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1 Introduction

1.1 Purpose

'In recent years there has been extensive study of the behaviour
of complex interacting systems in such fields as engineering,
physiology and economics. Drawing on and building upon this
diverse body of experience, progress has been made over the
past ten years in the development of metheds for understanding
the dynamics of ecosystems and the impact of stresses upon then,
including stresses generated by man. These methods are subsumed
under the heading of systems ecology. Systems ecology is based
on the assumption that the state of an ecosystem at any partic-
ular time can be expressed quantitatively and that changes in
the system can be described by mathematical terms,' to quote
the expert panel on the role of system analyses of the Man and
Biosphere Program (MAB, 1972).

Whether this basic assumption of systems ecology can be made
Operative or not, the approach raises considerable interest
among natural scientists. However, many outsiders venturing

in systems ecology are confused because they are exposed to
mathematical and computer techniques, and to the treatment of
complex systems at a toco rapid rate. This is a pity because

the systems approach has its merits. However, these can only
come to the fore if a dialogue can be maintained between system
ecologists and their more experimentally inclined colleagues.
The confusion may be reduced and the necessary dialogue stimu-
lated by introducing the motivated ecologist stepwise to one

of the main aspects of system ecology: the analyses and simu-
lation of state determined systems. This is done in this book
by treating in detail various ecological systems, ranging from
simple exponential growth to plant epidemics of considerable
complexity. Ecological, mathematical and programming aspects
are interwoven during the treatment, and exercises have been
set that are an integral part of the text on a second reading.
In this way the only thing that may be new in simulation is

the emphasis that is placed on the quantifying of the under-
lying processes, the iterative use of information and the use
of suitable 'simulation languages' as a means of communication,
not only between man and machine, but also between man and man.



l.2 Some terminology

System ecologists use and misuse many words and terms and in
order not to add to the confusion of the reader it is necessary
to define the common concepts: model, system and simulation.
There are many models. A simple mathematical model is the age-
old relation of velocity (v) and the distance (s) covered by a
falling apple, depending on the gravitational acceleration (g)
and the time from the moment of release (t): v=gt and s=0.5gt2,
An example of a non-mathematical model is a map. It is a sim-
plification of reality. It contains relevant information and
allows measurements. Dependent upon the purpose of the map
railways, lines of equal rainfall or soil types are presented.

A scale model of a designed ship enables prediction of its
resistance in the water. To maintain the original relations
between viscosity, density, velocity, length etc., the laws of
scaling must be satisfied. Of course, the internal structure

of the ship is not modelled. A system may be defined as a limited
part of reality with related elements. The totality of relations
within a system is called the structure of a system: both
models and systems have a structure and it follows from the
definitions that a model is system. The reverse does not seem
true. However, it may be argued that a piece of art is a model
of a conception in the artist's mind or that an engine is a
model of the conception of its creator. A system M is a model

of system O, provided that the structure is partly overlapping
or isomorphic. Which parts of O are presented in M is determined
by the requirements of relevance imposed on the model. Which
part should not be considered follows also from the requirement
that a model must be lucid and easy to handle.

Examples of a system are a cell, a plant, an animal, a field
with a crop, a forest and a farm. It is better to choose the
boundary between system and environment such that the system

is isolated. Often such a boundary cannot be found and then it
should be chosen so that the environment influences the system,
but the system itself does affect the environment as little as
possible. To achieve this goal, one must often consider a system
larger than seems necessary for the purpose. If for instance,
the influence of temperature on the growth of plants is studied
in a climate room, this climate room is part of the environment
when its construction is so good that temperature, moisture
content and light intensity do not depend on the size of the
plants. In most climate rcoms this requirement is not met so
that it may be wise to treat the room itself as part of the
system. If the resulting model is unwieldy, it may be necessary
to characterize the interaction between plant system and
environment by continuous measurements at the interface, for
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example, of the light intensity at the leaf surfaces, and of the
temperature and humidity between plants. This approach erodes
the generality of the model, but may enable better evaluation.

A system has a pattern of behaviour which implies that the
system changes with time, that it is dynamic. A simplified
representation of a dynamic system is a dynamic model. An
operational definition of simulation is the building of a
dynamic model and the study of its behaviour. Simulation is
useful if it increases one's insight of reality by extrapolation
and analogy, if it leads to the design of new experiments and

if the model accounts for most relevant phenomena. It should
contain as few false assumptions as possible. This requirement
does not seem stringent enough, but unfortunately false assump-
tions are almost inevitable, although more so for analytical
solution techniques than for simulation techniques. Therefore
with simulation our attention can be shifted from solution

techniques to the study of behaviour of model and system,
There has been a tendency among statisticians to restrict the

term simulation to the study and modelling of stochastic pro-
cesses, However, then this term cannot be used in the field of
the engineering sciences and what is even more unacceptable,
the common usage of the word becomes restricted.

l.3 Electrical analogues

Many systems may be modelled by means of electrical analogues.
For instance, a model of a falling apple might consist of an
apparatus with two capacitors. The first one is charged with
a current that is considered analogous to the gravitational
acceleration and thus its potential is analogous to velocity.
The second capacitor is charged with a current that is propor-
tional to the potential of the first and thus its potential

is analogous to the covered distance.

Exercise 1

Write down the differential equations that relate the rate of
change of the velocity (v) of a falling apple to the gravita-
tional acceleration (g) and of its distance (s) from the point
of release to the velocity. Also write down the differential
equation that relates the potential (e) of.a capacitor to its
capacitance (c¢) and the charging current (i). Find the expres-
sions for the charging currents iy and ij of two capacitors

so that the potential of the first capacitor corresponds to v
and of the second capacitor to s.

The integration in the capacitors takes place continuously and

3



simultaneously, as do velocity and distance in reality. At any
moment the condition of the system is fully determined by the
potentials of the capacitors. The analogous computers that have
been developed from this principle are very useful for simula-
ting such continuous systems.

There are, however, several problems thh their use. The user
should adapt the scale of variables to be modelled to the

range of potential of the circuit elements and has to accept
theilr inaccuracies. The resulting difficulties rapidly in-
crease with increasing size and complexity of the models and
with preciser requirements of accuracy.

These problems do not show up in simulation with digital com-
puters and it is very illustrative that the first 'languages'
to simulate continuous systems on digital computers were devel-
oped to control the result of analogous machines and to facili-
tate the assessment of the scaling factors.

Digital machines with proper simulation languages are also pre-
ferred to analogous machines when there are discontinuous ele-
ments, and when many empirical relationships are used. A large
drawback, however, is that digital machines operate sequentially
and discretely, whereas in many systems, continuous processes
operate in parallel.

In the future the disadvantages of both machines may be elimi-
nated and the advantages combined by hybrid computers in which
digital and analogous computers are amalgamated.

1.4 State determined systems

As has been said, systems ecology is based on the assumption
that the state of an ecosystem at any particular time can be
expressed quantitatively and that changes in the system can be
described by mathematical terms. This assumption leads to the
formulation of state determined models in which state variables,
driving or forcing variables, rate variables, auxiliary variables
and output variables can be distinguished.

State variables characterize and quantify all properties that
describe the current state of the system. Examples of state
variables are amount of biomass, number of animals, content of
mineral elements in various parts of the system, amount of food,
amount of poison, number of niches, water content, temperature
of the soil and so on. The values of all state variables have
to be known at the onset of simulation. In mathematical terms
they are gquantified by the contents of integrals.

Driving or forcing variables are those that are not affected

by processes within the system but characterize the influence
from outside. These may be macrometeorological variables, the
amount of food added in course of time and so on. It should be

4



realized that depending on the boundaries of the system to be
simulated, the same variables may be classified either as state
or driving variables.

Rate variables quantify the rate of change of the state vari-
ables. Their values are determined by the state variables and
the driving variables according to rules formulated from the
knowledge of the underlying ecological, physioclogical and
physical processes. These processes may be so complicated that
the calculation process becomes much more lucid when use is
made of properly chosen intermediate or auxiliary variables,
Output variables are the quantities which the simulation pro-
duces for the user. Sometimes they are state variables, some-
times rates and sometimes auxiliary variables that may be cal-
culated especially for the purpose.

A model of the type considered in this book consists mainly of
a set of prescriptions for calculating the rate variables. At
any particular time, each rate depends only on the current
values of the state variables and driving variables, and can
therefore be calculated independently of all other rates. The
only deviations from this rule that are allowed are merely
labour-saving devices; thus, when the nature of the model
implies that a rate R2 happens to be equal to a function of the
rate R1, the prescription for calculating R2 may be written in
terms of Rl1. However, strict care must be taken to avoid any
formulation in which two or more rates are mutually dependent,
leading to several equations with several unknowns.

This is in accordance with experience. In a mixture of yeasts,
the rates of growth do not depend on each other, but each one
Separately upon the state of the system, characterized by its
own amount, the concentration of food and waste products and
forcing variables such as temperature. The interaction between
the growth of the yeasts in the mixture evolves in time because
of the consumption of the same food source or production of the
same waste products. Another illustration is a chemical reaction
where compound C is formed from compounds A and B, the rate of
formation of C not depending on the rate of formation of A and
B but only on the amounts or concentrations of compound A, B
and C that are present and the reaction constants. If, however,
the rate of formation of A is slow, this compound is depleted
in due course to such a level that the rate of formation of C
adjusts to that of A. In other words, the observation that the
rate of formation of A and C is equal is a consequence of the
Operation of the system and does not reflect a direct relation
between both rates, that is to be modelled. Another illustration
is presented in the form of an exercise.



Exercise 2

Ask two children, who are not allowed to communicate with each
other, to stand on one side of a room and tell them to walk to
the other side of the room at the same speed, carrying out
independently of each other the following instructions on
command:

1: close eyes, 2: decide on step size, 3: take a step, 4: open
eyes, 5: compare positions, 1: close eyes, 2: decide on step
size, and so on. Mark the position of each child on the floor
after each cycle of instructions. Do the children stay practi-
cally side by side? What are the variables of state? What are
their 'rates' of change? In how many independent decision
processes are these decided upon? It may be observed that the
subsequent step sizes of each child are more variable in the
beginning than at the end. Why is this so?

l.5 Simulation languages

Although digital computers may memorize data easily, these
sequential and digital instruments seem most unsuitable for

the simulation of continuous and parallel dynamic systems. The
main feature of simulation languages, or simulation programming
systems, is to overcome these disadvantages.

The principle that rates of change are not mutually dependent
but depend independently on state variables and driving vari-
ables, allows all rates of change to be calculated in any order
at any instant of time. After all rates are calculated at one
instant, they are used to integrate the state variables over a
small time-interval. In this way, the model operates in semi-
parallel fashion. The simplest way of integration is by the
Eulerian or rectilinear method in which the new value of a
state variable at time t+At equals the old value at time t

plus the calculated rate of change at time t times the constant
time-interval At.

Another feature of simulation programming systems is that all
processes and processing details may be presented in concep-
tional rather than computational order. The programming system
itself contains a sorting routine which orders all calculations
and integrations in a proper algorithm. The advantages of this
procedure are that the simulation program may be presented much
more clearly, that a considerable variety of programming and
conceptional errors may be detected by the programming system
and that sub-models are easily assembled in a larger model.
Apart from this, all simulation languages contain subroutines
that execute operations that are often dealt with in modelling
and facilitate the organization of data input and output.

6



In this way programming systems have been developed that enable
sophisticated use of computers by research workers without much
training in advanced programming techniques and with a minimum
of formal mathematical knowledge. As has been said, these pro-
gramming systems are not only intended to improve the communi-
cation between man and computer but also between research
workers themselves., Since many simulation programs that appear
at present can be used only by the designer himself or by very
motivated programmers, this latter aspect of simulation lan-
guages is very important and needs to be developed still more.
However, during the last 15 years so many different systems of
simulation programming have become available that communication
between scientists has not improved. But recently all languages
seem to be gravitating towards cne concept: the Continuous
System Simulation Language (CSSL), originally defined by a
working party of the Simulation Council (Brennan & Silberberg,
1968) . The most widely used CSSL version is at present

CSMP III, the Continuous System Modelling Program III (IBM).
This language as defined in IBM Users Manual SH19-7001-2 is
used in the subsequent text. Array handling has become much
simpler in CSMP III than in the older version of CSMP, but
Still some knowledge of FORTRAN is required. Therefore we use

A preprocessor for array handling.

In Appendix A a short user's guide is given for the use of the
Preprocessor, This preprocessor was developed by the computer
Centre of the Agricultural University in Wageningen and is
available on request. The text of this boock is self-explanatory
and written to be read without the use of a manual, but for
actual programming it is advisable to have a manual at hand.



2 Exponential growth

2.1 Analytical and numerical integration

The growth rate of many populations may be proportional to the
size of the population, either expressed in number of individ-
uals or total biomass. With simple organisms such as bacteria,
growth 1s often also continuous. The growth rate at any moment
can then be expressed by the equation:

GR = RGR X A (2.1)

in which RGR is the relative growth rate and A the amount of
organisms.

Exercise 3

If weight is expressed in grams and time in hours, what are
then the dimensions of A, RGR and GR? Give at least three
environmental conditions that must always be satisfied to
achieve a situation where the relative growth rate is indepen-
dent of the amount of organisms and time.

In differential notation, Eqn (2.1) is written as
dA/dT = RGR X A (2.2)

The integrated form of this equation or the analytical solution
when RGR is constant, is

RGRxT

A IA x e (2.3)
in which IA is the amount of organisms that appear to be pre-
sent at time zero and e the base of the natural logarithm.
Under these circumstances the amount of organisms increases

exponentially with time.

Exercise 4

Calculate with a slide rule, with tabulated values of the
function e®* or with a pocket calculator, the value of A after
0, 2, 4 up to 10 hours for RGR equal to 0.1 hour~! and IA equal

8



to 1 gram. Represent the results by a graph with time along

the horizontal axis and the amount A along the vertical axis
and connect the points with a smooth line. Plot the results
also on a graph with time along the horizontal axis and connect
the points also by a line.

What do you observe about the straightness of the second line?
Show that this observation is mathematically correct.

The amount of organisms as a function of time may be found also
by a recursive process. If, at a certain time T the amount of
organisms equals A, the rate of growth at that moment equals

RGR x A. During a short time-interval delta time (DELT), this
rate of growth hardly changes, so that at time T + DELT the
amount of organisms equals approximately A + RGR x A x DELT.

With this new value, the rate of growth at time T + DELT can

be calculated and so the amount of organisms at time T + 2 x DELT,
and so on.

Exercise 5

Calculate the values of A after 0, 2, 4 up to 10 hours for

RGR = 0.1 hour™! and A = 1 gram at time zero. Use time-intervals
of 2 hours and apply the following scheme:

TIME A RGR x A RGR x A x DELT
0 1 0.1 0.2
2 - 1.2 etc

Plot the results on the graphs of Exercise 4 and connect the
Points by straight line segments.

—

A comparison of this stepwise solution and the analytical
solution shows that the size of the population is underestimated
by the use of the recursive solution because it is wrongly
assumed that the growth rate remains the same during each time-
interval DELT, even though for continucus growth, the amount of
Organisms increases. It is to be expected that the discrepancy
between the recursive and analytical solution decreases with
decreasing time-intervals.

Exercise 6

Plot the results of a recursive calculation for time steps of

1 and 0.5 hours on the graphs of Exercise 4. Derive a formula
that gives the value of A directly after n time-intervals of
Size DELT and convert this function of n to a function of time.
What can you say about this function when the time-interval



DELT approaches zero?

2.2 Simulation

Calculations with even shorter time-intervals are very tedious
and are better done by formulating the problem in CSMP and
using a computer. In its elementary form, this simulation is
the same as numerical integration of a set of differential
equations,

The problem in CSMP reads as follows on punched cards:

TITLE EXPONENTIAL GROWTH
A=INTGRL(IA,GR)
GR=RGRxA

INCON IA=1.

PARAMETER RGR=0.1

TIMER FINTIM=10.,0UTDEL=0.5,DELT=0.1

OUTPUT A

METHOD RECT

END

STOP

ENDJOB

The first card mentions the TITLE, which is repeated on every
page of output. The card with the INTGRL function states that
A equals IA at time zero and that its current value at any time
is found by integrating GR. The fourth and fifth card give the
value of the only INitial CONstant (IA) and of the only
PARAMETER (RGR). The TIMER card ensures that the simulation

is finished after 10 time-units (FINTIM), that output is given
at every 0.5 time-unit (OUTDEL) and that intervals of 0.1 unit
(DELT) are used for the numerical integration.

Exercise 7
Which variable governs the unit of time?

It is stated on the OUTPUT card that the value of A has to

be plotted against time and that its numerical value has to be
given also in a table. The METHOD card indicates that the inte-
gration must be done according to the RECTilinear method of
Euler. This is the method that was used in the previous exer-
cises, The END card defines the end of the simulation model

and the STOP card the end of the simulation program. If the
computation is to be repeated with a relative growth rate of
0.2, it suffices to insert the cards PARAMETER RGR = 0,2 and

10



END between the END and STOP cards in the above program.
The ENDJOB card is needed as the final card of the CSMP program.

Exercise 8

Punch the lines of the program on cards and urge your computer
centre to install one of the CSSL-type languages and to inform
you on the deviation in notation between this language and the
CSMP version used in this example. Then carry out the program.

Some readers may not have access to a suitable compu?er c?ntre
SO that a facsimile of the program and results are given in

Fig. 1. The first page contains the program, and some additional
information, the third page the FORTRAN subroutine fUPDgTE'
Created by CSMP and the fourth page the answers. The third page
is mainly of interest for those readers that know some FORTRAN
and wish to follow the way CSMP organizes the work. They may
have also some use for several pages with information on the
organization of the program that are not reproduced here.

Exercise 9

Plot the results also on the graph of Exercise 4 and compare
the numerical results with those of the analytical s?lution.
Explain why the simulated results are still underestimates.

For simple exponential growth where the relative growth rate

! $§8CONTINUOUS SYSTEM MODELING PRPOGRAM IIT ViMl TRAMNSLATOR OUTPUTSSS

TITLE EXPONENTIAL GROWTH
AZINTGPL(IA,GR)

GR=RGReA
INCON 1A=y,

PARAMETER RGR=0,1

TIMER FINTIM210,,0UTDEL=0,5,DELT=0,1
CUTPUT A

METHOD RECT

END

STop

E;‘ OUTPUT VARIABLE SEQUENCE sre
. A

§66 TRANSLATION TABLE CONTENTS $¢§ CURRENT MAXIMUY,
MACRO AND STATFEMENT OUTPUTS 8 600
STATEMENT INPUT WORK AREA 35 1900
INTEGRATORS+MEMORY BLOCK, OUTPUTS 1+ O 300
PARAMETERS+FUNCTICN GENERATOURS S ¢+ 0 400
STORAGE VARIABLES+INTEGRATOR ARRAYS 0+ 0/2 S0
HISTORY AND MEMORY BLOCK NAMES 21 50
MACRO DEFINITIONS AND NESTED MACROS 6 50
MACRD STATEMENT STDRAGE 13 125

11



LITERAL CONSTANT STOPRAGE 0 100

SORT SECTIONS i 20
MAXIMUM STATFEMENTS 1IN SECTIDN 2 600

$S8$END OF TRANSLATOR OUTPUTSsS

MAIN, UPDATE,F10 FORTRAN V,5(S51%) /K1 4=JAN=T8 17204 PAGE

00001

00002

60001

00004

00005

0o00¢

00007 SUBROUTINE UPDATE

00008 c P Y Y Y Y Y Y Y Y Y Yy Y Y Y YYY Y YYYYY TS RSYYYY Y

00009 c

00010 COMMON TIME

00011 1,220000 ¢ DELT +ZIDELT +DELMIN +ZZDELN +FINTIM

00032 1,21FINT ¢+PRDEL ¢ ZIZPRLE ¢ CUTDEL £ 220UTD ¢ DELKAX

0001) 1,ZIDELX oA ¢ GR +IA s RGR

00014 COMMON/ZZHIST/XKEEP,NALARN,120000,120001

00019 REAL IA

00016 REAL®D 22TINL

00017 EQUIVALENCE(IZTIMNE,TIKE )

00018 GO TO{3999%,319996,39997,139998),120000

00019 ¢ SYSTEM SEGMENT OF MCODEL

00020 39993 CONTINUE -

000214 GO TO0 39999

00022 C INITIAL SEGMENT OF MODEL

0002) 39996 CONTINUE

00024 GO T0 39999

00028 o DYNAMIC SEGMENT OF MODEL

000236 39997 CONTIKUE

00037 GRsRGReA

00029 ¢ A sINTGRL (IA ¢t GR )

00029 GD 10 39999

0001390 C TERMINAL SEGMENT OF MODEL

00031 39998 CONTINUE

00032 39999 CONTINUE

000)) RETURN

00034 END

1
1,000 LY TY

TINE A
0,00000E400 1,0000 * 1 1 1 1 | 1 1 1
0.50000 1,0830 £ 1 | 1 1 1 1 1 1
1,0000 J.1048 lecveay 1 1 1 | H I 1 1
1.5000 1810 Joeowasane 1 1 1 1 1 1 1
2.0000 1.2202 {evasssonen]y 1 1 1 ¢  § 1 1
2.%000 1.202% Jecvavasvolscns 1 1 b i i 1 1 1
3, 0000 1e347%0 Jersvnanesocuenesr 1 1 1 1 1 1 1
3,%000 1.,4164 Jrenccssnalocecananvely 1 1 1 1 I 1
§,0000 1.44809 Jroascnvenrovanavosve]onay  § H i 1 1 1 1
‘.5000 1.5648 Jeeovecscrlvocncansnlovancans | 1 1 1 1 1
5.0000 1,6446 Jocccsanenr]losacorsvalvasncoven]es 1 1 1 1 1
S.Sooo 1.,729% Jroessvnasslsasvesssslvacsonsunvoswes 1 1 1 1 1
6,0000 1.8167 Jesvacncsonlescvoovonlosscnvescnfocnvnonaa]y 1 1 1 I
$,%5000 1.90’4 Jewoacssssu]lorsecavanlesvorovsvonlonmscssun]vavay 1 1 1 1
,.ooﬂo 2.005. I.o---..-.l------.-.].-q-.....l-.-.t.-..l.-....---Q 1 1 1
1.5000 ’,Io’l Jecosssncsoslonsnssaselocnsconsnlosssasesslesssnscanlvenss 1 1 1
'.oooo 2.2167 Jescunasavslovncevanralocsvescncclovnannevelonsevsncslonnncncenly I 1
9,5000 2,329 Ireevensveloscasevcaloncsnsovalsrscssseselecssanccelnvcovunvalevescey 1
’.0000 2.“.‘ I.D.--..-.l.U...-.-.l.....o...l.-clotouol--.---..o’.-'--o-...l.-.-.-..‘l..’ 1
10,000 2.7048 x.-ooootool.---.....lo--.-..-.].-...o.o.l......-.-!--...c-o-l.-.o.o---l.........l..-...
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| A simulation program for exponential growth written

in CSMP, Page 1 contains the punched program and the other

pages are generated by the system. Page 2 contains the trans-
lation table contents. Page 3 the FORTRAN subroutine 'UPDATE'
and page 4 the output,
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is a constant, numerical integration or simulation is not nec-
€ssary because the solution may be found analytically. However,
the analytical approach is frustrated by only slight variations
in the systen.

For instance, the relative growth rate of a bacterial popula-
tion may depend on temperature, so that in a series of experi-
ments with a bacteria species the following observations of

the relative growth rate could have been made:

TEMP (©C) 0 5 10 20 30 40 50
RGR (h~1) 0.0 0.04 0.07 0.17 0.19 0.26 0.25

Exercise 10
These are (faked) observational data. Represent the results
On a graph and draw a smooth line through the data points.

What are your estimates for the best fit at ten-degree-intervals?

In many situations, bacteria populations are not exposed to a
Constant temperature; the temperature varies more or less in
daily cycles and the question may be posed what the growth rate
is under such conditions. Obviously, the relative growth is
then not a constant which may be defined on a parameter card
but a variable which is some function of temperature. To simu-
late this situation the PARAMETER card which defines the rela-
tive growth rate is removed from the program of Fig. 1 and
rYeplaced by the following function statement:

RGR = AFGEN (RGRTB . TEMP)

This Arbitrary Function GENerator states that the value of

RGR depends on the temperature (TEMP), according to a tabulated

function with the table name RGRTB. Here estimates given in the

answer of Exercise 10 are used. This function is introduced into
the simulation program in tabulated form on a FUNCTION card:

FUNCTION RGRTB=(0.,0.),(10.,0.08),...

(20.,0.16),(30.,0.21),(40.,0.24), ...
(50.,0.25)

The first number between each pair of brackets presents a

Value of the independent variable (TEMP) and the second one

the Corresponding value of the dependent variable (RGR); the
three dots at the end of the first line indicate that the table
is continued on the next line. The AFGEN function finds the
Value of the RGR at the current temperature by linear inter-
Polation between the tabulated values: i.e. if TEMP equals 25°,
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then RGR equals .16 + (5/10) (.21 - .16) = 0.185

Exercise 11

Enter the tabulated data of FUNCTION RGRTB on the graph of
Exercise 10 and join these data points by straight lines. This
broken line now represents the relation between RGR and TEMP

as introduced in the simulation model. Try to match your
smoothed curve more satisfactorily by tabulating values for

RGR at 2.5 ©C intervals. This does not seem worthwhile. Why not?

The next step is to define how the forcing variable TEMPerature
varies with TIME. This may also be done with a function gener-
ator:

TEMP = AFGEN (TMPTB,TIME)
FUNCPIONTMPTB= *® B 9 2 & S " PSSP s e

These tabulated functions of forcing variables tend to be very
long because they have to cover the whole simulated time-span
in sufficient detail. Often it suffices to present the experi-
mental data by some mathematical function. For instance, if
there is a daily temperature variation, a sinusocidal function
may be used:

TEMP = AVTMP + AMPTMP#*SIN(6.2832*TIME/24.)

The function SIN calculates the sine value of the variable in
the argument: 6.2832 stands for 2 x 7, TIME is the simulated
time in hours rince the start of the simulation and 24 stands
for the hours in a day. The average temperature and the ampli-
tude of the temperature are given by

PARAMETER AVIMP = 20.,AMPTMP = 10.

Exercise 12
Prepare a graph that shows the course of temperature during
24 hours. At what time is the temperature at its maximum?

The variable TIME is always needed in dynamic models and the
simulation language automatically keeps track of it,

Exercise 13
Reason that TIME could alsoc be kept track of by the statement:

T = INTGRL(O-'I-)
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A facsimile of the program and the output is given in Fig.2.
Note that the variables RGR and GR are entered on the PRTPLT
card between brackets. Only the printed output of these vari-
ables is requested, not a graphical display. Note also that
the 'UPDATE' contains all equations in computational order,
whereas in the program itself they are presented in some
Conceptional order, It is obvious that the readability of such
simple simulation programs depends little on the sequence of
the equations.

1 $$SCONTINUOUS SYSTEM MODELING PROGRAM III viml TRANSLATOR OUTPUTSSS

TITLE RELATIVE GROWTH RATE TFMPERATURE DEPENDENT
A=zINTGRL(IA,GR)
GRERGR#A
RGR2AFGEM(RGPTR,TEMP)
TEMPEBAVTMP + AMPTMPsSIN(6,2832#TIME/24,)
INCON Iaxy,
FUNCTION RGRTB2(0,,0,.),(10,,0,08),(20,,0,36),(30,50421)¢4060
(40.00.24)0(50.'0.25)
PARAMETER AVTMP=20,, AMPTMP=]10,
TIMER FINTIM=48,,0UTDEL=1,,DELT=0,5
OUTPUT A,RGR,GR
METHOD RFCT
END

STOp
%%%  QUTPUT VARIABLE SFQUENCE #oo
TEMP RGR  GR A
MAIN,  UPBATE.F10 FORTRAN V,S5(515) /K1 4=JAN<7§ 17125 PAGE 1
00001
00002
00003
00004
00008
00006 CSMPDECK
gggg; . SUBROUTINE UPDATE ceresesene CSMPDECK
0000’ c .......“......'.....’...“..O..... 2846 csnpgzcx
00010 COMMON TINE CoupDECK
00011 1,220000 DELY 1I0CLY JOELMIN +ZIDELN +FINTIN  CSMPDECK
00012 1.2IFINT  JPRDEL ,IIPRDE  ,OUTDEL  ,2Z0UTD  DELMAX  CSMPDECK
00014 1,RCRTS + RGR + TEXP CENPDECK
001s COMMON/ZZHIST/REEP, NALARN, 120000,120001
00016 =y 1s CSMPDECK
00047 REALS® 2ZTIME Si:ﬁ%é%:
gg°l| EQUIVALENCE(ZZTIME,TINE ) C SHPDECK
° 019 CO T0(3999%,19996,39997,39990),120000 CSMPDECK
0020 ¢  sysrem sEGMENT OF MODEL MPDECK
00021 39995 conTINUE corp
00022 GO TO 39999 CoMpDECK
00023 ¢  INITIAL SEGMENT OF MODEL CSWPDECK
00024 39996 cONTINUE CSMPDECK
0003s GO TO 39999 CSMPOECK
90026 ¢  DyNAMIC SEGMENT OF MODEL ConEoECK
gooav 39997 CONTINUE §§:$D§§i
0223' TEXPRAVIMPeAMPTHPESIN(6,28320TINE/24,) € SMPDECK
29 RGR=AFGEN ( {4 RGRTB, TEMP)
00039 GReRCReA CSHPDECK
60031 ¢ A =INTGRL CIA +CR CSMPDECK
00032 GO 10 39999 \ CSMPDECK
00033 ¢ rERMINAL SECMENT OF MODEL CSMPDECK
90034 39998 conrINvE CSMPOECK
00038 39999 CONTINUE CSMPDECK
0003¢ Coprix CSHPDECK
00037 reT CSMPDECK
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0,0000E¢00 ‘X’sCh 00,0

D,0000F-02 ‘o *mpGR 0.3400
0,0000E+00 ‘e’s) 1200,

TIvE A RCR CR
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$,0000 2.94%¢ 4 1 1 1 . 1 0,21000 0.42270
7,%000 Js0204 X 1 | | L 1 &,200)0 ¢, 783412
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$,0000 $.3428 X I 1 e ] I 0,193) 1.04)7
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17,000 16,001 Re 1 I 1 I 9,27257€-02 1.02)
18,000 17,33 Xe 4 3 I I 0,00000E-02 13040
19,000 19,756 Xe I 1 I I 0,273632£=02 1.,33%14
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21,000 12,314 Xe . 1 I H I 0.304) 2.30%0
32,000 24,708 X L | 1 1 D0,12000 23+.9742
23,000 27,972 11 1 L 1 1 I 00,1393 J. 0064
24,000 32,198 IXe b | L 1 1 0.,16000 $.1892
23,000 37,822 Ix 1 1 L] 1 I 0,17293 $,5064
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29,000 18,180 1 L2 1 1 1 . T 0,200)0 16,208
Jo,.000 25,40 ]..--.01--..;.-.-0-1-oo.-------...-.--].---.--...-.-.-...I.......--ooo.o-o--[ 0,21000 20,0217
Ji,.000 116,42 1 + X 1 1 ! . I 0,20030 14,1251
32,000 148,00 1 L2 § 1 1 1 1 0,200)0 0,010
3),.000 171 .11 1 *X 1 1 LA § T 0,193} 33,944
14,000 206,38 1 *X 1 1 . 1 1 ©¢,18500 I3
33,000 245,97 | X 3 ) . 1 1 0.172%¢ 42,521
36.000 309,)? 1 Xe} L 1 1 0.16000 44,299
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40,000 471.91 Josvnsasevrssvacins]ocnnssserrtrccscan]rsrsrescavecccacenlancsnaracancrosane] 9,0711762+02 42,010
41,080 534,35 1e T 1 * 1 1 I 8,271%4E-02 42,948
42,000 557,44 . b § L | I I 8,000001-02 64,594
43,000 603,1) 1e 3 L 1 T 0,27245C+02 49,098
44,000 655,11 1 . ) S § 1 * 3 T 9,071%0€~02 $9,4))
43,000 117,908 1 . 1 1 * 1 I 0,1034) 714,253
44,000 191,0)  § . X1 * 1 I 0,12000 ",048
41,000 9,%) I 1 e 1 b 4 . T 00,1393 123,30
40,000 1034,1 1 1 L | K o 1 0,16009 18%, 44
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Fig. 2
temperature dependent relative growth rate.

A simulation program for exponential growth with a

Exercise 14
Make reruns with a two times larger and two times smaller value
of DELT than used in the program. Is DELT=0.5 hour a reasonable
choice? Which values have to be entered on the parameter card

to obtain results that are the same as those of the program
in Fig. :

12

2.3 Time constant and time interval of integration

When the reaction time of a car driver is too long, accidents
will certainly occur; The reason is that a system must be
regulated with a reaction time shorter than the period in which
the system can change to a certain extent. This period of time,
which is characteristic for the behaviour of a system, is called
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its time constant. For example, the time constant of a human
population is about ten years, of the stock of a bakery it is

a few hours. In a simulation model one does not speak about
reaction time, but about time-interval of integration. However,
because cf the feedbacks that are always present in a model,
time interval of integration is equivalent to reaction time.
Therefore, to obtain reliable results, a system must be simu-
lated with a time-interval of integration less than its time
Constant. How much less still depends on the type of integration
method. .

The program, given in Fig. 1, is used to give a more precise
indication of the time constant of a system. The only system
Parameter containing the dimension time, is the relative growth
Yate RGR. Therefore the time constant must be related to this
barameter. Since RGR has the unit time‘l, an obvious definition
Oof the time constant is the inversion of the relative growth
Yate. The growth rate GR is thus defined by A/TAU where TAU is
the time constant and equal to RGR~!. In more complicated
Systems each integral has its own time constant, but the time-
interval of integration is limited by the smallest time constant
that occurs in the system. A basic method to find the time
Constant of each integral in a complicated system is to reduce
. the integral equations to the following expressions:

Al = INTGRL(IA,, A;/TAU; + all other influences)
Ay = INTGRL(IA,, A,/TAU, + all other influences)

It is sometimes useful to have this scheme at hand, since even
in complicated systems one feedback loop with a small time
COnstant may be clearly distinct from the rest of the system.
Negative and positive feedbacks can be distinguished by the
sign of TAU. In exponential growth, TAU is positive and the
feedback is positive. In exponential decay, TAU will be negative.
The sign of TAU is immaterial for the time-interval of integra-
tion, so that only its absolute value need be used.

