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Summary 

Food security in the EU has more or less been taken for granted over recent decades, because of 

the growing agricultural productivity in the EU and elsewhere and the relatively easy import by the EU 

of agricultural products through the international markets. However, the growth in demand for food 

by an ever-growing world population may outstrip the growth in production of that food, especially 

when diets will include more animal products. This may result in lower surpluses in production 

potential. Combined with the strengthening of the economic power of countries like China and 

India, which gives them more access to the international agricultural markets, the EU‘s food system 

may become more prone to calamities in the agricultural production and food system as there may 

be less possibilities to ‗buy itself out of a problem‘. 

 

This report discusses the possible effects on the EU food sector in 2020 of multiple and/or long 

duration calamities that disrupt trade in and/or production of agricultural products. Examples of 

possible calamities may be  

- a sudden and strong reduction of import of soybean from the America‘s that will pose large 

problems for animal production systems;  

- severe droughts that reduce arable production, leading to insufficient availability of grain 

and roughage;  

-  the occurrence of new diseases in the animal production systems that could lead to very 

low availability of proteins for human consumption. 

 

The potential of the EU food system to cope with such calamities depends on the level of agricultural 

productivity in 2020, the available land area for growing crops and fodder, the demand for food and 

biofuel by the population and the possibility to import food and feed from outside Europe. Expected 

quantitative trends until 2020 in these underlying causes are described. A model was developed to 

estimate effects of various types of calamities under these trends. Key characteristics of the model 

are that it combines an economic module for estimating prices for agricultural products in times of 

abrupt disruptions in supply with an economic approach to allocate land to various arable products 

and with biophysical modules for the estimation of animal production. Central in this approach is the 

emphasis on stocks of products and the rate of change they have with expected/optimal stock size. 

Produced as well as imported volumes fill the stocks, while consumed and exported products empty 

them. Since changes in such stocks can be rather fast, the model uses time steps of evaluation of a 

quarter year in order to reflect better the changes in time of prices, availability of produce, and the 

adaptations in (specifically animal) production systems. Effects on the EU food systems are described 

by the model in terms of availability and relative prices of food types (animal products, grains, 

roughage). 

 

With the model, 7 scenarios were simulated that differ in type(s) of calamity: price shock and import 

stop of soybean, export stop on grains (only in combination with soybean stop), yield reduction in 

grains, soybean equivalents and roughage and combination of the latter with stop of import of 

soybean (Table 1). Results show strong short-term loss of production and increase in prices, often 

followed by cyclic fluctuations in prices and production caused by overreaction of production on 

prices. Reduction in availability of roughage has strong short-term and long-term effects on dairy and 

beef sectors, while shocks in soybean availability/price affect mostly pork, poultry and egg 

production systems. Higher production within the EU of protein rich crops for biofuel reduces to a 

certain extent the effects of shocks in availability/prices of soybeans. 

 

The findings of the study indicate that while the EU will have sufficient potential to produce grains to 

satisfy human food consumption, combinations of calamities in trade and production may result in 

strong reductions of animal production, with extremely high and volatile prices of these products in 
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some quarters of the years during and after such calamities. Although in the longer run, agricultural 

production in EU, also of animal products, may bounce back, specifically the lower income groups in 

the lower income countries within the EU may face problems in financial and dietary terms as a 

consequence of calamities. 

 

Table 1 Summary of short term and long term effects on production and prices of simulated 

scenarios. Scenarios 6 en 7 are with increased biofuel production within EU; implemented by 

increasing area of soybean (equivalents) with 21 M ha (but with about 40% lower productivity) and 

grain area reduced by 6.3 M ha 

Scenario Short-term effects long term-effects 

1 soybean price shock:  

Sudden doubling of price of 

soybean, thereafter staying 

at that level 

Production of poultry, eggs and 

pork drops 30, 25 and 20%;  

Prices of these products 1.3-1.9 

times higher 

Area of protein crops in EU 

doubles, grain area reduces 3%; 

fluctuating prices (higher) and 

production (lower) of pork, chicken 

and eggs 

2. soybean import stop:  

