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1 Introduction 

1.1 The lime aphid 

The lime aphid Eucallipterus tiliae L. is a tree-dwelling aphid 
host-specific to most members of the genus Tilia. It varies greatly in 
numbers from year to year, sometimes seeming to be virtually 
absent, at others occurring in such large numbers that leaves and 
town pavements beneath the trees become sticky with honeydew 
while the leaves blacken with sooty mould which grows upon it. 

A number of aspects of the aphid's ecology have been studied in 
the past, in the field and in the laboratory (Dixon, 1971a, 1971b, 
1972; Kidd, 1975, 1976, 1977; White, 1970; Brown, 1975), and 
aphid populations have been monitored for nine years on §jx trees in [ 
Glasgow, Scotland. Considerable information also exists on the two 
predators (Glen, 1971, 1973, 1975; Wratten, 1971, 1973) and the 
leafhopper found on lime (Flanagan, 1974). '•/ 

Llewellyn (1970) studied the lime aphid population as a whole in 
terms of energetics, then Dixon (1971a) produced the first descrip­
tion of its dynamics, drawing attention to an inverse relationship 
between numbers of fundatrices and oviparae and suggesting an 
explanation based on the population processes known at that stage. 
This work was expanded by Brown (1975) who introduced studies 
of populations under controlled conditions in an insectary. 

1.2 Background to the approach 

There are four basically different ways of studying a population's 
dynamics, which can be considered as theoretical, experimental, 
analytic and synthetic. In the first case a simple theoretical model, 
based on a priori assumptions and usually consisting of a single 
difference or differential equation, can be fitted to observed data 
and conclusions drawn about the population's behaviour based on 
the known properties of the model. Alternatively, a population in 
the field may be manipulated by using experimental exclusion 
techniques to ascertain the main factors responsible for numerical 
change and their relative importance. As a third alternative the 
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observed changes in numbers can be analysed to show the contribu­
tions of reproduction and different mortalities. An age-specific 
life-table is derived by tracing the fate of a cohort from birth to 
death, or a time-specific life table by comparing numbers of animals 
present in successive age-classes at any one time. Both yield a series 
of age-specific survival rates and fecundities; in the second case 
these are constant, or assumed to be so, while in the first case they 
may be variable. Key factor analysis (Varley & Gradwell, 1960) is a 
particularly widely used application of age-specific life tables, in 
which a study of the variation in age-specific mortalities from 
generation to generation demonstrates which is the key factor 
responsible for population change and which, if any, involves 
density-dependence. Age-specific life tables of this kind can be used 
when generations are discrete or when individual cohorts can be 
identified, while time-specific life tables are applicable when there is 
considerable overlap between generations and the age-distribution 
is stable with a constant ratio between numbers in the age-classes. 
The fourth, synthetic approach involves building up a picture of 
population behaviour comparable with that observed, by assembly 
of separately studied component processes in a detailed model. 

The study of aphid populations presents particular problems since 
most are characterized by overlapping generations and unstable 
age-distributions. Way & Banks (1968) have used experimental 
exclusion techniques to test the effects of different factors on total 
population trends of Aphis fabae Scop, on spindle, Euonymus 
europaeus L. and Milne (1971) used a similar method for aphids on 
broad beans. While the technique is extremely useful and has the 
great merit of being a direct measure, there is clearly a limit to the 
extent to which components of population change can be partitioned 
in this way and there are some obvious problems in applying the 
method to tree-dwelling aphids. No simple theoretical models ap­
pear to have been successfully applied to aphid populations, in 
which age-structure and time lags are often of crucial importance; 
nevertheless, one of the aims of building complex models should be 
to find out how to build meaningful simple ones. Because of the 
features of their population behaviour already mentioned, aphids do 
not readily lend themselves to life-table analysis. However, Hughes 
(1962, 1963) pioneered one method in a study of Brevicoryne 
brassicae L. that is still widely used. Mortality was estimated as the 
difference between the potential rate of increase and the observed 
rate, then partitioned among various causes according to indicators 
of their magnitude from field samples. The potential rate of increase 



was obtained from the relative abundances of the first three instars 
and the observed rate of increase estimated graphically from a series 
of total population counts ending at the sample date. The analysis 
was confined to occasions when the instar-distribution was thought 
to be stable and the numbers formed a geometric series (Carter, 
Aikman & Dixon, 1978). A second method of estimating mortality 
was adopted by Glen (1971) and Glen & Barlow (in press), in order 
to determine the role of the black-kneed capsid Blepharidopterus 
angulatus Fall, as a predator of the lime aphid. The potential 
number of aphids at any time was simply estimated from that on the 
previous sampling occasion and independent estimates of the repro­
ductive rate and the instar lengths; the mortality was given by the 
difference between the potential number thus calculated and the 
number observed. In this case the underlying assumption is of an 
even age-distribution among nymphs which become adults during 
the interval, and the mortality estimate includes loss of recruitment 
through reduction in the maximum reproductive rate. 

However, it was in studies of aphids that some of the first 
population simulation models appeared, notably that of Hughes & 
Gilbert (1968) for Brevicoryne brassicae, developed further with 
emphasis on a host/parasite relationship by Gilbert & Hughes 
(1971). Gilbert & Gutierrez (1973) and Gutierrez et al. (1974) 
produced similar models for Masonaphis maxima Mason on thimble-
berry and cowpea aphid, Aphis craccivora Koch, respectively. All 
were based on physiological time and tended to yield greatest 
insight into the relationships between the aphids and their natural 
enemies, a feature carried furthest in Frazer & Gilbert's (1976) 
model of predation in the field by coccinellids on the pea aphid 
Acyrthosiphon pisum Harris. Although drawing heavily on observed 
population data, the models were not validated against long series of 
such data. Nevertheless this set of aphid models represents an 
extremely valuable and possibly underrated contribution to the 
study of population dynamics. The basic approach adopted by these 
authors, which differs from the present one in certain respects such 
as validation and use of physiological time, is described by Gilbert et 
al. (1976). Two aphid models of a slightly different kind include an 
extremely detailed one of Aphis fabae (Crawley, 1973), designed to 
examine the effects of various predation strategies, and one used by 
Perrin (1974) as part of a study of the nettle aphid Microlophium 
camosum Buckt.; the latter is an excellent example of simple 
modelling used as a tool in research. Both models took account of 
temperature-dependent development rates but were not based on 



physiological time, and because of the way they were used were not 
validated against independent data. 

1.3 The objective 

Why model the lime aphid? There are two main reasons. The first 
lies in the disadvantages of the available alternatives. However, the 
second and most important lies in the positive features of the 
approach, in integrating available knowledge, providing a functional 
basis for observed events and a stringent test of understanding, 
showing precisely where future work is required and providing a 
framework into which it can be incorporated, and increasing under­
standing of the roles of interacting component processes. 

The aim in this book, therefore, is to use a systems approach to 
test and improve our understanding of the lime aphid's population 
dynamics and to guide the course of future research. The model is a 
tool, not an end result, and its scope was determined by the size of 
the system and the overall objective of obtaining a qualitatively 
correct and quantitatively reasonable picture of what determines 
this aphid's abundance. 

Following the Introduction, Chapter 2 describes the system and 
presents the problem, in terms of the observed behaviour of the 
aphid population which the model is intended to re-create. Chapter 
3 describes how the model was chosen, its structure and the sub­
models representing the various population processes; for each 
submodel the relationships used are stated first then their biological 
bases discussed. The model's output is compared with the observed 
population data in Chapter 4. Then in the final chapter conclusions 
are drawn about the roles of the different processes and suggestions 
made as to further work required. 

1,4 Terminology 

In discussing different kinds of aphids the terms fundatrix, vivi-
para and ovipara are frequently used. Fundatrices are first generation 
aphids, viviparae are alate females which reproduce partheno-
genetically and viviparously, while oviparae are apterous sexual 
females which mate and lay eggs. Aphid densities on the tree are 
expressed as numbers per unit area of mature leaf, usually 100 cm2 

or 1 m2, and weights are fresh weights unless otherwise stated. 



2 The system 

2.1 Components of the system 

The system modelled is a lime tree, or close group of trees, and 
the animals found on it which affect the aphid. These include two 
predators and their alternative prey (Fig. 1); parasites are not 
explicitly considered and the tree is dealt with largely as a black box. 
Immigration of aphids by flight is pooled with emigration as net 
emigration, which is equivalent to mortality in the model. 

Aphid eggs hatch when the buds break at the beginning of May. 
The nymphs pass through 4 instars to become alate female adults 
(viviparae), which produce more nymphs parthenogenetically. The 
process is repeated, changing towards the end of the season when 

Environment 
I crnpcroi vurs 
Wind Speed 
Day length 

Predator 2 
B lac K *— kneed 
Capsid 

Herbivore 
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Lime Aphid 

-.:::::? 
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Leaf hopper 

•*• • • i » i j I I *3 vS 

Fig. 1. Simple diagram of the lime aphid population system, showing the 
main components and interactions. 



increasing proportions of sexuals are produced. The males are alate 
and the sexual females (oviparae) are apterous. The proportion of 
viviparae therefore declines and population growth in the current 
season is curtailed, since oviparae lay overwintering eggs on the 
bark of the tree. Development of each parthenogenetic generation 
takes about 3 weeks, 5 weeks in early spring, and 4 or 5 generations 
occur each year, generally with 2 overlapping at any one time. 
Aphids of the first generation are referred to as fundatrices. Adult 
aphids weigh between 300 /xg and 900 /xg in the field and popula­
tions can vary nearly a hundredfold in peak abundance from year to 
year. 

The other herbivore which can occur in large numbers on lime 
trees is the leafhopper Alnetoidea alneti Dahlbom. It passes through 
one generation each year, from overwintering eggs through 5 
nymphal instars to a winged, sexually-reproducing adult. Eggs are 
laid in August and September and hatch around the beginning of 
May (Flanagan, 1974). 

The most important predators are the 2-spot coccinellid Adalia 
bipunctata L. and the black-kneed capsid Blepharidopterus an-
gulatus Fall. Syrphid larvae were recorded less often and chrysopid 
larvae and anthocorid larvae still less frequently. The capsid over­
winters in the egg stage on lime and passes through one generation 
each year. There are 5 nymphal instars and the winged adults lay 
their eggs in late August (Glen, 1971). The coccinellid overwinters 
as an adult, feeding on the aphids and laying eggs from the end of 
May. There are 4 larval instars and a pupal stage and adults appear 
in largest numbers after the end of July (Wratten, 1971). A second 
generation seems to occur in some years, such as 1968. The aphids 
are parasitized by Praon flavinode (Hal.) (Brown, 1975) which 
leaves mummified carcasses. 

The tree provides a food source rich in amino-nitrogen for a short 
period in May while the leaves are growing. Otherwise, the amino-
nitrogen level is low and fairly constant (Dixon 1971a). Little is 
known about the effect on nutritional quality of factors such as 
water stress, but there is evidence that it is reduced by severe aphid 
infestation. Using aphid weights as indicators of food quality, al­
though there were short-term fluctuations, the average stayed con­
stant throughout the summers of 1970 and 1972, when densities of 
aphids were low. 

The system is an open one, influenced strongly by weather,-and 
can be divided into 3 subsystems: the tree, the aphid population and 
the predator and leafhopper populations. The simple diagram of 
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Fig. 1 is expanded in Fig. 2 to show the time profile of the system 
throughout the season and the main interactions which occur. The 
inputs and outputs correspond to those in the model, the 'coccinellid 
multiplier' being an index of overall abundance of the 2-spot 
coccinellid in any one year. The aphid subsystem consists, in es­
sence, of a within-season loop, from adults to nymphs, and a 
between-seasons loop not shown in Fig. 2 from eggs laid at the end 
of one year to eggs hatching at the beginning of the next. Finally, in 
Figs 3 to 6 the aphid subsystem and the predator/leafhopper subsys­
tem are shown in sufficient detail to demonstrate the component 
processes and interactions which are modelled in the next chapter. 
The only component of the tree subsystem explicitly considered is 
the amino-nitrogen concentration level in the phloem, aphid-
induced tissue deterioration being related directly to cumulative 
aphid abundance and leaf-fall to the time of year. 

2.2 Observed behaviour of the aphid population 

The population behaviour will be considered in two parts, varia­
tions in numbers between years and changes in numbers throughout 
a year. 

Since generations overlap and reproduction occurs continuously 
throughout the summer, the best measure of changes in numbers 
between seasons is based on the number of overwintering eggs at 
the beginning of each. However, since these are difficult to sample, 
it is more convenient to use as a measure of year-to-year abundance 
the peak number of fundatrix nymphs in the spring. With one point 
thus derived.for each tree and each year the relationship between 
numbers one year and those the next is overcompensating, given by 
(Fig. 7): 

log F;+1 = 2.866 - 0.642 log Ft r = 0.66, d.f. 36, P < 0.01 

where • 

Ft+l = peak fundatrices/m2, year t +1 
Ft = peak fundatrices/m2, year t 

Following Dixon (1971a), this year-to-year relationship can be 
partitioned into two components, a summer one and a winter one, 
using peak numbers of oviparae as an index of abundance at the end 
of a season. The summer component is the relationship between 
peak numbers of fundatrices at the beginning of a season and peak 
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Fig. 3. Detailed relational diagram of the aphid subsystem. Rectangles de­
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matter; •••> a link denoting an effect of one factor on another; H, egg-
hatching rate; D, development rate; MD, morph determination; E, rate of 
egg-laying; W, winter mortality rate; F, emigration rate of alates; G, growth 
rate; R, reproductive rate; P„ rate of parasitism; Pr, predation rate; M, 
mortality rate from other causes. 

Fig. 2. Time profile of the lime aphid population system summarizing its 
dynamics. Solid lines indicate flows or interactions and broken ones feed­
backs from the aphid to other parts of the system. 
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numbers of oviparae at the end, and the winter one is the relation­
ship between the peak numbers of oviparae at the end of a season 
and the peak numbers of fundatrices at the beginning of the next. 
These relationships do not differ significantly from the ones given by 
Dixon (1971a) although they include points for another four years. 
They are shown in Fig. 8 and the equations are: 

r = 0.69,d.f.36,P<0.01 
r = 0.73,d.f. 32, P<0.01 

log O, = 2.43 - 0.60 log Ft 
log Ft+i = 0.66 + 0.78 log O, 

where 

Ot = peak oviparae/m2, year t 

Clearly, overcompensation in the year-to-year relationship occurs 
during summer, the winter component being density-independent 
with a constant ratio between peak numbers of oviparae and num­
bers of fundatrices the next spring. However, it is noticeable that in 
1971 and on one tree in 1973, when numbers reached very high 
levels in summer and oviparae were significantly lighter in weight 
than normal, much of the year-to-year decline is accounted for by 
the winter component. The peak numbers of oviparae produced are 
quite high (see Fig. 54b), although these are actually reached earlier 
in the season than in other years, but the number of eggs, hence the 
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Fig. 7. The observed relationship between peak densities of fundatrices in 
successive years. Each point represents 1 tree in 1 year. 

number of fundatrices, produced by each ovipara is low. There is 
also a suggestion of non-linearity in the summer component (Bar­
low, 1977) such that changes in initial fundatrix numbers over the 
range 0-2 have little effect on the numbers of oviparae at the end of 
the year. The scatter in the relationships indicates, too, that disturb­
ing factors are important in determining absolute abundance in any 
one year. 
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Fig. 8. a) The observed relationship between peak density of fundatrices 
and that of oviparae in the same year. Each point represents 1 tree in 1 
year, b) The observed relationship between peak density of oviparae in one 
year and peak density of fundatrices in the next. 

From the Tesults of Brown (1975), the year-to-year relationship 
and the summer component can be derived for populations in an 
insectary, where predators, parasites and the effects of weather are 
excluded. In this case, since the populations were only monitored 
over the course of one season, the number of fundatrices in the next 
year was estimated as the number of eggs on the tree at the end of 
the season multiplied by an overwintering mortality similar to that 
occurring in the field (see Section 3.5.10). The relationships in the 
field and the insectary are compared in Figs 9a and b. The ratio of 
increase during a season and from one year to the next is more than 
ten times f^eater in the insectary than in the field. However, 
overcompensation still occurs in the insectary giving a theoretical 
equilibrium population of fundatrices which is also about ten times 
greater than in the field (Fig. 9a). Although the degree of over­
compensation between years is similar, during summer it is less in 
the insectary than in the field. This reduced overcompensation 
during summer, together with the generally greater numbers of 
oviparae in the insectary may be related to the absence of factors 
such as wind and predation. The reason that the overcompensation 
is restored over the whole year may be because the oviparae are 
lighter in weight at high initial fundatrix densities in the insectary 
than in the field, since the populations reach higher levels during the 
summer; such light oviparae, as already mentioned, lay relatively 
few eggs. 

.! 
! 
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Fig. 9. Observed behaviour of populations in an insectary: a) the relation­
ship between peak fundatrix density and the peak fundatrix density at the 
beginning of the next year, based on the number of eggs laid at the end of 
the current year and assuming the same overwintering egg mortality as in 
the field ( • points from insectary, — relationship in the field); b) the 
relationship between peak fundatrix density and peak ovipara density in the 
same year (legend as in a); c) changes in total population density through­
out the season for an initially high-density population (2000/m2) and d) for 
an initially low-density one (10/m2). Data are from Brown, 1975. 
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Fig. 10. The observed relationship between peak numbers of fundatrices 
and the time of the overall peak each year. # point from the field (1 tree in 
1 year); O point from Brown's (1975) insectary populations. 

Turning now to changes in numbers within a year, lime aphid 
populations typically have a single peak reached early in the season 
if fundatrix numbers are high, late if they are low (Fig. 10). The 
relationship between the time of the peak and the number of 
fundatrices is 

T=266-33F t 

where 

T = time of peak (days from 1st January) 

The trends in total numbers throughout each year are shown in Fig. 
11, from 1965 to 1972 on trees 1 and 2. Trees 1, 2, 4 and 5 were on 
one site, tree 3 on another and tree 6 on a third. The populations 
behaved in a broadly similar way on all trees in any one year but 
only trees 1, 2 and 3 were sampled continuously for eight years or 
more. So it was decided to focus attention on the average popula­
tions of trees 1 and 2 which formed part of one row, referring to 
other specific trees and years separately when necessary. Fig. 12 
shows the populations in more detail in 1969 and 1970, including 
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Fig. 11. Observed trends in total population numbers, averaged over tre< 
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the various instars and the average weights of the adults. Finally, 
Figs 9c and d show total population trends during the season in two 
insectary populations with initial numbers corresponding to the 
extremes found in the field. 

The main results against which the model's predictions are to be 
tested, therefore, are the general inverse relationship between num­
bers in successive years (Fig. 7) and the population trends through­
put each year on trees 1 and 2 from 1965 to 1972 (Fig. 11). The 
model will also be used to try to account for the somewhat different 
pattern of behaviour exhibited by populations in the laboratory (Fig. 
9). 
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3 The model 

3.1 Choice of the model 

The appropriate model for this study is one which incorporates a 
maximum of biological realism while requiring a minimum of com­
puting time to run, in order that a wide range of experiments and 
sensitivity analyses may be carried out; there is little point in having 
a model which is so detailed that it is too cumbersome to run. The 
choices then are between stochastic and deterministic, and discrete 
or continuous. 

Stochastic models were rejected for two reasons; analytical ones 
would probably require over-simplification of the biology, and simu­
lation ones would require excessive computing time. As Fransz 
(1974) pointed out in a stochastic model of predation, where 
non-linear relationships are involved the mean output given varying 
parameter values will not be identical to the output given the means 
of the parameter values. It is not possible without comparing 
stochastic and deterministic models to assess the significance of the 
difference between them. Probably the difference would not be large 
enough to warrant the additional information required about the 
variance of each parameter, the additional complexity of a stochastic 
model and the additional computing time necessary to run it. 

The possibility of a continuous or discrete deterministic model 
was considered next. If the system can be readily represented as a 
set of differential equations, then a continuous simulation model is 
appropriate and there are a number of simulation languages such as 
CSMP or DYNAMO, which consist of standard sets of functions for 
describing time-dependent behaviour and will integrate equations 
over time. These high-level languages are easy to understand, so 
rendering models readily comprehensible to those not involved in 
their construction. The approach is described in detail by Goudriaan 
& de Wit (1974) and in other volumes of this series (van den Bos & 
Rabbinge, 1976; Fransz, 1974). However, in this case it was decided 
to use a discrete model written in FORTRAN with a fairly long 
step-length of operation, in order to retain maximum flexibility and 
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to economise on computing time. The model is thus of the age-class 
or box-car type with no dispersion (Goudriaan & de Wit, 1974), 
meaning that the contents of each age-class are shifted bodily to the 
next at each step corresponding to the duration of the age class. This 
contrasts with the box-car model with dispersion, in which there is 
continuous flow of the population from one age class to the next; 
this generates a Poisson distribution of residence times over a series 
of age-classes representing an instar if the number of classes is small 
and a Gaussian distribution if it is large (Goudriaan & de Wit, 
1974). The step-length of operation of a model should normally be 
of the order of 1/10 of the system's time constant, the smallest ratio 
of the value of a state variable to its rate of change (Goudriaan & de 
Wit 1974). This is so for models embodying the state variable 
approach, in which all rates are independent of each other and are 
calculated according to the current state of the system then used to 
update the whole system by addition, in a discrete model like the 
Leslie matrix (Leslie, 1945), or by parallel integration in a continu­
ous model. Where numerical integration is carried out by the Euler 
or rectangular method, it gives the same result as a matrix operating 
over the small time interval of integration. The present model, 
however, is of the type described by Conway and Murdie (1972) in 
which population processes operate not in parallel but sequentially 
within each 'iteration'. In this way a correction can be introduced 
which compensates for the long step-length and large relative 
changes in numbers which may therefore occur within an interval; in 
particular, emigration of adults during one iteration may involve up 
to 50% of those present. The correction involves calculating mortal­
ity and emigration first, then basing reproduction on the number of 
reproductive animals remaining at the end of the interval plus half 
those dying during the interval. When reproduction is calculated 
first, before applying mortality, the predicted number of eggs at the 
end of a year is up to a hundred per cent greater than when 
mortality precedes reproduction and there is no correction. The 
correction yielded an intermediate result and the discrepancy would 
be reduced if the step-length of operation were decreased. 

Although the use of a physiological time scale enables a 
temperature-dependent model to be simplified somewhat it was not 
employed here for three reasons. Some rates are related non-linearly 
to temperature so day-degree totals above a threshold are not 
applicable, different processes are related to temperature in different 
ways, and some are related to factors other than temperature, such 
as plant quality. 

19 



3.2 Structure of the modal 

The model is deterministic and discrete, written in FORTRAN 
and operating over a step-length of 1 day. It predicts changes in 
numbers and growth in size of aphids throughout the season and 
from one year to the next, while separate submodels described 
below also mimic changes in numbers of predators and their alterna­
tive prey. 

Fig. 13 shows the state variables in the model. Numbers of each 
animal are stored in vectors or arrays by developmental stages (egg, 
nymphal and larval instars, pupa and adults of different types), 
together with average weights of the stages in the case of aphids and 
leafhoppers. In addition, the aphid population is stored in a more 
detailed form with numbers partitioned among the three morphs 
and into 50 day age-classes of nymphs and 30 of adults. Associated 
with each of these age-classes is a mean population density experi­
enced during nymphal development, an average weight and an index 
of development governing moulting in nymphs and the onset and 
decline of reproduction in the case of adults. The remaining state 
variables relate to the tree, being the amino-nitrogen level in the 
phloem and the cumulative aphid density during the season. Sub­
sidiary variables in the model include the daily mortality experi­
enced by each adult age-class, needed to correct for the model's 
long step-length, the time of bud-burst, the cumulative proportion 
of aphid eggs which have hatched, and the accumulated day-degree 
total above 5°C from 1st March which governs both bud-burst and 
egg-hatching. 

The operation of the model can be described as a series of steps, 
shown in the flow diagram (Fig. 14). A listing of the actual program 
is given in Appendix B, and the steps are as follows: 

1. Input of parameter values. A set of constants are assigned values 
by DATA statements at the beginning of each run. These include: 
— Cumulative proportion of development achieved at the end of 

each aphid instar. 
— Number of days in each month of the year. 
— Initial weights of each aphid instar and weights of each leafhop-

per instar. 
— Maximum weight of prey eaten per day by each predator instar. 
— Predator/prey attack coefficients. 
— Weekly transition probabilities for leafhopper and predator sub­

models. 
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— Weekly survival probabilities for leafhopper and predator sub­
models. 

— Arbitrary function values defining relationships between 
temperature and development rates 
day-degrees above 5°C and cumulative proportions of eggs 
hatching 
time of year and soluble amino-nitrogen concentrations in the 
phloem 
time of year and long-term average maximum and minimum 
temperatures 
time of year and proportion of males among newborn nymphs 
time of year and proportion of oviparae among newborn female 
nymphs 

— The maximum longevity for adults. 
— Numbers of aphid, leafhopper and black-kneed capsid eggs at 

the beginning of each year, and the 'coccinellid multiplier' for 
each year (see Section 3.3) 

— The year (1 to 8 for 1965 to 1972) in which the model starts. 
— The year in which the model stops. 
2. The first or next year is considered. 
3. Initial conditions are established, state variables being zeroed 
and new initial numbers of eggs assigned. These values are simply 
the ones set by the previous year's iteration if the model is run 
continuously from one year to another; otherwise they are re-set 
according to the year from the DATA statement. The overall day 
counter is set to 59, giving the first daily iteration of each year on 1st 
March, and the weekly day counter, which causes the 
predator/leafhopper submodel to operate with a step-length of 1 
week, is zeroed. Daily temperatures for the whole season are from a 
data file or, if mean conditions are required, they are calculated 
from the monthly long-term averages (subroutine TEMPS). Daily 
wind speeds for the year are read in from another data file or set to 
the long-term average value over the whole season (subroutine 
WINDS). The dates on which output is required are then assigned 
(subroutine OBS). 
4. Although not shown in the flow diagram, there is provision at 
this point for running the model repeatedly with the initial conditions 
and driving variables of any one year, or those representing average 
values, by returning control to this step from Step 23 as many times 
as desired. 
5. The next day is considered. 
6. Egg-hatching (subroutine HATCH). The numbers of eggs hatch-
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ing are calculated and the day-degree total above 5°C and propor­
tion of eggs already hatched updated. 
7. Updating of variables associated with the tree (subroutine 
TREE). If the buds have not already broken the expected time of 
bud-burst is updated, given the day-degree total above 5°C. The 
daily amino-nitrogen concentration in the phloem is updated, given 
the time and the time of bud burst, and the accumulated aphid 
density on the tree updated given the current density. 
8. Although not shown on the flow diagram, if no eggs have 
hatched most of the following processes are by-passed and control 
passed to Step 16. 
9. Summarizing of the aphid population (subroutine SUMP). The 
vector summarizing the composition of the population by instars, 
adult morphs and their weights is updated, based on the current 
numbers in the detailed age-class vector. Weights of males are 
assumed to be 0.7 times those of females. 
10. Predation (subroutine PRED). Given the numbers and weights 
of predators and prey of various stages and the constants associated 
with their interactions, this subroutine models the functional re­
sponse and updates the numbers of leafhoppers and aphids. It also 
increments a weekly total of number of aphids killed by predation 
which is output at the end of the run. 
11. Mortality, other than predation, parasitism and winter mortality 
of eggs (subroutine MORTY). This subroutine updates numbers of 
aphids according to the background daily mortality rate, the wind 
speed, the time of year relative to the time of leaf-fall and the 
cumulative aphid density. 
12. Flight (subroutine FLIGHT). The number of males and viv-
iparae emigrating from each adult age-class is calculated given the 
population density, the mean density experienced during nymphal 
development, the cumulative density and the background emigra­
tion rate; numbers are updated accordingly. 
13. Egg-laying (subroutine EPROD). The number of eggs laid is 
added to the total already laid, given the numbers and weights of 
newly-moulted oviparae; all eggs are assumed to be laid im­
mediately following the moult. 
14. Parthenogenetic reproduction and morph determination (sub­
routine REPROD). Recruitment is calculated and the population 
vectors updated, given the numbers, weights and developmental 
stages of adult viviparae in each age-class, and the temperature. 
New-born nymphs are partitioned among the three morphs accord­
ing to the time of year and assigned an initial weight. 
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15. Growth and development (subroutine GROWTH). The propor­
tion of development achieved by each nymphal age-class is updated, 
given the temperature and the amino-nitrogen concentration in the 
phloem. Weights of each age-class are also updated given the daily 
development increment, the population density, the cumulative 
density, the temperature and the amino-nitrogen concentration. 
16. Storing of variables for output (subroutine STORE). If the 
current day is one on which output is required, the following values 
are stored: numbers of aphids in different stages, instars 1-3 being 
grouped together as in the sampling records; average weight of adult 
aphids; total fresh-weight of the population; and numbers of 
leafhoppers and predators in the different stages. Otherwise, this 
step is by-passed. 
17. Ageing of the aphid population (subroutine AGE). The num­
bers in each age-class, and the associated weights, states of develop­
ment and experiences of crowding, are moved into the next. The 
contents of any nymphal class for which the development index is 
greater than or equal to 1 are moved into the first adult class, and 
no adults are permitted to remain beyond the age-class representing 
the maximum adult longevity. The daily mortalities suffered by each 
adult age-class are set to zero. 
18. Parasitism (subroutine PARA). Parasitism is assumed to act at 
the adult moult and the first adult age-class is reduced by the 
calculated proportion parasitized, given the time of year. 
19. Updating of the predator and leaf hopper populations (sub­
routine POP). If the weekly day counter has not reached 7 this 
subroutine is by-passed. Otherwise, predator and leafhopper popu­
lations are updated using modified Leslie matrices operating over 
the weekly interval. These embody the processes of development, 
mortality and reproduction which in some cases depend on the time 
of year or the aphid density. The weekly day-counter is re-set to 
zero. 
20. If the time of year has not reached Day 304 (31 October) 
control is returned to Step 5. 
21. Winter mortality of eggs (subroutine WMORT). The number of 
eggs laid is reduced by a constant proportion. 
22. Output (subroutine OUTPUT). Numbers of leafhoppers, black-
kneed capsids, 2-spot coccinellids and aphids of each stage are 
printed for each date of the year specified in Step 3. The total aphid 
population on these dates, average adult weight total fresh weight of 
aphids and the total number eaten by predators are also printed. 
Finally the logarithms of the aphid egg numbers at the beginning 
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and end of the year are printed, summarizing the behaviour of the 
population throughout the year. 
23. If additional runs are required with the same initial conditions 
and driving variables, control is returned to Step 4. If the next year 
and a new set of these is required control passes to Step 3, otherwise 
the model stops. 

