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1 Introduction

1.1 The lime aphid

The lime aphid Eucallipterus tiliae L. is a tree-dwelling aphid
host-specific to most members of the genus Tilia. It varies greatly in
numbers from year to year, sometimes seeming to be virtually
absent, at others occurring in such large numbers that leaves and
town pavements beneath the trees become sticky with honeydew
while the leaves blacken with sooty mould which grows upon it.

A number of aspects of the aphid’s ecology have been studied in
the past, in the field and in the laboratory (Dixon, 1971a, 1971b,
1972; Kidd, 1975, 1976, 1977; White, 1970; Brown, 1975), and
aphxd populations have been monitored for nine years on §ix trees in
Glasgow, Scotland. Considerable information also exists on the two
predators (Glen, 1971, 1973, 1975; Wratten, 1971, 1973) and the
leafhopper found on lime (Flanagan 1974).

Llewellyn (1970) studied the lime aphid population as a whole in
terms of energetics, then Dixon (1971a) produced the first descrip-
tion of its dynamics, drawing attention to an inverse relationship
between numbers of fundatrices and oviparae and suggesting an
explanation based on the population processes known at that stage.
This work was expanded by Brown (1975) who introduced studles
of populations under controlled conditions in an insectary.

1.2 Background to the approach

There are four basically different ways of studying a population’s
dynamics, which can be considered as theoretical, experimental,
analytic and synthetic. In the first case a simple theoretical model,
based on a priori assumptions and usually consisting of a single
difference or differential equation, can be fitted to observed data
and conclusions drawn about the population’s behaviour based on-
the known properties of the model. Alternatively, a population in
the field may be manipulated by using experimental exclusion
techniques to ascertain the main factors responsible for numerical
change and their relative importance. As a third alternative the
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observed changes in numbers can be analysed to show the contribu-
tions of reproduction and different mortalities. An age-specific
life-table is derived by tracing the fate of a cohort from birth to
death, or a time-specific life table by comparing numbers of animals
present in successive age-classes at any one time. Both yield a series
of age-specific survival rates and fecundities; in the second case
these are constant, or assumed to be so, while in the first case they
may be variable. Key factor analysis (Varley & Gradwell, 1960) is a
particularly widely used application of age-specific life tables, in
which a study of the variation in age-specific mortalities from
generation to generation demonstrates which is the key factor
responsible for population change and which, if any, involves
density-dependence. Age-specific life tables of this kind can be used
when generations are discrete or when individual cohorts can be:
identified, while time-specific life tables are applicable when there is
considerable overlap between generations and the age-distribution
is stable with a constant ratio between numbers in the age-classes.
The fourth, synthetic approach involves building up a picture of
population behaviour comparable with that observed, by assembly
of separately studied component processes in a detailed model.
The study of aphid populations presents particular problems since
most are characterized by overlapping generations and unstable
age-distributions. Way & Banks (1968) have used experimental
exclusion techniques to test the effects of different factors on total
population trends of Aphis fabae Scop. on spindle, Euonymus
europaeus L. and Milne (1971) used a similar method for aphids on
broad beans. While the technique is extremely useful and has the
great merit of being a direct measure, there is clearly a limit to the
extent to which components of population change can be partitioned
in this way and there are some obvious problems in applying the
method to tree-dwelling aphids. No simple theoretical models ap-
pear to have been successfully applied to aphid populations, in
which age-structure and time lags are often of crucial importance;
nevertheless, one of the aims of building complex models should be
to find out how to build meaningful simple ones. Because of the
features of their population behaviour already mentioned, aphids do
not readily lend themselves to life-table analysis. However, Hughes
(1962, 1963) pioneered one method in a study of Brevicoryne
brassicae L. that is still widely used. Mortality was estimated as the
difference between the potential rate of increase and the observed
rate, then partitioned among various causes according to indicators
of their magnitude from field samples. The potential rate of increase
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was obtained from the relative abundances of the first three instars
and the observed rate of increase estimated graphically from a series
of total population counts ending at the sample date. The analysis
was confined to occasions when the instar-distribution was thought
to be stable and the numbers formed a geometric series (Carter,
Aikman & Dixon, 1978). A second method of estimating mortality
was adopted by Glen (1971) and Glen & Barlow (in press), in order
to determine the role of the black-kneed capsid Blepharidopterus
angulatus Fall. as a predator of the lime aphid. The potential
number of aphids at any time was simply estimated from that on the
previous sampling occasion and independent estimates of the repro-
ductive rate and the instar lengths; the mortality was given by the
difference between the potential number thus calculated and the
number observed. In this case the underlying assumption is of an
even age-distribution among nymphs which become adults during
the interval, and the mortality estimate includes loss of recruitment
through reduction in the maximum reproductive rate.

However, it was in studies of aphids that some of the first
population simulation models appeared, notably that of Hughes &
‘Gilbert (1968) for Brevicoryne brassicae, developed further with
emphasis on a host/parasite relationship by Gilbert & Hughes
(1971). Gilbert & Gutierrez (1973) and Gutierrez et al. (1974)
produced similar models for Masonaphis maxima Mason on thimble-
berry and cowpea aphid, Aphis craccivora Koch, respectively. All
were based on physiological time and tended to yield greatest
insight into the relationships between the aphids and their natural
enemies, a feature carried furthest in Frazer & Gilbert’s (1976)
model of predation in the field by coccinellids on the pea aphid
Acyrthosiphon pisum Harris. Although drawing heavily on observed
population data, the models were not validated against long series of
such data. Nevertheless this set of aphid models represents an
extremely valuable and possibly underrated contribution to the
study of population dynamics. The basic approach adopted by these
authors, which differs from the present one in certain respects such
as validation and use of physiological time, is described by Gilbert et
al. (1976). Two aphid models of a slightly different kind include an
extremely detailed one of Aphis fabae (Crawley, 1973), designed to
examine the effects of various predation strategies, and one used by
Perrin (1974) as part of a study of the nettle aphid Microlophium
camosum Buckt.; the latter is an excellent example of simple
modelling used as a tool in research. Both models took account of
temperature-dependent development rates but were not based on
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physiological time, and because of the way they were used were not
validated against independent data.

1.3 The objective

Why model the lime aphid? There are two main reasons. The first
lies in the disadvantages of the available alternatives. However, the
second and most important lies in the positive features of the
approach, in integrating available knowledge, providing a functional
basis for observed events and a stringent test of understanding,
showing precisely where future work is required and providing a
framework into which it can be incorporated, and increasing under-
standing of the roles of interacting component processes. ‘

The aim in this book, therefore, is to use a systems approach to
test and improve our understanding of the lime aphid’s population
dynamics and to guide the course of future research. The model is a
tool, not an end result, and its scope was determined by the size of
the system and the overall objective of obtaining a qualitatively
correct and quantitatively reasonable picture of what determines
this aphid’s abundance.

Following the Introduction, Chapter 2 describes the system and
presents the problem, in terms of the observed behaviour of the
aphid population which the model is intended to re-create. Chapter
3 describes how the model was chosen, its structure and the sub-
models representing the various population processes; for each
submodel the relationships used are stated first then their biological
bases discussed. The model’s output is compared with the observed
population data in Chapter 4. Then in the final chapter conclusions
are drawn about the roles of the different processes and suggestions
made as to further work required.

1.4 Terminology

In discussing different kinds of aphids the terms fundatrix, vivi-
para and ovipara are frequently used. Fundatrices are first generation
aphids, viviparae are alate females which reproduce partheno-
genetically and viviparously, while oviparae are apterous sexual
females which mate and lay eggs. Aphid densities on the tree are
expressed as numbers per unit area of mature leaf, usually 100 cm?®
or 1 m? and weights are fresh weights unless otherwise stated.
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2 The system

2.1 Components of the system

The system modelled is a lime tree, or close group of trees, and
the animals found on it which affect the aphid. These include two
predators and their alternative prey (Fig. 1); parasites are not
explicitly considered and the tree is dealt with largely as a black box.
Immigration of aphids by flight is pooled with emigration as net
emigration, which is equivalent to mortality in the model.

Aphid eggs hatch when the buds break at the beginning of May.
The nymphs pass through 4 instars to become alate female adults
(viviparae), which produce more nymphs parthenogenetically. The
process is repeated, changing towards the end of the season when

| Predator

 Predator_1 | _
- 2-Spot | Black-kneed |

Ladybird

._n, vironment | Herbivre Herbivore
| Temperature } 1 2

Wind S?aed |

 Daylength __ phi | | LeathPf ]

Lime Tree

Fig. 1. Simple diagram of the lime aphid population system, showing the
main components and interactions.
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increasing proportions of sexuals are produced. The males are alate
and the sexual females (oviparae) are apterous. The proportion of
viviparae therefore declines and population growth in the current
season 1S curtailed, since oviparae lay overwintering eggs on the
bark of the tree. Development of each parthenogenetic generation
takes about 3 weeks, 5 weeks in early spring, and 4 or S generations
occur each year, generally with 2 overlapping at any one time.
Aphids of the first generation are referred to as fundatrices. Adult
aphids weigh between 300 ug and 900 ng in the field and popula-
tions can vary nearly a hundredfold in peak abundance from year to
year.

The other herbivore which can occur in large numbers on lime
trees is the leafhopper Alnetoidea alneti Dahlbom. It passes through
one generation each year, from overwintering eggs through 5
nymphal instars to a winged, sexually-reproducing adult. Eggs are
laid in August and September and hatch around the beginning of
May (Flanagan, 1974).

The most important predators are the 2-spot coccinellid Adalia
bipunctata L. and the black-kneed capsid Blepharidopterus an-
gulatus Fall. Syrphid larvae were recorded less often and chrysopid
larvae and anthocorid larvae still less frequently. The capsid over-
winters in the egg stage on lime and passes through one generation
each year. There are 5 nymphal instars and the winged adults lay
their eggs in late August (Glen, 1971). The coccinellid overwinters
as an adult, feeding on the.aphids and laying eggs from the end of
May. There are 4 larval instars and a pupal stage and adults appear
in largest numbers after the end of July (Wratten, 1971). A second
generation seems to occur in some years, such as 1968. The aphids
are parasitized by Praon flavinode (Hal.) (Brown, 1975) which
leaves mummified carcasses.

The tree provides a food source rich in amino-nitrogen for a short
period in May while the leaves are growing. Otherwise, the amino-
nitrogen level is low and fairly constant (Dixon 1971a). Little is
known about the effect on nutritional quality of factors such as
water stress, but there is evidence that it is reduced by severe aphid
infestation. Using aphid weights as indicators of food quality, al-
though there were short-term fluctuations, the average stayed con-
stant throughout the summers of 1970 and 1972, when densities of
aphids were low.

The system is an open one, influenced strongly by weather,-and
can be divided into 3 subsystems: the tree, the aphid population and
the predator and leafhopper populations. The simple diagram of
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Fig. 1 is expanded in Fig. 2 to show the time profile of the system
throughout the season and the main interactions which occur. The
inputs and outputs correspond to those in the model, the ‘coccinellid
multiplier’ being an index of overall abundance of the 2-spot
coccinellid in any one year. The aphid subsystem consists, in es-
sence, of a within-season loop, from adults to nymphs, and a
between-seasons loop not shown in Fig. 2 from eggs laid at the end
of one year to eggs hatching at the beginning of the next. Finally, in
Figs 3 to 6 the aphid subsystem and the predator/leafhopper subsys-
tem are shown in sufficient detail to demonstrate the component
processes and interactions which are modelled in the next chapter.
The only component of the tree subsystem explicitly considered is
the amino-nitrogen concentration level in the phloem, aphid-
induced tissue deterioration being related directly to cumulative
aphid abundance and leaf-fall to the time of year.

2.2 Observed behaviour of the aphid population

The population behaviour will be considered in two parts, varia-
tions in numbers between years and changes in numbers throughout
a year.

Since generations overlap and reproduction occurs continuously
throughout the summer, the best measure of changes in numbers
between seasons is based on the number of overwintering eggs at
the beginning of each. However, since these are difficult to sample,
it is more convenient to use as a measure of year-to-year abundance
the peak number of fundatrix nymphs in the spring. With one point
thus derived.for each tree and each year the relationship between

numbers one year and those the next is overcompensating, given by
(Fig. 7):

log F,,,=2.866—-0.642 log F, r=0.66, d.f. 36, P <0.01
where . '
- F., = peak fundatrices/m?, year t+1
F, = peak fundatrices/m?, year ¢
Following Dixon (1971a), this year-to-year relationship can be
partitioned into two components, a summer one and a winter one,
using peak numbers of oviparae as an index of abundance at the end

of a season. The summer component is the relationship between
peak numbers of fundatrices at the beginning of a season and peak
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Fig. 2.. Time profile of the lime aphid population system summarizing its
dynamics. Solid lines indicate flows or interactions and broken ones feed-
backs from the aphid to other parts of the system.
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numbers of oviparae at the end, and the winter one is the relation-
ship between the peak numbers of oviparae at the end of a season |
and the peak numbers of fundatrices at the beginning of the next.
These relationships do not differ significantly from the ones given by
Dixon (1971a) although they include points for another four years.
They are shown in Fig. 8 and the equations are:

log O,=2.43—-0.60log F, r=0.69,d.f. 36, P<0.01
log F,,,=0.66+0.78 log O, r=0.73,d.f. 32, P<0.01
where

O, = peak oviparae/m?, year ¢

Clearly, overcompensation in the year-to-year relationship occurs
during summer, the winter component being density-independent
with a constant ratio between peak numbers of oviparae and num-
bers of fundatrices the next spring. However, it is noticeable that in
1971 and on one tree in 1973, when numbers reached very high
levels in summer and oviparae were significantly lighter in weight
than normal, much of the year-to-year decline is accounted for by
the winter component. The peak numbers of oviparae produced are
Quite high (see Fig. 54b), although these are actually reached earlier
In the season than in other years, but the number of eggs, hence the
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Log Fundatrices m 2 of Leaf in Year t+ 1

0 1 2 3

Log Fundatrices m2 of Leaf in Year t

Fig. 7. The observed relationship between peak densities of fundatrices in
successive years. Each point represents 1 tree in 1 year.

number of fundatrices, produced by each ovipara is low. There is
also a suggestion of non-linearity in the summer component (Bar-
low, 1977) such that changes in initial fundatrix numbers over the
range 0-2 have little effect on the numbers of oviparae at the end of
the year. The scatter in the relationships indicates, too, that disturb-
ing factors are important in determining absolute abundance in any
one year.
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Fig. 8. a) The observed relationship between peak density of fundatrices
and that of oviparae in the same year. Each point represents 1 tree in 1
year. b) The observed relationship between peak density of oviparae in one
year and peak density of fundatrices in the next.

From the results of Brown (1975), the year-to-year relationship
and the summer component can be derived for populations in an
insectary, where predators, parasites and the effects of weather are
excluded. In this case, since the populations were only monitored
over the course of one season, the number of fundatrices in the next
year was estimated as the number of eggs on the tree at the end of
the season multiplied by an overwintering mortality similar to that
occurring in the field (see Section 3.5.10). The relationships in the
field and the insectary are compared in Figs 9a and b. The ratio of
increase during a season and from one year to the next is more than
ten times greater in the insectary than in the field. However,
overcompensation still occurs in the insectary giving a theoretical
equilibrium population of fundatrices which is also about ten times
greater than in the field (Fig. 9a). Although the degree of over-
compensation between years is similar, during summer it is less in
the insectary than in the field. This reduced overcompensation
during summer, together with the generally greater numbers of
Oviparae in the insectary may be related to the absence of factors
such as wind and predation. The reason that the overcompensation
IS restored over the whole year may be because the oviparae are
lighter in weight at high initial fundatrix densities in the insectary
than in the field, since the populations reach higher levels during the

summer; such light oviparae, as already mentioned, lay relatively
few eggs.
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Year t +1 -a- Year t -b-
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1 2 3

Log Peak Fundatrices n?? Year t

Log Peak
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Days from Start of Year

Fig. 9. Observed behaviour of populations in an insectary: a) the relation-
ship between peak fundatrix density and the peak fundatrix density at the
beginning of the next year, based on the number of eggs laid at the end of
the current year and assuming the same overwintering egg mortality as in
the field (A points from insectary, — relationship in the field); b) the
relationship between peak fundatrix density and peak ovipara density in the
same year (legend as in a); ¢) changes in total population density through-
out the season for an initially high-density population (2000/m?) and d) for
an initially low-density one (10/m?). Data are from Brown, 1975.
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Fig. 10. The observed relationship between peak numbers of fundatrices

and the time of the overall peak each year. @ point from the field (1 tree in

1 year); O point from Brown’s (1975) insectary populations.

Turning now to changes in numbers within a year, lime aphid
populations typically have a single peak reached early in the season
if fundatrix numbers are high, late if they are low (Fig. 10). The
relationship between the time of the peak and the number of
fundatrices is

T=266-33F,
.where

T =time of peak (days from 1st January)

The trends in total numbers throughout each year are shown in Fig.
11, from 1965 to 1972 on trees 1 and 2. Trees 1, 2, 4 and 5 were on
one site, tree 3 on another and tree 6 on a third. The populations
behaved in a broadly similar way on all trees in any one year but
only trees 1, 2 and 3 were sampled continuously for eight years or
more. So it was decided to focus attention on the average popula-
tions of trees 1 and 2 which formed part of one row, referring to
other specific trees and years separately when necessary. Fig. 12
shows the populations in more detail in 1969 and 1970, including

15
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Fig. 11. Observed trends in total population numbers, averaged over tre:
1 and 2, during each year from 1965 to 1972.
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Fig. 12. Detailed population trends and adult weights on trees 1 and 2 in
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— -~ viviparae; —-—- oviparae. adult weights; - - - « fundatrix weights in
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the various instars and the average weights of the adults. Finally,
Figs 9c and d show total population trends during the season in two
insectary populations with initial numbers corresponding to the
extremes found in the field.

The main results against which the model’s predictions are to be
tested, therefore, are the general inverse relationship between num-
bers in successive years (Fig. 7) and the population trends through-
out each year on trees 1 and 2 from 1965 to 1972 (Fig. 11). The
model will also be used to try to account for the somewhat different

[g))attern of behaviour exhibited by populations in the laboratory (Fig.

17
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3 The model

3.1 Choice of the model

The appropriate model for this study is one which incorporates a
maximum of biological realism while requiring a minimum of com-
puting time to run, in order that a wide range of experiments and
sensitivity analyses may be carried out; there is little point in having -
a model which is so detailed that it is too cumbersome to run. The
choices then are between stochastic and deterministic, and discrete
or continuous.

Stochastic models were rejected for two reasons; analytical ones
would probably require over-simplification of the biology, and simu-
lation ones would require excessive computing time. As Fransz
(1974) pointed out in a stochastic model of predation, where
non-linear relationships are involved the mean output given varying
parameter values will not be identical to the output given the means
of the parameter values. It is not possible’ without comparing
stochastic and deterministic models to assess the significance of the
difference between them. Probably the difference would not be large
enough to warrant the additional information required about the
variance of each parameter, the additional complexity of a stochastic
model and the additional computing time necessary to run it.

The possibility of a continuous or discrete deterministic model
was considered next. If the system can be readily represented as a
set of differential equations, then a continuous simulation model is
appropriate and there are a number of simulation languages such as
CSMP or DYNAMO, which consist of standard sets of functions for
describing time-dependent behaviour and will integrate equations
over time. These high-level languages are easy to understand, so
rendering models readily comprehensible to those not involved in
their construction. The approach is described in detail by Goudriaan
& de Wit (1974) and in other volumes of this series (van den Bos &
Rabbinge, 1976; Fransz, 1974). However, in this case it was decided
to use a discrete model written in FORTRAN with a fairly long
step-length of operation, in order to retain maximum flexibility and

18



to economise on computing time. The model is thus of the age-class
or box-car type with no dispersion (Goudriaan & de Wit, 1974),
meaning that the contents of each age-class are shifted bodily to the
next at each step corresponding to the duration of the age class. This
contrasts with the box-car model with dispersion, in which there is
continuous flow of the population from one age class to the next;
this generates a Poisson distribution of residence times over a series
of age-classes representing an instar if the number of classes is small
and a Gaussian distribution if it is large (Goudriaan & de Wit,
1974). The step-length of operation of a model should normally be
of the order of 1/10 of the system’s time constant, the smallest ratio
of the value of a state variable to its rate of change (Goudriaan & de
Wit 1974). This is so for models embodying the state variable
approach, in which all rates are independent of each other and are
calculated according to the current state of the system then used to
update the whole system by addition, in a discrete model like the
Leslie matrix (Leslie, 1945), or by parallel integration in a continu-
ous model. Where numerical integration is carried out by the Euler
or rectangular method, it gives the same result as a matrix operating
over the small time interval of integration. The present model,
however, is of the type described by Conway and Murdie (1972) in
which population processes operate not in parallel but sequentially
within each ‘iteration’. In this way a correction can be introduced
which compensates for the long step-length and large relative
changes in numbers which may therefore occur within an interval; in
particular, emigration of adults during one iteration may involve up
to 50% of those present. The correction involves calculating mortal-
ity and emigration first, then basing reproduction on the number of
reproductive animals remaining at the end of the interval plus half
those dying during the interval. When reproduction is calculated
first, before applying mortality, the predicted number of eggs at the
end of a year is up to a hundred per cent greater than when
mortality precedes reproduction and there i1s no correction. The
correction yielded an intermediate result and the discrepancy would
be reduced if the step-length of operation were decreased.

Although the use of a physiological time scale enables a
temperature-dependent model to be simplified somewhat it was not
employed here for three reasons. Some rates are related non-linearly
to temperature so day-degree totals above a threshold are not
applicable, different processes are related to temperature in different
ways, and some are related to factors other than temperature, such
as plant quality.
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3.2 Structure of the model

The model is deterministic and discrete, written in FORTRAN
and operating over a step-length of 1 day. It predicts changes in
numbers and growth in size of aphids throughout the season and
from one year to the next, while separate submodels described
below also mimic changes in numbers of predators and their alterna-
tive prey.

Fig. 13 shows the state variables in the model. Numbers of each
animal are stored in vectors or arrays by developmental stages (egg,
nymphal and larval instars, pupa and adults of different types),
together with average weights of the stages in the case of aphids and
leafhoppers. In addition, the aphid population is stored in a more
detailed form with numbers partitioned among the three morphs -
and into 50 day age-classes of nymphs and 30 of adults. Associated
with each of these age-classes is a mean population density experi-
enced during nymphal development, an average weight and an index
of development governing moulting in nymphs and the onset and
decline of reproduction in the case of adults. The remaining state
variables relate to the tree, being the amino-nitrogen level in the
phloem and the cumulative aphid density during the season. Sub-
sidiary variables in the model include the daily mortality experi-
enced by each adult age-class, needed to correct for the model’s
long step-length, the time of bud-burst, the cumulative proportion -
of aphid eggs which have hatched, and the accumulated day-degree
total above 5°C from 1st March which governs both bud-burst and
egg-hatching.

The operation of the model can be described as a series of steps,
shown in the flow diagram (Fig. 14). A listing of the actual program
is given in Appendix B, and the steps are as follows:

LU
1. Input of parameter values. A set of constants are assigned values
by DATA statements at the beginning of each run. These include:
— Cumulative proportion of development achieved at the end of
each aphid instar.
~— Number of days in each month of the year.
— Initial weights of each aphid instar and weights of each leafhop-
per instar.
— Maximum weight of prey eaten per day by each predator instar.
— Predator/prey attack coeflicients. -
— Weekly transition probabilities for leafhopper and predator sub-
models.
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Fig. 13. State variables in the lime aphid model. Figures refer to nymphal
instars, E, P, Ad, V, O, M to eggs, pupae, adults, viviparae, oviparae and
males, respectively.
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— Weekly survival probabilities for leafhopper and predator sub-
models. |

— Arbitrary function values defining relationships between
temperature and development rates
day-degrees above 5°C and cumulative proportions of eggs
hatching
time of year and soluble amino-nitrogen concentrations in the
phloem
time of year and long-term average maximum and minimum
temperatures
time of year and proportion of males among newborn nymphs
time of year and proportion of oviparae among newborn female
nymphs

— The maximum longevity for adults.

— Numbers of aphid, leafhopper and black-kneed capsid eggs at
the beginning of each year, and the ‘coccinellid multiplier’ for
each year (see Section 3.3)

— The year (1 to 8 for 1965 to 1972) in which the model starts.

— The year in which the model stops.

2. The first or next year is considered.

3. Initial conditions are established, state variables being zeroed

and new initial numbers of eggs assigned. These values are simply

the ones set by the previous year’s iteration if the model is run
continuously from one year to another; otherwise they are re-set
according to the year from the DATA statement. The overall day
counter is set to 59, giving the first daily iteration of each year on 1st

March, and the weekly day counter, which causes the

predator/leafhopper submodel to operate with a step-length of 1

week, is zeroed. Daily temperatures for the whole season are from a

data file or, if mean conditions are required, they are calculated

from the monthly long-term averages (subroutine TEMPS). Daily
wind speeds for the year are read in from another data file or set to
the long-term average value over the whole season (subroutine

WINDS). The dates on which output is required are then assigned

(subroutine OBS).

4. Although not shown in the flow diagram, there is provision at

this point for running the model repeatedly with the initial conditions

and driving variables of any one year, or those representing average
values, by returning control to this step from Step 23 as many times
as desired.

S. The next day is considered.

6. Egg-hatching (subroutine HATCH). The numbers of eggs hatch-
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ing are calculated and the day-degree total above 5°C and propor-
tion of eggs already hatched updated.

7. Updating of variables associated with the tree (subroutine
TREE). If the buds have not already broken the expected time of
bud-burst is updated, given the day-degree total above 5°C. The
daily amino-nitrogen concentration in the phloem is updated, given
the time and the time of bud burst, and the accumulated aphid
density on the tree updated given the current density.

8. Although not shown on the flow diagram, if no eggs have
hatched most of the following processes are by-passed and control
passed to Step 16.

9. Summarizing of the aphid population (subroutine SUMP). The
vector summarizing the composition of the population by instars,
adult morphs and their weights is updated, based on the current -
numbers in the detailed age-class vector. Weights of males are
assumed to be 0.7 times those of females.

10. Predation (subroutine PRED). Given the numbers and weights
of predators and prey of various stages and the constants associated
with their interactions, this subroutine models the functional re-
sponse and updates the numbers of leafhoppers and aphids. It also
increments a weekly total of number of aphids killed by predation
which is output at the end of the run.

11. Mortality, other than predation, parasitism and winter mortality
of eggs (subroutine MORTY). This subroutine updates numbers of
aphids according to the background daily mortality rate, the wind
speed, the time of year relative to the time of leaf-fall and the
cumulative aphid density.

12. Flight (subroutine FLIGHT). The number of males and viv-
iparae emigrating from each adult age-class is calculated given the
population density, the mean density experienced during nymphal
development, the cumulative density and the background emigra-
tion rate; numbers are updated accordingly.

