B-b):b:((l-f)*N-B+b)!(f*N-b)IN! (b# ' 

which approaches to 

B!fb(l-f)B-b (5.5) 

(B-b)ib: 

with increasing N. 
This is a binomial probability distribution function. 
The chance to find 0, 1, 2,... paramecia in the sampled volume 
is now 

Number Chance 
0 (l-f)B 

1 Bfd-fjB-1 

2 B(B-l)f2(l-f)B-2/2 

The sampling may now be programmed as follows: 

MACRO N=BINOM(B,F,P,PERIOD) 

N is the number which is actually drawn, B is the total number 
of paramecia in the vessel, F is the fraction of the liquid 
which is taker* out, P is some odd integer and PERIOD is the 
interval of sampling. 

PROCEDURAL 
N=0. 
IF(IMPULS(0.,PERIOD).LT.0.5) GO TO 100 
L0T=RNDGEN(P) 
PR0D=(1.-F)**B 
SUM=0. 
DO 400 J=l, 100 
SUM=SUM+PR0D 
PR0D=PR0D*(B-J+1)*F/(J*(1.-F)) 
IF(LOT.GT.SUM) GO TO 400 
N=J-1 
GO TO 100 
400 CONTINUE 
100 CONTINUE 
ENDMAC 

64 



Still one remark should be made. If the expectation value of 
the sample is small and f is small, the expression for the 
probability distribution may be simplified even more. The 
expectation value is then f x B. If this product stays at a 
constant low value, then f decreases with increasing B. The 
ratio Bl/{B-b)l approaches Bb and the power (l-f)B"b approaches 
(l-f)B which can be replaced by e""^xB. Substitution in the 
expression for the binomial distribution Eqn (5.5) gives 

_(f x B)b x e~fxB (5.6) 
b! 

Replacing the expectation value f x B by z gives 

2be-z (5.7) 
b! 

which is the Poisson probability distribution function. 

65 



6 Modelling of development, dispersion and 
diffusion 

6.1 Introduction 

In Chapter 1 it was stated that systems ecology is based on the 
assumption that the state of an ecosystem at any particular 
time can be expressed quantitatively and that changes in the 
system can be described in mathematical terms. Various models 
of ecosystems were given and in all examples it was possible to 
use a very limited number of state variables and associated rate 
equations. This is not surprising. Yeast and Paramecium are 
simple organisms and the responses as a population are hardly 
dependent on such attributes as size and stage of development. 
The small grain example concerns more complicated organisms 
that are synchronized in time and whose responses strongly 
depend on size, stage of development and physiological condi­
tions and on the continuously changing physical environment. 
However, here the problem was simplified by a model with a 
limited number of state variables by only treating the inter­
ference of similar plant species. No attempt was made to con­
struct a model of the growth and development of form and 
function of the single species. 
Although we may accept that the ultimate purpose of biology in 
general and ecosystems analysis in particular, is the construc­
tion of models that predict growth and development of single 
and interfering species in natural conditions, we must admit 
that at present this goal is unrealistic. The knowledge of the 
relevant processes is quantitatively, but also qualitatively, 
far too fragmentary and even if this were not so, there would 
be serious modelling problems, because the number of state 
variables involved would be very large. 

Obviously, it is necessary to limit the goals of systems analy­
ses drastically to proceed at all. Rather than analysing all 
aspects, a distinction is often made between growth and mor­
phogenesis: growth is the main subject of study and morpho­
genesis is taken more or less for granted. For instance, it is 
assumed that maize plants develop out of maize seeds, wheat 
plants out of wheat seeds and spiders out of spider's eggs. In 
models, such broad assumptions are made operative by introducing 
preconceived information on the development of the species. 
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For instance, in a model of a wheat plant, a germination, a 
vegetative and generative stage are distinguished a priori, 
and it is assumed that nine to eleven leaves develop in the 
vegetative stage, and that the main growing point develops into 
the reproductive organ. Likewise, a distinction is made a priori 
between the successive development stages of insects, such as 
e9gs, instars, pupae and imagos. What is left to be simulated 
is the growth within various stages and the rate of their de­
velopment to subsequent stages. Biologists that are interested 
in understanding the development of form and function may have 
another view on the matter and may argue that this approach is 
too simplified, but appreciation of simplification is more a 
matter of goal than of principle. 

What are the consequences of such an approach for the technique 
of modelling? Rather than modelling a system fully in terms of 
measurable state-variables, it is also characterized by histori­
cal information which in its most elementary form becomes a 
record of age only. This is an external record, because ̂ ige can 
be known only when the moment of birth is recorded and cannot 
be determined as such by means of analyses. On the other hc.nd, 
when age is recorded, relevant properties may be derived frcm 
it by correlation. 
For instance, in demographic studies the chances of marriage, 
childbirth, and death may be arrived at in this way. Individuals 
are lumped at their birth in age-cohorts. Then the ages of the 
cohorts are kept track of and from them the number of offspring 
and deaths in a year are calculated. Such a crude technique may 
be adequate for warm-blooded animals, but not for plants, in­
sects and many other organisms, as their development rate de­
pends largely on environmental conditions. It is then often 
attempted to conserve past experience in another variable of 
state: some physiological age. This may be a simple external 
integral of the temperature: the temperature sum, but it may 
also be a numerical characterization of the development stage. 
As long as such cohorts are characterized by age only, no dis­
persion occurs. Human individuals that are classified at their 
birth in the cohort 1970 remain there for their whole lifespan 
and if nobody is classified in the cohort 1971, this cohort 
will remain empty. But, as soon as a physiological age criterion 
is introduced, some individuals that are born early may age 
slowly and may be overtaken by individuals that are born later. 
In other words, individuals that belong to the same age-cohort 
may become dispersed over a range of physiological ages and it 
is necessary to develop programming techniques that account for 
such dispersion phenomena. 
Such techniques may seem sophisticated, but are in fact still 
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very primitive, because they are based on correlations between 
relevant variables and an external record of past experience. 
They avoid the problem of modelling the main aspects of develop­
ment of form and function on basic principles. 

6,2 Physiological age and development stage 

The development stage of warm-blooded animals may be often 
characterized by a record of the chronological age only. This 
situation is completely different for many other organisms, 
such as insects and plants. 
Temperature is then often the main determinant of physiological 
age, so that the development stage is often accounted for by 
the temperature sum: 

TS=INTGRL(0.,AMAXl(0.,T-TT)) 

in which T is the current temperature and TT a threshold tem­
perature below which the development processes proceed at a 
negligible rate. Based on experimental results, it is then 
assumed that certain development stages are reached at certain 
values of the temperature sum. For instance, it may be found 
that the threshold value for maize is 12 °C and that tasselling 
occurs at a temperature sum of 400 degree-days and the plant 
ripens at a temperature sum of 700 degree-days. 
If this approach is taken, it is implicitly assumed that the 
development rate of the species is proportional to the tempera­
ture above the threshold value. However, in general, there is 
also a non-linear response of development rate to temperature 
in the higher ranges, as is illustrated in Fig. 18 for two 
plant species. Here, a constant temperature during growth is 
given along the horizontal axis and the development rate along 
the vertical axis, the latter being defined as the inverse of 
the number of days from emergence to flowering or tasselling. 
A more sensible approach seems therefore to consider the de­
velopment stage of the plant as defined by 

DVS=INTGRL(0.,DVR) 

in which the development rate in day"1 is a function of the 
current temperature according to 

DVR=AFGEN(DVRTB,TEMP) 
FUNCTION DVRTB=(0.,0.),(12.,0.),(26.,0.035),(28.,0.038), ... 
(30.,0.039),(40.,0.041) 

flowering or tasselling being reached when DVS passes the 
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corn 

Fig. 18 I The development rate of the plant species maize and 
oats in relation to temperature at a daylength of 14 hours. 

value of one development unit. 

It is assumed that the influence of temperature on the develop­
ment rate is the same during the whole period of growth, and 
this assumption is confirmed by the well-known fact that at 
constant temperature the time between appearance of successive 
leaves is constant (de Wit et al., 1970) and that accordingly, 
a certain calculated development stage fully characterizes the 
number of leaves and other morphological properties of the 
plant. If the temperature sum or the development stage approach 
• 

is used, the question remains whether the response in rate of 
development is immediate or not. It makes a considerable dif­
ference whether the temperature with its fluctuations through­
out the day and from day to day should be used or some average 
temperature over one day or more. 

Exercise 50 
Calculate manually the development stage of maize after 20 days 
when 
a the temperature is 14 °C all the time, 
b the temperature is 7 °C for 12 hours of the day and 21 °C 
for the other 12 hours, 
c the temperature is 30 °C all the time, 
d the temperature is 40 °C for 12 hours of the day and 20 °C 
for the other 12 hours. 
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Explain the differences. 

At least for plants (de Wit et al., 1970) there are many in­
dications that the response to temperature is instantaneous, 
so that use of average daily temperatures may lead to consider­
able errors. 
Of course, there are other problems. The development rate may 
be influenced by daylength or even rate of biomass growth. 
Like temperature, these factors may also be accounted for on an 
experimental basis. However, interactions are often so com­
plicated that the development of the plant cannot be accounted 
for by a simple physiological age. Then more than one charac­
teristic for the development stage may be considered. But prob­
lems can then multiply at such a disastrous rate that it is 
better to take the hard road: modelling of the morphogenesis 
processes. 
What has been said in this section holds in principle for other 
plant growth stages and other organisms as will be shown later 
by means of various examples. 

6.3 Demographic models 

6.3.1 Age-classes 

Decay of radioactive material occurs with a constant relative 
rate, apart from random effects that become manifest at low 
rates. Similar decay processes were assumed to exist for pro­
tozoa. However, they are more the exception than the rule with 
living organisms. In general these organisms develop and age 
accordingly, and their chances of dying appear to increase with 
increasing age. 
To simulate such situations it is necessary to have the age 
distribution of the population at hand. Now it is practically 
impossible and for most applications unnecessary to memorize 
the age of each individual. Instead it suffices to memorize 
the number of individuals in age-classes. For instance, in 
demographic studies it is customary to classify human beings 
according to their age in years. Of course this classification 
in years is an arbitrary choice, depending on purpose. For some 
applications it would be better to classify according to age 
in months and for others it would suffice to classify in units 
of five or ten years. 
Such age distributions are memorized conveniently by using the 
INDEX feature to create a series of age-classes. For instance, 
human populations may range in age from 0 to about 100 years 
and if an age distribution has to be stored in age-classes of 
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five years, it suffices to write: 

H•1,20'=INTGRL(HI•1,20',FLOW1,20'-FLOW12,21') 
FL0W1=TBR 
FLOW^^l^PUSHD'H'l^O1 

PUSHD=PUSH/DELT 
PUSH=IMPULS(5.,5.) 
INCON HI'1,20'= (20 data) 

Printed output of the variables HI, H2...,H20 may be requested 
by 

PRINT ̂ 1,20* 

Here PUSH has the value zero, except once every five years, 
when its value is set to 1. Only at that moment are the contents 
of all age-classes shifted to the next one. As in other examples 
(Section 5) this shift is achieved by introducing a rate of 
change which is equal to the shifted amount divided by the 
time interval of integration. The whole age distribution of the 
population is stored in this way with a resolution of five 
years. 
So far the simulation program does not contain death rates. 
These can be accounted for by subtraction of an additional 
rate DR'1,20' in the integral statement. The death rates are 
calculated from the relative death rates according to 

DR'1,20,=RDR,1,20,*H,1,20' 

The total birth rate TBR is the sum of the birth rates produced 
by each age-class. 
These are given by 

BR'1,20•=H•1,20•*RBR•1,20' 

The relative birth rates are given on a parameter card: 

PARAMETER RBR '1,20' = (20 data) 

The twenty values are summed with 

TBR=SUM1(BR,1,20,) 

The total birth rate TBR can also be calculated more directly 
as 

TBR=sUMX(H,l,20,,RBR,l/20,) 
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by using the preprocessor function SUMX, which takes the sum 
of the products of pairs. The total population is obtained by 
TH^SUMKH'l^O1). 
In demographic studies it is often customary to report rela­
tive birth and death rates as an annual total rather than as 
an instantaneous rate and then it is best to integrate with 
time intervals of one year. 

Exercise 51 
What is the difference between relative death and birth rates 
reported as an annual total rather than as an instantaneous 
relative rate? Why is it necessary to integrate according to 
the METHOD RECT? 

6.3.2 Errors of approximation 

The lumping of populations into age-classes introduces errors 
of approximation. These are small and negligible when many 
classes are used, but may be worth considering if a limited 
number of classes are distinguished. For instance, in a demo­
graphic model of a human population, age-classes of 0-5, 5-10, 
10-15 years may be distinguished. Every five years the contents 
of the classes are shifted one place, so that generally the 
residence time in each class is five years. However for the first 
class the residence time is shorter, because it has a continuous 
inflow from the birth rate. Only the individuals born just 
after a shift will stay here five years. As time proceeds the 
residence time of individuals born later will become progres­
sively shorter. On the average the residence time in the first 
class will be the half of the 'interval of pushing1. In other 
words, lust after each shift the first aqe-class contains onlv 
individuals close to zero years, and just before the next shift 
the individuals are 0-5 years. The next age-class contains 
individuals of 0-5 years just after the shift, and those of 
5-10 years just before the next shift. With a constant birth 
rate, the average age of the individuals in the age-classes is 
therefore not 2.5, 7.5, 12.5 years and so on, but 1.25, 5, 
10 years and so on. Therefore the age-classes lie between 
2.5-7.5, 7.5-12.5 years and so on. The first class covers then 
the period between -2.5 and +2.5 years. Since birth occurs at 
zero years, the average age in this class is 1.25 years. 
There is still a pitfall in initialization. At time zero, each 
age-class will be initialized with the number of individuals 
that are between the above given boundaries. Then it takes only 
2.5 years before the centre passes to the next class. Therefore 
the first push should not occur after five years, but after 
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2.5 years, which can be achieved with 

PUSH=IMPULS(2.5,5.) 

Another error is best illustrated by considering the integral 
for the first age-class, under the assumption that the total 
birth rate (TBR) is zero for some time. At the time when 
PUSH = 1, this integral is diminished by its own content and 
by the number of deaths during that time interval so that at 
the next moment the content of the integral is 
-H x RDR x DELT rather than zero. The reason is that too many 
individuals were shifted. The number that die during this 
time interval, should not be removed another time by shifting. 
Therefore it is necessary to shift not the whole content of 
the integral but its content minus the number that is lost by 
death during that time-interval. 
Such a procedure is realized by 

FLOW,2,21'=PUSHD*HU,20'M1.-RDR'1,20,*DELT) 

Exercise 52 
The following tables contain demographic data of the population 
of the Netherlands on 31 December 1968. The data are grouped in 
classes with their centres at 1.25, 5, 10, ... years (Set 1) 
and 2.5, 7.5, 12.5, ... years (Set 2). 
Write a simulation program for the growth of the population in 
the Netherlands, using age-cohorts of five years. Which set 
of data must be used, Set 1 or Set 2? 
Why is the time interval of integration a half year? 
Simulate over a period of 50 years and ask for the total men 
and woman and the relative composition of the population as to 
sex and age every five years. 
Determine also the number of graves after 50 years, if these 
are maintained for a period of 50, 25 and 10 years. 
Death rates during the first year of life are much higher than 
during the next years. Is there a simple way of taking this 
into account? 
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Population size 

Cla 
in 

Set 

1. 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

and 

Tot, 

ss centre 
years 

1 

25 

Set 2 

2.5 

7.5 

12.5 

17.5 

22.5 

27.5 

32.5 

37.5 

42.5 

47.5 

52.5 

57.5 

62.5 

67.5 

72.5 

77.5 

82.5 

87.5 

92.5 
more 

al 

Number o 

Set 

305 

612 

597 

575 

576 

517 

429 

399 

382 

367 

338 

306 

280 

223 

184 

150 

90 

40 

13 

1 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

f men 

Set 2 

611 

613 

580 

569 

583 

452 

405 

393 

371 

362 

314 

297 

262 

184 

184 

120 

.60 

20 

3 

6 383 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

Number of women 

Set 

291 

584 

570 

548 

548 

487 

400 

380 

379 

377 

353 

327 

310 

262 

226 

180 

110 

60 

23 

1 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

Set 2 

582 

587 

553 

543 

554 

420 

380 

381 

378 

376 

330 

323 

298 

226 

226 

150 

70 

25 

13 

6 415 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 
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Death rates per thousand men and woman per year. 

Class 
years 

Set 1 

1.25 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

centr 

Set 2 

2.5 

7.5 

12.5 

17.5 

22.5 

27.5 

32.5 

37.5 

42.5 

47.5 

52.5 

57.5 

62.5 

67.5 

72.5 

77.5 

82.5 

87.5 

92.5 

Men 

Set 1 

15.6 

1.8 

0.5 

0.5 

0.7 

1.0 

1.2 

1.5 

2.2 

4.0 

6.5 

9.0 

11.5 

16.0 

35.0 

70.0 

150.0 

300. 

600. 

Set 2 

3.9 

0.7 

0.5 

0.6 

0.9 

1.0 

1.4 

1.8 

3.1 

5.2 

7.8 

10.7 

13.7 

25.5 

52.0 

110.0 

200. 

400. 

900. 

Women 

Set 1 

11.4 

1.2 

0.3 

0.3 

0.4 

0.4 

0.6 

1.0 

1.5 

2.5 

4.0 

5.5 

8.0 

13.0 

20.0 

50.0 

120.0 

250. 

500. 

Set 2 

2.8 

0.8 

0.3 

0.3 

0.4 

0.5 

0.8 

1.2 

2.0 

3.2 

4.7 

6.7 

10.5 

16.5 

35.0 

85.0 

180. 

380. 

760. 
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The relative number of births per year per age group of the 
mother 

Class 
years 

Set 1 

15 

20 

25 

30 

35 

40 

45 

centre 

Set 2 

17.5 

22.5 

27.5 

32.5 

37.5 

42.5 

47.5 

Set 1 

0 

0.091 

0.159 

0.152 

0.084 

0.036 

0.010 

Set 2 

0.022 

0.137 

0.188 

0.113 

0.055 

0.016 

0.002 
50 0 

The ratio between the number of boys and number of girls that 
are born, is 1.048 

6.3.3 The matrix method 

If DELT equals the length of the class in a program with age-
classes, the contents are shifted every time-step one place and 
are diminished at the same time by the amount died. If the 
relative death and birth rates do not change with time a matrix 
method, introduced by Leslie (1945), may be applied to predict 
the relative composition and the relative growth rate of the 
population in the stationary state. This is not a simulation 
method, but will be discussed here because it shows some 
advantages and disadvantages of matrix algebra versus simula­
tion in demographic studies. 
Let the contents of the age-classes be the elements of a vector. 
If there are ten age-classes, the vector is ten dimensional. 
The number of individuals in each age-class one time-interval 
later is now found by multiplying this vector by a matrix as 
in Fig. 19. 
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0 S9 0 

H1 

H10 I 

Fig. 19 I The matrix method, H1-H10 are the number of indivi­
duals in the age-classes, F1-F10 the relative number of births 
in and S1-S9 the fraction of each class that survive the 
time-span DELT. 

At the right side, the vector at time T and at the left side 
the vector at time T + DELT is given. The latter is found by 
multiplication of the vector at time T by the matrix. In the 
matrix, FI is the relative number of births per time step 
in class I and SI is the fraction of class I that passes to 
1 + 1; in other words 1 minus the fraction that dies during 
a time interval. 

*t has been proven that repeated multiplication of a vector by 
a matrix results, in due course, in a vector that has a constant 
relative composition and whose length increases by a constant 
factor each time. This vector is called the dominant eigenvector 
and the constant factor is its corresponding eigenvalue. 
Hence the population will approach a stable age-distribution 
Wj-th a constant relative growth rate, provided that birth and 
aeath rates are constant. The standard method to find the domi­
nant eigenvector and its corresponding eigenvalue is the power 
method (Faddeev & Faddeeva, 1964) in which the multiplication 
^s repeated until a stable relative composition is reached. 

nis method is therefore very similar to the simulation method 
and has no computational advantage. 
However, there are shorter methods to achieve the eigenvector 
or matrixes that contain zeros except in the top row and one 

diagonal. One of these methods is presented in Fig. 20, which 
s d e Jonge's modification of the method of Gauss-Seidel 

vpers. commun.). This iterative method is very cheap in terms 
computing time. It is not explained here because it requires 
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TITLE MATRIX METHOD APPLIED TO GROWTH OF THE NETHERLANDS POPULATION 
PARAMETER C1*1.,R = 7.,P*1 . 
INITIAL 
PARAM FM,17,«3»0.,.055,.343,.47,.282,.137,.04..005,7#0. 
PARAM S*1,16'*.965,.996..998,.998,.997,.996,.995,.993,.988,.98,.97, ... 

.96..94,.92,.8..5 
N*0. 

• ITERATION 
NOSORT 

4 CONTINUE 
N*N*1. 
1F(N.GT.20.) GO TO 6 
C ' Z . W - C ' I . U ^ S ' I . U ' / P 
Q1»F1»C1 

QsQ17/C1 
URITE(6,800>Q,C1,C2,C3,C4,C5,C6,C7.C8,C9,C10,C11,C12,C13,C14, ... 
C15.C16,C17 

800 FORMATHH , F8.5/,9F8.5/,8F8.5///) 
IF(ABS(P-Q).LT.1.E-6> GO TO 6 
ps(R»P*0)/(R*1.) 
GO TO 4 

6 CONTINUE 
DYNAMIC 
TIMER FINTIM«1.,0ELT*1. 
END 
STOP 
ENDJOB 

Fig. 20 | An iterative determination of the eigenvector and its 
eigenvalue of a matrix as in Fig. 19, written as an INITIAL 
section in CSMP. 

some knowledge of matrix algebra. 
The method gives directly the eventual stable age-distribution 
and the corresponding relative growth rate, which is the eigen­
value minus one. The method does not give the total population 
after n years. To achieve this important value, the power method 
or straightforward simulation must be applied. 