No import for two years 

Price of soybean (equivalents) 

increases up to 2.9 fold; production 

of poultry, eggs and pork drops 50, 

10 and 25%; prices up 1.5-2.5 times; 

75% reduction in use of soybean 

and 50% increase of grain in feed 

Cyclic fluctuations in production 

and prices of all animal products; 

strongest in pork/poultry; lowest in 

dairy and beef 

6 as scenario 2, but with 

increased biofuel production 

Effects on production and prices of animal products strongly reduced 

compared to scenario 2; EU production of soybean (equivalents) 

increases and of grains reduces (affects export only) 

3 soybean import stop AND 

grain export stop: 

No import/export for two 

years 

Similar to scenario 2, but less 

extreme and in addition lower 

prices for grains 

Similar to scenario 2, but smaller 

fluctuations 

4. yield reduction: 

25% reduction for 2 years in 

availability of roughage, 

grains and protein crops in 

EU; free trade in soybeans 

and grains 

Only milk and beef sector respond: 

milk with 35% production drop and 

max 1.6 times higher price; beef 

40% production increase, price 

drop of max 10% 

Recovery in milk production in 3rd 

year, of beef in 4th; pork prices 

slightly higher because of 

substituting demand for beef 

5. soybean import stop AND 

yield reduction: 

Combination of scenarios 2 

and 4 

Milk and beef react slightly stronger than in scenario 4; responses in other 

sectors similar to scenario 2. 

7 as scenario 5, but with 

increased biofuel production 

In comparison to scenario 5, effects on pork sector are strongly reduced, 

while those on other sectors are similar 

 

While results indicate that an export stop on grains does not strongly add to resilience of food 

production in the EU, policy options that may have more potential to reduce the impact of 

calamities are  

- Stimulating larger minimum stocks of grains and specifically soybean (or other protein rich 

products) than is currently the case 

- Promoting co-production of biofuel and protein (for human consumption and/or animal feed) 

- Allowing more use of animal products in feed to replace soybean (equivalents). 

- Allowing farmers to use roughage from nature and set aside areas to compensate for low 

roughage productivity due to droughts 

- Facilitating credit to livestock farmers, during and after calamities, to prevent large number of 

farmers going bankrupt and to keep a production base intact 
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- Developing emergency food rationing systems, specifically dedicated to secure access for low 

income groups to food during calamities 

- Reduction in consumption of traditional animal products in favour of other sources of protein 

(pulses, insects), e.g. by increasing prices of (certain) animal products (e.g. through taxes) or 

raising awareness about diets that are healthier and/or more environmentally friendly. 

 

This study focused on a situation where imports of protein could be disrupted, and no trade in animal 

products took place. In this setting, trade restrictions on inputs have strong impact on consumer 

prices. Openness to trade in animal products helps in stabilizing the consumer end of the market in 

case supply of inputs of protein is disrupted. 

 

The dependence on imported protein exposes the European industry to the world market and to 

possible disruptions in trade. At the same time, large-scale trade reduces the exposure to (regional) 

shocks in production. 
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Samenvatting 

Vanwege de groeiende landbouwproductiviteit in de EU en elders, in combinatie met de relatief 

gemakkelijke import door de EU van landbouwproducten van internationale markten, is in recente 

decades de voedselzekerheid in de EU als min of meer gegeven beschouwd. De groei in vraag naar 

voedsel vanuit een steeds toenemende wereldbevolking zou echter de groei in productie van dat 

voedsel kunnen overtreffen, zeker wanneer het gemiddelde dieet meer dierlijke producten gaat 

bevatten. Dit kan leiden tot lagere voedseloverschotten op wereldschaal, zeker in combinatie met 

de betere toegang tot de wereldmarkten van landen als China en India als gevolg van het groeien 

van hun economische macht. Zelfs wanneer er in absolute zin nog geen voedseltekorten zijn op 

wereldschaal, kan dit ertoe leiden dat de voedselzekerheid binnen de EU gevoeliger wordt voor 

calamiteiten in de landbouwproductie, de voedselindustrie en de internationale handel, met minder 

opties voor de EU om zich ‗uit de problemen te kopen‘. 