13. Egg-laying (subroutine EPROD). The number of eggs laid is
added to the total already laid, given the numbers and weights of
newly-moulted oviparae; all eggs are assumed to be laid im-
mediately following the moult.

14. Parthenogenetic reproduction and morph determination (sub-
routine REPROD). Recruitment is calculated and the population
vectors updated, given the numbers, weights and developmental
stages of adult viviparae in each age-class, and the temperature.
New-born nymphs are partitioned among the three morphs accord-
ing to the time of year and assigned an initial weight.
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15. Growth and development (subroutine GROWTH). The propor-
tion of development achieved by each nymphal age-class is updated,
given the temperature and the amino-nitrogen concentration in the
phloem. Weights of each age-class are also updated given the daily
development increment, the population density, the cumulative
density, the temperature and the amino-nitrogen concentration.
16. Storing of variables for output (subroutine STORE). If the
current day is one on which output is required, the following values
are stored: numbers of aphids in different stages, instars 1-3 being
grouped together as in the sampling records; average weight of adult
aphids; total fresh-weight of the population; and numbers of
leafhoppers and predators in the different stages. Otherwise, this
step is by-passed.

17. Ageing of the aphid population (subroutine AGE). The num-
bers in each age-class, and the associated weights, states of develop-
ment and experiences of crowding, are moved into the next. The
contents of any nymphal class for which the development index is
greater than or equal to 1 are moved into the first adult class, and
no adults are permitted to remain beyond the age-class representing
the maximum adult longevity. The daily mortalities suffered by each
adult age-class are set to zero.

18. Parasitism (subroutine PARA). Parasitism is assumed to act at
the adult moult and the first adult age-class is reduced by the
calculated proportion parasitized, given the time of year.

19. Updating of the predator and leafhopper populations (sub-
routine POP). If the weekly day counter has not reached 7 this
subroutine is by-passed. Otherwise, predator and leafhopper popu-
lations are updated using modified Leslie matrices operating over
the weekly interval. These embody the processes of development,
mortality and reproduction which in some cases depend on the time
of year or the aphid density. The weekly day-counter is re-set to
zero.

20. If the time of year has not reached Day 304 (31 October)
control is returned to Step S.

21. Winter mortality of eggs (subroutine WMORT). The number of
eggs laid is reduced by a constant proportion.

22. Output (subroutine OUTPUT). Numbers of leafhoppers, black-
kneed capsids, 2-spot coccinellids and aphids of each stage are
printed for each date of the year specified in Step 3. The total aphid
population on these dates, average adult weight total fresh weight of
aphids and the total number eaten by predators are also printed.
Finally the logarithms of the aphid egg numbers at the beginning
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and end of the year are printed, summarizing the behaviour of the
population throughout the year.

23. If additional runs are required with the same initial conditions
and driving variables, control is returned to Step 4. If the next year
and a new set of these is required control passes to Step 3, otherwise
the model stops. |

Because of the relatively long step-length of the model, four
corrections have been applied, the first of which has already been
mentioned, and these are as follows.

1. Mortality and emigration are calculated each day before repro-
duction; then recruitment is based on the numbers remaining plus
half those dying or emigrating.

2. Viviparous adults experience a pre-reproductive delay which is
allowed to involve fractions of a day in the model (see p. 59),
3. For nymphs moulting on any day growth factors for the age-class
are based not on the whole day but on the calculated fraction of

the day for which the cohort remains in the nymphal stage.

4. Predation includes an exploitation component since under certain
circumstances a high proportion of prey may be eaten in one day
(see p. 3).

This description of the model, taken with the flow diagram in Fig,
14 and the relational diagram in Fig. 3, provides a summary of the
population processes included and the factors which affect them.
The process submodels will now be considered in more detail,

3.3 Initial conditions and driving variables

The initial numbers of aphid eggs, leafhopper eggs and black-
kneed capsid eggs, and the ‘coccinellid multiplier’ for each year
from 1965 to 1972 are given in Table 1. The coccinellid multiplier
represents the relative abundance of the 2-spot coccinellid in any
one year and is explained on p. 97.

The long-term average maximum and minimum daily tempera-
tures are shown in Fig. 15 and the mean weekly temperatures
during each season from 1965 to 1972 are given in Fig. 16. These
are shade temperatures recorded at Abbotsinch airport five miles
from the study area, and Llewellyn (1970) showed that they are
approximately 1.5°C lower than the integrated temperatures be-
neath lime leaves, referred to in the model as corrected tempera-
tures.
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Table 1. Initial densities of aphid, leathopper and black-kneed capsid eggs

(number/100 cm®) and the coccinellid multiplier (see text) in each year.
* average values.

year aphid eggs leafhopper capsid coccinellid
eggs eggs multiplier

1965 0.05 1.0* 0.030 1

1966 0.45 1.0* 0.063 1

1967 1.83 1.0* 0.067 1

1968 ~ 0.03 1.0* 0.071 1

1969 14.00 2.1 0.118 1

1970 0.07 0.5 0 1

1971 1.40 0.3 0 0.3

1972 0.17 1.0* 0 1

Shade Temperature - °C

20 p
TX
10 TN
0 U W S S W —

J FMAMIJ J A S O ND
Time of Year

Fig. 15. Long-term average maximum (TX) and minimum (TN) daily shade
temperatures throughout the year at Abbotswich airport, Glasgow.
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Fig. 16. Mean daily temperatures at Abbotsinch airport, Glasgow, during
the seasons 1965 to 1972.

The mean daily wind speeds are shown in Fig. 17, again recorded
at Abbotsinch airport and averaged over each week during the
season, from 1965 to 1972. The median daily wind speed is 7.74
knots (1 knot=0.5146 ms™?).

Rainfall is not included in the model since it was thought unlikely
to cause significant mortality to aphids beneath the leaves, at least in
the absence of high winds and pending evidence to the contrary,

3.4 The tree submodel
The model (subroutine TREE)

All buds are assumed to break on the day that the accumulated
day-degree total from 1st March, above a threshold of 5°C, reaches
122. In the model the time of bud-burst is then stored in the
variable ‘BUD’, leaf-fall is assumed to occur on 4th October (Day
277) and it is simply treated as a time-dependent mortality factor in
the model (subroutine MORTY, Section 3.5.3).

Host plant quality is expressed by the soluble amino-nitrogen
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Fig. 17. Mean daily wind speeds at Abbotsinch airport, Glasgow, during
the seasons 1965 to 1972. -

concentration in the phloem and by the cumulative level of aphid
infestation in any one year. Both are updated daily, the first
according to the time of year and the time of bud-burst (Fig. 18),
the second according to the current aphid density.

The data

The time of bud-burst varies from year to year and was assumed
to do so largely in response to temperature. Approximate times of
bud-burst were obtained by back-extrapolating average weekly
measurements of leaf width to the point where the widths were 0.2
times the maximum. The day-degree total above 5°C was calculated
each year, from the beginning of March to the estimated time of
bud-burst and the results averaged over all years. The mean day-
degree total, 122, was assumed to be that at which the buds burst,
and the calculated times based on this figure accounted for 78% of
the variance in those observed. The relationship is (Fig. 19):
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Fig. 18. Soluble nitrogen content of phloem (N, % dry weight) throughout
the year (TB, time in days after bud-burst). From Dixon, 1971a.
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Fig. 19. Relationship between ‘observed’ and predicted times of bud burst
in the field. ‘Observed’ times are those estimated from measurements of

leaf widths; predicted ones are based on accumulation of 122 day-degrees
above 5°C. Times are in days from the start of the year.
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0 =0.9945P-1.7796 r=0.884, df.=17, P<0.01
where

O = estimated time of bud-burst from measurements of leaf width
P = time predicted from a day-degree total of 122,

The same developmental threshold was assumed as applies to
egg-hatching (see Section 3.5.1), in the absence of more detailed
knowledge about the temperature dependence of bud-burst.

The average time of leaf-fall in the field is 4th October (Day 277).
Although the time is variable from year to year it is not known what -
causes this. High winds in autumn may play a part and White (1970)
showed by experiment that leaf-fall was earlier if the leaves had
been heavily infested in the current season, but later if aphid
numbers had been high in the previous season, than on uninfested
plants. However, there is no clear relationship between aphid num-
bers and time of leaf-fall in the field, where this is taken to be the
last sampling date; other factors appear to be more important in
determining the variation.

Amino-nitrogen levels in Fig. 18 are those measured by Dixon
(1971a) throughout one season. An aphid-induced effect on plant
quality, related to cumulative density, is indicated by a reduction in
weight of aphids reared on infested tissue and by considerable
circumstantial evidence of increased mortality and flight. These
- effects are considered further in the Sections on growth, mortality
and flight.

3.5 The aphid submodel
3.5.1 Egg-hatching
The model (subroutine HATCH)

The submodel predicts the timing and pattern of egg-hatch and
their dependence on temperature. It uses a relationship between the
cumulative proportion hatching and summed day-degrees from
March 1st above a threshold of 5°C (Fig. 20).

If all eggs have already hatched or the date is earlier than March
1st the subroutine is skipped. Otherwise, the day-degree total is
updated using Ives’ triangulation method (p. 74) and the expected
cumulative proportion of eggs hatched obtained from Fig. 20 by
linear interpolation. The proportion of remaining eggs hatching
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Fig. 20. Relationship between the cumulative proportion of eggs hatching
(CPHE) and summed day-degrees above 5°C from 1st March (DD5).

during the current day is then given by:
(CPHE - CPH)
(1- CPH)

PH =

where

CPH = cumulative proportion hatched

CPHE = the expected cumulative proportion hatched by the end
of the day, given the updated day-degree total.

The cumulative proportion hatched is updated and the number
hatching subtracted from the egg population and entered into the
first nymphal age-class as viviparae with a birth weight of 24 ug (see
p. 57). After reaching 1 the cumulative proportion hatched holds
this value for the rest of the year, so no hatching of eggs laid during
the current season can occur; the proportxon is zeroed at the
beginning of the next year.

Fig. 21 shows the cumulative hatching distributions plotted
against time for each year and under average temperatures. Temp-
erature differences from year to year before hatching change “the
position (median) of the hatching curve but not its shape (compare
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1968 and 1969). On the other hand, temperature differences during
the period of egg-hatching will affect both the median and the shape
of the distribution, lower temperatures giving a greater spread of
hatching times. This is illustrated by a comparison of the curves in
1966 and 1973 (Fig. 21), the results of experiments described below
(Fig. 22) and the difference between observed hatching curves for
the lime aphid and sycamore aphid in 1973. Sycamore aphid eggs
hatch earlier and over a longer period than those of the lime aphid
(Dixon, 1976) and this longer period is explicable in terms of the
lower temperatures experienced at the time of hatching. When
compared on a day-degree scale, the shapes of the distributions are
similar (x*=8.37, d.f.=4, P>0.05), though the medians differ.

The data

The time of egg-hatch each year was estimated from the sampling
data and assumed to be the date of the first sample. As such, it
varies from year to year over a range of about 16 days, from 27
April to 13 May, and it is reasonable to assume that such variations
are due to temperature.

The temperature threshold for egg development was obtained
from a laboratory experiment, in which eggs on twigs were brought
in from the field at the end of February and kept at 4 different
temperatures under natural daylengths until all had hatched. Fig. 22
shows the cumulative numbers hatching at 12°C, 16°C, 20°C and
24°C and Fig. 23 the rates of development plotted against tempera-
ture. Development rates are reciprocals of the median times be-
tween the start of the experiment and hatching. The relationship
between development rate and temperature is linear over the range
considered and Chambers (pers. commun.) found linearity down to
8°C in the sycamore aphid. The temperature threshold is 5°C.

Development rates of eggs are only relative in the absence of any
knowledge of the time at which development starts, and the assump-
tion that the same development process occurs throughout may be
invalid (Behrendt, 1973). For these reasons a purely empirical
relationship was sought between spring temperatures and hatching
times but using the threshold derived from the experiment.

The number of day-degrees above 5°C was calculated for each
year using Ives’ method, from 1st march to the date of the first
sample. The mean of these values was used to give a predicted
median hatching time for each year, and the observed times, given
by the sampling dates, were regressed on the predicted. The predic-
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Fig. 21. Cumulative egg-hatching distributions in time, generated by the
model for each year in the field and under long-term average temperatures.
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tions (P), based on the experience of equal numbers of day-degrees
from 1st March (147), accounted for 68% of the variance in the
observed hatching times (O):

O0=1.0113P-1.5 r=0.827,d.f.=8, P<0.01

intercept not significantly different from 0
| t=0.05,d.f.=8, P>0.05

slope not significantly different from 1
t=0.047,d.f.=8, P>0.05

Predictions based on corrected temperatures, with 1.5°C added to
the mean, gave no better agreement and the correction may be
inappropriate in any case at the low temperatures of early spring.
Having established the median of the hatching distribution each
year the pattern of hatching within a year, on the same day-degree
scale, was derived from Dixon’s (unpublished) observations in 1973
on a tree at Glasgow University. The eggs hatched over a period of
about 1 month and the distribution showed highly significant kur-
tosis and positive skew when plotted on the day-degree scale.
However, the kurtosis and skew were removed when the scale was
transformed to logarithms. The curve of cumulative proportions
hatching was therefore smoothed lognormally, though inconsistent
departures from the fitted curve indicate that immediate tempera-
tures may have a greater effect than day-degree summation would

imply.
3.5.2 Predation
The model (subroutine PRED)
The predation submodel uses a multiple predator/multiple prey
functional response equation to calculate the numbers of each prey

instar eaten daily. 11 behaviourally distinct predator types and 11
prey types are considered, consisting of

‘Black-kneed capsids instars 1-5 and adults
Predators L ]
|2-spot coccinellids  instars 1-4 and adults
lime aphids instars 1-4 and adults (all morphs)
Prey ¢ _
[leafhopper instars 1-5 and adults
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Input consists of data matrices of attack coefficients (Table 2) and
weights of prey required to satiate each predator (Table 3), together
with numbers of predators and prey generated by the main model
and prey weights. Aphid weights are also generated by the model
but leafhopper weights are assumed constant for each stage (Table
4).

Table 2. Predator attack coefficients for different predator/prey combina-
tions. |

aphid ' leathopper
1 2 3 4 Ad 1 2 3 4 5 Ad
2-spot 1 033 032 004 006 O 0 0 0 0 0 0
coccinellid 2 181 045 021 036 0.19 0.12 O 0 0 0 0
3 276 244 (65 1.71 085S 031 O 0 0 0 0
4 451 658 3.17 274 2.88 0._38 023 0 0 0 0
Ad 451 658 3.17 2.74 288 038 023 0 0 0 0
Black-kneed 1 1.27 047 0.16 0 0 043 0.14 0 0 0 0
capsid 2 600 250 170 0.58 0.41 1174 431 190 0.81 028 O
3 1258 698 873 1.68 165 0 13.59 4582 259 0 0
4 1443 15.39 1532 770 777 O 23.59 15.70 10.32 4.16 O
5 15.16 25.65 39.79 28.76 19.38 0 0 0 28911093 0
Ad 11.38 23.55 40.64 3425 39.25 0O 0 0 0 0 3.00
Table 3. Maximum weights of prey eaten daily by predators (e g).
2-spot coccinellid black-kneed capsid
1 2 3 4 Ad 1 2 3 4 5 Ad

160 550 1300 3470 4125 20 40 68 113 178 334

Table 4. Average leafhopper weight in the
field (ng).

leafhopper
1 2 3 4 5 Ad

40 110 200 360 650 700
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The form of functional response assumed is a combination of the
models of Thompson (1924) and Nicholson & Bailey (1935) with
the number of encounters with prey limited by the predators’
searching capacity at low densities and by their maximum rate of
ingestion at higher densities. Although originally describing parasite
searching behaviour this model is applicable to predators in the
present situation since the effects of handling times are negligible
(see below); unlike equations of the random predator type (Rogers
1972) it also retains its manageability in a situation where several
different predators are eating several different prey. The functional
response equation is:

i=11

N, = N,(1 - e~ i=i" aPs)

where
i=11

S; = VOR,/Z a;NW;; S =<1

and

N,, =number of prey i attacked by all predators /100 cm?
Ni number of prey i/100 cm?
=attack coefficient for prey i and predator j (dm?
traversed/day on abaxial leaf surfaces X capture efficiency
X correction factor for within-leaf distribution of pred-
ators and prey)
P; =number of predators j/100 cm?
S; = correction factor for satiation of predators j
VOR maximum prey wexght killed per day per predator j (ug)
W = weight of each prey i (ug)

and its derivation is described below. Prey numbers in the various
population vectors are updated accordingly.

Fig. 24 shows the computed functional response curves for each
aphid and predator instar, assuming a high predator density of
1/100 cm®. Lower densities of predators very rapidly reduce the
number of prey eaten; if the expectation of survival for a prey is
0.01 at a predator densxty of 1/100 cm?, for example, this will
increase to, (0.01)*! or 0.63 if the predator density decreases to
0.1/100 cm?®. Fig. 24 shows clearly that coccinellids are effective at
high prey densities because of the amount they can eat, and that
although the reverse is true for the black-kneed capsid it is ex-
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Fig. 24. Functional responses of predators to prey densities, generated by
the model. 2-spot coccinellid, instars 1-4 and adult (C1, C2, C3, C4,

CA); ++--- black-kneed capsid instars 1-5 and adult (B1, B2, B3, B4, BS,
BA). Predator densities are /100 cm®. a) First, b) second, ¢) third and
d) fourth instar aphid, and e) adult aphid.
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tremely effective at low prey densities because of its greater search-
ing ability.

The data

The actual functional responses of the different predator types to
the different prey types have not been observed directly; apart from
any other inherent difficulties this would involve 121 separate
experiments, each for a range of prey densities and perhaps also for
a range of predator densities, while an experimental ‘universe’
similar to that on the trees would be difficult to devise. Instead, the
attack coefficients and the prey weights required to satiate the
predators have been determined by experiments and a functional
response equation assumed which generates prey death rates, given
these parameters and the principle assumptions that predators en-
counter prey at random and that handling times can be ignored. .
Attack coefficients are products of the capture efficiencies, the
abaxial leaf areas (in dm®) searched per predator per day and factors
correcting for the tendency of aphids to aggregate on leaf veins and
of predators to search the veins preferentially. Values for these
three quantities, for the black-kneed capsid and the 2-spot coccinel-
lid, are taken from Glen (1971, 1975) and Wratten (1973), respec-
tively. The maximum weights of prey killed each day when excess is
provided are also taken from Glen’s (1971) and Wratten’s (1973)
laboratory experiments.

The basic equation used is:

N, =N(1—- e En/N)

and
Enc/N=aP; N <NM:X“' (as in Nicholson & Bailey, 1935).
Enc/N= W:IX‘"P; N= NM:X"' (as in Thompson, 1924)
where

Enc/N = Successful encounters/prey
NMAX,, = maximum number eaten per day per predator

The same equation can be written in Nicholson-Bailey form but
with a correction factor for satiation of predators, thus:
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From this it is straightforward to obtain the equation used in the
model, for several prey and several predators. The only qualitative
difference is that S is now expressed not as the maximum number of
prey which can be caught divided by the number encountered, per
predator, but by the total prey weight which can be eaten divided by
the total weight encountered.

Glen (1971, 1975) and Wratten (1971, 1973) also gave times
taken to eat prey and in all cases these are so short as to have a
negligible effect on the functional response curve; as Rogers (1972)
demonstrated, both the random predator and random parasitoid
equations reduce to the Nicholson-Bailey form under these cir-
cumstances. It is true that Glen (1971, 1975) has shown that
black-kneed capsids may have a greatly reduced speed of searching
for as long as 1.5 days after feeding, even when initially hungry, and
this is equivalent to a digestive pause hence handling time (Holling,
1966). However, the capsids become satiated at extremely low prey
densities, so the range of densities over which the effect may be felt

is sufficiently small for it to be ignored in practice.

- There is no evidence for switching, interference or sigmoid func-
tional response curves due to reduced searching rates at low prey
densities, but neither can these possiblities be rejected; further
work would be required to test for their existence. Two other
features not included in this submodel of predation are stochastic
effects and the effect of temperature changes, the first emphasized
by Fransz (1974) and the second by Gilbert et al. (1976) and Frazer
& Gilbert (1976). As Fransz demonstrated, a stochastic model of the
functional response may give higher predation rates than a deter-
ministic one, since non-linearities are present and ‘the expectation
of curvilinear functions differs from the function of the expectation
value’. The error which results from omitting the chance element
from predation, however, is a specific case of the point discussed in
Section 3.1. Temperature does affect the searching rate of the
2-spot coccinellid (Wratten, 1973) but it is not known what effect it
has on handling times. Moreover, the predator population sub-
models are less detailed than the aphid one and include little
temperature dependence, so for these reasons the effect was omitted
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from the predation submodel. A more complex version could read-
ily include it by multiplying the number of prey eaten by a
temperature-dependent factor.

3.5.3. Mortality (other than predation, parasitism and winter losses)
The model (subroutine MORTY)

There is an average daily mortality rate for all members of the
population and adults are assumed to have a fixed maximum longev-
ity. Population growth is terminated at the end of the season by
mortality of mobile stages resulting from leaf-fall which removes
both food and places to live. Prior to this, however, it appears that
the food supply may become inadequate through a decline in its
quality following high cumulative levels of aphid infestation within
any one season; this density-related effect also causes mortality
among all aphids on the leaves. |

The evidence suggests that variations in the daily mortality rate
and its obviously greater average value in the field than in laborat-
ory populations may be due at least in part to an effect of wind in
causing leaves and fruit to brush together and aphids to be dis-
lodged. The daily mortality rate is therefore considered to be made
up of two components, an intrinsic background mortality, as applies
in laboratory populations, and a factor dependent on wind speed
which increases the average mortality rate in the field.

The overall daily survival rate applied in the model is then a
product of the survival rates associated with these factors, given by
the following relationships (Fig. 25):

Adult longevity (age-specific mortality):
SD =1, adult age <30 days
SD =0, adult age =30 days

Intrinsic mortality/effect of wind:
SW=0.99(1-0.0003W?); 0.2<SW=1

Effect of leaf fall:
SL=(277-DAY)/10; 0=<SL=<1

Effect of cumulative density:
SC=1-0.002(C—-250); 0=SC=1
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Fig. 25. The components of daily mortality: a) the proportion surviving
(SD) dependent on adult age (A); b) the proportion surviving (SW) depen-
dent on mean daily wind speed (W); c) the proportion surviving (SL)
dependent on leaf fall hence the time of year (t); d) the proportion
- surviving (SC) dependent on cumulative density (C, aphid-weeks).

Proportion of population surviving per day:
S=SDXSWXxSLxSC

where

W =mean daily wind speed (kts)
DAY =time of year (days)
C = cumulative aphid density (aphid-weeks/100 cm?)

The data

The daily background survival rate of 0.99 is an approximate
figure obtained from insectary populations under the most favour-
able environmental conditions, where Brown (1974) recorded num-
bers of aphids falling from young saplings and dying on the leaves
each week. The assumed maximum longevity for adults of 30 days is
fairly arbitrary. Adults clip-caged in the laboratory at 15°C live for
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an extremely long period, on average about 80 days, but in uncon-
fined populations emigration and extrinsic mortality factors deter-
mine the pattern of survival and render the potential longevity
unimportant. This was confirmed by running the model with two
different values (Section 4.2).

The effect of wind was tested by a field experiment. Petioles of
leaves bearing a maximum of two large or five small aphids were
ringed with ‘Stickem’ to prevent the aphids walking off. Four trees
were used, in different positions, supporting low-density populations
so as to minimize the numbers of predators present. These were
rarely found on the isolated leaves but when they were the record
was omitted. The proportions of aphids disappearing from the
leaves each day were then plotted against the daily maximum gust
speed at 20 m (Fig. 26). Although wind speeds in general were low
and a greater range would have been desirable, nevertheless the
relationship between the proportion disappearing and wind speed
was highly significant (r=0.62, d.f.=38, P<0.01). This could not
be used directly in the model, however, since it was obtained in a
different area, it does not cover the full range of wind speeds and it
appears to overestimate actual mortality, since running the model
with the relationship as it stands rapidly led to extinction of the
population. One reason for a possible overestimation of mortality is
that aphids are not free to move off leaves which are unfavourably
sited. Dixon (1970) found that sycamore aphids left leaves as soon
as their surfaces were touched by others. For it is the brushing

Proportion Disappearing day™!

06 p ®
®
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A A A ®
& A
0:2 } ¢
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Maximum Gust Speed, kts

Fig. 26. The effect of wind speed at 20 m on disappearance of nymphs from
isolated leaves in the field. @ instars 1-3, A instar 4. kts=knots=
0.5146 ms™.
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together of leaves and fruit which is likely to be the actual cause of
mortality, and as Dixon pointed out the available space on a
sycamore tree is thus limited to a fraction of the total leaf area.
. Leaves and fruit therefore act as devices converting weather into
herbivore mortality. Returning to the model, the effect of wind is
assumed to be somewhat less than that observed for aphids on-
individual leaves, taking the form of Fig. 25 with an arbitrary
minimum survival rate of 0.2 per day and an increasingly large effect
for very high wind speeds.

Leaf-fall is treated here simply as a time-dependent mortality
factor but it is clearly a property of the tree subsystem and as such
was considered further in Section 3.4.

Although it has not yet been confirmed by experiment, there is
considerable circumstantial evidence for the existence of integrated
density-dependent mortality, that is, mortality resulting from a
decline in plant quality caused by high cumulative aphid densities.
The first indications come from Brown’s (1975) painstaking counts
of large numbers of aphids falling onto horizontal sticky traps
beneath the sampled trees in 1971. This was the year of highest
aphid numbers, and mortality increased rapidly towards the end of
July when the cumulative density reached 250 aphid-weeks/100 cm?
(Table 5). More significantly, the increase was sustained thereafter,
although densities were low by this time and there was no obvious
change in weather. Second, adult viviparae were clip-caged on the
leaves for 5 days at a time throughout 1971 and also during 1970
and 1972 when numbers were low. The proportions dying each day
were plotted against time of year (Fig. 27) and again a large increase
in mortality occurred towards the end of 1971 although in the other

Table 5. Effect of cumulative infestation of trees on aphid mortality in the
field. Figures are ratios of numbers caught on horizontal sticky traps below
the trees, summed over all weeks, to those recorded on the trees per 80
leaves, summed over all weeks. The two time periods correspond to
cumulative densities less than and greater than 250 aphid-weeks/100 cm?,
respectively, and data are from Brown (1975) for three trees.

instars instar oviparae alates
1-3 4
Before 25/7 0.973 2.891 1.821 5.483
Azfter 25/7 1.809 11.798 15.100 8.673
) ¢ 628 534 43 77
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Fig. 27. Adult mortality rate (proportion of clip-caged adults dying per day,
taken over all trees) throughout the year in 1971, compared with that in
1970 and 1972.

years it remained constant. The difference between years can only
be attributed to two factors, the lower weight of the aphids in 1971,
qQr some equivalent measure of quality, and the state of the tissue,
but since adult weight is itself determined partly by cumulative
density (p. 75) it must be concluded that this affects mortality either
directly or indirectly. However, in Brown’s (1975) insectary popula-
tions mortality did not increase throughout the season as adult
weights declined, suggesting that the effect does not act through the
aphid’s weight. Since cumulative densities were also extremely high
in the insectary populations, their effect on mortality may only be
manifested on mature trees. This in turn may explain why it has not
yet been possible to confirm the effect of cumulative density experi-
mentally, although Davis (1957) claimed to have demonstrated a
conditioning effect for the walnut aphid (Chromaphis juglandicola
Kalt). The actual mechanism could involve: the injection by aphids
of substances into the phloem which inhibit feeding; the progressive
occlusion of increasing numbers of vessels as a plant reaction to
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aphid feeding; or a simple nutrient drain effect. Aphid densities
between 28/100cm? (Dixon, 1971) and 78/100 cm? (Llewellyn,
1972) throughout a season, depending on the individual tree, would
entirely drain the net primary production of the tree in the absence
of compensatory growth. In the model a relationship between
mortality and cumulative density was used with a fairly arbitrary
slope but a threshold of 250 aphid-weeks/100 cm?, corresponding to
the accumulated total in 1971 at the time that mortality of the
clip-caged adults began to rise.