Because of the relatively long step-length of the model, four 
corrections have been applied, the first of which has already been 
mentioned, and these are as follows. 
1. Mortality and emigration are calculated each day before repro­

duction; then recruitment is based on the numbers remaining plus 
half those dying or emigrating. 

2. Viviparous adults experience a pre-reproductive delay which is 
allowed to involve fractions of a day in the model (see p. 59). 

3. For nymphs moulting on any day growth factors for the age-class 
are based not on the whole day but on the calculated fraction of 
the day for which the cohort remains in the nymphal stage. 

4. Predation includes an exploitation component since under certain 
circumstances a high proportion of prey may be eaten in one day 
(see p. 3). 

This description of the model, taken with the flow diagram in Fig. 
14 and the relational diagram in Fig. 3, provides a summary of the 
population processes included and the factors which affect them. 
The process submodels will now be considered in more detail. 

3.3 Initial conditions and driving variables 

The initial numbers of aphid eggs, leafhopper eggs and black-
kneed capsid eggs, and the 'coccinellid multiplier' for each year 
from 1965 to 1972 are given in Table 1. The coccinellid multiplier 
represents the relative abundance of the 2-spot coccinellid in any 
one year and is explained on p. 97. 

The long-term average maximum and minimum daily tempera­
tures are shown in Fig. 15 and the mean weekly temperatures 
during each season from 1965 to 1972 are given in Fig. 16. These 
are shade temperatures recorded at Abbotsinch airport five miles 
from the study area, and Llewellyn (1970) showed that they are 
approximately 1.5°C lower than the integrated temperatures be­
neath lime leaves, referred to in the model as corrected tempera­
tures. 
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Table 1. Initial densities of aphid, leaf hopper and black-kneed capsid eggs 
(number/100 cm2) and the coccinellid multiplier (see text) in each year. 
*, average values. 

year 

1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 

aphid eggs 

0.05 
0.45 
1.83 
0.03 

14.00 
0.07 
1.40 
0.17 

leafhopper 
eggs 

1.0* 
1.0* 
1.0* 
1.0* 
2.1 
0.5 
0.3 
1.0* 

capsid 
eggs 

0.030 
0.063 
0.067 
0.071 
0.118 
0 
0 
0 

coccinellid 
multiplier 

0.3 
1 

Shade Temperature - C 
20 r 

10 

I I I ! J- I I 
J F M A M J J 

Time of Year 

A S 0 N D 

Fig. 15. Long-term average maximum (TX) and minimum (TN) daily shade 
temperatures throughout the year at Abbotswich airport, Glasgow. 
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Fig. 16. Mean daily temperatures at Abbotsinch airport, Glasgow, during 
the seasons 1965 to 1972. 

The mean daily wind speeds are shown in Fig. 17, again recorded 
at Abbotsinch airport and averaged over each week during the 
season, from 1965 to 1972. The median daily wind speed is 7.74 
knots (1 knot = 0.5146 ms"1). 

Rainfall is not included in the model since it was thought unlikely 
to cause significant mortality to aphids beneath the leaves, at least in 
the absence of high winds and pending evidence to the contrary. 

3.4 l i e tree submodel 

The model (subroutine TREE) 

All buds are assumed to break on the day that the accumulated 
day-degree total from 1st March, above a threshold of 5°C, reaches 
122. In the model the time of bud-burst is then stored in the 
variable 'BUD', leaf-fall is assumed to occur on 4th October (Day 
277) and it is simply treated as a time-dependent mortality factor in 
the model (subroutine MORTY, Section 3.5.3). 

Host plant quality is expressed by the soluble amino-nitrogen 

28 



1865 

\̂̂ 1 I 

1969 

T r 
V 

1968 1970 

1967 1171 

10 

yYT^NM 
1968 

10 

0 

/ vW\^ 
1972 

Pri 
M A S M 

Timt of Yttr 

Fig. 17. Mean daily wind speeds at Abbotsinch airport, Glasgow, during 
the seasons 1965 to 1972. 

concentration in the phloem and by the cumulative level of aphid 
infestation in any one year. Both are updated daily, the first 
according to the time of year and the time of bud-burst (Fig. 18), 
the second according to the current aphid density. 

The data 

The time of bud-burst varies from year to year and was assumed 
to do so largely in response to temperature. Approximate times of 
bud-burst were obtained by back-extrapolating average weekly 
measurements of leaf width to the point where the widths were 0.2 
times the maximum. The day-degree total above 5°C was calculated 
each year, from the beginning of March to the estimated time of 
bud-burst and the results averaged over all years. The mean day-
degree total, 122, was assumed to be that at which the buds burst, 
and the calculated times based on this figure accounted for 78% of 
the variance in those observed. The relationship is (Fig. 19): 
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Fig. 18. Soluble nitrogen content of phloem (N, % dry weight) throughout 
the year (TB, time in days after bud-burst). From Dixon, 1971a. 
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Fig. 19. Relationship between 'observed' and predicted times of bud burst 
in the field. 'Observed' times are those estimated from measurements of 
leaf widths; predicted ones are based on accumulation of 122 day-degrees 
above 5°C. Times are in days from the start of the year. 
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O = 0.9945P-1.7796 r = 0.884, d.f. = 7, P<0.01 

where 

O = estimated time of bud-burst from measurements of leaf width 

P = time predicted from a day-degree total of 122. 

The same developmental threshold was assumed as applies to 
egg-hatching (see Section 3.5.1), in the absence of more detailed 
knowledge about the temperature dependence of bud-burst. 

The average time of leaf-fall in the field is 4th October (Day 277). 
Although the time is variable from year to year it is not known what 
causes this. High winds in autumn may play a part and White (1970) 
showed by experiment that leaf-fall was earlier if the leaves had 
been heavily infested in the current season, but later if aphid 
numbers had been high in the previous season, than on uninfested 
plants. However, there is no clear relationship between aphid num­
bers and time of leaf-fall in the field, where this is taken to be the 
last sampling date; other factors appear to be more important in 
determining the variation. 

Amino-nitrogen levels in Fig. 18 are those measured by Dixon 
(1971a) throughout one season. An aphid-induced effect on plant 
quality, related to cumulative density, is indicated by a reduction in 
weight of aphids reared on infested tissue and by considerable 
circumstantial evidence of increased mortality and flight. These 
effects are considered further in the Sections on growth, mortality 
and flight. 

3.5 The aphid submodel 

3.5. J Egg-hatching 

The model (subroutine HATCH) 

The submodel predicts the timing and pattern of egg-hatch and 
their dependence on temperature. It uses a relationship between the 
cumulative proportion hatching and summed day-degrees from 
March 1st above a threshold of 5°C (Fig. 20). 

If all eggs have already hatched or the date is earlier than March 
1st the subroutine is skipped. Otherwise, the day-degree total is 
updated using Ives' triangulation method (p. 74) and the expected 
cumulative proportion of eggs hatched obtained from Fig. 20 by 
linear interpolation. The proportion of remaining eggs hatching 
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Fig. 20. Relationship between the cumulative proportion of eggs hatching 
(CPHE) and summed day-degrees above 5°C from 1st March (DD5). 

during the current day is then given by: 

nTT_(CPHE-CPH) 
wfri — ————̂————————— 

(1-CPH) 

where 
CPU = cumulative proportion hatched 

CPHE = the expected cumulative proportion hatched by the end 
of the day, given the updated day-degree total. 

The cumulative proportion hatched is updated and the number 
hatching subtracted from the egg population and entered into the 
first nymphal age-class as viviparae with a birth weight of 24 fig (see 
p. 57). After reaching 1 the cumulative proportion hatched holds 
this value for the rest of the year, so no hatching of eggs laid during 
the current season can occur; the proportion is zeroed at the 
beginning of the next year. 

Fig. 21 shows the cumulative hatching distributions plotted 
against time for each year and under average temperatures. Temp­
erature differences from year to year before hatching change "the 
position (median) of the hatching curve but not its shape (compare 
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1968 and 1969). On the other hand, temperature differences during 
the period of egg-hatching will affect both the median and the shape 
of the distribution, lower temperatures giving a greater spread of 
hatching times. This is illustrated by a comparison of the curves in 
1966 and 1973 (Fig. 21), the results of experiments described below 
(Fig. 22) and the difference between observed hatching curves for 
the lime aphid and sycamore aphid in 1973. Sycamore aphid eggs 
hatch earlier and over a longer period than those of the lime aphid 
(Dixon, 1976) and this longer period is explicable in terms of the 
lower temperatures experienced at the time of hatching. When 
compared on a day-degree scale, the shapes of the distributions are 
similar (#2 = 8.37, d.f. = 4, P>0.05), though the medians differ. 

The data 

The time of egg-hatch each year was estimated from the sampling 
data and assumed to be the date of the first sample. As such, it 
varies from year to year over a range of about 16 days, from 27 
April to 13 May, and it is reasonable to assume that such variations 
are due to temperature. 

The temperature threshold for egg development was obtained 
from a laboratory experiment, in which eggs on twigs were brought 
in from the field at the end of February and kept at 4 different 
temperatures under natural daylengths until all had hatched. Fig. 22 
shows the cumulative numbers hatching at 12°C, 16°C, 20°C and 
24°C and Fig. 23 the rates of development plotted against tempera­
ture. Development rates are reciprocals of the median times be­
tween the start of the experiment and hatching. The relationship 
between development rate and temperature is linear over the range 
considered and Chambers (pers. commun.) found linearity down to 
8°C in the sycamore aphid. The temperature threshold is 5°C. 

Development rates of eggs are only relative in the absence of any 
knowledge of the time at which development starts, and the assump­
tion that the same development process occurs throughout may be 
invalid (Behrendt, 1973). For these reasons a purely empirical 
relationship was sought between spring temperatures and hatching 
times but using the threshold derived from the experiment. 

The number of day-degrees above 5°C was calculated for each 
year using Ives' method, from 1st march to the date of the first 
sample. The mean of these values was used to give a predicted 
median hatching time for each year, and the observed times, given 
by the sampling dates, were regressed on the predicted. The predic-
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Fig. 21. Cumulative egg-hatching distributions in time, generated by the 
model for each year in the field and under long-term average temperatures. 
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Fig. 23. Relationship between relative development rate of eggs and temp­
erature. 
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tions (P), based on the experience of equal numbers of day-degrees 
from 1st March (147), accounted for 68% of the variance in the 
observed hatching times (O): 

O=1.0113P-1.5 r = 0.827,d.f. = 8, P<0.01 

intercept not significantly different from 0 

f = 0.05,d.f. = 8, P>0.05 

slope not significantly different from 1 

f = 0.047,d.f. = 8, P>0.05 

Predictions based on corrected temperatures, with 1.5°C added to 
the mean, gave no better agreement and the correction may be 
inappropriate in any case at the low temperatures of early spring. 

Having established the median of the hatching distribution each 
year the pattern of hatching within a year, on the same day-degree 
scale, was derived from Dixon's (unpublished) observations in 1973 
on a tree at Glasgow University. The eggs hatched over a period of 
about 1 month and the distribution showed highly significant kur-
tosis and positive skew when plotted on the day-degree scale. 
However, the kurtosis and skew were removed when the scale was 
transformed to logarithms. The curve of cumulative proportions 
hatching was therefore smoothed lognormally, though inconsistent 
departures from the fitted curve indicate that immediate tempera­
tures may have a greater effect than day-degree summation would 
imply. 

3.5.2 Predation 

The model (subroutine PRED) 

The predation submodel uses a multiple predator/multiple prey 
functional response equation to calculate the numbers of each prey 
instar eaten daily. 11 behaviourally distinct predator types and 11 
prey types are considered, consisting of 

f Black-kneed capsids instars 1-5 and adults 
Predators \ 

12-spot coccinellids instars 1-4 and adults 

f lime aphids instars 1-4 and adults (all morphs) 
leafhopper instars 1-5 and adults 
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Input consists of data matrices of attack coefficients (Table 2) and 
weights of prey required to satiate each predator (Table 3), together 
with numbers of predators and prey generated by the main model 
and prey weights. Aphid weights are also generated by the model 
but leafhopper weights are assumed constant for each stage (Table 
4). 

Table 2. Predator attack coefficients for different predator/prey combina­
tions. 

2-spot 
coccincllid 

Black-kneed 
capsid 

1 
2 
3 
4 

Ad 

1 
2 
3 
4 
5 

Ad 

aphid 
1 

0.33 
1.81 
2.76 
4.51 
4.51 

1.27 
6.00 

12.58 
14.43 

2 

0.32 
0.45 
2.44 
6.58 
6.58 

0.47 
2.50 
6.98 

15.39 

3 

0.04 
0.21 
0*5 
3.17 
3.17 

0.16 
1.70 
8.73 

15.32 

4 

0.06 
0.36 
1.71 
2.74 
2.74 

0 
0.58 
1.68 
7.70 

15.16 25.65 39.79 28.76 

• 

Ad 

0 
0.19 
0.85 
2.88 
2.88 

0 
0.41 
1.65 
7.77 

19.38 
11.38 23.55 40.64 34.25 39.25 

leafhopper 
1 

0 
0.12 
0.31 
0.38 
0.38 

0.43 
11.74 
0 
0 
0 
0 

2 

0 
0 
0 
0.23 
0.23 

0.14 
4.31 

13.59 
23.59 
0 
0 

3 

0 
0 
0 
0 
0 

0 
1.90 
4.82 

15.70 
0 
0 

4 

0 
0 
0 
0 
0 

0 
0.81 
2.59 

10.32 
28.91 
0 

5 

0 
0 
0 
0 
0 

0 
0.28 
0 
4.16 

10.93 
0 

Ad 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
3.00 

Table 3. Maximum weights of prey eaten daily by predators (fig). 

2-spot coccinellid black-kneed capsid 

1 2 3 4 /\d 1 2 3 4 5 Ad 

160 550 1300 3470 4125 20 40 68 113 178 334 

Table 4. Average leafhopper weight in the 
field (jig). 

leafhopper 

1 2 3 4 5 Ad 

40 110 200 360 650 700 
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The form of functional response assumed is a combination of the 
models of Thompson (1924) and Nicholson & Bailey (1935) with 
the number of encounters with prey limited by the predators' 
searching capacity at low densities and by their maximum rate of 
ingestion at higher densities. Although originally describing parasite 
searching behaviour this model is applicable to predators in the 
present situation since the effects of handling times are negligible 
(see below); unlike equations of the random predator type (Rogers 
1972) it also retains its manageability in a situation where several 
different predators are eating several different prey. The functional 
response equation is: 

Na% = N i(l-c- s! : ! I^pA) 

where 

and 

Nau = number of prey i attacked by all predators /100 cm2 

Nt = number of prey i/100 cm2 

ati = attack coefficient for prey i and predator / (dm2 

traversed/day on abaxial leaf surfaces x capture efficiency 
x correction factor for within-leaf distribution of pred­
ators and prey) 

Py = number of predators //100 cm2 

Sy = correction factor for satiation of predators / 
VORj = maximum prey weight killed per day per predator / (jig) 

Wj = weight of each prey i (/u,g) 

and its derivation is described below. Prey numbers in the various 
population vectors are updated accordingly. 

Fig. 24 shows the computed functional response curves for each 
aphid and predator instar, assuming a high predator density of 
1/100 cm2. Lower densities of predators very rapidly reduce the 
number of prey eaten; if the expectation of survival for a prey is 
0.01 at a predator density of 1/100 cm2, for example, this will 
increase to (0.01)01 or 0.63 if the predator density decreases to 
0.1/100 cm2. Fig. 24 shows clearly that coccinellids are effective at 
high prey densities because of the amount they can eat, and that 
although the reverse is true for the black-kneed capsid it is ex-
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Fig. 24. Functional responses of predators to prey densities, generated by 
the model. 2-spot coccinellid, instars 1-4 and adult (CI, C2, C3, C4, 
CA); black-kneed capsid instars 1-5 and adult (Bl, B2, B3, B4, B5, 
BA). Predator densities are /100 cm2. a) First, b) second, c) third and 
d) fourth instar aphid, and e) adult aphid. 
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tremely effective at low prey densities because of its greater search­
ing ability. 

The data 

The actual functional responses of the different predator types to 
the different prey types have not been observed directly; apart from 
any other inherent difficulties this would involve 121 separate 
experiments, each for a range of prey densities and perhaps also for 
a range of predator densities, while an experimental 'universe* 
similar to that on the trees would be difficult to devise. Instead, the 
attack coefficients and the prey weights required to satiate the 
predators have been determined by experiments and a functional 
response equation assumed which generates prey death rates, given 
these parameters and the principle assumptions that predators en­
counter prey at random and that handling times can be ignored. 
Attack coefficients are products of the capture efficiencies, the 
abaxial leaf areas (in dm2) searched per predator per day and factors 
correcting for the tendency of aphids to aggregate on leaf veins and 
of predators to search the veins preferentially. Values for these 
three quantities, for the black-kneed capsid and the 2-spot coccinel-
lid, are taken from Glen (1971, 1975) and Wratten (1973), respec­
tively. The maximum weights of prey killed each day when excess is 
provided are also taken from Glen's (1971) and Wratten's (1973) 
laboratory experiments. 

The basic equation used is: 

and 

NMAX, 
Enc/N = aP; N< - (as in Nicholson & Bailey, 1935). 

a 
^ / w NMAXatP mr NMAXat , . _. AMA. 
Enc/N = — ^ ; N^ (as in Thompson, 1924) 

N a 
where 

EncIN- Successful encounters/prey 
NMAXm = maximum number eaten per day per predator 

The same equation can be written in Nicholson-Bailey form but 
with a correction factor for satiation of predators, thus: 
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Nat=N(l-e-aPS) 

where 

From this it is straightforward to obtain the equation used in the 
model, for several prey and several predators. The only qualitative 
difference is that S is now expressed not as the maximum number of 
prey which can be caught divided by the number encountered, per 
predator, but by the total prey weight which can be eaten divided by 
the total weight encountered. 

Glen (1971, 1975) and Wratten (1971, 1973) also gave times 
taken to eat prey and in all cases these are so short as to have a 
negligible effect on the functional response curve; as Rogers (1972) 
demonstrated, both the random predator and random parasitoid 
equations reduce to the Nicholson-Bailey form under these cir­
cumstances. It is true that Glen (1971, 1975) has shown that 
black-kneed capsids may have a greatly reduced speed of searching 
for as long as 1.5 days after feeding, even when initially hungry, and 
this is equivalent to a digestive pause hence handling time (Holling, 
1966). However, the capsids become satiated at extremely low prey 
densities, so the range of densities over which the effect may be felt 
is sufficiently small for it to be ignored in practice. 

There is no evidence for switching, interference or sigmoid func­
tional response curves due to reduced searching rates at low prey 
densities, but neither can these possiblities be rejected; further 
work would be required to test for their existence. Two other 
features not included in this submodel of predation are stochastic 
effects and the effect of temperature changes, the first emphasized 
by Fransz (1974) and the second by Gilbert et al. (1976) and Frazer 
& Gilbert (1976). As Fransz demonstrated, a stochastic model of the 
functional response may give higher predation rates than a deter­
ministic one, since non-linearities are present and 'the expectation 
of curvilinear functions differs from the function of the expectation 
value'. The error which results from omitting the chance element 
from predation, however, is a specific case of the point discussed in 
Section 3.1. Temperature does affect the searching rate of the 
2-spot coccinellid (Wratten, 1973) but it is not known what effect it 
has on handling times. Moreover, the predator population sub­
models are less detailed than the aphid one and include little 
temperature dependence, so for these reasons the effect was omitted 
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from the predation submodel. A more complex version could read­
ily include it by multiplying the number of prey eaten by a 
temperature-dependent factor. 

3.5.3. Mortality {other than predation, parasitism and winter losses) 

The model (subroutine MORTY) 

There is an average daily mortality rate for all members of the 
population and adults are assumed to have a fixed maximum longev­
ity. Population growth is terminated at the end of the season by 
mortality of mobile stages resulting from leaf-fall which removes 
both food and places to live. Prior to this, however, it appears that 
the food supply may become inadequate through a decline in its 
quality following high cumulative levels of aphid infestation within 
any one season; this density-related effect also causes mortality 
among all aphids on the leaves. 

The evidence suggests that variations in the daily mortality rate 
and its obviously greater average value in the field than in laborat­
ory populations may be due at least in part to an effect of wind in 
causing leaves and fruit to brush together and aphids to be dis­
lodged. The daily mortality rate is therefore considered to be made 
up of two components, an intrinsic background mortality, as applies 
in laboratory populations, and a factor dependent on wind speed 
which increases the average mortality rate in the field. 

The overall daily survival rate applied in the model is then a 
product of the survival rates associated with these factors, given by 
the following relationships (Fig. 25): 

Adult longevity (age-specific mortality): 

SD = 1, adult age <30 days 

SD = 0, adult age ^30 days 

Intrinsic mortality/effect of wind: 

SW = 0.99(1-0.0003W2); 0 . 2^SW^1 

Effect of leaf fall: 

SL = (277- DA Y)/10; O ^ S L ^ l 

Effect of cumulative density: 

SC=l-0 .002(C-250) ; O ^ S C ^ l 
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Fig. 25. The components of daily mortality: a) the proportion surviving 
(SD) dependent on adult age (A); b) the proportion surviving (SW) depen­
dent on mean daily wind speed (W); c) the proportion surviving (SL) 
dependent on leaf fall hence the time of year (t); d) the proportion 
surviving (SC) dependent on cumulative density (C, aphid-weeks). 

Proportion of population surviving per day: 

S = SDxSWxSLxSC 

where 

W = mean daily wind speed (kts) 
DAY = time of year (days) 

C = cumulative aphid density (aphid-weeks/100 cm2) 

The data 

The daily background survival rate of 0.99 is an approximate 
figure obtained from insectary populations under the most favour­
able environmental conditions, where Brown (1974) recorded num­
bers of aphids falling from young saplings and dying on the leaves 
each week. The assumed maximum longevity for adults of 30 days is 
fairly arbitrary. Adults clip-caged in the laboratory at 15°C live for 
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an extremely long period, on average about 80 days, but in uncon-
fined populations emigration and extrinsic mortality factors deter­
mine the pattern of survival and render the potential longevity 
unimportant. This was confirmed by running the model with two 
different values (Section 4.2). 

The effect of wind was tested by a field experiment. Petioles of 
leaves bearing a maximum of two large or five small aphids were 
ringed with 'Stickem' to prevent the aphids walking off. Four trees 
were used, in different positions, supporting low-density populations 
so as to minimize the numbers of predators present. These were 
rarely found on the isolated leaves but when they were the record 
was omitted. The proportions of aphids disappearing from the 
leaves each day were then plotted against the daily maximum gust 
speed at 20 m (Fig. 26). Although wind speeds in general were low 
and a greater range would have been desirable, nevertheless the 
relationship between the proportion disappearing and wind speed 
was highly significant (r = 0.62, d.f. = 38, P<0.01). This could not 
be used directly in the model, however, since it was obtained in a 
different area, it does not cover the full range of wind speeds and it 
appears to overestimate actual mortality, since running the model 
with the relationship as it stands rapidly led to extinction of the 
population. One reason for a possible overestimation of mortality is 
that aphids are not free to move off leaves which are unfavourably 
sited. Dixon (1970) found that sycamore aphids left leaves as soon 
as their surfaces were touched by others. For it is the brushing 

Proportion Disappearing day*1 

0*6 

0*4 

0-2 

° 5 10 15 2 0 

Maximum Gust Speed, kts 

Fig. 26. The effect of wind speed at 20 m on disappearance of nymphs from 
isolated leaves in the field. 9 instars 1-3, A instar 4. kts = knots = 
0.5146 ms"1. 
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together of leaves and fruit which is likely to be the actual cause of 
mortality, and as Dixon pointed out the available space on a 
sycamore tree is thus limited to a fraction of the total leaf area. 
Leaves and fruit therefore act as devices converting weather into 
herbivore mortality. Returning to the model, the effect of wind is 
assumed to be somewhat less than that observed for aphids on 
individual leaves, taking the form of Fig. 25 with an arbitrary 
minimum survival rate of 0.2 per day and an increasingly large effect 
for very high wind speeds. 

Leaf-fall is treated here simply as a time-dependent mortality 
factor but it is clearly a property of the tree subsystem and as such 
was considered further in Section 3.4. 

Although it has not yet been confirmed by experiment, there is 
considerable circumstantial evidence for the existence of integrated 
density-dependent mortality, that is, mortality resulting from a 
decline in plant quality caused by high cumulative aphid densities. 
The first indications come from Brown's (1975) painstaking counts 
of large numbers of aphids falling onto horizontal sticky traps 
beneath the sampled trees in 1971. This was the year of highest 
aphid numbers, and mortality increased rapidly towards the end of 
July when the cumulative density reached 250 aphid-weeks/100 cm2 

(Table 5). More significantly, the increase was sustained thereafter, 
although densities were low by this time and there was no obvious 
change in weather. Second, adult viviparae were clip-caged on the 
leaves for 5 days at a time throughout 1971 and also during 1970 
and 1972 when numbers were low. The proportions dying each day 
were plotted against time of year (Fig. 27) and again a large increase 
in mortality occurred towards the end of 1971 although in the other 

Table 5. Effect of cumulative infestation of trees on aphid mortality in the 
field. Figures are ratios of numbers caught on horizontal sticky traps below 
the trees, summed over all weeks, to those recorded on the trees per 80 
leaves, summed over all weeks. The two time periods correspond to 
cumulative densities less than and greater than 250 aphid-weeks/100 cm2, 
respectively, and data are from Brown (1975) for three trees. 

instars instar oviparae alates 
1-3 4 

Before 25/7 0.973 2.891 1.821 5.483 
After 25/7 1.809 11.798 15.100 8.673 
X2 628 534 43 77 
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Fig. 27. Adult mortality rate (proportion of clip-caged adults dying per day, 
taken pver all trees) throughout the year in 1971, compared with that in 
1970 and 1972. 

years it remained constant. The difference between years can only 
be attributed to two factors, the lower weight of the aphids in 1971, 
Of some equivalent measure of quality, and the state of the tissue, 
but since adult weight is itself determined partly by cumulative 
density (p. 75) it must be concluded that this affects mortality either 
directly or indirectly. However, in Brown's (1975) insectary popula­
tions mortality did not increase throughout the season as adult 
weights declined, suggesting that the effect does not act through the 
aphid's weight. Since cumulative densities were also extremely high 
in the insectary populations, their effect on mortality may only be 
manifested on mature trees. This in turn may explain why it has not 
yet been possible to confirm the effect of cumulative density experi­
mentally, although Davis (1957) claimed to have demonstrated a 
conditioning effect for the walnut aphid (Chromaphis juglandicola 
Kalt). The actual mechanism could involve: the injection by aphids 
of substances into the phloem which inhibit feeding; the progressive 
occlusion of increasing numbers of vessels as a plant reaction to 
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aphid feeding; or a simple nutrient drain effect. Aphid densities 
between 28/100 cm2 (Dixon, 1971) and 78/100 cm2 (Llewellyn, 
1972) throughout a season, depending on the individual tree, would 
entirely drain the net primary production of the tree in the absence 
of compensatory growth. In the model a relationship between 
mortality and cumulative density was used with a fairly arbitrary 
slope but a threshold of 250 aphid-weeks/100 cm2, corresponding to 
the accumulated total in 1971 at the time that mortality of the 
clip-caged adults began to rise. 