 

Dit rapport gaat in op de mogelijke effecten van meervoudige en/of langdurige calamiteiten die de 

beschikbaarheid van landbouwproducten verminderen op de Europese voedsel- en voersector in 

2020. Voorbeelden van zulke calamiteiten zijn 

- Een plotselinge en sterke vermindering van de import van sojabonen uit Noord en Zuid-

Amerika, met mogelijkerwijs problemen voor de dierlijke productiesystemen in de EU; 

- Het optreden van extreme droogtes, met als gevolg een sterke reductie van de productie van 

granen en ruwvoer; 

- Het verschijnen van agressieve dierziektes waardoor de beschikbaarheid van dierlijke 

proteïnen voor menselijke consumptie plotseling sterk vermindert. 

 

De mate waarin de EU met zulke calamiteiten kan omgaan, hangt af van de productiviteit in de 

landbouw in 2020, het areaal dat beschikbaar is om gewassen en veevoer te produceren, de vraag 

naar voedsel en bio-brandstoffen en de mogelijkheid om voedsel en veevoer van buiten Europa te 

importeren. Verwachte kwantitatieve trends tot 2020 in deze onderliggende factoren zijn 

beschreven in dit rapport. Een model is ontwikkeld om de effecten te kunnen schatten van 

verschillende typen calamiteiten bij verschillende trends. Kenmerkende karakteristiek van het model 

is dat het een economische module voor het schatten van prijzen van landbouwproducten tijdens 

plotselinge vermindering in de beschikbaarheid daarvan koppelt aan een economische benadering 

van landgebruikveranderingen (m.n. betreffende akkerbouwgewassen) en aan een biofysisch 

model voor de schatting van dierlijke productie. Centraal in deze benadering staat de nadruk op 

voorraden van producten en de snelheid van verandering in die voorraden ten opzichte van een 

verwachte of optimale grootte van de voorraden. Voorraden nemen toe vanwege aanbod van 

binnen de EU geproduceerde en/of van buitenaf geïmporteerde goederen, terwijl voorraden 

afnemen vanwege consumptie en/of export. Omdat de veranderingen in de voorraden soms snel 

kunnen verlopen, worden in het model per tijdstap van één kwartaal (3 maanden) de 

veranderingen berekend in prijzen, beschikbaarheid van producten en aanpassingen in de 

productiesystemen (en dan vooral die van dierlijke producten). Effecten op het voedsel- en 

voedersysteem van de EU worden beschreven in termen van beschikbaarheden en relatieve prijzen 

(t.o.v. van startprijs) van verschillende producten (van dierlijke oorsprong, granen en ruwvoer). 

 

Met het model zijn 7 scenario‘s doorgerekend, die verschillen in type calamiteit (zie Tabel 1). 

Resultaten laten vooral een snelle afname zien van de productie in de dierlijke productiesystemen 

na de start van een calamiteit, met sterke prijsstijgingen van dierlijke producten. Vaak worden op de 

langere termijn daarna cyclische fluctuaties in productie en prijzen gesimuleerd als gevolg van 

overreacties van de productiesystemen op hoge en lage prijzen. Een vermindering in de 

beschikbaarheid van ruwvoer kan sterke effecten hebben op de melk en rundvlees sectoren, zowel 

op de korte als op de lange termijn. Verminderde beschikbaarheid en/of hoge prijzen van 
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sojabonen hebben vooral effect op de productie van varkens- en kippenvlees en eieren. Een 

hogere productie binnen de EU van eiwitrijke gewassen voor biobrandstoffen zorgt dat deze aan 

sojabonen gerelateerde effecten minder sterk zijn. 