There is sti11 the ratio of the time-interval of integration
and the time constant of the system to be considered. In
Exercises 5 and 6 the time constant of the system was 10 hours,
and time intervals of 2.1 and 0.5 h were tried. The exact solu-
tion at time 10 is also known.

Exercise 15

Construct a graph with A at time 10 versus DELT. Use the
©Xact solution for DELT=0.

o S

It is clear from the graph of the exercise that the extrapolated
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numerical solution for DELT=0 coincides with the analytical
solution. This graph provides a method to cbtain an accurate
solution, but instead an equation giving an estimate for the
relative error as function of DELT would be more useful. As
will be shown, an acceptable time interval can then be derived
from the expression for the relative error.

2.4 Integration method and time interval

According to the rectilinear integration method, the value of
integral A after one time interval equals A +A¢*RGR*DELT

(in exponential growth), so that the rate at time t+DELT is
given by RGR* (A + A *RGR*DELT).

A better estimate for A at time t+DELT can be obtained by
averaging the rate at time t and at time t+DELT. The average
rate during the time interval is then RGR*(At + At*RGR*DELT/2),
so that the corrected estimate for A +DELT becomes

At* (1 + RGR*DELT + L*RGRZ*DELT?2) . This integration procedure
is known as the trapezoidal integration method and can be
invoked in a CSMP program by inserting the card METEOD TRAPZ
instead of METHOD RECT. The improvement of the result of this
method with respect to the rectilinear method is given by the
last term %*RGRZ#DELT?*A_. Of course, even this result is not
exact, but it is a safe assumption that the deviation from the
'true' answer is of the same order as the correction of the
last term. Therefore the relative error that is made when
METHOD RECT is used, is about %*RGR?*DELT2#*Ay/At = 4%*RGRZ*DELT?
for each time-interval of integration. Every integration step
this relative error is added to the present one, so that after
n integration steps the total relative error amounts about
n*4*RGR2*DELT2, or H*RGRz*DELT*TIME, when n is equal to TIME/
DELT.

Exercise 16

what is, according to this equation, the largest acceptable
time-interval in Exercise 15 when a relative error of 5 per-
cent at the end of the simulation run is acceptable? Use the
graph, prepared in Exercise 15 and compare the results.

The expression for the relative error of METHOD RECT is found
by a comparison with the result given by METHOD TRAPZ. The
trapezoidal integration method gives a result that is one

order more accurate than the rectilinear one. Similarly,

the relative error in TRAPZ can be estimated by comparison with
the next better integration method, and so on. The error of
TRAPZ turns out as 1/6*RGR3*DELT3*At, so that the total relative

18



error after n intervals of integration is given by
1/6*RGRI*DELTZ*TIME when n is equal to TIME/DELT. Hence the
relative error is proportional to DELT?. An instruct%ve ?xerc1se
is now to repeat Exercise 15 with METHOD TRAPZ and time-inter-
vals of 1, 2, 5 and 10 hours. . _

The principlé of comparison of the resul? of two integration
methods is incorporated in METHOD RKS which chooses it§ own
time interval of integration. When the results of two %nte-
gration methods, those of Runge-Kutta and Simpson, deviate too
much, the time-interval DELT is halved. If the error is much
smaller than required, DELT is doubled for.the next ?teﬁi

In this way the size of the time-interval is automatically
adapted to the time constant of the system. '

Sometimes the error criterion is not met by decreasing the '
time-interval. Then the error message 'DELT IS LESS TgAN DELMIN
is produced, and the simulation is automatically terminated.
Then it is advisable to look for a programming or conceptual
error. Because of the feature of automatic adaption of the
time-interval of integration, the method RKS is recommended

As a standard method.

In the RKS method the statements of the computer prog?ams.are
€Xecuted many times, only to obtain a prelim?nary estimation

Of the rates. How many times this execution is done can be
Checked by introduction of some counters into the program.

To this end an initial segment is introduced by the card ,
INITIAL, In the initial segment the counters COUNT1 and COUNT
are set to zero. Then the part of the simulation Program. that
must be evaluated each time interval, is opened with the ca?d
DYNAMIC. In the last part of the DYNAMIC segment a section is
Opened with the card NOSORT to indicate that the statements

after this card can not be sorted. It is closed with the card
SORT.

NOSORT
COUNT1=COUNT1+1
COUNT2=COUNT2+KEEP
SORT

These statements cannot be sorted because the same varlables.
OCCur to the left and to the right of the equal sign. Each time
this statement is passed, COUNT1 is incremented by one, ar.ldbl
COounT2 by KEEP, The variable KEEP is an internal CSMP variable
and has the value one if the integration step is actually 5
€Xecuted, and a value zero if the statements are only execu;e
for a pPreliminary evaluation. In this way both the number o
time intervals and the number of calculations of the wholeb
Program can be kept track of. A NOSORT section should not be
Written in the middle of a program, as then the parts above
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and below this section are sorted separately.

Exercise 17

Add the discussed statements to the programs of Fig. 2. Try the
methods RECT with DELT=0.5, TRAPZ with DELT=1, RKSFX with
DELT=2 and the method RKS. Which combination do you prefer?

As has been said the RKS method is preferred for convenience
and accuracy. There are however circumstances when RKS may not
be used. Sometimes the content of an integral has to be changed
instantaneously. For instance, when a crop is harvested, the
standing biomass is suddenly decreased. Contents of integrals
can only be changed by theilr rates. When an integral must be
emptied suddenly, the rate of outflow must be defined as the
content divided by the time interval. Thus application of the
rectilinear method gives for the content A at time t+DELT:

At+DELT = At - DELT* (At/DEL’I‘)
so that the integral is emptied indeed. In this discontinuocus
situation sophisticated integration methods cannot be used.
For instance, the average content during the last time-interval
is A/2, so that the use of the trapezoidal method results in
the removal of A/2 only. A Runge-Kutta method will give even
odder results. The rule is that the rectilinear method has to
be used, whenever a division by DELT occurs in one of the
definitions of the rates of change of the integrals. The
time~interval has then to be determined by trial and error
without help of a RKS method.

To conclude this section a comparison of the methods RECT,
TRAPZ and RKSFX (a Runge-Kutta/Simpson integration method
with fixed time-interval) is given. The relative error, in
method RECT, is given by %*RGRZ*DELT*TIME. For normalization
it is useful to take TIME equal to the time constant, that is
equal to RGR™!: After this period, the total amount equals the
initial amount multiplied or divided by the number e. The
relative error after this period becomes X%*RGR*DELT.

It can be shown that the expression for the relative error of
the method TRAPZ and RKSFX are 1/6*(RGR*DELT)Z, and

1/120* (RGR*DELT) 4 respectively. The combination

RGR*DELT = DELT/TAU gives the ratio of the time-interval and
the time constant. In the following table the value is given
for required relative accuracies of 10%, 1% and 0.1%.
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10% 1% 0.1%
RECT 0.2 0.02 0.002
TRAPZ 0.8 0.25 0.08
RKSFX 1.9 1.0 0.6

In method RECT the program is executed once per time-interval,

in TRAPZ twice and in RKSFX 4 times. Therefore an accuracy as
high as 0.1% can be obtained by 500 computations with RECT,

by 25 computations with TRAPZ and by only seven computations

with RKSFX. Thus RKSFX is by far preferable, if the time
constant is known. It is also clear that with RKSFX not much
Computation time is saved by accepting an accuracy of 10% instead
instead of 0.1%.

Of course much more can be said about the use and misuse that

can be made of numerical integration methods, but this goes

?eyond the scope of this book. More information can be found
in Milne (1960).
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3 The growth of yeast

3.1 Description of the system

Growth is only exponential as long as the relative growth rate
remains constant. This is usually so with yeast when it is
grown under aerobic conditions with a sufficient supply of
sugar and some other growth essentials. The sugar is then con-
tinuously consumed to provide the 'C skeletons' and the energy
for the growth of new yeast cells and for maintenance of the
yeast. The end-products, CO, and H,0, of the sugar broken down
in the respiratory process do not pollute the environment of
the yeast. However, if yeast grows under anaerobic conditions,
one end-product of the respiratory processes is alcchol which
may accumulate in the environment. This slows down and ultimately
stops the development of yeast buds even when there is still
enough sugar available for growth.

Growth curves for yeast that result under such conditions are
given in Fig. 3. It should be noted that yeast once formed
remains because only the bud formation is affected by the alco-
hol; the yeast itself is not killed. Two of the four growth
curves are from an experiment of Gause (1934) with monocultures
of the yeast species Saccharomyces cerevisiae and Schizosaccha-
romyces 'Kephir'. It is obvious that the initial relative growth
rate and the maximum volume of yeast that is ultimately formed
is highest for the first species.

Gause cultivated both yeast species not only in monoculture,
but also in mixture. The results of this experiment are also
presented in Fig. 3 by the other two curves. A comparison of
the growth of both species in mixture with their growth in
monoculture shows that both affected each other in the first
situation. It was proposed by Gause that this was due to the
formation of the same waste product, alcohol, that affected

the bud formation of both species. In this chapter we shall
analyse whether this explanation is acceptable by constructing
a model that simulates the growth of two species independently
and in mixture under the assumption that the production of the
same harmful waste product is the only cause of interaction.
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Fig. 3 | The growth of Saccharomyces cerevisiae and Schizo-
Saccharomyces 'Kephir' in monoculture and in mixture. The
Observational data were obtained by Gause (1934) and the curves
are simulated, as explained in the text.

3.2 Relational diagrams

It is sometimes advantageous to summarize the main interrela-
tions of a system in a relational diagram, and to formulate
th? quantitative aspects at a second stage of actual model
2leding. Such relational diagrams may be presented in various
toyz' but the conventions introduced by Forrester (1961) prove
devei the most convenient in ecology, although they were first
oped for the presentation of industrial systems. Forrester
Assigned special symbols to the various types of variables that
3ay be distinguished in state determined systems. The state
ariables or the contents of integrals are presented within
zz:zz;gles, the rates of changes within valve symbols, auxiliary
flon ées within circles and parameters are underlined. The
infor: material is presented by solid arrows and the flow of
The Siation by dotted arrows. .
Forpe mpl? system of exponential growth is drawn according to
io Ster's conventions in Fig. 4. The amount of organisms
@ state variable; its value increases by a material flow,
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Fig. 4 A relational diagram of exponential growth, drawn
according to the conventions of Forrester.

whose rate is the growth rate. The broken line between the
state variable and the rate shows that the rate depends (in
some way or another) on the state variable and the other broken
line shows that the rate also depends on a parameter which is
here considered to be a constant., This figure contains all the
interrelations that play a role, but does not consider their
details. For instance, in the relational diagram, it is still
not stated whether the growth rate is proportional to the amount
of organisms or to some power of this amount: this information
is given later in the simulation program.

The relational diagram for the yeast system is presented in
Fig. 5. There are three state variables; the amount of the first
and second yeast species and the amount of alcochol. The lines
of information flow show directly that the growth of yeast is
supposed to depend on the amount of yeast, a relative growth
rate and an auxiliary variable: a reduction factor. This reduc-
tion factor, in its turn, is given as a function of the amount
of alcohol that is present. The relations are, of course, the
same for both yeast species although numerical values of para-
meters and functions may be different. The amount of alcohol
increases by the rate of alcohol production of both species.
The alcohol production of each species is supposed to depend

on the growth rate of the species and on an alcohol production
factor.
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Fig. 5 I A relational diagram for the growth and interference
of two interfering yeast species

Exercise 18

In Section 1.4 it is said that rates do not depend on each
other in state determined systems. Why is the line of infor-
mation flow between the rate of growth and the rate of alcohol
production not in contradiction with this principle?

Relational models should contain as few details as possible,
otherwise they are very difficult to grasp and so defeat their
purpose. In studying them, much emphasis should be given to
aspects that are not incorporated. For instance, in the present
scheme there are no loops that relate the alcohol production
directly to the amount of yeast, indicating that the cost of
maintenance of yeast cells is not accounted for. The amount of
sugar is also not considered because it is assumed to be always
available in sufficient amounts.

Exercise 19
Incorporate the aspect of limited food supply in the relatiocnal
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diagram

3.3 Simulation

The growth of the first yeast species (Saccharomyces) is now
simulated by stating that the amount of yeast equals

Yl INTGRL(IY1,RY1) (3.1)

in which
INCON 1IY¥Y1 = 0.45

is the initial amount of yeast in the arbitrary units, used by
Gause, and the rate of yeast growth is given by

"RY1 = RGR1*Y1#*(1.-RED1) (3.2)
The relative growth rate is defined with

PARAMETER RGR1 = ,,.....

It was observed by Gause that in both species the formation of
buds was completely stopped at some maximum alcohol concentra-
tion which is given as a percentage by

PARAMETER MALC = 1.5

The dependence of the reduction factor on the alcohol concen-
tration may now be obtained with an arbitrary function genera-
tor,

RED1 = AFGEN(REDIT,ALC/MALC)
The most elementary assumption is that bud formation decreases
linearly with increasing alcohol concentration, which is intro-

duced with

FUNCTION REDIT = (0.,0.),(1.,1.) .

Exercise 20
Express RED1 directly in ALC and MALC without using the function
generator. '

The alcohol concentration itself is the integral of the alcohol
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production rate which is zero at the initialization of growth:

ALC = INTGRL (IALC,ALCP1) (3.3)
INCON IALC = 0.

and the alcohol production rate is proportiocnal to the growth
rate of yeast:

ALCP1 = ALPF1#*RY] (3.4)

Two values need to be determined now: the relative growth rate
and the alcohol production factor. During the early stages of
growth, RED is practically zero, so that the growth rate is
equal to RGR1 x Y1. This allows a first estimate of RGR1l from
the data in Fig. 3 for the monoculture. ALPFl follows from the
observation that growth was terminated when the alcohol concen-
tration equalled 1.5 percent and the amount of yeast about

13 units,

Exercise 21

What is a first estimate of RGR!1l in the correct units? What is
the value of ALPF!l in the correct units? Is this value only
physiologically determined or does it also depend on the volume
of water in the vessels with yeast? What is the value of IALC
when not only the initial amount of yeast is introduced at
initialization, but also the corresponding amount of alcohol?
Estimate the same values for Schizosaccharomyces, it being
known that the alcohol concentration at which the formation

of buds is completely inhibited is also 1.5 percent. Which
species has the larger alcochol procduction factor?

The structural equations that describe the growth of the second
species (Schizosaccharomyces) are, of course, the same as those
for the first, so that in a model for concurrent growth it
suffices to write them twice: once with a 1 at the end of the
relevant symbols and once with a 2. The equation that describes
the alcohol concentration becomes

ALC = INTGRL(IALC,ALCP1 + ALCP2) (3.5)

This equation holds on the condition that both species inter-
fere only with each other through the production of the same
alcohol. _

Fig. 6 shows the resulting simulation program with MALC identi-
cal for both species and the proper data. In the main program
IY1 and IY2 are both set to 0.45 units, so that the growth in
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TITLE MIXED CULTURE OF YEAST
Y1=INTGRL(IY1,RY1)
Y2=INTGRL(IY2,RY2)

INCON 1Y1=0.45,1Y2=0.45
RYI=RGR1#Y1¢§1.-RED])
RY2:RGR2+Y2»({1.-RED2)

PARAMETER RGR1=0.21,RGR2=0.06
RED1=AFGEN(REDIT,ALC/MALC)
RED2=AFGEN(RED2T ,ALC/MALC)

FUNCTION RED1T=(0.,0.),(1.,1.)

FUNCTION RED2T=(0.,0.),(1.,1.)

PARAMETER MALC=1.5
ALC=INTGRL(IALC,ALCP1+ALCP2)
ALCP1=ALPFI+RY!]
ALCP2=ALPF2%RY2

PARAMETER ALPF1=0,12,ALPF=0.26

INCON IALC=0,

FINISH ALC=LALC
LALC=0,99+MALC

TIMER FINTIM=150,,0UTDEL=2,

OUTPUT Y1,Y2,ALC

END

STOP

ENDJOB

Fig. 6 I A simulation program for the growth of two yeast
species that interfere through the production of the same waste
product (alcochol).

the mixture is simulated. The two monocultures are simulated
in reruns.
FINTIM is set at 150 hours, but the two lines

FINISH ALC = LALC
LALC = 0.99 * MALC

are inserted to avoid unnecessary 'number-grinding', when the
alcohol concentration is close to its maximum. This condition
FINISH indicates that the simulation is terminated as soon as
the alcohol concentration reaches 99 percent of its maximum
value.

The relative growth rates and the alcohol production factors
are chosen such that the results of the two experimental mono-
cultures are matched as well as possible. A comparison of the
mixtures (Fig. 3) shows that the actual growth of Schizo-
saccharomyces is slightly more than the simulated growth.
Barring statistical insignificance, we must conclude that both
species do not interfere with each other's growth through the
production of alcohol only, as assumed in the model. It may be
that Schizosaccharomyces produces some other waste product
that is harmful for the other or that Saccharomyces produces

a waste product that stimulates the other. These possibilities
cannot be distinguished from each other without additional
information. And as long as this is not available it is a futile
exercise to simulate such suppositions.
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Exercise 22

Try to reascon whether a similar effect could result from the
supposition that REDT for the species is not given by

FUNCTION RED1T= (0.,0.),(1.,1.)
FUNCTION RED2T= (0.,0.),(1.,1.)

but by, for instance:

FUNCTION REDI1T= (0.,0.),(0.5,0.75),(1.,1.) (Sacch.)
FUNCTION RED2T= (0.,0.),(0.5,0.25),(1.,1.) (Schizos.)

If this is too difficult, you may find the answer by simulation.

These simulation programs are conveniently amended. For instance,
the yeast cultures may be washed continuocusly with water that
contains sufficient sugar. The integral of the alcohol concen-
tration is then

ALC = INTGRL(IALC,ALPF1*RYl1 + ALPF2*RY2 - ALC/WSC)
in which the washing constant (WSC) is expressed in hours and

presents the average residence time of the water in the vials
with veast, as will be shown in Section 6.4.2.

Exercise 23
What is in due course the alcohol concentration and the absolute
growth rate of both yeast species for WSC equal to 10 hours?

3.4 Logistic growth

The simulation program in Section 2.2 was develcped from the
differential equation form. The differential equation form for
the present problem will now be derived from the structural
equations of the simulation program, but only for situations
where the reduction factor is inversely proportional to the
alcohol concentration so that (1-RED) may be replaced by
(1-ALC/MALC) . Since the alcohol concentration is equal to the
amount of yeast times the alcohol production factor according
to the Egqns (3.3) and (3.4), it is then possible to rewrite
Eqn (3.2) in differential equation form as

dY/dT=RGR x Y x (1-Y/YM) (3.6)

in which Y is the amount of yeast, T is the time and YM stands
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for the maximum amount of yeast. This equation may be integrated
and then becomes

Y = M (3.7)

1+Ke~RGRxT

Exercise 24

Express YM in MALC and ALCPF. What are the values of ¥YM for
both species of yeast? Show by differentiation that Eqn (3.7)
is an integrated form of Eqn (3.6). Express the initial amount
of yeast in the constant K and YM of Eqn (3.7). Calculate the
time course of the growth of Saccharomyces and compare the
result with the simulated course. Why does the differential
equation only hold for situations where the initial amount of
yeast is very small, whereas the simulation program is gener-
ally valid? (see also Exercise 21).

The growth curve that is described by the differential equation
and also presented by the simulated growth curves for the
monoculture yeast in Fig. 3 is called the logistic growth curve.
This S-shaped curve is symmetrical, but this symmetry hinges

cn the assumption of inverse proportionality between the reduc-
tion factor of growth and the amount of growth that has been
made. Especially Lotka (1925) and Volterra (1931) generalized
the logistic differential equation for interfering species

with the following set of differential equations:

davl/dT = Rl x Y1 x (1 - Al x Y1 - Bl x Y2)
dy2/dT = R2 x Y2 x (1 - A2 x Y1 - B2 x Y2)

In general this set of differential equations cannot be inte-
grated into analytical expressions for Y1 and Y2 as functions
of time and therefore it is wiser to leave such simplifying
approaches alone and to formulate the problem directly in
terms of a simulation model.

Exercise 25

Show to what extent the simulation model for mixed growth of
yeast is covered by this set of differential equations. Express
the constants R1, R2, Al, A2, Bl and B2 in the constants RGRI,
RGR2, ALPF1, ALPF2 and MALC. Which constants of the differen-
tial equations are the same? Do they remain the same in situa-
tions where a species produces a waste product which is harmful
for the cother species only?
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4 Interference of plants

4.1 Replacement series

The interference of plant species in the field is most con-
veniently studied by experiments based on the replacement
principle.

Thus experimental plots are divided into small equal areas,
usually squares. A seed of the first species is placed in each
square of one plot and a seed of the second species in each
square of another. In this way monocultures of the two species
are obtained. On another plot, the seeds of both species are
placed alternatively in the squares to create a mixture in
which half of the space is allotted to one species and the
other half to the other. Other mixtures may be obtained by
allotting the individual squares to the species in other pro-
portions. The relative seed density of a species in a mixture
is now defined as the seed density of the species in the mix-
ture divided by its seed density in the monoculture. Obviously,
the sum of the relative seed densities z; + 2z, then equals
always 1. The yields of the species in monocultures are repre-
sented by the symbols My (2 =1, 2z, = 0) and My (z; = 0, 25 = 1)
and the yield of each species in the mixture by 0; and O,,
Instead of a single seed also n seeds of the one species or m
seeds of the other may be placed on each square, for instance
when the individual plants of the species are of different
sizes.

An experiment is now considered where the individual squares
are so large that the two species do not interfere with each
other. The seed densities are then low and the yields of both
species consequently small. But M; and M, are of course not
necessarily the same. Here the yield of each species in the
mixture may be represented by

Z1 Z2
My and O, =

0] = M, (4.1)

Zl+22 Zl+22

The linearity is due to the seeds being so far apart that the
plants do not interfere with each other.
The yields may be expressed in dry weight per unit surface or
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number of seeds per unit surface for seed-forming species. In
the latter case the relative reproductive rate of the species
may be defined as

01/2y

= Mj/Mp (4.2)

and appears to be equal to the ratio of the yield of the

species in monoculture. If ay, is 1, the species match each
other. If aj, is greater than 1, species 1 gains on species 2:
the latter eventually disappears from the mixture, if the har-
vested mixture is resown repeatedly at the original density.
What happens if the individual squares on the experimental

plots are made smaller and smaller? Then the seed rates of

both species increase accordingly and so do the yields. But

this is not the only effect. At a certain stage the space al-
lotted tec each seed is so small, that the plants interfere with
each other., If the species have equal competitive ability one
species will not infringe upon the space allotted to the other
and Eqn (4.1), resulting in a linear relation between seed rate
and yield of the species in the mixture, is still valid. How-
ever, one species usually has more competitive ability and will
infringe upon the space allotted to the other. Then the yield

of this species in the mixture is higher than expected and that
of the other species is lower.

Many experiments of this type have been done and the result of
one of them with barley and ocats is given in Fig. 7. Here the
squares were of two sizes: in one experiment 310 cm? was allot-
ted to each seed and in the other 31 cm2. with the wide planting,
barley infringed somewhat on the space of oats, but the yield
curves were still practically straight. With the narrow planting,
however, the yield of barley in the mixtures was relatively high
and of oats relatively low, indicating that barley was by far
the strongest competitor. The results of this and many other
experiments with barley and oats (de Wit, 1960) show that the
relative yield total of the mixtures, defined by

RYT = O1/M1 + 02/M2 (4.3)

is practically equal to one. When RYT equals one, the species
are mutually exclusive. This equality may be considered the
operational definition of 'competing for the same niche', to
use a term out of the field of animal ecology. The relative
reproductive rate for seed producing species is now not equal
to the ratio of the yields in the monoculture but may be ex-
pressed by
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Fig. 7 l Seed yields in number of kernels per m? in a replace-

ment experiment of barley and ocats at two densities of sowing

(de Wit, 1960).

0

J
05
05

01/21
Q12 = 02/22

= ky2(My/M3) (4.4)

in which kjs is the relative crowding coefficient and charac-
terizes to what extent one species infringes upon the space
allotted to the other. Eqn (4.3) (with RYT = 1) and Egn (4.4)
may be combined and replaced by

k122 Z2
My and 0, = M» (4.5)

O = k12271 + 27

k1227 + 2z»

These equations are similar to (4.1), except for the relative
crowding coefficient which weights the relative frequency of
sowing. Similar relations hold when biomass yields are con-
sidered, except that the relative reproductive rate loses its
meaning,
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Exercise 26

Show that the equations (4.5) are consistent with the equations
(4.3) and (4.4). In the following table the data, used to draw
Fig. 7(left side), are given (kernels m_2)

2y, 0 0.2 0.4 0.6 0.8 1.
Barley 0 4270 8050 9920 10670 12100
Oats 16200 11400 5800 3200 1330 0

Calculate RYT in the four mixtures as well as k ° and Opg e
which species has the highest yield in monocultire and which

species gains in competition?

The yield curves in Fig. 7 have been calculated by assuming
that the relative crowding coefficient is independent of the
relative seed frequencies and that RYT = 1; the agreement
between the curves and the experimental data over the whole range
of frequencies show that this is a fair assumption. The con-
stancy of the relative crowding coefficient has been confirmed
by the analyses of many other experiments (de Wit, 1960;

van den Berg, 1968), so that it is reasonable to state the
following. If the relative yield total in replacement experi-
ments equals about 1 over the whole range of seed frequencies,
then the relative crowding coefficient may be considered inde-
pendent of these seed frequencies.

Of course there are also situations where the species do not
exclude each other, so that the relative yield total does not
equal 1. The equations (4.5) cannot be applied in such situa-
tions. For instance, legqumenous species and grass are not
mutually exclusive when the first obtains its nitrogen from the
alr through nitrogen-fixing Rhizobium bacteria and the second
from the soil and from the first species (de Wit et al., 1966).
The relative yield total (RYT) may be also greater than one
when one species has a longer growing period than the other.
On the other hand, it has been shown that RYT is smaller than
one when one species contains a virus which is harmful to the
other (van den Bergh, 1968; Sandfaer, 1970).

4.2 Density of sowing

Replacement experiments between two species and density of
sowing experiments of single species have much in common, as

is conveniently illustrated by considering the results in
Fig. 8 of replacement experiments between barley and oats at

different pH values of the soil. As far as the relative crow-
ding coefficient is concerned, the two species matched each
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other at a pH of 4. However, at a pH of 3.7, the relative
crowding coefficient of oats with respect to barley was about 2,
although the yields of the two species in monoculture were
still the same as at the higher pH. Obviously a lower pH affects
the compeiitive ability of barley. This effect was detrimental
to yield when oats were around to claim the space, but not in
monoculture. At a pH of 3.2 the situation was still worse: the
relative crowding coefficient of ocats with respect to barley
increased to 3, whereas the yield of barley decreased to a low
level. The physiological cause of the phenomenon is that the
root development of barley is much more sensitive to low pH
than of oats. The most extreme situation was reached at a still
lower pH. Here the relative crowding coefficient of cats with
respect to barley increased up to 20, whereas the barley did
not grow at all, as reflected by its zero yield in monoculture.
Such a replacement experiment of barley and oats in situations
where barley does not grow at all is, in fact, an experiment
on the density of sowing of cats. In other words density of
sowing experiments are a limiting case of replacement experi-
ments. Therefore the equations (4.5) not only describe the
results of competition experiments, but those of density of
sowing experiments as well. It is only necessary to give them
a more suitable form.

As one species of the replacement series does not grow at all,
the second equation may be omitted. The remaining equation is
still in an unsuitable form because it is formulated in terms
of relative seed frequencies and refers also to the species
that is not sown or did not grow at all. A more suitable form
is obtained when 2)/2p is substituted for z; and (Zp - 21)/Zm
for z, in which Zp is the maximum seced rate used in the experi-
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Fig. 8 I Replacement experiments of barley and oats at different
pPH-KC1 values of the soil: 4, 3.7, 3.2, 3.1 for a, b, ¢, 4,
respectively (de Wit, 1960)
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ments and expressed in absolute units, i.e. plants m~ 2., When
the subscripts 1 are omitted, the first equation of (4.5) be
becomes

(4.6)

Exercise 27
Derive this formula and express the constants B and Oy in the
relative crowding coefficient k and seed rate Zm and the yield M,

In Egqn (4.6) Op and B are independent of the density of sowing Z.
The dimension of Z is number of. plants m-2 or a similar unit.

On is the theoretical maximum yield, in g m-2 for instance,

that is obtained when the seed density is very high and B x Op
is the yield of a single plant growing alone. B itself has the
dimension of m? plant'.‘1 and may be considered the amount of
space that is occupied by a single plant growing alone. The
value of 0/Op has a lower limit of 0 and an upper limit of 1.

Exercise 28

Construct a graph from Eqn (4.6) for Op = 100, B = 0.05 and 2
ranging from O to 100. Draw the asymptote O and the initial
slope B x Om of the curve. Mark along the horizontal axis the
position where the yield is half of the maximum yield Op. Mark
also the distance 1/B along the horizontal axis. Give now
expressions for:

Lim(O) = eee
Z~ oo
Lim(0/2) = ...
Z2-0
Lim(0/Om) = ...
Z-0
Lim(0/Op) = ...
7+ o0

The result of a spacing experiment with subterranean clover
harvested at various times after planting is given in Fig. 9,

Op increases monotonously with time. The rate of increase of
this parameter presents in principle the growth rate of a closed
crop surface from the beginning of growth onwards. Under fa-

vourable conditions it may be expected that Om increases with
about 20 g m™2 day =1, this being the potential growth rate
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Fig. 9 | A spacing experiment with subterranean clover
(Donald, 1963), harvested at various times after planting.

of most agricultural crops in the Netherlands (de Wit et al.,
1970) . The value of B also increases monotonously with time;
it represents the (calculated) ability of a single plant to
occupy space during its growth and this ability is strongly
affected by the stage of development and the distribution of
photosynthesis products over the various plant organs.
Baeumer & de Wit (1968) did a spacing experiment with barley
and oats on a soil well supplied with nutrients and water,
Rows of plants, rather than single plants, were grown at dis-
tances of 25 and 100 cm, that means with seed densities of 4
and 1 row per metre. The dry matter yield was determined at

four stages. The results of this experiment are summarized in
Table 1.

Exercise 29

Calculate the values of B and Op for barley and oats on the four
harvesting dates by using Eqn (4.6). What are the units of B

and Op? The calculated value for Op on the first date is un-
reliable. Why is this so? Is there a combination of B and Op
that is much more accurate? Draw graphs of B and Op against
time. Linearize the curves for Oy, omitting the data points for
the first harvesting date and recalculate B for the value of

Om estimated in this way.
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Table 1 The dry biomass yield in g m~? of barley and oats,

sown at 25 and 100 cm on 2 May 1966. Emergence and seedling
establishment was completed on 15 May. Field experiment IBS 975,
1966.

bate of Barley at Oats at
harvest 25 cm 100 cm 25 cm 100 cm
7 June 117 36 81 22
21 June 426 223 319 142
5 July 588 341 503 263
19 July 858 496 789 516

There is also a graphical method to make a first estimate of

B and Oy from the yields at different densities. Then o-1
(ordinate) must be plotted against z=1 (abscissa). Since
according to Eqn (4.6) the result should be a straight line,

a fit by eye is easy. This method is convenient when experimen-
tal results of more than two densities are available.

Exercise 30
How can Oy and B be found from such a graph? What is a disad-
vantage of the method?

T B g oM
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(o 23 37 51 65 o) 23 37 51 65
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Fig. 10 ] Time functions of B and OM for barley and oats,
calculated from the data in Table 1.
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The calculated curves of B and Oy against time for barley and
ocats are given in Fig. 10. Barley grows somewhat better at low
temperatures and its value of B increases during the early part
of the growing season more rapidly than for oats. Hence, when
both species are grown together, barley occupies relatively
more space and by the time oats gets around to claim its share,
all the space is already occupied. Therefore the competitive
ability of barley in a mixture with oats is usually higher,

It may be possible to calculate the mutual interference of both
species in a mixture from the course of B and Op, as determined
from density experiments with one species.

4.3 Simulation of plant interference

To arrive at a simulation program for the interference of plants,
it is necessary to distinguish the correct state variables and
to find expressions for their rate of change. A convenient state
variable is the relative space that is occupied by the species,
defined as the yield (0) of the species, divided by the maximum
yield (0Op) obtained at very high seed density. This relative
space is according to Eqn (4.6):

RS = (4.7)

The term relative space is preferred because the term relative
yield for this quotient would lead to confusion with the term

relative yield used in the analyses of replacement series. The
value of RS ranges from 0 to 1.

The rate of change of the state variable may be found by dif-

ferentiating RS with time and rearranging the expression. The

result is

d (RS) dB/d4T

dT B

X RS x (1 - RS) (4.8)

This equation is very similar to the equation for logistic
growth, derived in Section 3.4; the two main differences being
the maximum value of 1 for the state variable and the non-
constancy of the 'relative growth rate’.

Exercise 31
Derive the expression for d(RS)/4T. For this purpose, Eqn (4.7)
is differentiated, taking into account that B is a variable
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function and 2 a constant function of time. Eqn (4.7) is then
used again to eliminate Z. What is the dimension of (dB/d4T)/B?
Does this relative rate of change increase or decrease with
time? What is the expression for B against time when the rela-
tive rate of change is constant?