Table 5 suggests that adults and 4th instar nymphs have a much 
higher overall mortality rate in the field than do younger nymphs, 
but when rates of disappearance from individual leaves were moni­
tored the mortalities of 4th instars and of younger nymphs were 
similar. However, making the mortality instar-dependent proved to 
have very little effect on the model's output, even in terms of 
instar-distributions, so for simplicity the factors considered in this 
submodel were assumed to affect all instars equally. 

There is a suggestion based on catches from sticky traps in 1971 
of density-dependent mortality (Barlow, 1977). However, there is 
no experimental evidence for the effect which must in any case be 
slight, since observed instar distributions during July and August are 
the same in years of high and low density at this time; it was 
therefore ignored in the model. 

3.5.4 Flight 

The model (subroutine FLIGHT) 

All viviparae are winged and may fly at any time, before or after 
reproducing. The proportion flying each day depends on the current 
weighted population density, the mean total density experienced 
during nymphal development and, though this is less well estab­
lished, the accumulated total density over the season. There is also a 
constant background level, even at low densities, and flight is 
independent of adult age. The first two components are known to be 
additive while the others are assumed to be so. The quantitative 
relationships used in the model are (Fig. 28). 

Effect of current density: 

FA = 0.005 WD 
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Fig. 28. The components of daily adult flight: a) the proportion flying (FA) 
dependent on current weighted population density (WD, see text); b) the 
proportion flying (FN) dependent on mean total density experienced during 
nymphal development (DD); c) the proportion flying (FC) dependent on 
cumulative density (aphid-weeks, C); d) the background level of flight (F) 
relative to adult age (A). 

Effect of nymphal crowding: 

FN = 0.02(DD-10); O^FN^OA 

Effect of cumulative density: 

FC = 0 .005(0250); 0 ^FC^0 . 5 

Background level 

F=0 .1 

Total proportion flying per day: 

FLT=FA + FN+FC+F 

where 

WD = weighted density (adults+4th instars+|(instars 1-3) per 
100 cm2) 
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DD = mean density during development (aphids/100 cm2) 
C = cumulative density (aphid-weeks/100 cm2) 

The data 

The effect of current density on flight was based on a laboratory 
experiment of Dixon (1971a) and his results are reproduced in 
modified form in Table 6. To obtain the relationship in Fig. 28, 
proportions flying were expressed as increments and the densities 

Table 6. Effect of current density on flight in the laboratory. Modified from 
Dixon (1971a). 

adults/100 
in lab. 

1 
30 
60 
90 

cm2 adults/100 
in field 

- 0 
12 
34 
57 

cm2 proportion 
flying/day 

0.17 
0.23 
0.36 
0.45 

prop, flying -
basic level 

0 
0.06 
0.19 
0.28 

used in the laboratory transformed to equivalent densities in the 
field in the following way. Aphids in the field are aggregated 
between leaves (Dixon, 1971a) so the average density experienced 
by each aphid, or mean crowding (Lloyd, 1967), is higher than the 
average number per unit area. Following Lloyd, the two can be 
related using the variance/mean equation given by Dixon (1971a), 
and the resulting expression for mean crowding is: 

m = m(l + 7.283m"063) 

where 

m = index of mean crowding (aphids/aphid/100 cm2) 
m = mean density (aphids/100 cm2) 

or, with m and m expressed as numbers per leaf 

m = m(l + 4.615m-°-63) 

and both forms are shown in Fig. 29. The laboratory densities were 
taken as mean crowding values and the corresponding mean den­
sities for an aggregated population derived from these using the 
above expression (Table 6). Since the population in the field consists 
of stages other than adults, this also must be taken into account. 
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Fig. 29. The relationship between mean density of aphids and mean 
crowding. as observed; for a random distribution. 

Fourth instar nymphs were assumed to be equivalent to adults but a 
weighting factor of 0.25 was applied to densities of younger nymphs 
since these are less active (Brown, 1975) and the adult flight 
component depends largely on direct interactions between aphids on 
the leaves (Kidd, 1975, 1977). 

The effect of density during nymphal development was also 
established by laboratory experiments (Table 16 in Kidd, 1975) in 
which a maximum additional proportion flying of 0.4 per day was 
associated with nymphal experience of crowding. The latter cannot 
be related directly to densities in the field since aphids in Kidd's 
experiments were reared in small clip-cages. However, these aphids 
were about 100 jig lighter in weight than aphids reared in isolation 
and such a decline in weight in the field in 1969 was associated.with 
a density during development of about 40 aphids/lOOcm2. The 
nymphal component of 0.4 is therefore activated at levels of crowd-
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ing between 0 and 40/100 cm2 and is assumed in the model to act 
over the range 10-30/100 cm2 (Fig. 28). The nymphal experience 
and current density components were shown by Kidd (1977) to be 
additive. 

Evidence that flight depends also on accumulated density, through 
conditioning of leaf tissue, comes from two sources. Kidd (1977) 
transferred aphids isolated during rearing to previously infested 
tissue, where the proportion flying per day was 0.54 greater than for 
aphids transferred to uninfested tissue. This observation does not 
preclude the possibility that increased flight was due to the change 
in tissue quality experienced by the adults, and that aphids reared 
from birth on previously infested tissue would fly no more readily 
than those reared from birth on uninfested tissue. However, flight in 
the field during 1971 increased dramatically at the beginning of 
August after prolonged heavy infestation of the tree corresponding 
to a cumulative density of about 250 aphid-weeks/100 cm2. It 
remained high thereafter, even when the population had crashed to 
very low levels (Fig. 30). Flight in this case was based on Brown's 
(1975) counts of aphids caught on horizontal sticky traps beneath 
one of the sampled trees, and measured as the number caught each 
week divided by the average number present on the tree that week. 
Similar data are not available for other years when cumulative 
densities were low, so the effect may be one of the time of year or 
the aphid generation; no sustained change in weather was apparent. 
However, data on mortality are available for other years, when a 
large increase in mortality recorded at the end of 1971 did not occur 
(Section 3.5.3). This suggests that flight, an active alternative to 
death, probably is related to the high infestation levels in 1971 
rather than to the time of year or generation, a conclusion rein­
forced when one considers years like 1968 where rapid population 
growth and presumably, therefore, little flight was occurring among 
the same generations of aphids at the same time of year (see Fig. 
11). Returning to the model, the relationship in Fig. 28 uses the 
observed cumulative density threshold of 250 aphid-weeks/100 cm2 

and Kidd's figure rounded to 0.5 for the maximum likely flight 
increment; the slope is arbitrary but its precise value was found to 
be unimportant in practice. 

The background level of flight was estimated in the field using the 
method described in Section 3.5.3 for mortality. The index of daily 
flight was determined by the difference between the recorded pro­
portion of adults and nymphs disappearing daily from marked, iso­
lated leaves on the trees. The average value spanning two different 
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Fig. 30. Variations in relative flight ( , ratio of alates caught on suspended 
sticky traps to those present per unit area on one tree each week) compared 
with the variations in population density ( ) during 1971. 

periods of successive observations was of the order of 0.1 per day. 
The points in Fig. 28 represent measured proportions of adults 
flying at different ages, taken from laboratory observations and with 
the points standardized to the background level of 0.1; there is no 
significant effect of age over the initial period of adult life. 

A laboratory experiment has shown that no flight occurs below 
12°C and field observations suggest that higher maximum tempera­
tures result in increased flight (Barlow, 1977). Presumably it is also 
inhibited by high winds or prolonged rain, but the full extent of the 
action of weather was felt to be, as yet, insufficiently understood to 
warrant its inclusion as a factor affecting the average level of flight. 

The whole process of flight initiation in the lime aphid is highly 
complex and the present submodel is a simplified, high-level rep­
resentation of the underlying behaviour. Kidd (1975, 1977) in 
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particular has studied this in more detail, and Fig. 31 illustrates 
conceptually the factors priming adult flight. The probability of 

Prtstnt Density 

- Plant -

mLm 

Dtnsity Prtvious 

to Dtvtlepmtnt 

Dtnsity During 

Dtvtlopmtnt 

Prtstnt Dtnsity 

- U a f -

~fo... ^ j9 <y 
• • < ^ •"! 

Prtstnt Food 

Quality 

Local 
Accumulation of 

Offspring 

Prtstnt Dtnsity: 

-Within L t a f -

Ttmptratura 

K 
B 

Food Quality 
During 

Dtvtlopmtnt 

Probability of 
Bting Mtt by a 

Walking Aphid 

.e 
Agt Structurt -
High Numbtrs of 

4ths and Adults 
? 

Gtntration 

Numbtr 

' . . . . . . 1 . s 
Probability of 

Encounttring fa* 
Anothtr Aphid 

®e<26 
Probability of 

Starting to Walk 

^6 
<K Probability 

of Flying 

Probability of 

R t -st t t l ing 

© 

Windspttd 

Fig. 31. Diagram of a detailed flight model. • a relationship indicating 
that one factor affects another; — * a tentative relationship; a link or 
correspondence; > feedback from flight. D, K, B, authorities for rela­
tionships already established (Dixon 1971a, Kidd 1975, 1976, 1977, Brown 
1975). 
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flying is shown on the right and the pathways represented in the 
model can be recognized as the effects of immediate density and age 
composition, perceived through direct interaction, nymphal experi­
ence of density, perceived through tissue quality at that time, and 
past accumulated densities, perceived as the present state of the leaf 
tissue. Weather and a possible generation effect are included, and all 
factors appear to act through their effects on movement of the 
adults; there is a constant probability of flying for an adult given 
that it has started to walk (Kidd, 1977). 

3.5.5 Egg-laying 

The model (subroutine EPROD) 

The number of eggs laid by each ovipara is related to its size (Fig. 
32), thus: 

E = 0.0162 W - 2.736 

where 

E = eggs laid/ovipara produced 
W = weight of ovipara (fig) 

E 
5 

m 

4 V / \ 

1 -
/ 

200 300 400 500 

w 

Fig. 32. The relationship between weight of oviparae (W, fig) and the 
number of eggs laid by each (E). 
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Multiplying this by the number of newly-moulted oviparae gives the 
total number of eggs laid each day, which is added to the current 
egg population. 

The data 

Brown (1975) gave figures for the numbers of oviparae produced 
in 6 populations reared in an insectary and the numbers of eggs laid 
on the 6 trees. These fell into two groups corresponding to the two 
initial population densities employed. The ratios of mean eggs 
laid/mean oviparae produced for the two groups relate to the mean 
weights of oviparae in those groups (Fig. 32) and a linear relation­
ship is assumed between the points. The number of eggs laid by 
each ovipara of the heavier group is approximately 80% of its total 
egg complement, using Brown's (1975) results from dissections of 
oviparae of similar weight. Very little more is known about ovipara 
behaviour and it may be that even less of the potential egg comple­
ment is laid in the field. Infertility of eggs is treated along with 
winter mortality in the model (p. 86) and an average value is 
assumed for the combined effect. It is interesting to note, in this 
context, that the sex ratio varies widely throughout the season and 
that there are up to 7 times as many oviparae as males during 
August and September. 

3.5.6 Parthenogenetic reproduction 

The model (subroutine REPROD) 

This submodel computes recruitment to the first nymphal age-
class, assigns an initial weight to the nymphs and updates the state 
of maturity of adults. 

The pattern of reproduction by viviparous adults involves a 
pre-reproductive delay following the moult, an initial constant re­
productive rate, and a decline in reproductive rate with increasing 
age. The pre-reproductive delay and the initial rate of reproduction 
depend on adult weight and temperature (Figs 33 and 34) thus: 

D = 1652000 
(W-100)T2-68 

WTls 

R = 
14817 
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Fig. 33. The effect of temperature and adult weight (W, ptg) on the 
pre-reproductive delay (D, days). A 11°C, • 15°C, • 20°C, O 25°C. 
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Fig. 34. The effect of temperature and adult weight on reproductive rate 
(nymphs/adult/day). A 11°C, • 15°C, • 20°C, O 25°C, * points from field 
taken over all temperatures. 



where 

D = pre-reproductive delay in days 
R = nymphs produced per adult per day 
W = adult weight (/xg) 
T = actual (corrected) temperature (°C) 

The decline in reproductive rate depends on the accumulated temp­
erature experience of the adult since the start of reproduction (Fig. 
35): 

F 
1-0 

1-5. 1000 2000 D«y-(d«grtts ) 

2 3 4 5 
Index of development 

Fig. 35. The factor (F) modifying reproductive rate according to adult age, 
expressed as accumulated temperature experienced (2(mean daily 
temperature)15) or an index of development achieved since the start of 
reproduction, and based on experiments at 20°C (O) and 15°C ( • ) . 

RF = 2.578 -0.526ID O ^ K F ^ l 

where 

RF = factor multiplying reproductive rate 
ID = temperature experience or index of development (see 

below) 

New-born nymphs are assigned an initial weight depending on that 
of the parents, assumed to be the average weight of viviparae 
present at the time, thus (Fig. 36): 

Wo = 24 - 24.8e~00077 w 

where 
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Relative Weight of Offspring 
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Fig. 36. The relationship between parent weight and relative weights of 
offspring, at birth (•, O, • ) and at maturity (A). Relative weights are actual 
weights divided by the maximum for each experiment (see text and Table 
14). 

Wo-weight of nymphs at birth (jzg) 
W = weight of parents (jig) 

These features of reproduction are simulated in the following way. 
First, each age-class has associated with it an index of accumulated 
development similar to those of nymphal classes but in this case 
controlling reproduction. Values between 1 and 2 correspond to the 
pre-reproductive period, those between 2 and 3 to the period of 
initial high reproductive rate (R) and values greater than 3 to the 
period of gradually waning reproductive output. 

The submodel computes recruitment to the first nymphal age-
class from each adult age-class in turn depending on its index of 
development. If this is between 1 and 2, the basic reproductive rate 
R is reduced by a factor RD and the index incremented by the 
reciprocal of the calculated pre-reproductive delay given the weight 
of the age class and the corrected mean temperature. RD is 
calculated as: 

I D - 2 
RD=1+—-—; O ^ R D ^ l 

where 
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ID = index of development already achieved 
I = increment for the current day 

allowing account to be taken of delays involving fractions of days. If 
the calculated pre-reproductive delay is a constant 2.8 days, for 
example, the reproductive rate is set by the model to zero on the 
first two days and 0.2 times the maximum on the third. The 
development index is re-set to 2 when it first exceeds this value. If 
the development index is 2 or more the daily increment is now a 
function of temperature alone, given by: 

0.0011 (corrected mean temperature)1'5 

If it exceeds 3 the reproductive rate is reduced by the factor RF 
given above. Total reproduction by the age-class is then calculated 
as the product of the corrected reproductive rate and the number of 
viviparae in the class plus half the mortality from that class. 

Though it is not explicitly used in the model it is worth noting 
that the above relationships imply a total potential fecundity for any 
adult independent of temperature and equal to 0.12 times its teneral 
weight. 

The data 

The data come from two sources, laboratory experiments and 
measurements in the field. Fourth instar-aphids were clip-caged on 
20 cm high lime seedlings (Tilia cordata) in constant-temperature 
cabinets and under natural daylengths at 11°C and 20°C. Once 
adults had moulted the nymphs produced were removed and 
counted daily for 10 days after the start of reproduction, when the 
adults were weighed. The results were combined with those of 
Dixon (1971) and Brown (1975), carried out at 15°C and 20°C, 
respectively, to give the expressions for pre-reproductive delay and 
initial reproductive rate. Ad hoc methods were used initially to fit 
these expressions, then as a check the actual values were regressed 
on the estimates. Correlation coefficients were highly significant (for 
reproductive rate r = 0.83, d.f. = 71, F<0.01; for pre-reproductive 
delay r = 0.89, d.f. = 20, P<0.01), while slopes and intercepts were 
not significantly different from 1 and 0, respectively. 

The effect of parental age on reproductive rate was obtained from 
Dixon's (1972) experiments on morph-determination. These yielded 
the numbers of nymphs produced at intervals during the lives of 
adult viviparae, at constant temperatures of 15°C and 20°C. Pre-
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reproductive delays were estimated by back-extrapolation of the 
curves of cumulative offspring production, and the mean numbers of 
nymphs produced per day of reproductive life were expressed as 
proportions of the initial reproductive rate, over the first 10 days of 
reproductive life. The rates of decline in relative reproductive rates 
appeared to be the same for rates initially high and for those initially 
low, hence, presumably, for large and for small adults. When the 
grouped results are graphed on a scale of accumulated temperatures 
the 15°C and 20°C figures approximately coincide (Fig. 35). The 
same temperature transformation was used as that involved in the 
reproductive rate, namely (temperature)1,5, scaled so that values of 
2 to 3 correspond to the period of constant reproductive rate. The 
straight line relating decline in reproductive rate to values greater 
than 3 was fitted by eye. 

The potential total fecundity of any adult is calculated as: 

where summation is over all days of the adult's reproductive life, R 
is the reproductive rate, W the weight, T the temperature and F the 
correction factor for accumulated temperature experience. £ FT15 

is the area under the line in Fig. 35, equal to 1750 on the 
(day-degree)1,5 scale, which gives the value for £ i ? of 0.12 W. 

The above estimates of reproductive rate from the laboratory 
were then compared with those from the field. Daily reproductive 
rates of weighed, clip-caged adults have been recorded in the field 
throughout each season from 1969 to 1973, each adult being caged 
for a 5-day period. Random number tables were used to select a 
single day's record for each adult, but zero reproductive rates were 
ignored unless the adult had produced nymphs on any previous day. 
Pre-reproductive delay was thus excluded from the estimates. The 
data were grouped and the relationship between reproductive rate 
and adult weight is indicated by the stars in Fig. 34. The overall 
mean corrected temperature in the field was 15°C so it appears that 
the reproductive rate in the field is slightly less than that in the 
laboratory at a similar temperature. Probably the rates in the field 
are lower because the field estimates include the effects of age or 
accumulated temperature experience which lower the reproductive 
rate, or because of stressing effects of wind and rain. However, 
regression analysis indicated an effect of temperature on the repro­
ductive rate of these clip-caged adults but no effect of wind or rain. 
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Wind and rain could well affect adults exposed on the leaves, 
however. 

The derivation of the relationship between offspring weight and 
parent weight is discussed in Section 3.5.8. 

3.5.7 Morph determination 

The model (in subroutine REPROD) 

The three morphs of the lime aphid are viviparae and the sexual 
males and oviparae. Their proportions among new-born nymphs are 
related to the time of year as shown in Fig. 37. The proportions on 
any particular day are calculated in the model by linear interpola­
tion and the nymphs produced that day assigned to the appropriate 
subclasses of the first nymphal age-class (Fig. 13). 

The data 

The data come from Dixon's (1972) laboratory experiments. 

Male production 

Fig. 37 gives the average proportions of males produced at 
different times of year by parents less than 20 days old as adults; the 
results are from two experiments, one at approximately 15°C under 
natural daylengths, the other at 15°C under a 17-hour daylength. In 
both experiments the trends in male production with time of year 
are similar and probably due to the operation of an 'interval timer' 
(Lees, 1966). 

At a finer level of resolution, male-production is also affected by 
the age of the parent and to a lesser extent by temperature and 
daylength, which are not included in the present submodel because 
of uncertainties about their action. The effect of parental age is 
illustrated in Fig. 38 which gives results for generations 3, 4 and 5 
combined under natural daylengths. Males are produced during the 
middle of a parent's reproductive life and their appearance is as 
closely related to time since the moult as to time since the start of 
reproduction or to the cumulative number of offspring produced, 
judged by a comparison of standardized variances of these quan­
tities between individuals. However, including the effect in the 
model gave fewer males than actually observed in the field, presum­
ably because of losses, mainly by flight, over the period of the 
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Fig. 37. a) Effect of time of year on the proportion of offspring which are 
males, averaged over generations 3 to 5. b) Effect of time of year on the 
proportion of female offspring which are oviparae, under natural daylength. 
• generation 2, © generation 3, O generation 4, A generation 5, • 
generation 6, • generation 7. 
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Fig. 38. Effect on male production of age of the parent as an adult, under 
natural daylengths and taken over generations 3-5. 

parent's life before male-production begins. A possible explanation 
for the anomaly might lie in the strong suggestion of a clonal effect 
in Dixon's experiments. Fig. 39 shows the distribution among clones 

Frequency of Clones 

g l Natural Daylength, 
Fluctuating Temperature 

17-h Daylength, 20°C 

* 

17-hDaylength. 15 C 

0*5 1*0 

Proportion of Males 

Fig. 39. Clonal variability in the production of males. Proportions of males 
are the maximum in any generation for each clone, among offspring 
produced by parents aged 10-40 days from the adult moult. 
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of the maximum proportions of males produced in any generation, 
for parents aged between 10 and 40 days as adults. Perhaps viv-
iparae from clones which tend to produce many males fly less 
readily than those from clones which produce few. An effect of 
temperature on male-production is indicated by the fact that a 
greater proportion of offspring were males at 20°C than at 15°C, 
taken over all generations and from the same clone reared under a 
17-hour daylength in both cases (0.74 and 0.30, respectively; x2 = 

62.2, d.f. = 1, P<0.01) At the higher temperature males also tend to 
appear sooner in the parent's reproductive life. As regards daylength, 
long photoperiods do not inhibit male-production but short ones 
appear to do so (Dixon, 1972). 

Ovipara production 

The points in Fig. 37 are for 11 clones reared under natural 
daylengths. The proportions of oviparae produced relate well either 
to daylength or to the time of birth, and neither parental age nor 
generation number need be considered in addition; high tempera­
tures have an inhibiting effect (Dixon, 1972) but this is insignificant 
in the present context. Results from rearing clones under 8-hour 
and 17-hour daylengths at 15°C (Fig. 40a) indicate that ovipara 
production actually depends on an interaction between daylength 
and time, probably of the form shown in Fig. 40b. If the stimulus 
(short daylength) is weak the effect is still felt but the response takes 
longer, a situation partly resembling dependence of egg-hatching or 
nymphal development on temperature and time but with the impor­
tant difference that the time dependence of sexual production spans 
several generations. A more detailed submodel of ovipara produc­
tion might therefore relate ovipara production to a time-
photoperiod scale, with largest increments for shortest photo-
periods. However, daylength is linearly related to the time of year in 
the range over which it acts and for the given latitude, about 54°N, 
so in the present submodel ovipara-production is simply related to 
the time of year and the effect of daylength implicitly rather than 
explicitly included. 

3.5.8 Growth and development 

The model (subroutine GROWTH) 

This submodel simulates growth in size and physiological matura­
tion of nymphs, the two being considered as related but distinct 
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frig. 40. a) Relationship between ovipara production (proportion of female 
offspring which are oviparae) and time of birth at two constant daylengths, 
° h (A) and 17 h ( • ) . b) The supposed functional relationship between the 
proportion of female offspring which are oviparae, the time of year and 
daylength. 
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processes. Exponential growth is assumed and each day the weight 
of every nymphal age-class is multiplied by a growth factor. At the 
same time, the proportion of development achieved by the age-class 
is incremented by the development rate, equal to the reciprocal of 
the calculated development time given the conditions that day. The 
adult moult occurs when the proportion of development achieved 
reaches 1, while values between 0 and 1 determine the instar of the 
age-class according to Table 7. The resulting weight of the adults is 
therefore a function of the initial weight at birth, the growth rate 
and the development time. 

Development 

The development rate of nymphs depends on temperature and 
plant quality (Fig. 41). It is calculated each day as: 

DV = (DX+DN+DM)/3 
where 

DX = development rate at the maximum corrected temperature 
DN = development rate at the minimum corrected temperature 
DM = development rate at the mean corrected temperature 

DV 
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Fig. 41. a) Effect of temperature (T, °C) on development rate (DV, propor­
tion of nymphal development achieved per day) $ experimental points, • 
points used in linear interpolation, b) The factor (DVF) modifying develop­
ment rate according to the amino-nitrogen concentration in the phloem (N, 
% dry weight). 
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and the rates are obtained by linear interpolation from Fig. 41a. The 
daily development rate, DV, is then multiplied by the plant quality 
factor, DVF, given by: 

DVF=l + 0.27(N-0.2): DVF>1 

where 

N = soluble amino-nitrogen concentration in the leaves (%) 

Growth 

The growth factor for each day is related in the model to density, 
cumulative density (aphid-weeks), temperature, plant quality and 
the calculated development rate, thus (Fig. 42): 

LR = 1.5373-0.00064C-0.00174D-0.00809T+0.24(N-0.2) 

where 
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Rg. 42. The components of aphid growth: a) the effect of cumulative 
density (aphid weeks 100 cm"2) on log (adult weight/birth weight) (LRC); 
b) the additional effect (LRD) of density (D, numbers 100 cm"2); c) the 
additional effect (LRT) of mean temperature (T,°C); and d) the additional 
effect (LRN) of amino-nitrogen concentration (N, % dry weight). 
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UR = log (weight at the adult moult/weight at birth) 
C = cumulative density (aphid-weeks/100 cm2) within the range 

50-350 
D = density (aphids/100 cm2) 
T = mean daily shade temperature (°C) 
N = soluble amino-nitrogen concentration in the leaves (%) 

and 

GF= 10LHXDV 

where 

GF = factor by which weights are multiplied each day 
DV = calculated development rate that day 

The data for development 

To obtain the relationship between development rate and temper­
ature aphids were reared at 11°C, 16°C, 20°C and 25°C under a 
17-hour daylength in climatic cabinets. They were clip-caged on 
20 cm-high lime seedlings (Tilia cordata) and inspected daily, giving 
development times (Table 8) and approximate times spent in the 

Table 7. Proportions of development (P) and 
cumulative proportions of development (C) 
achieved during the various instars. 

instar 

1 
2 
3 
4 

P 

0.230 
0.300 
0.155 
0.315 

C 

0.230 
0.530 
0.685 
1.000 

various instars at the 4 temperatures; instar lengths were then 
converted into proportions of total development achieved (Table 7). 

When aphids were reared isolated and crowded at 10 per clip-
cage, the crowded ones took no longer to develop than the isolated 
ones (Table 9, P>0.05). However, when reared on growing tissue 
aphids took 14% less time to develop than those reared on mature 
tissue (Table 10, F<0.01). The quantitative relationship between 
development rate and plant quality was based on an increase of 
16% in the rate for an increase in soluble nitrogen concentration 
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Table 8. Aphid development times at con­
stant temperatures on mature tissue. 

Temperature mean devt time 
(°Q (days) 

11 42.9 
16 15.3 
20 11.0 
25 10.7 

Table 9. Mean development times for aphids 
reared, crowded or isolated, at 2 tempera­
tures on mature tissue. 

temperature development time (days) 
(°C) isolated crowded 

15 20.2 21.21 
20 11.0 11.23 

Table 10. Mean development 
times for aphids reared on mature 
and growing tissue at 12°C. 

development time (days) on 

mature growing 
tissue tissue 

36.0 30.4 

from 0.2% to 0.8%, where 0.8% is the greatest mean value likely to 
be experienced by an aphid over the course of its development in 
spring and 0.2% is the average level for summer and autumn (see 
Fig. 18). 

Development times predicted by laboratory experiments were 
then compared with those in the field. Table 11 shows development 
times and overall mean temperatures measured on a tree at Glas­
gow in 1974, and the development times and corrected mean 
temperatures quoted by Llewellyn for the field in 1967. The results 
differ very little from those predicted by the laboratory experiments, 
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Table 11. Aphid development times in the field. 

mean development 
temperature °C. time (days). 

14.6 20.0 

15.5 17.5 

15.8 16.0 
15.0 19.1 
15.1 20.5 

source 

Junê  
corrected field 

July > temperatures, 1967, 

Aug, 
from Llewellyn (1970). 

Glasgow Univ. tree 
Glasshouse 

any discrepancies due to temperature fluctuations being relatively 
insignificant in the region of 15°C as shown in Fig. 43. 

Although not included in the present submodel there is clearly a 
distribution associated with mean development times and develop­
ment rates. Measured in the laboratory, development rates are 
normally distributed with mean 1.0 and standard deviation 0.117 
(#2 = 9.95, d.f. = 8, P>0.25, comparing frequencies of rates lying 

Development Time (Days) 

§0 

30 

10 -

10 IS 
Mean Temperature °C 

20 

Fig. 43. Comparison of relationships between development time and mean 
temperature when the temperature is constant (observed, Line B) and 
fluctuating with an amplitude of ±5°C (generated by the model, Line A). 
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within given intervals with those expected from a normal distribu­
tion). 