 

Uitkomsten van de studie geven aan dat de EU de capaciteit heeft om voldoende granen voor 

humane consumptie te produceren, maar dat combinaties van calamiteiten in handel en productie 

tot sterke productie-verminderingen in de dierlijke productiesystemen kunnen leiden, met extreem 

hoge en zeer volatiele prijzen voor dierlijke producten in een aantal kwartalen gedurende en na een 

calamiteit. Op de langere termijn keert de productie van plantaardige en dierlijke producten binnen 

de EU terug naar het niveau van vóór de calamiteiten. Speciaal voor de lage inkomensgroepen in 

de landen met lagere BNP binnen de EU zouden de calamiteiten echter wel voor (tijdelijke) 

problemen kunnen zorgen in financieel alsook in nutritief opzicht. 

 

Tabel 2 Samenvatting van korte- en langetermijn effecten op productie en prijzen in doorgerekende 

scenario’s. Bij scenario’s 6 en 7 vindt een hogere productie van biobrandstoffen plaats in de EU door 

een extra areaal van sojaboonequivalenten van 21 M ha (met 40% lagere productiviteit dan 

sojabonen voor veevoer) terwijl het areaal graan met 6.3 M ha is ingekrompen. 

Scenario kortetermijn effecten langetermijn effecten 

1 sojaboon prijsschok: 

Plotselinge verdubbeling van 

prijs die daarna op dat 

niveau blijft 

Productie van kippen, eieren en 

varkensvlees 30, 25 en 20% lager; 

prijzen ervan 1.3-1.9 keer hoger. 

Areaal eiwitrijke gewassen in EU 

verdubbelt, graan 3% minder; 

fluctuerende prijzen (hoger) en 

productie (lager) van varkensvlees, 

kippen en eieren 

2. sojaboon import stop: 

Geen import in twee 

opeenvolgende jaren 

Prijs van sojaboon (eq.) 2.9 keer 

ho-ger; productie van kippen, 

eieren en varkensvlees 50, 10 en 

25% lager; prijzen ervan 1.5-2.5 

keer hoger, 75% afname gebruik 

van sojabonen en 50% toename 

van granen in veevoer 

Cyclische fluctuaties in productie en 

prijzen van alle dierlijke producten; 

sterkste fluctuaties bij varkens- en 

kippenvlees; geringste fluctuaties bij 

melk en rundvlees. 

6 als scenario 2, maar hogere 

productie van 

biobrandstoffen 

Effecten op productie en prijzen van dierlijke producten sterk 

gereduceerd t.o.v. scenario 2; EU productie van sojabonen 

(equivalenten) neemt toe terwijl graanproductie afneemt (heeft alleen 

effect op de export) 

3 sojaboon import stop EN 

graan export stop: Geen 

import/export in twee 

opeenvolgende jaren 

Zelfde patroon als scenario 2, 

maar minder extreme; wel lagere 

prijzen voor graan 

Zelfde patroon als scenario 2, maar 

minder sterke fluctuaties 

4. productiviteitsreductie: 2 

jaar lang 25% lagere 

beschikbaarheid van 

ruwvoer, granen en eiwitrijke 

gewassen in EU; vrije handel 

in sojabonen en granen 

Alleen de melk en rundvlees 

sectoren reageren: melkproductie 

35% lager and max 1.6 keer 

hogere prijs; rundvlees 40% hogere 

productie, prijsverlaging max 10% 

Herstel melk productie in 3e en 

rundvlees in 4e jaar; prijzen van 

varkensvlees een beetje hoger 

omdat het als substituut voor 

rundvlees wordt gebruikt 

5. sojaboon import stop EN 

productiviteitsreductie: 

Combinatie van scenario‘s 2 

en 4 

Melk en rundvlees reageren iets sterker dan in scenario 4; andere 

sectoren reageren als in scenario 2 

7 als scenario 5, maar hogere 

productie van 

biobrandstoffen 

In vergelijking tot scenario 5 zijn de effecten op de varkensvlees sector 

sterk gereduceerd; andere sectoren reageren als in scenario 5. 
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Waar de resultaten aangeven dat een export stop op granen niet veel bijdraagt aan de veerkracht 

van de landbouwsector in de EU, zijn er andere beleidsopties die meer potentieel hebben om de 

impact van calamiteiten te verminderen: 

- Stimuleren van grotere minimum voorraden van graan en met name sojabonen (of andere 

eiwitrijke producten voor veevoer) dan momenteel gangbaar is. 