Eqn (4.8) holds for one species. The factor (1 - RS), which
may range from practically 1 in the beginning to practically 0
at the end of the growth period, characterizes the reduction

of growth under influence of the space that is occupied. When
two species are growing tcgether, a situation may be vizualized
where plants do not distinguish between occupation of space by
one species or the other. Then the relative spaces may be added
as to their influence on the growth of each species so that the
following set of equations characterize the situation:

d(RS1) _ dB1/d4rT .
3T = B1 X RS1 x (1 SRS)

d(RS2) dB2/4T
dT B2

X RS2 x (1 - SRS)

SRS = RS1 + RS2

'Exercise 32
Construct a relational diagram of this type of plant inter-
ference.

TITLE COMPETITION BETWEEMN BARLEY AND UATS
INCON DBI1%0,0047,0B1220,0033,RSI120,002,RS12=%0,002
RS1=INTGRL(RSI),(DB1/B1)sRS14(1,=SRS))
RS2=zINTGRL(RS12,(DB2/B2)eRS2e(1,=SRS))
BisAFGEN(BTB!,TIME)
B2=AFGEN(RTR2,TIME)
DB1=DERIV(DBIL,B1)
DB2=DERIV(DBI2,B2)
Di1zRS1eAFCEN(OMTB], TIME)
023RS2¢AFGEN(OMTB2, TIME)
SRS=RS1+RS2
PRINT RS1,RS2,SRS,01,02
TIMER FINTIM265,,PRDEL=S,
FUNCTION OMTB12(0600e)0(23¢¢3770)s(37¢¢612,)¢(534¢780,),(65.,,1132,)
FUNCTIOM OMTB22(0,704)00234¢333.)0037.0552.)¢(51.+724,)5(65,+956,)
FUNCTION BTR12(6.,0,001),(23,,0. 11) (37.¢0, 574) (51,00,778),(65,,0,778)
FUNCTION BTB2=3(0,,0,001),(23.,0, 076) t37..o 336)+,(51440, 571) (65.01.17)
END
STOP
ENDJOB

Fig. 11 I A simulation program for interference of two plant
species that do not distinguish between the occupation of space
by one species or the other.
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The two differential equations are the basis for a simulation
program of two species grown in a mixture, which is presented
in Fig. 11.

The function tables for B and Op are those for the barley(1)
and oats(2) experiment of Table 1. DERIV is the only new func-
tion that is introduced. This function calculates the deriva-
tive of the second argument, here the value of dB/AT from the
function of B against time. Like an integral, the derivative
has to be initialized and this initial value is given as the
first argument of the function.

Exercise 33

Why is it necessary to set the value of B slightly above 0 at
emergence? Initialize RSI1, RSI2, DBI1 and DBI2. Is it neces-
sary to initialize the derivative functions accurately?
Compare the results of the simulation graphically with those
of the actual competition experiment in Table 2.

Table 2 The dry biomass yield in
g m—2 of barley and oats, sown
alternately in rows 25 cm apart.
Field experiment IBS 975, 1966.

Date of Mixture
harvest Barley Oats
7 June 62 30
21 June 235 142
5 July 375 165
19 July 512 308

Inspection of the experimental data in Table 2 shows that barley
occupied much more space than oats in the mixture although both
species were planted alternately in rows. The simulated results
given in the answer to Exercise 33 prove that this better per-
formance may be explained by the more favourable course of the
B curve for barley during early growth. The higher valucs of B
for oats later are ineffective in the mixture because too much
space is already occupied by the barley at the early stages of
growth and at this sowing density.

Although this simple model of interference holds for mixtures
of some species, it does not always hold in situations where
species exclude each other. For instance, in mixtures of short
and long peas, it makes a large difference to the short peas,
whether the space is occupied by other short peas or by long
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peas. In the latter case, practically all light is intercepted
by the long neighbours so that the growth of the short peas is
almost suppressed. Experimental and simulated results of a
competition experiment with these species are given in Fig. 12.
To obtain the simulated curves A, it was assumed that the simple
model as used in this section for barley and cats was valid.
The difference between actual and simulated results is so large
that this suppositicon must be rejected. The curves B were
obtained by assuming that the relative space of each species
may be weighted according to their respective heights (H1 and
H2) which differed at the end about threefold. This weighting
was done according to the equations

SRS1 = RS1 + (H2/BH1) x RS2
SRS2 = (H1/H2) x RS1 + RS2

for the sums of the relative spaces. In this way the different
light interception is accounted for in a first approximation.
The much better agreement shows that this explanation is reason-
able for the bad performance of the short peas in the mixture.
In situations where species interfere in other ways than by
mutual exclusion, it is of course futile to construct a model

of competitive interference on basis of data obtained in mono-
culture only.

g dry matter o= long peas -—— = Observed
me e=short peas --—-=simulated
500 A o S00-

250 - 250 -

O0- ¢t ! T ] OJ r T ! —
&/7 6721 7/5 7/19 6s7 6721 7/5 7/19

Fig. 12 l Observed and simulated growth of long and short peas
in a mixture. '

A: without weighting according to height.

B: with weighting according to height.
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4.4 Further modelling aspects
4.4.1 The INDEX and MACRO feature

The simulation programs for yeast growth in the previous chapter
and for plant competition in this chapter are given for two
species but may be extended to more species. For a mixture of
n species, the relevant structural equations must be written
n times., Many repeated statements, however, make the program
less clear and often introduce errors, especially if it is
necessary to change the structure. Hence it is better that
statements are repeated by the computer. The INDEX feature is
suitable for this purpose. If for instance, two plant species
are competing, the equations for the relative space (RS) are
written as

RS'1,2' = INTGRL(RSI'1,2',DB'1,2'/B'1,2'#*RS'],2'*(1,-SRS))

This statement is an order for the preprocessor (Appendix A)

to write the equation twice: once with number 1 attached to the
syrbols, once with number 2. All variables that are different
for each species obtain an appropriate number by order of the
index '1,2' and all variables, that are the same for the two
species, like SRS, remain the same. These variables have to be
defined on their own, in this case by

SRS = RS1 + RS2
A summation of this type can be written more concisely by
SRS = SUMI(RS'1,2")

The other equations that describe the growth are given in

Fig. 13, which contains a full program for competition between
two species. The initial values for the relative space and the
slopes of B are defined on parameter cards by

INCON RSI'1,2' = ..ieeceroncccs
INCON DBI.1'2' .......'......

The four functions must be given separately in FUNCTION tables.
The corresponding CSMP program that is written by the pre-
processor on the basis of this text, is also given in Fig. 13,
Here it can be clearly seen that the INDEX feature is an order
for repeated writing or defining of similar texts, parameters
or output. For more than two species, i.e. four, the statement
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TITLE COMPETITION BETWEEN BARLEY AND OATS

INCON DB1°2:,2°=0,0047,0,0033

INCON RS1°1,2°20,002,0,002
RS’1,2°=INTGRL(RSI"8,2°¢(DB°1,2°/B"1,2°)#RS°1,2°#(1,=SRS))
B’1,2°=AFGEN(RTB*1,2°,TINE)
DB’1,2°=DERIV(DBI*1,2°,B°1,2°)
0°1,2°=xAFGEN(OMTR 1,2, TINE)
SRSzRS1 ¢+ RS2

TIMER FINTIM=265,,PRDELES,

FUNCTIDN 873130.'00001023000.l1,37.:00574,51ol0.778165of°.778

FUNCTION BTR2=20,90¢001,23¢¢0e076¢37¢670:¢346¢514¢0:571+,654¢1.17

FU"CTION OMTBISO.pO.-23.'377.137.:612or51.o730.065.01132.

FUNCTION GOMTR220,49049023,49¢333,4037,4¢5524051,,724,+65,,956,

PRINT RS5’1,2°,S5RS,0°1,2°

END

STDP

ENDJOB

TITLE COMPETITION BETWEEMN BARLEY AND OATS
INCON DBI1=0,0047,D0B12=0,0033
INCON RSI130,002,R51220,002
RS1=INTGRL(RSI1,(DB1/B1)#RS1#(1,=SRS))
RS2=INTGRL(RSI2,(DB2/B2)#RS52#(1,+SRS))
BisAFGEN(BTBL, TIME)
B2sAFGEN(BTB2,TIME)
DB1=DERIV(DBIi,B})
DB2=DERIV(DRI2,B2)
Ot xAFGENC(OMTBL ,TIME)
02=AFGEN(OMTR2,TINME)

SRS=RS51 + RS2
TIMER FINTIM=65,,PRDEL=5,
FUNCTION 8131300!0.001123010.11037.:0.574'510300178l650000779
FUNCTION BTB2=20,00¢001,23¢00:076+37¢70:346,51¢006573/+6%5.0+1.17
FUNCTION OMTB1=04900e0234¢377403749612¢+51,,780.¢65.,01132,
FUNCTION OMTB220,906¢23,73330¢3741552¢¢51427244¢65,¢956,
PRINT RSl,RS?,SRS,01,02
END
STOP
ENDJOB

Fig. 13 | A simulation program for interference of two plant
species, written by using the INDEX feature and the CSMP program
compiled from this by the preprocessor.

RS'1'4' =.....

generates equations for RS1, RS2, RS3 and RS4.

Exercise 34
Write a program for the growth of four yeast species in a
mixture, using the INDEX feature.

A similar result may be obtained by using the MACRO feature.
In a MACRO, a part of a process is described in general terms.
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Every time a MACRO is called upon, CSMP writes its full text
with the appropriate symbols. A MACRO is therefore not an order
to execute a particular computation, but an order to write a
part of a simulation program. Just as in a normal simulation
program, it is not necessary to present the structural state-
ments in computational order and it may well be that various
parts of the MACRO are scattered throughout the computational
program after the sorting process. The MACRO for the growth of
a plant species may read as follows:

MACRO 0,RS = GROWTH(BTB,OMTB,DBI,RSI)

RS = INTGRL(RSI,(DB/B)*RS%(1.-SRS))
B = AFGEN(BTB,TIME)
DB = DERIV(DBI,B)
0 = RS*AFGEN(OMTB,TIME)
ENDMAC

The first line indicates that there is a MACRO 'GROWTH', in
which it is stated how the relative space and the yield (RS
and O) depend on functions, variables and initial constants,
given or calculated elsewhere in the CSMP program. The ENDMAC
line indicates the end of the MACRO. Within the MACRO, the
equations of the last section are given but with the numbers
1 and 2 omitted.

The MACRO is invoked by the sentence

01,RS1 = GROWTH(BTB1,0MTB1,DBI1,RSI1)
for species 1 and

02,RS2 = GROWTH(BTB2,0MTB2,DBI2,RSI2)

for species 2.

A program for competition between two species and the inter-
mediate CSMP program that is generated are presented in Fig. 14.
Detailed comparison of the text shows that three classes of
names for variables, parameters and tables can be distinguished.
First, those that are mentioned in the statement: these replace
the dummy names at corresponding places in the MACRO definition.
Secondly, those that are used within and outside the MACRO:
these remain unchanged and are not necessarily mentioned in

the invoking line. Thirdly, there are dummy names that are used
only within the MACRO: these are replaced by unique names of
the type 22... in order to avoid double definitions.
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Exercise 35

Make a detailed comparison of the 'intermediate' CSMP program
written with the MACRO feature, the CSMP program written with
the INDEX feature and the original CSMP program for competition
between two species. It is only in this way that all logical
aspects of the MACRO operations can be understood.

TITLE COMPETITION BETWEEN BARLEY AND OATS
INCON DBI1=0,0047,DBI220,033,RSI3=0,002,RSI220,002
MACRC O,RS=GROWTH(BTB,0OMTB,DBI,RSI)
RSzINTGRL(RSI,(DB/B)#RS«(1,=SRS))
BzAFGEN(BTB,TIME)
DB=DERIV(DBRI,B)
O=zAFGEN(OMTB,TIME)

ENDMAC
01,RS1=GROWTH(BTBYy ,OMTB],DBI1,R511)
02,RS2=GROWTH(BTB2,0MTB2,DRI2,R512)
SRS5=2RS! ¢+ PRS2
TIMER FINTIM=65,,PRDELES,
FUNCTION BTB120,,04008,23000¢13¢37¢¢0¢574,51,¢0,778,65,,0,778
FUNCTION BTB2=0,7,0,001,23¢+0.076,37,+06346+51:e¢0.571,65,.¢1.17
FUNCTION OMTB120,,06023¢¢3776¢374¢612,+51,,780,465,,11132,
FUNCTION OMTB2=0,¢06023¢¢333:¢37¢¢5524¢51,4¢724,,65,,956,
PRINT RS5{,RS2,8RS5,01,02
END
STOP :
ENDJOB

TITLE COMPETITION BETWEEN BARLEY AND OATS
INCON DBI1=20,0047,0B12=0,033,RS511=0,002,R512=0,002
221000=AFGEN(BTB1,TIME)
Z21003=DERIV(DBIY{,221000)
SRS=RS1 + RS2
221003=(221001/221000)#RS1#(1,=SRS)
RS1=INTGRL(RS11,221003)
221004=AFGEN(BTB2, TIME)
Z21005=DERIV(DBI12,221004)
221007=(221005/221004)#RS2#(1,=5RS)
RS2=INTGRL(RSI2,221007)
O1=AFGEN(OMTB1,TIME)
02=AFGEN(OMTR2, TIME)
TIMER FINTIM=65,,PRDEL=S,
FUNCTION BTB120,904001,23¢¢0411¢37,90¢574/534¢0,778,65,,0,778
FUNCTIDN BTB:300000001'23.l000760370l00346!510'0.57l!65-'1.17
FUNCTION OMTB120,90,023,¢3770037¢¢612¢¢51.¢7804,65.,,1132,
FUNCTION OMTB220,90,023.¢3334+37,¢552e¢¢51,,7244¢65,,956,
PRINT RS1,RS2,5RS,01,02 '
END
STOP
ENDJOB
Fig. 14 I A simulation program for the interference of two plant
species written by using the MACRO feature. The intermediate
CSMP program, produced by the CSMP compiler is also given. The

text of this intermediate program is not printed by the computer.
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Exercise 36

Only for readers that are familiar with FORTRAN.

What are the principal differences between a MACRO and a SUB-
ROUTINE?

One may wonder why two methods are being developed to make
simulation programs more lucid and to avoid repeated writing

of structural statements, especially as these methods seem very
much alike. However these methods are cnly similar in the con-
text of the present small programs which are written for illus-
trative purposes., Later it will become evident that each metheod
has its own field of use,

4.4,2 The INITIAL and DYNAMIC section

The initial values for the relative space (RS) and the deriva-
tive of the space occupied by a single growing plant (DB) must
be calculated before the simulation models discussed in the
previous sections can be applied. To avoid errors and again to
promote the clarity of the simulation, it is advantageous to
incorporate this computation in the simulation program. Again
it is convenient to use a MACRO, in which it is defined how
RSI and DBI depend on the distance of sowing (DIST) and the
function for B (BTB):

MACRO RSI,DBI = BEGIN(BTB,DIST)
RSI = BI/(BI+DIST)
BI = AFGEN(BTB,0.)
DBI = (AFGEN(BTB,DELT)-BI)/DELT
ENDMAC

Exercise 37

Derive the expression for RSI from Eqn (4.7). Can it be further
simplified? Why is it possible to use the METHOD RKS, even when
a division by DELT occurs?

The computational procedure, contained in this MACRO, has to
be done only once for each species before the actual simulation
is started. For this purpose an initial section of the simu-
lation model is made, starting with an INITIAL card and ending
with a DYNAMIC card.

The above MACRO is invoked twice within this INITIAL section.
After this initial section, the normal dynamic structural
statements of the simulation program are entered.
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Exercise 38

Write a simulation program for the growth of three barley cul-
tivars, assuming that B for the second variety and O, for the
third variety increase half as fast with time as for the first
variety. Assume that the species are sown in rows 40 cm apart
in a 1:1:1 ratio. Be careful about the value of DIST. Make use

of the MACROs and the INITIAL section. Write the same program
with the INDEX feature,
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5 Growth and competition of Paramecium

5.1 Description of the system

Paramecia are protozoa: unicellular organisms that live in
water and feed on bacteria. Gause (1934) did a series of ex-
periments with the species P.aurelia and P.caudatum in mono-
culture and in mixture to study the principles of their mutual
interference. The species were grown in test tubes with 5 cm3
of Oosterhout's balanced physiological solution, buffered at
pH 8.0. The medium was changed daily by centrifuging to separate
the protozoa from the liquid with the waste products and the
remaining food. A standardized amount of bacteria was added in
the new solution as daily food. Just before centrifuging, the
solution was carefully stirred and one tenth of the volume of
liquid was taken out in which the number of protozoa were
counted. Hence at the beginning of each day the number of
protozoa was about nine-tenths of the number at the end of the
day before.

Exercise 39
Why not exactly nine-tenths?

Two series of experiments were done, in the one loop experiment
one standardized loop of bacteria was given each day and in

the half-loop experiment a half of the standardized loop of
bacteria was given. In both series, the species were grown in
monoculture and in mixture. The monocultures were started with
20 protozoa of the species concerned and the mixed culture

with 20 protozoa of each species.

The number of protozoa counted in the sample throughout a
period of 16 days are given in Table 3.

Exercise 40
Plot the results on graphs and save these for a first estima-
tion of parameters, later on.

The number of protozoa in the monoculture reached a maximum
and stayed there, just as for yeast. The growth of yeast
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Table 3 Numbers as sampled by Gause

Day of the Moncculture Mixed culture
experiment
P.aurelia P.caudatum P.aurelia P.caudatum
0.5 cm3 0.5 cm3 0.5 cm3 0.5 cm3
one half one half one half one half
loop loop loop loop loop loop loop loop
0 2 2 2 2 2 2 2 2
1 6 3 6 5 10 4 5 8
2 24 29 31 22 29 29 15 20
3 75 92 46 16 68 66 32 25
4 182 173 76 39 144 141 52 24
5 264 210 115 52 164 162 40 —
6 318 210 118 54 168 219 32 —
7 373 240 140 47 248 153 36 —
8 396 — 125 50 240 162 40 21
9 443 — 137 76 — 150 32 15
10 454 240 162 69 281 175 20 12
11 420 219 124 51 — 260 30 9
12 438 255 135 57 300 276 12 12
13 492 252 133 70 — 285 16 6
14 468 270 110 53 — 225 20 9
15 400 240 113 59 260 222 12 3
16 472 249 127 57 294 220 9 0

ceased because of the accumulation of waste products. But this
cannot be the cause of stabilization here, since the waste pro-
ducts were removed every day by centrifuging. It stands to
reason that here the ultimate size of the population was limited
by the daily food supply. In the equilibrium situation this
supply was then just sufficient to maintain the population and
to replace the ten percent that was removed by sampling. In the
mixed culture one of the species vanished, whereas the other
survived at the same level as in monoculture. This competitive
phenomenon has to be understood by a further analysis of the
system,

To arrive at a quantitative description of the relevant growth
and death processes, some assumptions have to be made. First

it is assumed that a fixed ratio exists between the number of
newly grown protozoa and the amount of food that is consumed.
This ratio is called the conversion factor of food (CONVF) and
has the dimension of number of protozoa per loop of bacteria.
Second, it is assumed that there is a natural death rate which
is proportional to the number of protozoa, so that it can be
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characterized by a constant relative death rate (RDR), which

is independent of the density. The rate of food consumption
(CNRT) is assumed to be proportional to the number of protozoa
(H), the density of food (FOOD) in the medium and the rate at
which the protozoa search the water for food (RSW). The density
of food is the amount of food (AFOOD) divided by the volunme.
However, the rate of food consumption per protozoa cannot
exceed the maximum digestion rate of food (MRDIG).

Exercise 41

Determine the dimensions of the mentioned state, rate, and
auxiliary variables and parameters and classify these according
to type. Use as basic units: day, loop, protozoon, volume of
test tube.

Construct a relational diagram for the growth of one protozoa
species, taking into account that every day the population is
sampled and the food is renewed. Show that the assumption of a
constant relative death rate is mathematically equivalent to
the assumption that food is needed to maintain the protozoa.

5.2 A simulation program

As done previously for the competition between plants, the
dynamics of one species will be described in a MACRO, which is
then invoked for each species with the appropriate names. The
output variables of the MACRO are the number of protozoa (H),
the rate of food consumption (CNRT) and the size of the sample
(SPLE). The input variables are the rate of searching the
water (RSW), the conversicn factor of foocd (CONVF), the maximum
digestion rate (MRDIG), the relative death rate (RDR) and the
initial size of the population (HI). The moment of feeding and
sampling (FDTIME) and the density of food (FOOD) are the same
for both species, so that these are defined in structural
statements outside the MACRO and do not appear in the MACRO
definition.

The MACRO is as follows:

MACRO H,CNRT,SPLE=GROWTH (RSW,CONVF ,MRDIG,RDR,HI)
The amount of protozca is now defined by
H=INTGRL (HI,AGR)

The actual growth rate (AGR) is the difference between the net
growth rate (NGR) and the rate of sampling (RSAM):
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AGR=NGR~-RSAM

and the net growth rate (NGR) is the difference between the
gross growth rate minus the natural death rate (DR):

NGR=CNRT*CCNVF-DR
DR=RDR#*H

In calculating the consumption rate of food (CNRT), the maximum

digestion rate must be accounted for. An AMIN!1 function can be
used, which takes the minimum of its arguments:

CNRT=H#*AMIN1 (MRDIG, RSW*FOOD)

Exercise 42

Draw a graph of the consumption rate of food (CNRT) against

the density of food (FOOD) for arbitrary values of MRDIG, RSW
and H, How does this graph change with changing MRDIG, H or
RSW. For which value of FOOD does CNRT equal zero and for which
value of FOOD does NGR equal zero? Reason why this expression
does not contain the amount of protozoa (H).

The calculation of the rate of sampling (RSAM) raises some
problems because it is a discontinuous process. The sampling
occurs only once a day and is zero for the rest of the time.
The sample size is defined with

SPLE=FDTIME*(0.1#*H

in which FDTIME, as defined outside the MACRO, is one during
one time-~-step at the end of the day and otherwise zero. To let
the sampled quantity vanish during one time-step, the rate of
sampling must be defined as the size of the sample divided by
the time-step DELT:

RSAM=SPLE/DELT
as is seen from calculating (see also Section 2.4)

H H_ -~ (O.IHt/At)At

t+At Tt
The MACRO is now terminated with

ENDMAC

In the main program, the MACRO is called for twice: once for
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the species P.aurelia

HA,CNRTA ,SPLEA=GROWTH(RSWA ,CONVFA ,MRDIGA ,RDRA,HIA)

and once for the species P.caudatum

HC,CNRTC,SPLEC=GROWTH(RSWC ,CONVFC ,MRDIGC ,RDRC ,HIC)

In the main program FDTIME is defined Ly
FOTIME=IMPULS(1.,1.)

This function has the wvalue 1 at the moment indicated by the
first argument and subsequently at intervals defined by the
second argument. The rest of the time, the function equals zero.
The variable FDTIME is used within the MACRO to define the
moments of sampling and outside the MACRO also to replenish

the food at daily intervals, according to

PARAMETER VOLUME=1
FEED=FDTIME*(L-AFO0D)/DELT
AFO0D=INTGRL(L ,FEED-CNRTA-CNRTC)
FOOD = AFOOD/VOLUME

L is amount of food given daily after removal of the food that
is left over from the previous day and either equal to 1 or
0.5 loop of bacteria. The amount of food during the day is
continuously diminished by consumption by the P.aurelia and
P.caudatum species, but only once a day replenished to the
original level.

Exercise 43
Why is VOLUME equal to 1 rather than 5? Why is it advisable
to distinguish between AFOOD and FOOD?

Due to the discontinuity in the food supply and in the sampling
it is necessary to integrate according to the

METHOD RECT
and to specify DELT also on the TIMER card:

TIMER FINTIM=16, DELT=0.01, OUTDEL=1
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Exercise 44
Why is METHOD RECT used here, and not METHOD PRKS?

For comparison with Gause's data it suffices to print the size
of the samples SPLEA and SPLEC each day, but a more frequent
printing of population numbers is necessary to study the
behaviour of the simulated populations within a day. To complete
the program all initial values and parameters must be defined

on parameter cards. |
There are eight parameters: CONVF, RSW, RDR and MRDIG that have
to be derived from the experimental data and must be substituted
in the simulation program. In principle, these can be found by
trial and error, using some goodness of fit criterion to the
observational data. But such a procedure can be started only

in practice when the order of magnitude of all the variables
concerned are known from a preliminary analysis of the data.

Exercise 45
Why?

5.3 Preliminary estimation of parameters

Gause observed that at first the medium remained opaque during
the whole day, but that later the medium became transparent
within a few hours after the addition of new food. From this

he concluded that all food was consumed rapidly, once the size
of the population was not far from its maximum. Hence there is
sufficient time for digestion and searching so that the maximum
size of the population does not depend on the rate of digestion
of the food or on the rate of searching water. Instead it
depends only on the amount of food given, the conversion factor
for food, the relative death rate and the rate of sampling.
About H x (RD+0.1) number of protozoa die or are sampled and
CONVF x L number grow in the monoculture in a day when the
daily food is consumed completely.

In equilibrium situation, these quantities are equal so that
CONVF x L = Heq x (RDR + 0.1).

This equation contains two unknowns; CONVF and RDR, so that
another equation is necessary to estimate their values. This
second equation can be obtained by considering the growth rate
(GR) at the moment that three-quarters of the maximum population
size is reached, because Gause observed that the food was
exhausted well within a day at this density. The growth rate
may be estimated by
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GR = CONVF x L - 0.75 x Heq X (RDR + 0.1)

Combining both equations allows a first estimate of CONVF and
RDR.

The rate of searching the water (RSW) and the maximum rate of
digestion (MRDIG) are estimated from the dynamics of the popu-
lations at the beginning of the experiment. During the early
stages, the number of protozoa is so small that the concentra-
tion of bacteria stays practically the same during the whole
day. The data show that the initial growth rates of the 0.5
and 1 loop series with P.aurelia are about the same so that
the maximum digestion rate is at least reached at the 0.5 loop
concentration. In other words, at this level

MRDIG = 0.5 x RSW

but instead of 0.5 a lower value could be more appropriate,
This is again an equation with two unknowns, so that another
equation is necessary to make a first estimate of both para-
meters. This second equation can be obtained by considering
the initial relative growth rate of the 1 loop series. This
relative growth may be estimated from the experimental data
and is equal to

RGR = MRDIG x CONVF - RDR - 0.1

at least as long as the bacterial concentration is so high that
the maximum digestion rate is maintained during the day.

For P.caudatum the relative growth rate of the 1 loop series

is higher than of the 0.5 loop series, so that there is no
certainty that the maximum rate of digestion is reached at a
bacterial concentration of 1 loop per volume. A first estimate
of the parameters may be obtained here by assuming that

MRDIG = 1 x RSW

PR 3

but instead of 1, a higher value could be more appropriate.

Apart from the uncertainty about the exact value of the constant
in the equaticn for the maximum digestion rate, the estimation
procedure is also unfavourably affected by the large scattering
of the data. This makes it difficult to arrive at a value for
the initial relative growth rate. It is therefore still worth-
while to inspect the system for other interrelations between

the constants. These are obtained from the observation that

the maximum number of P.aurelia in both the 1 loop and 0.5 loop
series is about 4 times higher than the number of P.caudatum
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so that probably the P. aurelia individuals are about 4 times
smaller. Thus, it is logical to assume at first that the
conversion factor of food with the unit protozoon loop"1 is

4 times larger for P. aurelia and that the maximum rate of
digestion in the unit loop protozoon"lday'1 is 4 times
smaller.

Exercise 46

Take the graphs that were drawn for the monocultures in
Exercise 40 and estimate for both species and both series,
the maximum population size (Hg4), the growth rate (GR) at the
moment that the population equals 0.75 of the maximum and the
initial relative growth rate (RGR). Calculate the parameter
CONVF, RDR, MRDIG and RSW for both species and both series
independently with the 2 x 2 equations given. Make first
estimates of these parameters for both species, taking the
size of the individual protozoon into account. Try to find as
many reasons why these first estimates may be considerably in
error.

5.4 Final determination of parameters

There are many reasons why the first estimates, especially of
the rate of searching and the maximum rate of digestion are
very rough indeed. It is therefore necessary to improve on these
. by comparing the results of simulation runs with the actual
results. In principle the results of the monocultures should
only be used for this purpose, but the scattering of the obser-
vational data is so large that it is very difficult to estimate
the parameters with sufficient accuracy. Fortunately, the
results of the competition experiments are also available to
improve the estimates. When these results are used, it is
implied that the interference between both species as proposed
in the model is correct. Thus a comparison between simulated
and actual results of the competition series cannot be used to
validate this assumption. However, the large scattering of the
observational data necessitates this way of working.

Further simulations show that the course of P.caudatum in the
mixture as characterized by the time at which the maximum
population size is reached and the rate of its decline in later
stages, is especially governed by the ratio between the searching
rates of the water by both species and by the ratio of the rel-
ative death rate and the conversion factors. In other words,
the differences between both species in this respect are espe-
cially manifest in the competitive situation.
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Exercise 47

Explain why this is so.

Finalize also the simulation program and try to find better
estimates of the parameters by trial and error.

After a considerable amount of experimentation with the simu-
lation program the best agreement between simulated and actual
results, as judged visually on graphs was obtained with the
parameter values listed in Table 4.

Table 4 Parameter values for P.aurelia(A) and P.caudatum(C)

A C
Relative
death rate (RDR) 0.45 0.45 day‘1
Conversion
factor (CONVF) 3000 750 prot.loop™!
Saturation 3 -1 -1
level (MRDIG) .56x107>  2.25x10™° loop.prot” ' day
Rate of searching .
water (RSW) .006 .006 volume.prot._lday"l
number number
sampled P aurelia sampled P coudatu:n
y a 0
4 o 0 o
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Fig. 15| Simulated and observational results for the half loop
experiment with P.aurelia and P.caudatum.

The simulated and observational data for the half loop series
are summarized in Fig. 15, to show that within the limits of
accuracy governed by the scattering of the data there is a good
agreement and that the results can at least be understood by
assuming that the species only affect each other by competing
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for the same food. The ratio area to weight of protozoa and
with this their mobility and the chance of meeting bacteria,
influences their competitive ability. Therefore the largest
species, P.caudatum, loses in competition, less bacteria being
available for the larger animal per unit biomass of protozoa.
Being small is obviously a competitive advantage when the con-
centration of bacteria is small. At higher concentrations, the
consumption is governed by the maximum rate of digestion which
is four times larger for the four times larger species. Thus
the species match each other in this respect.

In the analysis of the original experiments of Gause, we took
into account that during the early stages the concentration of
protozoa was so small that the food level hardly decreased
during the day and that during later stages the food was rapidly
depleted. Although not observed by Gause, we are now in a posi-
tion to consider in more detail the daily course of food con-
centration and number of protozoa because these have been simu-
lated. Some of these simulated results are presented in Fig. 16
for further inspection.
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Fig. 16 | Simulated course of growth and food supply of a
pParamecium species in monoculture during a day at the beginning
and the end of the experiment.

Exercise 48

Why is the growth of protozoa during the beginning of the ex-
periments nearly exponential? Why, at the end of the experiment,
is the maximum size of the population at some time during the
day, larger than the population size, observed at the end of
the day? Which is higher, death through natural causes or
throug sampling?
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5.5 Stochastic aspects

The simulation program presented in the previous sections is
fully deterministic and does not explain at all the large
scatter of the observational data. There are, however, two
stochastic phenomena that are accessible for further analysis.
These are the sampling process and the death process.

As far as the sampling process is concerned, it was assumed
that exactly 1/10 of the population is taken away when 1/10

of the solution is removed. However this assumption is not
true. The protozoa are, after stirring, randomly distributed
throughout the solution so that either more or fewer protozoa
than the average may actually be found. To simulate the acrtual
number that are in the sample, this number must be drawn out of
a orobability function around the average. Since the number of
protozoa may be small, the probability function of Poisson

is used.

This function can be introduced into the simulation program by
replacing the statement for the sample size in the MACRO GROWTH:

SPLE=FDTIME*(Q.1*H
by the statements

AVSMP=0, 1*H
SPLE=POISS(P,AVSMP,1.)

The first statement calculates the size of the average sample

at every time-interval and the second statement invokes a

MACRO called POISS that acssigns an appropriate random number

to the sample size. The value of the first variable in this
argument is an odd number, to be specified on a parameter card
(outside the MACRO) and is necessary to start the process of
generating random numbers. The second variable in the argument
is the average numnber of protozoa in the sample and the number 1
indicates that the sample is taken with an interval of one day.
As far as the death process is concerned, the amount of protozoa
that die during one time-step (AD) is on the average:

AD=H*RDR*DELT
and the random number that dies is accordingly
RD=POISS (P,AD,DELT)

The third variable in the argument is DELT because death occurs
every time-step. The rate of dying is now calculated from the
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amount that dies by dividing again by DELT with
NPR=RD/DELT

These three statements replace the statement
DR=RDR*H

in the original MACRO GROWTH.

Results of some simulations are presented in Fig. 17, which
shows the growth of P.caudatum in the half loop series. The

number o
sampled .
701 o o
. x x x
60- R A
S/g’ « o) . o)
50 - { 0 -0 % x
(o] X

40- /g

30 A /. o= measured sample

= deterministic simulation

20 - . +=deterministic sample,but
H stochastic death process

© x= both stochastic sampling,

10 - and death process

O | T T T !
O 3 6 9 12 15
_ days
Fig. 17 [ Observational and simulated results of P.caudatum
in the half loop experiment under various assumptions regarding

the operation of random processes -

solid line is the growth curve obtained by deterministic simu-
lation. The Roman crosses are the simulated results with a
deterninistic sampling process and a random death process and
the Greek crosses present the simulated results that are ob-
tained with a stochastic sampling and stochastic death process.
The open dots are the observed data. It must be concluded from
these results that the main contribution to the variability

is due to the method of sampling and that the quality of the
experiment would have been very much improved if some method
of measuring the whole population had been introduced.