6.4 Germination models 

6.4.1 Boxcar train without dispersion 

Like the development of plants, the germination of seeds or the 
hatching of eggs may take some time, which depends on environ­
mental conditions, especially temperature. If a certain amount 
of seeds is placed suddenly in a position where the germination 
process may start, its germination stage at any moment may be 
defined by 

GS=INTGRL(0.,VDV) 

in which the velocity of development in day"1 is defined as a 
function of temperature by 
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VDV=AFGEN(VDVTB,TEMP) 
FUNCTION VDVTB=(10.,0.065),(15.,0.143),(20.,0.143) 

The data hold for seeds of the winter annual Veronica arvensis, 
that have been stored for 15 weeks (Janssen, 1973). 

Exercise 53 
Write a simulation program for the germination stage, in which 
the temperature varies sinusoidally with the time of day with 
an amplitude of five degrees, and an average of 15 degrees 
(see also Fig. 2). The computation may be terminated as soon 

as the germination stage passes the value 1. What does this 
mean? How is this achieved? 

The above procedure may be used to follow the development of 
°ne batch of seeds. However, it is easy to vizualize a situation 
with seeds in different stages of germination and then their 
age-distribution has to be taken into account. For this purpose, 
classes have to be distinguished and because development is 
very much a function of temperature, these must be development 
classes rather than age-classes. Hence, the contents must not 
be shifted at preset time-intervals, but at the moments that 
the development stage is increased by the inverse of the number 
°f classes (N). 

Exercise 54 
Why i/N? 

This shift is achieved by defining a 'PUSH1 according to 

PUSH=INSW(GS-1/N,0.,1.) 
GS=INTGRL(0.,VDV-PUSH*1/(N*DELT)) 

Here PUSH is set to one by the INSWitch, at the moment GS is 
larger than 1/N. This moves the contents of the classes and 
decreases at the same time the integral GS by the amount 1/N, 
resetting this integral at the correct value close to 0. GS is 
increased again at the proper rate by the velocity of develop­
ment. 

Exercise 55 
rite now a simulation program for the germination of Veronica 

arvensis seeds at 20 °C with ten development classes. Execute 
the program introducing an initial amount of 1000 seeds at time 
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zero. At which moment do these seeds germinate? 

6.4.2 Boxcar train with constant relative dispersion 

Usually germination does not take the same number of days for 
different seeds, because neither the seeds nor their micro-
environments are exactly the same. The overall effect is illus­
trated in Table 5, where the percentage germination of a batch 
of Veronica arvensis is given. 

Table 5 Germination percentages of Veronica arvensis seeds at 
10 °C, stored for 15 weeks 

Day 10 13 14 15 16 20 22 27 
percent germ. 1 12 28 46 56 87 91 100 

Exercise 56 
Make graphs of the percentage germination and the rate of ger­
mination against time. Calculate the average time of germination 
and its standard deviation from the data of Table 5. 

The time curve for the rate of germination has the bell-shaped 
form of the Gaussian distribution function. It will be shown 
that such distribution functions are obtained also by simulation/ 
if the contents of the classes are not pushed at certain moments 
but moved continuously from one development class to the next 
with a rate that is proportional to the rate of development. 
In the most simple situation, only one development class is 
considered - ungerminated seeds - and germination is described 
as an exponential decay process of ungerminated seeds according 
to 

H=INTGRL(HI,-RTG) 

in which the rate of germination is given.by 

RTG= H*RDV 

and RDV is the relative rate of development, or germination. 
The total amount of seed that are germinated equals then 

TG=INTGRL(0.,RTG) 

H, RTG and TG are presented in Fig. 21. For obvious reasons 
(see also Chapter 2) H and RTG decrease exponentially with time 
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number 
number 

number 

Fig. 21 I Amount of ungerminated seeds (H), germination rate 
(RTG) and amount of germinated seeds (TG), when germination 
is described as an exponential decay of ungerminated seeds with 
^ relative germination rate of 1 day"1. 

and TG approaches HI accordingly. The average germination period 
» 

!s the integral of the rate of germination at any moment multi­
plied by the time that has elapsed since the start of the pro­
cess, standardized at a unit amount of seed (H = 1). This is 
the standardized surface under the curve of H versus time in 
pig. 21 and in CSMP notation defined by 

AGP=INTGRL(0.,TIME*RTG/HI) 

This integral approaches the average germination period by the 
time that H approaches zero. 

Exercise 57 
Calculate manually the average germination period when out of 
a batch of 100 seeds: 
100 germinate on day 5, 
100 germinate on day 10, 
50 germinate on day 5, and 50 on day 10 
75 germinate on day 5, and 25 on day 10 

Finish the simulation program to calculate the average germi­
nation period. Use the method RKS for integration and termi­
nate simulation as soon as the content of H is 1/100 of its 
original content. Execute the program for a relative rate of 
development.of 0.01, 0.05, 0.1 and 0.5 day"1 and take FINTIM 
equal to 500 days. Multiply the average germination period by 
the relative germination rate. What is the dimension of this 
Product AGP x RDV and what is its numerical value? 
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Now prove the equality of the inverse of the relative germina­
tion rate and the average germination period by making use of 
the analytical expression: 

-RVDxT 
H = HI x e 

and of the equality: 

1 rHI _ „„ 1 r°° _ dH 
HI 

•I T x dH = - —-J T x — x 
'0 HI;0 dT 

dT 

If the above exercise is done correctly it will be clear that 
the product of the average germination period and the relative 
rate of development (APG x RDV) is always 1. Hence the relative 
rate of development as defined in the above program may be 
replaced by the inverse of the average germination psriod. 
The results that are obtained by considering only one develop­
ment class of ungerminated seeds describe much more a decay 
process of seeds than a germination process. This is different 
when more development classes are considered, as is again most 
conveniently done by means of the INDEX feature. For instance, 
a germination process that is described by means of ten develop­
ment classes may be programmed as follows: 

H1=INTGRL(HI,-FL0W2) 
H'2,10'=INTGRL(0., FLOW 'Z.lO'-FLOW'a.ll') 
FL0W,2,11,=H,1,107REST 
TG=INTGRL(0.,FL0W11) 

Obviously, when the average germination period is AGP and the 
number of classes ten, then the residence time (REST) in each 
class is 

REST=AGP/10 

Exercise 58 
What is the time constant of this system? 

The average germination period may be again a function of the 
environmental conditions and the time interval of integration 
should be a tiny fraction of REST. 
The rate of germination and the cumulative amount of germinated 
seeds - the breakthrough curve - are given in Fig. 22 by the 
curves marked 10, it being assumed that the average germination 
period is 20 days. The curves marked 5 and 20 hold when 5 and 
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20 development classes are distinguished. The form of the curve 
suggests that the simulation procedure leads to a Gaussian dis­
tribution function of germination, at least when a sufficient 
number of classes are used. With low class numbers, the results 
suggest a Poisson distribution. A mathematical analysis 
(Goudriaan, 1973) showed that this suggestion is indeed correct 
and that the relation between residence time (REST) or the 
average germination period (AGP = REST x N), the number of 
classes (N) and the standard deviation of germination (S) is 
given by 

N = S2/REST2 = AGP2/S2 (6.1) 

Provided that the time interval of integration (DELT) is small 
enough. This relation gives the number of development classes, 
that are necessary to achieve a certain relative dispersion 
(S/AGP), independent of the average germination period. 
The method is rather flexible. It is not necessary to start 
with a given batch of seeds, and death rates depending on 
conditions may be introduced at any development stage. Moreover 
the transfer of contents is continuous, so that the method RKS 
with a self-adapting time interval of integration may be used. 

20 10 5 

days 

x9« 22 J The rate of germination and the breakthrough curve, 
when 5, 10 and 20 development classes are considered and the 
average germination period is 20 days. 
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6.4.3 Boxcar train with controlled dispersion 

Two methods to simulate germination have been discussed. The 
first method does not introduce any dispersion and the second 
method gives a constant relative dispersion, once the number 
of development classes is fixed. There are, however, a few 
remaining problems. In the first place, the number of classes is 
as large as 100 when a relative dispersion of 10 percent is 
to be simulated. In the second place, it is impossible to 
change the relative dispersion according to conditions, because 
the numbers of classes cannot be varied during simulation. 
Both problems may be overcome by following an intermediate 
course, in which a variable fraction F (between 0 and 1) of the 
contents of each class is shifted once every fraction F of the 
residence time in a class. For ten development classes the 
program is as follows: 

H1=INTGRL(HI,-FL0W2) 
H,2>10'=INTGRL(0.,FL0W,2,10'-FL0W,3,11') 
FLOW'Z.ll^H'l.lO'+PUSHDF 
PUSHDF=F*PUSHD 
PUSHD=INSW(GS-1.,0.,1./DELT) 
GS=INTGRL(0.,1./(F*REST)-PUSHD) 

inspection of the statements shows that no dispersion is obtained 
when F equals 1 and a constant relative dispersion, as defined 
by Eqn (6.1) when F is set equal DELT/REST. 
It can be shown that for intermediate situations F must be 
chosen as 

F-l. -NX (JL)2 

to achieve a standard deviation, equal to S. 
With F equal to DELT/REST and DELT sufficiently small, this 
equation transforms, of course, into Eqn (6.1). 
Fig. 23 gives an example of the result. The continuous curve 
is obtained by means of 100 development classes and F equal to 
DELT/REST. The dots are the result of using 25 classes and F 
equal to 0.75. In both cases the relative dispersion is 0.1, 
but in the second case the curve is not smooth. The given dots 
have OUTDEL as time interval. The discontinuity and the use of 
METHOD RECT is the penalty that has to be paid for reducing 
the number of classes and retaining a small dispersion. As has 
been said, the advantage of the procedure is that F, and with 
this dispersion, can now be varied independently of the aver­
age germination period and the number of classes that has been 
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Fig. 23 J Breakthrough curves for 100 development classes with 
F equal to zero and for 25 development classes with F equal to 
0.75. The average germination period is 20 days. 

chosen. 

Exercise 59 
What is the value of F when the relative dispersion is 0.25 
and N equals 25? What should be done in this situation? 

This method with controlled dispersion has been used by Janssen 
\1973) to simulate the germination of Veronica arvensis and 
Myosotis ramossima seeds. However useful this method is, it 
should be realized that by applying this type of simulation, 
results of experiments are 'mimicked1 rather than simulated. 
*ne term mimicked is used here to emphasize that the main aim 
xs the summarizing of the experimental results in a program 
that simulates germination, but that no serious attempts are 
made at this stage to base the equations and parameters that 
are used on more detailed physiological knowledge of the pro­
cesses involved. 

E*ercise 60 
Complete the following table for F = 0.5: 
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TIME 
0 
0 . 5 x REST 
1 .0 x REST 

H l 
1 S2 

> i" 

1.5 x REST 
in which REST is the residence time in each class. What is the 
name of the resulting probability distribution function? 
This function was discussed in Section 5.6. Readers with some 
knowledge of probability calculations should read this section 
again and answer the following questions. 
Express B and f of Section 5.6 in TIME, F and REST. 
What kind of probability distribution is obtained when F equals 
DELT/REST and DELT approaches zero? 

6.4.4 Refinements 

A discussion on the demographic models showed that the age-class 
that was intended to cover for instance the years 10-15, 
appeared to cover the years 7.5-12.5; the average age of the 
class was less by half its range. For continuous flow, this 
error of lumping does not occur, but the simulation process 
results in a constant, relative dispersion. 
The simulation method with controlled dispersion ranges between 
two situations: when F = 1, the error of lumping is fully pre­
sent and when F = DELT/REST (and DELT small) the error is ab­
sent. It can be derived that for any value of F the shift in 
development of each class equals F x REST/2. Therefore, in 
front of the first class a 'preclass1 is constructed with an 
average residence time of F x REST/2, so that the centres of 
the following classes are independent of the value of F. Then 

H0=INTGRL(0.,FL0W0-FL0W1) 
FL0W0=TBR 
FL0W1=H0*2./(F*REST) 
H' l,20'=INTGRL(Hr 1,20' , FLOW l^O'-FLOW^, 21') 
FL0W,2,21,=H,1,20,*PUSHDF 
PIJSHDF=PUSHD*F 
PUSHD=INSW(GS-1.,0.,1./DELT) 
GS=INTGRL(0.5.,1./(F*REST)-PUSHD) 

The continuous inflow FLOW0 enters HO rather than HI. The initial-
value of HO is always zero. HI comprizes the population with 
an age ranging from zero to REST, H2 from REST till 2*REST etc, 
and must be initialized accordingly. The initial value of GS 
is set at 0.5, so that the first PUSH occurs after 0.5*F*REST. 
In this way the initial average age or development within each 
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class is correctly accounted for. 

Exercise 61 
Apply this method to simulate the growth of the Netherlands 
population. Which set of data from Exercise 52 should be used 
now? 

6.5 The flow of heat in soils . 

There are considerable similarities between the simulation of 
ageing and dispersion in populations and of physical diffusion 
and dispersion processes in time and space. The similarities 
are illustrated here by developing a simulation program for 
the flow of heat and temperature variations in the soil with 
the temperature at the surface as a forcing function. 
For this purpose a uniform soil column from an infinite slab 
is considered which is placed on an insulating layer. To cal­
culate the temperature as a function of time and depth, this 
column is divided into 25 equal compartments. Heat flow into 
and out of each compartment is calculated at any instant of 
time from the temperature difference between compartments and 
the conductivity between compartments. These heat flows are 
integrated to follow the heat content of each compartment and 
thus the temperature. 
Simulation is done most conveniently by creating integrals of 
the heat content via: 

H C 1 ̂ S^INTGRMHCIjNFL11,25') 

** the soil is uniform, the compartments are of the same size 
(TCOM) and the initial temperature (TI) does not vary with 

dePth, then the initial heat content is given by 

HCI=TCOM*VHCAP*TI 

• 
lx* which VHCAP is the volumetric heat capacity of the soil. 
Tne net flow into each layer is the difference between the 
flows over the boundaries: 

NFL'l^S^FLW'l^S'-FLW^^G' 

Exercise 62 
^hich direction of flow is assumed to be positive? 
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The flow is proportional to the temperature differences between 
the layers and the conductivity of the soil (COND) and inversely 
proportional to the distance between the centres of the layers 
(here also TCOM): 

FLW'2,25• = (TMP•1,2 4'-TMP•2,2 5»)*COND/TCOM 

The flow out of the 25th layer is zero, because the column is 
placed on an insulating layer. It would also be zero if the 
column was so long that temperature changes in the last com­
partment were negligible. Hence: 

FLW26=0 

The flow into the first layer is 

FLW1=(TMPS-TMP1)*COND/(0.5*TCOM) 

in which the temperature at the surface has to be defined as 
a forcing function, for instance: 

TMPS=TAV + TAMPL*SIN(6.2832*TIME/86400.) 

if a cyclic daily fluctuation is assumed. 

Exercise 63 
Why is the thickness of the compartment multiplied by 0.5? 
What is the unit of time? 
What are TAV and TAMPL? 

The temperature of the compartments is obtained by: 

TMP'1,25 *=HCf1,25•/(TCOM*VHCAP) 

The integration is best done with 

METHOD RKS 

and a stationary state of the cyclic variations is obtained 
in about four days, so that 

TIMER FINTIM=345600., PRDEL=3600. 

suffices. 
The output of all 25 temperatures and of other relevant para­
meters are requested with 
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PRINT TMPS, FLWl, TMP'1,25' 

As an example, the parameters are defined with: 

PARAMETER TCOM=0.02,COND=0.42,VHCAP=1.05E6, TI=20 

with time in seconds, distance in m, heat in joule and tempera­
ture in °C. 

Exercise 64 
What are the units of all variables and parameters used in the 
simulation program? 

With a uniform soil and with a sinusoidal forcing function, 
the variation of temperature may be also calculated by an 
analytical solution. This calculation has been done for compari­
son, the result being presented in Fig, 24. The analytical 

temperature 
3CH 

Ocm (surface) 
•— 3cm 
— 9cm 

* = analytical 
Osimulat ion 

x9- 24 | Analytical and simulated solution for the temperature 
course in a uniform soil, with a sinusoidal temperature varia­
tion at the surface. 
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and simulated solutions agree within 0.01 percent so that it 
is not necessary to use very thin compartments for accurate 
results. 

Exercise 65 
Rewrite the program, so that conductivities and heat capacities 
that vary with depth can be introduced. Is it necessary to use 
compartments of the same size? 

In another monograph of this series (de Wit & van Keulen, 1972) 
simulation programs of this type have been developed to study 
the transport and diffusion of water, salts and ions in soils, 
the only difference being that instead of the INDEX feature, 
the more cumbersome DO-loop feature from FORTRAN is used. 
In another monograph of this series (Goudriaan, 1977), similar 
techniques are also used to simulate micro-meteorological 
phenomena, but is goes beyond the scope of this monograph to 
discuss the principles of these. 
Finally it is remarked that simulation programs with corapart-
mentalization of space may be used to study dispersion of 
animals, seeds and spores. However these programs become large 
when dispersion in two and certainly in three dimensions is 
considered, so that other techniques must be developed for 
these purposes. 
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7 Growth and development of Helminthosporium 
maydis 

7.2 Introduction 

Helminthosporium maydis is a fungus of corn (Zea maize). 
Especially the leaves nay be covered with lesions, which develop 
microscopic sporophores. These produce spores that are dispersed 
by wind and rain and so reach new healthy leaf tissue. There 
they germinate and penetrate the plant tissue; new lesions 
appear after incubation. Under suitable conditions, the life 
cycle is completed within a week. 
The fungus is responsible for Southern corn leaf blight, a 
disease that ravaged the corn fields of the USA, especially in 
1970. The yield was 15 percent less than that estimated before 
the disease struck, and losses of half or more were common in 
the Gulf region. The disease suddenly appeared because the 
T (Texas) type of cytoplasmatic male sterility was applied 
°n a large scale in the hybrid system. This type appeared vul­
nerable for H. maydis, which had existed for a long time in a 
non-virulent form. 
To anticipate the growth of the disease in the field, Waggoner 
e t al. (1972) analysed this new disease and made a simulation 
program for its growth and development. A comparison of impor­
tant aspects of simulated results with field observations 
(Shaner et al., 1972) showed the merit of this approach. 
This simulation program for the growth and development of 
ePidemics of H.maydis (EPIMAY) is written in FORTRAN and keeps 
track of the development of the lesions formed on each day 
after infection. The program is difficult to read. A further 
analysis of Waggoner & de Wit showed that a simulation program 
that is more lucid and easier to handle could be developed by 
Using the state variable approach as developed in this mono­
graph. 

The meteorological factors that effect the fungus are tempera­
ture, light, wetness, wind and rain. The influence of these 

actors on growth and development of the disease in various 
life cycles was analysed for the Illinois isolate of race T. 
°f H.maydis growing on the corn cultivar PA 602A, Fl hybrid in 
the laboratory and the greenhouse. Undoubtedly the condition 

the host affects the growth responses, but the study was 
estricted to well fertilized and good growing specimens of the 
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host. These observations and general knowledge about growth 
and morphogenesis of the fungus form the basis for the 
construction of the simulation program. This program is presented 
in the form of relational diagrams, together with sufficient 
quantitative information to leave the writing of the actual 
program to the reader of this monograph. 

7.2 The weather 

Even, if a corn crop is uniform, the micro-meteorological con­
ditions for developing fungus are not the same, but vary with 
height. The radiation during the day is higher, the wind more 
turbulent and the leaves are dry longer near the top of the 
crop than near the soil surface. Programs to simulate the micro-
meteorological conditions in the crop were developed and pub­
lished in a book of this series (Goudriaan, 1977) but these 
are likely to be of use only after the simulation program for 
the pathogen is refined. At present the microclimate in the 
crop is not simulated, but instead the macro-weather factors 
are employed as forcing functions as some 'average' for the 
whole crop. 

Exercise 66 
Why is this a dangerous approach? 

The parameters are temperature, wind speed, light, rain and the 
presence of water on the leaves. These can be introduced in 
the form of function data throughout a season, but for the 
present it suffices to define a particular daily course of the 
weather which is repeated every day. The following weather data 
are assumed for some simulations in this chapter. 

FUNCTION TEMPT = (0.,14.),(12.,35.),(24.,14.) 
FUNCTION WINDT = (0.,1.),(6.,1.), (14.,4.),(19.,2.),(24.,1.) 
FUNCTION WETT = (0.,1.),(7.99,1.),(8.,0.),(19.99,0.),... 
(20.,1.),(24.,1.) 
FUNCTION LITET = (0.,-1.),(5.99,-1.),(6.,1.),(20.,1.),... 
(20.01,-1.),(24.,-1.) 
FUNCTION RAINT = (0.,0.),(24.,0.) 

The units for temperature, wind and rain are °C, m s""1 and 
mm h"1, respectively. Especially the temperature course is 
simplified, to facilitate later analysis of the results. For 
light and wetness only two conditions are distinguished: 
light (LITE = 1) and dark (LITE = -1) and wet (WET = 1) and 
dry leaves (WET = 0) . 
To read the graphs, time in hours during the day has to be known. 
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As TIME is expressed in days, the hour of the day may be cal­
culated with 

HOUR = 24.*(TIME-AINT(TIME)) 

in which the function AINT(TIME) conserves the integer part of 
time, and assumes, for instance, the value 6 when time is between 
six and seven days. HOUR can also be defined by 

HOUR = 24.*AMOD(TIME,l.) 

where AMOD generates a sawtooth function with period 1. 
Although it does not belong to the weather section, the growth 
of the crop must be considered. Simulation of a disease is 
especially important when crop growth is not seriously affected, 
because that is the time to control the disease. Thus we can 
assume that crop growth is independent of the growth of the 
disease, so that it can be introduced in the program as another 
forcing function. It suffices to use for this purpose the course 
of the leaf area index, that is the ratio between the surface 
of the leaves and the surface of the soil, which varies from 
0 at emergence to about 5 at flowering. In the present simula­
tion it is simply assumed that 

FUNCTION LAIT = (0.,3.),(140.,3.) 
LAI = AFGEN(LAIT,TIME) 

Exercise 67 
Write the section WEATHER of the simulation program, complete 
with AFGEN functions and FUNCTION tables and the temperature 
(TEMP), the wind speed (WIND), the wetness of leaves (WET), 
the dryness of the leaves (DRY), the light condition (LITE) 
and LAI as outputs. 