Table 5 suggests that adults and 4th instar nymphs have a much
higher overall mortality rate in the field than do younger nymphs,
but when rates of disappearance from individual leaves were moni-
tored the mortalities of 4th instars and of younger nymphs were
similar. However, making the mortality instar-dependent proved to
have very little effect on the model’s output, even in terms of
instar-distributions, so for simplicity the factors considered in this
submodel were assumed to affect all instars equally.

There is a suggestion based on catches from sticky traps in 1971
of density-dependent mortality (Barlow, 1977). However, there is
no experimental evidence for the effect which must in any case be
slight, since observed instar distributions during July and August are
the same in years of high and low density at this time; it was
therefore ignored in the model.

3.5.4 Flight
The model (subroutine FLIGHT)

All viviparae are winged and may fly at any time, before or after
reproducing. The proportion flying each day depends on the current
weighted population density, the mean total density experienced
during nymphal development and, though this is less well estab-
lished, the accumulated total density over the season. There is also a
constant background level, even at low densities, and flight is
independent of adult age. The first two components are known to be
additive while the others are assumed to be so. The quantitative
relationships used in the model are (Fig. 28).

Eftect of current density:
FA =0.005WD
47



0:3r ’ 0'5L : A =

0.2p A/
FA FC
01p :

A
ob “ /
0} A
A A A A 5 WS
0 20 40 60 0 200 400
WD C
-C= -d_
0.4} A  0.2¢
FN . A
0:2¢ A &
] -
A
A )
W 3 ' 1) — A I
0 20 40 4 8
9]9) A

Fig. 28. The components of daily adult flight: a) the proportion flying (FA)
dependent on current weighted population density (WD, see text); b) the
proportion flying (FN) dependent on mean total density experienced during
nymphal development (DD); c) the proportion flying (FC) dependent on
cumulative density (aphid-weeks, C); d) the background level of flight (F)
relative to adult age (A).

Effect of nymphal crowding:
FN=0.02(DD-10); 0<FN=<04

Effect of cumulative density:
FC=0.005(C-250); 0<FC=0.5

Background level
F=0.1

Total proportion flying per day:
FLT=FA+FN+FC+F

where

-

WD = weighted density (adults+4th instars+3(instars 1-3) per
100 cm?)
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DD = mean density during development (aphids/100 cm?)
C = cumulative density (aphid-weeks/100 cm?)

The data

The effect of current density on flight was based on a laboratory
experiment of Dixon (1971a) and his results are reproduced in
modified form in Table 6. To obtain the relationship in Fig. 28,
proportions flying were expressed as increments and the densities

Table 6. Effect of current density on flight in the laboratory. Modified from
Dixon (1971a).

adults/100 cm*  adults/100 cm? proportion prop. flying -
in lab. in field flying/day basic level
1 =() 0.17 0
30 ' 12 0.23 0.06
60 34 0.36 0.19
90 57 0.45 0.28

used in the laboratory transformed to equivalent densities in the
field in the following way. Aphids in the field are aggregated
between leaves (Dixon, 1971a) so the average density experienced
by each aphid, or mean crowding (Lloyd, 1967), is higher than the
average number per unit area. Following Lloyd, the two can be
related using the variance/mean equation given by Dixon (1971a),
and the resulting expression for mean crowding is:

m=m(1+7.283m~%%)

where

m =index of mean crowding (aphids/aphid/100 cm?)
m =mean density (aphids/100 cm®)

or, with m and m expressed as numbers per leaf
m=m(1+4.615m™°%)

and both forms are shown in Fig. 29. The laboratory densities were
tz}ken as mean crowding values and the corresponding mean den-
sities for an aggregated population derived from these using the
above expression (Table 6). Since the population in the field consists
of stages other than adults, this also must be taken into account.
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Fig. 29. The relationship between mean density of aphids and mean
crowding. as observed; — -~ for a random distribution.

Fourth instar nymphs were assumed to be equivalent to adults buta
weighting factor of 0.25 was applied to densities of younger nymphs
since these are less active (Brown, 1975) and the adult flight
component depends largely on direct interactions between aphids on
the leaves (Kidd, 1975, 1977).

The effect of density during nymphal development was also
established by laboratory experiments (Table 16 in Kidd, 1975) in
which a maximum additional proportion flying of 0.4 per day was
associated with nymphal experience of crowding. The latter cannot
be related directly to densities in the field since aphids in Kidd’s
experiments were reared in small clip-cages. However, these aphids
were about 100 ug lighter in weight than aphids reared in isolation
and such a decline in weight in the field in 1969 was associated.with-
a density during development of about 40 aphids/100 cm® The
nymphal component of 0.4 is therefore activated at levels of crowd-
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ing between 0 and 40/100 cm and is assumed in the model to act
over the range 10-30/100 cm? (Fig. 28). The nymphal experience
“and current density components were shown by Kidd (1977) to be
additive.

Evidence that flight depends also on accumulated density, through
conditioning of leaf tissue, comes from two sources. Kidd (1977)
transferred aphids isolated during rearing to previously infested
tissue, where the proportion flying per day was 0.54 greater than for
aphids transferred to uninfested tissue. This observation does not
preclude the possibility that increased flight was due to the change
in tissue quality experienced by the adults, and that aphids reared
from birth on previously infested tissue would fly no more readily
than those reared from birth on uninfested tissue. However, flight in
the field during 1971 increased dramatically at the beginning of
August after prolonged heavy infestation of the tree corresponding
to a cumulative density of about 250 aphid-weeks/100 cm?. It
remained high thereafter, even when the population had crashed to
very low levels (Fig. 30). Flight in this case was based on Brown’s
(1975) counts of aphids caught on horizontal sticky traps beneath
one of the sampled trees, and measured as the number caught each
week divided by the average number present on the tree that week.
Similar data are not available for other years when cumulative
densities were low, so the effect may be one of the time of year or
the aphid generation; no sustained change in weather was apparent.
‘However, data on mortality are available for other years, when a
large increase in mortality recorded at the end of 1971 did not occur
(Section 3.5.3). This suggests that flight, an active alternative to
death, probably is related to the high infestation levels in 1971
rather than to the time of year or generation, a conclusion rein-
forced when one considers years like 1968 where rapid population
growth and presumably, therefore, little flight was occurring among
the same generations of aphids at the same time of year (see Fig.
11). Returning to the model, the relationship in Fig. 28 uses the
observed cumulative density threshold of 250 aphid-weeks/100 cm?
and Kidd’s figure rounded to 0.5 for the maximum likely flight
increment; the slope is arbitrary but its precise value was found to
be unimportant in practice.
~ The background level of flight was estimated in the ﬁeld using the

method described in Section 3.5.3 for mortality. The index of daily
flight was determined by the difference between the recorded pro-
portion of adults and nymphs disappearing daily from marked, iso-
lated leaves on the trees. The average value spanning two different
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Fig. 30. Variations in relative flight ( , ratio of alates caught on suspended
sticky traps to those present per unit area on one tree each week) compared
with the variations in population density (----) during 1971.

periods of successive observations was of the order of 0.1 per day.
The points in Fig. 28 represent measured proportions of adults
flying at different ages, taken from laboratory observations and with
the points standardized to the background level of 0.1; there is no
significant effect of age over the initial period of adult life.

A laboratory experiment has shown that no flight occurs below
12°C and field observations suggest that higher maximum tempera-
tures result in increased flight (Barlow, 1977). Presumably it is also
inhibited by high winds or prolonged rain, but the full extent of the
action of weather was felt to be, as yet, insufficiently understood to
warrant its inclusion as a factor affecting the average level of flight.

The whole process of flight initiation in the lime aphid is highly
complex and the present submodel is a simplified, high-level rep-
resentation of the underlying behaviour. Kidd (1975, 1977) in
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particular has studied this in more detail, and Fig. 31 illustrates
conceptually the factors priming adult flight. The probability of

Present Density : Density Previous Density During
-~ Plant - to Dsvelopmaent Development
: . ©
¥ L - .
Present Density : ~ «alPresent Food K
K |
Local Food Quality
Accumulation of During
Offspring | Development |

L@ o« €

IPresent Density: | Probabitity of ™ Probability of
| Y ° Being Met by a |} K y
-Within Leaf =] K | \wiiing Aphid| ¥ Starting toWalk
Generation
Number

K Probability _°f e L Probability of
»{ Encountering p=]=p -
Another Aphid ]  Re-settling
Windspeed

Fig. 31. Diagram of a detailed flight model. —> a relationship indicating
that one factor affects another; ---» a tentative relationship; —— a link or
correspondence; ----> feedback from flight. D, K, B, authorities for rela-

tlionships already established (Dixon 1971a, Kidd 1975, 1976, 1977, Brown
975).
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flying is shown on the right and the pathways represented in the
model can be recognized as the effects of immediate density and age
composition, perceived through direct interaction, nymphal experi-
ence of density, perceived through tissue quality at that time, and
past accumulated densities, perceived as the present state of the leaf
tissue. Weather and a possible generation effect are included, and all
factors appear to act through their effects on movement of the
adults; there is a constant probability of flying for an adult given
that it has started to walk (Kidd, 1977).

3.5.5 Egg-laying
The model (subroutine EPROD)

The number of eggs laid by each ovipara is related to its size (Fig.
32), thus:

E=0.0162W-2.736
where

E = eggs laid/ovipara produced
W =weight of ovipara (ug)

200 300 400 500

-

Fig. 32. The relationship between weight of oviparae (W, ug) and the
number of eggs laid by each (E).
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Multiplying this by the number of newly-moulted oviparae gives the
total number of eggs laid each day, which is added to the current
egg population.

The data

Brown (1975) gave figures for the numbers of oviparae produced
in 6 populations reared in an insectary and the numbers of eggs laid
on the 6 trees. These fell into two groups corresponding to the two
initial population densities employed. The ratios of mean eggs
laid/mean oviparae produced for the two groups relate to the mean
weights of oviparae in those groups (Fig. 32) and a linear relation-
ship is assumed between the points. The number of eggs laid by
each ovipara of the heavier group is approximately 80% of its total
egg complement, using Brown’s (1975) results from dissections of
oviparae of similar weight. Very little more is known about ovipara
behaviour and it may be that even less of the potential egg comple-
ment is laid in the field. Infertility of eggs is treated along with
winter mortality in the model (p. 86) and an average value is
assumed for the combined effect. It is interesting to note, in this
context, that the sex ratio varies widely throughout the season and
that there are up to 7 times as many oviparae as males during
August and September.

3.5.6 Parthenogenetic reproduction
The model (subroutine REPROD)

This submodel computes recruitment to the first nymphal age-
class, assigns an initial weight to the nymphs and updates the state
of maturity of adults.

The pattern of reproduction by viviparous adults involves a
pre-reproductive delay following the moult, an initial constant re-
productive rate, and a decline in reproductive rate with increasing
age. The pre-reproductive delay and the initial rate of reproduction
depend on adult weight and temperature (Figs 33 and 34) thus:

_ 1652000
(W—-100)T>*
1.5
R=IT_
14817
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Fig. 33. The effect of temperature and adult weight (W, ug) on the
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Fig. 34. The effect of temperature and adult weight on reproductive rate
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where

D =pre-reproductive delay in days

R =nymphs produced per adult per day
W = adult weight (ng)

T = actual (corrected) temperature (°C)

The decline in reproductive rate depends on the accumulated temp-

erature experience of the adult since the start of reproduction (Fig.
35): ~

F
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Index of development

Fig. 35. The factor (F) modifying reproductive rate according to adult age,
expressed as accumulated temperature experienced (Z(mean daily
temperature)'*) or an index of development achieved since the start of
reproduction, and based on experiments at 20°C (O) and 15°C (@).

RF=2.578-0.526ID O0<RF=1
where

RF = factor multiplying reproductive rate

ID =temperature experience or index of development (see
below)

New-born nymphs are assigned an initial weight depending on that
of the parents, assumed to be the average weight of viviparae
present at the time, thus (Fig. 36):

Wo =24-24.8¢70007"%
where
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Fig. 36. The relationship between parent weight and relative weights of
offspring, at birth (@, O, W) and at maturity (A). Relative weights are actual
weights divided by the maximum for each experiment (see text and Table
14).

Wo = weight of nymphs at birth (ug)
W = weight of parents (ng)

These features of reproduction are simulated in the following way.
First, each age-class has associated with it an index of accumulated
development similar to those of nymphal classes but in this case
controlling reproduction. Values between 1 and 2 correspond to the
pre-reproductive period, those between 2 and 3 to the period of
initial high reproductive rate (R) and values greater than 3 to the
period of gradually waning reproductive output.

The submodel computes recruitment to the first nymphal age-
class from each adult age-class in turn depending on its index of
development. If this is between 1 and 2, the basic reproductive rate
R is reduced by a factor RD and the index incremented by the
reciprocal of the calculated pre-reproductive delay given the weight
of the age class and the corrected mean temperature RD is
calculated as:

ID-2

=14+ .
RD=1 T

0<RD<=<1

where
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ID = index of development already achieved
I=increment for the current day

allowing account to be taken of delays involving fractions of days. If
the calculated pre-reproductive delay is a constant 2.8 days, for
example, the reproductive rate is set by the model to zero on the
first two days and 0.2 times the maximum on the third. The
development index is re-set to 2 when it first exceeds this value. If
the development index is 2 or more the daily increment is now a
function of temperature alone, given by:

0.0011 (corrected mean temperature)*->

If it exceeds 3 the reproductive rate is reduced by the factor RF
given above. Total reproduction by the age-class is then calculated
as the product of the corrected reproductive rate and the number of
viviparae in the class plus half the mortality from that class.

Though it is not explicitly used in the model it is worth noting
that the above relationships imply a total potential fecundity for any
adult independent of temperature and equal to 0.12 times its teneral
weight,

The data

The data come from two sources, laboratory experiments and
measurements in the field. Fourth instar-aphids were clip-caged on
20 cm high lime seedlings (Tilia cordata) in constant-temperature
cabinets and under natural daylengths at 11°C and 20°C. Once
adults had moulted the nymphs produced were removed and
counted daily for 10 days after the start of reproduction, when the
adults were weighed. The results were combined with those of
Dixon (1971) and Brown (1975), carried out at 15°C and 20°C,
respectively, to give the expressions for pre-reproductive delay and
Initial reproductive rate. Ad hoc methods were used initially to fit
these expressions, then as a check the actual values were regressed
on the estimates. Correlation coefficients were highly significant (for
reproductive rate r=0.83, d.f.=71, P<0.01; for pre-reproductive
delay r=0.89, d.f.=20, P<0.01), while slopes and intercepts were
not significantly different from 1 and 0, respectively.

The effect of parental age on reproductive rate was obtained from
Dixon’s (1972) experiments on morph-determination. These yielded
the numbers of nymphs produced at intervals during the lives of
adult viviparae, at constant temperatures of 15°C and 20°C. Pre-
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reproductive delays were estimated by back-extrapolation of the
curves of cumulative offspring production, and the mean numbers of
nymphs produced per day of reproductive life were expressed as
proportions of the initial reproductive rate, over the first 10 days of
reproductive life. The rates of decline in relative reproductive rates
appeared to be the same for rates initially high and for those initially
low, hence, presumably, for large and for small adults. When the
grouped results are graphed on a scale of accumulated temperatures
the 15°C and 20°C figures approximately coincide (Fig. 35). The
same temperature transformation was used as that involved in the
reproductive rate, namely (temperature)’, scaled so that values of
2 to 3 correspond to the period of constant reproductive rate. The
straight line relating decline in reproductive rate to values greater
than 3 was fitted by eye.

The potential total fecundity of any adult is calculated as:

- w 1.5
2 R=qg7 L FT

where summation is over all days of the adult’s reproductive life, R
is the reproductive rate, W the weight, T the temperature and F the
correction factor for accumulated temperature experience. ¥ FT!3
is the area under the line in Fig. 35, equal to 1750 on the
(day-degree)’- scale, which gives the value for Y R of 0.12W.
The above estimates of reproductive rate from the laboratory
were then compared with those from the field. Daily reproductive
rates of weighed, clip-caged adults have been recorded in the field
throughout each season from 1969 to 1973, each adult being caged
for a 5-day period. Random number tables were used to select a
single day’s record for each aduit, but zero reproductive rates were
ignored unless the adult had produced nymphs on any previous day.
Pre-reproductive delay was thus excluded from the estimates. The
data were grouped and the relationship between reproductive rate
and adult weight is indicated by the stars in Fig. 34. The overall
mean corrected temperature in the field was 15°C so it appears that
the reproductive rate in the field is slightly less than that in the
laboratory at a similar temperature. Probably the rates in the field
are lower because the field estimates include the effects of age or
accumulated temperature experience which lower the reproductive
rate, or because of stressing effects of wind and rain. However,
regression analysis indicated an effect of temperature on the repro-
ductive rate of these clip-caged adults but no effect of wind or rain.
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Wind and rain could well affect adults exposed on the leaves,
however.

The derivation of the relationship between offspring weight and
parent weight is discussed in Section 3.5.8.

3.5.7 Morph determination

The model (in subroutine REPROD)

The three morphs of the lime aphid are viviparae and the sexual
males and oviparae. Their proportions among new-born nymphs are
related to the time of year as shown in Fig. 37. The proportions on
any particular day are calculated in the model by linear interpola-
tion and the nymphs produced that day assigned to the appropriate

subclasses of the first nymphal age-class (Fig. 13).

The data

The data come from Dixon’s (1972) laboratory experiments.

Male production

_Fig. 37 gives the average proportions of males produced at
different times of year by parents less than 20 days old as adults; the
results are from two experiments, one at approximately 15°C under
natural daylengths, the other at 15°C under a 17-hour daylength. In
both experiments the trends in male production with time of year
are similar and probably due to the operation of an ‘interval timer’
(Lees, 1966).

At a finer level of resolution, male-production is also affected by
the age of the parent and to a lesser extent by temperature and
daylength, which are not included in the present submodel because
of uncertainties about their action. The effect of parental age is
Hlustrated in Fig. 38 which gives results for generations 3, 4 and S
combined under natural daylengths. Males are produced during the
middle of a parent’s reproductive life and their appearance is as
closely related to time since the moult as to time since the start of
Ireproduction or to the cumulative number of offspring produced,
Judged by a comparison of standardized variances of these quan-
tities between individuals. However, including the effect in the
model gave fewer males than actually observed in the field, presum-
ably because of losses, mainly by flight, over the period of the
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Fig. 37. a) Effect of time of year on the proportion of offspring which are
males, averaged over generations 3 to 5. b) Effect of time of year on the
proportion of female offspring which are oviparae, under natural daylength.
(J generation 2, @ generation 3, O generation 4, A generation 5, B
generation 6, A generation 7.
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Fig. 38. Effect on male production of age of the parent as an adult, under
natural daylengths and taken over generations 3-5.

Parent’s life before male-production begins. A possible explanation
for the anomaly might lie in the strong suggestion of a clonal effect
In Dixon’s experiments. Fig. 39 shows the distribution among clones

Frequency of Clones
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Fluctuating Temperature

17-h Daylength, 20°C

17-hDaylength, 15°C
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Fig. 39. Clonal variability in the production of males. Proportions of males
are the maximum in any generation for each clone, among offspring
Produced by parents aged 10-40 days from the adult moult.
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of the maximum proportions of males produced in any generation,
for parents aged between 10 and 40 days as adults. Perhaps viv-
iparae from clones which tend to produce many males fly less
readily than those from clones which produce few. An effect of
temperature on male-production is indicated by the fact that a
greater proportion of offspring were males at 20°C than at 15°C,
taken over all generations and from the same clone reared under a
17-hour daylength in both cases (0.74 and 0.30, respectively; x*=
62.2,d.f.=1, P<0.01) At the higher temperature males also tend to
- appear sooner in the parent’s reproductive life. As regards daylength,
long photoperiods do not inhibit male-production but short ones
appear to do so (Dixon, 1972).

Ovipara production

The points in Fig. 37 are for 11 clones reared under natural
daylengths. The proportions of oviparae produced relate well either
to daylength or to the time of birth, and neither parental age nor
generation number need be considered in addition; high tempera-
tures have an inhibiting effect (Dixon, 1972) but this is insignificant
in the present context. Results from rearing clones under 8-hour
and 17-hour daylengths at 15°C (Fig. 40a) indicate that ovipara
production actually depends on an interaction between daylength
and time, probably of the form shown in Fig. 40b. If the stimulus
(short daylength) is weak the effect is still felt but the response takes
longer, a situation partly resembling dependence of egg-hatching or
nymphal development on temperature and time but with the impor-
tant difference that the time dependence of sexual production spans
several generations. A more detailed submodel of ovipara produc-
tion might therefore relate ovipara production to a time-
photoperiod scale, with largest increments for shortest photo-
periods. However, daylength is linearly related to the time of year in
the range over which it acts and for the given latitude, about 54°N,
so in the present submodel ovipara-production is simply related to
the time of year and the effect of daylength implicitly rather than
explicitly included.

3.5.8 Growth and development
The model (subroutine GROWTH)

This submodel simulates growth in size and physiologicaj matura-
tion of nymphs, the two being considered as related but distinct
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processes. Exponential growth is assumed and each day the weight
of every nymphal age-class is multiplied by a growth factor. At the
same time, the proportion of development achieved by the age-class
is incremented by the development rate, equal to the reciprocal of
the calculated development time given the conditions that day. The
adult moult occurs when the proportion of development achieved
reaches 1, while values between 0 and 1 determine the instar of the
age-class according to Table 7. The resulting weight of the adults is
therefore a function of the initial weight at birth, the growth rate
and the development time.

Development

The development rate of nymphs depends on temperature and
plant quality (Fig. 41). It is calculated each day as:

DV =(DX + DN + DM)/3
where

DX =development rate at the maximum corrected temperature
DN =development rate at the minimum corrected temperature
DM =development rate at the mean corrected temperature
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Fig. 41. a) Effect of temperature (T, °C) on development rate (DV, propor-
tion of nymphal development achieved per day) @ experimental points, A
points used in linear interpolation. b) The factor (DVF) modifying develop-
ment rate according to the amino-nitrogen concentration in the phloem (N,
% dry weight).
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and the rates are obtained by linear interpolation from Fig. 41a. The
daily development rate, DV, is then multiplied by the plant quality
factor, DVF, given by:

DVF=14+027(N-0.2): DVF=1
where

N =soluble amino-nitrogen concentration in the leaves (%)
Growth

The growth factor for each day is related in the model to density,
curnulative density (aphid-weeks), temperature, plant quality and
the calculated development rate, thus (Fig. 42):

LR =1.5373-0.00064C—-0.00174D—0.00809T +0.24(N—0.2)

where

LRC LRD
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Fig. 42. The components of aphid growth: a) the effect of cumulative
density (aphid weeks 100 cm™?) on log (adult weight/birth weight) (LRC);
b) the additional effect (LRD) of density (D, numbers 100 cm™); c) the
additional effect (LRT) of mean temperature (T, °C); and d) the additional
effect (LRN) of amino-nitrogen concentration (N, % dry weight).
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LR =log (weight at the adult moult/weight at birth)
C = cumulative density (aphid-weeks/100 cm?®) within the range
50-350
D = density (aphids/100 cm?)
T =mean daily shade temperature (°C)
N =soluble amino-nitrogen concentration in the leaves (%)

and
GF= 10LR><DV

where

GF =factor by which weights are multiplied each day
DYV = calculated development rate that day

The data for development

To obtain the relationship between development rate and temper-
ature aphids were reared at 11°C, 16°C, 20°C and 25°C under a
17-hour daylength in climatic cabinets. They were clip- caged on
20 cm-high lime seedlings (Tilia cordata) and inspected daily, ngmg
development times (Table 8) and approximate times spent in the

Table 7. Proportions of development (P) and
cumulative proportions of development (C)
achieved during the various instars.

instar P C

1 0.230 0.230
2 0.300 0.530
3 0.155 0.685
4 0.315 1.000

various instars at the 4 temperatures; instar lengths were then
converted into proportions of total development achieved (Table 7).

When aphids were reared isolated and crowded at 10 per clip-
cage, the crowded ones took no longer to develop than the isolated
ones (Table 9, P>0.05). However, when reared on growing tissue
aphids took 14% less time to develop than those reared on mature
tissue (Table 10, P<<0.01). The quantitative relationship between
development rate and plant quality was based on an increase of
16% in the rate for an increase in soluble nitrogen concentration
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Table 8. Aphid development times at con-
stant temperatures on mature tissue.

Temperature mean devt time
*C) (days)
11 42.9
16 15.3
20 11.0
25 10.7

Table 9. Mean development times for aphids
reared, crowded or isolated, at 2 tempera-
tures on mature tissue.

temperature development time (days)
(°C) isolated crowded
15 20.2 21.21

20 11.0 11.23

'I:able 10. Mean development
times for aphids reared on mature
and growing tissue at 12°C.

——

development time (days) on

mature growing
tissue tissue

36.0 30.4

from 0.2% to 0.8%, where 0.8% is the greatest mean value likely to
be experienced by an aphid over the course of its development in
spring and 0.2% is the average level for summer and autumn (see

Fig, 18).

Development times predicted by laboratory experiments were
then compared with those in the field. Table 11 shows development
times and overall mean temperatures measured on a tree at Glas-
gow in 1974, and the development times and corrected mean
temperatures quoted by Llewellyn for the field in 1967. The results
differ very little from those predicted by the laboratory experiments,
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Table 11. Aphid development times in the field.

mean development
temperature °C. time (days).  source

14.6 20.0 June)
corrected field

15.5 17.5 July » temperatures, 1967,
from Llewellyn (1970).

15.8 16.0 Aug
15.0 19.1 Glasgow Univ. tree
15.1 20.5 Glasshouse

any discrepancies due to temperature fluctuations being relatively
insignificant in the region of 15°C as shown in Fig. 43.