The scattering due to the stochastic sampling is much larger

60



than due to the stochastic death process, although about 45
percent of the population dies during one day and only 10 per-
cent is sampled. A simple calculation can explain this. Let the
equilibrium population be 1000 individuals. The average sample
size is then 100 and the standard deviation is according to

the binomial probability function v0.9x0.1x1000 = 9.5. Each day
an average of 450 individuals dies out of 1000 and the standard
deviation of this number is v0.45x0.55x1000 = 16. Because one
tenth is sampled, the standard deviation is reduced to 1.6,
which is only one sixth of the standard deviation caused by

the sampling process itself. Moreover, the death process is
distributed over the day so that some deviation may be even
levelled by negative feedback throughout the day.

Exercise 49
Explain now why the scattering of the observational data for
P.aurelia is much smaller than for P.caudatum.

5.6 The programming of probability functions

To simulate stochastic processes, CSMP contains a so-called
random generator that generates numbers between 0 and 1 out
of a standard uniform probability function and a Gaussian
generator that generates numbers out of a normal probability
function with a specified average and standard deviation. The
language does, however, not contain a Poisson generator. Such
a generator can be most conveniently introduced by the user
in the form of a MACRO. In this section the content of this
MACRO is described. Unfortunately it is only understandable
for the reader who has some knowledge of FORTRAN and probability
calculus.

The heading is:
MACRO N=POISS (P,MEAN,PERIOD)

DO loops and IF statements as such cannot be sorted by CSMP,
so that the statements are given in computational order. This
is indicated by the card:

PROCEDURAL

The invoked MACRO is then sorted within the main program with
the names for P, MEAN and PERIOD as input and N as output.

If the time is not equal to n times PERIOD, the sampling need
not be executed and N equals zero:
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N=0
IF (IMPULS(0.,PERIOD).LT.0.5) GO TO 1

whereby 1 is a CONTINUE statement at the end of the MACRO and
LT means ‘'less than'. If the expectation value is larger than
25, the Poisson distribution is sufficiently approximated by
a Gauss distribution with a standard deviation equal to the
square root of the average.

IF(MEAN.LT.25) GO TO 2
N=GAUSS (P ,MEAN , SORT (MEAN))
GO TO 1

2 CONTINUE

The Gauss function is a CSMP function that executes the random
choice out of a normal distribution. P can be any odd integer.
The second and the third argument represent the average and

the standard deviation, respectively.

Below a number of 25, the deviation between the Poisson distri-
bution and the Gauss distribution becomes too large. To execute
the selection from the Poisson distribution a number is first
drawn between 0 and 1 according to a standard uniform proba-
bility function. This is done by a CSMP function:

LOT=RNDGEN (P)

P is again the odd integer.

Then this number is used to read the output from a cumulative
Poisson distribution function. The cumulative Poisson distri-
- bution is obtained by a series development. The probability
of a number to be smaller than or equal to .0, 1, 2, 3... is
given by e'z(1+z/1:+22/2!+z3/3!...) where z is its average,
The program is as follows:

SUM=1

PROD=1

EMINZ=EXP(-MEAN)
IF(LOT.GT.SUM*EMINZ) GO TC 3
N=J-1

GO T0 1

3 CONTINUE

PROD=PROD*MEAN/J
SUM=SUM+PROD

4 CONTINUE

Then the MACRO is concluded by
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1 CONTINUE
ENDMAC

The PROCEDURAL card also ensures that all statements of the

MACRO are sorted as one block at a place where P, MEAN and

PERIOD are available and N is needed, as indicated by the

MACRO definition card.

By using a Poisson probability distribution function which is

for higher numbers replaced by the Gaussian function, numbers

higher than the total number of individuals in the population

may be drawn. This problem does not exist when the sampling

process is formulated on basic principles.

For this purpose, the protozoa in the solution are considered

analogous to the black balls and the volumes of water equal

to the volume of protozoa anaiogous to the white balls in the

traditional jar with coloured balls. The following symbols can

now be defined:

N: the total number of volume elements and n: the number drawn,

B: the total number of protozoa and b: the number drawn (black
balls),

W: the total number of volume elements water and w: the number
drawn (white balls).

Hence, N=B +Wand n=Db + w..

According to basis theory, the number of combinations of

drawing a number of n balls out of a total of N is:

N!
(N-n) !n!

(5.1)

Similar expressions hold for the white and black balls, so that
the number of combinations of drawing b black balls and w white
balls equals the product

B! W'
(B~b) !b! = (W-w) 'w!

(5.2)

9
TO obtain the probability of obtaining b black and w white balls
in the sample, this expression must be divided by the total
number of combinations. This gives

B! x w! < (N-n) !n!
(B-b) !b! (W-w) tw! N?

(5.3)

In the present situation, the volume of water is infinite with

Tespect to the volume of paramecia, so that W and w are infinite

with respect to B and b.

Hence when a fraction f of the volume is sampled the total

gumber of volume elements (water and protozoa) is fixed accor-
ing to
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n=f.N

Since also W =N - B and w = n -~ b, expression (5.3) for the
probability can be transformed into

B! (N~-B) ! (f+N)!({(1-£f)+N)!

(B=-b) bl ((1-£f) N-B+b) ! (f-N-b) !N! (5.4)
which approaches to
B!fb(l-f)B'b (5.5)

(B-b) !b.

with increasing N.
This is a binomial probability distribution function.

The chance to find 0, 1, 2,... paramecia in the sampled volume
is now

Number Chance

0 (1-£)B
1 Bf (1-£)B-1
2 B(B-1)£2(1-f)B-2/2

The sampling may now be programmed as follows:

MACRO N=BINOM(B,F,P,PERIOD)

N is the number which is actually drawn, B is the total number
of paramecia in the vessel, F is the fraction of the liquid
which is take~ out, P is some odd integer and PERIOD is the
interval of sampling.

PROCEDURAL
N=0.

IF(IMPULS(O. ,PERIOD).LT.0.5) GO TO 100
LOT=RNDGEN(P)

PROD=(1.-F )*B

SUM=0.

DO 400 J=1, 100

SUM=SUM+PROD

PROD=PRODx (B-J+1)xF/ (J*(1. F))
IF(LOT.GT.SUM) GO TO 400

N=J-1

GO TO 100

400 CONTINUE

100 CONTINUE

ENDMAC
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Still one remark should be made. If the expectation value of
the sample is small and f is small, the expression for the
probability distribution may be simplified even more. The
expectation value is then f x B. If this product stays at a
constant low value, then f decreases with increasing B. The
ratio B!/(B-b)! approaches Bb and the power (1-f)B-b approaches
(1-f)B which can be replaced by e~fxB, substitution in the
expression for the binomial distribution Eqn (5.5) gives

(£ x B)b x e~£xB (5.6)
b!

Replacing the expectation value f x B by z gives

zbe~2 (5.7)
b!

which is the Poisson probability distribution function.
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6 Modelling of development, dispersion and
diffusion

6.1 Introduction

In Chapter 1 it was stated that systems ecology is based on the
assumption that the state of an ecosystem at any particular
time can be expressed quantitatively and that changes in the
system can be described in mathematical terms. Various models
of ecosystems were given and in all examples it was possible to
use a very limited number of state variables and associated rate
equations. This is not surprising. Yeast and paramecium are
simple organisms and the responses as a population are hardly
dependent on such attributes as size and stage of development.
The small grain example concerns more complicated organisms
that are synchronized in time and whose responses strongly
depend on size, stage of development and physiological condi-
tions and on the continuously changing physical environment.
However, here the problem was simplified by a model with a
limited number of state variables by only treating the inter-
ference of similar plant species. No attempt was made to con-
struct a model of the growth and development of form and
function of the single species,

Although we may accept that the ultimate purpose of biology in
general and ecosystems analysis in particular, is the construc-
tion of models that predict growth and development of single
and interfering species in natural conditions, we must admit
that at present this goal is unrealistic. The knowledge of the
relevant processes is quantitatively, but also qualitatively,
far too fragmentary and even if this were not so, there would
be serious modelling problems, because the number of state
variables involved would be very large.

Obviously, it is necessary to limit the goals of systems analy-
ses drastically to proceed at all. Rather than analysing all
aspects, a distinction is often made between growth and mor-
phogenesis: growth is the main subject of study and morpho-
genesis is taken more or less for granted. For instance, it is
assumed that maize plants develop out of maize seeds, wheat
plants out of wheat seeds and spiders out of spider's eggs. In
models, such broad assumptions are made operative by introducing
preconceived information on the development of the species.
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For instance, in a model of a wheat plant, a germination, a
vegetative and generative stage are distinguished a priori,

and it is assumed that nine to eleven leaves develop in the
vegetative stage, and that the main growing point develops into
the reproductive organ. Likewise, a distinction is made a priori
between the successive development stages of insects, such as
eggs, instars, pupae and imagos. What is left to be simulated

is the growth within various stages and the rate of their de-
velopment to subsequent stages. Biologists that are interested
in understanding the development of form and function may have
another view on the matter and may argue that this approach is
too simplified, but appreciation of simplification is more a
matter of goal than of principle.

What are the consequences of such an approach for the technique
©f modelling? Rather than modelling a system fully in terms of
measurable state-variables, it is also characterized by histori-
cal information which in its most elementary form becomes a
Yecord of age only. This is an external record, because age can
be known only when the moment of birth is recorded and cannot
be determined as such by means of analyses. On the other heind,
when age is recorded, relevant properties may be derived frcm
it by correlation.

For instance, in demographic studies the chances of marriage,
childbirth, and death may be arrived at in this way. Individuals
are lumped at their birth in age-cohorts. Then the ages of the
cohorts are kept track of and from them the number of offspring
and deaths in a year are calculated. Such a crude technique may
be adequate for warm-blooded animals, but not for plants, in-
Sects and many other organisms, as their development rate de-
pends largely on environmental conditions. It is then often
attempted to conserve past experience in another variable of
State: some physiological age. This may be a simple external
integral of the temperature: the temperature sum, but it may
also be a numerical characterization of the development stage.
As long as such cohorts are characterized by age only, no dis-
Persjion occurs. Human individuals that are classified at their
birth in the cohort 1970 remain there for their whole lifespan
and if nobody is classified in the cohort 1971, this cohort
Will remain empty. But, as soon as a physiological age criterion
is introduced, some individuals that are born early may age
Slowly and may be overtaken by individuals that are born later.
In other words, individuals that belong to the same age-cohort
May become dispersed over a range of physiological ages and it
is necessary to develop programming techniques that account for
Such dispersion phenomena.

Such techniques may seem sophisticated, but are in fact still

67



very primitive, because they are based on correlations between
relevant variables and an external record of past experience.
They avoid the problem of modelling the main aspects of develop-
ment of form and function on basic principles.

6.2 Physiological age and development stage

The development stage of warm-blooded animals may be often
characterized by a record of the chronological age only. This
situation is completely different for many other organisms,
such as insects and plants.

Temperature 1s then often the main determinant of physiological
age, so that the development stage is often accounted for by
the temperature sum:

TS=INTGRL (0. ,AMAX1 (0, ,T~TT))

in which T is the current temperature and TT a threshold tem-
perature below which the development processes proceed at a
negligible rate. Based on experimental results, it is then
assumed that certain development stages are reached at certain
values of the temperature sum. For instance, it may be found
that the threshold value for maize is 12 ©C and that tasselling
occurs at a temperature sum of 400 degree-days and the plant
ripens at a temperature sum of 700 degree-days.

If this approach is taken, it is implicitly assumed that the
development rate of the species is proportional to the tempera-
ture above the threshold value. However, in general, there is
also a non-linear response of development rate to temperature
in the higher ranges, as is illustrated in Fig. 18 for two
plant species. Here, a constant temperature during growth is
given along the horizontal axis and the development rate along
the vertical axis, the latter being defined as the inverse of
the number of days from emergence to flowering or tasselling.

A more sensible approach seems therefore to consider the de-
velopment stage of the plant as defined by

DVS=INTGRL (0. ,DVR)

in which the development rate in day'1 is a function of the
current temperature according to

DVR=AFGEN (DVRTB, TEMP)
FUNCTION DVRTB=(0.,0.),(12.,0.),(26.,0.035),(28.,0.038), ...
(30.,0.039),(40.,0.041)

flowering or tasselling being reached when DVS passes the
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Fig. 18 | The development rate of the plant species maize and
Oats in relation to temperature at a daylength of 14 hours.

value of one development unit.

It is assumed that the influence of temperature on the develop-
ment rate is the same during the whole period of growth, and
this assumption is confirmed by the well-known fact that at
Constant temperature the time between appearance of successive
leaves is constant (de Wit et al., 1970) and that accordingly,
@ Certain calculated development stage fully characterizes the
number of leaves and other morphological properties of the
plant. If the temperature sum or the development stage approach
is used, the question remains whether the response in rate of
development is immediate or not. It makes a considerable dif-
ference whether the temperature with its fluctuations through-
Cut the day and from day to day should be used or some average
temperature over one day or more.

Exercise 50

Calculate manually the development stage of maize after 20 days
when

4 the temperature is 14 ©C all the time,

b the temperature is 7 ©C for 12 hours of the day and 21 ©C
for the other 12 hours,

C the temperature is 30 ©C all the time,

d the temperature is 40 ©C for 12 hours of the day and 20 °C
for the other 12 hours.
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Explain the differences.

At least for plants (de Wit et al., 1970) there are many in-
dications that the response to temperature is instantaneous,

so that use of average daily temperatures may lead to consider-
able errors.

Of course, there are other problems. The development rate may
be influenced by daylength or even rate of biomass growth.

Like temperature, these factors may also be accounted for on an
experimental basis. However, interactions are often so com-
plicated that the development of the plant cannot be accounted
for by a simple physiological age. Then more than one charac-
teristic for the development stage may be considered. But prob-
lems can then multiply at such a disastrous rate that it is
better to take the hard road: modelling of the morphogenesis
processes,

What has been said in this section holds in principle for other
plant growth stages and other organisms as will be shown later
by means of various examples.

6.3 Demographic models
6.3.1 Age-classes

Decay of radioactive material occurs with a constant relative
rate, apart from random effects that become manifest at low
rates. Similar decay processes were assumed to exist for pro-
tozoa. However, they are more the exception than the rule with
living organisms. In general these organisms develop and age
accordingly, and their chances of dying appear to increase with
increasing age.

To simulate such situations it is necessary to have the age
distribution of the population at hand. Now it is practically
impossible and for most applications unnecessary to memorize
the age of each individual. Instead it suffices to memorize
the number of individuals in age-classes. For instance, in
demographic studies it is customary to classify human beings
according to their age in years. Of course this classification
in years is an arbitrary choice, depending on purpose. For some
applications it would be better to classify according to age
in months and for others it would suffice to classify in units
of five or ten years.

Such age distributions are memorized conveniently by using the
INDEX feature to create a series of age-classes. For instance,
human populations may range in age from 0 to about 100 years
and if an age distribution has to be stored in age-classes of
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five years, it suffices to write:

H'1,20'=INTGRL(HI'1,20',FLOW'1,20"'~-FLOW'2,21")
FLOW1=TBR

FLOW'2,21'=PUSHD*H"'1,20!

PUSHD=PUSH/DELT

PUSH=IMPULS(5.,5.)

INCON HI'1,20'= (20 data)

Printed output of the variables H!, H2...,H20 may be requested
by

PRINT H'1,20"

Here PUSH has the value zero, except once every five years,

when its value is set to 1. Only at that moment are the contents
of all age-classes shifted to the next one. As in other examples
(Section 5) this shift is achieved by introducing a rate of
change which is equal to the shifted amount divided by the

time interval of integration. The whole age distribution of the

Population is stored in this way with a resolution of five
years.

So far the simulation program does not contain death rates.
These can be accounted for by subtraction of an additional
rate DR'1,20' in the integral statement. The death rates are
Calculated from the relative death rates according to

DR'1,20'=RDR'1,20'#H'1,20"

The tctal birth rate TBR is the sum of the birth rates produced
by each age-class.

These are given by

BR'1,20'=H'1,20'*RBR'1,20"

The relative birth rates are given on a parameter card:
PARAMETER RBR '1,20' = (20 data)

The twenty values are summed with

TBR=SUM1 (BR'1,20")

The total birth rate TBR can also be calculated more directly
as

TBR=SUMX(H"'1,20',RBR'1,20")
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by using the preprocessor function SUMX, which takes the sum
of the products of pairs. The total population is obtained by
TH=SUM1 (H'1,20').

In demographic studies it is often customary to report rela-
tive birth and death rates as an annual total rather than as
an instantaneous rate and then it is best to integrate with
time intervals of one year.

Exercise 51

What is the difference between relative death and birth rates
reported as an annual total rather than as an instantaneous
relative rate? Why is it necessary to integrate according to
the METHOD RECT?

6.3.2 Errors of approximation

The lumping of populations into age-classes introduces errors
of approximation. These are small and negligible when many
classes are used, but may be worth considering if a limited
number of classes are distinguished. For instance, in a demo-
graphic model of a human population, age-classes of 0-5, 5-10,
10-15 years may be distinguished. Every five years the contents
of the classes are shifted one place, so that generally the
residence time in each class is five years. However for the first
class the residence time is shorter, because it has a continuous
inflow from the birth rate. Only the individuals born just
after a shift will stay here five years. As time proceeds the
residence time of individuals born later will become progres-
sively shorter. On the average the residence time in the first
class will be the half of the 'interval of pushing'. In other
words, <dust after each shift the first age-class contains only
individuals close to zero years, and just before the next shift
the individuals are 0-5 years. The next age-class contains
individuals of C-5 years just after the shift, and those of
5-10 years just before the next shift. With a constant birth
rate, the average age of the individuals in the age-classes is
therefore not 2.5, 7.5, 12.5 years and so on, but 1.25, 5,

10 years and so on. Therefore the age-classes lie between
2.5-7.5, 7.5-12.5 years and so on. The first class covers then
the period between -2.5 and +2.5 years. Since birth occurs at
zero years, the average age in this class is 1.25 years.

There is still a pitfall in initialization. At time zero, each
age-class will be initialized with the number of individuals
that are between the above given boundaries. Then it takes only
2.5 years before the centre passes to the next class. Therefore
the first push should not occur after five years, but after
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2.5 years, which can be achieved with
PUSH=IMPULS(2.5,5.)

Another error is best illustrated by considering the integral
for the first age-class, under the assumption that the total
birth rate (TBR) is zero for some time. At the time when

PUSH = 1, this integral is diminished by its own content and
by the number of deaths during that time interval so that at
the next moment the content of the integral is

~H X RDR x DELT rather than zero. The reason is that too many
individuals were shifted. The number that die during this
time interval, should not be removed another time by shifting.
Therefore it is necessary to shift not the whole content of
the integral but its content minus the number that is lost by
death during that time-interval.

Such a procedure is realized by

FLOW'2,21'=PUSHD*H"'1,20'*(1.~RDR"'1,20"'*DELT)

Exercise 52

The following tables contain demographic data of the population
Of the Netherlands on 31 December 1968. The data are grouped in
classes with their centres at 1.25, 5, 10, ... years (Set 1)
and 2,5, 7.5, 12.5, ... years (Set 2).

Write a simulation program for the growth of the population in
the Netherlands, using age-cohorts of five years. Which set

of data must be used, Set 1 or Set 2?

Why is the time interval of integration a half year?

Simulate over a period of 50 years and ask for the total men
and woman and the relative composition of the population as to
SeéX and age every five years.

Determine also the number of graves after 50 years, if these
are maintained for a period of 50, 25 and 10 years.

Death rates during the first year of life are much higher than
during the next years. Is there a simple way of taking this
into account?
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Population size

Class centre Number of men Number of women
in years
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
1.25 305 000 291 000
2.5 611 000 582 000
5 612 000 584 000
7.5 613 000 587 000
10 597 000 570 000
12.5 580 000 553 000
15 575 000 548 000
17.5 569 000 543 000
20 576 000 548 000
22.5 583 000 554 000
25 517 000 487 000
27.5 452 000 420 000
30 429 000 400 000
32.5 405 000 380 000
35 399 000 380 000
37.5 393 000 381 000
40 382 000 379 000
42.5 371 000 378 000
45 367 000 377 000
47.5 362 000 376 000
50 338 000 353 000
52.5 314 000 330 000
55 306 000 327 000
57.5 297 000 323 000
60 280 000 310 000
62.5 262 000 298 000
65 223 000 262 000
67.5 184 000 226 000
70 184 000 226 000
72.5 184 000 226 000
75 150 000 180 000
77.5 120 000 ' 150 000
80 30 000 110 000
82.5 60 000 70 000
85 40 000 60 000
87.5 20 000 25 000
90 13 000 23 000
92.5 3 000 13 000
and more
Total 6 383 000 6 415 000
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Death rates per thousand men and woman per year.

Class centr

years
Set 1 Set 2
1.25
2.5
S
7.5
10
12.5
15
17.5
20
22.5
25
27.5
30
32.5
35
37.5
40
42.5
45
47.5
50
52.5
55
57.5
60
62.5
65 '
67.5
70
72.5
75
77.5
80
82.5
85
87.5
90
92.5

Men
Set 1 Set 2
15.6
3.9
1.8
0.7
0.5
0.5
0.5
0.6
0.7
0.9
1.0
1.0
1.2
1.4
1.5
1.8
2.2
3.1
4.0
5.2
6.5
7.8
9.0
10.7
11.5
13.7
16.0
25.5
35.0
52.0
70.0
110.0
150.0
200.
300.
400.
600.
900.

Women
Set 1 Set 2
11.4
2.8
1.2
0.8
0.3
0.3
0.3
0.3
0.4
0.4
0.4
0.5
0.6
0.8
1.0
1.2
1.5
2.0
2.5
3.2
4.0
4.7
5.5
6.7
8.0
10.5
13.0
16.5
20.0
35.0
50.0
85.0
120.0
180.
250.
380.
500.
760.
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The relative number of births per year per age group of the
mother

Class centre

years
Set 1 Set 2 Set 1 Set 2
15 0

17.5 0.022
20 0.091

22.5 0.137
25 0.159

27.5 0.188
30 0.152

32.5 0.113
35 0.084

37.5 0.055
40 0.036

42.5 0.016
45 0.010

47.5 0.002
50 0

The ratio between the number of boys and number of girls that
are born, is 1,048

6.3.3 The matrix method

If DELT equals the length of the class in a program with age-
classes, the contents are shifted every time-step one place and
are diminished at the same time by the amount died. If the
relative death and birth rates do not change with time a matrix
method, introduced by Leslie (1945), may be applied to predict
the relative composition and the relative growth rate of the
population in the stationary state. This is not a simulation
method, but will be discussed here because it shows some
advantages and disadvantages of matrix algebra versus simula-
tion in demographic studies.

Let the contents of the age-classes be the elements of a vector.
If there are ten age-classes, the vector is ten dimensional.
The number of individuals in each age-class one time-interval
later is now found by multiplying this vector by a matrix as

in Fig. 19.
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Fig. 19 | The matrix method, H1-H10 are the number of indivi-
duals in the age-classes, F1-F10 the relative number of births
in and S1-S9 the fraction of each class that survive the
time-span DELT. '

At the right side, the vector at time T and at the left side
the vector at time T + DELT is given. The latter is found by
multiplication of the vector at time T by the matrix. In the
Matrix, FI is the relative number of births per time step
in class I and SI is the fraction of class I that passes to
I +1; in other words 1 minus the fraction that dies during
4 time interval.

It has been proven that repeated multiplication of a vector by

@ matrix results, in due course, in a vector that has a constant
relative composition and whose length increases by a constant
factor each time. This vector is called the dominant eigenvector
and the constant factor is its corresponding eigenvalue.

H?nce the population will approach a stable age-distribution
With a constant relative growth rate, provided that birth and
death rates are constant. The standard method to find the domi-
Nant eigenvector and its corresponding eigenvalue is the power
Rethod (Faddeev & Faddeeva, 1964) in which the multiplication

is repeated until a stable relative composition is reached.

This methoq is therefore very similar to the simulation method
and has no computational advantage.

However, there are shorter methods to achieve the eigenvector
for matrixes that contain zeros except in the top row and one
diagonal, One of these methods is presented in Fig. 20, which

1s de Jonge's modification of the method of Gauss-Seidel

(pers, commun.). This iterative method is very cheap in terms

of Computing time. It is not explained here because it requires
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TITLE MATRIX METHOD APPLIED TO GROWTH OF THE NETHERLANDS POPULATION

PARAMETER €121, ,R=7.,P=1,

INITIAL

PARAM F°1,17°23+0,,.055,.343,.47,.282,.137,.04,.005,7+0.

PARAM $°1,16°=,965,.996,.998,.998,.997,.996,.995,.993,.988,.98,.97, ...
.96,.94,.92,.8,.5

N’o. .
» ITERATION
NOSORT
& CONTINUE
Nx=N+1,

1F(N.GT.20.) GO TO 6
C'2,17°=2C"1,16"+8°1,16°/p

Q1zF1«C1

Q°2,17°=Q° 1,16 +F°2,17°2C"2,17°

Q=Q17/C1 )
WRITE(6,80020,C1,C2,03,C4,C5,06,07,L8,C9,€10,C11,C12,C13,C14, ...
€15,€16,C17

800 FORMAT(IH ,F8.5/,9F8.5/,8F8.5//1)
IF(ABS(P-Q).LT.1,E~8) GO TO &
P=(ReP+Q)/(R*1.)

GO T0 4
6 CONTINUE
DYNAMIC
TIMER FINTIM2], DELT=1,
END
stToP
ENDJOB

Fig. 20 | An iterative determination of the eigenvector and its
eigenvalue of a matrix as in Fig. 19, written as an INITIAL
section in CSMP.

some knowledge of matrix algebra.

The method gives directly the eventual stable age-distribution
and the corresponding relative growth rate, which is the eigen-
value minus one. The method does not give the total population
after n years. To achieve this important value, the power method
or straightforward simulation must be applied.

6.4 Germination models

6.4.1 Boxcar train without dispersion

Like the development of plants, the germination of seeds or the
hatching of eggs may take some time, which depends on environ-
mental conditions, especially temperature. If a certain amount
of seeds is placed suddenly in a position where the germination
process may start, its germination stage at any moment may be
defined by

GS=INTGRL (0. ,VDV)

in which the velocity of development in day"1 is defined as a
function of temperature by
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VDV=AFGEN (VDVTB, TEMP)
FUNCTION VDVTB=(10.,0.065),(15.,0.143),(20.,0.143)

The data hold for seeds of the winter annual Veronica arvensis,
that have been stored for 15 weeks (Janssen, 1973).

" —

Exercise 53

Write a simulation program for the germination stage, in which
the temperature varies sinusoidally with the time of day with
an amplitude of five degrees, and an average of 15 degrees
(see also Fig. 2). The computation may be terminated as soon
as the germination stage passes the value 1. What does this
tean? How is this achieved?

————

The above procedure may be used to follow the development of

One batch of seeds. However, it is easy to vizualize a situation
With seeds in different stages of germination and then their
age~-distribution has to be taken into account. For this purpose,
classes have to be distinguished and because development is

Very much a function of temperature, these must be development
Classes rather than age-classes. Hence, the contents must not

be shifted at preset time-intervals, but at the moments that

the development stage is increased by the inverse of the number
Oof classes (N).

——

Exercise 54
Why 1/N?

This shift is achieved by defining a 'PUSH' according to

PUSH=INSW (GS"I/N'O .y 1 ')
GS=INTGRL(0.,VDV-PUSH*1/ (N*DELT) )

Here PUSH is set to one by the INSWitch, at the moment GS is
larger than 1/N. This moves the contents of the classes and
decreases at the same time the integral GS by the amount 1/N,
Tesetting this integral at the correct value close to 0. GS is

increased again at the proper rate by the velocity of develop-
ment,

.

Exercise 55

Write now a simulaticn program for the germination of Veronica
Arvensis seeds at 20 ©C with ten development classes. Execute
the Program introducing an initial amount of 1000 seeds at time
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zero, At wvhich moment do these seeds germinate?

6.4.2 Boxcar train with constant relative dispersion

Usually germination does not take the same number of days for
different seeds, because neither the seeds nor their micro-
environments are exactly the same. The overall effect is illus-
trated in Table 5, where the percentage germination of a batch
of Veronica arvensis is given.

Table 5 Germination percentages of Veronica arvensis seeds at
10 ©C, stored for 15 weeks

Day 10 13 14 15 16 20 22 27
percent germ, 1 12 28 46 56 87 91 100

Exercise 56

Make graphs of the percentage germination and the rate of ger-
mination against time. Calculate the average time of germination
and its standard deviation from the data of Table 5.

The time curve for the rate of germination has the bell-shaped
form of the Gaussian distribution function. It will be shown
that such distribution functions are obtained also by simulation;
if the contents of the classes are not pushed at certain moments
but moved continuocusly from one development class to the next
with a rate that is proportional to the rate of development.

In the most simple situation, only one development class is
considered ~ ungerminated seeds - and germination is described
as an exponential decay process of ungerminated seeds according
to

H=INTGRL (HI, ~RTG)
in which the rate of germination is given . by
RTG= H*RDV

and RDV is the relative rate of development, or germination.
The total amount of seed that are germinated equals then

TG=INTGRL(O.,RTG)

H, RTG and TG are presented in Fig. 21. For obvious reasons
(see also Chapter 2) H and RTG decrease exponentially with time
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r;umber* ] day ?gmber
H RTG TG
0 0 0
°c 1 2 3 0 1 2 3 0 1 2 3
day day day

Fig. 21 | Amount of ungerminated seeds (H), germination rate
(RTG) and amount of germinated seeds (TG), when germination

is described as an exponential decay of ungerminated seeds with
2 relative germination rate of 1 day~!l.

and TG approaches HI accordingly. The average germination period
is the integral of the rate of germination at any moment multi.-
Plied by the time that has elapsed since the start of the pro-
Cess, standardized at a unit amount of seed (H = 1). This is
the standardized surface under the curve of H versus time in
Fig. 21 and in CSMP notation defined by

AGP=INTGRL (0., TIME*RTG/HI)

This integral approcaches the average germination period by the
time that H approaches zero.

———

Exercise 57
Calculate manually the average germination period when out of
4 batch of 100 seeds:

100 germinate on day 5,

100 germinate on day 10,

50 germinate on day 5, and 50 on day 10

75 germinate on day 5, and 25 on day 10
Finish the simulation program to calculate the average germi-
Nation period. Use the method RKS for integration and termi-
Nate simulation as soon as the content of H is 1/100 of its
Original content. Execute the program for a relative rate of
de‘\felopznent.of 0.01, 0.05, 0.1 and 0.5 day'1 and take FINTIM
®qual to 500 days. Multiply the average germination period by
the relative germination rate. What is the dimension of this
Product AGP x RDV and what is its numerical value?

81



Now prove the equality of the inverse of the relative germina-
tion rate and the average germination period by making use of
the analytical expression:

~RVDXT
e

H HI x

and of the equality:

1 (HI ] g au
HI‘0 a0 L ¥ gr X 9T

If the above exercise is done correctly it will be clear that
the product of the average germination period and the relative
rate of development (APG x RDV) is always 1. Hence the relative
rate of development as defined in the above program may be
replaced by the inverse of the average germination p=riod.

The results that are obtained by considering only one develop~-
ment class of ungerminated seeds describe much more a decay
process of seeds than a germination process. This is different
when more development classes are considered, as is again most
conveniently done by means of the INDEX feature. For instance,
a germination process that is described by means of ten develop-
ment classes may be programmed as follows:

H1=INTGRL(HI,-FLOW2)

H'2,10'=INTGRL(0., FLOW '2,10'-FLOW'3,11")
FLOW'2,11'=H'1,10'/REST
TG=INTGRL(O.,FLOW11)

Obviously, when the average germination period is AGP and the
number of classes ten, then the residence time (REST) in each
class is

REST=AGP/10

Exercise 58
What is the time constant of this system?

The average germination period may be again a function of the
environmental conditions and the time interval of integration
should be a tiny fraction of REST.

The rate of germination and the cumulative amount of germinated
seeds - the breakthrough curve - are given in Fig. 22 by the
curves marked 10, it being assumed that the average germination
period is 20 days. The curves marked 5 and 20 hold when 5 and
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20 development classes are distinguished. The form of the curve
Suggests that the simulation procedure leads to a Gaussian dis-
tribution function of germination, at least when a sufficient
number of classes are used. With low class numbers, the results
Suggest a Poisson distribution. A mathematical analysis
(Goudriaan, 1973) showed that this suggestion is indeed correct
and that the relation between residence time (REST) or the
average germination period (AGP = REST x N), the number of
Cclasses (N) and the standard deviation of germination (S) is
given by

N = s2/ResT? = aGp2/s2 (6.1)

Provided that the time interval of integration (DELT) is small
€nough. This relation gives the number of development classes,
that are necessary to achieve a certain relative dispersion
(S/AGP), independent of the average germination period.

The method is rather flexible. It is not necessary to start
With a given batch of seeds, and death rates depending on
Conditions may be introduced at any development stage. Moreover
the transfer of contents is continuocus, so that the method RKS
With a self-adapting time interval of integration may be used.

iﬁfds

y seeds
20 10 5

10 4 100-

20

804

60 -

40 -

204
‘ . O 11 i 1 1
O 100 20 30 40 80 O 10 20 30 40 50
days days

Fig, 22 I The rate of germination and the breakthrough curve,
when 5, 10 and 20 development classes are considered and the

Average germination period is 20 days.

83



6.4.3 Boxcar train with controlled dispersion

Two methods to simulate germination have been discussed. The
first method does not introduce any dispersion and the second
method gives a constant relative dispersion, once the number

of development classes is fixed. There are, however, a few
remaining problems. In the f£irst place, the number of classes is
as large as 100 when a relative dispersion of 10 percent is

to be simulated. In the second place, it is impossible to
change the relative dispersion according to conditions, because
the numbers of classes cannot be varied during simulation.