Mistakes in input data may result in a situation where it rains 
and WET is nevertheless zero. Inconsistencies may be avoided 
by reading from the tables an auxiliary variable WETX and then 
computing 

^ » FCNSW(WETX + RAIN, 0.,0.,1.) 

w*Uch means that WET = 1. for WETX + RAIN greater than 0, and 
otherwise 0. 
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7.3 Appearance and growth of lesions 

If spores of H.maydis are present on healthy leaves and condi­
tions for germination are suitable, some spores will form germ 
tubes which penetrate through the stomata and so infect the 
leaves. This penetration rate is calculated at the end of the 
program. Here it is used as an input. 
Fig. 25a shows the resulting growth of the lesion area at 30 °C 
as a function of the number of days after incubation. Lesions 
appear after about two days showing that the first stages of 
development occur inside the leaves. Thereafter the lesions 
grow to their final size with a speed that is dependent on 
temperature only. 

UOi 

0.5-

20L a lesion area 
1-100 mm2 

b stalk density 
1.300 mm-* 
spores on green stalks 

^ 1.1spcre/stalk 

d spores on dried stalks 
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i 1 
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Fig. 25 I Some experimental data and the curves mimicked by 
the relevant parts of the simulation programs. 

The relational diagram of development and growth of the lesions 
is given in Fig. 26. The development period inside the leaves 
is accounted for by seven development classes with dispersion, 
and a residence time of 0.5 day in the first six classes. This 
residence time is assumed to be independent of temperature. 
The content of the last integral gives the number of visible 
lesions and of the other the number of invisible lesions. As 
long as it is assumed that defoliation and decay of leaves are 
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Fig. 26 | Relational diagram for the growth of lesions. 

negligible, this number does not decrease. Since, a soil surface 
°f one hectare is used as reference, the number of lesions is 
^pressed in ha"1. All lesions grow to a final size (HAL) of 
about 100 mm2 or 10"8 ha and the growth rate of the individual 
lesions can be conveniently described by assuming that this 
*ate is proportional to the difference of the maximum area of 
a lesion minus its actual area ALS. The proportionally factor 
(PAL) is, according to experiments, a function of temperature 
°nly, and is sufficiently defined by 

FUNCTION PALT = (0.,0.),(10.,14.),(18.,33.),(23.,80.),... 
(30.,80.,),(35.,14.),(40.,0.) day"1 

he formula for the growth rate of the area of a single lesion 
i s then: 

^ S = PAL* (MALS-ALS) 
ALS = INTGRL(0.,RALS) 

he initial value of this integral is zero, because the lesions 
entering class NVL have an area that is practically zero. 
° °btain the growth rate of the total area, RALS must be summed 
ver all the visible lesions present, a number equal to NVL 

HAL =: 

or 

NVL 
I PAL x (MALS-ALS) 
n=l 
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NVL 
RAL = PAL x (NVL x MALS - £ ALS) 

n=l 

or 

RAL = PAL x (NVL x MALS - AL) 

if AL is the total area of the lesions, given by 

AL = INTGRL(0.,RAL) 

Exercise 68 
Why is the expression for RAL so similar to the one for RALS? 
Write the section GROWTH OF LESIONS, with the number of visible 
lesions NVL, the rate of growth of the total area, and the 
total area as outputs. What is the total residence time of the 
lesions in the invisible stages? Explain why some lesions 
enter NVL already at the 1.5 day. Calculate the standard devia­
tion of lesion appearance. Why has the simulated curve for AL 
in Fig. 25a a sigmoid form? 

The points in Fig. 25a are observations and the curve is the 
mimicked result. A similar analogy between observation and 
simulation is obtained at other temperatures. 

7.4 Sporophore or stalk formation 

The technical term for the microscopic stalk that holds the 
spore in the air above the leaf is sporophore, but here the 
more popular term 'stalk1 is used. The growth of the stalk 
occurs only when the leaves are wet and otherwise depends on 
temperature and light. The maximum number of stalks on a hectare 
of lesions is 300 x 1010, but the experimental data in Fig. 25b 
for a few temperature and light conditions' during formation 
show that this value is not reached under all conditions. More­
over there is some delay in the formation of stalks. 
To raimick these results it is assumed that there is a potential 
number of stalks per surface unit of lesions - a number of 
opportunities for stalk formation - which materialize through 
some classes and that during the actual stalk formation a part 
of this potential number develop into stalks and the rest 
become extinct, depending on conditions. These assumptions are 
presented in the relational diagram of Fig. 27. The growth 
of the number of opportunities is the product of the maximum 
number per area (MOA = 300 x 1010 per ha) and the growth of the 

96 



max. opport. 
per area 
MOA. 

i 
rate 
oppor­
tunities 

ROP 

(WET)-n 0.0625 day 

rate area\ i 
lesions L J 

RAL / 

( D R Y > ~ -

P Vfc- P Vfc. 

i 

oppor­
tunities 
OP 4 

tables 
— T — 

I 

rate 
extinction 
opport. 

ROX 

tables 
f— 

(POG\ - • 

ROG 
ra te 
green 
stalks 

P i 9. 27 | Relational diagram for the formation of green stalks. 

area of the lesions. This potential number enters into a series 
o f four classes with a residence time of 0.0625 day in three 
classes. The realization of the opportunities is arrested by 
bought. There are three possibilities: opportunities are de­
stroyed, set back to their initial stage or their advance is 
^rested. Not much is known about these processes, so that at 
present the middle course is taken: it is assumed that the 
°Pportunities are returned to the first class in case of drought. 
The following rate is introduced from the integral of the Xth 
class 

EHPT = DRY*0PX/DELT 

T ° avoid manipulation of very small numbers in some computers 
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(•underflows1)/ it may be advisable to program this rate as 

EMPT = INSW(OPX - l.E-50, 0., DRY*OPX/DELT) 

Hence the classes are not emptied when their contents are below 
the very small value of 10~5 . 
The opportunities end in the last or fourth class and are from 
there removed either by stalk formation or extinction. The 
relative rate of extinction (POX) and stalk formation (POG) 
depend on temperature and light, whereas the process only occurs 
when the leaves are wet. An analysis of the experimental data 
showed that the process is sufficiently mimicked when the fol­
lowing functions of temperature are used for the relative rates 
in day"*: 
During light: 

FUNCTION POGL = (0.,0.),(14.,.04),(18.,.12),(23.,1.4),... 
(30.,1.2),(35.,0.) 
FUNCTION POXL = (0.,0.),(14.,.04),(18.,.12),(23.,1.4),... 
(30.,0.) 

and during darkness: 

FUNCTION POGD = (0.,0.),(14.,.10),(18.,.27),(23.,.27),... 
(30.,1.33),(35.,.67),(40.,0.) 
FUNCTION POXD « (0.,0.),(14.,.02),(18.,.03),(23.,.18),... 
(30.,.88),(35.,1.54),(40.,0.) 

The proper functions can be selected again by an inswitch which 
is operated by the variable LITE. For instance: 

POG = INSW(LITE,AFGEN(POGD,TEMP),AFGEN(POGL, TEMP)) 

The points in Fig. 25b are again observational data for a few 
conditions and the corresponding curves are obtained by mimicking 
stalk formation and opportunity extinction. The process of 
opportunity formation is described by the equations and func­
tions, but is not explained on a physiological basis. The stalks 
that are formed are virgin or green stalks. Because these main­
tain another rate of spore formation than stalks that have 
sporulated once or have been subjected to drought, they must 
be accounted for separately in an integral that maintains the 
number of green stalks. 

Exercise 69 
Write now the section FORMATION OF GREEN STALKS, with the rate 
of green stalks formation (ROG) as output. What is the dimension 
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of ROG? This rate as a fraction of the potential rate (sum of 
actual formation and extinction) depends on light and tempera­
ture. 

7.5 Sporulation of green stalks 

The name 'green1 stalks has been used explicitly because there 
are also 'dried1 stalks. Dried stalks are stalks that have 
sporulated at least once or have been subjected at least once 
to drought. The distinction is made because the influence of 
temperature and light on sporulation is different for both 
categories: green stalks sporulate more rapidly than dried 
stalks. 
Fig. 25c shows how this growth of spores on green stalks may 
depend on temperature and light. Here the scale of 0 to 1 re­
presents the number of green stalks with a spore. A stalk cannot 
carry more than one spore at the same time. Only 50 percent of 
the stalks produced spores after two days in the light and at 
23 °C, but there is sufficient information to assume that in 
due course all stalks will sporulate under these conditions. 
The relational diagram for sporulation of green stalks is 
given in Fig. 28. Three classes with a residence time of 
0.0625 day in the first two are again introduced to mimick the 
observed delay between the formation of green stalks and the 
first appearance of spores. The first class is loaded according 
to the rate of green stalk formation; thus this class contains 
stalks ready for sporulation. 
There are two circumstances that arrest spore formation. One 
when the leaves become dry; then the growing spores are aborted 
and the green stalks are reclassified as dried stalks. The 
other when the green stalks are completely destroyed, usually 
ky rain beating against the fragile stalks. The relative de­
struction rate in day"1 is assumed to be a function of the 
rainfall rate, in mm hour"1 according to 

RBETR=AFGEN(BEATT,RAIN) 
FUNCTION BEATT=(0.,0.),(0.25,.08),(0.75,.32),(6.25,2.),... 
(18.8,5.6),(25.,6.7) 

This function summarizes some factual information, but is 
largely based on a qualified opinion of the process. 

Exercise 70 
^hat rate of rainfall is needed to destroy 63 percent of the 
stalks in 5 hours? 
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Fig. 28 I Relational diagram for the formation of spores on 
green stalks. 

When the stalks have been passing through the classes and have 
not been dried up or beaten by rain, they form spores at a rate 
which is dependent on light and temperature,.provided, of course, 
that the leaves stay wet. The experimental data are mimicked 
with sufficient accuracy by introducing the temperature depen­
dence 

FUNCTION PGSL = (0.,0.),(14.,.15),(18.,1.44),(23.,.32),... 
(30.,0.),(40.,0.) 

in the light and 

FUNCTION PGSD = (0.,0.),(14.,.06),(18.,14.),(23.,14.),... 
(30.,.44),(35.,0.),(40.,0.) 
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in the dark for the proportionality factor of spore formation 
in day"1. The points in Fig. 25c are again observations and the 
curves mimick results of sporulation of green stalks. 

Exercise 71 
Write now the section FORMATION OF SPORES ON GREEN STALKS 
with the rate of spore formation on green stalks (RGS) as out­
put. What is the dimension of RGS? 

Further spore formation is arrested, as long as the spore re­
mains on the stalk. Once removed, the stalk is no longer green, 
but classified as a dry stalk, which may also form spores but 
at a different rate. 

7.6 Sporulation of dried stalks 

As has been said, dry stalks are distinct from green stalks 
because their rate of spore formation is slower. Dried stalks 
are generated in various ways. When spores are removed from 
either a green or a dried stalk, the stalk is ready to produce 
a new spore at a rate characteristic for dried stalks. During 
spore formation when the growing spore is aborted by drought 
green stalks also become dried stalks. Fig. 25d shows some 
experimental results which are mimicked according to the rela­
tional diagram in Fig. 29. The mean residence time in each 
class is again 0.0625 day, the slowness of the process as com­
pared to green stalks being accounted for by an extra class and 
another proportionality factor in day"1 for spore formation 
according to the temperature dependence 

FUNCTION PDSL = (0.,0.),(14.,.17),(18.,1.75),(23.,.25),... 
(30.,0.),(40.,0.) 

in the light and 

FUNCTION PDSD = (0.,0.),(14.,.07),(18.,2.95),(23.,2.2),... 
(30.,.53),(35.,0.),(40.,0.) 

in the dark. 
When dried, the growing spores are aborted and the dried stalks 
are again reset into the first class. When the green stalks 
become dry they also enter this class. At last, the stalks that 
a**e denuded of spores, either by wind or rain and not destroyed 
in the process are again ready to form new spores. Dried stalks 
are also beaten and destroyed by rain at the same rate as for 
green stalks. 
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Exercise 72 
Write now the section FORMATION OF SPORES ON DRIED STALKS with 
the rate of spore formation on dried stalks (RDS) as output. 
Inputs are the rate of transfer of green stalks and dried stalks 
to the first class during drought and the rate of spore removal 
from stalks (RSR). 

7.7 Dispersal of spores 

When it is dry, the spores are removed by the turbulent action 
of the air. Some of the spores are carried away to other fields, 
and others settle on the soil, on lesions or on healthy foliage 
segments. The stalks are also denuded by rain. Especially at 
the onset of heavy showers, part of the spores are dispersed 
through the air, but with gentler rain the spores are washed 
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from the stalks and end up again on the soil, on lesions or on 
healthy foliage. The processes that are involved are very little 
understood particularly because the quantitative aspects are 
complicated: fields may be of limited size and infections are 
not uniformly distributed. 
At such stages, the model builder has to make a difficult 
decision: either to abandon the whole problem or to advance 
for better or for worse. The latter course is usually chosen 
for various reasons. First, sensitivity analyses may show that 
the dynamics of the system are hardly determined by the processes 
that are difficult to handle both conceptionally and practically. 
Thus, it would be a waste of time to pay much attention to these 
processes. Unfortunately, spore dispersal is one of the im­
portant processes that governs fungal epidemics. Secondly, 
life goes on and operational decisions have to be made whether 
the system is completely understood or not: even models with 
unsatisfactory parts may be better than no model. Of course, 
this supposition must be made probable. Thirdly, it is possible 
to view a model not so much as a representation of the real 
system but as a representation of our knowledge of the system 
and our opinion about it. Then the weak sections should not 
be ignored but exposed as will be done here. 
The most simple supposition is that spores are removed from 
stalks at a rate proportional to the number of spores present. 
The relative rate of removal is assumed to be zero when the 
leaves are wet and it does not rain. However, when it rains 
the spore removal rate in spores per day is 

SPRR = RWASH * STSP 

and when it is dry 

SPRD = RBLOW * STSP 

in which STSP is the integral 'stalks with spore1. 
The relative rates of spore removal (RWASH and RBLOW) are as­
sumed to be independent of the number of stalks with spores, 
although it is not unlikely that these relative rates decrease 
because at first the most exposed spores are removed. The main 
problem is to obtain a reasonable estimate of these relative 
rates. 
Waggoner et al. (1972) estimated that with a sprinkling rate 
°f about 6 mm/hour for 3 hours, 86 percent of the spores were 
Removed from exposed leaves, so that the value of 
RWASH = -8. In(0.14) = 15.7 day"1. 
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Exercise 73 
Check this calculation. 

It seems reasonable to assume that RWASH is proportional to the 
rainfall intensity and that below an LAI of 2 the leaves do 
not protect each other, so that RWASH is independent of LAI. 
Above this value mutual protection may exist, but since water 
may drop from one leaf on to the other, probably the mistakes 
are not large when this protective effect is neglected. 
The relative rate of spore removal under dry conditions depends 
primarily on the wind velocity. It was assumed by Waggoner 
et al., that at a wind speed of 2 metres per second, and a leaf 
area index of 3, about 5 percent of the spores are removed in 
3 hours, so that SPRD can be estimated under this circumstance. 
Since the force of the wind is proportional to the square of 
its velocity, it could be assumed that the relative rate of 
spore removal is proportional to the second power of the wind 
speed. Then spore removal is zero when the wind speed is zero. 
However turbulence is also generated by the temperature dif­
ference within and outside the crop. This effect may be approxi­
mated by assuming that the wind speed is never less than 1 m/s 
The relative rate of spore removal is also influenced by the 
leaf area index, because the wind speed decreases more or less 
exponentially with increasing depth of the crop. This effect 
is so uncertain, that it is not considered further. 

Exercise 74 
Calculate RBLOW for WIND equal to 2 m s"1. 

The calculation of RBLOW completes the estimates of the rate 
of spore removal. The next step is the estimation of the frac­
tion of removed spores that may become effective by settling 
on healthy foliage. 
With strong winds and a small field most spores may be blown 
away and become ineffective. However they may be compensated 
for by spores blown in from neighbouring fields. Another question 
is how many spores in the air are caught by leaves and how 
many end up on the soil surface where they can do no harm. 
Again Waggoner et al. assumed that with a leaf area index of 3 
and a wind speed of 2 m s~*, 3 percent of the spores are 
caught by the leaves. This percentage is likely to depend 
linearly on the leaf area and is programmed as such. The per­
centage is also likely to decrease with increasing wind speed, 

104 



/ r o t e \ 
/ arrival \ 
I spores j] 
\ R A S P / ' 

.J 

^ R W A S H y~ 

-{WET • DRY) 

4><| t><y 
i 

a. 

rate 
extinction 
spores 
REXS 

spores 
foliages 

SF 

table 

I 
I 
I table 
I 

{TEMP y j 

Fig. 30 j The relational diagram for germination and penetration 
of spores. 

especially on small fields. This effect is too complicated to 
consider here. 
The greater the intensity of the rain, the more spores are 
washed to the ground. According to Waggoner et al. only 0.3 
percent of the spores are caught by the leaves at a rainfall 
intensity of 2.5 mm/hour. The maximum fraction is caught at a 
negligible rainfall rate, but does not exceed 20 percent. These 
a^e very rough estimates indeed. 

Exercise 75 
Write the section SPORE DISPERSAL with as output: SPRR, SPRD 
and their sum RSR and the rate of spore arrival at the foliage 
(RASP). How would it be possible to take into account the 
influence of host exhaustion when the area of the lesions is 
not negligible?. 
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7.8 Germination of spores and penetration of germ tubes 

The spores on healthy tissue are now considered. These germinate 
eventually on wet foliage. The fraction of spores that complete 
germination and the rate of germination depend on temperature 
according to the observations in Fig. 29e. The process of ger­
mination is complicated because germinating spores may be washed 
down from the leaves or killed upon desiccation. 
The relational diagram that describes germination and penetra­
tion of germ tubes into the leaves is presented in Fig. 30. 
Two integrals are distinguished: the spores on the (healthy) 
foliage (SF) and the germ tubes on (healthy) foliage (GT). 
The number of spores increases with the rate of arrival of new 
spores (RASP) and decreases when spores are washed, killed or 
germinate. The relative rate of spore removal by rain from the 
leaves is set equal to the relative rate of spore removal by 
rain from the stalks (RWASH). The killing of spores upon desic­
cation is more difficult to handle. Spores can only desiccate 
when they have been wet. Since all spores are killed, the kil­
ling rate is 

RKSP = KILL*SF/DELT 

Obviously, the killing is governed by the variable KILL which 
may be 0 or 1. If the leaves during the previous time-interval 
were wet and are dry during the current time-interval, KILL is 
set at 1. Such a condition may be programmed by using a 
'PROCEDURE' that contains a series of statements that have to 
be executed in the order in which they are presented. The whole 
sequence of statements is then sorted at a place where the 
inputs are available and the outputs not yet used. 
The procedure that is used here is called 'DESS' from desicca­
tion and has as input the variable WET and as output the vari­
able KILL: 

PROCEDURE KILL = DESS(WET) 

The statements within the procedure are: 

KILL=0. 
IF((WETP-WET).GT.0.)KILL=1. 
WETP=WET 

The first statement sets KILL equal to 0 and the second state­
ment reads: if the difference between WETP and WET is greater 
than 0, then reset KILL to the value 1. The next statement sets 
the previous value of wet (WETP) equal to the current value 
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and this reset value is used in the 'IF* statement during the 
next updating. The end of the series of statements that have 
to be sorted as one block is now defined with the line 

ENDPROCEDURE 

The spores germinate or become extinct at relative rates in 
day"*1 that depend on temperature, according to the function tables 

FUNCTION PFTT=(0.,0.),(10.,.4),(15.,1.8),(20.,4.6),(23.,7.0),... 
(35.,3.7),(40.,0.) 

for completion and 

FUNCTION PFXT=(0.,0.), (10.,0.), (15., 1.8) , (20. ,4.2) ,'(23. ,2.6) ,... 
(35.,3.7),(40.,0.) 

for extinction. 
The simulated germination is again presented by the curves in 
Fig. 25e. Note that at 15 °C some observations deviate con­
siderably from the simulated line because the function tables 
PFTT and PFXT are assumed to be smooth and were adapted also 
to observational data at other temperatures. 
The spores with germ tubes are also killed upon desiccation 
according to the rate 

KKGT = KILL*GT/DELT 

and also washed away by rain at the same relative rate RWASH 
^s spores are washed from the stalk. Depending on temperature, 
°nly a fraction of the germ tubes ever penetrate the leaves; 
this observation is again mimicked by introducing relative 
rates in day""1 of penetration and extinction according to 

FUNCTION PTNT = (0.,0.),(18.,.48),(23.,.65),(30.,.25),(35.,0.),... 
(40.,0.) 

for completion and 

FUNCTION PTXT = (0.,0.),(18.,1.3),(23.,2.6),(30.,2.2),... 
(35.,0.),(40.,0.) 

for extinction. 
These functions are found by comparing the number of lesions 
with the number of gern tubes formed upon incubation of spores. 
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Exercise 76 
Write the section GERMINATION AND PENETRATION with the rate of 
penetration (RTN) as output. 

The cycle is completed by calculating the rate of penetration 
of the germ tubes, RTN being the rate needed to start the 
growth of the number of lesions. 

7.9 Timing, initialization and output organization 

Since there are discontinuous processes involved, it is neces­
sary to execute the simulation according to the METHOD RECT. 
The time interval of integration has to be chosen small com­
pared with the relative rates of change. An analysis of the 
data and parameters shows that these rates are fastest in the 
classes for the growth of stalks, which are governed by a 
residence time of 0.0625 day. When DELT equals this value, the 
contents of the classes are pushed without any dispersion. 
Here this is completely acceptable. For practical reasons of 
organizing input and output it is, however, convenient to set 
DELT to 0.04 day. Then the program is updated 25 times during 
one day and computing costs are acceptable. 
The initialization of every integral in the program could be 
achieved by observing at one moment the number and area of 
lesions, the number of green and dry stalks, the number of 
spores and so on in a particular field. These observations are 
not worthwhile at this stage of knowledge. Usually initiali­
zation is achieved by assuming a certain number of spores or 
a certain number of lesions, the contents of the other integrals 
being set at zero. Because it is often the purpose to study the 
dynamics of the disease without complications due to exhaustion 
of the host, it is good practice to start with a small number 
of lesions, which may be taken as 100 per hectare. 
However, in other situations it may be necessary to program a 
certain invasion rate of spores from the outside during some 
period. 

Exercise 77 
Program an invasion rate of 106 spores per hectare per hour 
during the first week, but only when it is light and the leaves 
are dry. 