Although not included in the present submodel there is clearly a
distribution associated with mean development times and develop-
ment rates. Measured in the laboratory, development rates are
norrnally distributed with mean 1.0 and standard deviation 0.117
(x*=9.95, d.f.=8, P>0.25, comparing frequencies of rates lying

Development Time (Days)

50

30 p

Mean Temperature °C

Fig. 43. Comparison of relationships between development time and mean

temperature when the temperature is constant (observed, Line B) and
fluctuating with an amplitude of +5°C (generated by the model, Line A).
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within given intervals with those expected from a normal distribu-
tion).

The algorithm for predicting development rates

Perhaps the most widely used algorithm in insect simulation
~models involves a physiological time scale based on accumulated
day-degrees above a threshold (Hughes, 1962; Gilbert et al., 1976).
However, this algorithm assumes a linear relationship between
development rate and temperature and in many cases ignores effects
of fluctuating temperatures within each day. Watt (1968) and Howe
(1967) discussed the effects of fluctuating temperatures on rates of
activity and development. If the rates are related to temperature
non-linearly then integrating or summing them over the range of
fluctuating temperatures experienced gives a total increment less
than or greater than that for a constant mean temperature, depend-
ing on whether the rate curve is convex or concave. There appears
to be no convincing evidence for any additional physiological effects
of temperature fluctuations on development rates of aphids, with the
possible exception of Messenger’s (1964) study on development
rates of the aphid Therioaphis maculata Buckton. He quoted a
discrepancy at low temperatures between observed development
times and those calculated by hourly summation using a relationship
based on a rather puzzling extrapolation (Messenger’s Table 5), and
it is possible that development rates at low temperatures are under-
estimated. If so, such underestimates could account for the discre-
Pancy since calculated development times are extremely sensitive to
additive errors in their reciprocals (the rates) when the latter are
small.

At medium or low temperatures, therefore, development under
alternating temperatures will be at least as rapid as implied by
hourly summation. The question then is how significant are temper-
ature fluctuations in the case of the lime aphid, and what is the
appropriate algorithm?

A non-linear curve of development rate with temperature was
assumed in the first instance. It is clearly so at high temperatures,
and Chambers’ (1979) results for the sycamore aphid suggest that
this is also the case at low temperatures. A simple simulation was
then carried out to compare several possible algorithms on the basis
of their predicted development times over a range of constant and
alternating temperatures. In each case the assumed standard was the
development time predicted by hourly summation, given a sine
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curve of temperatures fitted to the maximum and minimum each
day, and the relationship between development rate and constant
temperatures shown in Fig. 41a. The algorithms are as follows:

1. Summation of daily development increments based on the mean
temperatures. This takes no account of temperature fluctuations
during each day.

2. Summation of integrated daily development using maximum and
minimum temperatures and the trapezoidal integration rule, to give

DV = (Drx + Dy +2Dny)/4
where

DV = proportion of development achieved daily

Drx =development rate (proportion achieved daily) at the
maximum temperature

Dy =development rate at the minimum temperature

D\ =development rate at the mean temperature

The method assumes a symmetrical curve of temperatures between
the 24-hour maximum and minimum each day. Development rate
then varies throughout the day as illustrated in Fig. 44 and the daily
increment is obtained by integrating the rate. In this case the
integral is approximated by the trapezoidal rule with the day divided
into 4 equal parts, giving the above formula for the area under the

Development Rate

DTX

N R

! 3 1
2 &
Days

Fig. 44. The assumed sine curve of instantanecous development rates (D)
throughout each day, the four points of inflexion corresponding to the
maximum (TX), minimum (TN) and mean (TM) daily temperatures.
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rate curve and the development achieved per day.
3. Summation of integrated daily development using maximum and
minimum temperatures and Simpson’s rule for integration, to give:

DV = (D + D+ Dpy)/3
where

DV, Dy, Dy and Dp,, are as above.

In most respects the method is the same as the previous one, the
only difference being that in calculating the area under the develop-
ment rate curve, Simpson’s rule assumes a curve between each pair
of ordinates while the trapezoidal rule assumes a straight line.

4. Hourly summation of proportions of development achieved using
maximum and minimum temperatures, the non-linear relationship
between development rate and temperature, and a sine curve of

temperatures throughout each day. The temperature T;, in hour t is
thus:

T, =(TX -~ TM) sin 27wh/24)+ TM

where TX and TM are the maximum and mean daily temperatures.
The proportion of development achieved per day is the mean of the
Calculated rates for each of the 24 hours.

The results of these simulations are given in Table 12. Algorithm
1 based only on daily mean temperatures considerably over-
estimates development time at low alternating temperatures (by
60% for a temperature of 10+ 5°C).

Development integration using the trapezoidal rule and Simpson’s
rule both give results very close to those obtained by hourly
Summation, the trapezoidal rule yielding marginally better agree-
ment than Simpson’s rule, but with a slightly more complex formula.
The characteristic features, that development at low temperatures is
accelerated by temperature fluctuations while at high temperatures
the reverse occurs, are well reproduced by both. Moreover, the
Computing time required for their execution in a large simulation
Program is clearly less than that for hourly summation. Develop-
ment ‘integration by Simpson’s rule was therefore chosen as an
appropriate algorithm for the model.

Given the widespread use of physiological time scales based on
day-degree summation, it is interesting to compare the results
Obtained with those of the methods described above. Day-degree
Summation implies a linear relationship between development rate
(DV) and temperature (T), given in this case by:
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Table 12. Development times (days) predicted by different simulation
algorithms for constant and alternating temperatures. The algorithms are:
1) summation of daily proportions of development based on mean temper-
atures 2) integration of daily development using the trapezoidal rule
3) integration of daily development using Simpson’s rule 4) hourly summa-
tion of development increments 5) summation of day-degrees using mean
temperatures 6) summation of day-degrees using maximum and minimum
temperatures and Ives’ method. Algorithms 1) to 4) assume a non-linear
development rate/temperature relationship, 5) and 6) a linear one. For
further explanation see text.

temperature algorithm
O
Mean Max Min 1 2 3 4 5 6
10.0 10.0 10.0 56 56 56 56 48 48
10.0 12.5 7.5 56 52 51 52 48 48
10.0 15.0 5.0 56 44 41 43 48 45
10.0 20.0 0.0 56 32 28 30 48 34
15.0 15,0 15.0 19 19 19 19 18 18
15.0 17.5 12.5 19 19 19 19 18 18
15.0 20.0 10.0 19 19 19 19 18 18
15.0 25.0 5.0 19 20 21 20 18 18
20.0 20.0 20.0 11 11 11 11 11 11
20.0 22.5 17.5 11 12 12 12 11 11
20.0 25.0 15.0 11 13 13 13 11 11
20.0 30.0 10.0 11 15 16 16 11 11
25.0 25.0 25.0 11 11 11 11 8 8
25.0 27.5 22.5 11 12 12 12 8 8
T-7
DV =——r
143

and the algorithms are:

5. Summation of day-degrees above 7°C to a total of 143 using daily
mean temperatures only.

6. Summation of day-degrees above 7°C to a total of 143, using
24-hour maximum and minimum temperatures and Ives’ (1973)
triangulation approximation. Each day’s increment, DV is now:
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DV =(Mean —7) (7<min)
(Max —17)?
2(Max — Min)
DV=0 (max<T7)

DV = (min<7<max)

Summation of day-degrees in the normal way yields considerably
shorter development times at high constant temperatures than im-
plied by the non-linear relationship between development rate and
temperature (Table 12). The predicted development time at low
constant temperatures is extremely sensitive to the position of the
threshold, and there is no reduction in development time under
fluctuating temperatures; it is overestimated by 12% for a low
temperature with a 5°C amplitude and by 60% if the amplitude
Increases to 10°C. Ives’ method is a clear improvement under low
fluctuating temperatures but still underestimates development time
at high constant ones. Whether the linear or non-linear relationships
are assumed, temperature fluctuations can clearly be significant,
especially at low mean temperatures which are nevertheless well
within the range experienced by the aphid. Fig. 43 summarizes the
effect, showing development times at different constant tempera-
tures and at temperatures fluctuating with a 5°C amplitude, similar
to that in the field. There is still a need for experimental data not
only for temperatures covering the range of mean values in the
field, but for those near the maxima and minima.

The data for growth

As a first stage in modelling growth, the factors affecting adult
Weights were determined by laboratory experiments. The growth
process is then considered, and the quantitative effects of the above
factors on growth assessed by regressions of field data.

The factors affecting adult weight

_ Aphids reared clip-caged in groups are smaller than those reared
In isolation (Dixon, 1971a) and the effect appears to act through the
leaves (Brown, 1975; Kidd, 1975). Recent experiments have shown
that not only crowding during development but also conditioning of
leaves by previous aphid infestation can cause weight reductions, up
to 60% in the latter case.

First generation aphids in the field are up to 50% heavier than
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those of later generations, but develop on good quality tissue at
relatively low temperatures. To assess possible effects of tempera-
ture, plant quality and generation number, aphids from the first and
second generations were reared at 12°C and 20°C, on mature and
growing seedlings (Tilia cordata) about 20 cm high. Some of the
plants were subjected to room temperatures 6 weeks before the
emergence of fundatrices in the field to give mature tissue for first
generation rearings. Others were kept at 5°C to provide growing
leaves for the second generation.

Mean aphid weights were compared between generations for each
of the 4 categories: mature tissue at 20°C; mature tissue at 12°C;
growing tissue at 20°C; growing tissue at 12°C. Bartlett’s test
indicated homogeneity of variance between the mean weights (P>
0.05 in all cases), and there was no significant difference between the
weights of adults of generation 1 and of generation 2 under any of
the above 4 regimes (P >0.05 in all cases). Pooling the generations
and considering individual aphid weights, we compared the effects
of plant condition and temperature. Weights were significantly
higher (P <0.001) on growing tissue than on mature tissue, both at
12°C and at 20°C, and significantly higher (P<0.001) at 12°C than
at 20°C both on growing tissue and on mature tissue. The resulting
weights are shown in Table 13.

Table 13. Effects of temperature and the
state of the leaves of lime saplings on aphid
weights achieved in the laboratory (weights in
©g, confidence limits are for P =0.01).

state of leaves

temperature

(°C) growing mature
12 872+36 756+43
20 658+33 526+33

The conclusion, therefore, is that experience of low temperatures
and growing tissue during development significantly increases adult
teneral weights in an approximately additive way. Further, the
effects are the same for fundatrices and for aphids of the second
generation indicating that the high fundatrix weights observed in the
field are environmentally, not inherently determined. Therefore
they can be modelled in the same way as those of later generations,
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though this does not imply that fundatrices are similar in all re-
spects, rather that any differences are likely to be more subtle. For
instance, small fundatrices reared under crowded conditions on
mature tissue, a situation not occurring in the field, reproduced as
adults at a rate higher than predicted from the equations based on
results from later generations. '

- Finally, Brown (1975) showed that small parents produce offspring
which are also small as adults. A curve was fitted to her data by a
non-linear least-squares program, with offspring weight standar-
dized to a maximum of 1 to allow comparison with other experiments
under different rearing conditions. The curve is (Fig. 36):

A=1-1.0333¢"00077F
where

A =relative weight of offspring (0<A <1)
P = actual weight of parent (ug)

Such a result implies either that the growth rates of offspring are in
some way pre-determined by the mother during embryogenesis or
that the weight of the mother determines the weight of the nymph at
birth, which in turn influences the final weight it achieves as an
adult. There is no evidence for the former but a strong indication
that the latter may be true since small parents do produce nymphs
which are small at birth. Offsping from parents of known weight
were weighed in groups of 3 or 4 on a Kahn electric micro-balance,
within 24 hours of birth. The results are shown in Table 14 together
with some data of Simpson’s (unpublished); significance levels refer
to weights of groups. The weights are not those at the actual instant

of birth, but are treated as birth weights for the purposes of
- modelling. They were expressed as proportions of the maximum, for
€ach experiment, and are plotted against parent weights in Fig. 36.
There is an obvious similarity in the relationships between weight of
Offspring at birth and parent weight, and weight of offspring when
adult and parent weight. However small nymphs become larger
adults than would be expected if adult weight were a constant
multiple of birth weight. That is, the effect of parent weights on
Weights of the offspring at birth is greater than on their weights at
Maturity. It would be reasonable to expect compensation of this
kind, given what is known about the regulatory nature of growth
(Hubbell, 1971; Calow, 1973). However, it is unlikely that signific-
ant errors would result from considering birth weights to be constant
Proportions of the final weights attained and specific growth rates to
be similar for small and large nymphs. Maximum birth weights are
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Table 14. Weight (ng) of offspring within 24 h of birth from parents of
different weight

offspring weight

weight of
parent rel. actual
675 0.98 23.67
} 24.17°
igg (l)gg %gg; > P<0.025 (data from Simpson
) : n=24  unpublished)
21.08
356 0.82 19.83
850 1.00 25.02 P>0.05
400 0.96 24.04 n =15 groups of 4
650 1.00 26.70} P<0.01
250 0.75 20.01 n =26 groups of 3

assumed to be 24 ug, and the equation relating birth weights to
parent weights corresponding to that for adult weights and parent
weights is:

B=24-24.8¢™0%77F

where

B = actual weight of offspring at birth (ng)
P = actual weight of parent (ng)

No direct relationship has yet been demonstrated between weights
of lime aphids at birth and at maturity but evidence is beginning to
emerge for such an effect in Aphis fabae Scop. (Dharma, 1979). For
the lime aphid, the expected adult weight in the absence of crowding
is about 580 png. Given a maximum birth weight of 24 g this yields
a factor for increase of 24.

Laboratory experiments have shown, therefore, that crowding,
temperature and plant quality during development, conditioning of
leaves by previous aphid infestation, and parental weight all affect
the weight of an adult lime aphid. Having established which factors
are involved and before moving on to consider the process of
growth, we can quantify in an approximate way their relative
importance by a brief analysis of data from the field. The data
consist of weekly measurements of adult weights throughout each
season, from 1969 to 1973, on the trees sampled for population
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numbers. Associated with each weight is an estimate of the mean
temperature, density and cumulative density experienced during
development, assumed to be over the previous 3 weeks, while
parent weights are assumed to be those of adults weighed 3 weeks
previously. In deriving the growth rate later in this section the data
are analyzed by regression methods, but for present purposes a
ranking and grouping procedure is used; as Watt (1968) pointed
out, this is particularly useful when dealing with intercorrelated
variables. Maximum aphid weights in summer are about 600 g and
in spring when temperatures are low and plant quality high max-
imum weights observed are around 850 ug. By partitioning the
records for summer weights according to temperature, a 4°C drop in
temperature corresponding to that between summer and spring
gives a weight gain of about 50 g, leaving 200 g attributable to
pPlant quality. The extent to which the maximum summer weight of
600 p.g is reduced by crowding can be assessed in a similar way, by
grouping the data according to values of density and cumulative
density experienced during development, ignoring the few cases
where parental weights are small enough to affect those of the
offspring (less than 350 ng). High densities give a maximum weight
reduction of 75 ug and high cumulative densities a reduction of
175 p.g so that an adult aphid’s weight can be partitioned as shown
In Fig. 45, Such a scheme is only approximate since several of the
factors may interact in practice, but it serves as a fair indication of
their relative importance. Plant quality appears to be the most
Significant of the extrinsic factors, and cumulative density, presuma-
bly acting through the plant, the most significant of the aphid-
Induced ones.

The growth process

Considering the graphs of weight gain given by Llewellyn (1970),
growth in the lime aphid appears to be exponential to a plateau
reached at the adult moult. Therefore, knowing the development
rate (DV) and the ratio of adult weight to weight at birth (R) for a
Set of constant conditions, we can calculate a growth factor as

GF=RPY  ~

for the conditions prevailing over the given small time interval, and
Where DV refers to this interval. If development is assumed to be

independent of growth in size, then the factor GF can be applied to
the current weight over each time increment from birth until ac-
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Fig. 45. The components of an adult aphid’s weight, estimated from field
data (see text). N, the increase associated with the increased concentration
of amino-nitrogen in the phloem in spring; T, the increase associated with
lower temperatures in spring; D, the decrease associated with crowding;
and CD, the decrease associated with cumulative density (aphid-weeks)
within a season. Percentages relate to the total range of variation of adult
weights.

cumulated development reaches unity and the aphid moults. Al-
though convenient for modelling this assumption is almost certainly
a considerable over-simplification, for the time of moulting is likely
to depend on weight and perhaps on current growth rates. Wilbur &
Collins (1973) suggested that metamorphosis in amphibians is facul-
tative and can occur over a wide range of body weights, depending
on the net advantage of remaining in the aquatic environment.
Doing so increases the risk of predation but provides opportunity
for continued growth which may lead to enhanced future fecundity
and an increased probability of survival. So, they suggested,
metamorphosis occurs at a low weight if the growth rate is low but
at a high weight if it is high. Lime aphids appear to behave in a
similar way. Fig. 46 shows the relationship between final weight
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Fig. 46. Relationship between weight attained and development time for
aphids reared at a constant temperature of 15°C, isolated (0J), and crowded
(Q)- Points are means of numbers of individual records denoted by figures
within them.

attai.ned and the time taken to develop by aphids reared at 15°C on
Saplings of Tilia platyphyllos Scop. The relationships are:

W=1258~1.55¢ 19=<t=<24
r=043,d.f.=73, P<0.01

for isolated aphids, and

W=996-1.4731t 19<t=<24
r=0.70,d.f.=22, P<0.01

for aphids crowded during development. The slopes are not signifi-
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cantly different (P > 0.25) though the intercepts are (P <0.01), and in
both cases aphids which take longest to develop are also smallest at
the moult, implying a smaller exponential or specific growth rate
throughout. In other words, as with amphibians, moulting occurs at a
low weight if the growth rate is low and at a high weight if it is high.
Ecologically, this is reasonable as the intrinsic rate of increase is
greatly affected by development time (Lewontin, 1965). On the other
hand, moulting early also permits rapid emigration when conditions
favour colonisation elsewhere overreproductionand competitioninthe
original environment. It may be that the facility to emigrate rapidly is
so important that it explains why the crowded aphids in Fig. 46 moult
at similar times to the isolated ones rather than at similar weights
which take longer to achieve.

If moulting is in some way linked to growth rates, a mechanism is
required to explain this link, and to account for the fact that,
although crowded aphids are smaller at the moult than isolated
ones, they appear to take no longer to develop (Table 9). There are
a variety of known stimuli for the secretion of moulting hormone
(Wigglesworth, 1972), but suppose this is related to the quantity of
food passing through the pharynx, relative to its size. Such a
situation exists in Locusta migratoria migratorioides (R. & F.)
(described in Wigglesworth). Variations in growth rates will depend
both on variations in food quality and in the amount ingested. For
crowded aphids the observed reduction in weight at the time of the
moult may be due mainly to decrease in the quality of the food
while the specific amount ingested, hence the time of moulting, may
remain the same. There is still the relationship among crowded
aphids between weights achieved and development times which
would be assumed to represent variations in quantities ingested.
Aphids developing on growing tissue rich in amino-nitrogen are
heavier and their development times are shorter. However, perhaps
feeding rates are high under these conditions which would, on the
above basis, account for the shorter development time. Hence it is
possible that the specific feeding rate determines the time of moult-
ing and the food quality, amount ingested and the time of moulting
determine the welght achieved. Fig. 47 shows the position of the
moulting point in the weight/time plane.

Derivation of the daily growth factor

As shown above, the growth factor on any day can be obtained
from the development rate and the expected ratio of adult weight to
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Weight

Time

Fig. 47. Diagrammatic representation of growth and of the action of factors
determining the time of moulting and weight at the moult. C, changes in
degree of crowding during development; T, changes in temperature during
development; N, changes in soluble amino-nitrogen concentration during
development; V, background variability observed given otherwise constant
conditions (e.g. including local variations in food quality).

weight at birth under the conditions prevailing that day. The calcu-
lation of development rate has already been described, and given
the factors which affect adult weight their quantitative effects on
growth were assessed by regression analysis of the field data. The
dependent variable was log (adult weight/estimated birth weight)
since it gave the best fit and its overall value is approximately equal
to the arithmetic mean of the separate values for each day of the
aphid’s development. Averages of the independent variables, temp-
erature, density and cumulative density, over the development
period were also used. Birth weights were calculated from estimated
parent weights and although cumulative density and density during
development were highly correlated, grouping the data into classes
according to the values of these variables showed that their effects
on log (weight/estimated birth weight) were approximately additive.
The resultmg regression equation, for adults of the second and later
generations, is:
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log (E ) =1.5373-0.00064C-0.00174D - 0.00809T

B
50=sC=350
R*=0.6,d.f.=16, P<0.01 |
where

W = adult weight

B = weight at birth

C = aphid-weeks/100 cm?, with a minimum of 50 and maximum
of 350 |

D =denisty (aphids/100 cm?)

T =mean shade temperature (°C)

The plant quality effect involves the addition of the term 0.24(N —
0.2) for values of N, the percentage of amino-nitrogen in the
phloem, greater than 0.2. The regression equation indicates that, in
the field, a maximum increase in weight of about 10% may be
expected from the low temperatures in April and May when fundat-
rices develop. Given an observed maximum weight for fundatrices
50% greater than for adults of later generations, this leaves 40% of
the increase attributable to an increase in mean nitrogen concentra-
tions experienced from 0.2 to 0.8 (Fig. 18). A 40% increase is an
increase in log (adult weight/birth weight) of 0.146, giving a coeffi-
cient for the nitrogen effect of 0.146/0.6 or 0.24. The effect of
temperature appears to be much less in the field than in the
laboratory and the reason for this is not entirely clear; given the
assumptions about growth and development, a higher final weight
would be expected under fluctuating temperatures than under a
constant temperature with the same mean, but the effect is too small
to account for the discrepancy.

3.5.9 Parasitism

The model (subroutine PARA)

The aphid is parasitized by a species of Praon (Brown, 1975). All
deaths from parasitism are assumed to occur at the adult moult and

the proportion killed is time-dependent but density-independent,
thus (Fig. 48):

PAR =0.01 DAY -2.06 0<PAR =<0.155
where
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Fig. 48. Effect of time of year on the proportion of adults parasitized.

PAR =proportion of moulting adults parasitised
DAY =time of year in days.

The data

Fig. 48 was based initially on Brown’s (1975) dissections of adult
aphids from the field in 1971. The aphids were assumed to have
moulted a week before being dissected so 7 days were subtracted
from the time of each observation; the line was fitted by eye. The
assumption that mortality from parasitism precedes reproduction is
probably not unreasonable, since live parasitized adults have a
greatly reduced reproductive rate.

In addition, mummified carcasses of parasitized aphids were
counted and removed each week as part of the sampling prog-
ramme. There was no positive relationship between observed prop-
ortions of the population parasitized in August and September and
the average population density during these months (Table 15).
Proportions parsitized were the weighted means of weekly observa-
tions which fell in the different density classes. Re-analysis of the
data also yielded no evidence for an effect of cumulative density (cf.
Barlow, 1977). The weighted mean proportion parasitized in August
and September of 1971, when cumulative density was high, was
lower than the weighted mean for other years when it was low
(0.035 and 0.043, respectively). Brown’s figures for 1971 were then
multiplied by 0.61, the correction factor of:
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Table 15. Proportions of aphids parasitized
during August and September, at different
population densities in the field.

density proportion
(number/100 cm?) parasitized

<1 0.099
1-3 0.022
3-6 0.035

>6 0.026

mean observed proportion parasitized in all years
observed proportion parasitized in 1971

to give the relationship used in the model.
3.5.10 Winter mortality
The model

The proportion of eggs laid which hatch in the following spring is
taken to be constant and equal to 0.172, or approximately 1/6.

The data

All eggs on a 3-m high sapling (Tilia platyphyllos) in the field
were counted in March. The total included those obviously dead,
from their shrivelled and sunken appearance. The 3rd and 4th instar
nymphs were counted subsequently on the leaves, in the middle of
May. There were 470 eggs and 81 nymphs, giving a survival rate of
0.172. This is obviously a fairly crude estimate, and is likely to omit
mortality of eggs which disintegrated to the extent that they were no
longer discernible, but includes some mortality of 1st and 2nd instar
nymphs. However, in estimating the number of nymphs emerging
from the number of eggs laid these errors would tend, if anything, to
cancel each other out.
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3.6 The predator/leafhopper submodel
3.6.1 Introduction

This subsystem includes three components, the black-kneed cap-
sid population, the 2-spot coccinellid population and the leafhopper
population, shown in the relational diagrams of Figs 4, 5 and 6.
Representing these components are three population sub-models
sharing a common structure, applied weekly in subroutine POP and
generating changes in numbers and age-distributions of the popula-
tions throughout the year. The populations are stored as vectors, the
elements of which correspond to numbers in each stage (Fig. 13),
and a modified Leslie matrix (Leslie, 1942; Usher, 1972) is used to
model the processes of egg-hatching, development, mortality and
reproduction, operating over a time period of 1 week (Fig. 49). F is
the weekly reproductive rate and the basic elements T and S

]

1-T(1) - - - - - P
T(1)S(1) 1-T(2) - - - - -
- T(2)S(2) 1-T(3) - - - -

- - T(3)S(3) 1-T(4) =~ - - -

- - - T(4)s(4)  1-T(5) - -

= - - - T(5)S(5) 1-T(6) -

- - - - - T(6)S(6) 1-T(7)

Fig. 49. The modified Leslie matrix used to model populations of the
leafhopper, the 2-spot coccinellid and the black-kneed capsid. T is the
probability of entering the next stage each week, in the absence of mortal-
ity, S is the probability of surviving the transition, and F is the weekly
reproductive rate.

represent, respectively, the probability of entering the next stage
each week in the absence of mortality and the further probability of
surviving this transition; the product of T and S, therefore, gives the
weekly proportion of each stage actually entering the next. Egg-
hatch is included in this framework in the same way as transitions
between other stages, and for ease of representation adult mortality
is considered as a proportion passing from the adult stage to a
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further, notional stage corresponding to dead adults or adults which
have emigrated. With certain exceptions, described below, the trans-
ition probabilities, T, are constant and assumed equal to the recip-
rocals of the stage-lengths (Usher, 1972). The survival probabilities
are constant with all mortality assumed to occur on transition
between stages. No account is taken of variable development rates,
though the effect could be included by making the transition prob-
abilities dependent on temperature or prey intake over the previous
week. The specific submodels for leafhopper, capsid and coccinellid
populations are now considered in more detail.

3.6.2 The leafhopper population
The model

Overwintering eggs are assumed to hatch over a 2-week period
from 19 May to 2 June (Fig. 50a) and hatching success is 27%. The
nymphs pass through 5 instars without further mortality at a rate
governed by the instar durations and resulting weekly transition
probabilities (Table 16). Most adults emigrate shortly after the adult
moult and these are ignored by the model, emigration being treated
on a 74% mortality between 5th instar nymphs and adults resident
on the tree. Resident adults lay eggs at the end of August and die at
the end of September (Fig. S0b). For convenience, egg-laying is
assumed to occur in a single pulse (Fig. 51b) and is density-
dependent (Flanagan, 1974), related to the number of resident
adults thus (Fig. 51a):

FL - 1 9A —0.24
where

F, =eggs laid per resident adult per 100 cm?®
A =resident adults per 100 cm?