Both problems may be overcome by following an intermediate
course, in which a variable fraction F (between 0 and 1) of the
contents of each class is shifted once every fraction F of the
residence time in a class. For ten development classes the
program is as follows:

H1=INTGRL (HI ,-FLOW2)
H'2,10'=INTGRL(0.,FLOW'2,10"-FLOW'3,11")
FLOW'2,11'=H'1,10"*PUSHDF
PUSHDF=FPUSHD
PUSHD=INSW(GS-1.,0.,1./DELT)
GS=INTGRL(O. ,1./(F*REST)-PUSHD)

Inspection of the statements shows that no dispersion is obtained
when F equals 1 and a constant relative dispersion, as defined
by Eqn (6.1) when F is set equal DELT/REST.

It can be shown that for intermediate situations F must be

chosen as

F=1., -Nx (—)2

to achieve a standard deviation, equal to S.

With F equal to DELT/REST and DELT sufficiently small, this
equation transforms, of course, into Eqn (6.1).

Fig. 23 gives an example of the result. The continuous curve
is obtained by means of 100 develcpment classes and F equal to
DELT/REST. The dots are the result of using 25 classes and F
equal to 0.75. In both cases the relative dispersion is 0.1,
but in the second case the curve is not smooth. The given dots
have OUTDEL as time interval. The discontinuity and the use of
METHOD RECT is the penalty that has to be paid for reducing
the number of classes and retaining a small dispersion. As has
been said, the advantage of the procedure is that F, and with
this dispersion, can now be varied independently of the aver-
age germination period and the number of classes that has been
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Fig. 23 ] Breakthrough curves for 100 development classes with
F equal to zero and for 25 development classes with F equal to
0.75. The average germination period is 20 days.

chosen,

e ———

Exercise 59
What is the value of F when the relative dispersion is 0.25
and N equals 25? What should be done in this situation?

e ——

This method with controlled dispersion has been used by Janssen
(1973) to simulate the germination of Veronica arvensis and
Myosotis ramossima seeds. However useful this method is, it
Should be realized that by applying this type of simulation,
results of experiments are 'mimicked' rather than simulated.
?he term mimicked is used here to emphasize that the main aim
*S the summarizing of the experimental results in a program
that simulates germination, but that no serious attempts are
Made at this stage to base the equations and parameters that
Are used on more detailed physiological knowledge of the pro-
Cesses involved.

———

Exercise ¢p
Complete the following table for F = 0.5:
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TIME H H H H
0 11 02 03 04
0.5 x REST
1.0 x REST
1.5 x REST

in which REST is the residence time in each class. What is the
name of the resulting probability distribution function?

This function was discussed in Section 5.6. Readers with some
knowledge of probability calculations should read this section
again and answer the following questions.

Express B and £ of Section 5.6 in TIME, F and REST.

What kind of probability distribution is obtained when F equals
DELT/REST and DELT approaches zero?

6.4.4 Refinements

A discussion on the demographic models showed that the age-class
that was intended to cover for instance the years 10-15,
appeared to cover the years 7.5-12.5; the average age of the
class was less by half its range. For continuous flow, this
error of lumping does not occur, but the simulation process
results in a constant, relative dispersion.

The simulation method with controlled dispersion ranges between
two situations: when F = 1, the error of lumping is fully pre-
sent and when F = DELT/REST (and DELT small) the error is ab-
sent. It can be derived that for anv value of F the shift in
development of each class equals F x REST/2. Therefore, in
front of the first class a 'preclass' is constructed with an
avarage residence time of F x REST/2, so that the centres of
the following classes are independent of the value of F. Then

HO=INTGRL (0. ,FLOWO-FLOW1)

FLOWO=TBR

FLOW1=HO%2. / (FXREST)

H'1,20'=INTGRL(HI'1,20' ,FLOW'1,20'~-FLOW'2,21")
FLOW'2,21'=H'1,20"'*PUSHDF

PUSHDF=PUSHD*F

PUSHD=INSW(GS-1.,0.,1./DELT)
GS=INTGRL(0.5.,1./(F*REST)-PUSHD)

The continucus inflow FLOWO enters HO rather than H1., The initial
value of HO is always zero. H! comprizes the population with

an age ranging from zero to REST, H2 from REST till 2*REST etc,
and must be initialized accordingly. The initial value of GS

is set at 0.5, so that the first PUSH occurs after 0.5*F*REST.

In this way the initial average age or development within each
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Class is correctly accounted for.

Exercise 61
Apply this method to simulate the growth of the Netherlands

population. Which set of data from Exercise 52 should be used
now?

—

6.5 The flow of heat in soils .

There are considerable similarities between the simulation of
ageing and dispersion in populations and of physical diffusion
and dispersion processes in time and space. The similarities
dre illustrated here by developing a simulation program for
the flow of heat and temperature variations in the soil with
the temperature at the surface as a forcing function.

For this purpose a uniform soil column from an infinite slab
is considered which is placed on an insulating layer. To cal-
Culate the temperature as a function of time and depth, this
Column is divided into 25 equal compartments. Heat flow into
and out of each compartment is calculated at any instant of
time from the temperature difference between compartments and
the conductivity between compartments. These heat flows are
integrated to follow the heat content of each compartment and
thus the temperature.

Simulation is done most conveniently by creating integrals of
the heat content via:

HC'1,25'=INTGRL (HCI,NFL'1,25")

If the soil is uniform, the compartments are of the same size
(TCOM) and the initial temperature (TI) does not vary with
depth, then the initial heat content is given by

HCI=TCOM*VHCAP*TI

in which VHCAP is the volumetric heat capacity of the soil.
The net flow into each layer is the difference between the
flows over the boundaries:

NFL'1.25'=FLW'1.25'—FLW'2.26'

o

Exercise 62
Which direction of flow is assumed to be positive?

—————
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The flow ic proportional to the temperature differences between
the layers and the conductivity of the soil (COND) and inversely
proportional to the distance between the centres of the layers
(here also TCOM):

FLW'2,25'=(TMP'1,24'-TMP'2,25"') *COND/TCOM

The flow out of the 25th layer is zero, because the column is
placed on an insulating layer. It would also be zero if the
column was so long that temperature changes in the last com-
partment were negligible, Hence:

FLW26=0

The flow into the first layer is

FLW1=(TMPS-TMP1) *COND/ (0. 5*TCOM)

in which the temperature at the surface has to be defined as
a forcing function, for instance:

TMPS=TAV + TAMPL*SIN(6.2832*TIME/86400.)

if a cyclic daily fluctuation is assumed.

Exercise 63

Why is the thickness of the compartment multiplied by 0.5?
What is the unit of time?

What are TAV and TAMPL?

The temperature of the compartments is obtained by:
TMP'1,25'=HC"'1,25"'/ (TCOM*VHCAP)
The integration is best done with

METHOD RKS

and a stationary state of theicyclic variations is obtained
in about four days, so that

TIMER FINTIM=345600., PRDEL=3600.

suffices.
The output of all 25 temperatures and of other relevant para-
meters are requested with
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PRINT TMPS, FLW1, TMP'1,25!
As an example, the parameters are defined with:
PARAMETER TCOM=0.02,COND=0.42,VHCAP=1.05E6, TI=20

with time in seconds, distance in m, heat in joule and tempera-
ture in ©c.

Exercise 64
What are the units of all variables and parameters used in the
Simulation program?

With a uniform soil and with a sinusoidal forcing function,

the varjation of temperature may be also calculated by an
analytical solution. This calculation has been done for compari-
Son, the result being presented in Fig. 24. The analytical

temperature
30+
Ocm (surface)
! /N T/ 3cm
~—==9cm
x=anm¥ﬁ§al
254 Q=simulation
20-
&\
&,
@& ®
A
15 - .
& Gi‘
@_,—-' \.@
TIME
10'5 ! T ] T T
280 300 320 340 360 380
days

Fig. 24 | Analytical and simulated sclution for the temperature
C?urse in a uniform soil, with a sinusoidal temperature varia-
tion at the surface.
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and simulated solutions agree within 0.01 percent so that it
is not necessary to use very thin compartments for accurate
results.

Exercise 65

Rewrite the program, so that conductivities and heat capacities
that vary with depth can be introduced. Is it necessary to use
compartments of the same size?

In another monograph of this series (de Wit & van Keulen, 1972),
simulation programs of this type have been developed to study
the transport and diffusion of water, salts and ions in soils,
the only difference being that instead of the INDEX feature,
the more cumbersome DO-loop feature from FORTRAN is used.

In another monograph of this series (Goudriaan, 1977), similar
techniques are also used to simulate micro-metecrological
phenomena, but is goes beyond the scope of this monograph to
discuss the principles of these,

Finally it is remarked that simulation programs with compart-
mentalization of space may be used to study dispersion of
animals, seeds and spores. However these programs become large
when dispersion in two and certainly in three dimensions is
considered, so that other techniques must be developed for
these purposes.

90



7 Growth and development of Helminthosporium
maydis

7.1 Introduction

Helminthosporium maydis is a fungus of corn (Zea maize).
Especially the leaves may be covered with lesions, which develop
microscopic sporophores. These produce spores that are dispersed
by wind and rain and so reach new healthy leaf tissue. There
they germinate and penetrate the plant tissue; new lesions
appear after incubation. Under suitable conditions, the life
Cycle is completed within a week.

The fungus is responsible for Southern corn leaf blight, a
disease that ravaged the corn fields of the USA, especially in
1970. The yield was 15 percent less than that estimated before
the disease struck, and losses of half or more were common in
the Gulf region. The disease suddenly appeared because the

T (Texas) type of cytoplasmatic male sterility was applied

On a larce scale in the hybrid system. This type appeared vul-
Nerable for H. maydis, which had existed for a long time in a
on-virulent form.

To anticipate the growth of the disease in the field, Waggoner
©t al. (1972) analysed this new disease and made a simulation
Program for its growth and development. A comparison of impor-
tant aspects of simulated results with field observations
(Shaner et al., 1972) showed the merit of this approach.

This simulation program for the growth and development of
®pPldemics of H.maydis (EPIMAY) is written in FORTRAN and keeps
track of the development of the lesions formed on each day
after infection. The program is difficult to read. A further
Qnalysis of Waggoner & de Wit showed that a simulation program
that is more lucid and easier to handle could be developed by
Using the state variable approach as developed in this mono-
graph,

The meteorological factors that effect the fungus are tempera-
ture, light, wetness, wind and rain. The influence of these
factors on growth and development of the disease in various
life Cycles was analysed for the Illinois isolate of race T.
°f H.maydis growing on the corn cultivar PA 602A, Fl1 hybrid in
the laboratory and the greenhouse. Undoubtedly the condition
©f the host affects the growth responses, but the study was
estricted to well fertilized and gcod growing specimens of the
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host. These observations and general knowledge about growth

and morphogenesis of the fungus form the basis for the
construction of the simulation program. This program is presented
in the form of relational diagrams, together with sufficient
quantitative information to leave the writing of the actual
program to the reader of this monograph,

7.2 The weather

Even, if a corn crop is uniform, the micro-meteorological con-
ditions for developing fungus are not the same, but vary with
height. The radiation during the day is higher, the wind more
turbulent and the leaves are dry longer near the top of the
crop than near the soil surface. Programs to simulate the micro-
meteorological conditions in the crop were developed and pub-
lished in a book of this series (Goudriaan, 1977) but these
are likely to be of use only after the simulation program for
the pathogen is refined. At present the microclimate in the
crop is not simulated, but instead the macro~weather factors
are employed as forcing functions as some 'average' for the
whole crop.

Exercise 66
Why is this a dangerous approach?

The parameters are temperature, wind speed, light, rain and the
presence of water on the leaves. These can be introduced in

the form of function data throughout a season, but for the
present it suffices to define a particular daily course of the
weather which is repeated every day. The following weather data
are assumed for some simulations in this chapter.

FUNCTION TEMPT = (0.,14.),(12.,35.),(24.,14.)

FUNCTION WINDT = (O0.,1.}),(6.,1.),(14.,4.),(19.,2.),(24.,1.)
FUNCTION WETT = (0.,1.),(7.99,1.),(8.,0.),(19.99,0.),...
(20.,1.),(24.,1.) )

FUNCTION LITET = (0.,-1.),(5.99,-1.),(6.,1.),(20.,1.),...
(20.01,-1.),(24.,-1.) _

FUNCTION RAINT = (0.,0.),(24.,0.)

The units for temperature, wind and rain are Cc, m s~1 and

mm h-!, respectively. Especially the temperature course is
simplified, to facilitate later analysis of the results. For
light and wetness only two conditions are distinguished:

light (LITE = 1) and dark (LITE = -1) and wet (WET = 1) and

dry leaves (WET = 0).

To read the graphs, time in hours during the day has to be known.

-
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As TIME is expressed in days, the hour of the day may be cal-
culated with

HOUR = 24.* (TIME-AINT(TIME))

in which the function AINT(TIME) conserves the integer part of
time, and assumes, for instance, the value 6 when time is between
siX and seven days. HOUR can also be defined by

HOUR = 24.*AMOD(TIME,1.)

where AMOD generates a sawtooth function with period 1.

Although it does not belong to the weather section, the growth
Of the crop must be considered. Simulation of a disease is
€specially important when crop growth is not seriously affected,
because that is the time to control the disease. Thus we can
assume that crop growth is independent of the growth of the
disease, so that it can be introduced in the program as another
forcing function. It suffices to use for this purpose the course
Oof the leaf area index, that is the ratio between the surface

of the leaves and the surface of the soil, which varies from

0 at emergence to about 5 at flowering. In the present simula-
tion it is simply assumed that

FUNCTION LAIT = (0.,3.),(140.,3.)
LAI = AFGEN(LAIT,TIME)

—

Exercise 67

Write the section WEATHER of the simulation program, complete
With AFGEN functions and FUNCTION tables and the temperature
(TEMP) , the wind speed (WIND), the wetness of leaves (WET),
the dryness of the leaves (DRY), the light condition (LITE)
and LAI as outputs.

s,

Mistakes in input data may result in a situation where it rains
and WET is nevertheless zero. Inconsistencies may be avoided

by reading from the tables an auxiliary variable WETX and then
Computing

WET = FCNSW(WETX + RAIN, 0.,0.,1.)

wWhich means that WET = 1. for WETX + RAIN greater than O, and
Otherwise 0.
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7.3 Appearance and growth of lesions

If spores of H.maydis are present on healthy leaves and condi-
tions for germination are suitable, some spores will form germ
tubes which penetrate through the stomata and so infect the
leaves. This penetration rate is calculated at the end of the
program. Here it is used as an input.

Fig. 25a shows the resulting growth of the lesicn area at 30 ©C
as a function of the number of days after incubation. Lesions
appear after about two days showing that the first stages of
development occur inside the leaves. Thereafter the lesions
grow to their final size with a speed that is dependent on
temperature only,

lesion crea
a 10 - b 20L a 18100 mm?2
101 . b stalk dens:ty
| . 30D, 18300 mm-2
05- 0.5 - ¢ Spores on green stalks
- 1w1spcre/stalk
spores on dried stalks
O0 0-‘ 35'— d 1a 1Spore/stalk
0 ermination
“aays e O
C d e
10+ 1.0- 23D 10-
200 - 23
A 7 - 15
oF T 1 (o | 1 0 T 1
o) 1 2 0] 1 2 0 12 24
days dcys hours

L=}ight, Dsdark,number=°C

Fig. 25 | Some experimental data and the curves mimicked by
the relevant parts of the simulation programs.

The relational diagram of development and growth of the lesions
is given in Fig. 26. The development period inside the leaves
is accounted for by seven development classes with dispersion,
and a residence time of 0.5 day in the first six classes. This
residence time is assumed to be independent of temperature.

The content of the last integral gives the number of visible
lesions and of the other the number of invisible lesions. As
long as it is assumed that defoliation and decay of leaves are

94



rate 05day

r penetration _—— e g e e o od

: germ tubes r T T T
L RTN l

! i I ! !
AL :lq | l;.l L IN] 0 [N 0 N )T number
{ | [ | isi
o visibl
j;i - L _€%..L *%k"L‘ééﬁ L““%?"L ’{?“l-‘?g'J le;g:;
1 }- 2= 34 4 |- Stk 6 NVL
—
!
areq N '
lesions RAL :
AL *———————— -
rate
max. areaq losio
singl.e lesions lesions 9= == | —-r_—-_:
EMP ¢J
MALS ’ table ( }
e e Y | I |

Fig. 26 I Relaticnal diagram for the growth of lesions.

Negligible, this number does not decrease. Since, a soil surface
Of one hectare is used as reference, the number of lesions is
eXpressed in ha~!. All lesions grow to a final size (MAL) of
about 100 mm? or 10-8 ha and the growth rate of the individual
lesions can be conveniently described by assuming that this

rate is proportional to the difference of the maximum area of

2 lesjon minus its actual area ALS. The proportionally factor
(PAL) is, according to experiments, a function of temperature
Only, and is sufficiently defined by

FUNCTION PAIT = (0.'0.) ’ (10.'140) 1(18"33') ’ (23.'80.) $ e
(30.,80.,),(35.,14.), (40.,0.) day"!

fhe formula for the growth rate of the area of a single lesion
S then:

RALS = par# (MALS-ALS)
ALS = INTGRL(O.,RALS)

The initial value of this integral is zero, because the lesions

ggtering class NVL have an area that is practically zero.

o Obtain the growth rate of the total area, RALS must be summed
€r all the visible lesions present, a number equal to NVL

NVL
RAL = § pAL x (MALS-ALS)
n=1

Cr
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NVL
RAL = PAL x (NVL x MALS - )  ALS)
n=1
or
RAL = PAL x (NVL x MALS - AL)
if AL is the total area of the lesions, given by

AL = INTGRL(Q.,RAL)

Exercise 68

Why is the expression for RAL so similar to the one for RALS?
Write the section GROWTH OF LESIONS, with the number of visible
lesions NVL, the rate of growth of the total area, and the
total area as outputs. What is the total residence time of the
lesions in the invisible stages? Explain why some lesions

enter NVL already at the 1.5 day. Calculate the standard devia-
tion of lesion appearance. Why has the simulated curve for AL
in Fig. 25a a sigmoid form?

The points in Fig. 25a are observations and the curve is the
mimicked result. A similar analogy between observation and
simulation is obtained at other temperatures.

7.4 Sporophore or stalk formation

The technical term for the microscopic stalk that holds the
spore in the air above the leaf is sporophore, but here the
more popular term ‘'stalk' is used. The growth of the stalk
occurs only when the leaves are wet and otherwise depends on
temperature and light. The maximum number of stalks on a hectare
of lesions is 300 x 10!0, but the experimental data in Fig. 25b
for a few temperature and light conditions during formation
show that this value is not reached under all conditions. More-
over there is some delay in the formation of stalks.

To mimick these results it is assumed that there is a potential
number of stalks per surface unit of lesions - a number of
opportunities for stalk formation - which materialize through
some classes and that during the actual stalk formation a part
of this potential number develop into stalks and the rest
become extinct, depending on conditions., These assumptions are
presented in the relational diagram of Fig. 27. The growth

of the number of opportunities is the product of the maximum
numnber per area (MOA = 300 x 1010 per ha) and the growth of the
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Fig. 27 | Relational diagram for the formation of green stalks.

area of the lesions. This potential number enters into a series
Of four classes with a residence time of 0.0625 day in three
Classes. The realization of the opportunities is arrested by
drought, There are three possibilities: opportunities are de-
Stroyed, set back to their initial stage or their advance is
arrested, Not much is known about these processes, so that at
Present the middle course is taken: it is assumed that the
Opportunities are returned to the first class in case of drought.

T?e following rate is introduced from the integral of the Xth
Clasg

EMPT = DRY*OPX/DELT

To avoid manipulation of very small numbers in some computers
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('underflows'), it may be advisable to program this rate as
EMPT = INSW(OPX - 1,E-50, 0., DRY*OPX/DELT)

Hence the classes are not emgtied when their contents are below
the very small value of 10-°U,

The opportunities end in the last or fourth class and are from
there removed either by stalk formation or extinction. The
relative rate of extinction (POX) and stalk formation (POG)
depend on temperature and light, whereas the process only occurs
when the leaves are wet. An analysis of the experimental data
showed that the process is sufficiently mimicked when the fol-
lowing functions of temperature are used for the relative rates
in day'l:

During light:

FUNCTION POGL = (0.,0.),(14.,.04),(18.,.12),(23.,1.4),...
(30.,1.2),(35.,0.)

FUNCTION POXL = (0.,0.),(14.,.04),(18.,.12),(23.,1.4),...
(30.,0.)

and during darkness:

FUNCTION POGD = (0.,0.),(14.,.10),(18.,.27),(23.,.27),...
(30.,1.33),(35.,.67),(40.,0.) _
FUNCTION POXD = (0.,0.),(14.,.02),(18.,.03),(23.,.18),...
(30.,.88),(35.,1.54), (40.,0.)

The proper functions can be selected again by an inswitch which
is operated by the variable LITE. For instance:

POG = INSW(LITE,AFGEN (POGD,TEMP) ,AFGEN (POGL, TEMP))

The points in Fig. 25b are again observational data for a few
conditions and the corresponding curves are obtained by mimicking
stalk formation and opportunity extinction. The process of
opportunity formation is described by the equations and func-
tions, but is not explained on a physiological basis. The stalks
that are formed are virgin or green stalks. Because these main-
tain another rate of spore formation than stalks that have
sporulated once or have been subjected to drought, they must

be accounted for separately in an integral that maintains the
number of green stalks,

Exercise 69
Write now the section FORMATION OF GREEN STALKS, with the rate
of green stalks formation (ROG) as output. What is the dimension
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0of ROG? This rate as a fraction of the potential rate (sum of
actual formation and extinction) depends on light and tempera-
ture.

7.5 Sporulation of green stalks

The name ‘green' stalks has been used explicitly because there
are also 'dried' stalks. Dried stalks are stalks that have
sporulated at least once or have been subjected at least once
to drought. The distinction is made because the influence of
temperature and light on sporulation is different for both
Categories: green stalks sporulate more rapidly than dried
stalks.

Fig. 25c¢ shows how this growth of spores on green stalks may
depend on temperature and light. Here the scale of 0 to 1 re-
pPresents the number of green stalks with 2 spore. A stalk cannot
carry more than one spore at the same time. Only 50 percent of
the stalks produced spores after two days in the light and at
23 ©c, put there is sufficient information to assume that in
due course all stalks will sporulate under these conditions.
The relational diagram for sporulation of green stalks is

given in Fig. 28. Three classes with a residence time of

0.0625 day in the first two are again introduced to mimick the
Oobserved delay between the formation of green stalks and the
first appearance of spores. The first class is loaded according
to the rate of green stalk formation; thus this class contains
Stalks ready for sporulation.

There are two circumstances that arrest spore formation. One
when the leaves becocme dry; then the growing spores are aborted
and the green stalks are reclassified as dried stalks. The
Other when the green stalks are completely destroyed, usually
by rain beating against the fragile stalks. The relative de-
Struction rate in day~! is assumed to be a function of the
rainfall rate, in mm hour~! according to

RBETR=AFGEN (BEATT , RAIN)
FUNCTION BEATT=(0.,0.),(0.25,.08),(0.75,.32),(6.25,2.),...
(18.8,5.6), (25.,6.7)

This function summarizes some factual information, but is
largely based on a qualified opinion of the process.

————

Exercise 70
What rate of rainfall is needed to destroy 63 percent of the
Stalks in 5 hours?
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Fig. 28 | Relational diagram for the formation of spores on
green stalks.

When the stalks have been passing through the classes and have
not been dried up or beaten by rain, they form spores at a rate
which is dependent on light and temperature, .provided, of course,
that the leaves stay wet. The experimental data are mimicked
with sufficient accuracy by introducing the temperature depen-
dence '

FUNCTION PGSL

= (0.,0.?'(14.,.15)'(18.,1.44),(23.'.32)'...
(30.,0.),(40.,0.)

in the light and
FUNCTION PGSD = (0.,0.),(14.,.06),(18.,14.),(23.,14.),...

(30.,.44),(35.,0.),(40.,0.) -
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in the dark for the proportiocnality factor of spore formation
in day”l. The points in Fig. 25c¢ are again observations and the
curves mimick results of sporulation of green stalks.

Exercise 71

Write now the section FORMATION OF SPORES ON GREEN STALKS

with the rate of spore formation on green stalks (RGS) as out-
put. What is the dimension of RGS?

Further spore formation is arrested, as long as the spore re-
mains on the stalk. Once removed, the stalk is no longer green,
but classified as a dry stalk, which may also form spores but
at a different rate.

7.6 Sporulation of dried stalks

As has been said, dry stalks are distinct from green stalks
because their rate of spore formation is slower. Dried stalks
are generated in various ways. When spores are removed from
either a green or a dried stalk, the stalk is ready to produce
a new spore at a rate characteristic for dried stalks. During
spore formation when the growing spore is aborted by drought
green stalks also become dried stalks. Fig. 254 shows some
experimental results which are mimicked according to the rela-
tional diagram in Fig. 29. The mean residence time in each
class is again 0.0625 day, the slowness of the process as com-
Pared to green stalks being accounted for by an extra class and
another proportionality factor in day"1 for spore formation
according to the temperature dependence

FUNCTION PDSL = (0.,0.),(14.,.17),(18.,1.75),(23.,.25),...
(30.,0.), (40.,0.)

in the light and

FUNCTION PDSD = (0.,0.),{(14.,.07),(18.,2.95),(23.,2.2),...
(30.,.53),(35.,0.),(40.,0.)

in the dark.

When dried, the growing spores are aborted and the dried stalks
are again reset into the first class. When the green stalks
become dry they also enter this class. At last, the stalks that
are denuded of spores, either by wind or rain and not destroyed
in the process are again ready to form new spores. Dried stalks
Are also beaten and destroyed by rain at the same rate as for
JXeen stalks.
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Fig. 29 | Relational diagram for the formation of spores on
dried stalks

Exercise 72

Write now the section FORMATION OF SPORES ON DRIED STALKS with
the rate of spore formation on dried stalks (RDS) as output.
Inputs are the rate of transfer of green stalks and dried stalks
to the first class during drought and the rate of spore removal
from stalks (RSR).

7.7 Dispersal of spores

When it is dry, the spores are removed by the turbulent action
of the air. Some of the spores are carried away to other fields,
and others settle on the soil, on lesions or on healthy foliage
segqments. The stalks are also denuded by rain. Especially at
the onset of heavy showers, part of the spores are dispersed
through the air, but with gentler rain the spores are washed
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from the stalks and end up again on the soil, on lesions or on
healthy foliage. The processes that are involved are very little
understood particularly because the quantitative aspects are
complicated: fields may be of limited size and infections are
not uniformly distributed. _

At such stages, the model builder has to make a difficult
decision: either to abandon the whole problem or to advance

for better or for worse. The latter course is usually chosen

for various reasons. First, sensitivity analyses may show that
the dynamics of the system are hardly determined by the processes
that are difficult to handle both conceptionally and practically.
Thus, it would be a waste of time to pay much attention to these
processes. Unfortunately, spore dispersal is one of the im-
portant processes that governs fungal epidemics. Secondly,

life goes on and operational decisions have to be made whether
the system is completely understood or not: even models with
unsatisfactory parts may be better than no model. Of course,
this supposition must be made probable. Thirdly, it is possible
to view a model not so much as a representation of the real
system but as a representation of our knowledge of the system
and our opinion about it. Then the weak sections should not

be ignored but exposed as will be done here.

The most simple supposition is that spores are removed from
stalks at a rate proportional to the number of spores present.
The relative rate of removal is assumed to be zero when the
leaves are wet and it does not rain. However, when it rains

the spore removal rate in spores per day is
SPRR = RWASH * STSP

and when it is dry
SPRD = RBLOW * STSP

in which STSP is the integral 'stalks with spore'.

The relative rates of spore removal (RWASH and RBLOW) are as-
Sumed to be independent of the number of stalks with spores,
although it is not unlikely that these relative rates decrease
because at first the most exposed spores are removed. The main
Problem is to obtain a reasonable estimate of these relative
Yates,

Waggoner et al. (1972) estimated that with a sprinkling rate

Of about 6 mm/hour for 3 hours, 86 percent of the spores were
removed from exposed leaves, so that the value of

RWASH = -8, 1n(0.14) = 15.7 day~l.
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Exercise 73
Check this calculation.

It seems reasonable to assume that RWASH is proportional to the
rainfall intensity and that below an LAI of 2 the leaves 4o

not protect each other, so that RWASH is independent of LAI.
Above this value mutual protection may exist, but since water
may drop from one leaf on to the other, probably the mistakes
are not large when this protective effect is neglected.

The relative rate of spore removal under dry conditions depends
primarily on the wind velocity. It was assumed by Waggoner

et al., that at a wind speed of 2 metres per second, and a leaf
area index of 3, about 5 percent of the spores are removed in
3 hours, so that SPRD can be estimated under this circumstance.
Since the force of the wind is proportional to the square of
its velocity, it could be assumed that the relative rate of
spore removal is proportional to the second power of the wind
speed. Then spore removal is zero when the wind speed is zero.
However turbulence is also generated by the temperature dif-
ference within and outside the crop. This effect may be approxi-
mated by assuming that the wind speed is never less than 1 m/s.
The relative rate of spore removal is also influenced by the
leaf area index, because the wind speed decreases more or less
exponentially with increasing depth of the crop. This effect

is so uncertain, that it is not considered further.

Exercise 74
Calculate RBLOW for WIND equal to 2 m s-1,

The calculation of RBLOW completes the estimates of the rate
of spore removal. The next step is the estimation of the frac-
tion of removed spores that may become effective by settling
on healthy foliage.

With strong winds and a small field most spores may be blown
away and become ineffective. However they may be compensated
for by spores blown in from neighbouring fields. Another question
is how many spores in the air are caught by leaves and how
many end up on the soil surface where they can do no harm.
Again Waggoner et al., assumed that with a leaf area index of 3
and a wind speed of 2 m s”1, 3 percent of the spores are
caught by the leaves. This percentage is likely to depend
linearly on the leaf area and is programmed as such. The per-
centage is also likely to decrease with increasing wind speed,

-
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Fig. 30 | The relational diagram for germination and penetration
of spores.

especially on small fields. This effect is too complicated to
Consider here.

The greater the intensity of the rain, the more spores are
washed to the ground. According to Waggoner et al. only 0.3
Percent of the spores are caught by the leaves at a rainfall
intensity of 2.5 mm/hour. The maximum fraction is caught at a
negligible rainfall rate, but does not exceed 20 percent. These
are very rough estimates indeed.

—

Exercise 75

Write the section SPORE DISPERSAL with as output: SPRR, SPRD
and their sum RSR and the rate of spore arrival at the foliage
(RASP) . How would it be possible to take into account the
influence of host exhaustion when the area of the lesions is
not negligible?.

[ —
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7.8 Germination of spores and penetration of germ tubes

The spores on healthy tissue are now considered. These germinate
eventually on wet foliage. The fraction of spores that complete
germination and the rate of germination depend on temperature
according to the observations in Fig. 2%e. The process of ger-
mination is complicated because germinating spores may be washed
down from the leaves or killed upon desiccation.

The relational diagram that describes germination and penetra-
tion of germ tubes into the leaves is presented in Fig. 30.

Two integrals are distinguished: the spores on the (healthy)
foliage (SF) and the germ tubes on (healthy) foliage (GT).

The number of spores increases with the rate of arrival of new
spores (RASP) and decreases when spores are washed, killed or
germinate. The relative rate of spore removal by rain from the
leaves is set equal to the relative rate of spore removal by
rain from the stalks (RWASH). The killing of spores upon desic-
cation is more difficult to handle. Spores can only desiccate
when they have been wet. Since all spores are killed, the kil-
ling rate is

RKSP = KILL*SF/DELT

Obviously, the killing is governed by the variable KILL which
may be 0 or 1. If the leaves during the previous time-interval
were wet and are dry during the current time-interval, KILL is
set at 1. Such a condition may be programmed by using a
'"PROCEDURE' that contains a series of statements that have to
be executed in the order in which they are presented. The whole
sequence of statements is then sorted at a place where the
inputs are available and the outputs not yet used.

The procedure that is used here is called 'DESS' from desicca-
tion and has as input the variable WET and as output the vari-
able KILL:

PROCEDURE KILL = DESS(WET)

The statements within the procedure are:

KILL=0.
IF((WETP-WET).GT.0.)KILL=1.

WETP=WET

The first statement sets KILL equal to 0 and the second state-
ment reads: if the difference between WETP and WET is greater
than 0, then reset KILL to the value 1. The next statement sets
the previous value of wet (WETP) equal to the current value
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and this reset value is used in the 'IF' statement during the

next updating., The end of the series of statements that have
to be sorted as one block is now defined with the line

ENDPROCEDURE

The spores germinate or become extinct at relative rates in
day-1 that depend on temperature, according to the function tables

FUNCTION PFTT=(0.,0.),(10.,.4),(15.,1.8),(20.,4.6),(23.,7.0),...
(35. ’307) I (40. '0-)

for completion and

FUNCTION PFXT=(0.,0.), (10.,0.),(15.,1.8),(20.,4.2),(23.,2.6),...
(35.,3.7), (40.,0.)

for extinction.

The simulated germination is again presented by the curves in
Fig. 25e., Note that at 15 ©C some observations deviate con-
siderably from the simulated line because the function tables
PFTT and PFXT are assumed to be smooth and were adapted also
to observational data at other temperatures. '

The spores with germ tubes are alsoc killed upon desiccation
according to the rate

RKGT = KILL*GT/DELT

and also washed away by rain at the same relative rate RWASH
As spores are washed from the stalk. Depending on temperature,
Only a fraction of the germ tubes ever penetrate the leaves;
this observation is again mimicked by introducing relative
Yates in day"1 of penetration and extinction according to

FUNCTIOI‘} PTNT = (00 foo) ’ (180 ’ -48) ' 4 (2301 -65) r (30‘ [ 025) r (350 10') F oo
(40.,0.)

for completion and

FUNCTION PTXT = (0.,0.),(18.,1.3),(23.,2.6),(30.,2.2}),...
(35. ,0.) ’ (400 IOt)

for extinction. .
These functions are found by comparing the number of lesions

With the number of germ tubes formed upon incubation of spores.
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Exercise 76
Write the section GERMINATICN AND PENETRATION with the rate of

penetration (RTN) as output.