The output of every variable may be requested of course, but 
it is good practice to limit the number to the most essential 
ones. These are in general the contents of the main integrals: 
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the number and area of the lesions, the number of green and 
^ry stalks and of stalks with spores and the number of spores 
and germ tubes on healthy leaves. To study the state of the 
system at certain moments it may be convenient to have all 
°utputs available by introducing the statement 

0UT1 = DEBUG (N,T) 

i n which T is the moment at which this output procedure starts 
t o operate and N the number (without decimal point) of suc­
cessive updates for which output is requested. As many debugs 
as needed may be introduced. 

109 



Exercise 78 
Ask for a debug of ten rounds at time zero and of debugs of 
two rounds at time 5, 5.5, 10 and 10.5. 

7.10 Results and sensitivity analyses 

A simulated epidemic, as characterized by visible lesion number 
(NVL), is presented in Fig. 31 on a logarithmic scale, starting 
with 100 lesions per hectare (NIL1), the growth being simulated 
for the defined stationary weather pattern. During the first 
periods of growth, the effect of initialization can still be 
distinguished. At a later stage it is possible to characterize 
growth by a relative growth rate of number of fungi lesions, 
which is in the present example 0.34 day"1. Other important 
characteristics are the rates of spore production (RSP) and 
dispersal by wind (SPRD). The simulated results of these rates 
for days 8 and 9 are given in Fig. 32, together with relevant 
weather data. The rate of spore removal by wind may be verified 
in a relative sense by studying the density of spores above the 
crop. Verification of simulated data on epidemics is difficult 
for two reasons. In the first place, a good meteorological 
network that provides not only the course of the standard 
meteorological parameters throughout the day, but also detailed 
information of the wetness of the leaves must be available. 
In the second place, field observations must be organized. 
Sometimes a rating of severity in a wide range of localities 
may do, but preferably the relative growth rate of the disease 
over a certain time span should be observed. Some comparisons 
of simulated results, obtained with the original 'EPIMAY' of 
Waggoner et al. and actual results throughout the USA are 
given in Fig. 33. The left graph is a comparison of the simu­
lated multiplication rate of lesions with a net increase of 
blight ratings in various places in the Mid-Eastern USA in 
1971 and the right graph compares simulated and actual multi­
plication rates in Western Indiana in 1971. Only the latter 
gives a comparison in absolute terms, but is should be taken 
into account that some 'fudging1 of parameters has been done 
to achieve correspondence of level. Whether such fudging is 
acceptable or not is not a matter of principle, but of purpose. 
If it is the purpose to develop a forecasting technique as soon 
as possible, one may incorporate experience of previous years 
into the program. However it is then very difficult to judge 
which of the numerous parameters should be left alone and which 
should be adapted. If extensive adaption is necessary, it is 
doubtful whether much is gained at all by simulation compared 
with the application of one of the standard multiple correlation 
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techniques. 
*f it is the purpose to understand the dynamics and the quan­
titative aspects of the disease, fudging of parameters to 
achieve better agreement should be avoided. Instead, a sensi­
tivity analysis under the prevailing conditions should be exe­
cuted, to evaluate which parameters mainly control the disease. 
The result of this analysis, should then be a guide to further 
experiments and study. 
Such a sensitivity analysis consists of varying inputs and 
Parameters over a certain range and a comparison of their rel­
ative influence on the end result. If the influence of a*certain 
Parameter or input is relatively small, further analyses may 
be left for some time, but if the influence is large, more work 
should be invested in a further analysis of the section of the 
Program where this parameter plays a role. The problems of eval­
uation of simulation programs are treated more thoroughly in 
Mother book of this series (Arnold & de Wit, 1976). 
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The weather parameters that are most likely to affect the 
severity of the epidemic are the duration of the wetness of the 
leaves, the presence of showers and the temperature. The simu­
lated influence of duration of wetness on the relative growth 
rate of the lesions for the standard weather conditions, but 
in the absence of rain, is given in Fig. 34. The propagation 
of the disease is practically zero when the duration of wetness 
is less than •' hours, because the fungus needs wetness periods 
of finite length to complete its development in various stages. 
The relative multiplication rate increases to a maximum at 
18 hours of wetness, but then it decreases again to zero at 
24 hours of wetness, because spores are assumed not to disperse 
by wind when the leaves are wet, and because rain is supposed 
to be absent. 
The picture changes completely"when at 24 hours of wetness 
rain is assumed to occur at a rate of 6 mm per hour for 3 hours 
per day; then the relative growth rate equals 0.19 day-1. Here 
the rain causes the dispersal of the spores. The influence of 
decreasing the intensity of the shower and increasing its dura­
tion is considerable. A rainfall of 1 mm per hour for 18 hours 
per day causes a relative growth rate of 0.84 day"1. At a lower 
rate the relative beating rate RBETR decreases so that fewer 
stalks are destroyed, but the spore dispersal by rain increases, 
so that many more spores are caught by leaves. As long.as the 
total amount of rain is the same, the change of RWASH has little 
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influence because it is proportional to RAIN. Thus the knowledge 
°f the daily total rainfall is not sufficient; the rainfall 
distribution must be known as well. The influence of temperature 
is analysed under the assumption that the other weather condi­
tions are standard. Two situations are distinguished: in one 
series, the temperature amplitude is fixed at 5 °C and the 
average temperature is varied from 15 °C to 35 °C and in the 
other the average temperature is fixed at 25 °C and the ampli­
tude is varied from 0 ° to 15 °C. 

Exercise 79 
Program this situation by assuming a sinusoidal temperature 
course throughout the day with a maximum at 14 hours. 

The results are given in Table 6 and show that one temperature 
value, such as an average temperature, does not give detailed 
Gnough information. The influence of daylength under otherwise 
standard conditions is found to be small. 
A sensitivity analysis of the parameters and function tables 
that are included in the program may be made also. For instance 
the influence of the residence time in the various classes may 
be evaluated and especially because the residence times are 
assumed to be independent of temperature. Another aspect that 
may be of importance is the assumption on the development of 
green stalks. Does it make much difference whether developing 
stalks are destroyed by drought during development, whether 
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Table 6 The influence of temperature average and amplitude 
(°C) on the relative growth rate (day"1) 

AVTMP 
AMPL 

0 
5 

10 
15 

15 

0.079 

20 

0.321 

25 

0.452 
0.459 
0.389 
0.254 

30 

0.407 

35 

0.192 

their growth is only arrested or whether they are reset in their 
first class upon drought? Is it worthwhile to make a distinction 
between green and dry stalks? Another important and largely 
unknown set of parameters concerns dispersal and recapture. 
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8 Population models for fruit-tree red 
spider mite and predatory mites 

Techniques for simulating growth and development were presented 
in Chapter 6 and used throughout Chapter 7 to simulate the 
population dynamics of the fungus Hclminthosporium maydis. 
This present chapter describes a basic model for the population 
dynamics of the harmful fruit-tree red spider mite, Panonychus 
ulmi Koch, and one of its natural enemies, the predatory mite 
Amblyseius potentillae. The model, its results and evaluation 
are briefly presented, a more detailed description of the model, 
its construction and parameterizing, verification and evalua­
tion being given in another monograph of this series (Rabbinge, 
1976). 
The fruit-tree 'red spider mite belongs to the family Tetra-
nychidae, a subgroup of the class of Acarina. The members of 
this vast family are found almost all over the world and may 
cause damage in several types of plants. In deciduous fruit 
orchards, the fruit-tree red spider mite is one of the most 
Harmful organisms and its control is the main task of the 
fruit grower. During the last decennia, the mites have become 
increasingly resistant to different biocides, so that the 
development of other control techniques has been stimulated. 
Biological control is an attractive alternative, especially as 
field experiments with release of predatory mites have shown 
Promising results. 

8»1 Fruit-tree red spider mite 

*n Fig. 35 the life cycle of the fruit-tree red spider mite is 
9iven. The mites develop from eggs through different juvenile 
stages into adult females and males. The females deposit their 
e9gs on leaves and a new generation starts; up to six genera­
tions per year may occur. Induced by a combination of daylength, 
average daily temperature and food quality, some juveniles may 
develop in the 'winter form' which oviposit in sheltered places 
°n branches and twigs, but are otherwise indistinguishable 
from the summer form. The transition to the 'winter form' 
wnich is partly reversable is a complicated process and is not 
treated here. 
Their eggs, winter eggs, possess a thicker scale and are more 
Reddish than the summer eggs/ The winter eggs hatch only after 
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the winter period. 
To mimic the dispersion in hatching, development classes of 
the eggs are distinguished, the number of classes and the 
method of simulation depending on the relative dispersion at 
different temperatures (see Chapter 6). The start of the 
hatching process is induced by a combination of external 
variables: length of cold period, daylength and temperature. 
During the hatching process some eggs die. Their relative 
mortality rate depends on temperature. 
Eggs hatch into juveniles which moult several times during 
development into females or males. Within each juvenile stage, 
different development classes can be distinguished, the number 
of classes depending on the relative dispersion. Fig. 36 is 
a relational diagram for the development of P. ulmi during the 
juvenile phase from larvae into deutonymph. This part of the 
juvenile phase is distinguished and treated separately because 
the 'winter form1 is only induced in the older juvenile stages, 
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Table 7 gives the length of the development period and its 
dispersion for the juvenile stages and for winter eggs in 
relation to temperature, 

Table 7 Duration (x) of different developmental stages of 
fruit-tree red spider mite and its standard deviation (s(x)) 

Egg 
J 
JS 

Temperature 

15°C 

X 

18.0 
10.1 
5.5 

s(x) 
3.0 
2.0 
1.1 

18°C 

X 

10.0 
6.5 
4.3 

s(x) 
1.6 
1.3 
0.85 

25°C 

x s(x) 
6.3 1.06 
4.0 0.8 
2.4 0.6 

30°C 

x s(x) 
5.0 1.25 
2.5 0.62 
2.0 0.5 

J = juveniles insensitive to diapause-inducing conditions 
(larva, protochrysales, protonymph, deutochrysales) 

JS = juveniles sensitive to diapause-inducing conditions 
(deutonymph, teleiochrysalis) 

Exercise 80 
Calculate the number of classes that is required to mimic the 
dispersion of the stages EGG, J and JS, when a boxcar train 
with constant relative dispersion (see Section 6.4.2) is used. 
Why can this method only be used when the temperature is 
constant? Which method must be used when the temperature varies? 
What is then a good choice for the number of classes? Write a 
simulation program for the hatching process of winter eggs, 
assuming an initial quantity of 1,000 winter eggs and a daily 
temperature fluctuation between 15 and 30 °C. The mortality 
during this development process may be neglected. Calculate 
the relative rate of mortality in the juvenile stage for a 
constant temperature of 30 °C, if the experimental results on 
mortality show that at this temperature, 50% of the juveniles 
die during their development from egg to deutonymph. 

Development of both eggs and juveniles is simulated with box­
car trains to mimic the dispersion during these processes. 
A subroutine for this mimicking procedure, which has general 
applicability, was developed by de Jonge and Rijsdijk. This 
subroutine is added at the end of a program and then called 
upon in the program by inserting the statement: 

0UT1,T0T1 = BOXCAR (TOTI1,REST1,SD1,RM1,IN1,N1) 

118 



£0.05-

3 

EGG 

T 
5 10 

T T t 
15 20 25 30 35 

TEMPERATURE 

0 2 -

0 1 -

LARVA 

T 1 1 1 1 1 1 
5 X) 15 20 25 30 35 

TEMPERATURE 

6 
2 

0.1-

3 o 

PROTONYMPH 
0 2 -

0.1-

DEUTONYMPH 

UJ 
Q: 

- 1 1 1 1 1 1 1 
0 5 10 15 20 25 30 35 

TEMPERATURE 

1 1 1 1 1 1 1 
5 10 15 20 25 30 35 

TEMPERATURE 

Fig. 37 | Relative rate of mortality in day" in different 
stages of fruit-tree red spider mite against temperature in °( 

*n this statement the variables OUT1 and TOTl express the output 
°f the subroutine, OUT1 is the rate of outflow of the last 
integral of the train and TOTl the sum of the contents of the 
integrals in the train with initial value TOTI1. The variable 
REST1 is the total residence time in the train (a parameter or 
auxiliary variable derived from literature or determined by 
e*periments)/ SD1 is the standard deviation of this residence 
time (development period, diffusion time, etc.) and RM1 is the 
rslative rate of mortality during this development period. 
*N1 is the rate of inflow in the first integral of the train 
and Nl the number of classes in the train. 
The subroutine BOXCAR is described in Appendix B, as a listing 
°f the computer program with comprehensive comments. 

Exercise 81 
Write a simulation program for the development of the fruit-
tree red spider mite into adults using the data of Table 7 
^ d Fig. 37# use the subroutine BOXCAR. Temperature is the 
°nly changing external variable. 

Females and males emerge from'the last ju*reaile svage in eq lal 
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Table 8 The oviposition rate in eggs per day for each age-class and total 
oviposition period in days, both as a function of temperature. 

Age class 1 
Age class 2 
Age class 3 
Age class 4 
Age class 5 
Oviposition pex :iod 

Temperature 

10°C 

X 

0.6 
0.5 
0.5 
0.4 
0.2 

24 

s(x) 

0.15 
0.1 
0.1 
0.08 
0.05 

14.5 

15°C 

X 

1.2 
1.2 
1.1 
1. 
0.8 

25 

s(x) 

0.2 
0.2 
0.2 
0.2 
0.15 

12 

20°C 

X 
• 

1.9 
2.2 
1.8 
1.4 
0.8 

13 

s(x) 

0.7 
0.7 
0.6 
0.4 
0.2 
5.0 

25°C 

X 

3.1 
3.7 
3.1 
2.0 
1.0 
9.0 

s(x) 

0.8 
0.8 
0.6 
0.4 
0.2 
3.7 

30°C 

X 

4.2 
5.5 
3.8 
1.4 
0.8 
7.5 

s(x) 

1.1 
1.2 
1.1 
0.4 
0.1 
2.4 

proportion. After copulation the fertile females mature during 
a temperature-dependent pre-ovipositing period and then start 
laying eggs. The oviposition rate and the rate of ageing of 
the females depend strongly on temperature (Table 8). Moreover, 
the oviposition rate is also dependent on the physiological 
age of the females. 
This age dependence means that normally the oviposition rate 
of young females is higher than average whereas that of old 
females is much less than average. When calculations are exe­
cuted with the average ov:.position rate during the whole life 
period of a female, the simulated total number of produced eggs 
may be correct but the course of the cumulative egg production 
curve is wrong. At the start, egg production per day is under­
estimated and at the end oviposition rate is overestimated. 

Exercise 82 
Explain why the subroutine BOXCAR may not be used to mimick 
the ageing process when oviposition rate is dependent on 
physiological age. 

Ageing of the reproducing female is simulated with the basic 
method of Section 6.3.1, taking into account a temperature and 
age dependent relative mortality rate. These relative mortality 
rates are calculated as follows: 
The maximum period of living is defined as the mean life span 
plus 3 x standard deviation (s). The residence time in a single 
class is the maximum period, as just defined, divided by the 
number of classes N. The percentages of animals alive at the 
end of each age class are now read from the cumulative fre­
quency distribution drawn on probability paper and with the 
formula used in exercise 80 the relative mortality rate per 
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age class is calculated. This leads to the results in 
Table 9. 

Table 9 Relative mortality rate per age class in dependence 
of temperature in day" . 

Age class 

1 
2 
3 
4 
5 

Temperature 

10°C 

0.011 
0.033 
0.088 
0.15 
0.2 

15°C 

0.011 
0.031 
0.089 
0.138 
0.15 

20°C 

0.005 
0.049 
0.161 
0.360 
0.4 

25°C 

0.005 
0.050 
0.245 
0.504 
0.6 

30°C 

0.003 
0.027 
0.273 
0.709 
0.8 

The only function of the males is copulation, for which the 
number of males is not limiting: more than one copulation being 
Possible. So from this aspect, they can be disregarded. However, 
they act as a source of food for predators, so that they cannot 
be omitted from the simulation. The ageing process of the 
males is described by inserting the statement: 

OUTM,MALES=BOXCAR(MALEI,RESTM,SDM,RMM,INM,NBM) 

The females lay winter eggs that overwinter on twigs or 
branches or summer eggs that give rise to a new generation 
°f mites during that summer. The hatching process of summer 
eggs is again mimicked by a boxcar train. 

Exercise 83 
Extend the simulation program of Exercise 81 to include 
oviposition and ageing of females. Use for this purpose the 
data of Tables 8 and 9. 

8'2 Predatory mite, Amblyseius potentillae 

The life cycle of the predatory mite is very similar to that 
°f the fruit-tree red spider mite (Fig. 35). The only differ­
ence is that the predatory mite overwinters as an adult female 
and not as an egg. The sensitive period for induction of 
either summer or winter adults is the same: the older juvenile 
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stage. Therefore the structure of the program is almost the 
same and not given here. 

8.3 Relations between predator and prey 

For the fruit-tree red spider mite, the food source is un­
limited as long as the damage threshold of the trees is not 
exceeded. For the predatory mite the food supply is restricted. 
The availability of prey affects the development rate, the 
reproduction rate and fecundity (total number of eggs produced 
during the life of a female) of the predator. When prey are 
scarce, the relative mortality rates of the predators in the 
different stages may even increase. 
The hunger of the predatory mite is characterized by its gut 
content (Fig. 38) and determines the relative predation rate 
and the prey utilization by the predator. The relative preda­
tion rate is the absolute predation rate per area divided by 
the prey density; this variable has the dimension time"" • 
Hungry predators possess a high relative predation rate. 
Moreover the activity of the predators increases with decreas­
ing gut content. The encounters of hungry predators with prey 
are nearly always successful (fatal for the prey) and the dead 
prey is sucked out completely. Well-fed predators, on the 
other hand, are less active and have a low success ratio 
(successful encounters divided by total number of encounters) 
and the prey that are killed are only partly consumed. A pre­
dator kept at a constant prey density reaches in general a 
steady state (Fransz, 1974) in which a unique relation exists 
between gut content and temperature on the one hand and the 
relative predation rate and prey utilization on the other. 

HA­ STATE OF 
THE PREDATOR 

(TEMPERATURE) 

-(SIZE SYSTEM) 

••(PREY DENSITY) 

••(PREDATOR DENSITY) 

Fig. 38 | State (gut content) of the predatory mite Amblyseius 
potentillae. 
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Old adult female predators can eat all stages of prey except 
eggs and show a clear preference for the younger stages, 
especially at higher gut contents. Young juveniles of the 
predator can only kill larvae and young juveniles of the prey, 
because the older prey stages are too strong an opponent. The 
gut content is digested at a rate proportional to the content 
so that a relative rate of digestion exists which is only 
dependent on temperature. 

Exercise 84 
Write a simulation model for the state (gut content) of a pre­
dator based on the relations presented above. Assume that 
temperature and density of prey and predator are constant. You 
can fill in the required data yourself. Give the dimensions of 
all parameters and variables. 

£.4 Preference as a competitive process 

So far preference of the predator for some type of prey is 
treated by a difference in relative predation rate. At higher 
9ut contents the relative predation rate of an unattractive 
prey type drops to zero by dividing the predation rate by the 
corresponding prey density. This relative predation rate is 
introduced in the simulation model as a variable dependent on 
temperature and gut content. The relative predation rate is 
easily determined from the functional response curve (pre­
dation rate as a function of prey density (Fig. 39)). Each 
Prey density corresponds to a well determined level of gut 
content of the predator and thus relative predation rates of 
different prey types can be related through the gut content 
°f the predator. This approach is straightforward and its 
validity can be tested in experiments with replacement series 
°f two prey types (Rabbinge, 1976). The results support the 
Assumption that the density of one prey type can effect the 
Predation rate of another one only through the gut content of 
the predator. 
Another approach in which simulation is not needed and which 
allows us to bypass the gut content cf the predator, ii, to 
consider predation and preference as competitive processes. 
Prey compete for space in the gut of the predator, so that it 
should be possible to derive the predation rates in mixed prey 
Peculations from the predation rates in pure populations (mono­
cultures, see Chapter 4). The predation rate as a function 
°f the prey density (Fig. 39) is described by 
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PREDATION RATE PER DAY 

M 

11 

10 

9-

8-

7-

6-

5-

4-

3-

2 

1 

15°C 

/ 

. * • * ' 

.- < 

1 ?? PULMI 
2 DEUTONYMPHS 
3 PROTONYMPHS 
i, LARVAE 

f 

n 
* - . 

0.5 1 J 3 Z 5 PREY DENSITY 

Fig. 39 Functional response curve of fruit-tree red spider 
mite. 

PR = 
B x D 
B x D + 1 

PRM (8.1) 

where D is prey density, PRM the maximum predaticn rate and B 
an apparent area per prey. PRM and B are determined for each 
combination of prey type and predator type from the functional 
response curve. Inversion of Eqn (8.1) gives: 

1 _ B x D + 1 
PR B x D x 

1 1 1 
PRM B x D x PRM PRM 

The corresponding graphical representation is a straight line 
that crosses the y-axes at 1/PRM and has a slope of 1/(PRM x B) 
Maximum predation rate and apparent area per prey can be derive* 
directly from the given lines. The analogy to Eqn (4.6) is 
obvious. It is therefore tempting to describe predation in a 
mixed prey composition with the same equation: 
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PR, = 
B\ x D\ + B2 x D2 + 1 

PRMj (8.2) 

and similarly for the predation rate of prey type number 2. 
Comparison with both the experimental results and the simula­
tion results with the more fundamental method described earli­
er show that this approach gives satisfactory results (Fig. 40), 
Of course its validity was only confirmed under the restriction 
that the gut content of the predator must be in equilibrium 
with the available density and composition of prey. 

COLOUR VALUE 
6-1 

5-
4-
3-

6 
5 

I- A 
3 

PREDATION RATE 
U -

12-

10-

8-

6-

4-

2-

f@maie Larva 

Fig. 40 | Simulated and experimental results of a replacement 
s^ries of larvae and adult females of Panonychus ulmi with one 
a^ult female of Amblyscius potentillae at 15 C, in terms of 
simulated values and measured confidence interval- . 0 . 