The algorithm for predicting development rates 

Perhaps the most widely used algorithm in insect simulation 
models involves a physiological time scale based on accumulated 
day-degrees above a threshold (Hughes, 1962; Gilbert et al., 1976). 
However, this algorithm assumes a linear relationship between 
development rate and temperature and in many cases ignores effects 
of fluctuating temperatures within each day. Watt (1968) and Howe 
(1967) discussed the effects of fluctuating temperatures on rates of 
activity and development. If the rates are related to temperature 
non-linearly then integrating or summing them over the range of 
fluctuating temperatures experienced gives a total increment less 
than or greater than that for a constant mean temperature, depend­
ing on whether the rate curve is convex or concave. There appears 
to be no convincing evidence for any additional physiological effects 
of temperature fluctuations on development rates of aphids, with the 
possible exception of Messenger's (1964) study on development 
rates of the aphid Therioaphis maculata Buckton. He quoted a 
discrepancy at low temperatures between observed development 
times and those calculated by hourly summation using a relationship 
based on a rather puzzling extrapolation (Messenger's Table 5), and 
it is possible that development rates at low temperatures are under­
estimated. If so, such underestimates could account for the discre­
pancy since calculated development times are extremely sensitive to 
additive errors in their reciprocals (the rates) when the latter are 
small. 

At medium or low temperatures, therefore, development under 
alternating temperatures will be at least as rapid as implied by 
hourly summation. The question then is how significant are temper­
ature fluctuations in the case of the lime aphid, and what is the 
appropriate algorithm? 

A non-linear curve of development rate with temperature was 
assumed in the first instance. It is clearly so at high temperatures, 
and Chambers' (1979) results for the sycamore aphid suggest that 
this is also the case at low temperatures. A simple simulation was 
then carried out to compare several possible algorithms on the basis 
of their predicted development times over a range of constant and 
alternating temperatures. In each case the assumed standard was the 
development time predicted by hourly summation, given a sine 
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curve of temperatures fitted to the maximum and minimum each 
day, and the relationship between development rate and constant 
temperatures shown in Fig. 41a. The algorithms are as follows: 
1. Summation of daily development increments based on the mean 
temperatures. This takes no account of temperature fluctuations 
during each day. 
2. Summation of integrated daily development using maximum and 
minimum temperatures and the trapezoidal integration rule, to give 

D V = (D r e + D w + 2D1M)/4 

where 

DV = proportion of development achieved daily 
&TX = development rate (proportion achieved daily) at the 

maximum temperature 
Dm = development rate at the minimum temperature 
DTM = development rate at the mean temperature 

The method assumes a symmetrical curve of temperatures between 
the 24-hour maximum and minimum each day. Development rate 
then varies throughout the day as illustrated in Fig. 44 and the daily 
increment is obtained by integrating the rate. In this case the 
integral is approximated by the trapezoidal rule with the day divided 
into 4 equal parts, giving the above formula for the area under the 
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Fig. 44. The assumed sine curve of instantaneous development rates (D) 
throughout each day, the four points of inflexion corresponding to the 
maximum (TX), minimum (TN) and mean (TM) daily temperatures. 
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rate curve and the development achieved per day. 
3. Summation of integrated daily development using maximum and 
minimum temperatures and Simpson's rule for integration, to give: 

where 

DV, D-rx, Dm and D^ are as above. 

In most respects the method is the same as the previous one, the 
only difference being that in calculating the area under the develop­
ment rate curve, Simpson's rule assumes a curve between each pair 
of ordinates while the trapezoidal rule assumes a straight line. 
4. Hourly summation of proportions of development achieved using 
maximum and minimum temperatures, the non-linear relationship 
between development rate and temperature, and a sine curve of 
temperatures throughout each day. The temperature Th in hour t is 
thus: 

Th = (TX- TM) sin (2<7rh/24) + TM 

where TX and TM are the maximum and mean daily temperatures. 
The proportion of development achieved per day is the mean of the 
calculated rates for each of the 24 hours. 

The results of these simulations are given in Table 12. Algorithm 
1 based only on daily mean temperatures considerably over­
estimates development time at low alternating temperatures (by 
60% for a temperature of 10±5°C). 

Development integration using the trapezoidal rule and Simpson's 
nile both give results very close to those obtained by hourly 
summation, the trapezoidal rule yielding marginally better agree­
ment than Simpson's rule, but with a slightly more complex formula. 
The characteristic features, that development at low temperatures is 
accelerated by temperature fluctuations while at high temperatures 
the reverse occurs, are well reproduced by both. Moreover, the 
computing time required for their execution in a large simulation 
program is clearly less than that for hourly summation. Develop­
ment integration by Simpson's rule was therefore chosen as an 
appropriate algorithm for the model. 

Given the widespread use of physiological time scales based on 
day-degree summation, it is interesting to compare the results 
obtained with those of the methods described above. Day-degree 
summation implies a linear relationship between development rate 
(DV) and temperature (T), given in this case by: 
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Table 12. Development times (days) predicted by different simulation 
algorithms for constant and alternating temperatures. The algorithms are: 
1) summation of daily proportions of development based on mean temper­
atures 2) integration of daily development using the trapezoidal rule 
3) integration of daily development using Simpson's rule 4) hourly summa­
tion of development increments 5) summation of day-degrees using mean 
temperatures 6) summation of day-degrees using maximum and minimum 
temperatures and Ives' method. Algorithms 1) to 4) assume a non-linear 
development rate/temperature relationship, 5) and 6) a linear one. For 
further explanation see text. 

temperature 
(°C) 

Mean 

10.0 
10.0 
10.0 
10.0 

15.0 
15.0 
15.0 
15.0 

20.0 
20.0 

20.0 
20.0 

25.0 
25.0 

DV = 

Max 

10.0 
12.5 
15.0 
20.0 

15.0 
17.5 
20.0 
25.0 

20.0 
22.5 

25.0 
30.0 

25.0 
27.5 

T-7 

Min 

10.0 
7.5 
5.0 
0.0 

15.0 
12.5 
10.0 
5.0 

20.0 
17.5 

15.0 
10.0 

25.0 
22.5 

algorithm 

1 

56 
56 
56 
56 

19 
19 
19 
19 

11 
11 

11 
11 

11 
11 

2 

56 
52 
44 
32 

19 
19 
19 
20 

11 
12 

13 
15 

11 
12 

3 

56 
51 
41 
28 

19 
19 
19 
21 

11 
12 

13 
16 

11 
12 

4 

56 
52 
43 
30 

19 
19 
19 
20 

11 
12 

13 
16 

11 
12 

5 

48 
48 
48 
48 

18 
18 
18 
18 

11 
11 

11 
11 

8 
8 

6 

48 
48 
45 
34 J 

18 
18 
18 
18 

11 
11 

11 
11 

8 
8 

143 

and the algorithms are: 
5. Summation of day-degrees above 7°C to a total of 143 using daily 
mean temperatures only. 
6. Summation of day-degrees above 7°C to a total of 143, using 
24-hour maximum and minimum temperatures and Ives' (1973) 
triangulation approximation. Each day's increment, DV is now: 
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DV=(Mean-7) (7^ min) 
_,__ {Max-I)2 , . x DV = ^Tn &-\ (mm ̂ 7 ^ max) 

2(Max —Mm) 
DV=0 (max ̂ 7) 

Summation of day-degrees in the normal way yields considerably 
shorter development times at high constant temperatures than im­
plied by the non-linear relationship between development rate and 
temperature (Table 12). The predicted development time at low 
constant temperatures is extremely sensitive to the position of the 
threshold, and there is no reduction in development time under 
fluctuating temperatures; it is overestimated by 12% for a low 
temperature with a 5°C amplitude and by 60% if the amplitude 
increases to 10°C. Ives' method is a clear improvement under low 
fluctuating temperatures but still underestimates development time 
at high constant ones. Whether the linear or non-linear relationships 
are assumed, temperature fluctuations can clearly be significant, 
especially at low mean temperatures which are nevertheless well 
within the range experienced by the aphid. Fig. 43 summarizes the 
effect, showing development times at different constant tempera­
tures and at temperatures fluctuating with a 5°C amplitude, similar 
to that in the field. There is still a need for experimental data not 
only for temperatures covering the range of mean values in the 
field, but for those near the maxima and minima. 

The data for growth 

As a first stage in modelling growth, the factors affecting adult 
weights were determined by laboratory experiments. The growth 
process is then considered, and the quantitative effects of the above 
factors on growth assessed by regressions of field data. 

The factors affecting adult weight 

Aphids reared clip-caged in groups are smaller than those reared 
in isolation (Dixon, 1971a) and the effect appears to act through the 
leaves (Brown, 1975; Kidd, 1975). Recent experiments have shown 
that not only crowding during development but also conditioning of 
leaves by previous aphid infestation can cause weight reductions, up 
to 60% in the latter case. 

First generation aphids in the field are up to 50% heavier than 
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those of later generations, but develop on good quality tissue at 
relatively low temperatures. To assess possible effects of tempera­
ture, plant quality and generation number, aphids from the first and 
second generations were reared at 12°C and 20°C, on mature and 
growing seedlings (Tilia cordata) about 20 cm high. Some of the 
plants were subjected to room temperatures 6 weeks before the 
emergence of fundatrices in the field to give mature tissue for first 
generation rearings. Others were kept at 5°C to provide growing 
leaves for the second generation. 

Mean aphid weights were compared between generations for each 
of the 4 categories: mature tissue at 20°C; mature tissue at 12°C; 
growing tissue at 20°C; growing tissue at 12°C. Bartlett's test 
indicated homogeneity of variance between the mean weights (P> 
0.05 in all cases), and there was no significant difference between the 
weights of adults of generation 1 and of generation 2 under any of 
the above 4 regimes (P>0.05 in all cases). Pooling the generations 
and considering individual aphid weights, we compared the effects 
of plant condition and temperature. Weights were significantly 
higher (P< 0.001) on growing tissue than on mature tissue, both at 
12°C and at 20°C, and significantly higher (P< 0.001) at 12°C than 
at 20°C both on growing tissue and on mature tissue. The resulting 
weights are shown in Table 13. 

Table 13. Effects of temperature and the 
state of the leaves of lime saplings on aphid 
weights achieved in the laboratory (weights in 
/xg, confidence limits are for P = 0.01). 

state of leaves 
temperature • 
(°C) growing mature 

12 872±36 756±43 
20 658±33 526±33 

The conclusion, therefore, is that experience of low temperatures 
and growing tissue during development significantly increases adult 
teneral weights in an approximately additive way. Further, the 
effects are the same for fundatrices and for aphids of the second 
generation indicating that the high fundatrix weights observed in the 
field are environmentally, not inherently determined. Therefore 
they can be modelled in the same way as those of later generations, 
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though this does not imply that fundatrices are similar in all re­
spects, rather that any differences are likely to be more subtle. For 
instance, small fundatrices reared under crowded conditions on 
mature tissue, a situation not occurring in the field, reproduced as 
adults at a rate higher than predicted from the equations based on 
results from later generations. 

Finally, Brown (1975) showed that small parents produce offspring 
which are also small as adults. A curve was fitted to her data by a 
non-linear least-squares program, with offspring weight standar­
dized to a maximum of 1 to allow comparison with other experiments 
under different rearing conditions. The curve is (Fig. 36): 

A = l-1.0333e-OOO77P 

where 
A = relative weight of offspring (0 ̂  A ^ 1) 
P = actual weight of parent (fig) 

Such a result implies either that the growth rates of offspring are in 
some way pre-determined by the mother during embryogenesis or 
that the weight of the mother determines the weight of the nymph at 
birth, which in turn influences the final weight it achieves as an 
adult. There is no evidence for the former but a strong indication 
that the latter may be true since small parents do produce nymphs 
which are small at birth. Offsping from parents of known weight 
were weighed in groups of 3 or 4 on a Kahn electric micro-balance, 
within 24 hours of birth. The results are shown in Table 14 together 
with some data of Simpson's (unpublished); significance levels refer 
to weights of groups. The weights are not those at the actual instant 
of birth, but are treated as birth weights for the purposes of 
modelling. They were expressed as proportions of the maximum, for 
each experiment, and are plotted against parent weights in Fig. 36. 
There is an obvious similarity in the relationships between weight of 
offspring at birth and parent weight, and weight of offspring when 
adult and parent weight. However small nymphs become larger 
adults than would be expected if adult weight were a constant 
multiple of birth weight. That is, the effect of parent weights on 
weights of the offspring at birth is greater than on their weights at 
maturity. It would be reasonable to expect compensation of this 
kind, given what is known about the regulatory nature of growth 
(Hubbell, 1971; Calow, 1973). However, it is unlikely that signific­
ant errors would result from considering birth weights to be constant 
proportions of the final weights attained and specific growth rates to 
be similar for small and large nymphs. Maximum birth weights are 
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Table 14. Weight (jig) of offspring within 24 h of birth from parents of 
different weight 

weight of 
parent 

675 

570 
468 

356 

850 
400 

650 
250 

offspring weight 

rel. 

0.98 

1.02 
0.92 

0.82 

1.00 
0.96 

1.00 
0.75 

actual 

23.67} 

24.67J 
22.331 

19.83J 

25.021 
24.04J 

26.701 
20.0 IJ 

24.171 

21.08 J 
• P< 0.025 (data from Simpson 

n = 24 unpublished) 

P>0.05 
n = 15 groups of 4 

P<0.01 
n = 26 groups of 3 

assumed to be 24xxg, and the equation relating birth weights to 
parent weights corresponding to that for adult weights and parent 
weights is: 

B = 24-24.8 e -0.0077P 

where 

B = actual weight of offspring at birth (/xg) 
P = actual weight of parent (/xg) 

No direct relationship has yet been demonstrated between weights 
of lime aphids at birth and at maturity but evidence is beginning to 
emerge for such an effect in Aphis fabae Scop. (Dharma, 1979). For 
the lime aphid, the expected adult weight in the absence of crowding 
is about 580 /xg. Given a maximum birth weight of 24 /xg this yields 
a factor for increase of 24. 

Laboratory experiments have shown, therefore, that crowding, 
temperature and plant quality during development, conditioning of 
leaves by previous aphid infestation, and parental weight all affect 
the weight of an adult lime aphid. Having established which factors 
are involved and before moving on to consider the process of 
growth, we can quantify in an approximate way their relative 
importance by a brief analysis of data from the field. The data 
consist of weekly measurements of adult weights throughout each 
season, from 1969 to 1973, on the trees sampled for population 
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numbers. Associated with each weight is an estimate of the mean 
temperature, density and cumulative density experienced during 
development, assumed to be over the previous 3 weeks, while 
parent weights are assumed to be those of adults weighed 3 weeks 
previously. In deriving the growth rate later in this section the data 
are analyzed by regression methods, but for present purposes a 
ranking and grouping procedure is used; as Watt (1968) pointed 
out, this is particularly useful when dealing with intercorrelated 
variables. Maximum aphid weights in summer are about 600 fig and 
in spring when temperatures are low and plant quality high max­
imum weights observed are around 850 fig. By partitioning the 
records for summer weights according to temperature, a 4°C drop in 
temperature corresponding to that between summer and spring 
gives a weight gain of about 50 /xg, leaving 200 fig attributable to 
plant quality. The extent to which the maximum summer weight of 
600 fig is reduced by crowding can be assessed in a similar way, by 
grouping the data according to values of density and cumulative 
density experienced during development, ignoring the few cases 
where parental weights are small enough to affect those of the 
offspring (less than 350 fig). High densities give a maximum weight 
reduction of 75 fig and high cumulative densities a reduction of 
175 fxg so that an adult aphid's weight can be partitioned as shown 
in Fig. 45. Such a scheme is only approximate since several of the 
factors may interact in practice, but it serves as a fair indication of 
their relative importance. Plant quality appears to be the most 
significant of the extrinsic factors, and cumulative density, presuma­
bly acting through the plant, the most significant of the aphid-
induced ones. 

The growth process 

Considering the graphs of weight gain given by Llewellyn (1970), 
growth in the lime aphid appears to be exponential to a plateau 
reached at the adult moult. Therefore, knowing the development 
rate (DV) and the ratio of adult weight to weight at birth (R) for a 
set of constant conditions, we can calculate a growth factor as 

GF=RDV 

for the conditions prevailing over the given small time interval, and 
where DV refers to this interval. If development is assumed to be 
independent of growth in size, then the factor GF can be applied to 
the current weight over each time increment from birth until ac-
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M9 

800 

700 

600 

500 

400 

• 

• 

• 

• 

N 

40% 

10% 

D 
15% 

CD 

35% 

850 pg - Fundatrices in Spring 

600pg - Aphids in Summer Low Population 

350 ug - Aphids in Summer, High Population 

Fig. 45. The components of an adult aphid's weight, estimated from field 
data (see text). N, the increase associated with the increased concentration 
of amino-nitrogen in the phloem in spring; T, the increase associated with 
lower temperatures in spring; D, the decrease associated with crowding; 
and CD, the decrease associated with cumulative density (aphid-weeks) 
within a season. Percentages relate to the total range of variation of adult 
weights. 

cumulated development reaches unity and the aphid moults. Al­
though convenient for modelling this assumption is almost certainly 
a considerable over-simplification, for the time of moulting is likely 
to depend on weight and perhaps on current growth rates. Wilbur & 
Collins (1973) suggested that metamorphosis in amphibians is facul­
tative and can occur over a wide range of body weights, depending 
on the net advantage of remaining in the aquatic environment. 
Doing so increases the risk of predation but provides opportunity 
for continued growth which may lead to enhanced future fecundity 
and an increased probability of survival. So, they suggested, 
metamorphosis occurs at a low weight if the growth rate is low but 
at a high weight if it is high. Lime aphids appear to behave in a 
similar way. Fig. 46 shows the relationship between final weight 
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Adult Weight - ug 

800 • 

600 

400 

200 
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17 13 19 20 21 22 23 

Development Time - Days 

24 

Fig. 46. Relationship between weight attained and development time for 
aphids reared at a constant temperature of 15°C, isolated (D), and crowded 
(O). Points are means of numbers of individual records denoted by figures 
within them. 

attained and the time taken to develop by aphids reared at 15°C on 
saplings of Tilia platyphyllos Scop. The relationships are: 

W=1258-1.55f 19^r^24 
r = 0.43, d.f. = 73, P<0.01 

for isolated aphids, and 

W=996-1.4731f 19*£f^24 
r = 0.70,d.f. = 22,P<0.01 

tor aphids crowded during development. The slopes are not signifi-
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cantly different (P > 0.25) though the intercepts are (P < 0.01), and in 
both cases aphids which take longest to develop are also smallest at 
the moult, implying a smaller exponential or specific growth rate 
throughout. In other words, as with amphibians, moulting occurs at a 
low weight if the growth rate is low and at a high weight if it is high. 
Ecologically, this is reasonable as the intrinsic rate of increase is 
greatly affected by development time (Lewontin, 1965). On the other 
hand, moulting early also permits rapid emigration when conditions 
favour colonisation elsewhere over reproduction and competition in the 
original environment. It may be that the facility to emigrate rapidly is 
so important that it explains why the crowded aphids in Fig. 46 moult 
at similar times to the isolated ones rather than at similar weights 
which take longer to achieve. 

If moulting is in some way linked to growth rates, a mechanism is 
required to explain this link, and to account for the fact that, 
although crowded aphids are smaller at the moult than isolated 
ones, they appear to take no longer to develop (Table 9). There are 
a variety of known stimuli for the secretion of moulting hormone 
(Wigglesworth, 1972), but suppose this is related to the quantity of, 
food passing through the pharynx, relative to its size. Such a 
situation exists in Locusta migratoria migratorioides (R. & F.) 
(described in Wigglesworth). Variations in growth rates will depend 
both on variations in food quality and in the amount ingested. For 
crowded aphids the observed reduction in weight at the time of the 
moult may be due mainly to decrease in the quality of the food 
while the specific amount ingested, hence the time of moulting, may 
remain the same. There is still the relationship among crowded 
aphids between weights achieved and development times which 
would be assumed to represent variations in quantities ingested. 
Aphids developing on growing tissue rich in amino-nitrogen are 
heavier and their development times are shorter. However, perhaps 
feeding rates are high under these conditions which would, on the 
above basis, account for the shorter development time. Hence it is 
possible that the specific feeding rate determines the time of moult­
ing and the food quality, amount ingested and the time of moulting 
determine the weight achieved. Fig. 47 shows the position of the 
moulting point in the weight/time plane. 

Derivation of the daily growth factor 

As shown above, the growth factor on any day can be obtained 
from the development rate and the expected ratio of adult weight to 
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Weight 

Time 

Fig. 47. Diagrammatic representation of growth and of the action of factors 
determining the time of moulting and weight at the moult. C, changes in 
degree of crowding during development; T, changes in temperature during 
development; N, changes in soluble amino-nitrogen concentration during 
development; V, background variability observed given otherwise constant 
conditions (e.g. including local variations in food quality). 

weight at birth under the conditions prevailing that day. The calcu­
lation of development rate has already been described, and given 
the factors which affect adult weight their quantitative effects on 
growth were assessed by regression analysis of the field data. The 
dependent variable was log (adult weight/estimated birth weight) 
since it gave the best fit and its overall value is approximately equal 
to the arithmetic mean of the separate values for each day of the 
aphid's development. Averages of the independent variables, temp­
erature, density and cumulative density, over the development 
period were also used. Birth weights were calculated from estimated 
parent weights and although cumulative density and density during 
development were highly correlated, grouping the data into classes 
according to the values of these variables showed that their effects 
on log (weight/estimated birth weight) were approximately additive. 
The resulting regression equation, for adults of the second and later 
generations, is: 
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log C^\ = 1.5373-0.00064C-0.00174D-0.00809T 

5 0 ^ C ^ 3 5 0 

i?2 = 0.6,d.f. = 16,P<0.01 

where 

W = adult weight 
B = weight at birth 
C = aphid-weeks/100 cm2, with a minimum of 50 and maximum 

of 350 
D =denisty (aphids/100 cm2) 
T = mean shade temperature (°C) 

The plant quality effect involves the addition of the term 0.24(N— 
0.2) for values of N, the percentage of amino-nitrogen in the 
phloem, greater than 0.2. The regression equation indicates that, in 
the field, a maximum increase in weight of about 10% may be 
expected from the low temperatures in April and May when fundat-
rices develop. Given an observed maximum weight for fundatrices 
50% greater than for adults of later generations, this leaves 40% of 
the increase attributable to an increase in mean nitrogen concentra­
tions experienced from 0.2 to 0.8 (Fig. 18). A 40% increase is an 
increase in log (adult weight/birth weight) of 0.146, giving a coeffi­
cient for the nitrogen effect of 0.146/0.6 or 0.24. The effect of 
temperature appears to be much less in the field than in the 
laboratory and the reason for this is not entirely clear; given the 
assumptions about growth and development, a higher final weight 
would be expected under fluctuating temperatures than under a 
constant temperature with the same mean, but the effect is too small 
to account for the discrepancy. 

3.5.9 Parasitism 

The model (subroutine PARA) 

The aphid is parasitized by a species of Praon (Brown, 1975). All 
deaths from parasitism are assumed to occur at the adult moult and 
the proportion killed is time-dependent but density-independent, 
thus (Fig. 48): 

PAR = 0.01 DAY-2.06 O^PAR^O.155 

where 
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Fig. 48. Effect of time of year on the proportion of adults parasitized. 

PAR = proportion of moulting adults parasitised 
DAY = time of year in days. 

The data 

Fig. 48 was based initially on Brown's (1975) dissections of adult 
aphids from the field in 1971. The aphids were assumed to have 
moulted a week before being dissected so 7 days were subtracted 
from the time of each observation; the line was fitted by eye. The 
assumption that mortality from parasitism precedes reproduction is 
probably not unreasonable, since live parasitized adults have a 
greatly reduced reproductive rate. 

In addition, mummified carcasses of parasitized aphids were 
counted and removed each week as part of the sampling prog­
ramme. There was no positive relationship between observed prop­
ortions of the population parasitized in August and September and 
the average population density during these months (Table 15). 
Proportions parsitized were the weighted means of weekly observa­
tions which fell in the different density classes. Re-analysis of the 
data also yielded no evidence for an effect of cumulative density (cf. 
Barlow, 1977). The weighted mean proportion parasitized in August 
and September of 1971, when cumulative density was high, was 
lower than the weighted mean for other years when it was low 
(0.035 and 0.043, respectively). Brown's figures for 1971 were then 
multiplied by 0.61, the correction factor of: 
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Table 15. Proportions of aphids parasitized 
during August and September, at different 
population densities in the field. 

density proportion 
(number/100 cm2) parasitized 

< 1 0.099 
1-3 0.022 
3-6 0.035 

> 6 01026 

mean observed proportion parasitized in all years 
observed proportion parasitized in 1971 

to give the relationship used in the model. 

3.5.10 Winter mortality 

The model 

The proportion of eggs laid which hatch in the following spring is 
taken to be constant and equal to 0.172, or approximately 1/6. 

The data 

All eggs on a 3-m high sapling (Tilia platyphyllos) in the field 
were counted in March. The total included those obviously dead, 
from their shrivelled and sunken appearance. The 3rd and 4th instar 
nymphs were counted subsequently on the leaves, in the middle of 
May. There were 470 eggs and 81 nymphs, giving a survival rate of 
0.172. This is obviously a fairly crude estimate, and is likely to omit 
mortality of eggs which disintegrated to the extent that they were no 
longer discernible, but includes some mortality of 1st and 2nd instar 
nymphs. However, in estimating the number of nymphs emerging 
from the number of eggs laid these errors would tend, if anything, to 
cancel each other out. 
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3.6 The predator/leafhopper submodel 

3.6.1 Introduction 

This subsystem includes three components, the black-kneed cap-
sid population, the 2-spot coccinellid population and the leafhopper 
population, shown in the relational diagrams of Figs 4, 5 and 6. 
Representing these components are three population sub-models 
sharing a common structure, applied weekly in subroutine POP and 
generating changes in numbers and age-distributions of the popula­
tions throughout the year. The populations are stored as vectors, the 
elements of which correspond to numbers in each stage (Fig. 13), 
and a modified Leslie matrix (Leslie, 1942; Usher, 1972) is used to 
model the processes of egg-hatching, development, mortality and 
reproduction, operating over a time period of 1 week (Fig. 49). F is 
the weekly reproductive rate and the basic elements T and S 

l -T ( l ) . . . . F 

T(1)S(1) 1-T(2) -

T(2)S(2) 1-T(3) -

T(3)S(3) 1-T(4) -

T(4)S(A) 1-T(5) 

T(5)S(5) 1-T(6) 

T(6)S(6) 1-T(7) 

Fig. 49. The modified Leslie matrix used to model populations of the 
leafhopper, the 2-spot coccinellid and the black-kneed capsid. T is the 
probability of entering the next stage each week, in the absence of mortal­
ity, S is the probability of surviving the transition, and F is the weekly 
reproductive rate. 

represent, respectively, the probability of entering the next stage 
each week in the absence of mortality and the further probability of 
surviving this transition; the product of T and S, therefore, gives the 
weekly proportion of each stage actually entering the next. Egg-
hatch is included in this framework in the same way as transitions 
between other stages, and for ease of representation adult mortality 
is considered as a proportion passing from the adult stage to a 
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further, notional stage corresponding to dead adults or adults which 
have emigrated. With certain exceptions, described below, the trans­
ition probabilities, T, are constant and assumed equal to the recip­
rocals of the stage-lengths (Usher, 1972). The survival probabilities 
are constant with all mortality assumed to occur on transition 
between stages. No account is taken of variable development rates, 
though the effect could be included by making the transition prob­
abilities dependent on temperature or prey intake over the previous 
week. The specific submodels for leafhopper, capsid and coccinellid 
populations are now considered in more detail. 

3.6.2 The leafhopper population 

The model 

Overwintering eggs are assumed to hatch over a 2-week period 
from 19 May to 2 June (Fig. 50a) and hatching success is 27%. The 
nymphs pass through 5 instars without further mortality at a rate 
governed by the instar durations and resulting weekly transition 
probabilities (Table 16). Most adults emigrate shortly after the adult 
moult and these are ignored by the model, emigration being treated 
on a 74% mortality between 5th instar nymphs and adults resident 
on the tree. Resident adults lay eggs at the end of August and die at 
the end of September (Fig. 50b). For convenience, egg-laying is 
assumed to occur in a single pulse (Fig. 51b) and is density-
dependent (Flanagan, 1974), related to the number of resident 
adults thus (Fig. 51a): 

FL = 19A-° 24 

where 

FL = eggs laid per resident adult per 100 cm2 

A = resident adults per 100 cm2 

The data 

The time-dependent pattern of egg-hatch was deduced from field 
observations and the approximate instar lengths were based on a 
comparison of times at which observed numbers of each instar had 
reached half their initial peak values in the field. Flanagan (1974) 
determined hatching success and obtained the following relation­
ships from observations in the field (his Figs 36, and 37 and 38 
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TLI 

1-0 

0*5 

0 

- a -

• 

TL8 

1«0 
- b -

139 146 153 273 

TBI 

1-0 

0-72 
0*58 

0*06' 

- C -
TB8 
1*0 

- d -

149 163 177 273 

Fig. 50. Time-dependent rates (or transition probabilities) in the 
predator/leafhopper submodel, namely: a) proportion of leafhopper eggs 
hatching/week (TLI); b) proportion of leafhopper adults 
disappearing/week, by emigration or death (TL8); c) proportion of black-
kneed capsid eggs hatching/week (TBI); d) proportion of black-kneed 
capsid adults disappearing/week, by emigration or death (TB8). t is the 
number of days from the start of the year. 