The cycle is completed by calculating the rate of penetration
of the germ tubes, RTN being the rate needed to start the
growth of the number of lesions.

7.9 Timing, initialization and output organization

Since there are discontinuous processes involved, it is neces-
sary to execute the simulation according to the METHOD RECT.
The time interval of integration has to be chosen small com-
pared with the relative rates of change. An analysis of the
data and parameters shows that these rates are fastest in the
classes for the growth of stalks, which are governed by a
residence time of 0.0625 day. When DELT equals this value, the
contents of the classes are pushed without any dispersion.
Here this is completely acceptable. For practical reasons of
organizing input and output it is, however, convenient to set
DELT to 0.04 day. Then the program is updated 25 times during
one day and computing costs are acceptable.

The initialization of every integral in the program could be
achieved by observing at one moment the number and area of
lesions, the number of green and dry stalks, the number of
spores and so on in a particular field. These observations are
not worthwhile at this stage of knowledge. Usually initiali-
zation is achieved by assuming a certain number of spores or .
a certain number of lesions, the contents of the other integrals
being set at zero. Because it is often the purpose to study the
dynamics of the disease without complications due to exhaustion
of the host, it is good practice to start with a small number
of lesions, which may be taken as 100 per hectare.

However, in other situations it may be necessary to program a
certain invasion rate of spores from the outside during some

periocd.

Exercise 77
Program an invasion rate of 10% spores per hectare per hour
during the first -week, but only when it is light and the leaves

are dry.

The output of every variable may be requested of course, but
it is good practice to limit the number to the most essential
ones. These are in general the contents of the main integrals:
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Fig., 31 | The number of visible lesions in dependence of time,
when initialized with 100 spores that completed penetration
(NIL1 = 100).

the number and area of the lesions, the number of green and
dry stalks and of stalks with spores and the number of spores
and germ tubes on healthy leaves. To study the state of the
SYstem at certain moments it may be convenient to have all
Outputs available by introducing the statement

OUT1 = DEBUG (N,T)
in which T is the moment at which this output procedure starts
to operate and N the number (without decimal point) of suc-

Cessive updates for which output is requested. As many debugs
45 needed may be introduced.
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Exercise 78
Ask for a debug of ten rounds at time zero and of debugs of

two rounds at time 5, 5.5, 10 and 10.5.

7.10 Results and sensitivity analyses

A simulated epidemic, as characterized by visible lesion number
(NVL) , is presented in Fig. 3! on a logarithmic scale, starting
with 100 lesions per hectare (NIL1), the growth being simulated
for the defined stationary weather pattern. During the first
periods of growth, the effect of initialization can still be
distinguished. At a later stage it is possible to characterize
growth by a relative growth rate of number of fungi lesions,
which is in the present example 0.34 day‘l. Other important
characteristics are the rates of spore production (RSP) and
dispersal by wind (SPRD). The simulated results of these rates
for days 8 and 9 are given in Fig. 32, together with relevant
weather data. The rate of spore removal by wind may be verified
in a relative sense by studying the density of spores above the
crop. Verification of simulated data on epidemics is difficult
for two reasons. In the first place, a good meteorological
network that provides not only the course of the standard
meteorological parameters throughout the day, but also detailed
information of the wetness of the leaves must be available.

In the second place, field observations must be organized.
Sometimes a rating of severity in a wide range of localities
may do, but preferably the relative growth rate of the disease
over a certain time span should be observed. Some comparisons
of simulated r2sults, obtained with the original 'EPIMAY' of
Waggoner et al. and actual results throughout the USA are

given in Fig. 33. The left graph is a comparison of the simu-
lated multiplication rate of lesions with a net increase of
blight ratings in various places in the Mid-~Eastern USA in

1971 and the right graph compares simulated and actual nulti-
plication rates in Western Indiana in 1971. Only the latter
gives a comparison in absolute terms, but is should be taken
into account that some 'fudging' of parameters has been done

to achieve correspondence of level. Whether such fudging is
acceptable or not is not a matter of principle, but of purpose.
If it is the purpose to develop a forecasting technique as soon
as possible, one may incorporate experience of previous years
into the program. However it is then very difficult to judge
which of the numerous parameters should be left alone and which
should be adapted. If extensive adaption is necessary, it is

doubtful whether much is gained at all by simulation compared
with the application of one of the standard multiple correlation
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Fig. 32 | The simulated rate of spore production (RSP) and
Fate of spore removal by wind (SPRD) during two days.

techniques.

If it is the purpose to understand the dynamics and the quan-
titative aspects of the disease, fudging of parameters to
achieve better agreement should be avoided. Instead, a sensi-
tivity analysis under the prevailing conditions should be exe-
Cuted, to evaluate which parameters mainly control the disease.
The result of this analysis, should tren be a guide to further
©Xperiments and study.

Such a sensitivity analysis consists of varying inputs and
Parameters over a certain range and a comparison of their rel-
aFiVe influence on the end result. If the influvence of a‘certain
Parameter or input is relatively small, further analyses may

be left for some time, but if the influence is large, more work
should be invested in a further analysis of the section of the
Program where this parameter plays a role. The problems of eval~
UYation of simulation programs are treated more thoroughly in
Another book of this series (Arnold & de Wit, 1976).
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Fig. 33 | A comparison of simulated and actual results in the
Mid-Eastern USA(a) and in Western Indiana(b) in 1971,

The weather parameters that are most likely to affect the
severity of the epidemic are the duration of the wetness of the
leaves, the presence of showers and the temperature. The simu-
lated influence of duration of wetness on the relative growth
rate of the lesions for the standard weather conditions, but

in the absence of rain, is given in Fig. 34. The propagation

of the disease is practically zero when the duration of wetness
is less than -' hours, because the fungus needs wetness periods
of finite length to complete its development in various stages.,
The relative multiplication rate increases to a maximum at

18 hours of wetness, but then it decreases again to zero at

24 hours of wetness, because spores are assumed not to disperse
by wind when the leaves are wet, and because rain is supposed
to be absent.

The picture changes completely when at 24 hours of wetness

rain is assumed to occur at a rate of 6 mm per hour for 3 hours
per day; then the relative growth rate equals 0.19 day‘l. Here
the rain causes the dispersal of the spores. The influence of
decreasing the intensity of the shower and increasing its dura-
tion is considerable. A rainfall of 1 mm per hour for 18 hours
per day causes a relative growth rate of 0.84 day~!. At a lower
rate the relative beating rate RBETR decreases so that fewer
stalks are destroyed, but the spore dispersal by rain increases,
so that many more spores are caught by leaves. As long.as the
total amount of rain is the same, the change of RWASH has little
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Fig. 34 | The relative growth rate of the number of lesions in
Yelation to the duration of wetness, without rain.

influence because it is proportional to RAIN. Thus the knowlea7je
Of the daily total rainfall is not sufficient; the rainfall
distribution must be known as well. The influence of temperature
1s analysed under the assumption that the other weather condi-
tions are standard. Two situations are distinguished: in one
series, the temperature amplitude is fixed at 5 ©C and the
average temperature is varied from 15 ©C to 35 °C and in the
Other the average temperature is fixed at 25 ©C and the ampli-
tude is varied from 0 © to 15 °c.

———

Exercise 79
PrOgram this situation by assuming a sinusoidal temperature
Course throughout the day with a maximum at 14 hours.

e ——

The results are given in Table 6 and show that one temperature
Value, such as an average temperature, does not give detailed
€nough information. The influence of daylength under otherwise
Standard conditions is found to be small.

A sensitivity analysis of the parameters and function tables
that are included in the program may be made also. For instance
the influence of the residence time in the various classes may
be evaluated and especially because the residence times are
dssumed to be independent of temperature. Another aspect that
May be of importance is the assumption on the development of
9reen stalks. Does it make much difference whether developing
Stalks are destroyed by drought during development, whether
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Table 6 The influence of temperature average and amplitude
(°C) on the relative growth rate (day~!)

AVTMP 15 20 25 30 35
AMPL

0 - — 0.452 — —

5 0.079 0.321 0.459% 0.407 0.192
10 —_ — 0.389 — —
15 — R 0.254 —_ —

their growth is only arrested or whether they are reset in their
first class upon drought? Is it worthwhile to make a distinction
between green and dry stalks? Another important and largely

unknown set of parameters concerns dispersal and recapture,

114



8 Population models for fruit-tree red
spider mite and predatory mites

Techniques for simulating growth and development were presented
in Chapter 6 and used throughout Chapter 7 to simulate the
Population dynamics of the fungus Helminthosporium maydis.

This present chapter describes a basic model for the population
dynamics of the harmful fruit-tree red spider mite, Panonychus
ulmi Koch, and one of its natural enemies, the predatory nite
Amblyseius potentillae. The model, its results and evaluation
are briefly presented, a more detailed description of the model,
its construction and parameterizing, verification and evalua-
tion being given in another monograph of this series (Rabbinge,
1976).

The fruit-tree 'red spider mite belcngs to the family Tetra-
nychidae, a subgroup of the class of Acarina. The members of
this vast family are found almost all over the world and may
Cause damage in several types of plants. In deciduous fruit
Orchards, the fruit-tree red spider mite is one of the most
harmful organisms and its control is the main task of the

fruit grower. During the last decennia, the mites have become
increasingly resistant to different biocides, so that the
development of other control techniques has been stimulated.
Biological control is an attractive alternative, especially as
field experiments with release of predatory mites have shown
Promising results.

8.1 Fruit-tree red spider mite

In Fig. 35 the life cycle of the fruit-tree red spider mite is
9iven. The mites develop from eggs through different juvenile
Stages into adult females and males. The females deposit their
€ggs on leaves and a new generation starts; up to six genera-
tions per year may occur. Induced by a combination of daylength,
Average daily temperature and food quality, some juveniles may
develop in the 'winter form' which oviposit in sheltered places
On branches and twigs, but are otherwise indistinguishable

from the summer form. The transition to the ‘winter form'®

Which is partly reversable is a complicated process and is not
treated here.

Their eggs, winter eggs, possess a thicker scales and are more
Yeddish than the summer eggs. The winter eggs hatch only after
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Fig. 35 | Life cycle of fruit-tree red spider mite (Panonychus
ulmi Koch)

the winter period.
To mimic the dispersion in hatching, development classes of

the eggs are distinguished, the number of classes and the
method of simulation depending on the relative dispersion at
different temperatures (see Chapter 6). The start of the
hatching process is induced by a combination of external
variables: length of cold period, daylength and temperature.
During the hatching process some eqgs die. Their relative
mortality rate depends on temperature.

Eggs hatch into juveniles which moult several times during
development into females or males. Within each juvenile stage,
different development classes can be distinguished, the number
of classes depending on the relative dispersion. Fig. 36 is

a relational diagram for the development of P. ulmi during the
juvenile phase from larvae into deutonymph. This part of the
juvenile phase is distinguished and treated separately because
the 'winter form' is only induced in the older juvenile stages.
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Table 7 gives the length of the development period and its
dispersion for the juvenile stages and for winter eggs in

relation to temperature,

Table 7 Duration (x) of different developmental stages of
fruit-tree red spider mite and its standard deviaticn (s(x))

Temperature

15°¢ 18°¢c 25°% 30°C

X s (x) X s (x) x  s(x) x  s(x)
Egg 18.0 3.0 10.0 1.6 6.3 1.06 5.0 1.25
J 10.1 2.0 6.5 1.3 4.0 0.8 2.5 0.62
JS 5.5 1.1 4.3 0.85 2.4 0.6 2.0 0.5
J = juveniles insensitive to diapause-inducing conditions

(larva, protochrysales, protonymph, deutochrysales)
juveniles sensitive to diapause-inducing conditions
(deutonymph, teleiochrysalis) -

JS

Exercise 80

Calculate the number of classes that is required to mimic the
dispersion of the stages EGG, J and JS, when a boxcar train
with constant relative dispersion (see Section 6.4.2) is used.
Why can this method only be used when the temperature is
constant? Which method must be used when the temperature varies?
What is then a good choice for the number of classes? Write a
simulation program for the hatching process of winter egqgs,
assuming an initial quantity of 1,000 winter eggs and a daily
temperature fluctuation between 15 and 30 ©C. The mortality
during this development process may be neglected. Calculate
the relative rate of mortality in the juvenile stage for a
constant temperature of 30 ©C, if the experimental results on
mortality show that at this temperature, 50% of the juveniles
die during their development from egg to deutonymph.

Development of both eggs and juveniles is simulated with box-
car trains to mimic the dispersion during these processes.

A subroutine for this mimicking procedure, wnhich has general
applicability, was developed by de Jonge and Rijsdijk. This
subrcutine is added at the end of a program and then called
upon in the program by inserting the statement:

OUT1,TOT! = BOXCAR (TOTI1,REST1,SD1,RM1,IN1,N1)
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Fig. 37 | Relative rate of mortality in day = in different
Stages of fruit-tree red spider mite against temperature in Sc.

In this statement the variables OUT! and TOT1 express the output
Of the subroutine, OUT1 is the rate of outflow of the last
integral of the train and TOT1 the sum of the contents of the
integrals in the train with initial value TOTI1. The variable
REST] is the total residence time in the train (a parameter or
auxiliary variable derived from literature or determined by
experiments), SD1 is the standard deviation of this residence
time (development period, diffusion time, etc.) and RM1 is the
Yelative rate of mortality during this development period.

IN1 is the rate of inflow in the first integral of the train
and N1 the number of classes in the train.

The subroutine BOXCAR is described in Appendix B, as a listing
°f the computer program with comprehensive comments.

e,

Exercise 81

Write a simulation program for the development of the fruit-
tree red spider mite into adults using the data of Table 7
and Fig. 37. Use the subroutine BOXCAR. Temperature is the
Only changing external variable.

et

F - L] >
€males and males emerge from'tiie last ju—reaile svtage in eqial
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Table 8 The oviposition rate in eggs per day for each age-class and total
oviposition period in days, both as a function of temperature.

Temperature

10% 15°% 20°%¢ 25% 30%

x s(x)  x s{x) x_ s(x) x s(x} x si(x)
Age class 1 0.6 0.15 1.2 0,2 1.9 0.7 3.1 0.8 4.2 1.1
Age class 2 0.5 0.1 1.2 0.2 2.2 0.7 3.7 0.8 5.5 1.2
Age class 3 0.5 0.1 1.1 0.2 1.8 0.6 3.1 0.6 3.8 1.1
Age class 4 0.4 0.08 1. 0.2 1.4 0.4 2.0 0.4 1.4 0.4
Age class 5 0.2 0.05 0.8 0.15 0.8 0.2 1.0 0.2 0.8 0.1
Oviposition period 24 14.5 25 12 13 5.0 9.0 3.7 7.5 2.4

proportion. After copulation the fertile females mature during
a temperature-dependent pre-ovipositing period and then start
laying eggs. The oviposition rate and the rate of ageing of

the females depend strongly on temperature (Table 8). Moreover,
the oviposition rate is also dependent on the physiological

age of the females.

This age dependence means that normally the oviposition rate

of younqg females is higher than average whereas that of old
females is much less than average. When calculations are exe-
cuted with the average ov:.position rate during the whole life
period of a female, the simulated total number of produced eggs
may be correct but the course of the cumulative egg production
curve is wrong. At the start, egg production per day is under-
estimated and at the end oviposition rate is overestimated,

Exercise 82

Explain why the subroutine BOXCAR may not be used to mimick
the ageing process when oviposition rate is dependent on
physiological age.

Ageing of the reproducing female is simulated with the basic
method of Section 6.3.1, taking into account a temperature and
age dependent relative mortality rate. These relative mortality
rates are calculated as follows:

The maximum period of living is defined as the mean life span
plus 3 x standard deviation (s). The residence time in a single
class is the maximum period, as just defined, divided by the
number of classes N. The percentages of animals alive at the
end of each age class are now read from the cumulative fre-
quency distribution drawn on probability paper and with the
formula used in exercise 80 the relative mortality rate per
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age class is calculated. This leads to the results in
Table 9.

Table 9 Relative mortality rate per age class in dependence
of temperature in day“l.

Age class Temperature

10°c 15°¢ 20°C 25°%¢ 30°%¢
1 0.011 0.011 0.005 0.005 ¢.003
2 0.033 0.031 0.049 0.050 0.027
3 0.088 0.089 0.161 0.245 0.273
4 0.15 0.138 0.360 0.504 0.709
5 0.2 0.15 0.4 0.6 0.8

The only function of the males is copulation, for which the
humber of males is not limiting: more than one copulation being
Possible. So from this aspect, they can be disregarded. However,
they act as a source of food for predators, so that they cannot
be omitted from the simulation. The ageing process of the

males is described by inserting the statement:

OUTM, MALES=BOXCAR({MALEI ,REST#, SDM,RMM, INM, NBM)

The females lay winter eggs that overwinter on twigs or
branches or summer eggs that give rise to a new generation
of mites during that summer. The hatching process of summer
€ggs is again mimicked by a boxcar train.

——

Exercise 83

Extend the simulation program of Exercise 81 to include
Oviposition and ageing of females. Use for this purpose the
data of Tables 8 and 9.

S ——

8.2 Predatory mite, Amblyseius potentillae

The life cycle of the predatory mite is very similar to that
Of the fruit-tree red spider mite (Fig. 35). The only differ-
€nce is that the predatory mite overwinters as an adult female
and not as an egg. The sensitive period for induction of
€ither summer or winter adults is the same: the older juvenile

121



stage. Therefore the structure of the program is almost the
same and not given here.

8.3 Relations between predator and prey

For the fruit-tree red spider mite, the food source is un-
limited as long as the damage threshold of the trees is not
exceeded. For the predatory mite the food supply is restricted.
The availability of prey affects the development rate, the
reproduction rate and fecundity (total number of eggs produced
during the life of a female) of the predator. When prey are
scarce, the relative mortality rates of the predators in the
different stages may even increase.

The hunger of the predatory mite is characterized by its gut
content (Fig. 38) and determines the relative predation rate
and the prey utilization by the predator. The relative preda-
tion rate is the absolute predation rate per area divided by
the prey density; this variable has the dimension time™?!.
Hungry predators possess a high relative predation rate.
Moreover the activity of the predators increases with decreas-
ing gut content. The encounters of hungry predators with prey
are nearly always successful (fatal for the prey) and the dead
prey is sucked out completely. Well-fed predators, on the
other hand, are less active and have a low success ratio
(successful encounters divided by total number of encounters)
and the prey that are killed are only partly consumed. A pre-
dator kept at a constant prey density reaches in general a
steady state (Fransz, 1974) in which a unique relation exists
between gut content and temperature on the one hand and the
relative predation rate and prey utilization on the other.

| STATE OF N
THE PREDATOR
RATE OF RATE OF
INCREASE T ﬁ. H DECREASE | .
i i
HET 5
I
S =N — 4--eeeno{ TEMPERATURE )
: RATE
; ! Linscssssssossncapacsrtocvrraces (SIZEWB““
i
i SO {PREY DENSITY )
beervemenne {PREDATOR DENSITY ) ‘

Fig. 38 | State (gut content) of the predatory mite Amblyseius
poteatillae.
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Old adult female predators can eat all stages of prey except
eggs and show a clear preference for the younger stages,
especially at higher gut contents. Young juveniles of the
pPredator can only kill larvae and young juveniles of the prey,
because the older prey stages are too strong an opoonent. The
gut content is digested at a rate proportional to the content
SO0 that a relative rate of digestion exists which is only |
dependent on temperature.

Exercise 84

Write a simulation model for the state (gut content) of a pre-
dator based on the relations presented above. Assume that
temperature and density of prey and predator are constant. You
can fill in the required data yourself. Give the dimensions of
all parameters and variables.

——

8.4 Preference as a competitive process

So far preference of the predator for some type of prey is
treated by a difference in relative predation rate. At higher
Jut contents the relative predation rate of an unattractive
Prey type drops to zero by dividing the predation rate by the
Corresponding prey density. This relative predation rate is
introduced in the simulation model as a variable dependent on
temperature and gut content. The relative predation rate is
€asily determined from the functional response curve (pre-
dation rate as a function of prey density (Fig. 39)). Each
Prey density corresponds to a well determined level of gut
Content of the predator and thus relative predation rates of
different prey types can be related through the gut content
©f the predator. This approach is straightforward and its
Validity can be tested in experiments with replacement series
Oof two prey types (Rabbinge, 1976). The results support the
assumption that the density of one prey type can effect the
Predation rate of another one only through the gut content of
the predator.

Another approach in which simulation is not needed and which
allows us to bypass the gut content cf the predator, is to
Consider predation and preference as competitive processes.
Prey compete for space in the gut of the predator, so that it
should be possible to derive the predation rates in mixed prey
Populations from the predation rates in pure populations (mono-
Cultures, see Chapter 4). The predation rate as a function

Of the prey density (Fig. 39) is described by
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Fig. 39 Functional response curve of fruit-tree red spider
mite.

_BxD
PR = B x D 7 1 PRM . (8.1)

where D is prey density, PRM the maximum predaticn rate and B
an apparent area per prey. PRM and B are determined for each
combination of prey type and predator type from the functional
response curve. Inversion of Eqn (8.1) gives:

1 _BxD+ 1 x 1 _ 1 + 1
PR B XD PRM B x D x PRM PRM

The corresponding graphical representation is a straight line
that crosses the y-axes at 1/PRM and has a slope of 1/(PRM x B)
Maximum predation rate and apparent area per prey can be derivet
directly from the given lines. The analogy to Eqn (4.6) is
obvious. It is therefore tempting to describe predation in a
mixed prey composition with the same equation:
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By x Dy

PR, = PRM 8.2
l BIXDI+B2xDz+1 1 ( )

and similarly for the predation rate of prey typme number 2.
Comparison with both the experimental results and the simula-
tion results with the more fundamental method described earli-
er show that this approach gives satisfactory results (Fig. 40).
Of course its validity was only confirmed under the restriction
that the gut content of the predator must be in eguilibrium
With the available density and composition of prey.
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Fig. 40 | Simulated and experimental results of a replacement
Series of larvae and adult females of Panonychus ulmi with one
adult female of Amblyscius potentillae at 15°C, in terms of
Simulated values and measured confidence intervals.

e

Exercise 85
Why in Chapter 4 could the yield in a mixed culture not be
described by such a simple extension of Eqn (4.6) and why was

Simulation of the relative space RS necessary?
K
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In a replacement series the sum D; + Dy is constant and equal
to D,. The monoculture predation rate (Dy = Dp, D = 0) is
then given by

By X Dp
PRmonll B By X Dp + 1

PRM) (8.3)
Elimination of PRM; from the Eqns (6.2) and (8.3) results in
the following expression for PR; in the mixed culture

(By x Dy + 1) x d)
(8.4)

PRy =
1 By X D) + B, x Dy + 1 PRmon'l

in which d; stands for D;/Dp.
After division of numerator and denominator by Dy we obtain

(By + 1/Dp) x 4,
(By + 1/Dp) x 41 + (B + 1/Dy) x d»

This expression is analogous to Egqn (4.5), with a relative
crowding coefficient kj;s equal to

ki2 = (By + 1/Dm)/ (B2 + 1/Dm) (8.6)

The coefficient By + 1/Dp can be obtained graphically from the
functional response curve for a single prey type, as in a
similar way maximum predation rate and apparent area per prey
were found frum Eqn (3.1). Thus By + 1/Dp is simply the dis-
tance from this intersect along the 1/D axis to the total den-
sity. '

Exercise 86

If prey and predator properties are constant, what are the
extreme values of the relative crowding coefficient k;, when
the total density Dy is varied?

8.5 Verification

Model building is mostly a futile exercise if model output
and results of independent experiments are not compared. Such
verifications are preferably done at different levels. One
such level is mixed prey predation as derived from predation
of single prey types. This verifies only the
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Fig. 42 ! Simulated (---) and experimental {(——) results of
P. ulmi and A. potentillae in an orchard. The experimental
results are ihe average of several orchards.

assumption about the interaction between different prey types
as was discussed in the previous section.

A second level of verification concerns population experiments
of prey and predator in a larger but still small system with
well defined boundaries under controlled conditions, e.g. a
small appletree in a greenhouse. The comparison of such measure’
ments with simulated results indicates a reasonable correspon-
dence (Fig. 41) so that a third phase of verification is justi-
fied: the apple orchard. Some results of simulations for or-
chards and experimental results are given in Fig. 42. The
reasonable agreement increases the confidence in the model.
Verification on different levels facilitates pinpointing errors
in model structure or parameter values. Another important tool
in error spotting is sensitivity analysis, because it shows
which parameters have great influence and could thus be res-
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ponsible for deviations between measurements and results. The
results of a sensitivity analysis also help in deciding
research priorities. For instance sensitivity analysis shows
that in this model the abiotic mortality of prey and predator
are of minor importance. The most important factors are the
oviposition rate, the predation rate of the adult female
pPredator and the length of the juvenile period of the prey.
Also the gut content, especially when it is low, has a quite
important effect on the predator's rates of development and
reproduction. Experimental data on these relations are scarce
and inaccurate, so that more research in this direction is
required.

The model described may also be used for the development of a
Practical pest management method. Present-day crop growth models
can be combined with population models on phytophagous and
Predacious arthropods. After quantification of the relation
between host plant and phytophagous animal, these combined
models may be used for calculating reduction in yield. With a
pPreset limit for acceptability of yield reduction, threshcld
levels for the density of the harmful animal my be found.
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9 Solutions of the exercises

(:) The differential equations for the falling apple are:

The rate of change of the amount of electric chérge on a capaci-
tor is equal to its charging current and the potential across
the capacitor is equal to its amount of charge divided by 1its
capacitance, so that

de )
ac - /¢

By substituting i; = g.c) and i, = e).cy for the charging
currents of a first and second capacitor, the differential
equations for the falling apple are obtained.

(:) Our results are as follows:
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Fig. 43

In a first model of this system it may be sufficient to assume
that there are two variables of state, the distances; which
increase by the rate of walking of each child. There are two
independent rate determining processes: one in the mind of
each child who wants to stay side by side with the other. How-
ever, this model would not explain why the step sizes in the
beginning of the process are more variable than at the end.

It has to be realized that each child has a memory which is
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able to conserve the sizes of the step of the other. Each child
thus determines the step size to be taken not only on the dif-
ference in position but also on a 'normal step size for the
other child', figured from cdata conserved in memory. These
memorized data characterize also a state of the system. Hence

a more sophisticated model requires more than two state vari-
ables. Digital computers are much more suitable to memorize
such historical data than analogue computers and this is one

of the reasons why they are preferred to simulate complicated
state determined systems.

A is expressed in grams and GR in grams hour=1. Egn (2.1)
is only dimensionally consistent when RGR is expressed in
hour-!, For the relative growth rate to remain constant there
should be a constant amount of food and also of harmful waste
pProduct. This situation is achieved most simply by an abundant
food supply beyond saturaticn, and an entire removal of waste
products. Moreover environmental conditions such as temperature
must be kept on a constant level,

(:) The result is

TIME 0 2 4 6 8 10
A 1.000 1.221 1.492 1.822 2.226 2,718

The relation ketween the logarithm of the amount and time is
linear, since taking the leogarithm is per definition the inverse

of taking the exporent.
If

A = oRORXT

then
In(a) = RGR x T

in which 1n stands for the logarithm with base e.
It is recalled that

1010g(e) = 0.43429
Or that

e
log(10) = 1n(10) = 2.3026,

SO that

10

In(a) = 2,.3026 x " “log(A)
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(:) The results with DELT = 2 hours are:

TIME A RGR x A RGR x A x DELT
0 1.000 0.1 0.2
2 1.200 0.12 0.24
4 1.440 0.144 0.288
6 1.7280 0.1728 0.3456
8 2.0736 0.20736 0.41472
10 2.4883 '

(:) Some results with DELT equal to 1 and 0.5 hours are

TIME 0 2 4 6 8 10
A (DELT=1) 1.000 1.210 1.464 1.772 2.144 2.594
A(DELT=0.5) 1.000 1.216 1.477 1.796 2.183 2.653

Ag (=IA) being the initial amount, Ay equals Ay + Ay x DELT x RGI
after one time-interval and after two time-intervals

Ar = A) + Ay X DELT x RGR,

In general the relation

A =A (1 + DELT x RGR)
n n-1

holds.
Since A -1 can be written as the product of An 5 and
(1 + DEET x RGR)} and RGR is constant, the expresSsion can be

transformed into
n
Ap = Ap(1l + DELT x RGR)

This is the value of An at time n x DELT, so that

TIME/DELT
Anp = Ag(1 + DELT x RGR) ME/

or
X, RGRxTIME

Ap = Ag((1 + 1/X)7)

with X = 1/(DELTXRGR)

When TIME stays constant and DELT approaches zero, X approaches

infinity and the expression for A approaches to

eRGRxTIME

. A on

in which the number e is standing for

e = 1lim (1 + I/X)x = 2,7182

p G
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This is the so-called analytical solution for the differential
equation of exponential growth, which is just a standardized
way to write the procedure for a numerical solution.

(;) RGR is the only variable containing the dimension of time.
If RGR is expressed in hour™!, TIME assumes the dimension hour.
1f programs contain more variables with the dimension time,
care must be taken to use the same unit of time.

Of course it is always necessary to express variables in con-
Sistent dimensional units: a pitfall that is easily overlooked.

(:) See Fig. 1.

(:) The rectilinear method of integration always gives an under-
estimate when the integral shows an upward curvature as a
function of time. The accuracy of the estimate can be improved
by choosing a smaller value of DELT, but an underestimate

Cannot be turned into an overestimate in this way.

Our function looks as follows:

Fig. 44

(:) Compared with the scatter of the observational data, the
deviations between the smoothed curve and the straight segments
is small, so that it is unnecessary to use smaller temperature-
intervals in the tabulated function.
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sine (0°) = 0
sine (15°) = 0.259
sine (30°) = 0.5
sine (60°9) = 0,865
sine (90°) = 1.
The maximum temperature is reached just 6 hours from the begin-
ning of the day.

The rate of change of T is 1, so that TpupgrT = Ty + DELT
and because the initial value ' of T is zero, T = TIME.

@ The answers do not differ very much for different choices
of DELT, so that 0.5 hour seems to be a reasonable choice.

The relative growth rate is 0.1 at a temperature of 12.5 °C
and the temperature is maintained on this level by introducing

PARAMETER AVTMP = 12.5 , AMPTMP = O,

O T 1
O 1 - DELT 2

Fig. 45
An acceptable relative error of 5 percent means that
L*RGR2*DELT*TIME must be 0.05 at most. With RGR = 0.1, TIME = 1

the maximum value for DELT is 1. According to the graph that
was plotted in Exercise 15, the maximum value of DELT is
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1.2 hour. The agreement between both methods is reasonable.
The difference is due to the neglect of the higher order terms
in the derivation of the equation for the relative error.

(:) The listing of the program is

TITLE RELATIVE GROWTH RATE TEMPERATURE DEPENDENT
INITIAL
COUNT1=0.
COUNT2=0.
DYNAMIC
A=INTGRL(IA,GR)
GR=RGR*A
INCON IA=1.
RGR=AFGEN(RGRTB,TEMP)
FUNCTION RGRTB=(0.,0.),(10.,0.08),(20.,0.16),(30.,0.21),...
(40.,0.24),(50.,0.25)
PARAMETER AVTMP=20.,AMPTMP=10.
TEMP=AVTMP+AMPTMP#SIN(6.2832+TIME/24.)
NOSORT
COUNT1=COUNT1+1.
COUNT2=COUNT2+KEEP
TIMER FINTIM=48.,0UTDEL=2.,PRDEL=2.,DELT=0.5
PRINT COUNT1,COUNT2
OUTPUT A,RGR,GR
METHOD RECT
END
METHOD TRAPZ
TIMER DELT=1.
END
METHOD RKSFX
TIMER DELT=2.
END
METHOD RKS
END
STOP

ENDJOB

The results at time 48 are

RECT TRAPZ RKSFX RKS
DELT=0.5 DELT=1. DELT=2. aut.
A 1034.1 1330.3 1367.7 1368.4
Counri 98 98 ag 180
COuNT2 97 49 25 19

We must assume that the results obtained with the automatically
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adapting method RKS are the most accurate. To get this result
the program was executed (‘'updated') 180 times, and 19 time
intervals of integration were required to cover the total
simulation period of 48 hours. On the average almost ten cal-
culations of the program are needed for each time step. This
number drops to four with RKSFX, to two with TRAPZ and to one
with RECT. Therefore the number of times the program was cal-
culated was the same in these three runs with DELT = 2, DELT = 1
and DELT = 0.5, respectively. With the same computational
effort method RKSFX, a Runge-Kutta/Simpson method with fixed
interval of integration, gives by far the most accurate results,
the next is TRAPZ and RECT scores the worst. The deviation

with RECT is of the order to be expected. On the average the
relative growth rate was 1ln(1368)/48 or 0,15, With DELT = 0.5
and TIME = 48 the relative error is 0.27, so that the result
should be about 1000. RGR was varying, but still this estimate
for the relative error is quite reasonable.

It was said that two rates do not depend on each other, but
not that one rate cannot depend on the other. Here, the rate

of growth and the rate of alcohol production are consequences
of the same process: the biosynthesis of yeast material out of
sugar. Therefore, there is a fixed ratio between rate of growth
and rate of alcochol production. The rate of sugar consumption
is stochiometrically related to the above two rates: laws of
conservation of matter, energy etc. can be formulated in such

a way that some rate of appearance always equals some rate of
disappearance.

The rate of sugar consumption is equal to a sugar consump-
tion factor times the rate of yeast growth for each species.
The amount of sugar is an integral which is emptied by both
rates. The amount or concentration of the sugar in the medium
should feed back on the growth rate of the yeasts. The quanti-
tative aspects of this feedback are not presented in the diagrar

QZ) RED1=ALC/MALC, as here 0<ALC<MALC.
Otherwise, RED]1 should be given by

RED1=LIMIT(0.,1.,ALC/MALC) .