Exercise 85 
^ V in Chapter 4 could the yield in a mixed culture not be 
Ascribed by such a simple extension of Eqn (4.6) and why was 
simulation of the relative space RS necessary? 
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In a replacement series the sum D̂  + D2 is constant and equal 
to Dm. The monoculture predation rate (D̂  = Dra, D2 = 0) is 
then given by 

PRmon,l =
 B l x Dm + 1 PRM* (8*3> 

Elimination of PFMj from the Eqns (6.2) and (3.3) results in 
the following expression for PRj in the mixed culture 

(Bj x Dra + 1) x d ! 
P R 1 =

 B l x D l + B2 x D2 + 1 P I W l ( 8 - 4 ) 

in which dj stands for Di/Dra. 
After division of numerator and denominator by Dra we obtain 

(Bx + 1/Dm) X di 
? R l = (Bx + 1/Dm) x d 1 + (B2 + 1/Dta) x d2

 PRmon,l (8.5) 

This expression is analogous to Eqn (4.5) , with a relative 
crowding coefficient kj2 equal to 

k12 = (Bx + 1/Dm)/(B2 + 1/Dm) (8.6) 

The coefficient B^ + 1/Dm
 c a n ^e obtained graphically from the 

functional response curve for a single prey type, as in a 
similar way maximum predation rate and apparent area per prey 
were found from Eqn (3.1). Thus B^ + 1/Dm is simply the dis­
tance from this intersect along the 1/D axis to the total den­
sity. 

Exercise 86 
If prey and predator properties are constant, what are the 
extreme values of the relative crowding coefficient k^2 when 
the total density Dm is varied? 

8.5 Verification 

Model building is mostly a futile exercise if model output 
and results of independent experiments are not compared. Such 
verifications are preferably done at different levels. One 
such level is mixed prey predation as derived from predation 
of single prey types. This verifies only the 



Id 

Z 
Ui 

£ 
< 

* >< • • -4 

\ 
i * 

-v—• 

>-+ 
N 

— J . 

'••• M • 

00 

P j i n i i i r 
2 o « o <o ># o« 

" I M t I I I | | 
Q e i o •< «N •- o o o o 

??£ 

J-«e 

-* S 

e» 

o 

\ 
\ 

I I 

M I T i t t : i i i i i n r 
o o o 

—r-
o 

•R £ 

-R 

-ft 

-en 

' ' ' I I 11 t 1 T I I T 1 

§ B a R 
11 M f T ' f I ' l — I > 
52 w> «N 

•R £ 
» -

• 8 

•R 

R 

•a 

hn 

?? 

J-c 

H * 

»-<* 

«o a. 

3 

i H T T t 1 r 

2 O «6 3 ~3 r̂  

1 > I T » t t t 
oa> to -J r* 

- » T M » » i 

» - 0 0 -J 
O 

e*r!* f1 ' Simulated and experimental results of a population 
^xperiment of P. ulmi and A. potentillae in a greenhouse; 

ffiulated results and experimental results in terms of confi­
dence intervals. 

r££ 

UlT. 

cr» 

W3 



NUMBER EGGS PULM 
20000-

VOX-. 
— 

500^ 

200-

tth 

so[ 
mt 

20-

C 

# * * " * 

/ T V * 

/ 7 \ ••• 
/ / \ \ 

/ • / X \ 
1 \ «\X̂  \ 

> t) 20 30 40 50 60 70 80 90100 TO 12000*JQS) 160 
TIME 

NUMBER 
200-

Wz 

*°: 
20-

K?: 

5; 

2-

1 
i 

99POMI 

. * " * * » 
# « 

« y \ * 
* / V 

• ' / \ i 
* ' £ V 

' x Y. 
* S T 

* V ^ 1* 
t ^r \ 

»«..« * 

, , . ^ , , . T , ^ T . T ._,._ r . . r ..7 - T —, 

) t) 20 30 4)5O6O7O80 90100ttlt20tMU0t5Oft0 
TIME 

NlWBER WAPCTENrttlAE 

200-

50-
-

20-

t ) : 

5 

2-1 

EGGS APOTENTIUE 

1 ' — r — r m m r m * r m T ' »—r—i—'—i—»—'— t— t—i"~" l 
0 13 20 30 43 50 60 70 80 901)0110 120 OQUO150160 

T*£ 
020304)50607080 90100TO G013QW)l50*O 

T!ME 

Fig. 42 | Simulated ( ) and experimental ( ) results of 
P. ulmi and A, potentillae in an orchard: The experimental 
results are \he average of several orchards. 

assumption about the interaction between different prey types 
as was discussed in the previous section. 
A second level of verification concerns population experiments 
of prey and predator in a larger but still small system with 
well defined boundaries under controlled conditions, e.g. a 
small appletree in a greenhouse. The comparison of such measure' 
ments with simulated results indicates a reasonable correspon­
dence (Fig. 41) so that a third phase of verification is justi" 
fied: the apple orchard. Some results of simulations for or­
chards and experimental results are given in Fig. 42. The 
reasonable agreement increases the confidence in the model. 
Verification on different levels facilitates pinpointing errors 
in model structure or parameter values. Another important tool 
in error spotting is sensitivity analysis, because it shows 
which parameters have great influence and could thus be res-
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ponsible for deviations between measurements and results. The 
results of a sensitivity analysis also help in deciding 
research priorities. For instance sensitivity analysis shows 
that in this model the abiotic mortality of prey and predator 
are of minor importance. The most important factors are the 
oviposition rate, the predation rate of the adult female 
predator and the length of the juvenile period of the prey. 
Also the gut content, especially when it is low, has a quite 
important effect on the predator's rates of development and 
reproduction. Experimental data on these relations are scarce 
and inaccurate, so that more research in this direction is 
required. 
The model described may also be used for the development of a 
practical pest management method. Present-day crop growth models 
can be combined with population models on phytophagous and 
Predacious arthropods. After quantification of the relation 
between host plant and phytophagous animal, these combined 
models may be used for calculating reduction in yield. With a 
preset limit for acceptability of yield reduction, threshold 
levels for the density of the harmful animal nay be found. 
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9 Solutions of the exercises 

M J The differential equations for the falling apple are 

dv 
dt 

= 9> 
ds 
dt 

The rate of change of the amount of electric charge on a capaci­
tor is equal to its charging current and the potential across 
the capacitor is equal to its amount of charge divided by its 
capacitance, so that 

de . . 
dF= l/c 

By substituting i \ = g.c\ and 12 = el«c2 f o r t h e charging 
currents of a first and second capacitor, the differential 
equations for the falling apple are obtained. 

(2) Our results are as follows 

child 
A r 

-8 meter 

Fig. 43 

In a first model of this system it may be sufficient to assume 
that there are two variables of state, the distances -, which 
increase by the rate of walking of each child. There are two 
independent rate determining processes: one in the mind of 
each child who wants to stay side by side with the other. How­
ever, this model would not explain why the step sizes in the 
beginning of the process are more variable than at the end. 
It has to be realized that each child has a memory which is 
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able to conserve the sizes of the step of the other. Each child 
thus determines the step size to be taken not only on the dif­
ference in position but also on a 'normal step size for the 
other child', figured from data conserved in memory. These 
memorized data characterize also a state of the system. Hence 
a more sophisticated model requires more than two state vari­
ables. Digital computers are much more suitable to memorize 
such historical data than analogue computers and this is one 
of the reasons why they are preferred to simulate complicated 
state determined systems. 

(3) A is expressed in grams and GR in grams hour"" . Eqn (2.1) 
is only dimensionally consistent when RGR is expressed in 
hour"*. For the relative growth rate to remain constant there 
should be a constant amount of food and also of harmful waste 
product. This situation is achieved most simply by an abundant 
food supply beyond saturation, and an entire removal of waste 
products. Moreover environmental conditions such as temperature 
must be kept on a constant level. 

0 The result is 

TIME 
A 

0 
1.000 

2 
1.221 

4 
1.492 

6 
1.822 

8 
2.226 

10 
2.718 

The relation between the logarithm of the amount and time is 
linear, since taking the logarithm is per definition the inverse 
of taking the exponent. 
If 

a RGRxT A = e 

then 

In(a) = RGR x T 

in which In stands for the logarithm with base e. 
It is recalled that 

l0log(e) = 0.43429 
°r that 

eiog(10) = ln(10) = 2.3026, 

so that 

ln(A) = 2.3026 x 10log(A) 
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n Q The results with DELT = 2 hours are: 

TIME 
0 
2 
4 
6 
8 

10 

A 
1.000 
1.200 
1.440 
1.7280 
2.0736 
2.4883 

RGR x A 
0.1 
0.12 
0.144 
0.1728 
0.20736 

RGR x A x DELT 
0.2 
0.24 
0.288 
0.3456 
0.41472 

_ • 

{6J Some results with DELT equal to 1 and 0.5 hours are 

TIME 0 2 4 6 8 10 
A(DELT=1) 1.000 1.210 1.464 1.772 2.144 2.594 
A(DELT=0.5) 1.000 1.216 1.477 1.796 2.183 2.653 

AQ (=IA) being the initial amount, A^ equals AQ + AQ x DELT x RGI 
after one time-interval and after two time-intervals 
A2 = Pi\ + A! x DELT x RGR. 
In general the relation 

A = A ,(1 + DELT x RGR) 
n n-1 

holds. 
Since A can be written as the product of A and 
(1 + DELT x RGR) and RGR is constant, the expression can be 
transformed into 

An = A0(l + DELT X RGR)" 

This is the value of A at time n x DELT, so that 
n 

An = A0(l + DELT X R G R ) T I M E / D E L T 

or 

* ,/< 1 ,„xXxRGRxTIME An = A0((l + 1/X) ) 
with X = l/(DELTxRGR) 
When TIME stays constant and DELT approaches zero, X approaches 
infinity and the expression for A approaches to 

RGRxTIME 
A = A0 x e 

in which the number e is standing for 

e = lim (1 + 1/X)X = 2.7182 
X-*» 
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This is the so-called analytical solution for the differential 
equation of exponential growth, which is just a standardized 
way to write the procedure for a numerical solution. 

(7) RGR is the only variable containing the dimension of time. 
If RGR is expressed in hour""1, TIME assumes the dimension hour. 
If programs contain more variables with the dimension time, 
care must be taken to use the same unit of time. 
Of course it is always necessary to express variables in con­
sistent dimensional units: a pitfall that is easily overlooked. 

(0) See Fig. 1. 

\9J The rectilinear method of integration always gives an under­
estimate when the integral shows an upward curvature as a 
function of time. The accuracy of the estimate can be improved 
by choosing a smaller value of DELT, but an underestimate 
cannot be turned into an overestimate in this way. 

© 
0.3 h 

RGR 

Our function looks as follows: 

pig. 44 

Q2/ Compared with the scatter of the observational data, the 
deviations between the smoothed curve and the straight segments 
is small, so that it is unnecessary to use smaller temperature-
intervals in the tabulated function. 
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(12) sine (0°) = 0 
sine (15°) = 0.259 
sine (30°) =0.5 
sine (60°) = 0.865 
sine (90°) = 1. 
The maximum temperature is reached just 6 hours from the begin­
ning of the day. 

(ii) The rate of change of T is 1, so that T T + D E L T = Tj + DELT 
and because the initial value*of T is zero, T = TIME. 

uy The answers do not differ very much for different choices 
of DELT, so that 0.5 hour seems to be a reasonable choice. 
The relative growth rate is 0.1 at a temperature of 12.5 °C 
and the temperature is maintained on this level by introducing 

PARAMETER AVTMP = 12.5 , AMPTMP = 0. 

© 
A10 

2-

1-

1 DELT 2 

Fig. 45 

16; An acceptable relative error of 5 percent means that 
12*RGR2*DELT*TIME must be 0.05 at most. With RGR =0.1, TIME = 1 
the maximum value for DELT is 1. According to the graph that 
was plotted in Exercise 15, the maximum value of DELT is 
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1.2 hour. The agreement between both methods is reasonable. 
The difference is due to the neglect of the higher order terms 
in the derivation of the equation for the relative error. 

(I?) The listing of the program is 

TITLE RELATIVE GROWTH RATE TEMPERATURE DEPENDENT 
INITIAL 

C0UNT1=0. 
C0UNT2=0. 

DYNAMIC 
A=INTGRL(IA,GR) 
GR=RGR*A 

INCON IA=1. 
RGR=AFGEN(RGRTB,TEMP) 

FUNCTION RGRTB=(0.,0.),(10.,0.08),(20.,0.16),(30.,0.21),... 
(40.,0.24),(50.,0.25) 

PARAMETER AVTMP=20.,AMPTMP=10. 
TEMP=AVTMP+AMPTMP*SIN(6.2832*TIME/24.) 

NOSORT 
C0UNT1=C0UNT1+1. 
C0UNT2=C0UNT2+KEEP 

TIMER FINTIM=48.,0UTDEL=2.,PRDEL=2.,DELT=0.5 
PRINT C0UNT1,C0UNT2 
OUTPUT A,RGR,GR 
METHOD RECT 
END 
METHOD TRAPZ 
TIMER DELT=1. 
END 
METHOD RKSFX 
TIMER DELT=2. 
END 
METHOD RKS 
END 
STOP 
ENDJOB 

The results at time 48 are 

1 

A 
COUNT 1 
COUNT2 

RECT 
DELT=0.5 
1034.1 

98 
97 

TRAPZ 
DELT=1. 
1330.3 

98 
49 

RKSFX 
DELT=2. 
1367.7 

98 
25 

RKS 
aut. 
1368.4 

180 
19 

^e must assume that the results obtained with the automatically 
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adapting method RKS are the most accurate. To get this result 
the program was executed ('updated') 180 times, and 19 time 
intervals of integration were required to cover the total 
simulation period of 48 hours. On the average almost ten cal­
culations of the program are needed for each time step. This 
number drops to four with RKSFX, to two with TRAPZ and to one 
with RECT. Therefore the number of times the program was cal­
culated was the same in these three runs with DELT = 2, DELT = 1 
and DELT = 0.5, respectively. With the same computational 
effort method RKSFX, a Runge-Kutta/Simpson method with fixed 
interval of integration, gives by far the most accurate results, 
the next is TRAPZ and RECT scores the worst. The deviation 
with RECT is of the order to be expected. On the average the 
relative growth rate was ln(1368)/48 or 0.15. With DELT = 0.5 
and TIME = 48 the relative error is 0.27, so that the result 
should be about 1000. RGR was varying, but still this estimate 
for the relative error is quite reasonable. 

18] It was said that two rates do not depend on each other, but 
not that one rate cannot depend on the other. Here, the rate 
of growth and the rate of alcohol production are consequences 
of the same process: the biosynthesis of yeast material out of 
sugar. Therefore, there is a fixed ratio between rate of growth 
and rate of alcohol production. The rate of sugar consumption 
is stochiometrically related to the above two rates: laws of 
conservation of matter, energy etc. can be formulated in such 
a way that some rate of appearance always equals some rate of 
disappearance. 

19) The rate of sugar consumption is equal to a sugar consump­
tion factor times the rate of yeast growth for each species. 
The amount of sugar is an integral which is emptied by both 
rates. The amount or concentration of the sugar in the medium 
should feed back on the growth rate of the yeasts. The quanti­
tative aspects of this feedback are not presented in the diagram 

0) RED1=ALC/MALC, as here 0<ALC<MALC. 
Otherwise, RED1 should be given by 

RED1=LIMIT(0.,1.,ALC/MALC) 

(2l) The best estimate of RGRl is obtained by presenting the 
amount of yeast during early growth on a logarithmic scale 
against time and drawing a straight line through the data. 
The value is about 0.2 hour" . The value of ALPFl is the alcoho' 
concentration at the end, divided by the amount of yeast newly 
grown or 1.5/(13.-0.45) = 0.12 percentage of alcohol per unit 
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of yeast. The alcohol production factor depends on the size of 
the vessel. In a larger vessel, the same amount of alcohol 
would cause a smaller percentage. It would be more elegant not 
to mix up the influence of physiological aspects (alcohol pro­
duction rates) with experimental aspects (vessel size), but 
Gause did not give the latter. The alcohol percentage corre­
sponding with the initial amount of yeast is ALPFl x IYl, but 
Gause did not add this alcohol with the yeast at time zero. 
Relevant figures for Schizosaccharomyces are: 

RGR2 = 0.05 hour"1, ALPF2 = 0.26 (% ale.) (unit yeast)""1 

Schizosaccharomyces has the largest alcohol production factor. 

(22) Here Saccharomyces would grow more slowly and Schizosaccha­
romyces faster than suggested by a linear dependency of the 
reduction factor on the alcohol concentration. In the monocul­
tures, this deviation from the linear dependency would not 
affect the ultimate amount of yeast that is formed, but in the 
mixture it would lead to less Saccharomyces and more Schizo­
saccharomyces, However, the growth curves for the two species 
in the monoculture would also be of different form. The scatter 
in the data is too large to detect a difference of this kind. 
The alcohol concentration in the mixture may be calculated by 
multiplying the final yields with the respective alcohol pro­
duction factors. A concentration of 1.43%, rather than 1.5% is 
then calculated. Hence, there is less yeast in the mixed culture 
than would be expected. 

(23) The yeast will grow and increase its amount, and thereby 
its growth rate and alcohol production rate, until the alcohol 
concentration approaches 1.5%. 
In this situation an infinite amount of yeast will maintain a 
growth rate which is just sufficient to produce the alcohol 
that is continuously removed by washing. The removal rate of 
alcohol is 1.5/10, and the absolute growth rates are obtained 
by dividing it by the alcohol production factor. This rather 
ridiculous result is obtained because of the assumption that 
the maintenance of yeast cells does not need energy and thus 
does not result in some alcohol production. Obviously, a simu­
lation program which is satisfactory in some situation is not 
satisfactory in others because simplifications that apply in 
°ne situation do not necessarily apply in another. 

(24) YM equals MALC/ALPF. Since ALPF was calculated from YM, it 
is not surprising that the YM equals 13 and 5.8 for the species. 
The first derivative of c/v equals (-c/v2) x (dv/dT), when c 
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is a constant, so that the first derivative of Eqn (3.7) is: 

dY -YM , v _ „ -RGRxT, 
x (-K x RGR x e ) dT ,, _,_ v -RGRxT. 2 

(1 + K x e ) * 

The two minus signs cancel, and part of the expression can be 
replaced by Y itself: 

J«» t* 1-xs-.,-* — R G R x T dY „ K x RGR x e 
~zz - Y x dT -RGRxT. 

(1 + K x e ) 
-RGRxT 

The fraction can also be written as 
(1 + K x e ) 

i - L_ 

(1 + K x e"R G R x T 

Substituting Y for a second time gives 

-~ = RGR x Y X (1 - Y/YM) 

In this way the differential equation (3.6) is again arrived 
at. The initial amount of yeast can be found by substituting 
for time the value zero into the integrated equation (3.7). 
This gives: 

YM 
IY = 

1 + K 

The differential equation for the rate of alcohol production 
can only be replaced by the integral equation for the amount 
of alcohol if the initial amounts of yeast are small. Otherwise, 
the appropriate amount of alcohol, ALPF x IY, has to be 
added together with the initial amount of yeast if the analytical 
solution is to be used. Such restrictions do not hold in the 
simulation program because no equations are eliminated there. 

,25; If we again neglect the initial amounts of yeast, the amount 
of alcohol in the mixed culture is given by 

ALC = ALPF1 x Yi + ALPF2 x Y2 

Assume that RED = ALC/MALC for both species, then the growth 
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rates may be formulated as 

= Yl X RGR1 X (l - A L P F 1 * Y 1 - A L P F 2 * Y 2 ) 
v MaT.r MAT r J 

dYl 
dT ** """* " \" MJ^LC ~ MALC 

%?•- V2 x RGR2 x ( l - A L P F 1 * Y 1 - A L P F 2 * Y 2 ) 
dT v MALC MALC ; 

Ri and R2 correspond to RGR1 and RGR2, Al and A2 are equal to 
ALPF1/MALC and Bl and B2 to ALPF2/MALC. Al and A2 are equal 
because it is assumed that Yl and Y2 are equally sensitive to 
the alcohol produced by Yl. If Yl produces some product that 
is more harmful for Y2 than for Yl, A2 is larger than Al. 

£6) The denominator ki2Z1+Z2 cancels by division, so that Eqn 
(4.4) is obtained. Addition of OJ/MJ and 02/M2 gives 
^12zl + 22)/»k122l + z 2^ = 1 so that Eqn (4.3) is obtained. 
The results of the calculations are: 

z b 
RYb 
RY 

o 
RYT 

2 RY^ 
k = ° D 

DO 2L
 X RY 
b o 

M aK = K b bo bo 
Mo 

0.2 

0.353 

0.704 

1.06 

2.01 

1.50 

0.4 

0.665 

0.358 

1.02 

2.79 

2.08 

0.6 

0.820 

0.198 

1.02 

2.76 

2.06 

0.8 

0.882 

0.082 

0.96 

2.69 

2.01 

Obviously some smoothing is necessary to obtain a RYT equal 
to 1 and a constant relative crowding coefficient. 
°ats has the highest yield in monoculture, but barley gains 
in competition. 

(27) Replacing 2X and z2 by Z1/Zm and Z2/Zm, taking into account 
that Zi + Z2 = ZJJJ and omitting the subscript 1 transforms Eqn 
(4.5) into 

0 = k x Z/Zm = k x Z 
k x Z/Zm + (Zm - Z)/Zn (k - 1) x Z + Zm 
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This equation must be equal to 

B x Z 
0 ~ B x Z + 1 °m 

Hence B equa l t o ( k - l ) / Z and 0 t o :—:M, 
^ m m k-1 

2& 100-i 

F i g . 46 

Lim(O) = 0, 
Z-x» 

in 

Lira(0/Z) = Lim 
B 

Z-+0 z-K) 
B-xT+T^ = B x °m 

B x 7 
Lira(0/0ni) = Lim r :—7-= B x Z 
Z+0 Z+0 B x z + 1 

Lim(0/Om) = Lim BHZ
+1 = 1 

2-x» 2-*-00 
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Barley Oats 

7 June 
21 June 

5 July 
19 July 

om 
470. 
612. 
780. 

1132. 

B 
0.083 
0.574 
0.778 
0.778 

Om 
761. 
552. 
724. 
956. 