The data

The time-dependent pa'ttern of egg-hatch was deduced from field
observations and the approximate instar lengths were based on a
comparison of times at which observed numbers of each instar had
reached half their initial peak values in the field. Flanagan (1974)
determined hatching success and obtained the following relation-
ships from observations in the field (his Figs 36, and 37 and 38
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Fig. 50. Time-dependent rates (or transition probabilities) in the
predator/leafhopper submodel, namely: a) proportion of leafhopper eggs
hatching/week  (TL1); b) proportion of  leafhopper  adults
disappearing/week, by emigration or death (TL8); ¢) proportion of black-
kneed capsnd eggs hatching/week (TB1); d) proportion of black-kneed

capsid adults ‘disappearing/week, by emigration or death (TBS). t is the
number of days from the start of the year.

Table 16. Duration of stages, transition probilities and survival prob-
abilities for the leafhopper. Transition probabilities are equivalent to the
weekly proportions of each stage entering the next in the absence of
mortality, and survival probability to the proportions surviving the transi-
tions. TD = time-dependent.

transition survival
duration probability probability

stage (days) (TL) (SL)

Egg ' — TD Fig. 50a 0.27

Instar 1 10 0.670 1.000
Instar 2 7 1.000 - 1.000
Instar 3 7 1.000 1.000
Instar 4 7 1.000 1.000
Instar 5 12 0.560 1.000
Adult — TD Fig. 50b 1.000
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Fig. 51. Variable reproductive rates in the predator/leafthopper submodel.
a) Relationship between the number of leafhopper eggs laid per 100 cm?
per week (EL) and adult density (AL). b) The factor (ELF) modifying
leafhopper egg-laying, depending on the time of year (). c) Relatlonshlp
between the number of black-kneed capsid eggs laid per 100 cm® per week
(EB), the density of adult capsids (AB) and the aphid dcnsny (A). d) The
factor (EBF) modifying capsid egg-laying according to the time of year ().
e) Relatxonshxp between the number of 2-spot coccinellid eggs laid per
100 cm® per week (EC) and aphid density (A). f) The factor (ECF1)
modifying coccinellid egg-laying according to the time of year (1).

combined):
E/A =64.6 N2
A =0.26N
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where

E =eggs 1aid/80 leaves
A =average adults at the time of laying/80 leaves
N =peak nymphs/80 leaves

The second equation gives the survival probability between Sth
instars and average adults used in the model and the first, in
conjunction with the second, gives density-dependent egg-laying
thus:

A -0.24
E/A = 64'6(6._23)
=46.7 A™%%*
Hence
E,/A,=F_ =19 A7%*
where

E, and A, are numbers per 100 cm?.
3.6.3 The black-kneed capsid population
The model |

Overwintering eggs hatch over 4 weeks in June (Fig. 50c) and
hatching success is assumed to be 50%. The nymphs pass through §
instars, with durations and weekly probabilities of transition as in
Table 17, and with a 25% mortality between instars 3 and 4. 10%
of 5th instars become resident adults on the tree which disappear
through death or emigration at the end of September (Fig. 50d); the
rest are assumed to emigrate immediately after the mouit. As with
the leafhopper, egg-laying is considered to take place on a single
occasion at the end of August (Fig. 51d), the number laid in this
case being (Fig. 51c).

Fg=30; A>0.2
Fp=4; A=<(.2
where
F; =eggs laid/resident adult/100 cm?
A =aphids/100 cm? at the time
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Table 17. Duration of stages, transition probabilities and survival prob-
abilities for the black-kneed capsid. Transition probabilities are equivalent
to the weekly proportions of each stage entering the next in the absence of
mortality, and survival probabilities to the proportions surviving the transi-
tions. TD = time-dependent.

transition survival
duration probability probability

stage (days) (TB) (SB)

Egg — TD Fig. 50c 0.500
Instar 1 8 0.884 1.000
Instar 2 8 0.884 1.000
Instar 3 8 0.884 0.750
Instar 4 12 0.580 1.000
Instar § 14 0.494 0.100
Adult — TD Fig. 50d 1.000

The model thus embodies a numerical response to aphid density
(Solomon, 1949) as indicated by field observations and described
below.

The data

The hatching pattern of eggs was again deduced from times of
appearance of 1Ist instar nymphs in the field. Instar lengths were
based on the laboratory measurements of Glen (1973), multiplied
by ¢ since development took 50 days in the laboratory but appears
to take 60 days in the field, by comparison of initial appearances of
1st instar nymphs and adults, and medians of 1st instar and Sth
instar distributions in time. The hatching success is arbitrary and, as
for the leafhopper, is assumed to include all mortality sustained by
the eggs. Survival probabilities between instars were derived from
the field data, with the number passing through any stage being
estimated as the cumulative abundance of the instar (nymph-weeks)
divided by the instar length in weeks, since numbers recorded were
generally small. In the case of adults field obsérvations showed an
initial high number of emigrants, then a rapid decline to a constant
population of about 10% of the original total, persisting until the
end of September; the emigrants are ignored in the model. The
timing of egg-laying is as indicated by Glen (1973) and the equation
is based on two pieces of information. First, tracing the fate of one
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egg and given the above assumptions about survivals and stage-
lengths (Table 17), we obtain the following equivalences:

1 egg laid— 3.106 nymph-weeks observed — 0.375 adults—
0.0375 resident adults

Hence
E, =0.3219 C, .,
and  p -0.012C,
"where

E, = eggs laid/100 cm? at the end of year ¢
R, =resident adults/100 cm? at the end of year ¢
C, =nymph-weeks observed in year ¢

C.+1 =nymph-weeks observed in year t+1

The second piece of information, embodying the numerical re-
sponse, is the relationship between observed cumulative nymph-
weeks in successive years, shown in Fig. 52 and given by:

Ca=11C,;; A,>0.2/100cm? (r=0.95, d.f.=4, P<0.01)
C,.1=0.15C;; A,=<0.2/100 cm?
where

A, =aphids per 100 cm? at the end of August in year ¢

The threshold aphid density is arbitrary but consistent with field
observations. From these relationships the number of eggs laid per
resident adult can be derived thus:

0.3219x1.1

= =3(: 2
0.3219x%0.15
E = =4, = U.
R=—o1z 4% A=02

In practice, reduced egg-laying at low aphid densities probably
arises rather from increased adult emigration than from reduced
egg-laying by the same number of residents, since the observed
cumulative abundance of adults in the field, relative to that of
nymphs, is lower in years when the aphid populations crash before
mid-August than in years when they do not.
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Fig. 52. Relationship between observed cumulative abundance of black-
kneed capsid nymphs, in each year, their cumulative abundance in the
previous year, and maximum aphid density in August of that year. A ,
aphids in August =0.2/100 cm?; ® - --, aphids in August <0.2/100 cm?.

3.6.4 The 2-spot coccinellid population
The model

The coccinellid overwinters as an adult and egg-laying is assumed
to occur throughout spring and summer at a rate depending on the
time of year, aphid density and other factors unrelated to the aphid
which may determine the effective abundance of the coccinellid on
any given tree in any particular year; these largely unknown factors
are represented by a ‘coccinellid multiplier’ which normally takes
the value 1 but in 1971 multiplies expected egg-laying by 0.3. The
numerical response to aphid density in the second two weeks of
June, when most egg-laying occurs, takes the form (Fig. 51e):

EC=0.066log A +0.046
where
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EC =total eggs laid per 100 cm? per week
A =aphids per 100 cm?

inversely density-dependent at high densities but with a lower
threshold for laying of 0.2 aphids/100 cm?. This response is modified
by the coccinellid multiplier then by a factor varying between 0 and
1 depending on the time of year (Fig. 51f); egg-laying declines
rapidly after the peak in mid-June and ceases by the end of August.
The number of immigrant adults present in any week is assumed
to be 0.037 times the estimated number of eggs laid that week. Eggs
hatch in 10 days and the larvae pass through 4 instars before
pupating, with durations and weekly transition probabilities as in
Table 18. Adults are assumed to remain for 1 week on the tree and
background survival rates of other stages are given in Table 18.

Table 18. Duration of stages, transition probabilities and survival prob-
abilities for the 2-spot coccinellid. Transition probabilities are equivalent to
the weekly proportions of each stage entering the next in the absence of
mortality and survival probabilities to the proportions surviving the transi-
tions.

transition survival
duration probability probability

stage (days) (TC) - (SC)

Egg 10 0.700 0.500
Instar 1 9 1.000 0.800
Instar 2 6 1.000 0.940
Instar 3 6 1.000 0.940
Instar 4 10 0.700 0.940
Pupa 17 0.410 0.850
Adult 7 1.000 1.000

The data

Since numbers of eggs recorded in the field were generally small,
egg-laying was estimated from observed numbers of 2nd to 4th
instar larvae. 1st instars were excluded from the analysis since their
distribution on the leaves is highly aggregated, unlike those of later

instars. The number of eggs laid in any week t is therefore assumed
to be
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‘2nd instar 3rd instar 4th instar
2.66 X( larvae in + larvae in + larvaein |} /3
week t+3 week t+4 week t+5
where the time delays are based on instar durations and each larva
contributes, on average, 3 times to the estimate. The figure 2.66
corrects for hatching success and 1st instar mortality. Measured in

this way the average number of eggs laid in any year during June is
related to the mean aphid density, thus (Fig. 53a):

Mean Eggs Laid 100cm 2 Week in June

0-06} 8- "

0-04

0-02

0-5 0 0-5 1-0
Mean log Aphids 100cm> During June

-1
Observed/ Predicted Maximum Eggs Laid Week
3
-b-

0
157 m 187 189 213 227 241

Days from Start of Year'

Fig. 53. a) Relationship between coccinellid egg-laying in June, estimated
from numbers of larvae (see text), and aphid density at that time. Figures on
the graph are years. b) Variation in weekly coccinellid egg-laying with time
of year, where predicted values are those given by the above relationship.
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E=0.331og A +0.023 (r=0.98, d.f.=5, P<0.01)
where

E =number of eggs laid/100 cm? in June
A =mean number of aphids/100 cm? during June

The point for 1971 was excluded from the regression for reasons
given below. From observations of actual egg numbers in 1969,
Wratten (1973) presented a somewhat different numerical re-
sponse, but estimates based on larval numbers suggest that in other
years eggs are laid at lower aphid densities than the threshold he
quotes. Variation in egg-laying throughout the year is shown in Fig.
53b, in which ratios of numbers of eggs laid to those expected, given
the above equation and the aphid density, are plotted against time.
Egg-laying and aphid density on each occasion are the maximum
values for any year, and the former is estimated, as before, from
larval numbers; the yearly pattern is qualitatively similar to that
based on the small numbers of eggs actually observed. The coccinel-
lid multiplier was invoked to take account of the one anomalous
departure from the relationship between egg-laying and aphid den-
sity, namely in 1971. It almost certainly reflects, at least in part,
the influence of spring temperatures on coccinellid egg-laying activ-
ity. For temperatures were noticeably lower during the middle two
weeks of June in 1971 than in any other year except 1972, when
aphid densities were in any case too low for significant egg-laying
(Fig. 53a).

Since few immigrant adults were observed in spring and early
summer, their abundance had to be estimated from the number of
eggs laid. Only in 1969 were reasonable numbers of both recorded,
when 297 eggs were laid by 11 adults, assuming the latter were each
present for 1 week. The adult population in any week was therefore
assumed to be at least 0.037 (=11/297) times the calculated
number of eggs laid that week.

Instar lengths in Table 18 are as given by Wratten (1973 and pers.
commun.); however, in order to avoid transitions through more than
one stage in any week and to keep the model structure simple,
transition probabilities were based on durations of 1 week for each
of the first 3 instars. Background survival rates are taken from the
laboratory data of Ellingsen (1969).
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4 Results

4.1 Comparison of model output with observed resuits

4.1.1 The problem of validation

Caswell (1977) suggested that the problem of validation differs
according to the type of model; empirical, predictive models can be
validated by statistical methods, while explanatory models can only
be corroborated through repeated attempts to refute them. As an
example he quoted von Foerster’s model of exponential growth in
the human population, validated as a predictive model but refuted
as an explanatory one since, although agreement with observed data
is good up to the present time, it is evident for a number of reasons
that it cannot continue to be so. In effect this means that predictive
models may be right for the wrong reasons and still serve their
purpose, but explanatory models must be right for the right reasons.
However, both must give acceptable agreement with what is ob-
served, and this itself raises a problem for it is difficult to see how
statistical methods can be used to test such an agreement. Given
that sets of observed and predicted data often represent time sencs
it is not possible to assign significance levels to such indices as x? or
the correlation coefficient, although the quantities themselves can
readily be computed. Thus, for a given number of points they
summarize the extent of agreement between observed and predi-
cated data, and could therefore be used to compare different
models, but they cannot serve as absolute measures of any one
model’s realism. It may prove possible to standardize the testing of
ecological or population models but for the moment a model’s
verisimilitude must lie in the eye of the beholder; there would seem
to be no special virtue in representing what is clear to the eye by a
correlation coefficient with which no significance level can be as-
sociated.

Output of the present model is therefore compared in the usual
way with observed data simply by graphing the two, and since it is
an explanatory model it is tested under a reasonably wide range of
conditions. The comparison is carried out in three stages: first, with
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the overall within-season (oviparae vs. fundatrices) and between-
seasons (fundatrices vs. fundatrices) relationships under average
weather conditions in the field; second, with the population trends
during each specific year in the field, given the initial conditions and
actual weather that year; and finally with the same relationships and
population trends in laboratory populations.

4.1.2 Owerall changes in numbers within and between years in the
field

The model was run first with average temperatures, a constant
daily survival rate for all stages of 0.97, which includes the average
effect of wind, and three initial numbers of fundatrices spanning the
range observed in the field. (10, 100 and 1000/m?, referred to
hereafter as low, medium and high initial numbers). Fig. 54 shows
the predicted relationships and the observed points for different
years, averaged over trees 1 and 2. Agreement at this level is good;
the model re-creates the observed inverse relationships between
fundatrices and oviparae and between fundatrices in successive
years. Since the line in Fig. 54 has a negative slope close to —1, the
model predicts stable limit cycles with an amplitude dependent upon
the starting density, and a neutral equilibrium point for a fundatrix
population of 63/m? (log value 1.8); superimposed upon this be-
haviour would be a strong stochastic element representing the action
of disturbing factors. Fig. 55 shows the population trends generated
by the model for each initial density, and, given that oviparae form a
roughly constant proportion of the total at the end of a season, it is
clear from this figure how the above inverse relationships arise.

In all except one case, departures of individual points in Fig. 54
from the predicted line are probably due to variation in the disturb-
ing effects of weather on mortality, flight and reproduction. How-
ever, although the point for 1971 lies close to the line there is good
reason to believe that it is reached through an entirely different
mechanism, as described below (p. 120).
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Fig. 54. Comparison of relationships generated by the model (%—%)
between a) fundatrix densities in successive years, and b) peak densities of
fundatrices and oviparae within each year, and those observed in the field
on trees 1 and 2 (@ 1965, O 1966, + 1967, * 1968, M 1969, (] 1970, A
1971, A 1972; each point is the average for that year over both trees).
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Fig. 55. Population trends throughout the year generated by the model for
a) high, b) medium and c) low initial densities, corresponding to the three
predicted points in Fig. 54. total numbers, ----- ovipara numbers;
vertical bars are fundatrix numbers in the current and following years.
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4.1.3 Population changes during each year in the field

Fig. 56 shows the observed and predicted results from 1965 to
1972, given the actual temperatures and winds and the appropriate

4r | 1965 1966
2 r *® .* * ... Py .. L

0 : - 3
r 1967

Log (No.m?2 + 1)

119 203 287 Days

AM ) ) AS A MJ J AS Months

Time of Year

Fig. 56. Comparison of observed population trends on trees 1 and 2 in the
field, from 1965 to 1972 (—-), and those generated by the model given the

same weather and initial conditions each year (--- - ).
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initial numbers of fundatrices, leafthoppers and black-kneed cap-
sids each year; coccinellid egg-laying is assumed to be only 30% of
normal in 1971 (Section 3.6.4). The main disturbing effects now
operating are of wind speed on mortality and temperature on
egg-hatching, development rate and reproductive rate. Agreement is
good in 1967, 1968, 1969 and 1970, and although it is less good in
other years the model does express some of the variability observed
from year to year in the field, as well as the underlying basic
patterns of behaviour; it is the extent of this variability which is
lacking. Thus, given similar initial fundatrix populations the model
predicts lower numbers in 1965 than in 1968 and lower ones in
1967 than in 1970, but the differences are less than was actually the
case. In 1972 the model also predicted a period of retarded growth
during June, but not to the extent realised in the field. Looking at
the observed and predicted results for 1969 and 1970 in more detail
(Fig. 57), there are two main discrepancies. In 1969 the model
suggests that more 4th instar nymphs and adults are present im-
mediately before the crash than was actually the case and it fails to
re-create the marked decline in numbers of all stages at the end of
1970. Otherwise, predicted instar distributions and adult weights are

1969 1970

Log(No.m?2 + 1)

800 }

600 p I

Adult Weight - pg

2 a2 ']

ok A J
133 204 276 133 204 278

Time of Year - Days from Start

Fig. 57. Detailed population trends and adult weights generated by the
mode! for 1969 and 1970. —— young nymphs (instars 1-3); <---- 4th
instar nymphs; ——— viviparae; ~—- oviparae.
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approximately correct, although it must be remembered that the
latter are based largely on analysis of field records (c.f. Fig. 12).

In years when there is poor agreement between observed and
predicted results, what possible reasons might underly these dis-
crepancies? In 1965 virtually no predators were present and num-
bers were never high enough for density-dependent flight to become
significant, so the reason is almost certainly an omission from the
model of one or more effects of weather. Such effects probably act
on flight and mortality since reproduction is better understood;
actual reproductive rates have been monitored for some years in the
field and the variation from week to week is relatively small. As to
the actual weather factors which might be involved, temperatures
during 1965 were unexceptional (Fig. 16) but wind speeds during
June were high (Fig. 17) and the population failed to increase at all
during this particular period. Wind speeds were also high during
June in 1972 when aphid numbers were extremely low, none being
recorded on two sampling occasions; had the model reproduced this
effect to the correct extent, agreement during the rest of the season
would be good since observed and predicted results.differ by a
constant amount thereafter (Fig. 56). In general, therefore, where
the model overestimates the actual population, as in 1965 and 1972,
this may be attributable, at least in part, to underestimation of the
effects of high wind speeds on mortality; this is not invariably the
case since in 1967, for instance, wind speeds were too low to
account for the discrepancy. However, it is less easy to explain why
the model should underestimate population growth rates, as in the
summers of 1966 and 1971. Wind speeds were not particularly low,
and although temperatures during June and July of 1966 were high
those up to mid-June in 1971 were extremely low, yet the popula-
tion was growing rapidly at this time (Fig. 56). Suppression of flight
or reduction in mortality would both yield increased rates of popula-
tion growth and it is not clear as yet which of these is responsible
and under what conditions. The lack of agreement at the end of
1971 is because cumulative densities in the model were not high
enough to cause a population crash. In the more detailed compari-
son of population trends in 1969 and 1970 (Fig. 57), the discrepancy
at the end of 1970 may also be due to an underestimation of the
effects of wind, since it was removed by changing the relationship in
the model to one giving a reduced mortality at low wind speeds but
a greater one at higher speeds. The model’s prediction of too many
4th instar nymphs and adults before the crash in 1969 may be due
to the presence of a density-dependent nymphal mortality omitted
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from the model, or to underestimation of the mortality inflicted by
the coccinellid predators; 3rd and 4th instar coccinellids were pres-
ent earlier in 1969, and were possibly more voracious than the
model suggests because of a short period of high temperatures (Fig.
16). ~
Ideally, the next step would be to run the model continuously
from 1965 to 1972 rather than start each year with the correct
initial conditions. However, since errors would rapidly accumulate
over this period, there is little point in running the model continu-
ously until very good agreement is obtained within individual years.
Thus we did not attempt to do this.

4.1.4 Population changes in the laboratory

In applying the model to Brown’s (1975) insectary populations
certain modifications are necessary. First, since predators and para-
sites were absent these were omitted from the model. Second, the
average daily mortality rate was assumed to be 1% instead of 3%,
for all stages. Third, the daily net emigration rate of alates was
assumed to be reduced by 50%, since the populations were enclosed
in cages and only the roofs and floors of these were sticky, making it
possible for alates landing on the sides to return to the plants.
Finally, since mortality and flight in the insectary were apparently
unaffected by cumulative density and adult weights affected to a
lesser extent than in the field, the effect was reduced in the model by
dividing the accumulated density by 3. With no predation or parasit-
ism and reduced mortality, flight and effects of cumulative density,
the model gives the results shown in Fig. 58. Population trends
during the year for low (10/m?) and very high (2000/m?) fundatrix
numbers give quite good agreement with those observed in the
insectary, though the peak numbers are slightly underestimated (Fig.
58c and d). The predicted relationship between peak fundatrices
and peak oviparae (Fig. 58b) is also fairly close to that observed,
with a much smaller negative slope than in the field (Fig. 54b) and
higher overall fundatrix numbers produced, though these are slightly
underestimated by the model. However in the relationship between
peak fundatrices one year and the next, the pronounced negative
slope observed in the field re-appears among the insectary popula-
tion but with higher overall numbers. While the model correctly
predicts this elevated general level of abundance it does not recreate
the inverse relationship (Fig. 58a); rather, it yields one of the same
slope as for the oviparae/fundatrices line (Fig. 58b). Why, in the
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Fig. 58. Comparison of observed population behaviour in an insectary and
that generated by the model. a) The relationship between peak fundatrices
- in successive years (@, observed; A—A, model). b) The relationship be-
tween peak oviparae and peak fundatnces in the same year. c) Populatxon
trends throughout the year for an initially high-density (2000/m?) popula-

tion (—— observed; ++-- model). d) Population trends throughout the
year for an initially low-density (10/m?) population.

insectary populations, should the negative slope in the between-
seasons relationship be greater than that in the within-seasons one,
and why does the model fail to reproduce the effect? The answer is

105



almost certainly that ovipara weights and hence the number of eggs
laid by each were actually much lower (about 200 wg) in the
populations initially at a high density than were those in the initially
low-density populations (about 400 wg). In the model the weights
were 382 ug and 415 ug, respectively at the times of peak ovipara
numbers, giving a much smaller difference in egg-laying potential.
This in turn must have been due to the underestimation of numbers,
hence of cumulative density, in the initially high populations (Fig.
58¢), or to an underestimation of its effects on aphid weights in the
laboratory.

4.1.5 Population changes of predators and leafhoppers

Fig. 59 shows the predator and leafhopper population trends
generated by the model. This is in no sense a validation since the
submodel was based to a large extent on field census data, but
serves to illustrate the numbers and stages of predators and their
alternative prey which affect the aphid population at different times
of year. Figs 59a and b show changes in numbers of the 2-spot
coccinelid when aphid populations are initially high and low respec-
tively, and average weather conditions are assumed. The main
difference is that egg-laying occurs at a lower rate and over a
somewhat longer period in the second case than in the first. The
population trends for the capsid are given in Figs 59¢ and d, again
for high and low aphid densities, and here the difference lies in the
number of eggs produced at the end of the year Figs 59¢ and f show
leafhopper pOpulatlons dcvelopmg from two different initial num-
bers of eggs, 200/m> and 50/m® respectlvely Since egg-laying is
density-dependent (Section 3.6.2) the increase in egg numbers from
beginning to end of the year is smaller when the initial density is
high than when it is low; the theroretical equilibrium number of
eggs is 2400/m?, a very high figure.
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Fig. 59. Population trends of 2-spot coccinellids, black-kneed capsids and
leafhoppers throughout the year, generated by the predator/leafhopper
submodel. a) Coccinellid with a high initial aphid population (1000/m?).
b) Coccinellid with a low initial aphid population (10/m?). ¢) Capsid with a
high initial aphid population which crashes. d) Capsid with a low initial
aphid population which increases. e) Leafhopper at a high initial density.

f) Leafhopper at a low initial density.
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4.2 Sensitivity analysis

This section is concerned with the effects of changes in assump-
tions about the forms of relationships or the values of parameters
where these are not well established. The next section deals with
changes in the biology as it actually exists, applied to the model in
order to gain insight into the functioning of the system.

There is no rigorous approach to sensitivity analysis possible in a
model of this kind. In the first place the analysis will rarely be
complete, since it is seldom possible to examine all the interactions
resulting from simultaneous changes in the values of two or more
parameters. Even where parameters are only varied independently,
it is difficult to compare the effects in a meaningful way. A common
method is to compare the results on a model’s output of constant
proportional changes in each parameter, assuming that those yield-
ing the greatest effects are most worthy of further study. However,
the effect on the model will depend on the absolute value of the
parameter. For instance, a 50% decrease in the daily mortality rate
of 0.03 will have a much smaller effect than a 50% decrease in the
daily survival rate of 0.97, and it is hardly appropriate to conclude
that more research should be devoted to survival than mortality. In
the present case, therefore, sensitivity analysis involves testing a
selected range of specific alternative hypotheses.

The main method adopted for answering the questions in this and
the following section is to consider the way in which changes applied
to the model affect the relationship between the numbers of fundat-
rices one year and those the next, expressed as their logarithms (Fig.
54a), and, less frequently, their effects on population trends within a
year. Fig. 60 shows the population behaviour through time corres-
ponding to the different relationships, within the ranges shown on
the graphs. Where the relationship is linear, it is described empiri-
cally by the equation:

log N,,=a'+b'log N,
or
M-&-l:aer—b

where N, and N,,,, are the numbers of fundatrices in successive
years. There is an equilibrium point at N, =a'® and the population
exhibits the following behaviour depending on the values of b and

b!:
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Fig. 60. Effects of different relationships between fundatrices in successive
years on population behaviour in time, over the ranges shown in the graphs.

b=<0, b'=1; Continuous increase or decrease
0<b<1, 0<b'<1; decrease or increase towards a stable equilib-
rium point
b=1, b'=0; perfect regulation—attainment of a stable
equilibrium point in the next year
1<b<2, -1<b'< 0;converging oscillations
b=2, b'=-1; stable limit cycles
b>2, b'<—1; diverging oscillations and eventual extinction

Where the relationship is curvilinear, it can be considered as a series
of straight-line segments and the above conclusion applied to each.
For instance, if the relationship at any point has a slope (b') greater
than 1, the population will continue to increase from this point
unless at higher numbers the slope changes to become less than 1.
The relationship must be distinguished from the usual Ricker curves
(Ricker, 1954) and, when linear, from an equation commonly used
to describe the dynamics of single-species, discrete-generation
populations, since in the present case the relationship operates not
from generation to generation but from year to year, covering four
or five overlapping generations. It represents the outcome of in-
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teractions between competition, predation and various time lags,
and the parameters a,a’, b and b’ in the linear form given above are
actually complex functions of these different effects. In each figure
the normal behaviour of the model is indicated by a dotted line and
equilibrium points occur where the solid one, representing the new
output, gives log N,,, equal to log N,.