The best estimate of RGR1 is obtained by presenting the
amount of yeast during early growth on a logarithmic scale
against time and drawing a straight line through the data.

The value is about 0.2 hour~l. The value of ALPF! is the alcoho.
concentration at the end, divided by the amount of yeast newly
grown or 1.5/(13.-0.45) = 0.12 percentage of alcohol per unit
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of yeast. The alcohol production factor depends on the size of
the vessel. In a larger vessel, the same amount of alcohol
would cause a smaller percentage. It would be more elegant not
to mix up the influence of physiological aspects (alcohol pro-
duction rates) with experimental aspects (vessel size), but
Gause did not give the latter. The alcohol percentage corre-
sponding with the initial amount of yeast is ALPFl x IYl, but
Gause did not add this alcohol with the yeast at time zero.
Relevant figures for Schizosaccharomyces are:

RGR2 = 0.05 hour—!, ALPF2 = 0.26 (% alc.) (unit yeast)™!
Schizosaccharomyces has the largest alcohol production factor.

Here Saccharomyces would grow more slowly and Schizosaccha-
romyces faster than suggested by a linear dependency of the
reduction factor on the alcohol concentration. In the monocul-
tures, this deviation from the linear dependency would not
affect the ultimate amount of yeast that is formed, but in the
mixture it would lead to less Saccharomyces and more Schizo-
saccharomyces. However, the growth curves for the two species
in the monoculture would also be of different form. The scatter
in the data is too large to detect a difference of this kind.
The alcohol concentration in the mixture may be calculated by
multiplying the final yields with the respective alcohol pro-
duction factors. A concentration of 1.43%, rather than 1.5% is
then calculated. Hence, there is less yeast in the mixed culture
than would be expected.

(:) The yeast will grow and increase its amount, and thereby
its growth rate and alcohol production rate, until the alcohol
concentration approaches 1.5%.

In this situation an infinite amount of yeast will maintain a
growth rate which is just sufficient to produce the alcohol
that is continuously removed by washing. The removal rate of
alcohol is 1.5/10, and the absolute growth rates are obtained
by dividing it by the alcohol production factor. This rather
ridiculous result is obtained because of the assumption that
the maintenance of yeast cells does not need energy and thus
dces not result in some alcohol production. Obviously, a simu-
lation program which is satisfactory in some situation is not
Satisfactory in others because simplifications that apply in
One situation do not necessarily apply in another.

YM equals MALC/ALPF. Since ALPF was calculated from YM, it

1s not surprising that the YM equals 13 and 5.8 for the species.
The first derivative of c/v equals (—c/vz) x (dv/dT), when c
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is a constant, so that the first derivative of Eqn (3.7) is:

- -RGRxT
QX_= M X (-K X RGR x e )

dT | , k x o FORXT)2

The two minus signs cancel, and part of the expression can be
replaced by Y itself:

~-RGRXT
dy _ v x KX RGR x e
- -RGRxXT
dT (1 + K x e RORXT,
K x e-RGRxT
The fraction can also be written as
-RGRXT
(1 + K x e )

1

(1 + Kx e

i -

-RGRXT
Substituting Y for a second time gives

dYy _
-(.iTI'- = RGR X Y x (1 Y/YM)

In this way the differential equation (3.6) is again arrived
at. The initial amount of yeast can be found by substituting
for time the value zero into the integrated equation (3.7).
This gives:

YM

I = I TK

The differential equation for the rate of alcohol production

can only be replaced by the integral equation for the amount

of alcohol if the initial amounts of yeast are small. Otherwise,
the appropriate amount of alcohol, ALPF x IY, has to be

added together with the initial amount of yeast if the analytical
solution is to be used. Such restrictions do not hold in the
simulation program because no equations are eliminated there.

If we again neglect the initial amounts of yeast, the amount
of alcohol in the mixed culture is given by

ALC = ALPFl x Yi + ALPF2 x Y2

Assume that RED = ALC/MALC for both species, then the growth
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rates may be formulated as

dy1 ALPF1 x Yl ALPF2 x Y2
ar = Y1 x RGR1 x {1 - = - Twie )
dy? ALPF1 x Y1  ALPF2 x Y2
T - Y2 X RGR2 x (1 - C ~ T MALG )

Rl and R2 correspond to RGR1 and RGR2, Al and A2 are equal to
ALPF1/MALC and B! and B2 to ALPF2/MALC. Al and A2 are equal
because it is assumed that Y1 and Y2 are equally sensitive to
the alcohol produced by Y1. If Y! produces some product that
is more harmful for Y2 than for Y1, A2 is larger than Al,

The denominator kj)pz3+z; cancels by division, so that Eqn
(4.4) is obtained. Addition of O;/M; and 03/M; gives

(k1221 + 22)/(k1221 + 22) = 1 so that Eqn (4.3) is obtained.
The results of the calculations are:

z, 0.2 0.4 0.6 0.8
RY, 0.353 0.665 0.820 0.882
RY_ 0.704 0.358 0.198 0.082
RYT 1.06 1.02 1.02 0.96
z RYb
k= O x 2.01 2.79 2.76 2.69
o z RY

M
a = , 2.06 2.01
bo~ Xug D 1.50 2.08

MO

Obviously some smoothing is necessary to cobtain a RYT equal

to 1 and a constant relative crowding coefficient,.

Oats has the highest yield in monoculture, but barley gains

in competit

ion.

(:) Replacing z; and z; by 2172m and Z,/2n, taking into account
that 2| + 2, = 2, and omitting the subscript 1 transforms Egn

(4.5) into

0O =

k x Z/Zm

X x 2/2 * (Z; - 2)/7n

M=

k x 2

M

(k - 1) x2 + 2n
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This equation must be equal to

B x

Z

=5 X 2Z + 1 Om
Hence B equal to (k-l)/zm and 0m to _:iM'
100 = — — — — OM— — — — —_
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Fig. 46
Lim(0) = 0m
Zoo
Lim(0/Z) = Lim O, = B x Op,
750 70 Bx2z+1 0
B x Z
Lim(0/Op) = Lim =B x 2 .
70 20 Bxz+1
Z
Lim(0/0_) = Lim X =1
7-pos m 2300 Bx2Z +1
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Barley Oats

Om B Om B
7 June 470. 0.083 761. 0.0297
21 June 612, 0.574 552. 0.346
S5 July 780, 0.778 724, 0.571
19 July 1132, 0.778 956. 1.17

B has the dimension m row"l, because the seed density has the
dimension row m~!. The calculated values of Op (g m~%) are very
inaccurate for the first harvest because the yields are very
far from their maximum at both densities.

The product B*O, is then quite accurate, because the denomina-
tor in Eqn (4.6) is still close to 1. As pointed out before,
B*O,, is the yield of a single growing plant.

When linearized the growth rate of Op for barley and oats are
16.4 and 14.5 g m~2day~!, so that the estimated values for O
at the first harvest are 377 and 333 g m~2. The values of B
calculated on this basis are 0.11 and 0.076 m row™1.

The intercept with the ordinate gives Om"l, and with the
abscissa -B. A disadvantage is that the standard error o is
distorted because o of 1/0 equals ¢ of O divided by 02.

It is therefore advisable to present the experimental results
in two ways: 1/0 versus 1/Z and O versus Z and to arrive at
acCeptable parameters by an iterative procedure, going from
One graph to the other.

D

d(RS) _ d(Bxz)/dt x (Bxz+l) - d(Bx2z+1)/dt x B X Z

ac (Bxz+1) 2 B
dB dB dB
2 x — — -Zx—XxBx2
_ 2 dthxz+Zxdt X3¢ X BX _
(BxZ+1)2
~« B x 2 1 1 dB 1 dB
e — — = lo-Rs X
(BXZ+1) X (BxZ+1) X B X dt RS x ) % B dt

The dimension of (dB/AT) /B is time™ !, the same as a relative
9¥owth rate. Usually its value decreases with time. There is
€xXponential growth when this ratio is constant.
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The initial relative growth rate becomes infinite, if B is
zero at emergence. The derivative of a variable with respect
to time is calculated as the difference between the present
value and the value either one sufficiently small time~interval
earlier or one ahead, divided by this time-interval, taking
care for the sign. In simulation only the first method can be
used, as future values are not known. At time zero, however,
the past is not known either so that the initial value must be
given by the programmer on an INCCN card.
The use of the derivative function DERIV is only allowed, if
the derivative is taken of an externally given variable, such
as an AFGEN function of TIME. In this situation the simulation
program is used to convert some given variable time to its
derivative with respect to time. As soon as some rate of an
integral depends on a derivative of a variable which depends
also on some integral, the DERIV function must not be used.
Its results are nonsense, because an internal, algebraic loop
is introduced. '
When the self-adapting integration method of Runge-Kutta is
used, the time-interval will be chosen so small that the choice
of the initial value has hardly any influence. With METHOD RECT
it is better to initialize properly. We calculated the followin
initial values of the derivative of B:
Barley: 0.0047 m row~! day~!
Oats : 0.0033 m row~! day~!

The initial values of RS are calculated with
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B x 2

RS =
Bx2 +1

with 2 = 2 rows m~! and B = 0.001 m row-!.
The simulated results in g m~2 are:

Date of Barley Oats

harvest
7 June 60.5 37.1
21 June 242 140
5 July 338 214
19 July 490 338

These are in good agreement with the experimental results of

TITLE FOUR COMPETING YEAST SPECIES
INITIAL

INCON YI'1,4'=0.1,0.1,0.1,0.1
DYNAMIC
Y'1,4'=INTGRL(YI'1,4',RY'1,4")
RY'1,4'=RGR"'1,4'*Y"'1,4'*(1.-RED'1,4")
PARAMETER RGR'1,4'=0.1,0.3,0.4,0.5
RED'1,4'=AFGEN(RDTB'1,4' ,ALC)
FUNCTION RDTB1=0.,0., 1.5,1.
FUNCTION RDTB2=0.,0., 1.,0.8,2.,1.
FUNCTION RDTB3=0.,0., 0.9,1.
FUNCITON RDTB4=0.,0.,1.,0.5,1.5,1.
ALC=INTGRL(O. ,ALCPT)

ALCPT=SUMI (ALCP'1,4")
ALCP'1,4'=ALPF'1,4'xRY"'1,4"
PARAMETER ALPF'1,4'=0.5,0.4,0.3,0.2
TIMER FINTIM=50.,PRDEL=1.,0UTDEL=1.
PRINT Y'1,4',ALC

END

STOP

ENDJOB

(:) The main differences between the MACRO and the INDEX
features are simply of a practical nature. The index feature
diStinguishes the variables by a number at the end. Since a
Varjable name may consist at the most of six alpha-numerical
Symbols, ABCDE'1,10' creates also the variable ABCDE10 and this
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is an unacceptably long name. The INDEX feature can be used to
any single expressicn that is normally used in the program.

The MACRO feature is unsuitable for this purpose, because every
time a MACRO is used, the invoking sentence has to be written.
Hence, the only expression in a 'one line macro' may be as well
written directly with the proper symbols. The MACRO feature is

 therefore in general used only when the MACRO definition con-

tains more than one structural statement,.

A subroutine is invoked in the execution phase, that means
after compilation and loading of the FORTRAN program. A MACRO
on the contrary is active before the compilation. A MACRO is

an order to write a part of a CSMP program, and only afterwards
is the program compiled and executed. Even the sorting is done
after activation of the MACRO, so that the statements that occur
together in the MACRO, may be scattered all over the FORTRAN

UPDATE.

(:) The initial value of RS can be calculated with Eqn (4.7).
When numerator and denominator are both divided by Z, RS is
written as B/(B + 2~1). Here the inverse of the seed density
is equal to the distance between the rows, so that RS is given
by B/(B + DIST). The initial value of B is much less than 1 cm
per row in this example, so that RSI may also be written as
BI/DIST. As pointed out in Exercise 33, DB need not be ini-
tialized very accurately so that the average value for DB
during the first DELT is certainly good enough.

Numerator and denominator are both propertional to DELT, so
that DBI is independent of DELT as long as DELT is small enough-
Thus no proilems occur with METHOD RKS.
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TITLE COMPETITION BETWEEN THREE BARLEY VARITIES USING THE MACRO FEATURE

MACRO RS],DBI=BEGIN{BTB,DIST)
RSI=BI/(BI+DIST
BI=AFGEN(BTB,0.
DBI=(AFGEN{BTB,DELT)-BI)/DELT

ENDMAC

MACRO 0,RS=GROWTH(RSI,D81,BTB,0MTB)
RS=INTGRL(RS!,{DB/B)*RS#(1.-5RS))
B=AFGEN(BTB,TIME)
08sDERIV(DBI,B)
0=RS*AFGEN{OMTB, TIME)

ENDMAC

INITIAL
RSI1,0BI1=BEGIN(BTB1,0IST1)
RS12,DBI2=BEGIN(BTB2,01ST2)
RSI3,DBI3=BEGIN(BTB3,D15T73)

DYNAMIC
01,RS1=GROWTH(RSI1,0811,8781,0MTB1)
02,RS2=GROWTH{RSI2,DBI2,BTB2,0MTB2)
03,R$3=GROWTH(RS13,0813,8783,0MTB3)

PARAM DIST1=1.2,01S72=1,2,01573=1.2
SRS=RS1+RS2+RS3

FUNCTION BTBI‘(O- '01001).(300|004).(700 DS-)

FUNCTION BTBZ*{O..0.0005)-(30...02).(70..2.5)

FUNCTION BTB3=(0.,0.001),(30.,.04),(70.,5.)

FUNCTION OMTB1(0.,0.),(70.,5600.)

FUNCTION OMTB2<{0.,0.),(70.,5600.)

FUNCTION OMTB32(0.,0.),(70.,2800.)

TIMER FINTIM=70.,PRDEL=5.,0UTDEL=5.

PRINT 01,02,03,SRS

OUTPUT RS1,RS2,RS3

END

sToP

ENDJOB

TITLE COMPETITION BETWEEN THREE BARLEY VARIETIES USING THE PREPROCESSOR

INITIAL
RSI'1,3'=BI'1,3'/(B1'1,3°4DIST'1,3")
BI'1,3'=AFGEN(BTB'1,3',0.)

DBI'1,3'=(AFGEN(BTB'1,3*,DELT)-BI"]1,3"')/DELT

DYNAMIC

RS'1,3'=INTGRL{RSI'1,3",(D8'1,3'/B'1,3"')*RS"1,3"#(1.-5RS))

B'1,3'=AFGEN{8TB'1,3',TIME)
DB'1,3'=DERIV{DBI'1,3',8'1,3")
0'1,3"=RS'1,3 «AFGEN{OMTB'1,3' ,TIME)

PARAM DIST'1,3'+1.2,1.2,1.2
SRS=SUM1{RS'1,3")

FUNCTION 8TB1=(0.,0.001),(30.,.04),(70.,5.)

FUNCTION BTB2=(0.,0.0005),(30.,.02),(70.,2.5)

FUNCTION BTB3=(0.,0.001),(30.,.04),(70.,5.)

FUNCTION OMTB1=(0.,0.),(70.,5600.).

FUNCTION OMTB2=(0.,0.),{70.,5600.)

FUNCTION OMTB3=(0.,0.),(70.,2800.)

TIMER FINTIM=70.,PRDELsS, ,0UTDEL=5.

PRINT 0°1,3',5RS

OUTPUT RS'1,3"

END

STOP

ENDJOB
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Thorough stirring does not result in a uniform distribution
of the Paramecium throughout the liquid medium, but in a random
distribution. One-tenth of the solution therefore contains
sometimes more or sometimes less than exactly one-tenth of the
number of protozoa. .

Variable Dimension Type of 'variable'
H protozoon state

AFOOD loop state

TIME day state

CONVF prot.IOOp'1 param,

RDR day"1 param.

FOQD 100p.volume'1 auxil.

RSW volume.prot.'l.daY-l param,

MRDIG loop.prot.'l.day" param,

CNRT loc'p.day‘1 rate

The example of the relational diagram in Fig. 40 is as schematic
as possible.

A simplified integral statement for the net growth rate is:

H = INTGRL(IH,CONVF x CNRT - RDR x H)

if a relative death rate is accounted for and

H = INTGRL(IH,CONVF x (CNRT - MNF x H))

if maintenance is accounted for by a maintenance factor

(MNF in 100p.day‘1.protozoa Ly,

The two formulations are the same with

RDR = CONVF x MNF
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The graph consists out of two line segments: a straight
line through the origin and a horizontal ‘saturation®' level.
MRDIG determines the height of the saturation level. The slope
of the line through the origin is determined by RSW, and H is
-4 multiplication factor for the height of the graph as a whole.
CNRT equals zero when FOOD is zero. NGR equals zero when

CNRT x CONVF = DR

or

H x AMIN1 (MRDIG,RSW x FOOD) x CONVF = H x RDR
or
AMIN1 (MRDIG,RSW x FOOD) = RDR/CONVF

The maximum value of the left side of the expression is MRDIG.
If the value of the right side is even larger than MRDIG, no

Value of FOOD exists for which NGR equals zero. In other words,
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the rate of death could be larger than the rate of growth, even
if the animals were eating at the top of their consumptive
ability. Then rapid extinction would follow, so that there is
no need to consider this situation. If, on the other hand, the
expression on the right is less than MRDIG, the equation may
be simplified to

H X RSW X FOOD X CONVF = H x RDR

or

RDR

FOOD = oW = CONVF

This equilibrium level of FOOD is independent of the number of
protozoa H. This is logical because each animal catches its
food on its own.

In Exercise 41 it is said that the basic unit to measure
volumes is the volume of the test tube, and not cm3. This
convention must be maintained throughout the simulation program.
Numerically there is no objection to eliminate AFOOD and to
write directly: :

FOOD = INTGRL(L,FEED - CNRTA = CNRTC)

However, the dimensions of the variables are then not consistent:
FOOD sometimes means amount of foocd, as here in the integral,

and sometimes it means density of food, as in the expression

for CNRT.

@ In this program discontinuous changes occur. Rates are
calculated as contents divided by DELT. Such situations cannot
be handled with METHOD RKS (see also Section 2.4).

Four parameters must be estimated for each species. If the
order of magnitude of none of the parameters is known, one may
start by estimating four values for each parameter of which

the largest is 10 000 times the smallest. Then in a first evalu-
ation as many as 4% = 256 simulation runs are needed.

Since the data scatter considerably your estimates may
differ from those in the following table,
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P.aurelia P.caudatum

0.5 loop 1 loop 0.5 loop 1 loop
Heq 2500 4500 600 1290
GR.7¢ 350 550 100 230
RGR 1.23 1.23 0.74 1.05
CONVF 2800 2200 800 920
RDR 0.46 0.39 0.57 0.61
MRDIG 0.00064 0.00078 0.00176 0.00191
RSW 0.00128 0.00156 0.00176 0.00191

Averaging of thé values for 0.5 and 1 loop, and taking into
account that P.caudatum is about four times larger than P.aurelia,
leads to the following estimates of the parameters:

P.aurellia P.caudatum
CONVF 3000 750
RDR 0.43 0.59
MRDIG 0.0007 0.0028
RSW 0.0014 0.0018

Some of the reasons why these estimates may be considerably in
error are:

a the scatter of data;

b the population size in the end is not always at Hgq4, but
varies throughout the day so that the two equations with Heq
in it are not strictly valid;

Cc it is not certain whether in the beginning the saturation
density of food is reached or not. The assumption that it is
not so leads to a set of equations in which MRDIG is larger
than RSW and which provides different values for RSW;

d in the beginning the density of food varies also throughout
the day, so that growth is not exactly exponential;

e the whole concept, vizualized in the simulation program may

be wrong.

Other parameters being equal, a difference in the relative
death rate of 10% causes a difference of only about 8% in the

maximum size of the populations for the monoculture. In the
mixed culture, however, it is just this 10% difference that
makes for survival of one species and extinction of the other;
after several days the difference in the population size is

much larger than 8%. The same argument holds for the other param-
eters. Our best estimates are given in Table 4. Almost the
Complete program is presented in the text, so that finalizing

it, should not give any difficulties.
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The food consumption (CNRT) is proportional to the number
of protozoa (H) and to the minimum of the maximum rate of di-
gestion (MRDIG) or the food concentration times the rate of
searching (FOOD x RSW). The food consumption is proportional to
H, when FOOD exceeds MRDIG/RSW or when FOOD is constant. FOOD
is constant in the beginning, because the consumption is small
compared with supply. Since the death rate is also proportional
to H, exponential growth results at the beginning of the experi
nent.

At the end of the experiment the population grows very fast
just after feeding. As soon as the food level is below

RDR/ (RSW x CONVF), the death rate is larger than the growth
rate (Exercise 42). When the food is depleted below this criti-
cal level, the population size goes through a maximum, and will
be smaller at the end of the day than some time earlier.

The relative death rate is about 0.45 clay"'1 and the relative
sampling rate approximately 0.1 day'l, so that death through
natural causes is far larger than through sampling. It is
interesting to remark that Gause did not only discard the
sampled amount for practical reasons, but also because he was
(unnecessarily) afraid that the natural death rate would be

so small that one species would not replace the other in com-
petition.

According to the Poisson distribution function, the standar
deviation is the square root of the sampled number so that the
relative standard deviation is inversely proportional to this
square root. The population of P.aurelia is about four times
larger than of P.caudatum, so that its relative standard devia-
tion is about half, as reflected in the scatter of the obser-
vations.

a At 14 ©°C the function DVRTB is interpolated between the
points (12.,0.) and (26.,0.035); so that DVR is 0.005 day !
Accordingly, the development stage at 20 days is 0.1.

b DVR equals 0 at 7 ©C and 0.0225 day"1 at 21 °c, The develop-
ment stage at 20 days is 20 x 0.5 x 0. + 20 x 0.5 x 0.0225

or 0.225. | '

In both situations a and b, the average temperature is 14 oC,
but development is much faster in b because of the varjiation

in the temperature, combined with a more than linear temperatur
response.

¢ At 30 °C the rate of development is 0.039 day~!, so that at
20 days a development stage of 0.78 is reached.

d At a temperature of 40 ©C DVR equals 0.041 and at 20 °c
0.020. Therefore, DVS after 20 days is

20 x 0.5 x (0.04 + 0.020) = 0.61. This value is less than in
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situation c, although the average temperature was the same in
this period. Here the variability has caused a decrease in
development, because of the less than linear temperature res-

ponse in this region.

With a constant relative death rate RDR, and no birth, the
population as a function of time is

H = HI x e-RD IME

as derived in Section 2.1. When RDR has the dimension year'l,
the total death during the first year amounts to

HI x (1.-e_RDR)

so that the relative annual death rate equals

1.-e_RDR

For small values of RDR this approaches RDR. When RDR is 0.02

the error is only 1%.
When RDR is zero and the relative birth rate equals RBR, the

size of the population is

H=H1xeRBR

after one year.
The relative annual birth rate is then

e -1.

The integration routine METHOD RECT must be used because a
division by DELT occurs in the expression for the rates.

The data of set 1 must be used. The time interval of inte-
gration is a half year because the IMPULS function works at
2.5, 7.5 etc. years. The birth and death rate data can also be
used when time-intervals smaller than one year are applied but
for large time-intervals they have to be recalculated on that
basis. It is a good custom in the Netherlands to maintain graves
for a limited period of time. Therefore, the question as to
the number of graves may be relevant. To calculate the number
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of graves another series of at least ten classes of five years
must be introduced. The birth rate of the graves equals the
death rate of the population and the 'relative death rate' of
graves is zero.

Demographically, there is hardly any difference between death
occurring during the first years of life and a decrease in
birth rate corresponding with the death rate in excess of the
'normal' death rate during the first year. However, if this
correction is made, it must be taken into account that the
chances of dying during the first year are not the same for
boys and girls, so that the sex ratio has to be corrected
accordingly.

The total male and female population after 50 years equals
10.49 x 10®% and 10.39 x 106, respectively and the total number
of graves are 1.853 x 10°, 4.340 x 10® and 7.528 x 10°® when
maintained for 10, 25 and 50 years.

The simulation program for the growth of the population is
given in Fig. 41. The simulation of the number of graves is
programmed in Exercise 61.

The birth rates and death rates per thousand are recalculated
on a relative basis in a NOSORT section because statements of

the form:
MRDR1=MRDR1*-.'....l......o

cannot be sorted (Section 2.3).
It would have been also possible to rename the variables.

GS =1 means that all seeds are germinated. Simulation beyon
this point does not make sense, as far as germination is con-

cerned.
The termination of the program is achieved by inserting a
finish card: FINISH GS = 1.

TITLE GROWTH OF THE NETHERLANDS POPULATION

PARAM WRDR'1,19'=11.4,1.2,.3,.3,.4,.4,.6,1.,1.5,2,5,4.,5.5,8.,13., ...
20.,50.,120.,250.,500. .

PARAM MRDR'1,19'=15.6,1.8,.5,.5,.7,1.,1.2,1.5,2.2,4.,6.5,9.,11.5, ...
16.,35.,70.,150.,300. ,600.

INCON WI'1,19°=291.,584.,570.,548.,548.,487.,400.,380.,379.,377., ...
353.,327.,310.,262.,226.,180.,110.,50.,33.

INCON MI'1,19'=305.,612.,597.,575.,576.,517.,429.,399.,382.,367. ,
338.,306.,280.,223.,184.,150.,90.,40.,13.

PARAM RBR'1,16'=4¢0.,.091,.159,.152,.084,.036,.01,60.

PARAM SEXR=1.048

INITIAL
FRBOY=SEXR/{1.+SEXR)
FRGIRL=1./(1.4SEXR)

NOSORT

152



+CONVERSION OF DEATHS PER THOUSAND PER YEAR TO RELATIVE DEATH RATES
MROR'1,19°=-ALOG{1.-0.001¢MRDR'1,19")
WRDOR'1,19'=-ALOG(1.~0.001+WRDR"'1,19")

» INITIAL CONSTANTS WERE GIVEN IN THOUSANDS:
Wi'1,19'=1000.+W1'1,19'
MI'1,19'=1000.+M1'1,19'

DYNAMIC
M1=INTGRL(MI1,MBR - M1#MRORL - MFL1)
W1=INTGRL(WI1,HBR - W1eWROR1 - WFL1)
M'2,19' = INTGRL(MI'2,19" MFL*1,18"-MFL'2,19"-M"'2,19"«MRDR"2,19")
W'2,19°=INTGRL(WI'2,19° WFL'1,18'-WFL'2,19"-W'2,19'sWRDR'2,19" )
TBR=SUMX{W'1,16' ,RBR'1,16")
WBR=FRGIRLSTBR
MBR=FRBOY«TBR
WFL'1,19'=PUSHD#(W'1,19° - WRDR'1,19'sW'1,19"eDELT)
MFL'1,19°=PUSHD#({M'1,19* - MRDR'1,19'sM'1,19'#DELT)
PUSHD=PUSH/DELT
PUSH=IMPULS(2.5,5.)
TW=SUM1(K'1,19")
TM=SUM1(M'1,19°)
TPaTM + TW

METHOD RECT

TIMER FINTINa50.,DELT=,5,0UTDEL=5. ,PROELsS.

PRINT TP,TW,TM,TBR,M'1,19° ,W*1,19"

OUTPUT TP,TW

END

STOP

ENDJO8

Fig. 49

It is a rather arbitrary choice to give the value 1 to the
stage of germination; it could just as well be 1000. Whatever
the value, it is passed going through N classes. Accordingly
each class covers the chosen germination value divided by N.

(:) The simulation program may read as follows.

PARAMETER N=10

H1=INTGRL(1000., - FLOW2)
H'2,10'=INTGRL(O.,FLON'2,10" - FLOW'3,11')
FLOW'2,11'=H"'1,10"*PUSHD

PUSHD=INSW(GS - 1./N,0.,1.)/DELT
GS=INTGRL(O., VDV - PUSHD/M)

PARAMETER VDV=0.143

METHOD RECT

The seeds germinate at 1./0.143=7.0 days.
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The average germination period is not necessarily the mo-
ment when 50% is germinated. When G is the rate of germination,
the mathematical definition of the average germination period
is:

»_JoGxTxar
f: G x 4T

AG

To execute this calculation, the curve is divided into sections
of one day and the formula

27 27
AGP = ) Gp x Tp/) Gp
n=0 n=0

is used, in which n is the number of the day.

Because the cumulative curve adds up to 100%, the denominator
in this formula is 100. AGP appears to be 16.4 day.
Similarly, the formula for the variance (the square of the
standard deviation) is:

27 27
VAR = ) Gp x (T, - AGP)2 /) Gn
n=0 n=0

This value is 11.91, so that the standard deviation is 3.45 day.

It is assumed that germination on the nth day means germi-
nation at the beginning of the nth day. The average germination
periods in days are then: 100 x 5/100 = 5, 100 x 10/100 = 10,
(50 x 5 + 50 x 10)/100 = 7.5, (75 x 5 + 25 x 10)/100 = 6.25.

If it is assumed that germination occurs during the nth day,
0.5 day must be added to these values. The dimension of the
relative germination rate is day"1 and of the average germi-
nation period is days. The product is therefore dimensionless.
Its value appears to be approximately one.

The average germination period is

1 HI
AGP = ~-——jo T x ——-x aT = — 3" T x aH

The integral is the area below the H versus T curve, so that
the expression can be replaced by
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1 (o 1 o -RDVXT
AGP:E-I-IO H x 4T =T‘I_If0 HI x e x dT

-— W Semge———

RDV

~RDVXT [= 1
e a—
0 RDV

Hence RDV x AGP = 1.

The time constant of each integral is found by reducing
its equation to (Section 2.3).

H; = INTGRL (HI;, Hi/TAUi + all other influences)

For all integrals TAU appears to be equal to REST, so that
the time constant of the whole system is also equal to the
residence time in each class.

According to Eqn (6.2), F should be negative. Obviously
the number of classes that is chosen is too large to obtain
a relative dispersion of 0.25. With N = 16 and F = 0, the
proper dispersion is obtained.

TIME H1 H2 H3 H4
0 1 0 0 0
0.5 x REST 0.5 0.5 0 o)
1.0 x REST 0.25 0.5 0.25 0
1.5 x REST 0.125 0.375 0.375 0.125

This table satisfies the binomial probability distribution
function.

B equals TIME/(F x REST) and f equals F, so that f x B = TIME/
REST. With f x B small and constant and B increasing, the
binomial approaches the Poisson distribution function.

This situation is achieved here when the lowest value of F i.e.
DELT/REST is substituted in the expression for B, and DELT
approaches zero. Then B equals TIME/DELT and approaches infinity.
The expectation value and the variance of the Poisson distri-
bution are £ x B and (1 - f) x £ x B or in the other terms
TIME/REST and (1 - F) x TIME/REST. To convert the variance in
terms of time, rather than class, the expression must be multi-
plied by REST?. Then S2 pecomes (1 - F) x TIME x REST which
reduces into Eqn (6.2) when TIME is replaced by AGP. It is also
recalled that for high expectation values the Poisson function
approaches the Gaussian function with a variance equal to the
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expectation value of the mean.

The age-classes are now indeed 0-5, 5~10, 10-15 etc. so that
set 2 with the class centres at 2.5, 7.5, ... years must be
used., The residence time is 5, and the value of F is of course
1 because age-classes advance per definition without dispersion.
The simulation program, including the number of graves is given
in Fig. 42.

The net flow rate of the first layer, NFL1, is calculated
as FLWl ~ FLW2. The choice of the signs means that FLWl1 goes int
into the first (and topmost) layer and that FLWZ2 leaves it.
Therefore the direction of the flow is downwards. Of course,
upward flows are also possible but then they are negative.

This rule for the sign must be taken into account when the
expression for FLW is written.

The flow into the first layer is governed by the temperature
difference between the surface of the soil and the centre of

the first layer. The distance between these levels is only half
of the thickness of the compartment.

The unit of time is second, as follows from the definition of
TMPS. Every time the argument of a sine has the value 27

(= 6.2832), a full cycle is completed.

TAV represents the average temperature of the soil surface, and
TAMPL 1is the amplitude of the sine wave.

Variable Dimension
TMP,TI,TMPS,TAV, TAMPL Oc

TCOM m

VHCAP J m—3 ©c
HC,HCI J m—2

COND J m~! oc-lg-d
FLW, NFL J m? s-!

It is extremely important to be aware of the units, as the
numerical value of the properties depends on the units. It is
recomnended to use a consistent set of units: the interna-

tional system with kg, m, s,

The easiest method is to specify the conductivity and the
heat capacity as a function of depth in an AFGEN function.

A new variable for depth, DPT must then be introduced, whereby
DPT1 equals 0.5 x TCOM, etc. Also TCOM can be varied with the
number of the layer. TCOM1l, TCOM2, etc. must then be specified.
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TITLE GROWTH OF THE NETHERLANDS POPULATION II
PARAM WRDR'1,19'=4.0,.8,.3,.3,.4,.5,.8,1.2,2.,3.2,4.7,6.7,10.5,
16.5,35.,85.,180.,380.,760.

PARAM MRDR'1,19'=6.0,.7,.5,.6,.9,1.,1.4,1,8,3.1,5.2,7.8,10.7,13.7,...

25.5,%2.,110.,200.,400.,900.

INCON WI'1,19'=582.,587,,553,,543.,554,,420.,380.,381.,378.,376., ...

330.,323.,298.,226.,226.,150.,70.,25.,13.

INCON MI*1,19'=611.,613.,580.,569.,583.,452.,405.,393.,371.,362., ...