B 
0.0297 
0.346 
0.571 
1.17 

B has the dimension m row"1, because the seed density has the 
dimension row m"1. The calculated values of Om (g m~2) are very 
inaccurate for the first harvest because the yields are very 
far from their maximum at both densities. 
The product B * ^ is then quite accurate, because the denomina­
tor in Eqn (4.6) is still close to 1. As pointed out before, 
B*Om is the yield of a single growing plant. 
When linearized the growth rate of Om for barley and oats are 
16.4 and 14.5 g m~2day"1, so that the estimated values for Om 

at the first harvest are 377 and 333 g m~2. The values of B 
calculated on this basis are 0.11 and 0.076 m row"1. 

Qo) The intercept with the ordinate gives Om""1, and with the 
abscissa -B. A disadvantage is that the standard error a is 
distorted because a of I/O equals o of O divided by O2. 

It is therefore advisable to present the experimental results 
in two ways: I/O versus 1/Z and O versus Z and to arrive at 
acceptable parameters by an iterative procedure, going from 
one graph to the other. 

<li2§! = d(BxZ)/dt x (BxZ-t-1) - d(BxZ+l)/dt x B x Z 

dt (BxZ+TT2 

•7 dB dB „ dB 
z x — - x B x Z + Z x Z x — x B x Z 

= dt dt dt _ 

(BxZ+1)2 

=, Bx_Z 1 1 dB nem ,. n_. 1 dB 

7BX^IT X ( i x i T r r x ¥ x ^ = R S x ( 1 -R S ) x TT x iT 
^he dimension of (dB/dT)/B is time"1, the same as a relative 
growth rate. Usually its value decreases with time. There is 
exponential growth when this ratio is constant. 
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32] relative |__ 
space 
RS1 

I 
I 
l 

relative 
space 
RS2 

1 

F i g . 47 

33) The initial relative growth rate becomes infinite, if B is 
zero at emergence. The derivative of a variable with respect 
to time is calculated as the difference between the present 
value and the value either one sufficiently small time-interval 
earlier or one ahead, divided by this time-interval, taking 
care for the sign. In simulation only the first method can be 
used, as future values are not known. At time zero, however, 
the past is not known either so that the initial value must be 
given by the programmer on an INCCN card. 
The use of the derivative function DERIV is only allowed, if 
the derivative is taken of an externally given variable, such 
as an AFGEN function of TIME. In this situation the simulation 
program is used to convert some given variable time to its 
derivative with respect to time. As soon as some rate of an 
integral depends on a derivative of a variable which depends 
also on some integral, the DERIV function must not be used. 
Its results are nonsense, because an internal, algebraic loop 
is introduced. 
When the self-adapting integration method of Runge-Kutta is 
used, the time-interval will be chosen so small that the choice 
of the initial value has hardly any influence. With METHOD RECT 
it is better to initialize properly. We calculated the followin' 
initial values of the derivative of B: 
Barley: 0.0047 m row""1 day"1 

Oats : 0.0033 m row"1 day*"1 

The initial values of RS are calculated with 
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R S = _ B _ x _ Z 
B x Z + 1 

with Z = 2 rows m"1 and B = 0.001 m row"1. 
The simulated results in g m~2 are: 

Date of 
harvest 

7 June 
21 June 
5 July 

19 July 

Barley 

60.5 
242 
338 
490 

Oats 

37.1 
140 
214 
338 

These are in good agreement with the experimental results of 

TITLE FOUR COMPETING YEAST SPECIES 
INITIAL 
INCON YI'1,4^0.1,0.1,0.1,0.1 
DYNAMIC 
Y ' M ^ I N T G R L t Y I ' M ' . R Y ' M ' ) 
R Y ' M ^ R G R ' M ' + Y ' M ' ^ l . - R E D ' M ' ) 
PARAMETER RGR'1,4^0.1,0.3,0.4,0.5 
RED'1,4,=AFGEN(RDTB,1,4,,ALC) 
FUNCTION RDTB1=0.,0., 1.5,1. 
FUNCTION RDTB2=0.,0., l.,0.8,2.,l. 
FUNCTION RDTB3=0.,0., 0.9,1. 
FUNCITON RDTB4=0.,0.,1.,0.5,1.5,1. 
ALC=INTGRL(0.,ALCPT) 
ALCPT=SUM1(ALCP,1,4<) 
A L C P ' M ^ A L P F ' M ' + R Y ' M ' 
PARAMETER ALPF'1,4^0.5,0.4,0.3,0.2 
TIMER FINTIM=50.,PRDEL=1.,0UTDEL=1. 
PRINT Y'1,4',ALC 
END 
STOP 
ENDJOB 

X$) The main differences between the MACRO and the INDEX 
features are simply of a practical nature. The index feature 
distinguishes the variables by a number at the end. Since a 
triable name may consist at the most of six alpha-numerical 
symbols, ABCDE'1,101 creates also the variable ABCDE10 and this 
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.(!' 

is an unacceptably long name. The INDEX feature can be used to 
any single expression that is normally used in the program. 
The MACRO feature is unsuitable for this purpose, because every 
time a MACRO is used, the invoking sentence has to be written. 
Hence, the only expression* in a 'one line macro1 may be as well 
written directly with the proper symbols. The MACRO feature is 
therefore in general used only when the MACRO definition con­
tains more than one structural statement. 

Qb) A subroutine is invoked in the execution phase, that means 
after compilation and loading of the FORTRAN program. A MACRO 
on the contrary is active before the compilation. A MACRO is 
an order to write a part of a CSMP program, and only afterwards 
is the program compiled and executed. Even the sorting is done 
after activation of the MACRO, so that the statements that occur 
together in the MACRO, may be scattered all over the FORTRAN 
UPDATE. 

Ql) The initial value of RS can be calculated with Eqn (4.7). 
When numerator and denominator are both divided by Z, RS is 
written as B/(B + Z"*1). Here the inverse of the seed density 
is equal to the distance between the rows, so that RS is given 
by B/(B + DIST). The initial value of B is much less than 1 cm 
per row in this example, so that RSI may also be written as 
BI/DIST. As pointed out in Exercise 33, DB need not be ini­
tialized very accurately so that the average value for DB 
during the first DELT is certainly good enough. 
Numerator and denominator are both proportional to DELT, so 
that DBI is independent of DELT as long as DELT is small enough* 
Thus no proMems occur with METHOD RKS. 
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TITLE COMPETITION BETWEEN THREE BARLEY VARITIES USING THE MACRO FEATURE 
MACRO RSI,DBI*BEGIN(BTB,DIST) 

RSI*BI/(BI+DIST) 
BI«AFGEN(BTB.O.) 
DBI«(AFGEN(BTB,DELT)-BI)/DELT 

ENDMAC 
MACRO 0,RS*GROW7H(RSI,DBI,BTB,OMTB) 

RS=INTGRL(RSI.(DB/B)*RS*(1.-SRS)) 
B*AFGEN(BTB,TIME) 
DB»DERIV(DBI,B) 
0»RS*AFGEN(OMTB,TIME) 

ENDMAC 
INITIAL 

RSI1.DBI1«BEGIN(BTB1,DIST1) 
RSI2,DBI2=BEGIN(BTB2,OIST2) 
RSI3,DBI3*BEGIN(BTB3.DIST3) 

DYNAMIC 
01,RSl*GROWTH(RSn,DBIl.BTBl,OMTBl) 
02,RS2*GR0WTH(RSI2,DBI2,BTB2,0MT82) 
03,RS3*GROWTH(RSI3,DBI3.BTB3,OMTB3) 

PARAM DIST1«1.2,DIST2»1.2,DIST3*1.2 
SRS»RS1+RS2+RS3 

FUNCTION BTB1«(0.,0.001),(30.,.04),(70.,5.) 
FUNCTION BTB2* 0.,0.0005),(30.,.02),(70..2.5) 
FUNCTION BTB3*(0.,0.001),(30.,.04),(70.,5.) 
FUNCTION 0MTB1»(0.,0.),(70.,5600.) 
FUNCTION OMTB2-(O..O.),(70.,560O.) 
FUNCTION OMTB3»(0..0.).(70.,2800.) 
TIMER FINTIM*70.,PRDEL*5.,0UTDEL*5. 
PRINT 01,02,03,SRS 
OUTPUT RS1.RS2.RS3 
END 
STOP 
ENDJOB 

TITLE COMPETITION BETWEEN THREE BARLEY VARIETIES USING THE PREPROCESSOR 
INITIAL 

RSri,3'«Bri,37(Bri. 3'*DISr 1,3') 
BI'l.S'-AFGENfBTB'l.S'.O.) 
DBI'l.S'^AFGENtBTB'l.S'.DELTJ-Bri.S'J/DELT 

DYNAMIC 
RS,l,3,«INTGRL(RSri,3,,(DB,l,37B,1.3,)*RS,l,3,*(l.-SRS)) 
B'l.S^AFGENfBTB'l.S'.TIME) 
DB'l.S^DERIVtDBri.S'.B'l.S') 
O'l^^RS'l^^AFGENfOMTB11,3',TIME) 

PARAM DIST'lJ'-LZ,1.2,1.2 
SRS'SUMlfRS'l^') 

FUNCTION BTB1«(0.,0.001),(30.,.04),(70.,5.) 
FUNCTION BTB2»(0.,0.0005),(30.,.02),(70..2.5) 
FUNCTION BTB3*(0.,0.001),(30.,.04),(70.,5.) 
FUNCTION 0MTB1«(0.,0.),(70.,5600.) 
FUNCTION 0MTB2«(0.,0.),(70.,5600.) 
FUNCTION 0MTB3»(0.,0.),(70.,28OO.) 
TIMER FINTIM»70..PRDEL«5.,0UTDEL«5. 
PRINT 0'1,3',SRS 
OUTPUT RS'1,3' 
END 
STOP 
ENDJOB 
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39; Thorough stirring does not result in a uniform distribution 
of the Paramecium throughout the liquid medium, but in a random 
distribution. One-tenth of the solution therefore contains 
sometimes more or sometimes less than exactly one-tenth of the 
number of protozoa. 

®. 
[41 

Variable 

H 
AFOOD 
TIME 
CONVF 
RDR 
FOOD 
RSW 
MRDIG 
CNRT 

Dimension 

protozoon 
loop 
day 
prot.loop""1 

day"* 
loop.volume"* 
volume, prot." 1 .day""* 
loop.prot."1.day~l 
loop.day"1 

Type of 'variable1 

state 
state 
state 
param. 
param. 
auxil. 
param. 
param. 
rate 

The example of the relational diagram in Fig. 40 is as schematic 
as possible. 
A simplified integral statement for the net growth rate is: 

H = INTGRL(IH,CONVF X CNRT - RDR x H) 

if a relative death rate is accounted for and 

H = INTGRL(IH,CONVF X (CNRT - MNF X H)) 

if maintenance is accounted for by a maintenance factor 
(MNF in loop.day*"1 .protozoa 1 ) . 

The two formulations are the same with 

RDR = CONVF X MNF 
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PARAMETERS 
* r 

I 
t 

sampling 
rate 

i 

number 
protozoa 

feeding 
rate 

death 
rate 

4 
l 
I 
I 
l_ 

F i g . 48 

growth 
ra te 

i! 
I I 
I I 

r a te 
consump. 

4 
I 

PARAMETERS 
T 

I 
I 
I 

J 

(£2) The graph consists out of two line segments: a straight 
line through the origin and a horizontal 'saturation1 level. 
MRDIG determines the height of the saturation level. The slope 
of the line through the origin is determined by RSW, and H is 
a multiplication factor for the height of the graph as a whole. 
CNRT equals zero when FOOD is zero. NGR equals zero when 

CNRT x C0NVF = DR 

or 

H x AMINl(MRDIG,RSW x FOOD) x CONVF = H x RDR 

or 

AMIN1(MRDIG,RSW X FOOD) = RDR/CONVF 

The maximum value of the left side of the expression is MRDIG. 
If the value of the right side is even larger than MRDIG, no 
value of FOOD exists for which NGR equals zero. In other words, 
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the rate of death could be larger than the rate of growth, even 
if the animals were eating at the top of their consumptive 
ability. Then rapid extinction would follow, so that there is 
no need to consider this situation. If, on the other hand, the 
expression on the right is less than MRDIG, the equation may 
be simplified to 

H X RSW X FOOD x CONVF = H x RDR 

or 

___ RDR 
FOOD = 

RSW x CONVF 

This equilibrium level of FOOD is independent of the number of 
protozoa H. This is logical because each animal catches its 
food on its own. 

(43) In Exercise 41 it is said that the basic unit to measure 
volumes is the volume of the test tube, and not cm^. This 
convention must be maintained throughout the simulation program. 
Numerically there is no objection to eliminate AFOOD and to 
write directly: 

FOOD = INTGRL(L,FEED - CNRTA - CNRTC) 

However, the dimensions of the variables are then not consistent: 
FOOD sometimes means amount of food, as here in the integral, 
and sometimes it means density of food, as in the expression 
for CNRT. 

M4) In this program discontinuous changes occur. Rates are 
calculated as contents divided by DELT. Such situations cannot 
be handled with METHOD RKS (see also Section 2.4). 

(45) Four parameters must be estimated for each species. If the 
order of magnitude of none of the parameters is known, one may 
start by estimating four values for each parameter of which 
the largest is 10 000 times the smallest. Then in a first evalu­
ation as many as 4^ = 256 simulation runs are needed. 

w6) Since the data scatter considerably your estimates may 
differ from those in the following table. 

148 



H 
eq 

GR.75 

RGR 
CONVF 
RDR 
MRDIG 
RSW 

P.aurelia 

0.5 loop 

2500 

350 
1.23 

2800 
0.46 
0.00064 
0.00128 

1 loop 

4500 

550 
1.23 

2200 
0.39 
0.00078 
0.00156 

P.caudatum 

0.5 loop 

600 

100 
0.74 

800 
0.57 
0.00176 
0.00176 

1 loop 

1290 

230 
1.05 

920 
0.61 
0.00191 
0.00191 

Averaging of the values for 0.5 and 1 loop, and taking into 
account that P.caudatum is about four times larger than P.aurelia, 
leads to the following estimates of the parameters: 

CONVF 
RDR 
MRDIG 
RSW 

P.aurelia 
3000 

0.43 
0.0007 
0.0014 

P.caudatum 
750 

0.59 
0.0028 
0.0018 

Some of the reasons why these estimates may be considerably in 
error are: 
a the scatter of data; 
b the population size in the end is not always at Hec,, but 
varies throughout the day so that the two equations with Heq 

in it are not strictly valid; 
c it is not certain whether in the beginning the saturation 
density of food is reached or not. The assumption that it is 
not so leads to a set of equations in which MRDIG is larger 
than RSW and which provides different values for RSW; 
d in the beginning the density of food varies also throughout 
the day, so that growth is not exactly exponential; 
e the whole concept, vizualized in the simulation program may 
be wrong. 

@ Other parameters being equal, a difference in the relative 
death rate of 10% causes a difference of only about 8% in the 
maximum size of the populations for the monoculture. In the 
mixed culture, however, it is just this 10% difference that 
makes for survival of one species and extinction of the other; 
after several days the difference in the population size is 
much larger than 8%. The same argument holds for the other param­
eters. Our best estimates are given in Table 4. Almost the 
complete program is presented in the text, so that finalizing 
it, should not give any difficulties. 
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M8) The food consumption (CNRT) is proportional to the number 
of protozoa (H) and to the minimum of the maximum rate of di­
gestion (MRDIG) or the food concentration times the rate of 
searching (FOOD x RSW). The food consumption is proportional to 
H, when FOOD exceeds MRDIG/RSW or when FOOD is constant. FOOD 
is constant in the beginning, because the consumption is small 
compared with supply. Since the death rate is also proportional 
to H, exponential growth results at the beginning of the experi 
ment. 
At the end of the experiment the population grows very fast 
just after feeding. As soon as the food level is below 
FDR/(RSW x CONVF), the death rate is larger than the growth 
rate (Exercise 42). When the food is depleted below this criti­
cal level, the population size goes through a maximum, and will 
be smaller at the end of the day than some time earlier. 
The relative death rate is about 0.45 day"1 and the relative 
sampling rate approximately 0.1 day-1, so that death through 
natural causes is far larger than through sampling. It is 
interesting to remark that Gause did not only discard the 
sampled amount for practical reasons, but also because he was 
(unnecessarily) afraid that the natural death rate would be 
so small that one species would not replace the other in com­
petition. 

49) According to the Poisson distribution function, the standar 
deviation is the square root of the sampled number so that the 
relative standard deviation is inversely proportional to this 
square root. The population of P.aurelia is about four times 
larger than of P.caudatum, so that its relative standard devia­
tion is about half, as reflected in the scatter of the obser­
vations. 

(50) a At 14 °C the function DVRTB is interpolated between the 
points (12.,0.) and (26.,0.035); so that DVR is 0.005 day"1. 
Accordingly, the development stage at 20 days is 0.1. 
b DVR equals 0 at 7 °C and 0.0225 day"1 at 21 °C. The develop­
ment stage at 20 days is 20 x 0.5 x 0. + 20 x 0.5 x 0.0225 
or 0.225. 
In both situations a and b, the average temperature is 14 °C, 
but development is much faster in b because of the variation 
in the temperature, combined with a more than linear temperatur 
response. 
c At 30 °C the rate of development is 0.039 day"1, so that at 
20 days a development stage of 0.78 is reached, 
d At a temperature of 40 °C DVR equals 0.041 and at 20 °C 
0.020. Therefore, DVS after 20 days is 
20 x 0.5 x (0.04 + 0.020) = 0.61. This value is less than in 
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situation c, although the average temperature was the same in 
this period. Here the variability has caused a decrease in 
development, because of the less than linear temperature res­
ponse in this region. 

(Si) With a constant relative death rate RDR, and no birth, the 
population as a function of time is 

„ „T -RDRxTIME 
H = HI x e 

as derived in Section 2.1. When RDR has the dimension year"1, 
the total death during the first year amounts to 

tIT ,, -RDR. 
HI x (l.-e ) 

so that the relative annual death rate equals 

« -RDR 
l.-e 

For small values of RDR this approaches RDR. When RDR is 0.02 
the error is only 1%. 
When RDR is zero and the relative birth rate equals RBR, the 
size of the population is 

H — MT RBR = HI x e 

after one year. 
The relative annual birth rate is then 

e -1. 

The integration routine METHOD RECT must be used because a 
division by DELT occurs in the expression for the rates. 

(52) The data of set 1 must be used. The time interval of inte­
gration is a half year because the IMPULS function works at 
2-5, 7.5 etc. years. The birth and death rate data can also be 
used when time-intervals smaller than one year are applied but 
for large time-intervals they have to be recalculated on that 
basis, it is a good custom in the Netherlands to maintain graves 
for a limited period of time. Therefore, the question as to 
the number of graves may be relevant. To calculate the number 
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of graves another series of at least ten classes of five years 
must be introduced. The birth rate of the graves equals the 
death rate of the population and the 'relative death rate' of 
graves is zero. 
Demographically, there is hardly any difference between death 
occurring during the first years of life and a decrease in 
birth rate corresponding with the death rate in excess of the 
•normal* death rate during the first year. However, if this 
correction is made, it must be taken into account that the 
chances of dying during the first year are not the same for 
boys and girls, so that the sex ratio has to be corrected 
accordingly. 
The total male and female population after 50 years equals 
10.49 x 106 and 10.39 x 106, respectively and the total number 
of graves are 1.853 x 106, 4.340 x 106 and 7.528 x 106 when 
maintained for 10, 25 and 50 years. 
The simulation program for the growth of the population is 
given in Fig. 41. The simulation of the number of graves is 
programmed in Exercise 61. 

The birth rates and death rates per thousand are recalculated 
on a relative basis in a NOSORT section because statements of 
the form: 

MRDR1 = MRDRl * 

cannot be sorted (Section 2.3). 
I t would have been also possible to rename the variables. 

[53; GS =1 means that a l l seeds are germinated. Simulation beyon 
this point does not make sense, as far as germination is con­
cerned. 
The termination of the program is achieved by inserting a 
finish card: FINISH GS = 1. 

TITLE GROWTH OF THE NETHERLANDS POPULATION 
PARAM WRDR'1,19 '*11.4 ,1 .2 , .3 . .3 , .4 , .4 , .6 ,1 . ,1 .5 ,2 .5 ,4 . ,5 .5 ,8 . ,13 

20. ,50. ,120. ,250. ,500. 
PARAH MRDR'1,19 '»15.6 ,1 .8 , .5 , .5 , .7 ,1 . ,1 .2 ,1 .5 ,2 .2 ,4 . ,6 .5 ,9 . ,11 .5 , . . . 

16. ,35. .70. ,150. ,300. ,600. 
INC0N WI'1,19**291.,584.,570.,548.,548.,487.,400..380.,379.,377., . . . 

353. ,327. ,310. ,262. ,226. ,180. ,110. ,50. ,33. 
INC0N Mri ,19 ,»305. ,612. ,597. ,575. ,576. ,517. ,429. ,309. ,382. ,367. , . . . 

338. ,306. ,280. ,223. ,184. ,150. ,90. .40. .13. 
PARAM RBR ,1.16 ,«4»0.,.091,.159,.152,.084,.036,.01,6*0. 
PARAM SEXR*1.048 
INITIAL 

FRB0Y»SEXR/(1.+SEXR) 
FRGIRL*1./(1.+SEXR) 

NOSORT 
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•CONVERSION OF DEATHS PER THOUSAND PER YEAR TO RELATIVE DEATH RATES 
MRDR»l,19,"-ALOG(l.-0.001•MRDR'l,19,) 
WRDR,1,19,«-AL0G(1.-0.001*WRDR,1,19') 

•INITIAL CONSTANTS WERE GIVEN IN THOUSANDS: 
wi'i.w-iooo^wi'i.ig' 
MI'l.W-lOOO^Mri.W 

DYNAMIC 
M1*INTGRL(MI1,MBR - MUMRDR1 - MFL1) 
Wi*INTGRL(WIl,WBR - Wl̂ WRDRl - WFL1) 
M ^ . i g ^ I N T G R L a i l ^ . i g ' . M F L ' l . l S ' - M F L ^ . i g ' - M ^ . i g ^ M R D R ^ . i g ' ) 
W^.ig'-INTGRLCWI^.^'.WFL'l.lS'-WFL^.^'-W^.ig^WRDR^.ig') 
TBR'SUMXtW'l . ie ' .RBR'l . ie ' ) 
WBRxFRGIRL̂ TBR 
MBR«FRBOŶ TBR 
WFL'l.W-PUSHD^Wl.W - WRDRM.lQ'iW'l.WUDELT) 
MFL'l.W-PUSHD^M'l.W - MRDR'l.WWl.W^DELT) 
PUSHD*PUSH/DELT 
PUSH*IMPULS(2.5,5.) 
TW^SUMltW'l.W1) 
TM^SUMltM'l.W) 
TP»TM • TW 

METHOD RECT 
TIMER FINTIM*50.,DELT«.5,OUTDEL»5..PRDEL«5. 
PRINT TPJW.TM.TBR.M'l.ig'.W'l.W 
OUTPUT TP.TW 
END 
STOP 
ENDJOB 

Fig. 49 

54) It is a rather arbitrary choice to give the value 1 to the 
stage of germination; it could just as well be 1000. Whatever 
the value, it is passed going through N classes. Accordingly 
each class covers the chosen germination value divided by N. 