The main areas of uncertainty in the model are the forms of the
relationships governing alate flight, the maximum adult longevity in
the field, the average daily mortality of all stages and the way in
which mortality varies with wind speed.

Fig. 61a shows the effects of changing the adult flight component
(the proportion of alates flying per day in response to current
weighted population density) in two ways: by doubling the slope of
the relationship, hence the density-dependence; and by making the
response dependent only on densities of adults and 4th instar
nymphs, since it may be that younger nymphs do not affect the
activity of adults (Kidd, pers. commun.). In neither case is the
output significantly changed. Figs 61b and ¢ show the results of
alterations to the nymphal component (the proportion of alates
flying per day in response to nymphal experience of crowding).
These include: removal of the density threshold and two alterations
to the slope of the relationship (Fig. 61b); halving of the response;
reduction of the maximum response from 0.4 to 0.3 (Fig. 61c). The
form of the year-to-year relationship is fairly insensitive to changes
in the nymphal component at low or medium initial densities, the
only effect being a reduction in its elevation when the threshold is
removed, giving more flight at low densities (Fig. 61b). At high
initial densities, however, the result depends to a greater extent on
the form which the nymphal component takes; different responses
tend to give less marked population crashes during summer hence
higher numbers of aphids at the end of the year. The behaviour of
initially high-density populations during the year, characteristic of
different nymphal flight components and different adult ones, are
shown in Fig. 62, with no other control processes acting. The adult
component yields population peaks in successive generations, while
the nymphal one yields peaks in every other generation and more
pronounced crashes if it embodies a threshold.

Varying the density-independent background level of flight has a
similar effect to changing the background mortality rate of all
instars, discussed below (Fig. 61d, compare Fig. 68a). If it is
increased, then densities during the year are lowered, the impact of
density-related processes reduced, and overcompensation in the
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Fig. 61. Effects of changes in the flight equations and the maximum adult
longevity on the predicted year-to-year relationship between fundatrix
numbers. a) The adult flight component is doubled (FA=0.01WD, Line 1)
or made dependent on densities of adults and 4th instar nymphs only
(FA=0.005(A+N), Line 2);: b) the threshold is removed from the
nymphal component (FN=0.01DD, Line 1) or the threshold is removed
and the slope halved (FN =0.005DD, Line2); c) the maximum level of the
nymphal component is reduced from 0.4 to 0.3 (Line 1) or the overall
response is halved (Line 2); d) the background flight level is halved (Line 1)
or doubled (Line 2); e¢) the maximum adult longevity is halved, from 30 to
15 days. FA and FN are proportions of alates flying per day, A and N
densities of adults and 4th instar nymphs, WD weighted density of all stages

and DD the mean total density during nymphal development. —— new
relationship; ----- original relationship.
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Fig. 62. Effects of different adult (a), b) and c)) and nymphal (d), e) and f))
flight components on population behaviour, generated by the model, when
each one is the only control process acting: a) the normal adult component
(FA=0.005WD); b) the adult component doubled (FA =0.01WD); c) the
adult component dependent only on densities of adults and 4th instar
nymphs (FA =0.005(A+N)); d) the normal nymphal component (FA =
0.01(DD-—-10), 0<FN=<0.4); e) the nymphal component with no threshold
(FN=0.01DD, 0<FN=0.4); f) the nymphal component with no threshold
and reduced slope (FN=0.005DD; FN=<0.4). FA is the proportion of
alates flying per day in response to the current weighted density of all
instars (WD) or to current density of adults (A) and 4th instar nymphs (N),
and FN that are dependent on density during nymphal development (DD);
densities are numbers/100 cm?.

year-to-year relationship lessened, first at the high initial density
then at the medium density. If it is reduced, higher numbers result
at the low and medium initial densities and the theoretical equilib-
rium level is increased.

Altering the maximum adult longevity from 30 to 15 days has
very little effect (Fig. 61e). Changing the relationship between
mortality of all instars and wind speed, making it linear or more
curvilinear, also has no significant overall effect; rather the fit
between modelled and observed population trends tends to be
better in some years and poorer in others.
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4.3 Effects of the different processes

There are two key questions to be asked of the model. First, what
are the effects of the various density-related processes on the aphid
population: in particular what causes the observed inverse relation-
ship between numbers at the beginning of successive years, and
which factors are capable of regulating the populations? Second,
what are the effects of disturbing factors on the population’s be-
haviour? These questions are considered first, followed by the
effects of varying specific parts of the system or components of the
main processes.

4.3.1 Density-related processes

The density-related processes considered are:
1. The adult flight component (dependent on current density)
2. The nymphal flight component (dependent on density during
nymphal development)
3. Changes in adult weight (affecting reproductive rate and depen-
dent on density during nymphal development and cumulative den-
sity)
4. Predation (a complex function of density)
5. Flight and mortality dependent on cumulative density

The cumulative density effects on flight and mortality remain to
be confirmed by experiment but the existence of the other processes
is well established. The possibility that aphids are also subject to
density-dependent mortality cannot be discounted (Barlow, 1977),
though there is little evidence for it and the effect is similar to that
of density related flight (Fig. 67). It is difficult to specify the nature
of the density-dependence involved in predation; the numerical
response of the coccinellids is density-dependent at low densities
and inversely density-dependent at high ones (Fig. 53a), but what-
ever the predators’ response the effect on the aphid population
depends also upon its own subsequent behaviour and upon the time
of year. Of the above list of density-related processes, those involv-
ing flight are behavioural while the others are imposed either by the
behaviour of other species or by the constraints of the aphids’
physiology or environment.

What causes the inverse year-to-year relationship? There are two
stages involved in answering this or any similar question which it is
important to distinguish; the first involves the factual question as to
the basis of the relationship in the model, while the second involves
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the hypothesis that this also holds in the field. To answer the
question in a situation where the processes interact in a complex
manner, each in turn was removed from the model (Fig. 63).
Removal of an active regulating factor will increase the slope of the
relationship, either until it becomes greater than or equal to 1 and
the population is no longer controlled, or to another value still less
than 1 if a second regulatory process is effective or is activated when
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Fig. 63. Effect on the year-to-year relationship between fundatrix numbers of
removing each control process in turn from the model, namely: a) the adult
flight component; b) the nymphal flight component; ¢) changes in adult
weight; d) cumulative density effects; e) predation. —— new relationship;
----- original relationship.



the first is removed. If there is no change in the relationship this can
mean one of two things: either the process removed plays no part in
regulating numbers when others are active, though it may be
rendered effective in their absence; or a second regulatory process
substitutes perfectly for the first. Which of these outcomes is true
can usually be assessed by looking more closely at details of the
model’s output, such as the population trends during the year. The
most important regulatory processes may be defined as those whose
removal results in the greatest change, and if this is to the extent
that the inverse relationship is destroyed, the processes involved
must be regarded as necessary, though not necessarily sufficient
conditions for its existence. In this case removal of the cumulative
density effects yields no change in the output (Fig. 63d) and it is
easy to see that this is because they are ineffective at the relatively
low cumulative densities resulting from the action of the other
processes. Removal of the adult flight component has a small effect
at all initial densities (Fig. 63a) and removal of the weight effects
produces a slightly greater change at the high density only (Fig.
63c). However, the processes giving the most significant changes are
the nymphal flight component at high initial densities and predation
at medium and high initial densities (Figs 63b and e). The latter,
therefore, are the most important regulatory processes and both are
required to give the inverse relationship in the model, since this is
largely eliminated when either process is removed. Fig. 64a shows
the relationship which results when the two most important proces-
ses, predation and the nymphal flight component, act alone. Al-
though these give overcompensation, the precise extent of the
response generated by the model at high initial densities is also a
result of changes in adult weight and, to a lesser extent, the adult
flight component, as shown in Fig. 64a.

Which factors are capable of regulating the population? This is a
slightly different question from asking which factors are normally
involved, in an interaction with others. Clearly, some processes may
not be dependable in the sense that their effect is always the same;
predation and flight in particular may be suppressed or enhanced by
weather, and in these circumstances other factors like the cumula-
tive density effects may become more important. Although both
predation and the nymphal flight component are necessary to give
the inverse relationship discussed above, in the absence of either the
population is still regulated by one or more of the other processes.
There is an enormous potential for increase if no control process
acts (Fig. 64b), although in practice the food supply would be
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Fig. 64. Effect on the year-to-year relationship between fundatrix numbers
of: a) the presence of the key control processes, predation and the nymphal
flight component, alone (Line 1), with the adult flight component added
(Line 2), or with weight changes added (Line 3); and b) removal of all
controls. — new relationship; «---- original relationship.

exhausted and the population rapidly eliminated were this to occur.
Nevertheless this demonstrates the effectiveness of the control pro-
cesses, for each alone, with the exception of predation, has the
potential for regulating fundatrix numbers at levels not much higher
than normal (Fig. 65), while cumulative density effects and weight
changes can even cause overcompensation (Figs 65c and d). Al-
though predation fails to regulate the population over the whole
range of initial densities, it gives results closest of all to normal at
low and medium densities, confirming its role as the main factor
determining the form of the relationship over this range. In inter-
preting these figures, showing the year-to-year relationships, it is
important to remember that they do not show all the effects of the
processes, for numbers during the year may vary more than num-
bers of fundatrices at the beginning of each; a medium initial density
may yield a medium initial density in the following year either if the
population stays low or if it rises to high levels and crashes. In
addition, any discussion of regulation must relate to the average
impact of disturbing factors or to a certain range of population
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Fig. 65. Effect on the relationship between fundatrix numbers in successive
years, of each control process acting in isolation: a) the adult flight compo-
nent; b) the nymphal flight component; ¢) changes in adult weight;
d) cumulative density effects; e) predation; f) predation with aphid back-
ground mortality doubled. —— new relationship; ----- original relation-
ship with all processes included. '

densities; there may be a number of local equilibria around which
regulation occurs, and it is well known that populations normally
controlled by predators and parasites may ‘escape’ under particu-
larly favourable environmental conditions to reach a much higher
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though normally temporary equilibrium level. The lime aphid shows
the same behaviour, for predation alone can regulate the population
and even cause overcompensation within the low to medium range
of initial numbers but when the latter are high the aphid population
escapes this control (Fig. 65e). If the background mortality rate is
increased from 3% to 6% per day, then predators can regulate the
population over the whole range of initial densities (Fig. 65f), and
the precise effects of the other control processes will likewise change
with variations in background flight or mortality rate.

Hence there is no key regulating factor, nor are the effects of the
control processes in Fig. 65 additive. Rather, the lime aphid displays
a system of hierarchical regulation with each process capable of
substituting for another; moreover, the different processes interact
and different ones are involved at different initial densities. The
model shows that an inverse relationship between fundatrix num-
bers in successive years, and between fundatrix and ovipara num-
bers within a year, can be generated in two ways. The first involves
predation at medium initial densities and the combination of preda-
tion and the nymphal flight component at high ones; at the medium
initial density numbers stay fairly low throughout the season but at
the high density there is a marked crash (Fig. 55). This mechanism,
embodying processes known to exist but with the assumption that
their magnitude in the field is comparable with that determined in
laboratory experiments, yields results similar to those observed in
most years in the field. The second mechanism involves an increase
in flight or mortality dependent only on accumulated density during
the season. Here population peaks reached during the year are
higher and the inverse relationship results from changes in the
timing of the crash, which occurs when the cumulative density
reaches a threshold; the higher the initial density the sooner the
threshold is reached and the crash occurs, and the fewer the sexuals
and eggs produced (Figs 66a, b and c). This mechanism has not been
verified experimentally but there is independent evidence for its
existence (Sections 3.5.3 and 3.5.4) and it would explain the popula-
tion’s behaviour in 1971. In this year, and on tree 6 in 1973, the
points in the year-to-year relationship are fairly close to those in
1966 and 1967 (Fig. 54a), yet the population behaviour during the
year was quite different; in 1971 much higher numbers were at-
tained, few predators were present, and the population crashed in
August (Fig. 11). Clearly, something must have suppressed any
density-related flight during the first part of the year, and the model
shows that re-activation of flight in late July, combined with preda-
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Fig. 66. Effects of cumulative density-dependent processes (a,b and ¢) and
adult weight changes (d, e and f), acting alone, on population trends
throughout the year for high, medium and low initial densities. —— total
numbers, -+ ovipara numbers; vertical bars are fundatrix numbers in the
current and following years.

tion at a reduced level and a decline in adult weight and reproduc-
tive rate, both of which were observed in 1971, is not sufficient to
give a complete crash (Fig. 67). There is no evidence for increased
mortality towards the end of a year, independent of aphid density,
which might give a crash when combined with the reduction in
reproductive rate. On the contrary when densities are low mortality
is constant (Fig. 27) and low-density populations are capable of
increasing at the time of the 1971 crash (Fig. 11). Cumulative
density effects, therefore, appear necessary to account for its exis-
tence. The third mechanism giving an inverse year-to-year relation-
ship, through changes in adult weight alone, yields population
behaviour during the year quite unlike any observed, and peak
numbers far higher (Figs 66d, e and f). Moreover, here the inverse
relationship results not from a reduction in ovipara numbers when
initial densities are high, but from a reduction in the number of eggs
laid by each because of their lower weight; there is no inverse
relationship between fundatrices and oviparae within a year.
Overcompensation between years cannot be the result of density-
related processes operating within a generation or from one genera-
tion to the next. Effects of such processes simply cancel out over the
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Fig. 67. a) Nature of the decline in numbers resulting when the population
is allowed to reach high numbers in early summer, through suppression of
flight at this time (see text), but when cumulative density effects are
removed (——; «---- , population trends observed in 1971), b) Effect on
the population crash from a high initial density (as in 1969) of replacing
density-related alate flight (——) by density-dependent mortality of all
stages (+---- ; % daily mortality =0.001 X numbers/100 cm?).

4 or 5 generations in the year. Rather an effect is required which
persists through the season, such as predation, a reduction in adult
weight or an increase in flight or mortality related to cumulative
density. _

Although two mechanisms have been discussed whereby density-
related processes can account for the observed inverse year-to-year
relationship, the possibility must be considered that the latter is due
to chance, and that numbers each year are determined by weather.
Under this hypothesis the expected variance would be between
years not between trees, and the significance level of the relation-
ship in Fig. 7 is far lower if points for different trees are pooled for
each year; clearly, extensive replication in time is highly desirable in
population studies in order to take full account of variations in
weather, or to test a model’s ability to do so. It is unlikely that the
inverse relationship is due to chance; there is ample independent
evidence for the existence of the density-related processes, and on
tree 3 where coccinellids were much scarcer and cumulative density
effects absent there was no trace of an inverse relationship.
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4.3.2 Density-disturbing processes

Weather may influence population behaviour through its effects
on a number of different processes, namely egg-hatching, develop-
ment rate, growth rate, reproduction, predation, other mortality and
flight. Temperature is the most important driving variable affecting
the first three processes, but the extent to which these vary in the
‘field has already been shown to be insufficient to give the gross
changes evident at the population level (Fig. 56). The same is
probably true for the effect of temperature on predation, though this
is not included in the model. Good and bad years, favourable and
unfavourable for population growth, must therefore be determined
largely by the effects of weather on flight, mortality or both. The
nature of these effects is not fully understood. So to represent
favourable and unfavourable environmental conditions the model
was simply run with different background mortality rates and flight
components.

The effect of progressive increases in mortality (Fig. 68a) is to
reduce the mean level of abundance and the theoretical equilibrium
population, but also to change the slope of the year-to-year rela-
tionship from negative through zero to positive, first removing the
overcompensation and then decreasing the degree of regulation.
This is because the increasing mortality exerts a greater effect at low
densities than at high ones, being counterbalanced in the second
case by a relaxation of control by density-related processes. The
lines in Fig. 68a corresponding to mortalities of 1.5% and 6% per
day encompass most of the variation observed in the field (see Fig.
54). At the higher level of 6%, the population is almost perfectly
regulated but at extremely low numbers (8 fundatrices/m®), and if
the background mortality is increased to 99, it becomes extinct. If
the environment is extremely favourable for population growth,
such that both mortality and flight are only half the normal values,
there is still an inverse relationship but with higher fundatrix num-
bers at low and medium initial densities (Fig. 68b); in this case,
however, it results from the action of cumulative density effects and
the population peaks reached during the season are much higher. In
all these changes it is assumed that the mortality of predators
remains the same. In the absence of predation the population is
much less sensitive to variations in the mortality rate between 1.5%
and 6% per day and the equilibrium point remains unchanged; at
the slightly higher mortality of 9%, however, the population still
becomes extinct (Fig. 68c).
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Fig. 68. Effects on the relationship between fundatrix numbers in succes-

sive years of variations in background mortality, flight and temperature
(- —- normal relationship): a) background mortality rate 0.5, 2 and 3 times
normal; b) background mortality and all flight 0.5 times normal; c) as a)
but with predation removed ((1), normal relationship in absence of preda-
tion); d) temperatures 2°C higher (H,——) and lower (L,——) than
normal.

Normal variations in temperature appear to have relatively little
effect but Fig. 68d shows the results of a 2°C increase and reduction
in average temperatures throughout the year, assuming that preda-
tion is unaffected. Reducing the temperature has a greater effect
than increasing it, particularly at the lowest density where it gives a
35-fold decrease in fundatrix numbers, showing the significance of
even a modest temperature change if this is sustained over a whole
season. At high initial densities, increasing the temperature effec-
tively allows the population to escape the overcompensating action
of predation.
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4.3.3 Components of predation

Having shown that predation has a significant effect on population
behaviour of the lime aphid, we then assess the relative importance
of the two main predators and the alternative prey. Fig. 69a shows
that removal of the leafhopper or increasing its numbers does not
affect the aphid population. Similarly, removing the black-kneed

‘capsid has little effect, but here doubling the average number
present does reduce aphid densities slightly over the whole range of
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Fig. 69. Effects on the relationship between fundatrix numbers in succes-
sive years of changes in the components of predation (———- original
relationship): a) removal of the leafhopper or a 10-fold increase in its
numbers; b) removal of the black-kneed capsid and a 2-fold increase in its
numbers; ¢) removal of the 2-spot coccinellid, a halving and a doubling of
its numbers; d) a halving of the coccinellid attack coefficient (A) and
maximum rate of eating prey (V).
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initial population sizes (Fig. 69b). Removing the coccinellids gives a
result similar to removal of all predation (Fig. 69¢c, compare Fig.
63e), suggesting that they are almost entirely responsible for its
effects, described above. Doubling coccinellid numbers markedly
reduces mean aphid abundance (Fig. 69c¢), bringing the theoretical
equilibrium population down to 14 fundatrices/m? (log value of
1.15).

Given the importance of the coccinellids, Fig. 69d shows the
significance of the components of their functional response. At low
initial aphid densities, halving attack coefficients or the maximum
amount of prey which the coccinellids can eat both have relatively
little effect because few coccinellids are present. At medium initial
densities either alteration greatly increases the fundatrix numbers in
the next year, being virtually equivalent to complete removal of the
coccinellids (compare Fig. 69c). In other words a proportional
change in the attack coefficient or the amount required for satiation
has a greater effect on the aphid population when its value is large
than when it is small, and the same is also true for the actual
number of coccinellids present. This is the reverse of what would be
expected from the functional response equation (p. 38), but arises
because a decreasing mortality from predation is eventually com-
pensated for by the resulting increased effect of the aphid’s intra-
specific control processes. At high initial aphid densities the popula-
tion crashes to low levels in the presence of large numbers of
coccinellids and under these circumstances the coccinellids are un-
likely to be satiated. Attack coefficients are therefore of greater
significance than the maximum amount each predator can eat per day,
so reducing the attack coefficient has the greater effect on aphid
numbers (Fig. 69d).

It is interesting to consider why the predators do not appear in
larger numbers. For the coccinellid it has already been shown that a
numerical response which doubles the number present gives an
extremely low equilibrium population of aphids. At this level the
risk of extinction of the prey is high and it is unlikely in any case
that the first instar coccinellids would obtain sufficient food for
survival (Dixon, 1959 Wratten, 1973). Since the black-kneed capsid
has a smaller effect, however, slightly higher numbers can be
sustained here. Using the model, it is possible to calculate the rate
of increase of the capsids, over 1 generation, for different initial
numbers of capsids and aphids. There are three basic values for this
rate of increase: 1.1 if aphid numbers are fairly high throughout the
year; 0.15 if they fall below a threshold of 20/m? at the time of
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capsid egg-laying, as may occur at the high initial aphid density; and
0 if the aphid population is driven to extinction during summer or to
the very low level at which capsid nymphs starve (Glen, 1973), as
may be the case at the low initial aphid density. Fig. 70 shows that
the capsid population can only increase if the initial number of eggs

Capsid Rate of Increase

Log Fundatrices m 2

Fig. 70. Effects on the rate of increase of the resident black-kneed capsid
population of different initial numbers of 1st instar nymphs ( <5/m?,
- == 10/m?, -+--- 50/m?) at different initial aphid densities. Average
capsid numbers observed are 2/m? and the rate of increase is taken as the
ratio of 1st instar numbers in successive years.

is less than or equal to about 3 times the average observed abun-
dance (about 2/m?), and only then at the low or medium aphid
densities. The model suggests, therefore, that both predators are
present at the highest average abundance consistent with the long-
term survival of their prey. Moreover, for most purposes the 2-
predator/2-prey system can be considered as a 1-predator/1-prey
one, comprising only the aphid and the coccinellid.
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4.3.4 Components of reproduction

It has already been shown how changes in adult weights affect the
year-to-year relationship (Figs 63c and 65c). Weight depends on
density and cumulative density and exerts its effect on the popula-
tion through the adult’s pre-reproductive delay and reproductive
rate. Figs 71a and b shows the results of direct changes made to
these two factors, involving a halving and a doubling of their values.
Averaged over the whole range of initial population densities, and
the two changes in parameter values in each case, the effects of both

Log Fundatrices m'? Year t + 1

Log Fundatrices n'-\,z Year t

Fig. 71. Effects on the relationship between fundatrix numbers in succes-
sive years of: a) halving or doubling the pre-reproductive delay; b) halving
or doubling the reproductive rate; c) causing aphids to moult early (E, 0.8
times normal development time) or late (L, 1.2 times normal development
time); d) causing sexuals to be produced 2 weeks earlier (E) or later (L)
than normal.
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alterations are similar. Thus, the pre-reproductive delay and the
reproductive rate are equally significant in their effects on the
population’s behaviour, though these effects take slightly different
forms in the two cases. Decreases in the reproductive rate have
smaller effects than similar proportional increases in the background
mortality rate (compare Fig. 68a), though the results are qualita-
tively similar.

4.3.5 Effect of parasitism

Removal of parasitism from the model causes a slight increase in
numbers of fundatrices produced at low and medium initial densities
but the overall effect of parasites is small.

4.3.6 Significance of development time

What would be the effect if aphids moulted earlier to become
adults of lower weight; would the increased pre-reproductive delay
and reduced reproductive rate be compensated for by the decreased
development time, in terms of the numbers of fundatrices produced
in the following year? In fact, the positive effect of the decreased
development time on population growth is greater than the negative
one of reduced reproduction; moulting earlier gives a greater rate of _
increase in the short term, Taken over the whole year, however, the
effect is'somewhat more complex because of interactions with the
intra-specific control processes and particularly with predation; it is
small at initially high densities, for instance, because the effect of the
population crash is far more significant. Nevertheless a decreased
development time does give higher numbers in the next year (Fig.
71c) and the model shows that it also yields more colonising
emigrant alates. It is not immediately obvious, therefore, why the
lime aphid does not have a shorter development time though there
are many constraints not considered here; for instance, while the
effects of a shorter growth period on weight gain have been incorpo-
rated, physiological maturation may be a different process requiring
a certain time at a given temperature for its completion. Small adult
aphids are also more vulnerable to natural enemies. It is also
interesting to note that in the absence of predation and as a
consequence of the intra-specific control processes, these changes in
development time have much less effect on'numbers of fundatrices,
though the effect on numbers of emigrants is actually greater.
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4.3.7 Significance of the time at which sexuals are produced

Since the transition to sexual production occurs only gradually,
parthenogenetic reproduction and population growth is possible for
a long time after this has started. At low initial densities, with a
population increasing during the year, bringing forward the time of
sexual production reduces peak numbers attained but gives a longer
period over which sexuals are present. The net result is little change
in their cumulative abundance and in the number of eggs produced
(Fig. 71d). If the transition to sexual production occurred more
suddenly, the outcome would be different. Then their cumulative
abundance in any year and the number of eggs laid would be
directly related to the size of the population at the time of transi-
tion, which in turn depends on the period available for parth-
enogenetic reproduction. The latter would thus be the most impor-
tant factor, yielding fewer sexuals when it is short and the sexuals
are produced early, than when it is long.

At high initial densities when the population is decreasing rapidly
in summer, changing the time of sexual production has a much
greater effect. If it is later in the year, as occurs in the sycamore
aphid for example, there is a dramatic decline in the number of
fundatrices produced and if the sexuals appear earlier there is a
corresponding increase (Fig. 71d). At medium initial densities the
effect is similar but much smaller.

Since producing many sexuals early appears to give a greater
average increase in numbers over the year, it is not clear why such a
strategy has not been developed further in the lime aphid.

4.4

Other tree-dwelling aphids also exhibit the ‘see-saw’ effect (the
inverse relationship between numbers of fundatrices and oviparae)
notably the sycamore aphid and the walnut aphid, although in the
latter case it is less well established (Dixon, 1977). A decline in
reproductive rate following initial high numbers contributes to the
effect in both cases; in the sycamore aphid migration appears to be
the other main factor involved and in the walnut aphid the addi-
tional factor is probably predation (Dixon, 1977). Interestingly, a
host-alternating species, Aphis fabae, exhibits the same inverse
relationship, in this case due to the delayed action of predators
attracted by an initial high density and exerting their main effect
later in the year (Way, 1967). So, while such population behaviour
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is not unique among aphids the mechanisms causing it may differ.