Table 16. Duration of stages, transition probilities and survival prob­
abilities for the leafhopper. Transition probabilities are equivalent to the 
weekly proportions of each stage entering the next in the absence of 
mortality, and survival probability to the proportions surviving the transi­
tions. TD = time-dependent. 

stage 

{j*JC? 

Instar 1 
Instar 2 
Instar 3 
Instar 4 
Instar 5 
Adult 

duration 
(days) 

_ _ 

10 
7 
7 
7 

12 
— 

transition 
probability 
(TL) 

TD Fig. 50a 
0.670 
1.000 
1.000 
1.000 
0.560 
TD Fig. 50b 

survival 
probability 
(SL) 

0.27 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
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0*10 

0»05 
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- « -

ELF 
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1*0 

0*3 

0*1 

- b -
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- d -

240 247 
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157 185 213 241 

Fig. 51. Variable reproductive rates in the predator/leafhopper submodel, 
a) Relationship between the number of leafhopper eggs laid per 100 cm2 

per week (EL) and adult density (AL). b) The factor (ELF) modifying 
leafhopper egg-laying, depending on the time of year (t). c) Relationship 
between the number of black-kneed capsid eggs laid per 100 cm2 per week 
(EB), the density of adult capsids (AB) and the aphid density (A), d) The 
factor (EBF) modifying capsid egg-laying according to the time of year (t). 
e) Relationship between the number of 2-spot coccinellid eggs laid per 
100 cm2 per week (EC) and aphid density (A), f) The factor (ECFI) 
modifying coccinellid egg-laying according to the time of year (t). 

combined): 

El A = 64.6N-0'24 

A = 0.26N 
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where 

E = eggs laid/80 leaves 
A = average adults at the time of laying/80 leaves 
N = peak nymphs/80 leaves 

The second equation gives the survival probability between 5th 
instars and average adults used in the model and the first, in 
conjunction with the second, gives density-dependent egg-laying 
thus: 

/ A \ -°-2 4 

E/A=64Ho36) 
= 46.7 A~0'24 

Hence 

H1/A1 = FL = 19A70-24 

where 

Ei and Ax are numbers per 100 cm2. 

3.6.3 The black-kneed capsid population 

The model 

Overwintering eggs hatch over 4 weeks in June (Fig. 50c) and 
hatching success is assumed to be 50%. The nymphs pass through 5 
instars, with durations and weekly probabilities of transition as in 
Table 17, and with a 25% mortality between instars 3 and 4. 10% 
of 5th instars become resident adults on the tree which disappear 
through death or emigration at the end of September (Fig. 50d); the 
rest are assumed to emigrate immediately after the moult. As with 
the leafhopper, egg-laying is considered to take place on a single 
occasion at the end of August (Fig. 5 Id), the number laid in this 
case being (Fig. 51c). 

FB=30; A>0 .2 

F B =4 ; A^0 . 2 

where 

FB — eggs laid/resident adult/100 cm2 

A = aphids/100 cm2 at the time 
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Table 17. Duration of stages, transition probabilities and survival prob­
abilities for the black-kneed capsid. Transition probabilities are equivalent 
to the weekly proportions of each stage entering the next in the absence of 
mortality, and survival probabilities to the proportions surviving the transi­
tions. TD = time-dependent. 

stage 

Egg 
Instar 1 
Instar 2 
Instar 3 
Instar 4 
Instar 5 
Adult 

duration 
(days) 

— 

8 
8 
8 

12 
14 
— 

transition 
probability 
(TB) 

TD Fig. 50c 
0.884 
0.884 
0.884 
0.580 
0.494 
TD Fig. 50d 

survival 
probability 
(SB) 

0.500 
1.000 
1.000 
0.750 
1.000 
0.100 
1.000 

The model thus embodies a numerical response to aphid density 
(Solomon, 1949) as indicated by field observations and described 
below. 

The data 

The hatching pattern of eggs was again deduced from times of 
appearance of 1st instar nymphs in the field. Instar lengths were 
based on the laboratory measurements of Glen (1973), multiplied 
by § since development took 50 days in the laboratory but appears 
to take 60 days in the field, by comparison of initial appearances of 
1st instar nymphs and adults, and medians of 1st instar and 5th 
instar distributions in time. The hatching success is arbitrary and, as 
for the leafhopper, is assumed to include all mortality sustained by 
the eggs. Survival probabilities between instars were derived from 
the field data, with the number passing through any stage being 
estimated as the cumulative abundance of the instar (nymph-weeks) 
divided by the instar length in weeks, since numbers recorded were 
generally small. In the case of adults field observations showed an 
initial high number of emigrants, then a rapid decline to a constant 
population of about 10% of the original total, persisting until the 
end of September; the emigrants are ignored in the model. The 
timing of egg-laying is as indicated by Glen (1973) and the equation 
is based on two pieces of information. First, tracing the fate of one 
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egg and given the above assumptions about survivals and stage-
lengths (Table 17), we obtain the following equivalences: 

1 egg laid -> 3.106 nymph-weeks observed —> 0.375 adults -» 
0.0375 resident adults 

Hence 

Et = 0.3219 Q+1 

a n d Rt = 0.012 Q 

where 

Et =eggs laid/100 cm2 at the end of year t 
Rt= resident adults/100 cm2 at the end of year t 
Ct = nymph-weeks observed in year t 

Cf+1 = nymph-weeks observed in year f + 1 

The second piece of information, embodying the numerical re­
sponse, is the relationship between observed cumulative nymph-
weeks in successive years, shown in Fig. 52 and given by: 

Ct+1 = 1.1 Ct; At > 0.2/100 cm2 (r = 0.95, d.f. = 4, P< 0.01) 
Ct+1 = 0.15Ct; At*=0.2/100cm2 

where 

At = aphids per 100 cm2 at the end of August in year t 

The threshold aphid density is arbitrary but consistent with field 
observations. From these relationships the number of eggs laid per 
resident adult can be derived thus: 

^ln 0.3219x1.1 ^ A tx^ 
EJR<= 0.012 ~ 3 ° ; A < > 0 ' 2 

_ , „ 0.3219x0.15 . . A . 
EJR<= 0.012 ~4> A ^ 0 ' 2 

In practice, reduced egg-laying at low aphid densities probably 
arises rather from increased adult emigration than from reduced 
egg-laying by the same number of residents, since the observed 
cumulative abundance of adults in the field, relative to that of 
nymphs, is lower in years when the aphid populations crash before 
mid-August than in years when they do not. 
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_ 2 
Nymph-weeks 100cm, Year t + 1 

— 2 
Nymph-weeks 100 cm # Year t 

Fig. 52. Relationship between observed cumulative abundance of black-
kneed capsid nymphs, in each year, their cumulative abundance in the 
previous year, and maximum aphid density in August of that year. • , 
aphids in August 2*0.2/100 cm2;# , aphids in August <0.2/100 cm2! 

3.6.4 The 2-spof coccinellid population 

The model 

The coccinellid overwinters as an adult and egg-laying is assumed 
to occur throughout spring and summer at a rate depending on the 
time of year, aphid density and other factors unrelated to the aphid 
which may determine the effective abundance of the coccinellid on 
any given tree in any particular year; these largely unknown factors 
are represented by a 'coccinellid multiplier' which normally takes 
the value 1 but in 1971 multiplies expected egg-laying by 0.3. The 
numerical response to aphid density in the second two weeks of 
June, when most egg-laying occurs, takes the form (Fig. 51e): 

EC = 0.066 log A +0.046 

where 
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EC = total eggs laid per 100 cm2 per week 
A = aphids per 100 cm2 

inversely density-dependent at high densities but with a lower 
threshold for laying of 0.2 aphids/100 cm2. This response is modified 
by the coccinellid multiplier then by a factor varying between 0 and 
1 depending on the time of year (Fig. 5If); egg-laying declines 
rapidly after the peak in mid-June and ceases by the end of August. 

The number of immigrant adults present in any week is assumed 
to be 0.037 times the estimated number of eggs laid that week. Eggs 
hatch in 10 days and the larvae pass through 4 instars before 
pupating, with durations and weekly transition probabilities as in 
Table 18. Adults are assumed to remain for 1 week on the tree and 
background survival rates of other stages are given in Table 18. 

Table 18. Duration of stages, transition probabilities and survival prob­
abilities for the 2-spot coccinellid. Transition probabilities are equivalent to 
the weekly proportions of each stage entering the next in the absence of 
mortality and survival probabilities to the proportions surviving the transi­
tions. 

stage 

•^•^c^c) 

Instar 1 
Instar 2 
Instar 3 
Instar 4 
Pupa 
Adult 

duration 
(days) 

10 
9 
6 
6 

10 
17 
7 

transition 
probability 
(TC) 

0.700 
1.000 
1.000 
1.000 
0.700 
0.410 
1.000 

survival 
probability 
(SC) 

0.500 
0.800 
0.940 
0.940 
0.940 
0.850 
1.000 

The data 

Since numbers of eggs recorded in the field were generally small, 
egg-laying was estimated from observed numbers of 2nd to 4th 
instar larvae. 1st instars were excluded from the analysis since their 
distribution on the leaves is highly aggregated, unlike those of later 
instars. The number of eggs laid in any week t is therefore assumed 
to be 
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/2nd instar 3rd instar 4th instar \ 
2.66x1 larvae in 4- larvae in + larvae in 1 /3 

week f + 3 week f+4 week f + 5/ 

where the time delays are based on instar durations and each larva 
contributes, on average, 3 times to the estimate. The figure 2.66 
corrects for hatching success and 1st instar mortality. Measured in 
this way the average number of eggs laid in any year during June is 
related to the mean aphid density, thus (Fig. 53a): 

Mean Eggs Laid 100cnT2 Week in June 

0*06 -

0*04 

0*02 

-a-

-

l^y 
65A^72 

4fcl 

t 

i9AS^ 

A " 

0-5 0*5 
- 2 

1-0 

Mean log Aphids 100cm During June 

Observed/Predicted Maximum Eggs Laid Week 
- 1 

171 187 1i9 213 227 241 

Days from Start of Year 

Fig. 53. a) Relationship between coccinellid egg-laying in June, estimated 
from numbers of larvae (see text), and aphid density at that time. Figures on 
the graph are years, b) Variation in weekly coccinellid egg-laying with time 
of year, where predicted values are those given by the above relationship. 
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E = 0.33 log A + 0.023 (r = 0.98, d.f. = 5, P < 0.01) 

where 

E = number of eggs laid/100 cm2 in June 
A =mean number of aphids/100 cm2 during June 

The point for 1971 was excluded from the regression for reasons 
given below. From observations of actual egg numbers in 1969, 
Wratten (1973) presented a somewhat different numerical re­
sponse, but estimates based on larval numbers suggest that in other 
years eggs are laid at lower aphid densities than the threshold he 
quotes. Variation in egg-laying throughout the year is shown in Fig. 
53b, in which ratios of numbers of eggs laid to those expected, given 
the above equation and the aphid density, are plotted against time. 
Egg-laying and aphid density on each occasion are the maximum 
values for any year, and the former is estimated, as before, from 
larval numbers; the yearly pattern is qualitatively similar to that 
based on the small numbers of eggs actually observed. The coccinel-
lid multiplier was invoked to take account of the one anomalous 
departure from the relationship between egg-laying and aphid den­
sity, namely in 1971. It almost certainly reflects, at least in part, 
the influence of spring temperatures on coccinellid egg-laying activ­
ity. For temperatures were noticeably lower during the middle two 
weeks of June in 1971 than in any other year except 1972, when 
aphid densities were in any case too low for significant egg-laying 
(Fig. 53a). 

Since few immigrant adults were observed in spring and early 
summer, their abundance had to be estimated from the number of 
eggs laid. Only in 1969 were reasonable numbers of both recorded, 
when 297 eggs were laid by 11 adults, assuming the latter were each 
present for 1 week. The adult population in any week was therefore 
assumed to be at least 0.037 (=11/297) times the calculated 
number of eggs laid that week. 

Instar lengths in Table 18 are as given by Wratten (1973 and pers. 
commun.); however, in order to avoid transitions through more than 
one stage in any week and to keep the model structure simple, 
transition probabilities were based on durations of 1 week for each 
of the first 3 instars. Background survival rates are taken from the 
laboratory data of Ellingsen (1969). 
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4 Results 

4.1 Comparison of model output with observed results 

4.1.1 The problem oi validation 

Caswell (1977) suggested that the problem of validation differs 
according to the type of model; empirical, predictive models can be 
validated by statistical methods, while explanatory models can only 
be corroborated through repeated attempts to refute them. As an 
example he quoted von Foerster's model of exponential growth in 
the human population, validated as a predictive model but refuted 
as an explanatory one since, although agreement with observed data 
is good up to the present time, it is evident for a number of reasons 
that it cannot continue to be so. In effect this means that predictive 
models may be right for the wrong reasons and still serve their 
purpose, but explanatory models must be right for the right reasons. 
However, both must give acceptable agreement with what is ob­
served, and this itself raises a problem for it is difficult to see how 
statistical methods can be used to test such an agreement. Given 
that sets of observed and predicted data often represent time series, 
it is not possible to assign significance levels to such indices as x2 or 
the correlation coefficient, although the quantities themselves can 
readily be computed. Thus, for a given number of points they 
summarize the extent of agreement between observed and predi­
cated data, and could therefore be used to compare different 
models, but they cannot serve as absolute measures of any one 
model's realism. It may prove possible to standardize the testing of 
ecological or population models but for the moment a model's 
verisimilitude must lie in the eye of the beholder; there would seem 
to be no special virtue in representing what is clear to the eye by a 
correlation coefficient with which no significance level can be as­
sociated. 

Output of the present model is therefore compared in the usual 
way with observed data simply by graphing the two, and since it is 
an explanatory model it is tested under a reasonably wide range of 
conditions. The comparison is carried out in three stages: first, with 
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the overall within-season (oviparae vs. fundatrices) and between-
seasons (fundatrices vs. fundatrices) relationships under average 
weather conditions in the field; second, with the population trends 
during each specific year in the field, given the initial conditions and 
actual weather that year; and finally with the same relationships and 
population trends in laboratory populations. 

4.1.2 Overall changes in numbers within and between years in the 
field 

The model was run first with average temperatures, a constant 
daily survival rate for all stages of 0.97, which includes the average 
effect of wind, and three initial numbers of fundatrices spanning the 
range observed in the field. (10, 100 and 1000/m2, referred to 
hereafter as low, medium and high initial numbers). Fig. 54 shows 
the predicted relationships and the observed points for different 
years, averaged over trees 1 and 2. Agreement at this level is good; 
the model re-creates the observed inverse relationships between 
fundatrices and oviparae and between fundatrices in successive 
years. Since the line in Fig. 54 has a negative slope close to - 1 , the 
model predicts stable limit cycles with an amplitude dependent upon 
the starting density, and a neutral equilibrium point for a fundatrix 
population of 63/m2 (log value 1.8); superimposed upon this be­
haviour would be a strong stochastic element representing the action 
of disturbing factors. Fig. 55 shows the population trends generated 
by the model for each initial density, and, given that oviparae form a 
roughly constant proportion of the total at the end of a season, it is 
clear from this figure how the above inverse relationships arise. 

In all except one case, departures of individual points in Fig. 54 
from the predicted line are probably due to variation in the disturb­
ing effects of weather on mortality, flight and reproduction. How­
ever, although the point for 1971 lies close to the line there is good 
reason to believe that it is reached through an entirely different 
mechanism, as described below (p. 120). 
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Log Ptak Fundatricts m* Ytar t • 1 

0 • 

- a -

LogCPaak Ovipirit m2 • 1) , Ytar t 

-b-

0 • 

-2 Log Ptak Fundatricts m, Ytar t 
-2 Log Ptak Fundatricts m , Ytar t 

Fig. 54. Comparison of relationships generated by the model (*—*) 
between a) fundatrix densities in successive years, and b) peak densities of 
fundatrices and oviparae within each year, and those observed in the field 
on trees 1 and 2 ( • 1965, O 1966, + 1967, * 1968, • 1969, • 1970, A 
1971, A 1972; each point is the average for that year over both trees). 

- • - - b - - c -

119 2 0 3 287 119 2 0 3 287 119 2 0 3 

Timt of Ytar Days from Start 

287 

Fig. 55. Population trends throughout the year generated by the model for 
a) high, b) medium and c) low initial densities, corresponding to the three 
predicted points in Fig. 54. total numbers, ovipara numbers; 
vertical bars are fundatrix numbers in the current and following years. 
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4.1.3 Population changes during each year in the field 

Fig. 56 shows the observed and predicted results from 1965 to 
1972, given the actual temperatures and winds and the appropriate 

2 -

1965 

. • • • 
• • • 

1966 

1968 

1970 

4 r 

203 287 287 Days 

i » U » X ^ i I I • • • • • • • • L 

A M J J A S A M J J A S 

Tim© of Year 

Months 

Fig. 56. Comparison of observed population trends on trees 1 and 2 in the 
field, from 1965 to 1972 ( ), and those generated by the model given the 
same weather and initial conditions each year ( ). 
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initial numbers of fundatrices, leafhoppers and black-kneed cap-
sids each year; coccinellid egg-laying is assumed to be only 30% of 
normal in 1971 (Section 3.6.4). The main disturbing effects now 
operating are of wind speed on mortality and temperature on 
egg-hatching, development rate and reproductive rate. Agreement is 
good in 1967, 1968, 1969 and 1970, and although it is less good in 
other years the model does express some of the variability observed 
from year to year in the field, as well as the underlying basic 
patterns of behaviour; it is the extent of this variability which is 
lacking. Thus, given similar initial fundatrix populations the model 
predicts lower numbers in 1965 than in 1968 and lower ones in 
1967 than in 1970, but the differences are less than was actually the 
case. In 1972 the model also predicted a period of retarded growth 
during June, but not to the extent realised in the field. Looking at 
the observed and predicted results for 1969 and 1970 in more detail 
(Fig. 57), there are two main discrepancies. In 1969 the model 
suggests that more 4th instar nymphs and adults are present im­
mediately before the crash than was actually the case and it fails to 
re-create the marked decline in numbers of all stages at the end of 
1970. Otherwise, predicted instar distributions and adult weights are 

2 800 I-
• -

*- too 
I 

400 
133 204 204 276 276 133 

Tim« of Yt*r - Days from SUrt 

Fig. 57. Detailed population trends and adult weights generated by the 
model for 1969 and 1970. young nymphs (instars 1-3); 4th 
instar nymphs; viviparae; —— oviparae. 
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approximately correct, although it must be remembered that the 
latter are based largely on analysis of field records (c.f. Fig. 12). 

In years when there is poor agreement between observed and 
predicted results, what possible reasons might underly these dis­
crepancies? In 1965 virtually no predators were present and num­
bers were never high enough for density-dependent flight to become 
significant, so the reason is almost certainly an omission from the 
model of one or more effects of weather. Such effects probably act 
on flight and mortality since reproduction is better understood; 
actual reproductive rates have been monitored for some years in the 
field and the variation from week to week is relatively small. As to 
the actual weather factors which might be involved, temperatures 
during 1965 were unexceptional (Fig. 16) but wind speeds during 
June were high (Fig. 17) and the population failed to increase at all 
during this particular period. Wind speeds were also high during 
June in 1972 when aphid numbers were extremely low, none being 
recorded on two sampling occasions; had the model reproduced this 
effect to the correct extent, agreement during the rest of the season 
would be good since observed and predicted results.differ by a 
constant amount thereafter (Fig. 56). In general, therefore, where 
the model overestimates the actual population, as in 1965 and 1972, 
this may be attributable, at least in part, to underestimation of the 
effects of high wind speeds on mortality; this is not invariably the 
case since in 1967, for instance, wind speeds were too low to 
account for the discrepancy. However, it is less easy to explain why 
the model should underestimate population growth rates, as in the 
summers of 1966 and 1971. Wind speeds were not particularly low, 
and although temperatures during June and July of 1966 were high 
those up to mid-June in 1971 were extremely low, yet the popula­
tion was growing rapidly at this time (Fig. 56). Suppression of flight 
or reduction in mortality would both yield increased rates of popula­
tion growth and it is not clear as yet which of these is responsible 
and under what conditions. The lack of agreement at the end of 
1971 is because cumulative densities in the model were not high 
enough to cause a population crash. In the more detailed compari­
son of population trends in 1969 and 1970 (Fig. 57), the discrepancy 
at the end of 1970 may also be due to an underestimation of the 
effects of wind, since it was removed by changing the relationship in 
the model to one giving a reduced mortality at low wind speeds but 
a greater one at higher speeds. The model's prediction of too many 
4th instar nymphs and adults before the crash in 1969 may be due 
to the presence of a density-dependent nymphal mortality omitted 
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from the model, or to underestimation of the mortality inflicted by 
the coccinellid predators; 3rd and 4th instar coccinellids were pres­
ent earlier in 1969, and were possibly more voracious than the 
model suggests because of a short period of high temperatures (Fig. 
16). 

Ideally, the next step would be to run the model continuously 
from 1965 to 1972 rather than start each year with the correct 
initial conditions. However, since errors would rapidly accumulate 
over this period, there is little point in running the model continu­
ously until very good agreement is obtained within individual years. 
Thus we did not attempt to do this. 

4.1.4 Population changes in the laboratory 

In applying the model to Brown's (1975) insectary populations 
certain modifications are necessary. First, since predators and para­
sites were absent these were omitted from the model. Second, the 
average daily mortality rate was assumed to be 1% instead of 3%, 
for all stages. Third, the daily net emigration rate of alates was 
assumed to be reduced by 50%, since the populations were enclosed 
in cages and only the roofs and floors of these were sticky, making it 
possible for alates landing on the sides to return to the plants. 
Finally, since mortality and flight in the insectary were apparently 
unaffected by cumulative density and adult weights affected to a 
lesser extent than in the field, the effect was reduced in the model by 
dividing the accumulated density by 3. With no predation or parasit­
ism and reduced mortality, flight and effects of cumulative density, 
the model gives the results shown in Fig. 58. Population trends 
during the year for low (10/m2) and very high (2000/m2) fundatrix 
numbers give quite good agreement with those observed in the 
insectary, though the peak numbers are slightly underestimated (Fig. 
58c and d). The predicted relationship between peak fundatrices 
and peak oviparae (Fig. 58b) is also fairly close to that observed, 
with a much smaller negative slope than in the field (Fig. 54b) and 
higher overall fundatrix numbers produced, though these are slightly 
underestimated by the model. However in the relationship between 
peak fundatrices one year and the next, the pronounced negative 
slope observed in the field re-appears among the insectary popula­
tion but with higher overall numbers. While the model correctly 
predicts this elevated general level of abundance it does not recreate 
the inverse relationship (Fig. 58a); rather, it yields one of the same 
slope as for the oviparae/fundatrices line (Fig. 58b). Why, in the 

104 



Log Peak 

Fundatrices m 

Year t + 1 
4 

- a -

0 • 

Log Peak 

Oviparae m 

Year t 

- 2 -b -

- 2 Log Peak Fundatricts mt Year t 

- c - - d -

119 203 

Days from Start of Year 

287 

Fig. 58. Comparison of observed population behaviour in an insectary and 
that generated by the model, a) The relationship between peak fundatrices 
in successive years (•, observed; • — • , model), b) The relationship be­
tween peak oviparae and peak fundatrices in the same year, c) Population 
trends throughout the year for an initially high-density (2000/m2) popula­
tion ( observed; model), d) Population trends throughout the 
year for an initially low-density (10/m2) population. 

insectary populations, should the negative slope in the between-
seasons relationship be greater than that in the within-seasons one, 
and why does the model fail to reproduce the effect? The answer is 
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almost certainly that ovipara weights and hence the number of eggs 
laid by each were actually much lower (about 200 /xg) in the 
populations initially at a high density than were those in the initially 
low-density populations (about 400 /xg). In the model the weights 
were 382 /xg and 415 /xg, respectively at the times of peak ovipara 
numbers, giving a much smaller difference in egg-laying potential. 
This in turn must have been due to the underestimation of numbers, 
hence of cumulative density, in the initially high populations (Fig. 
58c), or to an underestimation of its effects on aphid weights in the 
laboratory. 

4.1.5 Population changes of predators and leaflioppers 

Fig. 59 shows the predator and leafhopper population trends 
generated by the model. This is in no sense a validation since the 
submodel was based to a large extent on field census data, but 
serves to illustrate the numbers and stages of predators and their 
alternative prey which affect the aphid population at different times 
of year. Figs 59a and b show changes in numbers of the 2-spot 
coccinelid when aphid populations are initially high and low respec­
tively, and average weather conditions are assumed. The main 
difference is that egg-laying occurs at a lower rate and over a 
somewhat longer period in the second case than in the first. The 
population trends for the capsid are given in Figs 59c and d, again 
for high and low aphid densities, and here the difference lies in the 
number of eggs produced at the end of the year Figs 59e and f show 
leafhopper populations developing from two different initial num­
bers of eggs, 200/m2 and 50/m2 respectively. Since egg-laying is 
density-dependent (Section 3.6.2) the increase in egg numbers from 
beginning to end of the year is smaller when the initial density is 
high than when it is low; the theroretical equilibrium number of 
eggs is 2400/m2, a very high figure. 
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Fig. 59. Population trends of 2-spot coccinellids, black-kneed capsids and 
leafhoppers throughout the year, generated by the predator/leafhopper 
submodel, a) Coccinellid with a high initial aphid population (1000/m2). 
b) Coccinellid with a low initial aphid population (10/m2). c) Capsid with a 
high initial aphid population which crashes, d) Capsid with a low initial 
aphid population which increases, e) Leafhopper at a high initial density, 
f) Leafhopper at a low initial density. 
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4.2 Sensitivity analysis 

This section is concerned with the effects of changes in assump­
tions about the forms of relationships or the values of parameters 
where these are not well established. The next section deals with 
changes in the biology as it actually exists, applied to the model in 
order to gain insight into the functioning of the system. 

There is no rigorous approach to sensitivity analysis possible in a 
model of this kind. In the first place the analysis will rarely be 
complete, since it is seldom possible to examine all the interactions 
resulting from simultaneous changes in the values of two or more 
parameters. Even where parameters are only varied independently, 
it is difficult to compare the effects in a meaningful way. A common 
method is to compare the results on a model's output of constant 
proportional changes in each parameter, assuming that those yield­
ing the greatest effects are most worthy of further study. However, 
the effect on the model will depend on the absolute value of the 
parameter. For instance, a 50% decrease in the daily mortality rate 
of 0.03 will have a much smaller effect than a 50% decrease in the 
daily survival rate of 0.97, and it is hardly appropriate to conclude 
that more research should be devoted to survival than mortality. In 
the present case, therefore, sensitivity analysis involves testing a 
selected range of specific alternative hypotheses. 

The main method adopted for answering the questions in this and 
the following section is to consider the way in which changes applied 
to the model affect the relationship between the numbers of fundat-
rices one year and those the next, expressed as their logarithms (Fig. 
54a), and, less frequently, their effects on population trends within a 
year. Fig. 60 shows the population behaviour through time corres­
ponding to the different relationships, within the ranges shown on 
the graphs. Where the relationship is linear, it is described empiri­
cally by the equation: 

log Nl+1 = a1 + b1 log Nt 

or 

where Nt and Nt+U are the numbers of fundatrices in successive 
years. There is an equilibrium point at N, = a1/b and the population 
exhibits the following behaviour depending on the values of b and 
b1: 
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Fig. 60. Effects of different relationships between fundatrices in successive 
years on population behaviour in time, over the ranges shown in the graphs. 

b^O, b*^l; Continuous increase or decrease 
0 < b < l , 0 < b 1 < l ; decrease or increase towards a stable equilib­

rium point 
b= 1, b1==0; perfect regulation—attainment of a stable 

equilibrium point in the next year 
l < b < 2 , —1<b l< 0; converging oscillations 

b = 2, b1 = — 1; stable limit cycles 
b>2, b x < - l ; diverging oscillations and eventual extinction 

Where the relationship is curvilinear, it can be considered as a series 
of straight-line segments and the above conclusion applied to each. 
For instance, if the relationship at any point has a slope (b1) greater 
than 1, the population will continue to increase from this point 
unless at higher numbers the slope changes to become less than 1. 
The relationship must be distinguished from the usual Ricker curves 
(Ricker, 1954) and, when linear, from an equation commonly used 
to describe the dynamics of single-species, discrete-generation 
populations, since in the present case the relationship operates not 
from generation to generation but from year to year, covering four 
or five overlapping generations. It represents the outcome of in-
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teractions between competition, predation and various time lags, 
and the parameters a, a1, b and b1 in the linear form given above are 
actually complex functions of these different effects. In each figure 
the normal behaviour of the model is indicated by a dotted line and 
equilibrium points occur where the solid one, representing the new 
output, gives log N,+1 equal to log Nr 

The main areas of uncertainty in the model are the forms of the 
relationships governing alate flight, the maximum adult longevity in 
the field, the average daily mortality of all stages and the way in 
which mortality varies with wind speed. 