55) The simulation program may read as follows 

PARAMETER N=10 
H1=INTGRL(1000., - FL0W2) 
H'Z.IO^INTGRLCCFLOWZ.IO' - FLOU^ll') 
FLOW'Z.H^H'l.lO'+PUSHD 
PUSHD=INSW(GS - l./N,0.,l..)/DELT 
GS=INTGRL(0., VDV - PUSHD/N) 
PARAMETER VDV=0.143 
METHOD RECT 

The seeds germinate at l./O.143=7.0 days. 
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(56} The average germination period is not necessarily the mo­
ment when 50% is germinated. When G is the rate of germination, 
the mathematical definition of the average germination period 
is: 

fn G x T x dT 
AGP = J-2 

JO G x dT 

To execute this calculation, the curve is divided into sections 
of one day and the formula 

27 /27 
AGP = I Gn x Tn/l Gn 

n=0 / n=0 

is used, in which n is the number of the day. 
Because the cumulative curve adds up to 100%, the denominator 
in this formula is 100. AGP appears to be 16.4 day. 
Similarly, the formula for the variance (the square of the 
standard deviation) is: 

27 /27 
VAR = I Gn X (Tn - AGP)2 \ Gn 

n=0 / n=0 

This value is 11.91, so that the standard deviation is 3.45 day. 

57} It is assumed that germination on the nth day means germi­
nation at the beginning of the nth day. The average germination 
periods in days are then: 100 x 5/100 = 5, 100 x 10/100 = 10, 
(50 x 5 + 50 x 10)/100 = 7.5, (75 x 5 + 25 x 10)/100 = 6.25. 
If it is assumed that germination occurs during the nth day, 
0.5 day must be added to these values. The dimension of the 
relative germination rate is day l and of the average germi­
nation period is days. The product is therefore dimensionless. 
Its value appears to be approximately one. 
The average germination period is 

1 f» dH J m 1 rHI m 
A G P = " Hi/0 T X dT X d T = Hi'° T X d H 

The integral is the area below the H versus T curve, so that 
the expression can be replaced by 

154 



AGP = y ; B x « - JL fi HI x a"*"** x dT = 

1_ -RDVxT*]00 _ 1 
~RDV X JO RDV 

Hence RDV x AGP = 1. 

58) The time constant of each integral is found by reducing 
its equation to (Section 2.3). 

UL = INTGRL (HIif l^/TAUi + all other influences) 

For all integrals TAU appears to be equal to REST, so that 
the time constant of the whole system is also equal to the 
residence time in each class. 

59) According to Eqn (6.2), F should be negative. Obviously 
the number of classes that is chosen is too large to obtain 
a relative dispersion of 0.25. With N = 16 and F = 0, the 
proper dispersion is obtained. 

H3 
0 
0 
0 .25 

H4 
0 
0 
0 

(60) 
TIME HI H2 
0 1 0 
0.5 x REST 0.5 0.5 
1.0 x REST 0.25 0.5 
1.5 x REST 0.125 0.375 0.375 0.125 

This table satisfies the binomial probability distribution 
function. 
B equals TIME/(F x REST) and f equals F, so that f x B = TIME/ 
REST. With f x B small and constant and B increasing, the 
binomial approaches the Poisson distribution function. 
This situation is achieved here when the lowest value of F i.e. 
DELT/REST is substituted in the expression for B, and DELT 
approaches zero. Then B equals TIME/DELT and approaches infinity. 
The expectation value and the variance of the Poisson distri­
bution are f x B and (1 - f) x f x B or in the other terms 
TIME/REST and (1 - F) x TIME/BEST. To convert the variance in 
terms of time, rather than class, the expression must be multi­
plied by REST2. Then S2 becomes (1 - F) x TIME x REST which 
reduces into Eqn (6.2) when TIME is replaced by AGP. It is also 
recalled that for high expectation values the Poisson function 
approaches the Gaussian function with a variance equal to the 
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expectation value of the mean. 

61) The age-classes are now indeed 0-5, 5-10, 10-15 etc. so that 
set 2 with the class centres at 2.5, 7.5, ... years must be 
used. The residence time is 5, and the value of F is of course 
1 because age-classes advance per definition without dispersion. 
The simulation program, including the number of graves is given 
in Fig. 42. 

(62) The net flow rate of the first layer, NFL1, is calculated 
as FLW1 - FLW2. The choice of the signs means that FLW1 goes int 
into the first (and topmost) layer and that FLW2 leaves it. 
Therefore the direction of the flow is downwards. Of course, 
upward flows are also possible but then they are negative. 
This rule for the sign must be taken into account when the 
expression for FLW is written. 

t The flow into the first layer is governed by the temperature 
fference between the surface of the soil and the centre of 

the first layer. The distance between these levels is only half 
of the thickness of the compartment. 
The unit of time is second, as follows from the definition of 
TMPS. Every time the argument of a sine has the value 2TT 
(= 6.2832), a full cycle is completed. 
TAV represents the average temperature of the soil surface, and 
TAMPL is the amplitude of the sine wave. 

(64) 
Variable Dimension 
TMP,TI,TMPS,TAV,TAMPL °C 
TCOM m 
VHCAP J nT3 °C 
HC,HCI J m"2 

COND J m"1 °C~1s""1 

FLW,NFL J m-2 s-1 

It is extremely important to be aware of the units, as the 
numerical value of the properties depends on the units. It is 
recommended to use a consistent set of units: the interna­
tional system with kg, m, s. 

65) The easiest method is to specify the conductivity and the 
heat capacity as a function of depth in an AFGEN function. 
A new variable for depth, DPT must then be introduced, whereby 
DPT1 equals 0.5 x TCOM, etc. Also TCOM can be varied with the 
number of the layer. TCOMl, TCOM2, etc. must then be specified. 
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TITLE GROWTH OF THE NETHERLANDS POPULATION II 
PARAM WRDR,1.19,«4.0,.8,.3,.3..4,.5,.8,1.2,2.,3.2.4.7,6.7.10.5, ... 

16.5,35..85.,180.,380.,760. 
PARAM MRDR'1.19'»6.0,.7,.5..6,.9,1.,1.4,1.8,3.1,5.2.7.8,10.7,13.7,... 

25.5,52.,110..200..400.,900. 
INCON Wri.l9,«582..587.,553.,543.,554.,420.,380.,381.,378.,376., ... 

330.,323.,298..226..226..150.,70..25..13. 
INCON MI'1,19'*611.,613..580..569..583..452.,405..393..371.,362 

314..297..262..184..184.,120..60..20..3. 
PARAM RBR,1,16,*3*0.,.022,.137,.188,.113..055..016..002,6#0. 
PARAM SEXR*1.048 

INITIAL 
FRB0Y*SEXR/(1.+SEXR) 
FRGIRL«1./(1.+SEXR) 

NOSORT 

•CONVERSION OF DEATHS PER THOUSAND PER YEAR TO RELATIVE DEATH RATES 
MRDR,1,19,*-ALOG(1.-0.001•MRDR,1,19,) 
WRDR'l.ig^-ALOGO.-O.OO^WRDR'l.ig') 

•INITIAL CONSTANTS WERE GIVEN IN THOUSANDS: 
wri.wMooo.iwri.w 
Mri,19, = 1000.*MI,l,19' 

DYNAMIC 
MO*INTGRL(0.,MBR - MFLO) 
WO=INTGRL(0.,WBR - WFLO) 
M1*INTGRL(MI1,MFL0 - MFL1 - DRM1) 
W1«INTGRL(WI1,WFL0 - WFL1 - DRW1) 
M^.ig^INTGRL^I^.ig'.MFL'l.lS'-MFL^.ig'-DRM^.ig1) 
W^.ig'-INTGRLfWI^.ig'.WFL'l.lS'-WFL^.ig'-DRU^.ig1) 
TBRsSUMXfW'l.ie'.RBR'l.ie1) 
WBR=FRGIRL^TBR 
MBR=FRB0Y • TBR 
WFL0=W0/2.5 
MFL0*M0/2.5 
WFL'l.ig^PUSHD+IW'l.ig' - DRU'l.l^DELT) 
MFL'l.W-PUSHD^M'l.lS' - DRH'1,19'*DELT) 
PUSHD*PUSH/DELT 
PUSH*IMPULS(2.5.5.) 
DRM'l.W-M'l.W^MRDR'l.W 
DRW'l.W-Wl.lQ'^WRDR'l.W 
TDRW=SUM1(DRW'1,19*) 
TDRM^SUMKDRM'l.ig1) 
TM^SUMHM'l.ig1) 
T W l ^ S U M U W l . W ) 
TM»TM19 • MO 
TW*TW19 • WO 
TP*TM + TW 
TDR*TDRM • TDRW + MFL19 • WFL19 
GO=INTGRL(0.,TDR - GO/2.5) 
Gl»INTGRL(0..G0/2.5 - FLG1) 
G,2,10,«INTGRL(0.,FLG,1.9,-FLG'2,10') 
FLG'l.lO'^G'l.lO^PUSHD 
TG10=G0 • Gl • G2 
TG25«TG10 • G3 • G4 • G5 
TG50»TG25 • G6 • G7 • G8 • G9 • G10 

TIMER FINTIM *50.,DELT=0.5.PRDEL«5..0UTDEL-5. 
METHOD RECT 
PRINT TM,TW,TP,TBR,M,l,19,.W,l,19'.MO,W0.TG10.TG25,TG50 
END 
STOP 
ENDJOB 

F i g , 5 0 
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66} This i s very dangerous because the responses to temperature 
humidity, wind and probably radiation are l ikely to be non­
linear (Compare with Exercise 50). 

© * WEATHER 

FUNCTION T E H P T « ( 0 . , 1 4 . ) , ( 1 2 . , 3 5 . ) . ( 2 4 . , 1 4 . ) 
FUNCTION W I N D T » ( 0 . , 1 . ) , ( 6 . , 1 . ) , ( 1 4 . , 4 . ) , ( 1 9 . , 2 . ) , ( 2 4 . , 1 . ) 
FUNCTION WETT « ( 0 . , 1 . ) , ( 7 . 9 9 , 1 . ) , ( 8 . , 0 . ) , ( 1 9 . 9 9 , 0 . ) , ( 2 0 . , 1 . ) , ( 2 4 . , 1 . ) 
FUNCITON L I T E T « ( 0 . , - 1 . ) , ( 5 . 9 9 , - 1 . ) , ( 6 . , 1 . ) , ( 2 0 . , 1 . ) , ( 2 9 . 0 1 , - 1 . ) , 

( 2 4 . , - 1 . ) 
FUNCTION R A I N T « ( 0 . , 0 . ) , ( 2 4 . , 0 . ) 
FUNCTION L A I T * ( 0 . , 3 . ) , ( i 4 0 . , 3 . ) 

H0UR*24.*AM0D(TIME,1.) 
LAI»AFGEN(LAIT,TIME) 
WET«FCNSW(WETX • RAIN, 0..0.,1.) 
WETX=AFGEN(WETT,HOUR) 
TEMP=AFGEN(TEMPT,HOUR) 
WIND*AFGEN(WINDT.HOUR) 
LITExAFGEN(LITET.HOUR) 
DRY-l.-WET 
RAIN*AFGEN(RAINT,HOUR) 

(̂ 8) The expressions are similar because the growth rate of the 
lesions is linearly dependent on the difference between their 
maximum area and actual area and because the maximum area of 
the lesions is the same. 

* GROWTH OF LESIONS 

N I L , l , 6 , « I N T G R L ( N I L ^ l , 6 \ F N I L , l , 6 , - FNIL'2 ,7 ' ) 
FNIL1*RTN 
NVL*INTGRL(0.,FNIL7) 

AL»INTGRL(0..RAL) 
RAL*PAL*(MALS*NVL - AL) 
PAUAFGEN(PALT.TEMP) 

FUNCTION P A L T « 0 . , 0 . , 1 0 . , . 1 4 , 1 8 . , . 3 3 , 2 3 . , . 8 , 3 0 . , . 8 , 3 5 . , . 1 4 , 4 0 . , 0 . 
PARAM MALS=l.E-8 

The total residence time of the lesions in the non-visible stage 
is 6 x 0.5 = 3 days. Because multiplication takes less compu­
ting time than division, the contents of each class is multi­
plied by 2 day""1 rather than divided by 0.5 day. 
Some lesions are already visible after 1.5 day because of the 
dispersion during passage through the six compartments. If we 
assume that DELT is small compared with 0.5 day, the standard 
deviation of lesion appearance is calculated with Eqn (6.1). 
The curve for total lesion area (AL) is sigmoid for two reasons: 
the dispersed lesion appearance and the proportionality of 
growth with the difference of maximum and current area. 
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/ £ q \ * FORMATION OF GREEN STALKS 
K3> ROP*MOA*RAL 

ROPl*ROP • SROP 
SR0P»SUM1(EMPT,1,4') 
R0P,2,4,«0P,1,3,*16.»WET 
0P,1,3,*INTGRL(0.,R0P,1,3,-R0P•̂ .4•-EMPT,1,3,) 
0P4 *INTGRL(0.,R0P4 - ROX - ROG - EMPT4) 
EMPT'M'.DRY OP'ltA' INYD 

PARAM M0A*300.E10 
POG*INSW(LITE,AFGEN(POGD,TEMP),AFGEN(POGL,TEMP)WWET 
POX«INSW(LITE,AFGEN(POXD,TEMP).AFGEN(POXL,TEMP))*WET 

FUNCTION P0GL«(0.,0.).(14...04),(18.,.12).(23..1.4),(30.,1.2),(35.,0.) 
FUNCTION P0XL«(0..0.),(14.,.04),(18.,.12),(23.,1.4),(35.,0.) 
FUNCTION P0GD*(0.,0.),(14.,.1),(18...27),(23...27),(30..1.33). ... 

(35.,.67),(40.,0.) 
FUNCTION P0XD*(0.,0.),(14.,.02),(18.,.03).(23...18).(30.,.88). ... 

(35..1.54),(40.,0.) 
R0G*P0G*0P4 
R0X*P0X*0P4 

Note that the division with DELT is replaced by multiplication 
with INVD, a parameter which is in the initial section defined 
as 1/DELT and that 16 is the inverse of the residence time 
of 0.0625 day. The dimension of ROG equals number of green 
stalks per ha soil surface per day. POG and POX in the light 
at 21 °C are the same, so that only half of the stalks that 
could potentially develop, reach the green stage. 

^0) The number of spores after time T equals 

-RBETRxT 
S m = S^ x e 

T o 

so that 

RBETR = - (ln(S/S ))/T = - (ln(l - 0.63))/5 
T ° = 1 / 5 h - 1 = 4.8 day"1 

which may according to the function BEATT, be caused by a rain­

fall of 16 mm h"*1. 

/TN * FORMATION OF SPORES ON GREEN STALKS 
\iy GST,1,3,«INTGRL(0.,RGST,1,3,-RGST,2.4,-DGST,1,3,-BGST,1,3,) 

DGST,1,3,«DRY*GST,1,3,*INYD 
RGST1«R0G 
RGST^.S'^GST'l^^ie^WET 
RGST4*RGS 
RGS=GST3*INSW(LITE,AFGEN(PGSD,TEMP),AFGEN(PGSL,TEMP))*WET 

FUNCTION PGSL«(0.,0.),(14.,.15),(18.,1.44),(23.,.32),(30.,0.),(40.,0.) 
FUNCTION PGSD»(0.,0.),(14.,.06),(18..14.),(23.,14.),(30...44),(40.,0.) 

BGSri.Ŝ RBETRtGST'l.S' 
RBETR*AFGEN(BEATT,RAIN) 

FUNCTION BEATT-(0.,0.),(0.25,.08),(0.75,.32),(6.25,2.),(18.8,5.6), ... 
(25.,6.7) 
NGST«SUMl(GSri,3') 

The dimension of RGS is spores on green stalks per hectare soil 

surface per day 
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© * FORMATION OF SPORES ON DRIED STALKS 
DGST.SUMUOGST'l.a') 
DOSTsSUMUDDST'l.V) 
RDST1*DGST • DOST + RSR 
RDST5-RDS 
DST ,1,4•«INTGRL(0.,RDST ,1,4•.RDST ,^,5 ,-D0ST•^4 ,-BDST ,1,4 ,) 
RDST'Z^'xOST'l.SUie^WET 
DDST' 1,4'»DRY*DST•1,4•*INVD 
BDSrM'.RBETR^OST'M' 
RDS*DST4*INSW(LITE,AFGEN(PDSD,TEMP).AFGEN(PDSL,TEMP))*WET 

FUNCTION P D S L - ( 0 . , 0 . ) , ( 1 4 . , . 1 7 ) , ( 1 8 . , l . 7 5 ) , ( 2 3 . , . 2 5 ) , ( 3 0 . , 0 . ) , . . . 
( 4 0 . , 0 . ) 

FUNCTION P D S D = ( 0 . . 0 . ) , ( 1 4 . , . 0 7 ) , ( 1 8 . , 2 . 9 5 ) , ( 2 3 . , 2 . 2 ) , ( 3 0 . , . 5 3 ) , . . . 
( 3 5 . , 0 . ) , ( 4 0 . , 0 . ) 
NDST'SUMlfDST'M') 

The r a t e of spore removal (RSR) must s t i l l be c a l c u l a t e d . 

(73) A g a i n 

-RWASHxT 
Sm = S x e 

T o 

w i t h T i n d a y s . Hence 

RWASH « - ( l n ( l - . 8 6 ) ) / ( 3 / 2 4 ) » 1 5 . 7 d ay" 1 

(74) RBLOW = - l n d . - . 0 5 ) / ( 3 / 2 4 ) = 0 .408 day""1 

© * SPORE DISPERSAL 
RSP*RDS + RGS 
STSP-INTGRL(0.,RSP - RSR) 
RSR=SPRR • SPRD 
SPRR«RWASH*STSP 
SPRD*RBLOW*STSP*DRY 
RWASH*RAIN*2.62 
RBL0W=Q.102*AMAX1(1.,UIN0*WN0) 
RASP*SPRR*REFF • SPRD*WEFF 
REFF*AFI»;N(REFFT»RAIN) 

FUNCTION REFP7=(0 . ,0 .2) , (2 .5 ,0 .003) f (10 . ,0 .003) 
WEFF*LAI*0.01 

Host exhaust ion could be taken i n t o account by reducing the 
l e a f area (LAI) by the area of the l e s i o n s (AL). I f the d i s e a s e 
i s so s evere t ha t AL i s no t small compard with LAI, the d i s e a s e 
should a l s o feed back on the growth of the crop . 
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D GERMINATION AND PENETRATION 
SF*XNTCRL(O,#RASP - wsr - PG - REXS - wsr) 
WSFsRWASH*SF 
RCsSF«AFCEN(PFTT,TF.MP)#U,-KILL)#KET 
K£XS*SF#AFCF.N(pFX?,TEMP)»U.-XIUO#WET 

FUNCTION PFTT*(0,,0,),(iO.#.4),n5.,1.8),C20.»4,6),(23.,7.), ... 
C35,,3«7)»C40.fO%) 

FUNCTION PFXT*(0.,0.),no,,0.),{15,,l.8),{20,,4,2),<23.,2.6>, ... 
<35.,3.7)#(40«,0.) 
PK5P«KILL«SF»INV0 

PROCEDURE KILL*nESS(WET) 
IFt(KETP-WETKCT. O.Ol) KILLsl, 
WETP*W£T 

ENDPRO 
GT*1NTGRL<G,,RG - RKGT - RTN • PEXT - WGT) 
WGT*RWASH»GT 
RKGT«KXLL»GT»INVP 
REXT«GT»AFCEN<PTXT,TEMP)*(t#-KILt)«WET 
RTNaCT»AFCENCPTNTrTEMp)»(i,.KXtL)»WET 

FUNCTION PTNT«{Ot,Ct),na*t.4e),(23.,.&5>,C30.,.25),t35.,0.).C4O..O 5 
FUNCTION m T a ( o . , o . ) a i s , a . 3 ) ^ 2 3 ^ 2 . 6 ) , n o . ^ j j : ! ^ : : ? ; ) ^ ^ : ; ? ; ! 

Note that RG and some other rates are also multiplied by 
(1 - KILL) to avoid that the same spores or germs are killed 
upon desiccation and transferred at the same time. 

(n) Another rate (INVR) has to be added to the integral of the 
lesions on the foliage (SF). This rate equals 

INVR = l.E6*24*DRY*INSW(LITE, 0., 1.)*INSW(TIME-7.,1•,0.) 

OUT1=DEBUG(10,0.) 