Why should the lime aphid behave in such a way? At the lower
densities and as in Aphis fabae, the effect is imposed by the action
of predators and is the outcome of a time lag and a threshold; a
population initially too small to attract many predators becomes
larger after a time than one initially higher but subject to predation.
However, at the highest initial densities predation alone cannot
- check population growth and it is the additional presence of a strong
density-related flight component which gives the rapid decline in
numbers observed. Why then has this kind of flight behaviour
evolved? In its absence the population would be controlled by a
decline in the weight and reproductive output of adults, or at an
even lower level by cumulative density effects setting an effective
limit on cumulative abundance of the aphid in any one year, below
the level at which a host tree is seriously damaged. Nevertheless, in
either of these cases the densities reached are extremely high, and if
such infestations were sustained or occurred too frequently over a
period of years it is possible that the tree could be damaged or
killed. Thus, Lilewellyn (1970) showed that about 8000 aphids/m?
during the season will drain completely the annual net production of
the tree, assuming no compensatory growth, and Dixon (1971b)
suggested that the figure may be even lower, around 5000/m>. As
shown above, these values may be reached (log numbers of 3.9 and
3.7) in the absence of population regulation. In addition, Dixon
(1971b) found that the roots of infested saplings do not grow. While
death of a host tree has not been shown to result from aphid
infestation, a prevention of growth of this kind could lead to
extinction of an aphid population through suppression of recruit-
ment to the population of its host, under conditions where the trees
grow naturally from seed. Density-related flight behaviour may
therefore avoid damage to the host. While a gene causing an aphid
to refrain from such behaviour may be selected for in the short
term, it seems reasonable to suppose that it would be eliminated in
the long term, were the host to be destroyed. If the density-related
response were replaced by a greater constant proportion flying, this
would eliminate the risk of over-exploiting the host but reduce the
theoretical equilibrium number of aphids, the mean density from
year to year, and the ability of the aphid to recover rapidly from
catastrophic mortalities at low densities. Clearly some flight is
necessary, since colonisation must occur and must be selected for,
however small the probability may be for any one aphid of encoun-
tering an alternative host. For although the life-span of the host is
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long relative to that of the aphid, and tree-dwelling aphids depart in
this respect from what might be expected of animals considered to
be r-selected (Southwood, 1976), nevertheless the tree lives for a
finite time and any resident population incapable of movement is
doomed.

Emigration by flight is therefore necessary, and a density-related
response rather than a density-independent one not only fulfills the
need for colonisation but also distributes flight according to the
resident population’s ability to sustain the loss and may play a part
in preventing over-exploitation of the host. It could be asked why
the density-dependence is so marked as to bring about a population
crash; a nymphal flight component reduced by a half (Fig. 61) would
appear to satisfy the main criteria for the aphid’s success without the
possible risks of extinction associated with dramatic population
crashes. There is no answer to this, save that such speculations are
not necessarily fruitful for they tend to involve extrapolations which
the available data do not justify. For instance, it may be that a
potential density-dependent mortality does exist in the lime aphid,
as a simple consequence of the increased movement known to occur
at high densities and possibly associated with a deterioration in
overall food quality and the increasing difficulty of finding individual
feeding sites which are suitable. The flight response may then be a
desirable alternative to such a mortality, in the sense of substituting
a small probability of successful colonisation for a certainty of death.
A second possibility is that any change in the aphid population’s
behaviour, particularly in the direction of increasing stability, may
qualitatively change the response of the natural enemy complex,
again a situation which it is impossible to predict. Any prediction of
an organism’s optimum strategy would appear risky, since it is
difficult to be certain that all relevant factors are considered and not
all strategies which are conceivable may be physiologically possible.
It may also be difficult to identify the criterion for optimality as
measurements of fitness are time-dependent; a gene which causes a
greater rate of increase over one or a few generations may become
extinct through over-exploitation of the resources upon which the
local population depends. Finally, even if the true optimum strategy
could be identified, it is not necessarily reasonable to expect the
organism to exhibit it; if evolution is occurring, then by definition at
least some organisms are imperfectly adapted to their current envi-
ronment.
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5 Conclusions

S.1 Suggestions for further work

Modelling the lime aphid has shown that there is a need for more

experimental work in several areas and there is considerable scope,
too, for developments in the model itself. The experimental work
involves, in order of importance:
1. The effects of weather on mortality and flight in the field. The
significance of weather and the importance of understanding its
effects are highlighted, first, by the discrepancies between observed
population trends in specific years and those predicted by the model,
second, by the fact that on tree 3, numbers of fundatrices do not
relate to those in the previous year but vary widely from year-to-
year, presumably owing to weather, and finally, by the fact that the
inverse relationship between numbers of fundatrices in successive
years on all trees (Fig. 7), while highly significant, nevertheless
accounts for only 44% of the variance. Clearly, some of the remain-
der may be random ‘noise’ but there is every reason to believe that
a significant proportion can still be explained.

Experiments already carried out suggest that wind is an important
factor affecting mortality and that temperature affects flight (Barlow,
1977), but it seems that other factors are involved particularly in the
second case. Mortality must be assessed in the field by monitoring
experiments similar to the one described in Section 3.5.3, and
although the effect of temperature on flight could be studied in the
laboratory it would seem best that this too be investigated in the
field. The aim in both cases is to derive predictive equations relating
daily mortality and flight to weather so that the model is able to
mimic more accurately the behaviour of the population in any one
year.

2. The effect of cumulative density on flight and mortality in the
field. Laboratory experiments have so far failed to confirm the
existence of such an effect on young saplings, but the model suggests
that it exists to an extent sufficient to cause a population crash, and
the next step is to test this hypothesis on mature trees in the field.
This would involve monitoring flight and mortality in late July on
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trees which have been subjected to high cumulative densities and on
those which have not. It may be that mature trees must commit
reserves to fruit production which in some way diminishes their
ability to compensate for aphid damage.

3. The extent of density-related flight and predation by coccinellids
in the field. The magnitude of these effects indicated by laboratory
experiments needs to be confirmed in the field. Only estimates of
the maximum and minimum extents of flight and predation are
required, at high and low densities respectively.

4. The existence and magnitude of any density-dependent nymphal
mortality in the field.

These represent the main areas of uncertainty in the model, and
are mostly associated with the need to study flight and mortality, as
opposed to reproduction, in the field. Demonstrating the existence
of an effect through laboratory experiments is of great value, but
quantifying its magnitude and role in the field is altogether a
different problem. Moreover, since numbers change so rapidly
monitoring carried out in the field must be done on a daily basis,
and it would be particularly profitable to analyse a population crash
in this way.

So far as developments in the model are concerned, these should
be in the direction of increased simplicity, for the aim of building
complex models should be to learn how to build simple ones which
capture the essence of the system’s behaviour. The best approach
for a simple model would be to partition the within-year relation-
ship (Fig. 8a) into two or three equations relating logarithms of peak
numbers at intermediate times. This would enable the interactions
to be properly modelled which result from the sequential action of
different processes, while density-dependence would be included in
the equations along with terms representing the effects of weather
and predation; the detailed model can be used where necessary to
show the forms of these relationships.

S5.2 Population change in the lime aphid

Given a knowledge of the separate component processes, a simu-
lation model of their combined action yields the following
hypothesis which accounts for the observed behaviour of lime aphid
populations in Scotland.

First, the 2 predator/2 prey system can effectively be considered
as a 1 predator/1 prey one, comprising the lime aphid and the
2-spot coccinellid. Second, weather is important as a disturbing

134



factor and as a major determinant of peak numbers or numbers of
fundatrices in any one year. Finally, the population is regulated by a
hierarchy of different processes controlling population growth at
different densities and capable of substituting one for another. The
ultimate limit to growth in any one season appears to be not
available space, nor death of the host through over-exploitation, but
rather a decline in its quality to a level at which aphid survival is
greatly reduced. Below this level numbers are regulated through a
combination of the numerical response of the coccinellid to aphid
densities early in the year and, at higher densities, increased flight
dependent on densities experienced during nymphal development of
the alates; the effect of flight in response to current density appears
to be less significant than previously supposed (Barlow, 1977; Dixon
& Barlow, 1979),

Specifically:
a) At low initial densities (about 10/m?) intra-specific processes are
insignificant, few coccinellids lay eggs and the population builds up
to a peak late in the year the size of which depends on weather.
Large numbers of sexuals and eggs are therefore produced, giving a
high initial density in the following year.
b) At medium initial densities (100/m®) many more coccinellid eggs
are laid and the proportional mortality inflicted later in the summer
by the voracious 3rd and 4th instar larvae is much greater than in
the previous case. Intra-specific controls, mainly the flight response
to nymphal experience of crowding, are only significant if the
weather permits rapid population growth and a consequent reduc-
tion in the impact of the coccinellids. Peak numbers are reached
earlier in the year and fewer sexuals and eggs are produced, giving a
medium initial density in the next year.
c) At high initial densities (1000/m?) still more coccinellids are
present but the proportional mortality they inflict is lower. How-
ever, in this case the density-related flight has a greater impact,
causing an early population crash at the end of June. Predation
accentuates this crash and keeps numbers low thereafter, giving few
sexuals, few eggs and a low initial population in the following year.

At medium or high initial densities, and if conditions are excep-
tionally favourable for population growth with both mortality and
flight reduced, then very high densities are attained and a late
population crash occurs at the end of July. Here the crash appears
to be caused by greatly increased flight and mortality, occurring
when the cumulative density in any season exceeds a threshold.

This hypothesis, summarized in Fig. 72, accounts for the inverse
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Fig. 72. A summary of the main factors which the model suggests regulate
aphid numbers at different initial densities (A—A relationship generated by

the model).

relationship observed between fundatrix numbers in successive
years, for the presence of a single population peak and the inverse
relationship between fundatrix numbers and the time of year at
which this peak occurs, and for the two kinds of dramatic population
crash which can result from high numbers. The rates of population
growth generated by the model are also realistic, and it shows that
regulation by changes in quality of the aphids and by alate flight in
response to current density is relatively unimportant.

The model has also raised some important questions which might
otherwise have been overlooked. It indicates the likely importance
of weather and the need for complementing laboratory studies with
measurements of flight and mortality in the field. It also suggests the
existence of cumulative or integrated density-dependent effects.
Raising questions is an important function of the model but the
answers will depend on additional experimental work. The form of
the model is deliberately contrived so that these answers can readily
be incorporated; variables like the proportion of alates flying each
day are those which are actually measured.

A model of this kind calls the bluff of an optimistic ecologist;
no-one would wish or expect to be able to recreate population
trends exactly, but on the other hand there is a challenge which, in
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its entirety, does not appear to have yet been met. Can a set of
ecological processes, derived totally independently, be assembled to
recreate population behaviour which shows no major and consistent
departures from that observed in the field, over a realistically wide
range of conditions? This study was intended as a significant step
towards such a goal and the model gives very encouraging results.
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Appendix A Glossary of FORTRAN symbols

AA
AGE
Al
AM

AM
AN
AS

AO
BS
BUD
BO

CPH
CPHE

CS
CuM
CO

DATE
DAY
DDS
DEVA

DN

DT
DUM
DUM1
DUM2
DVA

EB

Predator/prey attack coefficients

Aphid adults in detail (see Fig. 13)

Subroutine updating population age structure

Immigrating coccinellid adults

Intermediate variable used in linear interpolation (function
F1)

Daily mortality of adult viviparae and oviparae

Aphid nymphs in detail (see Fig. 13)

Aphid population summarized by instars, adult morphs and
their weights (see Fig. 13)

Initial density of aphid eggs

Black-kneed capsid population by instars

Date of bud burst (0 if this has not occurred)

Initial density of capsid eggs

Cumulative density (in subroutine GROWTH)
Intermediate variable used in linear interpolation (function
F1)

Cumulative proportion of eggs hatched

Expected cumulative proportion of eggs hatched by the end
of the current day

2-spot coccinellid population by instars

Cumulative density

Initial density of coccinellid eggs

Pre-reproductive delay

Date in days and months

Time counter-days from start of year

Summed day-degrees above 5°C from 1st March

Expected cumulative development achieved at each moult
(=1 at the adult moult)

The difference between current plant nitrogen level and the
average level during summer

Temperature component of the pre-reproductive delay

Dummy variables for input of unwanted records

Proportion of development achieved in 1 day

Accumulated flight during a week (in subroutines FLIGHT
and OUTPUT)

Eggs laid (in subroutine EPROD) per ovipara

Total capsid eggs laid per week
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EC
ECF1

ECF2
EG1
EG2
EL
EPROD
FA

FC
FLIGHT

Total coccinellid eggs laid per week

Factor modifying coccinellid egg-laying depending on time of
year

Factor modifying coccinellid egg-laying depending on the
year (‘coccinellid multiplier’)

Eggs at the beginning of the current year

Eggs at the beginning of the next year

Total leafhopper eggs laid per week

Subroutine for egg-laying

Background daily proportion of alates flying

Proportion of alates flying in response to current weighted
density

Proportion of alates flying in response to cumulative density
Subroutine for alate emigration by fiight

Total proportion of alates flying each day

Total number of males flying per day

Proportion of alates flying in response to density during
nymphal development

‘Total number of viviparae flying per day

Function carrying out linear interpolation

Function converting a day number to a date

Daily growth factor, multiplying aphid weights

Log (Expected aphid weight as an adult/weight at birth)
Subroutine updating aphid weights '

Subroutine causing eggs to hatch

Counters

Days of month

Integer dummy variable

Counter

Maximum adult longevity

Counters

Month

Counter

Counter '

Leafhopper population by instars and weights

Initial density of leafhopper eggs

Counter denoting instar (in subroutine SUMP)

Weekley counter for input of observed predator/leafhopper
numbers

Counter denoting instar

Year on which model is to cease running (1 =1965)

Year on which model is to begin running

Counter for the number of model runs required

Numbers of days in each month

Subroutine for daily mortality (other than from predation,
parasitism and ageing) '



NA
NAC
NAT
ND

NDIM

NIT
NUMB

OBS
OUTPUT

PAR
PARA
PH
PM
PO
POP
PRED
PV

RDAY
REPROD
RF

RI
RO

SB
SC
SC

Year counter (from MINY to MAXY)

Prey densities, by instars

Uncorrected proportion of each prey killed by each predator
Corrected proportion of each prey killed by all predators
Uncorrected proportion of each prey killed by all predators
Counter incremented each week for operation of
predator/leafhopper submodel

Number of values between which linear interpolation is
carried out (in function F1)

Tree amino-nitrogen levels each day of the season
Subroutine interpolating daily numbers of predators and
leafhoppers, if required, from those observed on weekly
sampling occasions

Array containing dates on which output is required (col. 1),
aphid numbers generated by the model (cols. 2-7) and actual
numbers of predators and leafhoppers or those generated by
the model (cols. 10-29)

Subroutine assigning dates on which output is required
Subroutine printing out dates and computed aphid numbers
Predator densities, by instars

Proportion of moulting adults parasitised

Subroutine applying parasitism

Daily proportion of eggs hatching

Proportion of new-born aphids which are males

Proportion of new-born aphids which are oviparae
Subroutine updating predator and leafhopper populations
Subroutine applying predation -

Proportion of new-born aphids which are viviparae

Daily reproductive rate (in subroutine REPROD)

Day number (in subroutine TEMPS)

Factor modifying reproductive rate to take account of pre-
reproductive delays involving fractions of days

Day number

Subroutine carrying out parthenogenetic reproduction
Factor modifying reproductive rate according to accumulated
temperature experience of adults

Number of days since bud-burst

Proportion of female offspring which are oviparae
Correction factor for satiation of each predator instar (in
subroutine PRED)

Daily survival rate (in subroutine MORTY)

Syrphid numbers (in subroutine OBS)

Survival rates for capsid instars

Survival rates for coccinellid instars

Proportion of alates surviving per day dependent on cumula-
tive density (in subroutine MORTY)
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SL

SL
STORE
SUMP
SW

TC
TDAY

TOT
TOTLG1
TOTLG2
TREE

TX
VOR

WIN
WIND
WMORT

XVAL
XV1
XV2
XV3
XV4
XV6
XV17
YVAL
YV1
YV2
YV3
YV4
YVS
YVé6
YV7
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Proportion of alates surviving per day dependent on time of
year (in subroutine MORTY)

Survival rates for leafhopper instars

Subroutine storing values for output

Subroutine summarizing the aphid population by instars
Proportion of alates surviving per day dependent on wind
speed

Temperature

‘Weekly transition probabﬂmes for capsid instars

Weekly transition probabilities for coccinellid instars

Day number

Maximum and minimum temperatures throughout the
season

Subroutine assigning temperatures throughout the year
Weekly transition probabilities for leafhopper instars

Mean temperature

Minimum temperature

Total aphid density

Log (aphids/100 cm*+1)

Log (aphids/m®+1) |
Subroutine updating amino-nitrogen levels and cumulative
aphid density

Maximum temperature

Maximum rates of prey ingestion by predator instar
Weights of prey instars

Mean daily wind speeds throughout the season

Subroutine assigning wind speeds throughout the season
Subroutine applying overwintering mortality to eggs
x-value for which corresponding y-value is required through
linear interpolation (in function F1)

Set of x-values (see YVAL, NDIM) )
temperature values

day-degrees above 5°C from 1st March
times of year since bud burst

times of year

times of year

times of year used for
Set of y-values (see XVAL, NDIM) linear
development rates mterpolatf

cumulative proportions of eggs hatching

soluble nitrogen concentrations

average minimum temperatures

average maximum temperatures

proportions of males among new-born offspring
proportions of oviparae among new-born female
offspring »




Appendix B Program listing

PROGRAM LAM (INPUT, OUTPUT, NUMB F1, TEMPF, WINDF,

TAPE 1 = NUMB F1, TAPE 2 = OUTPUT, TAPE 4 = TEMP F,

TAPE 5 = WIND F,).

REAL WIN (366), TEMP (2,366), NIT (366), 0(30,31)

REAL A0(9), LO(S), BO(9), A(11,11), H(11,11), VOR(11),
DEVA(4)

REAL 13%7) TL(7), TC(7), SB(7), SL(7), SC(7)

REAL AS(9,2), LS{7.2), CS(7), 85(7), AA(30,6), AN(50,6),
AM(30,2

REAL XV1(15), $v1(15), XV2(11), YV2(11), XV3(9), YV3(9),
XV4(12), Yv4(12)

REAL YV5(12), XV6(6), YV6(6), XV7(6), YV7(6)

REAL ECF2(9)

INTEGER MO(12), BUD, DAY.

DATA WIN, NIT, O, CS, BS, AA, AN, AM/2216#0./

CUMULATIVE PROPORTIONS OF DEVELOPMENT ACHIEVED IN INSYARS.

DATA DEVA/0.23, 0.53, 0.685, 1./

MAXIMUM ADULT LIFE-SPAN.

DATA IMAX/30/

DAYS IN MONTHS

DATA M0/31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

INITIAL APHID HEIGHTS

DATA AS/10+0., 70., 170., 330., 700., 1000., 1000., 700.,
0./

LEAFHOPPER WEIGHTS

DATA LS/8+0., 40., 110., 200., 360., 650., 700./

MAXIMUM DAILY INTAKE OF PREDATORS.

DATA VOR/160., 550., 1300., 3470., 4125., 22., 44., 75.,

124., 196., 448./

ATTACK COEFFICIENTS FOR PREDATORS.

DATA A/.33, 1.81, 2.76, 4.51, 4.51, 1.27, 6.00, 12.58,
14.43, 15.16, 11.38, 1.32, .45, 2.44, 6.58, 6.58,
.47, 2.5, 6.98, 15.39, 25.65, 23.55, 1.04, .21, .65,
3.2, 3.2, .16, 1.7, 8.73, 15.32, 39.79, 40.64, 1.06,
.36, 1.71, 2.74, 2.74, 0., 0.58, 1.68, 7.70, 28.76,
34,25, 10., .19, .85, 2.88, 2.88, 0., 0.41, 1.65,
7.77, 19.38, 39.25, 10., .09, .23, .28, .28, .43,
11.74, 0., 0., 0., 10., 0., O., .17, .17, .14, 4.31,
13.59, 23.59, 0., O., 10., O., O., O., O., O., 1.9,
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4.82, 15.69, 0., 0., 10., O., O., O., O., O., .81, 2.59,

10. 32 28. 91 0 10. , 0., 0., 0., 0., 0., .28, 0., 4.16,

10.93, 0., 10 0 0., 0 0., 0 s 0 0., 0., 0., 3./

TEMPERATURES AND DEVELOPHENT RATES.

DATA Xv1/3., 5., 7., 9., 11., 13., 16., 18., 19., 20.,
21.5, 23., 25., 26., 28./

DATA Yvi/.000, .002, .006, .013, .023, .038, .065, .082,
.088, .091, .094, 1.095, .093, .091, .080/

DAY-DEGREES ABOVE 5 AND CUMULATIVE PROPORTIONS OF EGGS

HATCHED.

DATA Xv2/105., 120., 129., 135., 141., 147., 153., 160.,
168., 181., 225. /

DATA YV2/0., 0 1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0 9,
1.0/

TIMES AND SOLUBLE NITROGEN CONCENTRATIONS.

DATA Xv3/2.0, 17.0, 31.0, 50.0, 66.0, 108.0, 122.0, 135.0,
156.0/

DATA YV3/1.55, 0.52, 0.19, 0.17, 0.15, 0.13, 0.15, 0.18,
0.28/

TIMES AND AVERAGE MAX AND MIN TEMPERATURES.

DATA Xv4/15.0, 49.0, 74.0, 105.0, 135.0, 166.0, 196.0,
227.0, 258.0, 288.0, 1319.0, 349.0/

DATA Yv4/2.5, 2.5, 3.0, 4.0, 6.0, 9.0, 10.5, 10.0, 8.0,
5.5, 3.0, 2.5/

DATA YV5/6.0, 7.0, 8.5, 11.0, 15.0, 17.0, '18.0, 17.5, 15.5,
12. 5 8.0, 6.5/

TIMES AND PROPORTIONS OF MALES AT BIRTH.

DATA Xvé/170., 190., 210., 230., 250., 270./

DATA YV6/0., 0.11, 0.14, 0.12, 0.05, 0./

TIMES AND PROPORTIONS OF OVIPARAE AT BIRTH.

DATA Xv7/170., 180., 200., 215., 240., 250./

DATA YvV7/0., .050., .050, .300, .900, 1.0/

WEEKLY TRANSITION PROBABILITIES FOR CAPSIDS, COCCINELLIDS

AND LEAFHOPPERS.

DATA TB/0., .884., .884, .884, .58, .494, 0./

DATA TC/.7, 1., 1., 1., .7, .41, 1./

DATA TL/0., .67, 1., 1., 1., .56, 0./

SURVIVAL PROBABILITIES FOR CAPSIDS, COCCINELLIDS AND

LEAFHOPPERS.

DATA sB/.5, 1., 1., .75, 1., 0.1, 1./

DATA SC/.5, .8, .94, .94, .94, .85, 1./

DATA SL/.27, 4*1., .26, 1./

NUMBERS OF APHID EGGS AT THE BEGINNING OF THE YEARS.

DATA A0/0.05, 0.45, 1.83, 0.03, 14., 0.074, 2., 0.17, 2.05/

NUMBERS OF LEAFHOPPER EGGS AT HE BEGINNING OF THE YEARS.

DATA LO/4+1., 2.14, 0.54, 0.27, 1./

NUMBER OF CAPSID EGGS AT THE BEGINNING OF THE YEARS.
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DATA BO/0.03, .063, .067, .118, .118, 0., 0., 0., 0./
COCCINELLID MULTIPLIER FOR EACH YEAR.
DATA ECF2/6*1., 0.3, 2*1./

MINY = 1
MAXY = 8
MM =
DO 1 MY = MINY, MAXY

MM = 1

INITIALISING OF SEASON-SPECIFIC VARIABLES
DAY = 59

DD5
CPH
BUD

0
M

— it nn
o
N Can i i~=1u1
Sng”

O Ww-.

)

) = AD (MY)

) = L0 (MY)

BS (1) = BO (MY)

INPUT OF TEMPERATURES.

CALL TEMPS  (TEMP, XV4, YV4, YV5, MINY, MM, MY)

INPUT OF WIND SPEEDS.

CALL WIND (WIND, MINY, MM, MY)

INPUT OF DATES FOR OUTPUT (AND OBSERVED NUMBERS OF LEAF-
HOPPERS AND PREDATORS IF REQUIRED).

CALL 0BS (0, MINY, MM, MY)

DAILY ITERATIONS CARRIED OUT.

5 DAY = DAY + 1

INTERPOLATION OF OBSERVED PREDATOR AND LEAFHOPPERS NUMBERS.
CALL NUMB (0, LS, BS, CS, DAY, M)

EGG-HATCHING.

>
w
-~
-
b=t b = ]~ {] I}

149



150

CALL HATCH (DAY, DD5, Xv2, Yv2, CPH, AN, TEMP, AS, MM)

CALCULATION OF BUD-BURST TIME, NITROGEN LEVEL AND

CUMULATIVE APHID INFESTATION OF TREE

CALL TREE (BUD, DAY, NIT, DD5, XV3, YV3, CUM, AS)

SUMMARISING OF POPULATION(S) BY INSTARS/STAGES

CALL SUMP (AN, AA, AS, DEVA, IMAX)

IF (CPH.LT.1E-6) GOTO 8

PREDATION

CALL PRED (AA, AN, AS, AM, LS, CS, BS, TEMP, A, H, MM,
VOR, DEVA, IMAX, M, 0, DAY)

MORTALITY OTHER THAN PREDATION AND PARASITISM. -

CALL MORTY (AN, AA, AM, AS, CUM, TEMP, WIN, DAY, IMAX,

MM)

FLIGHT.