Fig. 61a shows the effects of changing the adult flight component 
(the proportion of alates flying per day in response to current 
weighted population density) in two ways: by doubling the slope of 
the relationship, hence the density-dependence; and by making the 
response dependent only on densities of adults and 4th instar 
nymphs, since it may be that younger nymphs do not affect the 
activity of adults (Kidd, pers. commun.). In neither case is the 
output significantly changed. Figs 61b and c show the results of 
alterations to the nymphal component (the proportion of alates 
flying per day in response to nymphal experience of crowding). 
These include: removal of the density threshold and two alterations 
to the slope of the relationship (Fig. 61b); halving of the response; 
reduction of the maximum response from 0.4 to 0.3 (Fig. 61c). The 
form of the year-to-year relationship is fairly insensitive to changes 
in the nymphal component at low or medium initial densities, the 
only effect being a reduction in its elevation when the threshold is 
removed, giving more flight at low densities (Fig. 61b). At high 
initial densities, however, the result depends to a greater extent on 
the form which the nymphal component takes; different responses 
tend to give less marked population crashes during summer hence 
higher numbers of aphids at the end of the year. The behaviour of 
initially high-density populations during the year, characteristic Of 
different nymphal flight components and different adult ones, are 
shown in Fig. 62, with no other control processes acting. The adult 
component yields population peaks in successive generations, while 
the nymphal one yields peaks in every other generation and more 
pronounced crashes if it embodies a threshold. 

Varying the density-independent background level of flight has a 
similar effect to changing the background mortality rate of all 
instars, discussed below (Fig. 6Id, compare Fig. 68a). If it is 
increased, then densities during the year are lowered, the impact of 
density-related processes reduced, and overcompensation in the 
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Fig. 61. Effects of changes in the flight equations and the maximum adult 
longevity on the predicted year-to-year relationship between fundatrix 
numbers, a) The adult flight component is doubled (FA = 0.01WD, Line 1) 
or made dependent on densities of adults and 4th instar nymphs only 
(FA = 0.005(A + N), Line 2); b) the threshold is removed from the 
nymphal component (FN = 0.01DD, Line 1) or the threshold is removed 
and the slope halved (FN = 0.005DD, Line2); c) the maximum level of the 
nymphal component is reduced from 0.4 to 0.3 (Line 1) or the overall 
response is halved (Line 2); d) the background flight level is halved (Line 1) 
or doubled (Line 2); e) the maximum adult longevity is halved, from 30 to 
15 days. FA and FN are proportions of alates flying per day, A and N 
densities of adults and 4th instar nymphs, WD weighted density of all stages 
and DD the mean total density during nymphal development. new 
relationship; original relationship. 
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Fig. 62. Effects of different adult (a), b) and c)) and nymphal (d), e) and f)) 
flight components on population behaviour, generated by the model, when 
each one is the only control process acting: a) the normal adult component 
(FA = 0.005WD); b) the adult component doubled (FA = 0.01 WD); c) the 
adult component dependent only on densities of adults and 4th instar 
nymphs (FA = 0.005(A+N)); d) the normal nymphal component (FA = 
0.01(DD —10), 0*£FN«s0.4); e) the nymphal component with no threshold 
(FN = 0.01DD, 0^FN^0.4); f) the nymphal component with no threshold 
and reduced slope (FN = 0.005DD; FN^0.4). FA is the proportion of 
alates flying per day in response to the current weighted density of all 
instars (WD) or to current density of adults (A) and 4th instar nymphs (N), 
and FN that are dependent on density during nymphal development (DD); 
densities are numbers/100 cm2. 

year-to-year relationship lessened, first at the high initial density 
then at the medium density. If it is reduced, higher numbers result 
at the low and medium initial densities and the theoretical equilib­
rium level is increased. 

Altering the maximum adult longevity from 30 to 15 days has 
very little effect (Fig. 61e). Changing the relationship between 
mortality of all instars and wind speed, making it linear or more 
curvilinear, also has no significant overall effect; rather the fit 
between modelled and observed population trends tends to be 
better in some years and poorer in others. 
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4 3 Effects of the different processes 

There are two key questions to be asked of the model. First, what 
are the effects of the various density-related processes on the aphid 
population: in particular what causes the observed inverse relation­
ship between numbers at the beginning of successive years, and 
which factors are capable of regulating the populations? Second, 
what are the effects of disturbing factors on the population's be­
haviour? These questions are considered first, followed by the 
effects of varying specific parts of the system or components of the 
main processes. 

4.3.1 Density-related processes 

The density-related processes considered are: 
1. The adult flight component (dependent on current density) 
2. The nymphal flight component (dependent on density during 
nymphal development) 
3. Changes in adult weight (affecting reproductive rate and depen­
dent on density during nymphal development and cumulative den­
sity) 
4. Predation (a complex function of density) 
5. Flight and mortality dependent on cumulative density 

The cumulative density effects on flight and mortality remain to 
be confirmed by experiment but the existence of the other processes 
is well established. The possibility that aphids are also subject to 
density-dependent mortality cannot be discounted (Barlow, 1977), 
though there is little evidence for it and the effect is similar to that 
of density related flight (Fig. 67). It is difficult to specify the nature 
of the density-dependence involved in predation; the numerical 
response of the coccinellids is density-dependent at low densities 
and inversely density-dependent at high ones (Fig. 53a), but what­
ever the predators' response the effect on the aphid population 
depends also upon its own subsequent behaviour and upon the time 
of year. Of the above list of density-related processes, those involv­
ing flight are behavioural while the others are imposed either by the 
behaviour of other species or by the constraints of the aphids' 
physiology or environment. 

What causes the inverse year-to-year relationship? There are two 
stages involved in answering this or any similar question which it is 
important to distinguish; the first involves the factual question as to 
the basis of the relationship in the model, while the second involves 
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the hypothesis that this also holds in the field. To answer the 
question in a situation where the processes interact in a complex 
manner, each in turn was removed from the model (Fig. 63). 
Removal of an active regulating factor will increase the slope of the 
relationship, either until it becomes greater than or equal to 1 and 
the population is no longer controlled, or to another value still less 
than 1 if a second regulatory process is effective or is activated when 
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Fig. 63. Effect on the year-to-year relationship between fundatrix numbers of 
removing each control process in turn from the model, namely: a) the adult 
flight component; b) the nymphal flight component; c) changes in adult 
weight; d) cumulative density effects; e) predation. new relationship; 

original relationship. 
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the first is removed. If there is no change in the relationship this can 
mean one of two things: either the process removed plays no part in 
regulating numbers when others are active, though it may be 
rendered effective in their absence; or a second regulatory process 
substitutes perfectly for the first. Which of these outcomes is true 
can usually be assessed by looking more closely at details of the 
model's output, such as the population trends during the year. The 
most important regulatory processes may be defined as those whose 
removal results in the greatest change, and if this is to the extent 
that the inverse relationship is destroyed, the processes involved 
must be regarded as necessary, though not necessarily sufficient 
conditions for its existence. In this case removal of the cumulative 
density effects yields no change in the output (Fig. 63d) and it is 
easy to see that this is because they are ineffective at the relatively 
low cumulative densities resulting from the action of the other 
processes. Removal of the adult flight component has a small effect 
at all initial densities (Fig. 63a) and removal of the weight effects 
produces a slightly greater change at the high density only (Fig. 
63c). However, the processes giving the most significant changes are 
the nymphal flight component at high initial densities and predation 
at medium and high initial densities (Figs 63b and e). The latter, 
therefore, are the most important regulatory processes and both are 
required to give the inverse relationship in the model, since this is 
largely eliminated when either process is removed. Fig. 64a shows 
the relationship which results when the two most important proces­
ses, predation and the nymphal flight component, act alone. Al­
though these give overcompensation, the precise extent of the 
response generated by the model at high initial densities is also a 
result of changes in adult weight and, to a lesser extent, the adult 
flight component, as shown in Fig. 64a. 

Which factors are capable of regulating the population? This is a 
slightly different question from asking which factors are normally 
involved, in an interaction with others. Clearly, some processes may 
not be dependable in the sense that their effect is always the same; 
predation and flight in particular may be suppressed or enhanced by 
weather, and in these circumstances other factors like the cumula­
tive density effects may become more important. Although both 
predation and the nymphal flight component are necessary to give 
the inverse relationship discussed above, in the absence of either the 
population is still regulated by one or more of the other processes. 
There is an enormous potential for increase if no control process 
acts (Fig. 64b), although in practice the food supply would be 
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Fig. 64. Effect on the year-to-year relationship between fundatrix numbers 
of: a) the presence of the key control processes, predation and the nymphal 
flight component, alone (Line 1), with the adult flight component added 
(Line 2), or with weight changes added (Line 3); and b) removal of all 
controls. new relationship; original relationship. 

exhausted and the population rapidly eliminated were this to occur. 
Nevertheless this demonstrates the effectiveness of the control pro­
cesses, for each alone, with the exception of predation, has the 
potential for regulating fundatrix numbers at levels not much higher 
than normal (Fig. 65), while cumulative density effects and weight 
changes can even cause overcompensation (Figs 65c and d). Al­
though predation fails to regulate the population over the whole 
range of initial densities, it gives results closest of all to normal at 
low and medium densities, confirming its role as the main factor 
determining the form of the relationship over this range. In inter­
preting these figures, showing the year-to-year relationships, it is 
important to remember that they do not show all the effects of the 
processes, for numbers during the year may vary more than num­
bers of fundatrices at the beginning of each; a medium initial density 
may yield a medium initial density in the following year either if the 
population stays low or if it rises to high levels and crashes. In 
addition, any discussion of regulation must relate to the average 
impact of disturbing factors or to a certain range of population 
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Fig. 65. Effect on the relationship between fundatrix numbers in successive 
years, of each control process acting in isolation: a) the adult flight compo­
nent; b) the nymphal flight component; c) changes in adult weight; 
d) cumulative density effects; e) predation; f) predation with aphid back­
ground mortality doubled. new relationship; original relation­
ship with all processes included. 

densities; there may be a number of local equilibria around which 
regulation occurs, and it is well known that populations normally 
controlled by predators and parasites may 'escape' under particu­
larly favourable environmental conditions to reach a much higher 
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though normally temporary equilibrium level. The lime aphid shows 
the same behaviour, for predation alone can regulate the population 
and even cause overcompensation within the low to medium range 
of initial numbers but when the latter are high the aphid population 
escapes this control (Fig. 65e). If the background mortality rate is 
increased from 3% to 6% per day, then predators can regulate the 
population over the whole range of initial densities (Fig. 65f), and 
the precise effects of the other control processes will likewise change 
with variations in background flight or mortality rate. 

Hence there is no key regulating factor, nor are the effects of the 
control processes in Fig. 65 additive. Rather, the lime aphid displays 
a system of hierarchical regulation with each process capable of 
substituting for another; moreover, the different processes interact 
and different ones are involved at different initial densities. The 
model shows that an inverse relationship between fundatrix num­
bers in successive years, and between fundatrix and ovipara num­
bers within a year, can be generated in two ways. The first involves 
predation at medium initial densities and the combination of preda­
tion and the nymphal flight component at high ones; at the medium 
initial density numbers stay fairly low throughout the season but at 
the high density there is a marked crash (Fig. 55). This mechanism, 
embodying processes known to exist but with the assumption that 
their magnitude in the field is comparable with that determined in 
laboratory experiments, yields results similar to those observed in 
most years in the field. The second mechanism involves an increase 
in flight or mortality dependent only on accumulated density during 
the season. Here population peaks reached during the year are 
higher and the inverse relationship results from changes in the 
timing of the crash, which occurs when the cumulative density 
reaches a threshold; the higher the initial density the sooner the 
threshold is reached and the crash occurs, and the fewer the sexuals 
and eggs produced (Figs 66a, b and c). This mechanism has not been 
verified experimentally but there is independent evidence for its 
existence (Sections 3.5.3 and 3.5.4) and it would explain the popula­
tion's behaviour in 1971. In this year, and on tree 6 in 1973, the 
points in the year-to-year relationship are fairly close to those in 
1966 and 1967 (Fig. 54a), yet the population behaviour during the 
year was quite different; in 1971 much higher numbers were at­
tained, few predators were present, and the population crashed in 
August (Fig. 11). Clearly, something must have suppressed any 
density-related flight during the first part of the year, and the model 
shows that re-activation of flight in late July, combined with preda-
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Fig. 66. Effects of cumulative density-dependent processes (a,b and c) and 
adult weight changes (d, e and f), acting alone, on population trends 
throughout the year for high, medium and low initial densities. total 
numbers, ovipara numbers; vertical bars are fundatrix numbers in the 
current and following years. 

tion at a reduced level and a decline in adult weight and reproduc­
tive rate, both of which were observed in 1971, is not sufficient to 
give a complete crash (Fig. 67). There is no evidence for increased 
mortality towards the end of a year, independent of aphid density, 
which might give a crash when combined with the reduction in 
reproductive rate. On the contrary when densities are low mortality 
is constant (Fig. 27) and low-density populations are capable of 
increasing at the time of the 1971 crash (Fig. 11). Cumulative 
density effects, therefore, appear necessary to account for its exis­
tence. The third mechanism giving an inverse year-to-year relation­
ship, through changes in adult weight alone, yields population 
behaviour during the year quite unlike any observed, and peak 
numbers far higher (Figs 66d, e and f). Moreover, here the inverse 
relationship results not from a reduction in ovipara numbers when 
initial densities are high, but from a reduction in the number of eggs 
laid by each because of their lower weight; there is no inverse 
relationship between fundatrices and oviparae within a year. 

Overcompensation between years cannot be the result of density-
related processes operating within a generation or from one genera­
tion to the next. Effects of such processes simply cancel out over the 
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Fig. 67. a) Nature of the decline in numbers resulting when the population 
is allowed to reach high numbers in early summer, through suppression of 
flight at this time (see text), but when cumulative density effects are 
removed ( ; , population trends observed in 1971). b) Effect on 
the population crash from a high initial density (as in 1969) of replacing 
density-related alate flight ( ) by density-dependent mortality of all 
stages ( ; % daily mortality = 0.001 x numbers/100 cm2). 

4 or 5 generations in the year. Rather an effect is required which 
persists through the season, such as predation, a reduction in adult 
weight or an increase in flight or mortality related to cumulative 
density. 

Although two mechanisms have been discussed whereby density-
related processes can account for the observed inverse year-to-year 
relationship, the possibility must be considered that the latter is due 
to chance, and that numbers each year are determined by weather. 
Under this hypothesis the expected variance would be between 
years not between trees, and the significance level of the relation­
ship in Fig. 7 is far lower if points for different trees are pooled for 
each year; clearly, extensive replication in time is highly desirable in 
population studies in order to take full account of variations in 
weather, or to test a model's ability to do so. It is unlikely that the 
inverse relationship is due to chance; there is ample independent 
evidence for the existence of the density-related processes, and on 
tree 3 where coccinellids were much scarcer and cumulative density 
effects absent there was no trace of an inverse relationship. 
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4.3.2 Density-disturbing processes 

Weather may influence population behaviour through its effects 
on a number of different processes, namely egg-hatching, develop­
ment rate, growth rate, reproduction, predation, other mortality and 
flight. Temperature is the most important driving variable affecting 
the first three processes, but the extent to which these vary in the 
field has already been shown to be insufficient to give the gross 
changes evident at the population level (Fig. 56). The same is 
probably true for the effect of temperature on predation, though this 
is not included in the model. Good and bad years, favourable and 
unfavourable for population growth, must therefore be determined 
largely by the effects of weather on flight, mortality or both. The 
nature of these effects is not fully understood. So to represent 
favourable and unfavourable environmental conditions the model 
was simply run with different background mortality rates and flight 
components. 

The effect of progressive increases in mortality (Fig. 68a) is to 
reduce the mean level of abundance and the theoretical equilibrium 
population, but also to change the slope of the year-to-year rela­
tionship from negative through zero to positive, first removing the 
overcompensation and then decreasing the degree of regulation. 
This is because the increasing mortality exerts a greater effect at low 
densities than at high ones, being counterbalanced in the second 
case by a relaxation of control by density-related processes. The 
lines in Fig. 68a corresponding to mortalities of 1.5% and 6% per 
day encompass most of the variation observed in the field (see Fig. 
54). At the higher level of 6%, the population is almost perfectly 
regulated but at extremely low numbers (8 fundatrices/m2), and if 
the background mortality is increased to 9% it becomes extinct. If 
the environment is extremely favourable for population growth, 
such that both mortality and flight are only half the normal values, 
there is still an inverse relationship but with higher fundatrix num­
bers at low and medium initial densities (Fig. 68b); in this case, 
however, it results from the action of cumulative density effects and 
the population peaks reached during the season are much higher. In 
all these changes it is assumed that the mortality of predators 
remains the same. In the absence of predation the population is 
much less sensitive to variations in the mortality rate between 1.5% 
and 6% per day and the equilibrium point remains unchanged; at 
the slightly higher mortality of 9%, however, the population still 
becomes extinct (Fig. 68c). 
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Fig. 68. Effects on the relationship between fundatrix numbers in succes­
sive years of variations in background mortality, flight and temperature 
( normal relationship): a) background mortality rate 0.5, 2 and 3 times 
normal; b) background mortality and all flight 0.5 times normal; c) as a) 
but with predation removed ((1), normal relationship in absence of preda-
tion); d) temperatures 2°C higher (H, ) and lower (L, ) than 
normal. 

Normal variations in temperature appear to have relatively little 
effect but Fig. 68d shows the results of a 2°C increase and reduction 
in average temperatures throughout the year, assuming that preda­
tion is unaffected. Reducing the temperature has a greater effect 
than increasing it, particularly at the lowest density where it gives a 
35-fold decrease in fundatrix numbers, showing the significance of 
even a modest temperature change if this is sustained over a whole 
season. At high initial densities, increasing the temperature effec­
tively allows the population to escape the overcompensating action 
of predation. 
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4.3.3 Components of predation 

Having shown that predation has a significant effect on population 
behaviour of the lime aphid, we then assess the relative importance 
of the two main predators and the alternative prey. Fig. 69a shows 
that removal of the leafhopper or increasing its numbers does not 
affect the aphid population. Similarly, removing the black-kneed 
capsid has little effect, but here doubling the average number 
present does reduce aphid densities slightly over the whole range of 
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Fig. 69. Effects on the relationship between fundatrix numbers in succes­
sive years of changes in the components of predation ( original 
relationship): a) removal of the leafhopper or a 10-fold increase in its 
numbers; b) removal of the black-kneed capsid and a 2-fold increase in its 
numbers; c) removal of the 2-spot coccinellid, a halving and a doubling of 
its numbers; d) a halving of the coccinellid attack coefficient (A) and 
maximum rate of eating prey (V). 
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initial population sizes (Fig. 69b). Removing the coccinellids gives a 
result similar to removal of all predation (Fig. 69c, compare Fig. 
63e), suggesting that they are almost entirely responsible for its 
effects, described above. Doubling coccinellid numbers markedly 
reduces mean aphid abundance (Fig. 69c), bringing the theoretical 
equilibrium population down to 14 fundatrices/m2 (log value of 
1.15). 

Given the importance of the coccinellids, Fig. 69d shows the 
significance of the components of their functional response. At low 
initial aphid densities, halving attack coefficients or the maximum 
amount of prey which the coccinellids can eat both have relatively 
little effect because few coccinellids are present. At medium initial 
densities either alteration greatly increases the fundatrix numbers in 
the next year, being virtually equivalent to complete removal of the 
coccinellids (compare Fig. 69c). In other words a proportional 
change in the attack coefficient or the amount required for satiation 
has a greater effect on the aphid population when its value is large 
than when it is small, and the same is also true for the actual 
number of coccinellids present. This is the reverse of what would be 
expected from the functional response equation (p. 38), but arises 
because a decreasing mortality from predation is eventually com­
pensated for by the resulting increased effect of the aphid's intra-
specific control processes. At high initial aphid densities the popula­
tion crashes to low levels in the presence of large numbers of 
coccinellids and under these circumstances the coccinellids are un­
likely to be satiated. Attack coefficients are therefore of greater 
significance than the maximum amount each predator can eat per day, 
so reducing the attack coefficient has the greater effect on aphid 
numbers (Fig. 69d). 

It is interesting to consider why the predators do not appear in 
larger numbers. For the coccinellid it has already been shown that a 
numerical response which doubles the number present gives an 
extremely low equilibrium population of aphids. At this level the 
risk of extinction of the prey is high and it is unlikely in any case 
that the first instar coccinellids would obtain sufficient food for 
survival (Dixon, 1959 Wratten, 1973). Since the black-kneed capsid 
has a smaller effect, however, slightly higher numbers can be 
sustained here. Using the model, it is possible to calculate the rate 
of increase of the capsids, over 1 generation, for different initial 
numbers of capsids and aphids. There are three basic values for this 
rate of increase: 1.1 if aphid numbers are fairly high throughout the 
year; 0.15 if they fall below a threshold of 20/m2 at the time of 
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capsid egg-laying, as may occur at the high initial aphid density; and 
0 if the aphid population is driven to extinction during summer or to 
the very low level at which capsid nymphs starve (Glen, 1973), as 
may be the case at the low initial aphid density. Fig. 70 shows that 
the capsid population can only increase if the initial number of eggs 
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Fig. 70. Effects on the rate of increase of the resident black-kneed capsid 
population of different initial numbers of 1st instar nymphs ( *£5/m2, 

10/m2, 50/m2) at different initial aphid densities. Average 
capsid numbers observed are 2/m2 and the rate of increase is taken as the 
ratio of 1st instar numbers in successive years. 

is less than or equal to about 3 times the average observed abun­
dance (about 2/m2), and only then at the low or medium aphid 
densities. The model suggests, therefore, that both predators are 
present at the highest average abundance consistent with the long-
term survival of their prey. Moreover, for most purposes the 2-
predator/2-prey system can be considered as a 1-predator/1-prey 
one, comprising only the aphid and the coccinellid. 
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4.3.4 Components of reproduction 

It has already been shown how changes in adult weights affect the 
year-to-year relationship (Figs 63c and 65c). Weight depends on 
density and cumulative density and exerts its effect on the popula­
tion through the adult's pre-reproductive delay and reproductive 
rate. Figs 71a and b shows the results of direct changes made to 
these two factors, involving a halving and a doubling of their values. 
Averaged over the whole range of initial population densities, and 
the two changes in parameter values in each case, the effects of both 
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Fig. 71. Effects on the relationship between fundatrix numbers in succes­
sive years of: a) halving or doubling the pre-reproductive delay; b) halving 
or doubling the reproductive rate; c) causing aphids to moult early (E, 0.8 
times normal development time) or late (L, 1.2 times normal development 
time); d) causing sexuals to be produced 2 weeks earlier (E) or later (L) 
than normal. 
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alterations are similar. Thus, the pre-reproductive delay and the 
reproductive rate are equally significant in their effects on the 
population's behaviour, though these effects take slightly different 
forms in the two cases. Decreases in the reproductive rate have 
smaller effects than similar proportional increases in the background 
mortality rate (compare Fig. 68a), though the results are qualita­
tively similar. 

4.3.5 Effect of parasitism 

Removal of parasitism from the model causes a slight increase in 
numbers of fundatrices produced at low and medium initial densities 
but the overall effect of parasites is small. 

4.3.6 Significance of development time 

What would be the effect if aphids moulted earlier to become 
adults of lower weight; would the increased pre-reproductive delay 
and reduced reproductive rate be compensated for by the decreased 
development time, in terms of the numbers of fundatrices produced 
in the following year? In fact, the positive effect of the decreased 
development time on population growth is greater than the negative 
one of reduced reproduction; moulting earlier givesj. greater^rate of 
increase in the short term, Taken over the whole year, however, the 
effect is~soniewhat more complex because of interactions with the 
intra-specific control processes and particularly with predation; it is 
small at initially high densities, for instance, because the effect of the 
population crash is far more significant. Nevertheless a decreased 
development time does give higher numbers in the next year (Fig. 
71c) and the model shows that it also yields more colonising 
emigrant alates. It is not immediately obvious, therefore, why the 
lime aphid does not have a shorter development time though there 
are many constraints not considered here; for instance, while the 
effects of a shorter growth period on weight gain have been incorpo­
rated, physiological maturation may be a different process requiring 
a certain time at a given temperature for its completion. Small adult 
aphids are also more vulnerable to natural enemies. It is also 
interesting to note that in the absence of predation and as a 
consequence of the intra-specific control processes, these changes in 
development time have much less effect on numbers of fundatrices, 
though the effect on numbers of emigrants is actually greater. 
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4.3.7 Significance of the time at which sexuals are produced 

Since the transition to sexual production occurs only gradually, 
parthenogenetic reproduction and population growth is possible for 
a long time after this has started. At low initial densities, with a 
population increasing during the year, bringing forward the time of 
sexual production reduces peak numbers attained but gives a longer 
period over which sexuals are present. The net result is little change 
in their cumulative abundance and in the number of eggs produced 
(Fig. 7Id). If the transition to sexual production occurred more 
suddenly, the outcome would be different. Then their cumulative 
abundance in any year and the number of eggs laid would be 
directly related to the size of the population at the time of transi­
tion, which in turn depends on the period available for parth­
enogenetic reproduction. The latter would thus be the most impor­
tant factor, yielding fewer sexuals when it is short and the sexuals 
are produced early, than when it is long. 

At high initial densities when the population is decreasing rapidly 
in summer, changing the time of sexual production has a much 
greater effect. If it is later in the year, as occurs in the sycamore 
aphid for example, there is a dramatic decline in the number of 
fundatrices produced and if the sexuals appear earlier there is a 
corresponding increase (Fig. 7 Id). At medium initial densities the 
effect is similar but much smaller. 

Since producing many sexuals early appears to give a greater 
average increase in numbers over the year, it is not clear why such a 
strategy has not been developed further in the lime aphid. 

4.4 Discussion 

Other tree-dwelling aphids also exhibit the 'see-saw' effect (the 
inverse relationship between numbers of fundatrices and oviparae) 
notably the sycamore aphid and the walnut aphid, although in the 
latter case it is less well established (Dixon, 1977). A decline in 
reproductive rate following initial high numbers contributes to the 
effect in both cases; in the sycamore aphid migration appears to be 
the other main factor involved and in the walnut aphid the addi­
tional factor is probably predation (Dixon, 1977). Interestingly, a 
host-alternating species, Aphis fabae, exhibits the same inverse 
relationship, in this case due to the delayed action of predators 
attracted by an initial high density and exerting their main effect 
later in the year (Way, 1967). So, while such population behaviour 
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is not unique among aphids the mechanisms causing it may differ. 
Why should the lime aphid behave in such a way? At the lower 

densities and as in Aphis fabae, the effect is imposed by the action 
of predators and is the outcome of a time lag and a threshold; a 
population initially too small to attract many predators becomes 
larger after a time than one initially higher but subject to predation. 
However, at the highest initial densities predation alone cannot 
check population growth and it is the additional presence of a strong 
density-related flight component which gives the rapid decline in 
numbers observed. Why then has this kind of flight behaviour 
evolved? In its absence the population would be controlled by a 
decline in the weight and reproductive output of adults, or at an 
even lower level by cumulative density effects setting an effective 
limit on cumulative abundance of the aphid in any one year, below 
the level at which a host tree is seriously damaged. Nevertheless, in 
either of these cases the densities reached are extremely high, and if 
such infestations were sustained or occurred too frequently over a 
period of years it is possible that the tree could be damaged or 
killed. Thus, Llewellyn (1970) showed that about 8000 aphids/m2 

during the season will drain completely the annual net production of 
the tree, assuming no compensatory growth, and Dixon (1971b) 
suggested that the figure may be even lower, around 5000/m2. As 
shown above, these values may be reached (log numbers of 3.9 and 
3.7) in the absence of population regulation. In addition, Dixon 
(1971b) found that the roots of infested saplings do not grow. While 
death of a host tree has not been shown to result from aphid 
infestation, a prevention of growth of this kind could lead to 
extinction of an aphid population through suppression of recruit­
ment to the population of its host, under conditions where the trees 
grow naturally from seed. Density-related flight behaviour may 
therefore avoid damage to the host. While a gene causing an aphid 
to refrain from such behaviour may be selected for in the short 
term, it seems reasonable to suppose that it would be eliminated in 
the long term, were the host to be destroyed. If the density-related 
response were replaced by a greater constant proportion flying, this 
would eliminate the risk of over-exploiting the host but reduce the 
theoretical equilibrium number of aphids, the mean density from 
year to year, and the ability of the aphid to recover rapidly from 
catastrophic mortalities at low densities. Clearly some flight is 
necessary, since colonisation must occur and must be selected for, 
however small the probability may be for any one aphid of encoun­
tering an alternative host. For although the life-span of the host is 
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long relative to that of the aphid, and tree-dwelling aphids depart in 
this respect from what might be expected of animals considered to 
be r-selected (Southwood, 1976), nevertheless the tree lives for a 
finite time and any resident population incapable of movement is 
doomed. 