314.,297.,262.,184.,184.,120.,60.,20.,3.
PARAM RBR'1,16'=3+0.,.022,.137,.188,.113,.055,.016,.002,6+0.
PARAM SEXR=1,048

INITIAL
FRBOY=SEXR/(1.+SEXR)
FRGIRL=1./{1.4SEXR)

NOSORT

* CONVERSION OF DEATHS PER THOUSAND PER YEAR TO RELATIVE DEATH RATES
MROR'1,19'=-ALOG(1.~0.001+MRDR"'1,19")
WRDR'1,19°'=-ALOG(1.-0.001sWROR"'1,19")

» INITIAL CONSTANTS WERE GIVEN IN THOUSANDS:
W1'1,19'=1000.sW1'1,19°
MI'1,19'=1000.#MI1'1,19'

DYNAMIC
MO=INTGRL(0.,MBR - MFLO)
WO=INTGRL(0.,WBR - WFLO)
M1=INTGRL{MI1,MFLO - MFL1 - DRM1)
W1=INTGRL(WI1,WFLO - WFL1 - DRWI1)
M'2,19'=INTGRL(MI'2,19' ,MFL"*1,18'-MFL"2,19'-DRM'2,19")
W'2,19'=INTGRL(WI'2,19"' ,WFL"'1,18'-WFL'2,19'-DRU'2,1G")
TBRaSUMX{W'1,16',RBR"'1,16")
WBR=FRGIRL*TBR
MBR=FRBOY * TBR
WFLO=W0/2.5
MFLO=M0/2.5
WFL*1,19'=PUSHD*(W"1,19' - DRW'1,19'+DELT)
MFL*1,19'=PUSKHD#(M'1,19' - DRM'1,19'#DELT)
PUSHD=PUSH/DELT
PUSH=IMPULS(2.5,5.)
DRM'1,19'=M"'1,19'#MRDR"'1,19"
DRW'1,19'=W']1,19'#KRDR"1,19*
TORW=SUM1(DRW'1,19')
TDRM=SUM1{DRM'1,19')
TM19=SUM]1(M'1,19")
TW19sSUMI(W'1,19")
TM=TM19 + MO
TW=TW19 + WO
TP=TM + TW
TOR=TDRM + TDRW + MFL19 + WFL19
GO=INTGRL(O.,TDR - G0/2.5)
G1=INTGRL(O.,G0/2.5 - FLG1)
G'2,10'=INTGRL{O.,FLG'1,9'~FLG'2,10")
FLG'1,10'=G"1,10'sPUSHD
TG10=G0 + Gl + G2
TG25=TG10 + G3 + G4 + G5
TG50=TG25 + G6 + G7 + GB + G9 + G1O
TIMER FINTIM =50.,DELT=0.5,PRDEL=5. ,0UTDEL=5.
METHOD RECT
EgéNT T™,TW,TP,TBR,M'1,19°,%"1,19"' ,MO,W0,TG10,TG25,TG50

SToP
EXDJOB

Fig, 50
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This is very dangercus because the responses to temperature
humidity, wind and probably radiation are likely to be non-~
linear {(Compare with Exercise 50).

6) WEATHER
FUNCTION TEMPT=(0.,14.),(12.,35.),(24.,14.)
FUNCTION WINDTa{0.,1.),(6.,1.),(14.,4.),(19.,2.),(24..1.)
FUNCTION WETT =(0.,1.),{7.99,1.),{8.,0.},(19.99,0.),(20.,1.),(24.,1.)
FUNCITON LITET={0.,-1.),{5.99,~1.),(6.,1.),(20.,1.),(29.01,-1.), ...
(24.,~1.) .
FUNCTION RAINT=(0.,0.).(24.,0.)
FUNCTION LAIT={0.,3.),(140.,3.)
HOUR=24.%AMOD (TIME,1.)
LAI=AFGEN{LAIT, TIME)
WET=FCNSW{WETX + RAIN, 0..0.,1.)
WETX=AFGEN(WETT ,HOUR)
TEMP=AFGEN( TEMPT ,HOUR)
WIND=AFGEN (WINOT ,HOUR)
LITE=AFGEN(LITET ,HOUR)
DRY=1.-WET
RAIN=AFGEN(RAINT ,HOUR)

The expressions are similar because the growth rate of the
lesions is linearly dependent on the difference bhetween their
maximum area and actual area and because the maximum area of
the lesions is the same.

* GROWTH OF LESIONS

NIL'1,6'=INTGRL(NILI'1,6° ,FNIL'1,6° - FRIL'2,7")

FNIL1=RTN

NVL=INTGRL(O.,FNIL7)

FNIL'Z,7'22,#NIL' 1,6

AL=INTGRL (0. ,RAL)

RAL=PAL#(MALS*NVL - AL)

PAL=AFGEN(PALT, TEMP)
FUNCTION PALT=0.,0.,10.,.14,18.,.33,23.,.8,30.,.8,35.,.14,40.,0.
PARAM MALS=1.E-8

The total residence time of the lesions in the non-visible stage
is 6 x 0.5 = 3 days. Because multiplication takes less compu-
ting time than division, the contents of each class is multi-
plied by 2 day”~! rather than divided by 0.5 day.

Some lesions are already visible after 1.5 day because of the
dispersion during passage through the six compartments. If we
assume that DELT is small compared with 0.5 day, the standard
deviation of lesion appearance is calculated with Eqn (6.1).

The curve for total lesion area (AL) is sigmoid for two reasons:
the dispersed lesion appearance and the proportionality of
growth with the difference of maximum and current area.
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*  FORMATION OF GREEN STALKS
ROP=MOA#RAL

ROP1:ROP + SROP
SROP=SUM1 (EMPT'1,4")
ROP'2,4'=0P'1,3'#16.s WET
OP'1,3'=INTGRL(O. ,ROP*1,3'-ROP'2,4°-EMPT1,3")
0P4  =INTGRL(0.,ROP4 - ROX - ROG - EMPT4)
EMPT'1,4'=DRY OP'1,4' INVD
PARAM MOA=300.E10
POG= INSW(LITE ,AFGEN(POGD, TEMP) ,AFGEN(POGL ,TEMP) }#WET
POX=INSH(LITE ,AFGEN(POXD,TEMP) ,AFGEN(POXL ,TEMP ) JeWET
FUNCTION POGL=(0.,0.),{14.,.04),(18.,.12),(23.,1.8),(30.,1.2),(35.,0.)
FUNCTION POXL=(0.,0.),(14.,.04),(18.,.12),(23.,1.4),(35..0.)
FUNCTION POGD=(0.,0.},{14.,.1),(18.,.27),(23.,.27),(30..1.33),
(35.,.67),(40.,0.)
FUNCTION POXD=(0.,0.),(14.,.02),(18.,.03),({23.,.18),(30.,.88),
(35.,1.54),(40.,0.)
ROG=POG+0P4
ROX=POX+0P4

Note that the division with DELT is replaced by multiplication
with INVD, a parameter which is in the initial section defined
as 1/DELT and that 16 is the inverse of the residence time

of 0.0625 day. The dimension of ROG equals number of green
stalks per ha soil surface per day. POG and POX in the light
at 21 ©c are the same, so that only half of the stalks that

could potentially develop, reach the green stage.

The number of spores after time T equals

-RBETRXT
Sp = Sy, % e
so that
RBETR = - (ln(ST/So))/T = - (In{l - 0.63))/5

4.8 day’1

= 1/5 h~}

which may according to the function BEATT, be caused by a rain-
fall of 16 mm h™!.

« FORMATION OF SPORES ON GREEN STALKS
(::) GST'1,3'=INTGRL(0.,RGST*1,3'-RGST' 2,4 -DGST 1,3 ~BGST*1,3")

DGST'1,3'=DRYGST'1,3' #INVD

RGST1=ROG

RGST'2,3'=GST'1,2"¢16.+KET

RGST4=RGS

RGS=GST3#INSW(LITE ,AFGEN(PGSD,TENP) ,AFGEN({PGSL ,TEMP) }+WET
FUNCTION PGSL={0.,0.),(14.,.15),(18.,1.44},(23.,.32),(30.,C.),(40.,0.)
FUNCTION PGSD=({0.,0.),(14.,.06),{18.,14.),(23..14.),(30.,.44},(40.,0.)

BGST'1,3'=RBETR*GST'1,3"

RBETR=AFGEN({BEATT,RAIN) ,
FUNCTION BEATT=(0.,0.),(0.25,.08),(0.75,.32),(6.25,2.),(18.8,5.6), ...

(25.,6.7)

NGST=SUMI{GST'1,3")

The dimension of RGS is spores on green stalks per hectare soil
surface per day
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C) « FORMATION OF SPORES ON DRIED STALKS

oesr-suulﬁoasr'x,a')
0OST=SUM1{DDST*1,4")
ROST1s0GST + DOST + RSR
RDST5=ROS
0ST*1,4"=INTGRL{Q. ,RDST"1,4*-RDST*2,5°~D0ST*1,4°-BOST*1,4")
RDST'2,4'=0ST'1,3'+16.WET
DOST*1,4*=DRYDST'1,4' ¢ INVD
BDST'1,4'=RBETR#DST'1,4°
RDS=DST4+INSW(LITE ,AFGEN(PDSD, TEMP) ,AFGEN{POSL ,TEMP) J#WET

ruucrr?u POSL=(0.,0.),(14.,.17).{18.,1.75),{23.,.25),{30.,0.), ...
40.,0.

FUNCTION PDSDZ(O..O.).(14...07).(18..2.95).(23..2.2).(30...53), ..
(35.,0.),(40.,0.)
NDST=SUMI(0ST*1,4")

The rate of spore removal (RSR) must still be calculated.

@ Again
S

-RWASHxXT
= SO X e

T
with T in days. Hence

RWASH = —(1n(1 - .86))/(3/24) = 15.7 day~!

RBLOW = -1n(1. - .05)/(3/24) = 0.408 day~!

(::) « SPORE DISPERSAL
RSP=RDS + RGS
STSP=INTGRL(0.,RSP - RSR)
RSR=SPRR + SPRD
SPRR=RWASH*STSP
SPRO=RBLOWsSTSP#DRY
RWASH=RAIN#2.62
RBLOW=0.102+AHAX1 (1. ,1IINDs!!IND)
RASP=SPRReREFF + SPRDWEFF
REFF=AFGIN(REFFT ,RAIN)
FUNCTION REFFT=(0.,0.2),{2.5,0.003),(10.,0.003)

WEFF=LAI+0.01 '

Host exhaustion could be taken into account by reducing the
leaf area (LAI) by the area of the lesions (AL). If the disease
is so severe that AL is not small compard with LAI, the disease
should also feed back on the growth of the crop.
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D' GERMINATION AND PENETRATION
SFEINTGRL(D, ,RASP = RKSP « RG = REXS « WSF)
WSFxRWASHSSF
RGxSFaAFGEN(PFTT, TEMP)# {1,V ILL) #WET
REXSzSF#AFCEN (PFXT, TENP)#(3,=KILL) @UET

FUNCTION PFTT=(04/0,)e (1002443, 015,7148)0(20004.63+023.572)s ons
(35,03,7)4(40,,0,}

rU”CTION Prxrstottoa’O(IOOfoo)c§15¢#108}t(20of‘.2.,1(23.'2.6), P
(35.03.’)!(‘0.f00’
RYSPaKILL¥SF®INVD

PROCEDURE KILL3DESS(WET)
XiLL=0,

IFU{WFETP=RET),CT, 0.,01) KILL=Y,
WETPsWET
ENDPRQO

GTZINTGRL(0,,RG = RKGT = RTHN = PEXT =» WGT)
WGT2RWASH#GT

RKCTSKILLOGTSINVD
:g;r;cr;srccncprxr.rsnpx'(1.-xxLL)-asr
RCTHAFGEM(PTNT, TEMP)#(§,~KILL)¢WET
FUNCTION PTNT®(04,040¢(18¢se48)2 023000653, (304,.25)

FUNCTION PTXT2(04,013,(184s143)s (23002080 03003.30, (00 000" san/or)

2,'(35.'0,"(‘0.’0.)

Note that RG and some other rates are also multiplied by
(1 - KILL) to avoid that the same spores or germs are kKilled
upon desiccation and transferred at the same time.

Another rate (INVR) has to be added to the integral of the
lesjons on the foliage (SF). This rate equals

INVR = 1,EG6*24*DRY*INSW(LITE, O., 1,)*INSW(TIME~7,,1.,0.)

1=DEBUG (10,0.)
OUT2=DEBUG(2,5.)
QUT3=DEBUG({2,5.5)

TEMP=AVTMP+AMPL*SINE(6.2832* (TIME+8/24) )

For JS and 30 °C the number of classes is (2.0/0.5)2=16
see Eqn 6.1), for all other situations the number of classes
is higher. When the temperature varies, the relative dispersion
is not constant either, so that the boxcar train with constant

relative dispersion cannot be used. Then the method with
controlled dispersion must be used, in which the dispersion
can be varied by using a factor F. The number of classes must
then be smaller than the number minimally required in the con-
stant relative dispersion method. A good choice is three quar-
ters of the lowest value, so that here N can be chosen as 12,

161



The fraction F is given by
=1 - N(5)2
F=1 N(x)

F would become negative, if N was too large in relation to s/x
A simulation model for the hatching process is

TITLE HATCHING PROCESS WINTER EGGS
EGGO=INTGRL(O.,-FLOW1)

FLOW1=EGGO#2./ (F*REST)

EGG'1,12'=INTGRL(EGGI'1,12"' ,FLOW'1,12'-FLOW'2,13")
FLOW'2,13'=EGG'1,12'*PUSHDF

PUSHDF=PUSH=*F/DELT

REST=HATP/12

HATP=AFGEN(HATPT , TEMP)

FUNCTION HATPT=(15.,18.),(18.,10.),(25.,6.3),(30.,5.0)
DISP=AFGEN(DISPT ,TEMP)

FUNCTION DISPT=(15.,3.),(18.,1.6),(25.,1.06),(30.,1.25)
TEMP=AVTMP + AMTMP+SIN(6.2832+TIME/24.)

PARAM AVTMP=22.5, AMTMP=7.5

F=1.-12+(DISP/HATP )2

PUSH=INSN(GS-1¢’00’1.)
GS=INTGRL(0.5,1./(F*REST)~PUSH/DELT)

INCON EGGI'1,12'=1000.,11 O.

EGG=SUMI (EGG'1,12')

LARV=INTGRL (0. ,FLOW1)

OUTPUT LARV,EGG

METHOD RECT

TIMER FINTIM=20., DELT=0.01, OUTDEL=1.

END

STOP

ENDJOB

The relative rate of mortality is calculated with:

. ¥l
RMOR = ln(— -
ln(yz)/(tz t1)

in which y) is the number of eggs at t; and y; the number at
t2. During development at 30 ©C which lasts five days (Table 7)
50% dies. Thus the relative mortality (day—!) amounts to:

in(2)

RMOR = 3

= 0.139
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* % LISTING OF PROGRAM * *

INDEX=0

TITLE GROWTH AND DEVELOPMENT P. ULMI

STORAGE Y(100)

FIXED N1,N2,INDEX,I

INCON EGGI=1000.

OUTE ,EGG=BOXCAR(EGGI ,RESE, SDE,RME,0. ,4)

OUTL,JUV=BOXCAR(O. ,RESJ,SDJ,RMJ, OUTE,6)

OUTS,JUVS=BOXCAR(O. ,RESJS,SDJS,RMJS,0UTL ,6)

AF=INTGRL(O. ,0UTS)

PRINT EGG,JUV,JUVS,AF

METHOD RECT

TIMER FINTIM=40.,DELT=0.05,PRDEL=2.

TEMP=AVTMP+AMTMP*SIN(6.2832%TIME/24. )

PARAM AVTMP=22.5,AMTHP=7.5

RESE=AFGEN(RESET, TEMP)

SDE=AFGEN (SDET , TEMP)

RME=AFGEN (RMET , TEMP)

RESJ=AFGEN(RESJT,TEMP)

SDJ=AFGEN(SDJT, TEMP)

RMJ=AFGEN(RMJT, TEMP)

RESJS=AFGEN(RESJST , TEMP)

SDJS=AFGEN(SDJST, TEMP)

RMJS=AFGEN(RMJST, TEMP)

AFGEN RESET=15.,18.,18.,10.,25.,6.3,30.,5.

AFGEN SDET=15.,3.,18.,1.6,25.,1.06,30.,1.25

AFGEN RESJT=15.,10.1,18.,6.5,25.,4.,30.,2.5

AFGEN SDJT=15.,2.,18.,1.3,25.,0.8,30.,0.62

AFGEN RESJST=15.,5.5,18.,4.3,25.,2.4,30.,2.

AFGEN SDJST=15.,1.1,18.,0.85,25.,0.6,30.,0.5

AFGEN RMET=15.,0.01,18.,0.01,30.,0.01

AFGEN RMJT=15.,0.02,18.,0.02,25.,0.03,30.,0.04

QEGEN RMJST=15.,0.03,18.,0.02,25.,0.02,30.,0.03
D

STOP

@b Within the subroutine BOXCAR all classes have the same
pPhysiological properties. Of course it is possible to calculate
an average rate of oviposition, but for each age distribution
the average rate of oviposition is different. Therefore the
boxcar train must be programmed according to the basic method
-given in Chapter 6.
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With the following statements the extended program of
exercise 81 also accounts for ageing of the females and for
oviposition. The data of table 8 and table 9 are used to de-
fine the relations of oviposition rate and relative mortality

rate with temperature.

AF' 1,5'= INTGRL(O.,RAF'1,5")

RAF1 = QUTS-DAF1-HMORA1

DAF' 1,5' = PUAF = (AF'1,5'«DELX - MORA'1,5')

RAF' 2,5' = DAF'1,4'-DAF'2,5'-MORA'2,5"

MORA' 1,5' = AFGEN(MORT'1,5',TEMP)

PUAF = INSW(GSA-1.,0.,1.)

GSA = INTGRL(O.,5./LOAF-PUAF/DELT)

OUTE,EGG = BOXCAR(EGGI,HATP,DISP,RME,REPR,12)

REPR = SUMX(AF'I,S'.REP'I,S')

REP' 1,5'= AFGEN(REPT'1,5',TEMP)

LOAF = AFGEN(LOAFT, TEMP)

AFGEN LOAFT = 10.,67.5,15.,61.,20.,28.,25.,20.,30.,14.6

AFGEN MORT1 10.,0 011,15.,0. 011 20 0 005 25.,0. 005 30.,0.003
AFGEN MORT2 = 10.,0.033,15.,0.031,20.,0.049,25.,0.050,30.,0.027
AFGEN MORT3 = 10.,0.088,15.,0.089,20.,0.161,25.,0.245,30.,0.273
AFGEN MORT4 10.,0 15, 15 0 138,20. 0 360, 25 0 504, 30 0 709

AFGEN MORTS5 = 10.,0.2, 15 0 15, 20 ,0.4,25.,0.6,30.,0.8
AFGEN REPT1 = 10.,0.6, 15.,1 2, 20 1 9, 25 3 1, 30 4 2
AFGEN REPT2 = 10.,0. 5,15.,1.2,20.,2.2,25.,3.7,30.,5.5
AFGEN REPT3 = 10.,0.5,15.,1.1,20.,1.8,25.,3.1,30.,3.8
AFGEN REPT4 = 10.,0.4,15.,1.0.,20.,1.4,25.,2.0,30.,1.4
AFGEN REPTS = 10.,0.2,15.,0.8,20.,0.8,25.,1.0,30.,0.8
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. This simulation model is:

TITLE PREY-PREDATOR

PARAM PREY=10., PRED=1.

STPRED=INTGRL (IST,INCST-DECST)
DECST=STPRED*RRDIG
RRDIG=AFGEN(RRDIGT ,TEMP)
INCST=PREY*PRED*RRPRED

AFGEN RRDIGT=O.,0.,15.,.5,20.,1.,25.,2.
RRPRED=SUCR*COIN
SUCR=AFGEN(SUCRT,STPRED)
COIN=AFGEN(COINT,TEMP)

AFGEN SUCRT=0.,0.8,1.,0.01

AFGEN COINT=15.,0.01,20.,0.08,25.,0.2
TEMP=AVTMP + AMTMP*SIN(6.2832%TIME/24.)
PARAM AVTMP=20.,ANTMP=5.

TIMER FINTIM=20., DELT=.01, PRDEL=1.
PRINT STPRED

END

STOP

ENDJOB

The dimensions of the variables are:

Variables Dimensions
PREY m~2

PRED m-2

RRDIG day™~!

INCST gut day~! m~2
DECST gut day"'l m™2
STPRED gut m—?2
RRPRED gut m? day~!
SUCR -

COIN gut m? day~!

@ The relative space occupied by plants has been built up
during growth, so that it contains historical information. In
Fig. 10 the B curves for barley and oats cross at Day 55. At
this moment the space occupied by barley is much larger because
its B has always been larger before. In the acarine system, the
gut content is in equilibrium with the density of prey, so

that past information is forgotten.

At very low density Dp the ratio (By + 1/Dm)/(Bp + 1/Dm)
approaches one, so that both prey types have the same preference.
The predator is then so hungry that it just accepts everything.
For very high densities, kjs approaches B)/B; according to the



equation used. It is, however, possible that with a mixed prey
population the gut content of the predator exceeds that
attainable with the unattractive type alone. The predator then
only eats attractive preys, so that k;; is infinitely large.
Clearly this attempt to bypass the gut content then breaks
down and cannot be used, so that the gut content must be
explicitly modelled as a state variable.
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Appendix A

THE PREPROCES SOR

THE PREPROCESSOR IS A TEXT HANDLING PROGRAM
DEVELOPED AT: UNIVERSITY COMPUTING CENTRE, WAGENINCEN,

IT IS AVAILABLE AT A SMALL CHARGE,

THE PREFPROCESSOR ENABLES THE USER TO WRITE STATEMENTS

THAT MUST BE REPEATED SEVERAL TIMES,
FOR INSTANCE WITHIN A CSMP PROGRAM,

THE FOLLOWING EXAMPLFE SHOWS HOW A NOTATION WITH APOSTROPHES 1S USED,

THE INPUT OF THE PREPROCESSOR 153 THE SOURCE

PROGRAM

AND THE OUTPUT ISi THE RESULTING CSMP

THIS OUTPUT 1S WRITTEN ON A DISK FILE AND CAN BE HANDLED BY

THE STANDARD CSMP COMPILER,
AN EXAMPLE OF A SOURCE PROGRAMg

C’2,5°3C 1,4°e8°1,4°/7P"3,4°

PARAM 8°1,4°31,2,3,4

PARAM P’1,4°83e0,5,1,5

Y°1,4 °sINTGRL(YI®1,4°,RY"1,4°SIN(P"1,4°"))
INCOR YI®1,4°s400,1

RY*$,4°=sRGReY’1,4°%(1 ,~RED"1,4°)
RED’$,4°=AFGEN(RDTB’1,4°,ALC)

FURCTICR RDTBI®(0,/+0,)0(1:5:2,)

FUNCTION RDTB2%{0,+04)s(34/6.)

FUNCTION RDTBI®(0,¢04)sC0¢75+0.529(2,402,95)
FUNCTION RDTB4=2(0,704),(3c¢8,)
ABCD®1,4°=ABCD(*:,4°)

SOM =SUMI(Y’1.,4°)

SOMKWaSUM2(Y’1,4°)
INPROSSUMX(P’1,4°,5°1,4")

PRINT Y*1,4°,50HKN,ABCD*1,4°

CUTPUT ABCD’1,4°

END

STOP

ENDJOB

THE RESULTING PROGRAM

C2eCie88/P1
Cisl24852/P2
C4=2C3e83/P)
C5=C40854/P4
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PARAM S1=31,82e2,83%3,54s4
PARAN P1%20,5,P220,5,P320,5,P4=1,5
Y{®INTGRL(YI1,RY1#8IN(PL))
Y2uINTGRL(Y12,RY2#8IN(P2))
Y3sINTGRL(YI3,RYI#SIN(P3))
Y4sINTGRL(YI4,RY4#81IN(P4)]
INCON YI180,1,YI220,1,Y13R0,1,YI420,!
RY1sRGR#Y1#(],~RED1)
RY2sRGReY2e (1 ,°RED2)
RYIsRGReY3e(1,*REDJ)
RY4aRCReY4e (1 ,=RED4)
RED1sAFGENC(RDTBY,ALC)
RED2sAFGEN(RDTB2,ALC)
RED3I=AFGEN(RDTBI,ALC)
RED4=AFGEN(RDTB4,ALC)
FUNCTION RDTBi®(0,¢04)0(1.5,2,)
FUNCTION RDTB22{0,s0e)s(d0es6,)
FUNCTION RDTBI®{04s04)s(0675,0,5),¢2.¢2,5)
FUNCTION RDTB4=(0,+0,)9(3408,)
ABCD1sABCD(})
ABCD2=ABCD(2)
ABCD3I=ABCD(3)
ABCD4sABCD(4)
SOMEY ] 4Y24Y34Y4
SOMKWY1402¢Y20024Y3002¢Y4802
INPROsP1#S1+P26824P)eS3¢PdeSY
PRINT Y1,Y2,Y3,Y4,S80MKW,ABCD],ABCD2,ABCD3,ABCD4
OUTPUT ABCD1,ABCD2,ABCD3,ARCD4
END
sTOP
ENDJOB

THE FOLLOWING RESTRICTIONS MUST BE TAKEN CARE OF:
A) THE RESULTING INDEXED VARIABLES MAY NOT CONTAIN MORE THAN
6 CHARACTERS

B) THE STATEMENTS THAT CONTAIN APOSTROPHES CANNOT BE
CONTINUED BY soo '

€) THE "OUTPUT" STATEMENT MAY NOT CONTAIN ADDITIONAL ARGUMENTS
SPECIFYING THE RANGE

D) SUM{,SUM2 AND SUMX MAY NOT RE NESTED OR BE PART OF AN EXPRESSION
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Appendix B

TITLE DEMONSTRATION OF THE USE OF SUBROUTINE BOXCAR

STORAGCE Y(100)

PIXED Ni,N2, INDEX,I

INCON 1T0T1m100,,31T0T2=0,

DYNAMIC
INDEX20

PARAM RMi=0,,RM220,,L0NG1=%,,LO0NG2a],,8D]xt,,5D280,1,N1210,N2210
OUT:,TOTI=BOXCAR(ITOT],LONG],SD],RM],INL,NY)
OUT2,T0T28BOXCAR(ITOT2,LONG2,SD2,RM2,IN2,N2),
INImO,
IN2=0UTY

TIMER FINTIM=15,, DELT=0,01, PRDELs},

PRINT T071,70T2

METHOD RECT

END

PARAM 8D1s0,,5D280,

EBD

STOP
SUBROUTINE BOXCAR(TOTALI,RT,SD,RM,RIN,N,
s OUT,TOTAL)

COMMON

C INITIALIZATION

IF(TINE, GCT,0,) GO T0 §
¢ DEVELOPMENT STAGE
Y({INDEX+1)20,5

o PRECLASS
Y(INDEX+2)sTOTALL

C N CLASSES
DO 2 Il=i,N
2 YC(II+INDEX+2)s0,

1 INDEXgINDEXel
PUSH =i,
c TEST FOR DEVELOPMENT STACE
IF (Y(INDEX),LT.1,) PUSHs0Q,
F =i,=Ne(SD/RT)es2
Ir(r,GT,NeDELT/RT) GO T0 S
WRITE(6,800) ,
800 FORMAT(” NUMBER OF CLASSES TOO LARGEP F TOO SMALL OR KEGATIVE®)
CALL EXI?
S CONTINUE
c INTEGRATION OF RATE OF DEVELOPMENT
Y(INDEX)sY(INDEX)+HeDELT/(RToF)=PUSH

INDEXaINDEX 1
TOTALsY (INDEX) ,
FL =2, 0T0TAL®(l,<RNeDELT)*N/(RT*F)

c INTEGRATION OF PRECLASS
Y(INDEX)STOTAL+ (RINeTOTAL#RM=FL)#DELT
IF (Y{INDEX).GE.0,) GO 70 3
FL =FLeY(INDEX)/DELT
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C

Y(INDEX)®O,
3 PUSH =zPUSH#(1,/DELT*RN)*F
DO 4 IIsi,N
INDEX=INDEX ¢}
CUT =Y(INDEX)e#pUSH
TOTAL=TOTALeY(INDEX)
FLN 2fFLeY(INDEX)®RM=DUT
IF (ABS(FLN),LT.,1.E=35) CO TO 4
INTEGRATION OF CLASS
Y(INDEX)}aY(INDEX)+FLN#DELT
4 FL =OUT
RETURN
END

ENDJOB

k)

B)

<)

0)

E)

F)
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S8OME NOTES FOR THE USE OF SUBROUTINE BOXCAR

EACH BOXCARTRAIN CONTAINS N CLASSES PLUS A PRECLASS, THE DEVELOPMENT
STAGE OF THE BOXCARTRAIN 1S RECORDED IN AN ADDITIONAL ARRAY ELEMENT,
THEREFORE N¢2 STORAGE PLACES FOR Y ARE REQUIRED FOR EACH BOXCAR
TRAIN OF N CLASSES,

THE STATEMENT “INDEX=s0® MUST BE PUT AT THE BEGINNING OF THE
DYNAMIC SEGMENT,

THE INFLOW *IN1® OF THE FIRST BOXCARTRAIN CAN USUALLY BE
IDENTIFIED WITH THE BIRTH RATE,

THE INFLOWS OF THE FOLLOWING BOXCARTRAINS EGUAL THE OUTFLOWS OF
THEIR PREDECESSORS,

IN COMBINATION WITH SURROUTINE BNXCAR ONLY METHOD
RECT MAY BE USED,

THE OUTPUT ARGUMENTS OF THE SUBROUTINE ARE;

*our*® = THE RATE OF OUTFLOW OF THE BOXCARTRAIN

*T0T" » THE TOTAL CONTENT OF THE BOXCARTRAIN

THE INPUT ARGUMENTS OF THE SUBROUTINE ARE;

*I1T0T" = THE INITIAL CONTENT OF THE BOXCARTRAIN

"LONG* = THRE AVERAGE RESIDENCE TIME 1IN THE WHOLE BOXCARTRAIN,
NOT INCLUDING IHORTALITY

"sb* . THE STANDARD DEVIATION OF THE RESIDENCE TIME IN THE
WHOLE BOXCARTRAIN

"RM® 3 THE RELATIVE RATE OF MORTALITY

*IN* = THE RATE OF INFLOW INTO THE BOXCARTRAIN

*N* = THE NUMBER OF CLASSES WITHIN THE BOXCARTRAIN

THE VARIABLE NAMES *F®,*II",“PUSH","FL","FLN","RT®,*3D*,"RK",
*RIN®,"N","0UT","TNTAL","INDEX®" SHOULD NOT BE USED IN THFE MAIN
PROGRAM BECAUSE THEY ARE USED IN THE SUBROUTINE,



Index

Acarina 115

AFGEN 13
age-~classes 70
age 67

AINT 93
Amblyseius 115
AMINI 52

AMOD 93

analogous 3

binomial distribution 64
biocides 115

BOXCAR 118, 171

boxcar train 80
breakthrough curve 83

cohort 67

competition 34, 123
control, biological 115
controlled dispersion 84
csMp 7, 11

CSSL 7

diffusion 87
digital 4
discontinuous
dispersal 102
dispersion 66,78

DEBUG 109

DELT 9

demographic 70

density of sowing 35

DERIV 40, 142

deterministic simulation 60
development 66, 68
dominant eigenvector 77
driving variables 4

DYNAMIC 19, 47

20, 52

eigenvalue 77
eigenvector 77

END 10

ENDJOB 10

ENDMAC 45 ‘
environment of system 2
EPIMAY 91

error of integration 18
estimation of parameters 54
evaluation 111
exponential growth 8

FCNSW 93

fecundity 122

feedback 17

FINISH 28

FINTIM 10

forcing variables 4
Forrester's conventions 23
FORTRAN 7, 11

fudging 110

FUNCTION 13

functional response 123
fungus disease 91

GAUSS 62

germination 78, 106
germination period 81
GT (greater than) 62
gut content 122

historical information 67
Helminthosporium 91

hybrid 4
IF 62

IMPULS 53
INCON 10

incubation 94
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INDEX 43

INITIAL 19, 47
initialization 72, 108
integration method 18
INSW 98

INTGRL 10

KEEP 19

length of variable name 143
lesions 94

life cycle 115

logistic growth 29
Lotka-Volterra equations 30
LT (less than) 62

MACRO 43
matrix 76
METHOD 10

microclimate 92
mimicking 85

mite 115

mixed culture 22, 31
mixed prey predation 126
model 2

monoculture 22, 31
mutual dependence 5
NOSORT 19

OUTDEL 10

ouTPUT 10

output variables 4
oviposition 120

Panonychus 115
Paramecium 49
PARAMETER 10

pest management 59
poisson distribution 59
potential growth rate 36
PRDEL 88

PRINT 40

Predator 115

preference 123
preprocessor 43, 169
prey 115
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probability functions 61
PROCEDURAL 61
PROCEDURE 106

rate variables 4
RECT 10
relational diagram 23
relative crowding
coefficient 33
relative dispersion 80
relative reproductive
rate 32
relative space 39
relative yield (total) 32

replacement series 31, 123
residence time 29, 82

RKS 19

RKSFX 20

RNDGEN 62

Runge-Kutta 19

Saccharomyces 22
sampling 52
Schizosaccharomyces 22
Simpson 19

simulation 3

simulation language 6
SIN 14

sensitivity analysis 110
SORT 19

sorting routine 6

state determined 4
state variables 4
stochastic modelling 59
stochiometric relation 136
STOP 10

structure of system 2
SUBROUTINE 47

SUM! 43

SuMX 71

system 2

systems ecology 1, 4

tabulated function 13
temperature sum 67
threshold temperature 68
TIME 14



Time constant 16
time-interval of
integration 17

TIMER 10
TITLE 10
TRAPZ 18

units 37, 51, 156
UPDATE i1

verification 126
waste product 22

2Z - - = variable
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This book introduces the reader stepwise to one of the main
aspects of systems ecology: analyses and simulation of state-
determined systems. This is done by treating in detail various
ecological systems, ranging from simple exponential growth, then a
plant epidemic, and prey and predatory mite interaction.

Ecological, mathematical and programming aspects are inter-
woven; exercises form an integral part of the text for use on a second
reading. The simulations are presented in one of the most used
continuous-system simulation languages (CSMP) in such a way that
the programs can be understood without any prior knowledge of
programming techniques.

The mathematics is presented at a level that can be followed by
biologists without a mathematical background and the ecology is
treated in such a way that mathematicians should not feel lost.