CALL FLIGHT  (AA, AS, AM, TEMP, WIN, DAY, CUM, MM, IMAX,
E)

SEXUAL REPRODUCTION (EGG PRODUCTION)

CALL EPROD  (AA, AM, AS)

PARTHENOGENETIC REPRODUCTION

CALL REPROD  (AA, AN, AM, AS, TEMP, DAY, XV6, YV6, XV7,
YV7, MM, IMAX, DVA)

GROWTH AND DEVELOPMENT

CALL GROWTH (AN, AA, TEMP, DAY, NIT, CUM DVA, XV1, YV1,
AS, MM)

STORING OF VARIABLES FOR OUTPUT

CONTINUE

IF (DAY.EQ.O(M,1)) CALL STORE (0, AS, LS, BS, CS, M)

AGEING OF POPULATION

CALL AGE (AN, AA, AM, IMAX, MM)

PARASITISM

CALL PARA (AA, DAY, MM)

UPDATING OF PREDATOR AND LEAFHOPPER POPULATIONS

ND = ND + 1

IF (ND.EQ.7) CALL POP (AS, LS, CS, BS, TB, TL, TC, SB,

SL, SC, ECF2, DAY, MM, ND, MY)

IF (DAY.LT.305) GOTO 5

M=M-1

WINTER EGG MORTALITY COMPUTED

CALL WMORT  (AS, 0)

OUTPUT

CALL OUTPUT (0, MO, E, CUM)

CONTINUE

STOP

END

SUBROUTINE 0BS (0, MINY, MM, MY)




REAL 0(30, 31), S(3)
IF (MM.GT.1) GOTO 4
IF (MY.GT.MINY.OR.MINY.EQ.1) GOTO 2
IM = (MINY - 1) * 25
DO].I=1’IM
1 READ (1, 100) IDUM
100 FORMAT (13, 69X/72X)
2 CONTINUE
D031 =1,25
READ (1, 101) O(I, 1), (0(I,J), J = 10, 15), (S(K),
K= 1,3), (O(L.L), L = 24, 29), 1(0(1,M), M = 17, 22)
101 FORMAT (3X, F4.0,6F6.2,3F5.3/7X,12F5.3)
DO 3 J=1,3
0(1,0+24)=0(1,J+24)+S(J)
CONTINUE
RETURN
END

=W

SUBROUTINE TEMPS (TEMP, XV4, YV4, YV5, MINY, MM, MY)
REAL XV4(12), YV4(12), YV5(12)
REAL TEMP (2,366)
IF (MM.GT.1) GOTO 6
IF (MY.GT.MINY.OR.MINY.EQ.1) GOTO 2
IM = (MINY-1)#245
DO3I1=1, IM
3 READ (4, 100) DUM 1, DUM 2
100 FORMAT (26 X, 2F7.1)
2 CONTINUE
D04 T=1, 245
4 READ (4, 100) TEMP (1, 1 + 59), TEMP (2, I + 59)
D051 =1, 59
TEMP (1, I) = 7.0
TEMP (2, I) = 2.5
CONTINUE
RETURN
END

oy On

SUBROUTINE TEMPS (TEMP, XV4, YV4, YV5, MINY, IM)
REAL XV4 (12), YV4 (12), YV5 (12)

REAL TEMP (2, 366)

IF (MM.GT.1) GOTO 2

DO 11 =50, 305

R = I
TEMP (1, I) = F1 (R, XV4, YV5, 12)
TEMP (2, 1) = F1 (R, XV4, YV4, 12)

1 CONTINUE

2 CONTINUE
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RETURN
END

SUBROUTINE WIND  (WIN, MINY, MM, MY)
REAL WIN (366)
IF (MM.GT.1) GOTO 6 -
IF (MY.GT. MINY. OR. MINY. EQ.1) GOTO 2
IM = (MINY-1)#214
D0 31=1,IM
3 READ (5, 100) DUM
100 FORMAT (14X, F5.1, 9X)
2 CONTINUE
D04 1T=1, 214
READ (5, 100) WIN (I + 90)
IF (WIN(I +90). LT. 1E-4) WIN (I + 90) = 7.74
4 CONTINUE

D051 =1.90
5 WIN (1) = 7.74
6 CONTINUE

RETURN

END

SUBROUTINE WIND  (WIN, MINY, MM)
REAL WIN (366)

IF (MM. GT. 1) GOTO 2

D0 11 =50, 305

WIN (I) = 8.0

CONTINUE

RETURN

END

SUBROUTINE NUMB (0,LS,BS,CS, DAY, M)
REAL 0(30,31),L5(7,2),B5(7),CS(7)
INTEGER DAY
IF(M.LT.2) RETURN
F=(DAY.0(M-1,1))/(0(M,1)-0(M-1,1))

DO 1 I=10,15

1 LS(I-8,1)=F*(0(M,1)-0(M-1,1))+0(M-1,1)
D0 2 1=17,22

2 BS(I-15)=F#*(0(M,1)-0(M-1,1))+0(M-1,1)
DO 3 1=24,29

3 CS(I1-22)=F*(0(M,1)-0(M-1,1))+0(M-1,1)
RETURN
END

SUBROUTINE TREE (BUD,DAY,NIT,DD5,XV3,YV3,CUN,AS)
INTEGER BUD,DAY |
REAL XV3(9), YV3(9),NIT(366),AS(9,2)

N
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IF(BUD.GT.0) GOTO 1
IF(DD5.GE.122) BUD=DAY
R1=DAY-BUD+1
IF(BUD.LE.1E-6) RI=1.
NIT(DAY)=F1(RI,XV3,YV3,9)
CUM=CUM+AS(9,1)/7.

RETURN

END

SUBROUTINE HATCH (DAY,DD5,XV2,YV2,CPH,AN, TEMP ,AS , MM)
REAL AN(50,6),TEMP(2,366),AS(9,2),XV2(11),YV2(11)

INTEGER DAY

THE SUBROUTINE IS SKIPPED IF ALL EGGS HAVE ALREADY HATCHED
OR THE DATE IS EARLIER THAN MARCH 1ST.
IF(DAY.LT.60.0R.CPH.EG.1.0) RETURN

DAY-DEGREES UPDATED

TX=TEMP(1,DAY)

TN=TEMP(2,DAY)

TM=(TX+TN)/2.0

IF(TN.GE.5.0) DD5=DD5+TM-5.0

IF(TN.GE.5.0) GOTO 2

IF(TX.GT.5.0.AND.TN.LT.5.0) DD5=DD5+(TX=5.)#*#2/(2.*(TX-TM))
EXPECTED CUMULATIVE PROPORTION HATCHING IS CALCULATED
CPHE=F1(DD5,XV2,YV2,11)

DAILY PROPORTION HATCHING OF THOSE REMAINING COMPUTED
PH=(CPHE-CPH)/(1.-CPH)

CUMULATIVE PROPORTION ALREADY HATCHED IS UPDATED

CPH=CPHE

NYMPHAL POPULATION AND EGG POPULATION UPDATED
AS(2,1)=AS(2,1)+AS(1.1)*PH

AN(1,1)=AS(1,1)*PH

AN(1,4)=0.

AN(1,5)=0.

AN(1,6)=24.

AS(1,1)=AS(1,1)*(1.-PH)

RETURN

END

SUBROUTINE SUMP (AN,AA,AS,DEVA, IMAX)
REAL AN(50,6),AA(30,6),AS(9,2),DEVA(4)

DO 5 J=1,2

DO 5 I=2,9

AS(1,J)=0.

NYMPHS

M=2

DO 1 I=1,50

IF(M.GT.5) M=5
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IF(AN(1,4).GT.DEVA(H-1)) M=M+1
D0 1 J=1,3
AS(M,2)=AS(M,2)+AN(1,J)*AN(I,6)
1 AS(M,1)=AS(M,L)+AN(1,J)
DO 2 M=2,5
IF(AS(M,1).6T.0.) AS(M,2)=AS(M,2)/AS(M,1)
2 CONTINUE
ADULTS
DO 3 I=1,IMAX
D0 3 M=6,8
AS(M,2)=AS(M,2)+AA(1,M-5)*AA(I,6)
3 AS(M,1)=AS(M,1)+AA(I,M-5)
DO 4 M=6,8
IF(AS(M,1).GT.0.) AS(M,2)=AS(M,2)/AS(M,1)
IF(M.EQ.8) AS(M,2)=AS(M,2)*0.7
4 CONTINUE
D0 6 I1=2,8
6 AS(9,1)=AS(9,1)+AS(I,1)
RETURN
END

SUBROUTINE PRED (AA,AN,AS,AM,LS,CS,BS, TEMP,A,H, MM,
VOR,DEVA, IMAX,M,0,DAY)
INTEGER DAY -

REAL AA(30,6),AN(50,6),AM(30,2),AS(9,2)

REAL LS?? 2), CS(?) BS(?) TEMP(2,366),A(11,11),H(11,11),

VOR(11)
REAL N(11),P(11),NA(11,11),W(11),NAC(11),NAT(11),5(11),
0,(30,31)

REAL DEVA(4)

PREY ENTERED TO ARRAY N, WEIGHTS TO W AND PREDS TO P.

DO 1 J=1,4

P(J)=CS(J+1)

W(J)=AS(J+1,2)
1 N(J)=AS(J+1,1)

P(5)=CS(7)
) AS(G 2)
AS(6,1)+AS(7,1)+AS(8,1)
J=6,11
BS(J-
LS(J-
LS(J
UNCORRECT
DO 3 K=1,
NAT(K)=0.
DO 3 JJ=1,11
J=12-JJ
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N(5)=
DO 2
P(J)=BS(J-4
W(J)=LS({J-4,2
N(J)=LS(J-4,1)
ED PROPNS OF EACH PREY KILLED BY EACH PRED.
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15

16

10

13

11

NA(K,Jd)=A(K,J)*P(K)

UNCORRECTED PROPNS OF EACH PREY KILLED BY ALL PREDS.
DO 16 K=1,11

S(K)=0.

DO 15 J=1,11

IF(P(K).GT.0.) S(K)=S(K)+NA(K,d)*W(J)*N(J)/P(K)
CONTINUE

IF(S(K).GT.0.) S(K)=VOR(K)/S(K)

IF(S(K).GT.1.) S(K)=1.

DO 16 J=1,11

NA(K,Jd)=NA(K,J)*S(K)

NAT(J)=NAT(J)+NA(K,J)

CORRECTED PROPNS OF EACH PREY KILLED BY ALL PREDS.
DO 6 J=1,11

NAC(J)=1.-EXP(-NAT(J))

UPDATING OF APHIDS, LEAFHOPPERS AND MORTALITY FROM
PREDATION

[MA=1

DO 9 I=1,50

IF(AN(I,4).GT.DEVA(MA)) MA=HA+1

DO 9 J=1,3

AN(I,d)=AN(1,d)#(1.-NAC(MA))

DO 12 I=1,IMAX

DO 12 J=1,3

IF(J.LT.3) AM(I,J)=AM(I,J)+AA(I,J)#NAC(5)

AA(T,J)=AA(T,J)*(1.-NAC(5))

TOT=AS(9,1)

AS(9,1)=0.

DO 10 I=2,6

AS(I,1)=AS(I,1)*({1.-NAC(I-1)

AS(9,1)=AS(9.1)+AS(I,1)

D0 13 [=7,8

AS(L,1)=AS(1,1)+(1.-NAC(5))

AS(9.1)=AS(9.1)+AS(I,1)

0(M,31)=0(H,31)+TOT-AS(9,1)

DO 11 I=2a7

LS(1,1)=LS(I,1)#(1.-NAC(I+4))

RETURN

END

SUBROUTINE MORTY- (AN,AA,AM,AS,CUM,TEMP,WIN,DAY, IMAX,
M)

REAL AN(50,6),AA(30,6),AM(30,2),AS(9,2),TEMP(2,366),

WIN(366)
INTEGER DAY
BACKGROUND MORTALITY AND EFFECT OF WIND SPEED.
SW=0.99(1.-0.0003*WIN(DAY)**2)

155



IF(SW.LT.0.2) SW=0.2
EFFECT OF LEAF FALL
SL=(277-DAY)/10.
IF(SL.LT.0.) SL=0.
IF(SL.GT.1.) SL=1.
EFFECT OF CUMULATIVE DENSITY
SC=1.-0.001#(CUM-250. )
IF(SC,LT.0.) SC=0.
IF(SC.GT.1.) SC=1.
COMBINED EFFECT
S=SW#SL*SC
POPULATION UPDATED
D0 1 I=1,50
DO 1 J=1,3

1 AN(I,J)=AN(1,)#S
DO 2 I=1, IMAX
AM(1,1)=AM(1,1)+AA(I,1)*(1,-S)
D0 2

2 AA( 1,0)#S
AM( 1,2)+AA(1,2)#(1.-S)
DO

3 AS( I,1)#S
AS(
DO 5

5 AS(9,
RETURN
END

SUBROUTINE FLIGHT (AA,AS,AM, TEMP,WIN,DAY,CUM,MM, IHAX,
E)

REAL AA(30,6),AS(9,2),AM(30,2),TEMP(2,366) ,WIN(366)

INTEGER DAY

FMT=0.

FVT=0.

DO 1 I=1,IMAX

AGE-CLASS SKIPPED IF NO ALATES PRESENT

IF((AA(I,1)+AA(1,3)).LE.1E-6) GOTO1

ADULT COMPONENT

FA=0.005%( (AS(2,1)+AS(3,1)+AS(4,1))/4.+AS(5,1"+AS(6,1)+
AS(7,1)+AS(8,1))

NYMPHAL COMPONENT

FN=0.02+(AA(1,5)-10.)

IF(FN.LT.0.) FN=0.

IF(FN.GT.0.4) FN=0.4

CUMULATIVE DENSITY COMPONENT

FC=0.005#(CUM-250. )

IF(FC.LT.0.) FC=0.

LD =t D =
-w [~ ]
b ot Pt pmd et PN) Oy Cy =
Ly [ S e I | L N L Ny | R S
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(9,1)+AS(1,1)
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IF(FC.GT.0.55) FC=0.55
AGE COMPONENT

F=0.1

EFFECT OF TEMPERATURE
COMBINED EFFECT
FLT=FA+FN+F+FC
IF(FLT.LT.0.) FLT=0.
IF(FLT.GT.1.) FLT=1.
ALATE POPULATION UPDATED
AM(1,1)=AM(1,1)+AA(I,1)*FLT
AA(T,1)=AA(T,1)#(1.-FLT)
AA(1,3)=AA(1,3)#(1.-FLT)
FMT=FMT+AA(1,3)*FLT
FVT=FVT+AA(I,1)#FLT
CONTINUE
AS(6,1)=AS(6,1)-FVT
AS(8,1)=AS(8,1)-FMT
AS(9,1)=AS(9,1)-FVT-FNT
E=E+FVT

RETURN

END

SUBROUTINE EPROD (AA,AM,AS)
REAL AA(30,6),AM(30,2),AS(9,2)
E=0.0162+AA(1,6)-2.736

IF(E.LT.0.) E=0.
AS(1,1)=AS(1,1)+E*(AA(1,2)+(AM(1,2)/2.))
RETURN |
END

SUBROUTINE REPROD (AA,AN,AM,AS , TEMP,DAY ,XV6,YV6,XV7,
YV7,MM, IMAX,DVA)

REAL AA(30,6),AN(50,6)AM(30,2),AS(9,2)

REAL TEMP(2,366), XV6(6),YV6(6),XV7(6),YV7(6)

INTEGER DAY

IF(AS(6,1).LE.1E-6) GOTO 3

MORPH DETERMINATION

RDAY=DAY

PM=F1(RDAY,XV6,YV6,6)

RO=F1(RDAY,XV7,YV7,6)

PO=RO#(1.~PM)

PV=(1.-R0)*(1.-PM)

PRE-REPRODUCTIVE DEVELOPMENT

T=(TEMP(1,DAY)+TEMP(2,DAY))/2.+1.5

DT=1652000./T**2.68

DO 2 I=1,IMAX

RD=1.
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IF(AA(I, 43 LT.1E-6) GOTO 2
IF(AA(1,4).GE.2-) GOTO 1
D=DI/(AA(I,6)-100.)

AA(T,4)=AA(1,4)+1./7

RD=(AA({1,4)-2.)#D

IF(RD.GT.1.) RD=1.

IF(RD.LT.0.) RD=0.

IF(AA(I,4).GT.2.) AA(I,4)=A.

REPRODUCTION

IF(AA(I,4).LT.2.) GOTO 2

AA(T,4)=AA(1,4)+0.0011#T#*1.5

RF=2.578-0.526+AA(1,4)

IF(RF.LT.0.) RF=0.

IF(RF.GT.1.) RF=1.
R=T#+1.5¢AA(1,6)*RF*RD*(AA(I,1)+AM(1,1)/2.)/14817.
AS(2,1)=AS(2,1)+R

AN(1,1)=AN(1,1)+R*PV

AN(1,2)=AN(1,2)+R*PO

AN(1,3)=AN(1,3)+R+*PH

CONTINUE

IF((AN(1,1)+AN(1, 2;+AN(1 ,3)).LE.1E-6) GOTO 3

IF(AN(1,6) .LE.1E~6) AN(1,6)=24.-24.8+EXP(-0.0077+AS(6,2))
CONTINUE

RETURN

END

SUBROUTINE GROWTH (AN,AA,TEMﬁ,DAY,NIT,CUM,DVA,XVI,
YV1,AS,MH

REAL AN(50,6),AA(30,6),NIT(366),TEMP(2,366),XV1(15),YV1(15)

REAL AS{9,2)

INTEGER DAY

DN=NIT(DAY)-0.2

IF(DN.LT.0.) DN=O.

TX=TEMP(1,DAY)+1,5

TN=TEHP(2,DAY)+1.5

TM=(TEMP(1,DAY)+TEMP(2,DAY))/2.+1.5

DEVELOPMENT INCREMENT CALCULATED

DVA=(F1(;X,XV1,YV1,15)+F1(TN,XV1,YV1,15)+F1(TH,XV1,YV1.
15))/3.

DVA=DVA#*(1,+0.27+DN)

LOG(EXPECTED FINAL WT/BIRTH WT) CALCULATED

C=CUM

IF(C.LT.50.) C=50

IF(C.GT.350.)C=350

GFL=1.5373-0.00064#C-0.00174#AS(9.1)-0.00809*(TM-1.5)+
0.24+DN

GF=10##(DVA#GFL)



NYMPHAL WEIGHTS, DEVELOPMENT AND CROWDING EXPERIENCE UP-
DATED.

DO 1
IF( (A

(
AN(I
AN(1
AN( I

A

1,50
I,1)+AN(1,2)+AN(1,3)).LT(1E-6) GOTO 1
,4)=AN(1,4)+DVA
,5)=AN(I,5)+AS(9,1)
,6)=AN(1,6)*GF
IF(AN(
AN(I,
AN(1,4
CONTIN
RETURN

END

SUBROUTINE STORE (0,AS
REAL 0({30,31),AS(9,2),L5(7,2
0(M,2)=AS(2,1)+AS(3,1)+AS(4,
DO 1 I=3,6
0(M,1)=AS(142,1)
O(M’7)=AS(191)
0(M,8)=AS(6,2)
0(M,9)=0.
0(M+1,31)=0.
DO 2 1=2,8
0(M,9)=0(M,9)+AS(1,1)*AS(I,2)
GOTO 6
DO 3 I=10, 15

(H, 1
M,1

LE.1.) GOTO 1

1
N
4
5
( ).

6)=AN(1,6)#*10%*(GF*(1.-AN(I,4)))

(1,
)=A
)=A
)=A
1,4
)=A
)=1.
VE

LS,BS,CS,M)
B

},B3(7).CS(7)
1)

4
M
1

0
0(
DO
O(M, I
0(M,2
DO
O(M

N-.-'Hw\—-fb-lm\—f
o~ Il ]~

5 24,

M, I CS(I 22)
0(M,30)=CS(1)
CONTINUE

M=M+1

RETURN

END

SUBROUTINE AGE (NA,AA, AN, IMAX ,MM)
REAL AN(50,6),AA(30,6),AM(30,2)

NYMPHS UPDATED

DO 1 1=1,49

11=51-1

DO 1 J=1,6

AN(1I,d)=AN(1I-1,J)
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00 2 J=1,6

2 AN(1,d)=0.
ADULTS UPDATED
IM=IMAX-1
DO 3 I=1,IM
I1=(IMAX+1)-1
D0 3 J=1,6

3 AA(I1,Jd)=AA(II-1,J)
DO 4 J=1,6

4 AA(1,d)= 0.
ADULT DAILY MORTALITY ZEROED
D0 5 I=1,IMAX
DO 5 J=1,2

5 AM(I,J)=0.
NYMPHS MOULT IF SUFFICIENT DEVELOPMENT ATTAINED
DO 6 1-1,49
I1-51-1
IF(AN(II,4).LT.1.) GOTO 6
D0 7 J=1,3
AA(1,J+3)=AN(11,J43)
AN(1I,J+3)=0.
IF(AA(1,4).GT.1.) AA(1,4)=1.
AA(1,Jd)=AA(1,J)+AN(II,J)

7 AN(11,J)=0.
AA(1,5)=AA(1,5)/11

6 CONTINUE
RETURN
END

SUBROUTINE PARA (AA,DAY ,MH1)
REAL AA (30,6)

INTEGER DAY

PAR=0.01+*(DAY-206)
IF(PAR.GT.0.155) PAR=0.155
IF(PAR.LT.0.) PAR=O.

DO 1 J=1,3
1 AA(1,J)=AA(1,J)*(1.-PAR)
RETURN
END
SUBROUTINE POP (AS,LS,CS,BS,T8,TL,TC,SB,SL,SC,

ECF2,DAY ,MM,ND,MY)
REAL AS(9,2),LS(7,2),CS(7),BS(7),ECF2(9)
REAL TB(7),TC(7),TL(7),SB(7),SC(7),SL(7)
INTEGER DAY
COCCINELLID POPULATION
REPRODUCTION
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ECF1=0.
IF(DAY.GE.157 .AND.DAY.LE.170) ECFl=1.
IF(DAY.GE.171.AND.DAY.LE.184) ECF1=0.3
IF(DAY.GE.185.AND.DAY .LE.198) ECF1=0.2
IE(DAY.GE.199.AND.DAY.LE.240) ECF1=0.1
EC=0.
IF(AS(9,1).6T.0.2) EC=0.066*AL0G10(9,1))+0.046
EC=EC*ECF1#ECF2(MY)
DEVELOPMENT AND SURVIVAL
DO 8 11=2,7
1=9-1]

8 CS(1)=CS(1)#(1.-TC(I))+CS(I-1)*TC(I-1)*SC(I-1)
CS(1)=CS(1)#({1.-TC(1))+EC
A1=0.037+CS(1)
IF(CS(7).LT.AI) C5(7)=Al
BLACK~-KNEED CAPSID POPULATION
REPRODUCTION
EB=0.
IF(DAY.GE.240.AND.DAY.LE.246) EB=30.*BS(7)
IF(EB.GT.0.AND.AS(9,1).LT.0.2) EB=4.*BS(7)
DEVELOPMENT AND SURVIVAL
T8(1)=0.0
IF(DAY.GE.149.AND.DAY.LE.155) TB(1)=0.063
IF(DAY.GE.156.AND.DAY.LE.162) TB(1)=0.583
IF(DAY.GE.163.AND.DAY.LE.169) TB(1)=0.719
IF(DAY.GE.170.AND.DAY.LE.176) TB(1)=1.0
TB(7)=0.
IF(DAY.GT.273) TB(7)=1.
D0 4 II=2,7
1=9-11

4 BS(1)=BS(1)#*(1.-TB(1))+BS(I-1)*TB(I-1)*SB(I-1)
BS(1)=BS(1)#(1.-TB(1))+EB
LEAFHOPPER POPULATION
REPRODUCT ION
EL=0.
IF(DAY.GE.240.AND.DAY.LE.246) EL=19.*LS(7,1)#*0.76
DEVELOPMENT AND SURVIVAL
TL(1)=0.0
IF(DAY.GE.139.AND.DAY.LE.145) TL(1)=0
IF(DAY.GE.146.AND.DAY.LE.152) TL(1)=1
TL(7)=0.
IF(DAY.GET.273) TL(7)=l.
DO 9 I1=2,7
1=9-1]

9 LS(I,1)=LS(I,1)#(1.-TL({I))+LS(I-1,1)#TL({I-1)*SL{I-1)
LS(1,1)=L5(1,1)#(1.-TL({1))+EL
DAY COUNTER ZEROED

»
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ND=0
RETURN
END

SUBROUTINE WMORT (AS,0)
REAL AS(9,2),0(30,31) -
AS(l’l)zAS(l’l)/5075

RETURN

END

SUBROUTINE OUTPUT (0,M0,E,CUM)

REAL 0(30,31)

INTEGER MO(12),1D(30),JD(30)

DO 1 J=1,25

DATE=F3(0(J,1),H0)

ID(J)=DATE/100

JD(J)=DATE-1D(J)*100

WRITE(2,100)

FORMAT(1H1,31X,17HNUMBERS/100 SQ CM////)

WRITE(2,101)

FORMAT(1HO,3X,3HDAY,30X,7HJASSIDS/1H, 2X, 9HNUMBER,
4HDATE , 7X \
137H1 2 3 4 5 AD EGGS)

WRITE(2,102) .

FORMAT (10, 100X)

DO 2 J=1,25

WRITE(2,103) 0(J,1),1D(J),(0(

FORMAT(1H,2X,F4.0,4X,12,1H/,1

WRITE(2,100)

WRITE(2,104)

FORMAT( 1HO, 2X, 3HDAY , 20X , 19HBLACK~-KNEED/CAPS DS, 22X,
12HCOCCINELLIDS 1/1H, 14HNUMBER DATE,8X.1H1,5X,1H2,
5X, 1H3,5X, 1H4,5X, 1H5,5X, 12HAD, 4X, 1HE ,6X, 1H1,5X , 1H2,
5X,1H3,5X, 1H4,5X,1HP,4X, 2HAD, 5X , 1HE)

WRITE(2,102)

DO 3 J=1,25

WRITE(2,105) 0(J,1),ID(J),dD(J),(0(J,I),I=17,30)

FORMAT(1H, 1X,F4.0,3X,13,1H/,12,3X,7F6.3,2X,7F6.3)

WRITE(2,106)

FORMAT(1H1,59X ,3HLOG,3X,3HLOG, 10X, 5HTOTAL/1H, 24X,
12HNUMBERS PER 9H100 SQ CM,12X,6HTOT/SQ,1X,6HTOT/SQ,
1X,5HADULT,1X, 7HLIVE/WT/1H,14H DAY,3X,4HDATE,5X,
3H1-3,4X, 1H4,5X, 1HV,5X, 2HOV, 5X, 1HM, 3X , 4HEGGS , 2X,
SHTOTAL ,2X,4HDM+1,3X,3HM+1,4X, 2HWT,1X, 10H(MG/SQ DM),
6H PREDN)

WRITE(2,102)

DO 4 J=1,25

J,
2,



T0T=0.
DO 5 K=2,6
5 TOT=TOT+0(J,K)
TOTLG1=ALOG10{TOT+1.)
TOTLG2=ALOG10(TOT*100.+1.)
4 WRITE(2,107) 0(J,1),ID(J),ID(J),(0(J,1),I=2,7),T0T,
TOTLG1,TOTLG2, 10(J,8),0(J,9),0(J,31)
- 107 FORMAT(1H, F5.0,1X,12,1H/,12,2X,6F6.2,F8.2,F6.3,F7.3,F6.0,
F8.2,F8.2)
EG1=-99.
EG2=-99,
IF(0(1,7).GT.0.) EG1=ALOG10(0(1,7))+2.
IF(0(25,7).GT.0.) EG2=ALOG10(N(25,7))+2.-0.76
WRITE(2,108) EG1,EG2,E,CUM
108 FORMAT(1HO,24HLOG INITIAL EGGS/SQ M =,F6.3,5X,
124HLOG FINAL EGGS/SQ M =,F6.3,5X,
12HEMIGRATION =,F6.2,5X, 110HCUM DENS =,F6.1)
RETURN
END

REAL FUNCTION F1(X,XVAL,YVAL,NDIM)
DIMENSION XVAL(NDIM)YVAL(NDIM)
CARRIES OUT LINEAR INTERPOLATION
IF(X.LE.XVAL(1)) GOTO 1
IF(X.GE.XVAL(NDIM) GOTO 2
DO 3 I=1,NDIM
IF(XVAL(I).LE.X) GOTO 3
AM=(YVAL(I)-YVAL(I-1))/(XVAL(I)- XVAL(I 1))
C=YVAL(1)-AM*XVAL(I)
F1=AM#*X+C
RETURN
CONTINUE
F1=YVAL(1)
RETURN
2 F1=YVAL(NDIM)

RETURN

END

[l %)

REAL FUNCTION F3(TDAY,MO)
CONVERTS A DAY NUMBER TO DAYS AND MONTHS WRITTEN THUS:
2408
INTEGER MO(12)
F3=TDAY
DO 1 I=1,12
F3=F3-M0O(I)
IF(F3.LE.0.0) GOTO 2
1 CONTINUE
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I=12

2 F3=(F3+MO(I))*100.0+I1
RETURN
END
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