Emigration by flight is therefore necessary, and a density-related 
response rather than a density-independent one not only fulfills the 
need for colonisation but also distributes flight according to the 
resident population's ability to sustain the loss and may play a part 
in preventing over-exploitation of the host. It could be asked why 
the density-dependence is so marked as to bring about a population 
crash; a nymphal flight component reduced by a half (Fig. 61) would 
appear to satisfy the main criteria for the aphid's success without the 
possible risks of extinction associated with dramatic population 
crashes. There is no answer to this, save that such speculations are 
not necessarily fruitful for they tend to involve extrapolations which 
the available data do not justify. For instance, it may be that a 
potential density-dependent mortality does exist in the lime aphid, 
as a simple consequence of the increased movement known to occur 
at high densities and possibly associated with a deterioration in 
overall food quality and the increasing difficulty of finding individual 
feeding sites which are suitable. The flight response may then be a 
desirable alternative to such a mortality, in the sense of substituting 
a small probability of successful colonisation for a certainty of death. 
A second possibility is that any change in the aphid population's 
behaviour, particularly in the direction of increasing stability, may 
qualitatively change the response of the natural enemy complex, 
again a situation which it is impossible to predict. Any prediction of 
an organism's optimum strategy would appear risky, since it is 
difficult to be certain that all relevant factors are considered and not 
all strategies which are conceivable may be physiologically possible. 
It may also be difficult to identify the criterion for optimality as 
measurements of fitness are time-dependent; a gene which causes a 
greater rate of increase over one or a few generations may become 
extinct through over-exploitation of the resources upon which the 
local population depends. Finally, even if the true optimum strategy 
could be identified, it is not necessarily reasonable to expect the 
organism to exhibit it; if evolution is occurring, then by definition at 
least some organisms are imperfectly adapted to their current envi­
ronment. 
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5 Conclusions 

5.1 Suggestions for farther work 

Modelling the lime aphid has shown that there is a need for more 
experimental work in several areas and there is considerable scope, 
too, for developments in the model itself. The experimental work 
involves, in order of importance: 
1. The effects of weather on mortality and flight in the field. The 
significance of weather and the importance of understanding its 
effects are highlighted, first, by the discrepancies between observed 
population trends in specific years and those predicted by the model, 
second, by the fact that on tree 3, numbers of fundatrices do not 
relate to those in the previous year but vary widely from year-to-
year, presumably owing to weather, and finally, by the fact that the 
inverse relationship between numbers of fundatrices in successive 
years on all trees (Fig. 7), while highly significant, nevertheless 
accounts for only 44% of the variance. Clearly, some of the remain­
der may be random 'noise' but there is every reason to believe that 
a significant proportion can still be explained. 

Experiments already carried out suggest that wind is an important 
factor affecting mortality and that temperature affects flight (Barlow, 
1977), but it seems that other factors are involved particularly in the 
second case. Mortality must be assessed in the field by monitoring 
experiments similar to the one described in Section 3.5.3, and 
although the effect of temperature on flight could be studied in the 
laboratory it would seem best that this too be investigated in the 
field. The aim in both cases is to derive predictive equations relating 
daily mortality and flight to weather so that the model is able to 
mimic more accurately the behaviour of the population in any one 
year. 
2. The effect of cumulative density on flight and mortality in the 
field. Laboratory experiments have so far failed to confirm the 
existence of such an effect on young saplings, but the model suggests 
that it exists to an extent sufficient to cause a population crash, and 
the next step is to test this hypothesis on mature trees in the field. 
This would involve monitoring flight and mortality in late July on 
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trees which have been subjected to high cumulative densities and on 
those which have not. It may be that mature trees must commit 
reserves to fruit production which in some way diminishes their 
ability to compensate for aphid damage. 
3. The extent of density-related flight and predation by coccinellids 
in the field. The magnitude of these effects indicated by laboratory 
experiments needs to be confirmed in the field. Only estimates of 
the maximum and minimum extents of flight and predation are 
required, at high and low densities respectively. 
4. The existence and magnitude of any density-dependent nymphal 
mortality in the field. 

These represent the main areas of uncertainty in the model, and 
are mostly associated with the need to study flight and mortality, as 
opposed to reproduction, in the field. Demonstrating the existence 
of an effect through laboratory experiments is of great value, but 
quantifying its magnitude and role in the field is altogether a 
different problem. Moreover, since numbers change so rapidly 
monitoring carried out in the field must be done on a daily basis, 
and it would be particularly profitable to analyse a population crash 
in this way. 

So far as developments in the model are concerned, these should 
be in the direction of increased simplicity, for the aim of building 
complex models should be to learn how to build simple ones which 
capture the essence of the system's behaviour. The best approach 
for a simple model would be to partition the within-year relation­
ship (Fig. 8a) into two or three equations relating logarithms of peak 
numbers at intermediate times. This would enable the interactions 
to be properly modelled which result from the sequential action of 
different processes, while density-dependence would be included in 
the equations along with terms representing the effects of weather 
and predation; the detailed model can be used where necessary to 
show the forms of these relationships. 

5.2 Population change in the Use aphid 

Given a knowledge of the separate component processes, a simu­
lation model of their combined action yields the following 
hypothesis which accounts for the observed behaviour of lime aphid 
populations in Scotland. 

First, the 2 predator/2 prey system can effectively be considered 
as a 1 predator/1 prey one, comprising the lime aphid and the 
2-spot coccinellid. Second, weather is important as a disturbing 
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factor and as a major determinant of peak numbers or numbers of 
fundatrices in any one year. Finally, the population is regulated by a 
hierarchy of different processes controlling population growth at 
different densities and capable of substituting one for another. The 
ultimate limit to growth in any one season appears to be not 
available space, nor death of the host through over-exploitation, but 
rather a decline in its quality to a level at which aphid survival is 
greatly reduced. Below this level numbers are regulated through a 
combination of the numerical response of the coccinellid to aphid 
densities early in the year and, at higher densities, increased flight 
dependent on densities experienced during nymphal development of 
the alates; the effect of flight in response to current density appears 
to be less significant than previously supposed (Barlow, 1977; Dixon 
& Barlow, 1979). 

Specifically: 
a) At low initial densities (about 10/m2) intra-specific processes are 
insignificant, few coccinellids lay eggs and the population builds up 
to a peak late in the year the size of which depends on weather. 
Large numbers of sexuals and eggs are therefore produced, giving a 
high initial density in the following year. 
b) At medium initial densities (100/m2) many more coccinellid eggs 
are laid and the proportional mortality inflicted later in the summer 
by the voracious 3rd and 4th instar larvae is much greater than in 
the previous case. Intra-specific controls, mainly the flight response 
to nymphal experience of crowding, are only significant if the 
weather permits rapid population growth and a consequent reduc­
tion in the impact of the coccinellids. Peak numbers are reached 
earlier in the year and fewer sexuals and eggs are produced, giving a 
medium initial density in the next year. 
c) At high initial densities (1000/m2) still more coccinellids are 
present but the proportional mortality they inflict is lower. How­
ever, in this case the density-related flight has a greater impact, 
causing an early population crash at the end of June. Predation 
accentuates this crash and keeps numbers low thereafter, giving few 
sexuals, few eggs and a low initial population in the following year. 

At medium or high initial densities, and if conditions are excep­
tionally favourable for population growth with both mortality and 
flight reduced, then very high densities are attained and a late 
population crash occurs at the end of July. Here the crash appears 
to be caused by greatly increased flight and mortality, occurring 
when the cumulative density in any season exceeds a threshold. 

This hypothesis, summarized in Fig. 72, accounts for the inverse 
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Fig. 72. A summary of the main factors which the model suggests regulate 
aphid numbers at different initial densities (A—• relationship generated by 
the model). 

relationship observed between fundatrix numbers in successive 
years, for the presence of a single population peak and the inverse 
relationship between fundatrix numbers and the time of year at 
which this peak occurs, and for the two kinds of dramatic population 
crash which can result from high numbers. The rates of population 
growth generated by the model are also realistic, and it shows that 
regulation by changes in quality of the aphids and by alate flight in 
response to current density is relatively unimportant. 

The model has also raised some important questions which might 
otherwise have been overlooked. It indicates the likely importance 
of weather and the need for complementing laboratory studies with 
measurements of flight and mortality in the field. It also suggests the 
existence of cumulative or integrated density-dependent effects. 
Raising questions is an important function of the model but the 
answers will depend on additional experimental work. The form of 
the model is deliberately contrived so that these answers can readily 
be incorporated; variables like the proportion of alates flying each 
day are those which are actually measured. 

A model of this kind calls the bluff of an optimistic ecologist; 
no-one would wish or expect to be able to recreate population 
trends exactly, but on the other hand there is a challenge which, in 
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its entirety, does not appear to have yet been met. Can a set of 
ecological processes, derived totally independently, be assembled to 
recreate population behaviour which shows no major and consistent 
departures from that observed in the field, over a realistically wide 
range of conditions? This study was intended as a significant step 
towards such a goal and the model gives very encouraging results. 
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Appendix A Glossary of FORTRAN symbols 

A Predator/prey attack coefficients 
A A Aphid adults in detail (see Fig. 13) 
AGE Subroutine updating population age structure 
AI Immigrating coccinellid adults 
AM Intermediate variable used in linear interpolation (function 

Fl) 
AM Daily mortality of adult viviparae and oviparae 
AN Aphid nymphs in detail (see Fig. 13) 
AS Aphid population summarized by instars, adult morphs and 

their weights (see Fig. 13) 
AO Initial density of aphid eggs 
BS Black-kneed capsid population by instars 
BUD Date of bud burst (0 if this has not occurred) 
BO Initial density of capsid eggs 
C Cumulative density (in subroutine GROWTH) 
C Intermediate variable used in linear interpolation (function 

Fl) 
CPH Cumulative proportion of eggs hatched 
CPHE Expected cumulative proportion of eggs hatched by the end 

of the current day 
CS 2-spot coccinellid population by instars 
CUM Cumulative density 
CO Initial density of coccinellid eggs 
D Pre-reproductive delay 
DATE Date in days and months 
DAY Time counter-days from start of year 
DD5 Summed day-degrees above 5°C from 1st March 
DEVA Expected cumulative development achieved at each moult 

(= 1 at the adult moult) 
DN The difference between current plant nitrogen level and the 

average level during summer 
DT Temperature component of the pre-reproductive delay 
DUM 
DUM1 Dummy variables for input of unwanted records 
DUM2 
DVA Proportion of development achieved in 1 day 
E Accumulated flight during a week (in subroutines FLIGHT 

and OUTPUT) 
E Eggs laid (in subroutine EPROD) per ovipara 
EB Total capsid eggs laid per week 
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EC 
ECF1 

ECF2 

EG1 
EG2 
EL 
EPROD 
F 
FA 

FC 
FLIGHT 
FLT 
FMT 
FN 

FVT 
Fl 
F3 
GF 
GFL 
GROWTH 
HATCH 
I.II 
ID 
IDUM 
IM 
IMAX 
JJJ 
3D 
K 
L 
L 
LO 
M 
M 

MAXY 
MINY 
MM 
MO 
MORTY 

Total coccinellid eggs laid per week 
Factor modifying coccinellid egg-laying depending on time of 
year 
Factor modifying coccinellid egg-laying depending on the 
year ('coccinellid multiplier') 
Eggs at the beginning of the current year 
Eggs at the beginning of the next year 
Total leafhopper eggs laid per week 
Subroutine foV egg^ying 
Background daily proportion of alates flying 
Proportion of alates flying in response to current weighted 
density 
Proportion of alates flying in response to cumulative density 
Subroutine for alate emigration by flight 
Total proportion of alates flying each day 
Total number of males flying per day 
Proportion of alates flying in response to density during 
nymphal development 
Total number of viviparae flying per day 
Function carrying out linear interpolation 
Function converting a day number to a date 
Daily growth factor, multiplying aphid weights 
Log (Expected aphid weight as an adult/weight at birth) 
Subroutine updating aphid weights 
Subroutine causing eggs to hatch 
Counters 
Days of month 
Integer dummy variable 
Counter 
Maximum adult longevity 
Counters 
Month 
Counter 
Counter 
Leafhopper population by instars and weights 
Initial density of leafhopper eggs 
Counter denoting instar (in subroutine SUMP) 
Weekley counter for input of observed predator/leafhopper 
numbers 
Counter denoting instar 
Year on which model is to cease running (1 = 1965) 
Year on which model is to begin running 
Counter for the number of model runs required 
Numbers of days in each month 
Subroutine for daily mortality (other than from predation, 
parasitism and ageing) 
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MY 
N 
NA 
NAC 
NAT 
ND 

NDIM 

NIT 
NUMB 

O 

OBS 
OUTPUT 
P 
PAR 
PARA 
PH 
PM 
PO 
POP 
PRED 
PV 
R 
R 
RD 

RDAY 
REPROD 
RF 

RI 
RO 
S 

s 
s 
SB 
SC 
SC 

Year counter (from MINY to MAXY) 
Prey densities, by instars 
Uncorrected proportion of each prey killed by each predator 
Corrected proportion of each prey killed by all predators 
Uncorrected proportion of each prey killed by all predators 
Counter incremented each week for operation of 
predator/leafhopper submodel 
Number of values between which linear interpolation is 
carried out (in function Fl) 
Tree amino-nitrogen levels each day of the season 
Subroutine interpolating daily numbers of predators and 
leafhoppers, if required, from those observed on weekly 
sampling occasions 
Array containing dates on which output is required (col. 1), 
aphid numbers generated by the model (cols. 2-7) and actual 
numbers of predators and leafhoppers or those generated by 
the model (cols. 10-29) 
Subroutine assigning dates on which output is required 
Subroutine printing out dates and computed aphid numbers 
Predator densities, by instars 
Proportion of moulting adults parasitised 
Subroutine applying parasitism 
Daily proportion of eggs hatching 
Proportion of new-bom aphids which are males 
Proportion of new-born aphids which are oviparae 
Subroutine updating predator and leafhopper populations 
Subroutine applying predation 
Proportion of new-born aphids which are viviparae 
Daily reproductive rate (in subroutine REPROD) 
Day number (in subroutine TEMPS) 
Factor modifying reproductive rate to take account of pre-
reproductive delays involving fractions of days 
Day number 
Subroutine carrying out parthenogenetic reproduction 
Factor modifying reproductive rate according to accumulated 
temperature experience of adults 
Number of days since bud-burst 
Proportion of female offspring which are oviparae 
Correction factor for satiation of each predator instar (in 
subroutine PRED) 
Daily survival rate (in subroutine MORTY) 
Syrphid numbers (in subroutine OBS) 
Survival rates for capsid instars 
Survival rates for coccinellid instars 
Proportion of alates surviving per day dependent on cumula­
tive density (in subroutine MORTY) 
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SL 

SL 
STORE 
SUMP 
SW 

T 
TB 
TC 
TDAY 
TEMP 

TEMPS 
TL 
TM 
TN 
TOT 
TOTLG1 
TOTLG2 
TREE 

TX 
VOR 
W 
WIN 
WIND 
WMORT 
X 

XVAL 
XVI 
XV2 
XV3 
XV4 
XV6 
XV7 
YVAL 
YV1 
YV2 
YV3 
YV4 
YV5 
YV6 
YV7 

Proportion of alates surviving per day dependent on time of 
year (in subroutine MORTY) 
Survival rates for leafhopper instars 
Subroutine storing values for output 
Subroutine summarizing the aphid population by instars 
Proportion of alates surviving per day dependent on wind 
speed 
Temperature 
Weekly transition probabilities for capsid instars 
Weekly transition probabilities for coccinellid instars 
Day number 
Maximum and minimum temperatures throughout the 
season 
Subroutine assigning temperatures throughout the year 
Weekly transition probabilities for leafhopper instars 
Mean temperature 
Minimum temperature 
Total aphid density 
Log (aphids/100 cm2 +1) 
Log (aphids/m2 +1) 
Subroutine updating amino-nitrogen levels and cumulative 
aphid density 
Maximum temperature 
Maximum rates of prey ingestion by predator instar 
Weights of prey instars 
Mean daily wind speeds throughout the season 
Subroutine assigning wind speeds throughout the season 
Subroutine applying overwintering mortality to egf̂  
x-value for which corresponding y-value is required through 
linear interpolation (in function Fl) 
Set of x-values (see YVAL, NDIM) 
temperature values 
day-degrees above 5°C from 1st March 
times of year since bud burst 
times of year 
times of year 
times of year 
Set of y-values (see XVAL, NDIM) 
development rates 
cumulative proportions of eggs hatching 
soluble nitrogen concentrations 
average minimum temperatures 
average maximum temperatures 
proportions of males among new-bora offspring 
proportions of oviparae among new-born female 
offspring 

used for 
linear 
interpolate 
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Appendix B Program listing 

PROGRAM LAM ( INPUT, OUTPUT, NUMB F l , TEMPF, WINDF, 
TAPE 1 = NUMB F l , TAPE 2 = OUTPUT, TAPE 4 = TEMP F , 
TAPE 5 = WIND F ). 
REAL WIN (366),*TEMP (2,366), NIT (366), 0(30,31) 
REAL A0(9), L0(9), B0(9), A(ll,ll), H(ll,ll), VOR(ll), 

DEVA(4) 
REAL TB(7). TL(7), TC(7), SB(7), SL(7), SC(7) 
REAL AS(9,2), LS(7,2), CS(7), BS(7), AA(30,6), AN(50,6), 

AM(30,2) 
REAL XV1(15), YV1(15), XV2(11), YV2(11), XV3(9), YV3(9), 

XV4(12), YV4(12) 
REAL YV5(12), XV6(6), YV6(6), XV7(6), YV7(6) 
REAL ECF2(9) 
INTEGER M0(12), BUD, DAY. 
DATA WIN, NIT, 0, CS, BS, AA, AN, AM/2216*0./ 
CUMULATIVE PROPORTIONS OF DEVELOPMENT ACHIEVED IN INSTARS. 
DATA DEVA/0.23, 0.53, 0.685, 1./ 
MAXIMUM ADULT LIFE-SPAN. 
DATA IMAX/30/ 
DAYS IN MONTHS 
DATA MO/31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/ 
INITIAL APHID WEIGHTS 
DATA AS/10*0., 70., 170., 330., 700., 1000., 1000., 700., 

0./ 
LEAFHOPPER WEIGHTS 
DATA LS/8*0., 40., 110., 200., 360., 650., 700./ 
MAXIMUM DAILY INTAKE OF PREDATORS. 
DATA VOR/160., 550., 1300., 3470., 4125., 22 . , 44 . , 75. , 

124. 196. 448./ 
ATTACK COEFFiciENTsVoR PREDATORS. 
DATA A/.33, 1.81, 2.76, 4.51, 4.51, 1.27, 6.00, 12.58, 

14.43, 15.16, 11.38, 1.32, .45, 2.44, 6.58, 6.58, 
.47, 2.5, 6.98, 15.39, 25.65, 23.55, 1.04, .21, .65, 
3 .2, 3 .2, .16, 1.7, 8.73, 15.32, 39.79, 40.64, 1.06, 
.36, 1.71, 2.74, 2.74, 0 . , 0.58, 1.68, 7.70, 28.76, 
34.25, 10. , .19, .85, 2.88, 2.88, 0 . , 0.41, 1.65, 
7.77, 19.38, 39.25, 10. , .09, .23, .28, .28, .43, 
11.74, 0 . , 0 . , 0 . , 10. , 0 . , 0 . , .17, .17, .14, 4.31, 
13.59, 23.59, 0 . , 0 . , 10. , 0 . , 0 . , 0 . , 0 . , 0 . , 1.9, 

147 



4.82, 15.69, 0., 0., 10., 0., 0., 0., 0., 0., .81, 2.59, 
10.32, 28.91, 0., 10., 0., 0., 0., 0., 0., .28, 0., 4.16, 
10.93, 0., 10., 0., 0., 0., 0., 0., 0., 0., 0., 0., 3./ 
TEMPERATURES AND DEVELOPMENT RATES. 
DATA XVI/3., 5., 7., 9., 11., 13., 16., 18., 19., 20., 

21.5, 23., 25., 26., 28./ 
DATA YVI/.OOO, .002, .006, .013, .023, .038, .065, .082, 

.088, .091, .094, 1.095, .093, .091, .080/ 
DAY-DEGREES ABOVE 5 AND CUMULATIVE PROPORTIONS OF EGGS 
HATCHED. 
DATA XV2/105., 120., 129., 135., 141., 147., 153., 160., 

168., 181., 225./ 
DATA YV2/0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

1.0/ 
TIMES AND SOLUBLE NITROGEN CONCENTRATIONS. 
DATA XV3/2.0, 17.0, 31.0, 50.0, 66.0, 108.0, 122.0, 135.0, 

156.0/ 
DATA YV3/1.55, 0.52, 0.19, 0.17, 0.15, 0.13, 0.15, 0.18, 

0.28/ 
TIMES AND AVERAGE MAX AND MIN TEMPERATURES. 
DATA XV4/15.0, 49.0, 74.0, 105.0, 135.0, 166.0, 196.0, 

227.0, 258.0, 288.0, 1319.0, 349.0/ 
DATA YV4/2.5, 2.5, 3.0, 4.0, 6.0, 9.0, 10.5, 10.0, 8.0, 

5.5, 3.0, 2.5/ 
DATA YV5/6!o! 7!o! 8.*5, 11.0, 15.0, 17.0, 18.0, 17.5, 15.5, 

12.5, 8.0, 6.5/ 
TIMES AND PROPORTIONS OF MALES AT BIRTH. 
DATA XV6/170., 190., 210., 230., 250., 270./ 
DATA YV6/0., 0.11, 0.14, 0.12, 0.05, 0./ 
TIMES AND PROPORTIONS OF OVIPARAE AT BIRTH. 
DATA XV7/170., 180., 200., 215., 240., 250./ 
DATA YV7/0., .050., .050, .300, .900, 1.0/ 
WEEKLY TRANSITION PROBABILITIES FOR CAPSIDS, COCCINELLIDS 
AND LEAFHOPPERS. 
DATA TB/O., .884., .884, .884, .58, .494, 0./ 
DATA TC/.7, 1., 1., 1., .7, .41, 1./ 
DATA TL/O., .67, 1., 1., 1., .56, 0./ 
SURVIVAL PROBABILITIES FOR CAPSIDS, COCCINELLIDS AND 
LEAFHOPPERS. 
DATA SB/.5, 1., 1., .75, 1., 0.1, 1./ 
DATA SC/.5, .8, .94, .94, .94, .85, 1./ 
DATA SL/.27 4*1. .26, 1./ 
NUMBERS OF A PHID'EGGS AT THE BEGINNING OF THE YEARS. 
DATA AO/0.05, 0.45, 1.83, 0.03, 14., 0.074, 2., 0.17, 2.05/ 
NUMBERS OF LEAFHOPPER EGGS AT HE BEGINNING OF THE YEARS. 
DATA L0/4*l., 2.14, 0.54, 0.27, 1./ 
NUMBER OF CAPSID E G G S A T ' T H E BEGINNING OF THE YEARS. 
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DATA BO/0.03, .063, .067, .118, .118, 0., 0., 0., 0./ 
COCCINELLID MULTIPLIER FOR EACH YEAR. 
DATA ECF2/6*1., 0.3, 2*1./ 

MINY = 1 
MAXY = 8 
MM = 0 
DO 1 MY = MINY, MAXY 
MM = 1 
INITIALISING OF SEASON-SPECIFIC VARIABLES 
DAY = 59 
DD5 = 0. 
CPH = 0. 
BUD = 0. 
M = 1 
ND = 0 
CUM = 0. 
E = 0. 
DO 6 J = 1, 6 
DO 7 I = 1, 50 

7 AN (I,J) = 0. 
DO 6 K = 1, 30. 

6 AA (K, J) = 0. 
DO 2 J = 1, 2 
DO 2 K = 1, 30 

2 AM (K, J) = 0 
DO 3 K = 2, 7 
BS (K) = 0. 
CS (K) = 0. 

3 LS (K,l) = 0. 
DO 4 K = 2, 9 

4 AS (K, 1) = 0. 
AS (1, 1) = AO (MY) 
LS (1, 1) = LO (MY) 
BS (1) = BO (MY) 
INPUT OF TEMPERATURES. 
CALL TEMPS (TEMP, XV4, YV4, YV5, MINY, MM, MY) 
INPUT OF WIND SPEEDS. 
CALL WIND (WIND, MINY, MM, MY) 
INPUT OF DATES FOR OUTPUT (AND OBSERVED NUMBERS OF LEAF-
HOPPERS AND PREDATORS IF REQUIRED). 
CALL OBS (0, MINY, MM, MY) 
DAILY ITERATIONS CARRIED OUT. 
5 DAY = DAY + 1 
INTERPOLATION OF OBSERVED PREDATOR AND LEAFHOPPERS NUMBERS. 
CALL NUMB (0, LS, BS, CS, DAY, M) 
EGG-HATCHING. 
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CALL HATCH (DAY, DD5, XV2, YV2, CPH, AN, TEMP, AS, MM) 

CALCULATION OF BUD-BURST TIME, NITROGEN LEVEL AND 
CUMULATIVE APHID INFESTATION OF TREE 
CALL TREE (BUD, DAY, NIT, DD5, XV3, YV3, CUM, AS) 
SUMMARISING OF POPULATION(S) BY INSTARS/STAGES 
CALL SUMP (AN, AA, AS, DEVA, IMAX) 
IF (CPH.LT.1E-6) GOTO 8 
PREDATION 
CALL PRED (AA, AN, AS, AM, LS, CS, BS, TEMP, A, H, MM, 

VOR, DEVA, IMAX, M, 0, DAY) 
MORTALITY OTHER THAN PREDATION AND PARASITISM. 
CALL MORTY (AN, AA, AM, AS, CUM, TEMP, WIN, DAY, IMAX, 

FLIGHT. 
CALL FLIGHT (AA, AS, AM, TEMP, WIN, DAY, CUM, MM, IMAX, 

E) 
SEXUAL REPRODUCTION (EGG PRODUCTION) 
CALL EPROD (AA, AM, AS) 
PARTHENOGENETIC REPRODUCTION 
CALL REPROD (AA, AN, AM, AS, TEMP, DAY, XV6, YV6, XV7, 

YV7, MM, IMAX, DVA) 
GROWTH AND DEVELOPMENT 
CALL GROWTH (AN, AA, TEMP, DAY, NIT, CUM, DVA, XVI, YV1, 

AS, MM) 
STORING OF VARIABLES FOR OUTPUT 

8 CONTINUE 
IF (DAY.EQ.0(M,1)) CALL STORE (0, AS, LS, BS, CS, M) 
AGEING OF POPULATION 
CALL AGE (AN, AA, AM, IMAX, MM) 
PARASITISM 
CALL PARA (AA, DAY, MM) 
UPDATING OF PREDATOR AND LEAFHOPPER POPULATIONS 
ND = ND + 1 
IF (ND.EQ.7) CALL POP (AS, LS, CS, BS, TB. TL, TC, SB, 

SL, SC, ECF2, DAY, MM, ND, MY) 
IF (DAY.LT.305) GOTO 5 
M = M - 1 
WINTER EGG MORTALITY COMPUTED 
CALL WMORT (AS, 0) 
OUTPUT 
CALL OUTPUT (0, MO, E, CUM) 

1 CONTINUE 
STOP 
END 

SUBROUTINE OBS (0, MINY, MM, MY) 
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REAL 0(30, 31), S(3) 
IF (MM.GT.l) GOTO 4 
IF (MY.GT.MINY.OR.MINY.EQ.l) GOTO 2 
IM = (MINY - 1) * 25 
DO 1 I = 1, IM 