OUT2=DEBUG(2,5.) 
OUT3=DEBUG(2,5.5) 

2 

69) TEMP=AVTMP+AMPL*SIN£(6.2832*(TIME+8/24)) 

(So) For JS and 30 °C the number of classes is (2.0/0.5)^16 
(see Eqn 6.1), for all other situations the number of classes 
is higher. When the temperature varies, the relative dispersion 
is not constant either, so that the boxcar train with constant 
relative dispersion cannot be used. Then the method with 
controlled dispersion must be used, in which the dispersion 
can be varied by using a factor F. The number of classes must 
then be smaller than the number minimally required in the con­
stant relative dispersion method. A good choice is three quar­
ters of the lowest value, so that here N can be chosen as 12. 
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The fraction F is given by 

F = 1 - N(-)2 

x 

F would become negative, if N was too large in relation to s/x 
A simulation model for the hatching process is 

TITLE HATCHING PROCESS WINTER EGGS 
EGG0=INTGRL(0.,-FL0W1) 
FL0W1=EGG0*2./(F*REST) 
EGG,l,12, = INTGRL(EGGri,12,,FL0W,l,12,-FL0W,2,13') 
FLOW^lS^EGG'l^'fcPUSHDF 
PUSHDF=PUSH*F/DELT 
REST=HATP/12 
HATP=AFGEN(HATPT,TEMP) 
FUNCTION HATPT=(15.,18.),(18.,10.),(25.,6.3),(30.,5.0) 
DISP=AFGEN(DISPT,TEMP) 
FUNCTION DISPT=(15.,3.),(18.,1.6),(25.,1.06),(30.,1.25) 
TEMP=AVTHP + AMTMP*SIN(6.2832*TIME/24.) 
PARAH AVTHP=22.5, AHTMP=7.5 
F=1.-12*(DISP/HATP)**2 
PUSH=INSW(GS-1.,0.,1.) 
GS=INTGRL(0.5,1./(F*REST)-PUSH/DELT) 
INCON EGGI'1,12^1000.,11 0. 
EGG=SUM1(EGG'1,12') 
LARV=INTGRL(0.,FL0W1) 
OUTPUT LARY,EGG 
METHOD RECT 
TIMER FINTIM=20., DELT=0.01, 0UTDEL=1. 
END 
STOP 
ENDJOB 

The relative rate of mortality is calculated with: 

RMQR = ln(—)/(t2 - ti) 

in which y\ is the number of eggs at tj and y2 the number at 
t2« During development at 30 °C which lasts five days (Table 7) 
50% dies. Thus the relative mortality (day1) amounts to: 

EMOR - lnf2> - 0.139 
5 
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® 
** LISTING OF PROGRAM** 

INDEX=0 
TITLE GROWTH AND DEVELOPMENT P. ULMI 
STORAGE Y(IOO) 
FIXED N1,N2,INDEX,I 
INCON EGGI=1000. 
0UTE,EGG=B0XCAR(EGGI,RESE,SDE,RME,0.,4) 
0UTL,JUV=B0XCAR(0.,RESJ,SDJ,RMJ,0UTE,6) 
0UTS,JUVS=B0XCAR(0.,RESJS,SDJS,RMJS,0UTL,6) 
AF=INTGRL(0.,OUTS) 
PRINT EGG,JUV,JUVS,AF 
METHOD RECT 
TIMER FINTIM=40.,DELT=0.05,PRDEL=2. 
TEMP=AVTMP+AMTMP*SIN(6.2832*TIME/24.) 
PARAM AVTMP=22.5,AMTMP=7.5 
RESE=AFGEN(RESET,TEMP) 
SDE=AFGEN(SDET,TEMP) 
RME=AFGEN(RMET,TEMP) 
RESJ=AFGEN(RESJT,TEMP) 
SDJ=AFGEN(SDJT,TEMP) 
RMJ=AFGEN(RMJT,TEMP) 
RESJS=AFGEN(RESJST ,TEMP) 
SDJS=AFGEN(SDJST,TEMP) 
RrUS=AFGEN(Rf^ST.TEMP) 
AFGEN RESET=15.,18.,18.,10.,25.,6.3,30.,5. 
AFGEN SDET=15.,3.,18.,1.6,25.,1.06,30.,1.25 
AFGEN RESJT=15.,10.1,18.,6.5,25.,4.,30.,2.5 
AFGEN SDJT=15.,2.,18.,1.3,25.,0.8,30.,0.62 
AFGEN RESJST=15.,5.5,18.,4.3,25.,2.4,30.,2. 
AFGEN SDJST=15.,1.1,18.,0.85,25.,0.6,30.,0.5 
AFGEN RMET=15.,0.01,18.,0.01,30.,0.01 
AFGEN RMJT=15.,0.02,18.,0.02,25.,0.03,30.,0.04 
AFGEN RMJST=15.,0.03,18.,0.02,25.,0.02,30.,0.03 
END 
STOP 

t Within the subroutine BOXCAR all classes have the same 
_ /siological properties. Of course it is possible to calculate 
an average rate of oviposition, but for each age distribution 
the average rate of oviposition is different. Therefore the 
boxcar train must be programmed according to the basic method 
given in Chapter 6. 
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(83) With the following statements the extended program of 
exercise 81 also accounts for ageing of the females and for 
oviposition. The data of table 8 and table 9 are used to de­
fine the relations of oviposition rate and relative mortality 
rate with temperature. 

AF' 1,5'= INTGRL(0.,RAF,1,5') 
RAF1 = 0UTS-DAF1-M0RA1 
DAF' 1,5' = PUAF* (AF'l.S^DELX - MORA'1,5') 
RAF' 2,5' = DAF,1,4,-DAF,2,5,-M0RA,2,5' 
MORA' 1,5' = AFGEN(MORT'1,5',TEMP) 
PUAF = INSW(GSA-1.,0.,1.) 
GSA = INTGRL(0.,5./L0AF-PUAF/DELT) 
0UTE,EGG = B0XCAR(EGGI,HATP,DISP,RME,REPR,12) 
REPR = SUMX(AF,1,5,,REP,1,5') 
REP' 1,5'= AFGEN(REPT'1,5',TEMP) 
LOAF = AFGEN(LOAFT,TEMP) 
AFGEN LOAFT = 10.,67.5,15.,61.,20.,28.,25.,20.,30.,14.6 
AFGEN M0RT1 = 10.,0.011,15.,0.011,20.,0.005,25.,0.005,30.,0.003 
AFGEN M0RT2 = 10.,0.033,15.,0.031,20.,0.049,25.,0.050,30.,0.027 
AFGEN M0RT3 = 10.,0.088,15.,0.089,20.,0.161,25.,0.245,30.,0.273 
AFGEN M0RT4 = 10.,0.15,15.,0.138,20.,0.360,25.,0.504,30.,0.709 
AFGEN M0RT5 = 10.,0.2,15.,0.15,20.,0.4,25.,0.6,30.,0.8 
AFGEN REPT1 = 10.,0.6,15.,1.2,20.,1.9,25.,3.1,30.,4.2 
AFGEN REPT2 = 10.,0.5,15.,1.2,20.,2.2,25.,3.7,30.,5.5 
AFGEN REPT3 = 10.,0.5,15.,1.1,20.,1.8,25.,3.1,30.,3.8 
AFGEN REPT4 = 10.,0.4,15.,1.0.,20.,1.4,25.,2.0,30.,1.4 
AFGEN REPT5 = 10.,0.2,15.,0.8,20.,0.8,25.,1.0,30.,0.8 
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\8y This simulation model is: 

TITLE PREY-PREDATOR 
PARAM PREY=10., PRED=1. 
STPRED=INTGRL(1ST, INCST-DECST) 
DECST=STPRED*RRDIG 
RRDIG=AFGEN(RRDIGT,TEMP) 
INCST=PREY*PRED*RRPRED 
AFGEN RRDIGT=0.,0.,15.,.5,20.,1.,25.,2. 
RRPRED=SUCR*COIN 
SUCR=AFGEN(SUCRT,STPRED) 
C0IN=AFGEN(C0INT,TEMP) 
AFGEN SUCRT=0.,0.8,1.,0.01 
AFGEN C0INT=15.,0.01,20.,0.08,25.,0.2 
TEMP=AVTMP + AMTMP*SIN(6.2832*TIME/24.) 
PARAM AVTMP=20.,AMTMP=5. 
TIMER FINTIM=20., DELT=.01, PRDEL=1. 
PRINT STPRED 
END 
STOP 
ENDJOB 

The dimensions of the variables are: 

Variables 
PREY 
PRED 
RRDIG 
INCST 
DECST 
STPRED 
RRPRED 
SUCR 
COIN 

Dimensions 
nr2 

m-2 

day"*1 

gut day"*1 m"2 

gut day"1 m~2 

gut m"2 

gut m2 day""1 

— 

gut m2 day"1 

(85) The relative space occupied by plants has been built up 
auring growth, so that it contains historical information. In 
Fig. 10 the B curves for barley and oats cross at Day 55. At 
this moment the space occupied by barley is much larger because 
its B has always been larger before. In the acarine system, the 
gut content is in equilibrium with the density of prey, so 
that past information is forgotten. 

^ At very low density Dm the ratio {B\ + 1/Dm)/(B2 + 1/E>m) 
approaches one, so that both prey types have the same preference. 
The predator is then so hungry that it just accepts everything. 
For very high densities, kj2 approaches B1/B2 according to the 
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equation used. It is, however, possible that with a mixed prey 
population the gut content of the predator exceeds that 
attainable with the unattractive type alone. The predator then 
only eats attractive preys, so that kj2 is infinitely large. 
Clearly this attempt to bypass the gut content then breaks 
down and cannot be used, so that the gut content must be 
explicitly modelled as a state variable. 
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Appendix A 

T H E P R E P R O C E S S O R 

THE PREPROCESSOR IS A TEXT HANDLING PROGRAM 
DEVELOPED ATI UNIVERSITY COMPUTING CENTRE, WAGENINCEN, 
IT IS AVAILABLE AT A SMALL CHARGE, 

THE PREPROCESSOR ENABLES THF. USER TO WRITE STATEMENTS 
THAT MUST BE REPEATED SEVERAL TIMES, 
FOR INSTANCE WITHIN A C5MP PROCRAM, 
THE FOLLOWING EXAMPLE SHOWS HOW A NOTATION WITH APOSTROPHES IS USED, 

THE INPUT OF THE PREPROCESSOR I 5 | T H E S O U R C E P R O G R A M 
AND THE OUTPUT I S t T H E R E S U L T I N G C S M P 

THIS OUTPUT IS WRITTEN ON A DISK FILE AND CAN BE HANDLED BY 
THE STANDARD CSMP COMPILER, 

AN EXAMPLE OF A SOURCE PROGRAM! 

C'2,3#«CM#4#»S#i,4VP'l*4# 

PARAM S'l,4'«l#2,3#4 
PARAM PM#4#«3«0.5#1,5 
YM#4'"INTGRL{YIM#4##RY'lr4#«SIN(P'W4')) 
INCON YI'1#4*M*0.1 
RY'l#4'*RGR«YM#4'«(l.-RED'lr4#) 
REDM,4'*AFGEN(RDTB'l,4##ALC) 
FUNCTION FDTB1«(0.,0.),C1.5,2.) 
FUNCTION FDTB2«(0.,0.),(3.,6.) 
FUNCTION RDTB3«(0,#0.),(0,7Sr0,5)#(2.#2,5) 
FUNCTION RDTB4*(0,,0,),C3,f8.) 
ABCDM#4'*ABCDC*i,4') 
SOM «SUMl(Y#l#4#) 
SOM|CNsSUM2(Y'l#4') 
INPRO«SUMX(PM,4',S#l#4*> 
PRINT YM#4',SOMKW,ABCDM#4# 

OUTPUT ABCDM#4* 
END 
STOP 
ENDJOB 

T H E R E S U L T I N G P R O G R A M 

C2«C1*S1/P1 
C3*€2*S2/P2 
C4«C3*S3/P3 
C5»C4»S4/P4 
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#RYI»SI 
,RY2»S] 
,RY3*S] 
,RY4»S] 
,YI2»0, 
,-PEDI; 
.•FED21 
,-PED3; 
.-PED4] 

[N(PD) 
IH(P2)) 
IN(PJ)) 
:w(P4)) 
,I;YI3*O, , i ,YI4»0 , ,1 

PARAM S1*1,S2«2,S3»3#S4«4 
PARAM Pl«0 .3#P2«0 ,5 ,P3«0 .5»P4e l ,5 
YI»INTGRL(YU#] 
Y2»INTGRL(YI2,I 
Y3«INTCPL(Yl3r 
Y4«INTGRL<YI4, 
INCON YI1«0,1, 
RYi»RG&«Yl«»Cl. 
RY2"PCR»Y2«(t. 
RY3»RGR«Y3»Cl,' 
RY4«RCR*Y4»(1, 
REDi«AFGENCRDTBi#ALC) 
RED2«AFGEM CRDTB2 #ALC) 
RED3»AFGENCRDTB3,ALC) 
RED4«AFGEN(RDTB4,ALC) 
FUNCTION RDTB1«(0.#0,),(K5,2.) 
FUNCTION RDTB2«(0.#0.),<3.#6.) 
FUNCTION PDTB3«(0,,O.),(0.75,0.5),C2.#2,5) 
FUNCTION RDTB4«(0.fO.)#(3.#8.) 
ABCDlaABCD(l) 
ABCD2"ABCD(2) 
ABCD3=ABCD(3) 
ABCD4»ABCD(4) 

SOMsYl*Y2+Y3+Y4 
SOMKWsYl*«2+Y2««24Yl4H»2+Y4*«2 
INPR0«P1*S1+P2«82+P3«S3*P4*S4 

PRINT Yl,Y2,Y3#Y4,SOMKW,ABCDl,ABCD2rABCD3,ABCD4 
OUTPUT ABCD1,ABCD2#ABCD3#ABCD4 
END 
STOP 
ENDJOB 

THE FOLLOWING RESTRICTIONS MUST BE TAKEN CARE OF: 

A) THE RESULTING INDEXED VARIABLES MAY NOT CONTAIN MOf*E THAN 
6 CHARACTERS 

B) THE STATEMENTS THAT CONTAIN APOSTROPHES CANNOT BE 
CONTINUED BY ••• 

C) THE "OUTPUT* STATEMENT MAY NOT CONTAIN ADDITIONAL ARGUMENTS 
SPECIFYING THE RANGE 

D) SUMi,SUM2 AND SUMX MAY NOT BE NESTED OR BE PART OF AN EXPRESSION 

170 



Appendix B 

TITLE DEMONSTRATION OF THE USE OF SUBROUTINE BOXCAR 
STORAGE Y(IOO) 
FIXED N1,N2, INDEXtl 
IKCOM ITOT1«100.,ITOT2«0. 
DYNAMIC 

IMDEX«0 
PARAM PMl«0,#RM2»0.#LONGl«5.,LONC2«3f,SDt«l.#SD2«0.t#Nl«10,N2KlO 

OUTtrT0Tl»B0XCAR(ITOTl,L0NGl,5Dl,RMl#INl#Nl) 
OUT2»TOT2«BOXCAR<ITOT2»LONG2#SD2#RM2#IN2#N2). 
IN1«0, 
IN2*OUTl 

TIMER riNTlM«l5,# DELT«0.01# PPDEL«t. 
PRINT TOTWTOT2 
METHOD RECT 
END 
PARAM SDl«0,rSD2«0. 
END 

STOP 
SUBROUTINE BOXCAR(TOTALI,RT,SD,RM#RIN,N, 

t OUT,TOTAL) 
COMMON 

C INITIALISATION 

irCTlME.GT.O.) GO TO 1 
C DEVELOPMENT STAGE 

Y(INDEX+1)*0.5 

C PRECLASS 
Y(INDEX*2)«TOTALI 

DO 2 IlalfN 
2 Y(II*IKDEX*2)»0. 

1 INDEX.JNDEXfl 
PUSH at. 

C TEST FOR DEVELOPMENT STAGE 
IF (Y(INDEX).LT#lt) PUSH.O. 
F aft.»N*(SD/RT)»«2 
IF(F.GT.N»DELT/RT) GO TO 5 
WRITE(6,«00) „ m 

•GO FORMAT(' NUMBER OF CLASSES TOO LARGEI F TOO SMALL OR NEGATIVE*) 
CALL EXIT 

S CONTINUE 
C INTEGRATION OF RATE OF DEVELOPMENT 

YCINDEX)«YCINDEX)fN»DELT/(RT*F)-PUSN 

INDEX.lNOEXfl 
TOTALLY(INDEX) 
FL •2,»TOTAL»(lt-RM«OELT)«N/(RT*F) 

C INTEGRATION OF PRECLASS 
Y(INDEX)«TOTAL^(RIN-TOTAL«RM-FL)»DELT 
IF (T(INDEX).CE.O.) GO TO 3 
FL »FL*Y(INDEX)/DELT 
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Y(INOEX)«0, 
PUSH *PUSH#(1,/DELT-RH)#F 

DO 4 II»1»N 
INDEX«INDEXfl 
OUT «Y(INDEX)#PUSH 
TOTAL«TOTALtY(INDEX) 
FLN «FL«Y(INDEX)«RM-nUT 
IF <ABS(FLH).LT.l.E-35) CO TO 4 

INTEGRATION OF CLASS 
Y(INDEX)«Y(INDEX)tFLN^DELT 
FL "OUT 

RETURN 
END 

ENDJOB 

SOME NOTES FOR THE USE OF SUBROUTINE BOXCAR 

A) EACH BOXCARTRAIN CONTAINS N CLASSES PLUS A PRECLASS. THE DEVELOPMENT 
STAGE OF THE BOXCARTRAIN IS RECORDED IN AN ADDITIONAL ARRAY ELEMENT, 
THEREFORE N*2 STORAGE PLACES FOR Y ARE REQUIRED FOR EACH BOXCAR 
TRAIN OF N CLASSES, 

B) THE STATEMENT •INDEXBO" MUST BE PUT AT THE BEGINNING OF THE 
DYNAMIC SEGMENT, 

C) THE INFLOW «IN1» OF THE FIRST BOXCARTRAIN CAN USUALLY BE 
IDENTIFIED WITH THE BIRTH RATE, 
THE INFLOWS OF THE FOLLOWING BOXCARTRAINS EQUAL THE OUTFLOWS OF 
THEIR PREDECESSORS, 

D) IN COMBINATION WITH SUBROUTINE BOXCAR ONLY METHOD 
RECT MAY BE USED, 

E) THE OUTPUT ARGUMENTS OF THE SUBROUTINE ARE| 
•OUT-

• jOT* 
THE INPUT ARGUMENTS OF THE SUBROUTINE ARE| 
•ITOT' 
"LONG1 

•SD» 

•RM* 
•IN" 

THE RATE OF OUTFLOW OF THE BOXCARTRAIN 
THE TOTAL CONTENT OF THE BOXCARTRAIN 

THE INITIAL CONTENT OF THE BOXCARTRAIN 
THE AVERAGE RESIDENCE TIME IN THE WHOLE BOXCARTRAIN, 
NOT INCLUDINC MORTALITY 
THE STANDARD DEVIATION OF THE RESIDENCE TIME IN THE 

WHOLE BOXCARTRAIN 
THE RELATIVE RATE OF MORTALITY 
THE RATE OF INFLOW INTO THE BOXCARTRAIN 
THE NUMBER OF CLASSES WITHIN THE BOXCARTRAIN 

F) THE VARIABLE NAMES -F",•II",•PUSH-j'FL",•FLN*,"RT-,"SD-#"RM", 
•RIN»,BN'»"OUT*#"TOTAL"#•INDEX* SHOULD NOT BE USED IN THE MAIN 
PROGRAM BECAUSE THEY ARE USED IN THE SUBROUTINE, 
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Index 

Acarina 115 
AFGEN 13 
age-classes 70 
age 67 
AINT 93 
Amblyseius 115 
AMIN1 52 
AMOD 93 
analogous 3 

binomial distribution 64 
biocides 115 
BOXCAR 118, 171 
boxcar train 80 
breakthrough curve 83 

cohort 67 
competition 34, 123 
control, biological 115 
controlled dispersion 84 
CSMP 7, 11 
CSSL 7 

diffusion 87 
digital 4 
discontinuous 20, 52 
dispersal 102 
dispersion 66,78 
DEBUG 109 
DELT 9 
demographic 70 
density of sowing 35 
DERIV 40, 142 
deterministic simulation 60 
development 66, 68 
dominant eigenvector 77 . 
driving variables 4 
DYNAMIC 19, 47 

eigenvalue 77 
eigenvector 77 
END 10 
ENDJOB 10 
ENDMAC 45 
environment of system 2 
EPIMAY 91 
error of integration 18 
estimation of parameters 54 
evaluation 111 
exponential growth 8 

FCNSW 93 
fecundity 122 
feedback 17 
FINISH 28 
FINTIM 10 
forcing variables 4 
Forrester*s conventions 23 
FORTRAN 7, 11 
fudging 110 
FUNCTION 13 
functional response 123 
fungus disease 91 

GAUSS 62 
germination 78, 106 
germination period 81 
GT (greater than) 62 
gut content 122 

historical information 67 
Helminthosporium 91 
hybrid 4 

IF 62 
IMPULS 53 
INCON 10 
incubation 94 
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INDEX 43 
INITIAL 19, 47 
initialization 72, 108 
integration method 18 
INSW 98 
INTGRL 10 

KEEP 19 

length of variable name 
lesions 94 
life cycle 115 
logistic growth 29 
Lotka-Volterra equations 
LT (less than) 62 

MACRO 43 
matrix 76 
METHOD 10 
microclimate 92 
mimicking 85 
mite 115 
mixed culture 22, 31 
mixed prey predation 126 
model 2 
monoculture 22, 31 
mutual dependence 5 

NOSORT 19 

OUTDEL 10 
OUTPUT 10 
output variables 4 
oviposition 120 

Panonychus 115 
Paramecium 49 
PARAMETER 10 
pest management 59 
poisson distribution 59 
potential growth rate 36 
PRDEL 88 
PRINT 40 
Predator 115 
preference 123 
preprocessor 43, 169 
prey 115 

probability functions 61 
PROCEDURAL 61 
PROCEDURE 106 

rate variables 4 
RECT 10 
relational diagram 23 
relative crowding 

coefficient 33 
143 relative dispersion 80 

relative reproductive 
rate 32 

relative space 39 
30 relative yield (total) 32 

replacement series 31, 123 
residence time 29, 82 
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This book introduces the reader stepwise to one of the main 
aspects of systems ecology: analyses and simulation of state-
determined systems. This is done by treating in detail various 
ecological systems, ranging from simple exponential growth, then a 
plant epidemic, and prey and predatory mite interaction. 

Ecological, mathematical and programming aspects are inter­
woven; exercises form an integral part of the text for use on a second 
reading. The simulations are presented in one of the most used 
continuous-system simulation languages (CSMP) in such a way that 
the programs can be understood without any prior knowledge of 
programming techniques. 

The mathematics is presented at a level that can be followed by 
biologists without a mathematical background and the ecology is 
treated in such a way that mathematicians should not feel lost. 