1 READ (1, 100) IDUM 
100 FORHAT (13, 69X/72X) 

2 CONTINUE 
DO 3 I = 1,25 
READ (1, 101) 0(1, 1), (0(I,J), J = 10, 15), (S(K), 

K = 1,3), (0(1,L), L = 24, 29), 1(0(I,M), M = 17, 22) 
101 FORMAT (3X, F4.0,6F6.2,3F5.3/7X,12F5.3) 

DO 3 J=l,3 
3 0(I,J+24)=0(I,J+24)+S(J) 
4 CONTINUE 

RETURN 
END 

SUBROUTINE TEMPS (TEMP, XV4, YV4, YV5, MINY, MM, MY) 
REAL XV4(12), YV4(12), YV5(12) 
REAL TEMP (2,366) 
IF (l#I.GT.l) GOTO 6 
IF (MY.GT.MINY.OR.MINY.EQ.l) GOTO 2 
IM = (MINY-1)*245 
DO 3 I = 1, IM 

3 READ (4, 100) DUM 1, DUM 2 
100 FORMAT (26 X, 2F7.1) 

2 CONTINUE 
DO 4 I = 1, 245 

4 READ (4, 100) TEMP (1, 1 + 5 9 ) , TEMP (2, I + 59) 
DO 5 I = 1, 59 
TEMP (1, I) = 7.0 

5 TEMP (2, I) = 2.5 
6 CONTINUE 

RETURN 
END 

SUBROUTINE TEMPS (TEMP, XV4, YV4, YV5, MINY, MM) 
REAL XV4 (12), YV4 (12), YV5 (12) 
REAL TEMP (2, 366) 
IF (MM.GT.l) GOTO 2 
DO 1 I = 50, 305 
R = I 
TEMP (1, I) = Fl (R, XV4, YV5, 12) 
TEMP (2, I) = Fl (R, XV4, YV4, 12) 

1 CONTINUE 
2 CONTINUE 
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RETURN 
END 

SUBROUTINE WIND (WIN, MINY, MM, MY) 
REAL WIN (366) 
IF (MM.GT.l) GOTO 6 
IF (MY.GT. MINY. OR. MINY. EQ.l) GOTO 2 
IM = (MINY-1)*214 
DO 3 I = 1, IM 

3 READ (5, 100) DUM 
100 FORMAT (14X, F5.1, 9X) 

2 CONTINUE 
DO 4 I = 1, 214 
READ (5, 100) WIN (I + 90) 
IF (WIN(I +90). LT. 1E-4) WIN (I + 90) = 7.74 

4 CONTINUE 
DO 5 I = 1. 90 

5 WIN (I) = 7.74 
6 CONTINUE 

RETURN 
END 

SUBROUTINE WIND (WIN, MINY, MM) 
REAL WIN (366) 
IF (MM. GT. 1) GOTO 2 
DO 1 I = 50, 305 

1 WIN (I) = 8.0 
2 CONTINUE 

RETURN 
END 

SUBROUTINE NUMB (0,LS,BS,CS,DAY,M) 
REAL 0(30,31),LS(7,2),BS(7),CS(7) 
INTEGER DAY 
IF(M.LT.2) RETURN 
F=(DAY.0(M-1,1))/(0(M,1)-0(M-1,1)) 
DO 1 1=10,15 

1 LS(I-8,1)=F*(0(M,I)-0(M-1,I))+0(M-1,I) 
DO 2 1=17,22 

2 BS(I-15)=F*(0(M,I)-0(M-1,I))+0(M-1,I) 
DO 3 1=24,29 

3 CS(I-22)=F*(0(M,I)-0(M-1,I))+0(M-1,I) 
RETURN 
END 

SUBROUTINE TREE (BUD,DAY,NIT,DD5,XV3,YV3,CUM,AS) 
INTEGER BUD,DAY 
REAL XV3(9), YV3(9),NIT(366),AS(9,2) 
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IF(BUD.GT.O) GOTO 1 
IF(DD5.GE.122) BUD=DAY 

1 R1=DAY-BUD+1 
IF(BUD.LE.lE-6) RI=1. 
NIT(DAY)=F1(RI,XV3,YV3,9) 
CUM=CUM+AS(9,l)/7. 
RETURN 
END 

SUBROUTINE HATCH (DAY,DD5,XV2,YV2,CPH,AN,TEMP,AS,MM) 
REAL AN(50,6),TEMP(2,366),AS(9,2),XV2(11),YV2(11) 
INTEGER DAY 
THE SUBROUTINE IS SKIPPED IF ALL EGGS HAVE ALREADY HATCHED 
OR THE DATE IS EARLIER THAN MARCH 1ST. 
IF(DAY.LT.60.0R.CPH.EG.1.0) RETURN 
DAY-DEGREES UPDATED 
TX=TEMP(1,DAY) 
TN=TEMP(2,DAY) 
TM=(TX+TN)/2.0 
IF(TN.GE.5.0) DD5=DD5+TM-5.0 
IF(TN.GE.5.0) GOTO 2 
IF(TX.GT.5.0.AND.TN.LT.5.0) DD5=DD5+(TX-5.)**2/(2.*(TX-TM)) 
EXPECTED CUMULATIVE PROPORTION HATCHING IS CALCULATED 

2 CPHE=F1(DD5,XV2,YV2,11) 
DAILY PROPORTION HATCHING OF THOSE REMAINING COMPUTED 
PH=(CPHE-CPH)/(1.-CPH) 
CUMULATIVE PROPORTION ALREADY HATCHED IS UPDATED 
CPH=CPHE 
NYMPHAL POPULATION AND EGG POPULATION UPDATED 
AS(2,1)=AS(2,1)+AS(1.1)*PH 
AN(1,1)=AS(1,1)*PH 
AN(1,4)=0. 
AN(1,5)=0. 
AN(1,6)=24. 
AS(1,1)=AS(1,1)*(1.-PH) 
RETURN 
END 

SUBROUTINE SUMP (AN,AA,AS,DEVA,IMAX) 
REAL AN(50,6),AA(30,6),AS(9,2),DEVA(4) 
DO 5 J=l,2 
DO 5 1=2,9 

5 AS(I,J)=0. 
NYMPHS 
M=2 
DO 1 1=1,50 
IF(M.GT.5) M=5 
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IF(AN(I,4).GT.DEVA(M-1)) M=M+1 
DO 1 J=l,3 
AS(M,2)=AS(M,2)+AN(I,J)*AN(I,6) 

1 AS(M,1)=AS(M,L)+AN(I,J) 
DO 2 M=2,5 
IF(AS(M,l).GT.O.) AS(M,2)=AS(M,2)/AS(M,1) 

2 CONTINUE 
ADULTS 
DO 3 I=1,IMAX 
DO 3 M=6,8 
AS(M,2)=AS(M,2)+AA(1,M-5)*AA(I,6) 

3 AS(M,l)=AS(N,l)+AA(I,M-5) 
DO 4 M=6,8 
IF(AS(M,l).GT.O.) AS(M,2)=AS(M,2)/AS(M,1) 
IF(M.EQ.8) AS(M,2)=AS(M,2)*0.7 

4 CONTINUE 
DO 6 1=2,8 

6 AS(9,1)=AS(9,1)+AS(I,1) 
RETURN 
END 

SUBROUTINE PRED (AA,AN,AS,AM,LS,CS,BS,TEMP,A,H,MM, 
VOR,DEVA,IMAX,M,0,DAY) 

INTEGER DAY 
REAL AA(30,6),AN(50,6),AM(30,2),AS(9,2) 
REAL LS(7,2),CS(7),BS(7),TEMP(2,366),A(11,11),H(11,11), 

VOR(ll) 
REAL N(ll),P(ll),NA(lltll),W(ll),NAC(ll),NAT(ll),S(ll), 

0,(30,31) 
REAL DEVA(4) 
PREY ENTERED TO ARRAY N, WEIGHTS TO W AND PREDS TO P. 
DO 1 J=l,4 
P(J)=CS(J+1) 
W(J)=AS(J+1,2) 

1 N(J)=AS(J+1,1) 
P(5)=CS(7) 
W(5)=AS(6,2) 
N(5)=AS(6,1)+AS(7,1)+AS(8,1) 
DO 2 J=6,ll 
P(J)=BS(J-4) 
W(J)=LS(J-4,2) 

2 N(J)=LS(J-4,1) 
UNCORRECTED PROPNS OF EACH PREY KILLED BY EACH PRED. 
DO 3 K=l,ll 
NAT(K)=0. 
DO 3 JJ=1,11 
J=12-JJ 
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3 NA(K,J)=A(K,J)*P(K) 
UNCORRECTED PROPNS OF EACH PREY KILLED BY ALL PREDS. 
DO 16 K=l,ll 
S(K)=0. 
DO 15 J=l,ll 
IF(P(K).GT.O.) S(K)=S(K)+NA(K,J)*W(J)*N(J)/P(K) 

15 CONTINUE 
IF(S(K).GT.O.) S(K)=VOR(K)/S(K) 
IF(S(K).GT.l.) S(K)=1. 
DO 16 J=l,ll 
NA(K,J)=NA(K,J)*S(K) 

16 NAT(J)=NAT(J)+NA(K,J) 
CORRECTED PROPNS OF EACH PREY KILLED BY ALL PREDS. 
DO 6 J=l,ll 

6 NAC(J)=1.-EXP(-NAT(J)) 
UPDATING OF APHIDS, LEAFHOPPERS AND MORTALITY FROM 
PREDATION 
MA=1 
DO 9 1=1,50 
IF(AN(I,4).GT.DEVA(MA)) MA=MA+1 
DO 9 J=l,3 

9 AN(I,J)=AN(I,J)*(1.-NAC(MA)) 
DO 12 I=1,IMAX 
DO 12 J=l,3 
IF(J.LT.3) AM(I,J)=AM(I,J)+AA(I,J)*NAC(5) 

12 AA(I,J)=AA(I,J)*(1.-NAC(5)) 
T0T=AS(9,1) 
AS(9,1)=0. 
DO 10 1=2,6 
AS(I,1)=AS(I,1)*(1.-NAC(I-1) 

10 AS(9,1)=AS(9,1)+AS(I,1) 
DO 13 1=7,8 
AS(I,1)=AS(I,1)*(1.-NAC(5)) 

13 AS(9,1)=AS(9,1)+AS(I,1) 
0(M,31)=0(M,31)+T0T-AS(9,1) 
DO 11 1=2,7 

11 LS(I,l)=LS(I,l)*(l.-NAC(I+4)) 
RETURN 
END 

SUBROUTINE MORTY (AN,AA,AM,AS,CUM,TEMP,WIN,DAY,IMAX, 
MM) 

REAL AN(50,6),AA(30,6),AM(30,2),AS(9,2),TEMP(2,366), 
WIN(366) 

INTEGER DAY 
BACKGROUND MORTALITY AND EFFECT OF WIND SPEED. 
SW=0.99(1.-0.0003*WIN(DAY)**2) 
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IF(SW.LT.0.2) SW=0.2 
EFFECT OF LEAF FALL 
SL=(277-DAY)/10. 
IF(SL.LT.O.) SL=0. 
IF(SL.GT.L) SL=1. 
EFFECT OF CUMULATIVE DENSITY 
SC=l.-0.001*(CUM-250.) 
IF(SC,LT.O.) SC=0. 
IF(SC.GT.l.) SC=1. 
COMBINED EFFECT 
S=SW*SL*SC 
POPULATION UPDATED 
DO 1 1=1,50 
DO 1 J=l,3 

1 AN(I,J)=AN(I,J)*S 
DO 2 1=1, IMAX 
AM(I,1)=AM(I,1)+AA(I,1)*(1,-S) 
DO 2 J=l,3 

2 AA(I,J)=AA(I,J)*S 
AM(1,2)=AM(1,2)+AA(1,2)*(1.-S) 
DO 3 1=2,8 

3 AS(I,1)=AS(I,1)*S 
AS(9,1)=0. 
DO 5 1=2,8 

5 AS(9,1)=AS(9,1)+AS(I,1) 
RETURN 
END 

SUBROUTINE FLIGHT (AA,AS,AM,TEMP,WIN,DAY,CUM,MM,IMAX, 
E) 

REAL AA(30,6),AS(9,2),AM(30,2),TEMP(2,366),WIN(366) 
INTEGER DAY 
FMT=0. 
FVT=0. 
DO 1 1=1,IMAX 
AGE-CLASS SKIPPED IF NO ALATES PRESENT 
IF((AA(I,l)+AA(I,3)).LE.lE-6) G0T01 
ADULT COMPONENT 
FA=0.005*((AS(2,l)+AS(3,l)+AS(4,l))/4.+AS(5,ln+AS(6,l)+ 

AS(7,1)+AS(8,1)) 
NYMPHAL COMPONENT 
FN=0.02*(AA(I,5)-10.) 
IF(FN.LT.O.) FN=0. 
IF(FN.GT.0.4) FN=0.4 
CUMULATIVE DENSITY COMPONENT 
FC=0.005*(CUM-250.) 
IF(FC.LT.O.) FC=0. 
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IF(FC.GT.0.55) FC=0.55 
AGE COMPONENT 
F=0.1 
EFFECT OF TEMPERATURE 
COMBINED EFFECT 
FLT=FA+FN+F+FC 
IF(FLT.LT.O.) FLT=0. 
IF(FLT.GT.L) FLT=1. 
ALATE POPULATION UPDATED 
AM(I,1)=AM(I,1)+AA(I,1)*FLT 
AA(I,1)=AA(I,1)*(1.-FLT) 
AA(I,3)=AA(I,3)*(1.-FLT) 
FMT=FMT+AA(I,3)*FLT 
FVT=FVT+AA(I,1)*FLT 
CONTINUE 
AS(6,1)=AS(6,1)-FVT 
AS(8,l)=AS(8,lj-FMT 
AS(9,1)=AS(9,1)-FVT-FMT 
E=E+FVT 
RETURN 
END 

SUBROUTINE EPROD (AA,AM,AS) 
REAL AA(30,6),AM(30,2),AS(9,2) 
E=0.0162*AA(l,6)-2.736 
IF(E.LT.O.) E=0. 
AS(l,l)=AS(l,l)+E*(AA(l,2)+(AM(l,2)/2.)) 
RETURN 
END 

SUBROUTINE REPROD (AA,AN,AM,AS,TEMP,DAY,XV6,YV6,XV7, 
YV7,MM,IMAX,DVA) 

REAL AA(30,6),AN(50,6)AM(30,2),AS(9,2) 
REAL TEMP(2,366), XV6(6),YV6(6),XV7(6),YV7(6) 
INTEGER DAY 
IF(AS(6,l).LE.lE-6) GOTO 3 
MORPH DETERMINATION 
RDAY=DAY 
PM=F1(RDAY,XV6,YV6,6) 
RO=Fl(RDAY,XV7,YV7,6) 
PO=RO*(l.-PM) 
PV=(l.-RO)*(l.-PM) 
PRE-REPRODUCTIVE DEVELOPMENT 
T=(TEMP(l,DAY)+TEMP(2,DAY))/2.+1.5 
DT=1652000./T**2.68 
DO 2 I=1,IMAX 
RD=1. 
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IF(AA(I,4).LT.lE-6) GOTO 2 
IF(AA(I,4).GE.2-) GOTO 1 
D=DI/(AA(I,6)-100.) 
AA(I,4)=AA(I,4)+l./n 

RD=(AA(I,4)-2.)*D 
IF(RD.GT.L) RD=1. 
IF(RD.LT.O.) RD=0. 
IF(AA(I,4).GT.2.) AA(I,4)=A. 
REPRODUCTION 
IF(AA(I,4).LT.2.) GOTO 2 

1 AA(I,4)=AA(I,4)+0.0011*T**1.5 
RF=2.578-0.526*AA(I,4) 
IF(RF.LT.O.) RF=0. 
IF(RF.GT.l.) RF=1. 
R=T**1.5*M(I,6)*RF*RD*(AA(I,l)+AM(I,l)/2.)/14817. 
AS(2,1)=AS(2,1)+R 
AN(1,1)=AN(1,1)+R*PV 
AN(1,2)=AN(1,2)+R*P0 
AN(1,3)=AN(1,3)+R*PM 

2 CONTINUE 
IF((AN(l,l)+AN(l,2)+AN(l,3)).LE.lE-6) GOTO 3 
IF(AN(l,6).LE.lE-6) AN(1,6)=24.-24.8*EXP(-0.0077*AS(6,2)) 

3 CONTINUE 
RETURN 
END 

SUBROUTINE GROWTH (AN,AA,TEMP,DAY,NIT,CUM,DVA,XVI, 
YV1,AS,MM) 

REAL AN(50,6),AA(30,6),NIT(366),TEMP(2,366),XV1(15),YV1(15) 
REAL AS(9,2) 
INTEGER DAY 
DN=NIT(DAY)-0.2 
IF(DN.LT.O.) DN=0. 
TX=TEMP(1,DAY)+1.5 
TN=TEMP(2,DAY)+1.5 
TM=(TEMP(l,DAY)+TEHP(2,DAY))/2.+1.5 
DEVELOPMENT INCREMENT CALCULATED 
DVA=(F1(TX,XV1,YV1,15)+F1(TN,XV1,YV1,15)+F1(TM,XV1,YV1, 

15))/3. 
DVA=DVA*(1,+0.27*DN) 
LOG(EXPECTED FINAL WT/BIRTH WT) CALCULATED 
C=CUM 
IF(C.LT.50.) C=50 
IF(C.GT.350.)C=350 
GFL=1.5373-0.00064*C-0.00174*AS(9.1)-0.00809*(TM-1.5)+ 

0.24*DN 
GF=10**(DVA*GFL) 
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NYMPHAL WEIGHTS, DEVELOPMENT AND CROWDING EXPERIENCE UP­
DATED. 
DO 1 1=1,50 
IF((AN(I,l)+AN(I,2)+AN(I,3)).LT(lE-6) GOTO 1 
AN(I,4)=AN(I,4)+DVA 
AN(I,5)=AN(I,5)+AS(9,1) 
AN(I,6)=AN(I,6)*GF 
IF(AN(I,4).LE.l.) GOTO 1 
AN(I,6)=AN(I,6)*10**(GF*(1.-AN(I,4))) 
AN(I,4)=1. 

1 CONTINUE 
RETURN 
END 

SUBROUTINE STORE (0,AS,LS,BS,CS,M) 
REAL 0(30,31),AS(9,2),LS(7,2),BS(7),CS(7) 
0(M,2)=AS(2,1)+AS(3,1)+AS(4,1) 
DO 1 1=3,6 

1 0(M,I)=AS(I+2,1) 
0(M,7)=AS(1,1) 
0(M,8)=AS(6,2) 
0(M,9)=0. 
0(M+1,31)=0. 
DO 2 1=2,8 

2 0(M,9)=0(M,9)+AS(I,1)*AS(I,2) 
GOTO 6 
DO 3 1=10,15 

3 0(M,I)=LS(I-8,1) 
0(M,16)=LS(1,1) 
DO 4 1=17,22 

4 0(M,I)=BS(I-15) 
0(M,23)=BS(1) 
DO 5 1=24,29 

5 0(M,I)=CS(I-22) 
0(M,30)=CS(1) 

6 CONTINUE 
M=M+1 
RETURN 
END 

SUBROUTINE AGE (NA,AA,AM,IMAX,MM) 
REAL AN(50,6),AA(30,6),AM(30,2) 
NYMPHS UPDATED 
DO 1 1=1,49 
11=51-1 
DO 1 J=l,6 

1 AN(II,J)=AN(II-1,J) 
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DO 2 J=l,6 
2 AN(1,J)=0. 

ADULTS UPDATED 
IM=IMAX-1 
DO 3 1=1,IM 
II=(IMAX+1)-I 
DO 3 J=l,6 

3 AA(II,J)=AA(II-1,J) 
DO 4 J=l,6 

4 AA(1,J)=0. 
ADULT DAILY MORTALITY ZEROED 
DO 5 I=1,IMAX 
DO 5 J=l,2 

5 AM(I,J)=0. 
NYMPHS MOULT IF SUFFICIENT DEVELOPMENT ATTAINED 
DO 6 1-1,49 
II-51-I 
IF(AN(II,4).LT.l.) GOTO 6 
DO 7 J=l,3 
AA(l,J+3)=AN(II,J+3) 
AN(II,J+3)=0. 
IF(AA(l,4).GT.l.) AA(1,4)=1. 
AA(1,J)=AA(1,J)+AN(II,J) 

7 AN(II,J)=0. 
AA(1,5)=AA(1,5)/II 

6 CONTINUE 
RETURN 
END 

SUBROUTINE PARA (AA,DAY,MM) 
REAL AA (30,6) 
INTEGER DAY 
PAR=0.01*(DAY-206) 
IF(PAR.GT.0.155) PAR=0.155 
IF(PAR.LT.O.) PAR=0. 
DO 1 J=l,3 

1 AA(1,J)=AA(1,J)*(1.-PAR) 
RETURN 
END 

SUBROUTINE POP (AS,LS,CS,BS,TB,TL,TC,SB,SL,SC, 
ECF2,DAY,MM,ND,MY) 

REAL AS(9,2),LS(7,2),CS(7),BS(7),ECF2(9) 
REAL TB(7),TC(7),TL(7),SB(7),SC(7),SL(7) 
INTEGER DAY 
COCCINELLID POPULATION 
REPRODUCTION 
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ECF1=0. 
IF(DAY.GE.157.AND.DAY.LE.170) ECF1=1. 
IF(DAY.GE.171.AND.DAY.LE.184) ECF1=0.3 
IF(DAY.GE.185.AND.DAY.LE.198) ECF1=0.2 
IF(DAY.GE.199.AND.DAY.LE.240) ECF1=0.1 
EC=0. 
IF(AS(9,1).GT.0.2) EC=0.066*AL0G10(9,l))+0.046 
EC=EC*ECF1*ECF2(MY) 
DEVELOPMENT AND SURVIVAL 
DO 8 11=2,7 
1=9-11 

8 CS(I)=CS(I)*(1.-TC(I))+CS(I-1)*TC(I-1)*SC(I-1) 
CS(1)=CS(1)*(1.-TC(1))+EC 
AI=0.037*CS(1) 
IF(CS(7).LT.AI) CS(7)=AI 
BLACK-KNEED CAPSID POPULATION 
REPRODUCTION 
EB=0. 
IF(DAY.GE.240.AND.DAY.LE.246) EB=30.*BS(7) 
IF(EB.GT.0.AND.AS(9,1).LT.0.2) EB=4.*BS(7) 
DEVELOPMENT AND SURVIVAL 
TB(1)=0.0 
IF(DAY.GE.149.AND.DAY.LE.155) TB(1)=0.063 
IF(DAY.GE.156.AND.DAY.LE.162) TB(1)=0.583 
IF(DAY.GE.163.AND.DAY.LE.169) TB(1)=0.719 
IF(DAY.GE.170.AND.DAY.LE.176) TB(1)=1.0 
TB(7)=0. 
IF(DAY.GT.273) TB(7)=1. 
DO 4 11=2,7 
1=9-11 

4 BS(I)=BS(I)*(1.-TB(I))+BS(I-1)*TB(I-1)*SB(I-1) 
BS(1)=BS(1)*(1.-TB(1))+EB 
LEAFHOPPER POPULATION 
REPRODUCTION 
EL=0. 
IFfDAY.GE.240.AND.DAY.LE.246) EL=19.*LS(7,1)**0.76 
DEVELOPMENT AND SURVIVAL 
TL(1)=0.0 
IF(DAY.GE.139.AND.DAY.LE.145) TL(1)=0.5 
IF(DAY.GE.146.AND.DAY.LE.152) TL(1)=1.0 
TL(7)=0. 
IF(DAY.GET.273) TL(7)=1. 
DO 9 11=2,7 
1=9-11 

9 LS(I,1)=LS(I,1)*(1.-TL(I))+LS(I-1,1)*TL(I-1)*SL(I-1) 
LS(1,1)=LS(1,1)*(1.-TL(1))+EL 
DAY COUNTER ZEROED 
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ND=0 
RETURN 
END 

SUBROUTINE WMORT (AS,0) 
REAL AS(9,2),0(30,31) 
AS(l,l)=AS(l,l)/5.75 
RETURN 
END 

SUBROUTINE OUTPUT (0,MO,E,CUM) 
REAL 0(30,31) 
INTEGER M0(12),ID(30),JD(30) 
DO 1 J=l,25 
DATE=F3(0(J,1),M0) 
ID(J)=DATE/100 

1 JD(J)=DATE-ID(J)*100 
WRITE(2,100) 

100 F0RMAT(1H1,31X,17HNUMBERS/100 SQ CM////) 
WRITE(2,101) 

101 F0RMAT(1H0,3X,3HDAY,30X,7HJASSIDS/1H, 2X, 9HNUMBER, 
4HDATE,7X 
137H1 2 3 4 5 AD EGGS) 

WRITE(2,102) 
102 F0RMAT(1H0,100X) 

DO 2 J=l,25 
2 WRITE(2,103) 0(J,l),tD(J),(0(J,I),1=10,16) 

103 F0RMAT(1H,2X,F4.0,4X,12,1H/,12,2X,7F6.2) 
WRITE(2,100) 
WRITE(2,104) 

104 F0RMAT(1H0,2X,3HDAY,20X,19HBLACK-KNEED/CAPSIDS,22X, 
12HC0CCINELLIDS 1/1H, 14HNUMBER DATE,0X,1H1,5X,1H2, 
5X,1H3,5X,1H4,5X,1H5,5X,12HAD,4X,1HE,6X,1H1,5X,1H2, 
5X,1H3,5X,1H4,5X,1HP,4X,2HAD,5X,1HE) 

WRITE(2,102) 
DO 3 J=l,25 

3 WRITE(2,105) 0(J,1),ID(J),JD(J),(0(J,I),I=17,30) 
105 F0RMAT(1H, 1X,F4.0,3X,I3,1H/,I2,3X,7F6.3,2X,7F6.3) 

WRITE(2,106) 
106 F0R^T(1H1,59X,3HL0G,3X,3HL0G,10X,5HT0TAL/1H, 24X, 

12HNUMBERS PER 9H100 SQ CM,12X,6HT0T/SQ,1X,6HT0T/SQ, 
1X,5HADULT,1X,7HLIVE/WT/1H,14H DAY,3X,4HDATE,5X, 
3H1-3,4X,1H4,5X,1HV,5X,2H0V,5X,1HH,3X,4HEGGS,2X, 
5HT0TAL,2X,4HDM+1,3X,3HM+1,4X,2HWT,1X,10H(MG/SQ DM), 
6H PREDN) 

WRITE(2,102) 
DO 4 J=l,25 
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TOT=0. 
DO 5 K=2,6 

5 TOT=TOT+0(J,K) 
TOTLGl=ALOG10(TOT+l.) 
T0TLG2=AL0G10(T0T*100.+1.) 

4 WRITE(2,107) 0(J,1),ID(J),JD(J),(0(J,I),1=2,7)JOT, 
TOTLGl,TOTLG2, 10(J,8),0(J,9),0(J,31) 

107 F0RMAT(1H, F5.0,1X,I2,1H/,I2,2X,6F6.2,F8.2,F6.3,F7.3,F6.0, 
F8.2,F8.2) 

EGl=-99. 
EG2=-99. 
IF(0(l,7).GT.O.) EGl=AL0G10(0(l,7))+2. 
IF(0(25,7).GT.O.) EG2=AL0G10(0(25,7))+2.-0.76 
WRITE(2,108) EG1,EG2,E,CUM 

108 F0RMAT(1H0,24HL0G INITIAL EGGS/SQ M =,F6.3,5X, 
124HL0G FINAL EGGS/SQ M =,F6.3,5X, 
12HEMIGRATI0N =,F6.2,5X, 110HCUH DENS =,F6.1) 

RETURN 
END 

REAL FUNCTION F1(X,XVAL,YVAL,NDIM) 
DIMENSION XVAL(NDIM)YVAL(NDIM) 
CARRIES OUT LINEAR INTERPOLATION 
IF(X.LE.XVAL(1)) GOTO 1 
IF(X.GE.XVAL(NDIM) GOTO 2 
DO 3 I=1,NDIM 
IF(XVAL(I).LE.X) GOTO 3 
AM=(YVAL(I)-YVAL(I-1))/(XVAL(I)-XVAL(I-1)) 
C=YVAL(I)-AM*XVAL(I) 
F1=AM*X+C 
RETURN 

3 CONTINUE 
1 F1=YVAL(1) 

RETURN 
2 F1=YVAL(NDIM) 

RETURN 
END 

REAL FUNCTION F3(TDAY,M0) 
CONVERTS A DAY NUMBER TO DAYS AND MONTHS WRITTEN THUS: 
2408 
INTEGER M0(12) 
F3=TDAY 
DO 1 1=1,12 
F3=F3-M0(I) 
IF(F3.LE.0.0) GOTO 2 

1 CONTINUE 
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1=12 
2 F3=(F3+M0(I))*100.0+I 

RETURN 
END 
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