- Bevorderen van co-productie van biobrandstoffen en eiwitten (voor humane en/of dierlijke 

consumptie) 

- Toelaten van meer dierlijke producten in diervoer ter vervanging van sojaboon (eq.). 

- Toestaan dat producenten ruwvoer uit natuurgebieden en uit productie genomen 

landbouwgrond gebruiken om ruwvoer beschikbaarheid bij sterke droogte op peil te houden. 

- Faciliteren van krediet aan producenten van dierlijke producten tijdens en na calamiteiten om 

faillissementen te voorkomen en een zekere productiebasis in stand te houden. 

- Ontwikkelen van systemen voor rantsoenering van voedsel in noodtoestanden, met specifieke 

aandacht voor het zekerstellen van toegang tot voedsel voor lage inkomensgroepen tijdens 

calamiteiten. 

- Stimuleren van het vervangen van traditionele dierlijke producten in het voedsel door andere 

eiwitbronnen (peulvruchten, insecten), bijvoorbeeld door verhogen prijzen van (bepaalde) 

dierlijke producten (via belastingen/heffingen) of het bevorderen van de keuze voor 

gezondere en milieuvriendelijker diëten. 

 

Deze studie richtte zich op een situatie waarin de import van eiwitten (sojabonen) plotseling gestopt 

kan worden en er feitelijk geen handel vanuit / naar de EU in dierlijke producten is. In een dergelijke 

situatie kunnen handelsbelemmeringen een sterke impact hebben op prijzen voor consumenten. 

Een vrije handel in dierlijke producten, kan helpen om de consumentenmarkt te stabiliseren wanneer 

aanvoer van eiwitrijke producten voor diervoer stokt. 
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1 Introduction  

Currently, Europe is self sufficient in nearly all basic food items, and even capable of exporting 

various agricultural commodities. Two major exceptions are vegetable oils and soybean, for which 

the EU is import-dependent. Former studies (Bindraban et al., 2008, 2009), where effects of single and 

one-off calamities on food production were analyzed, indicate that the food situation most likely will 

remain virtually unchanged towards 2020, even under a scenario of trade liberalization. Even a 

disruption of soybean imports, which in itself would reduce meat and milk production, and possibly 

result in diet change, would not endanger food security in terms of nutritional needs. 

 

As such, the European food system seems rather robust in terms of food availability, with surplus 

domestic production and strong purchasing power to acquire food on the international market. 

However, trends such as climate change, increasing world population, increasing per capita 

consumption of meat, increasing demand for biofuels and a reduction in the supply of phosphorus 

(e.g. Vaccari, 2009) may tighten the supply and demand balance after 2020, resulting in smaller 

buffers to withstand fluctuations in supply. This could make the European food system less resilient, 

especially when food and fodder production in addition is affected by a combination of two or 

more different types of calamities and/or through a sequence of calamities. This was in effect one of 

the major conclusions drawn from the ‗Workshop voedselzekerheid in de EU: Verkenning van 

mogelijke calamiteiten‘ [Workshop on food security in the EU: Exploration of potential calamities], 

organized by Stuurgroep Technology Assessment; 20 April 2009. 

 

This report describes the results of a study, commissioned by the ‗Stuurgroep Technology 

Assessment‘1 (TA) of the Dutch Ministry of Agriculture, Nature and Food Quality (LNV), into the 

possible effects of such combinations of calamities on food security in the EU and resilience of the EU 

agricultural food production. 

 

The study focused on the consequences of variability in the availability of food and fodder on prices 

and on the possibilities to feed human population and to maintain animal production, and 

specifically on the following questions:  

- What are the effects of individual or a combination of calamities that reduce the production 

and/or import of food and fodder on the availability and pricing of food for human 

consumption in the EU? 

- To what extent can increasing the size of stocks of critical food (and fodder?) items reduce 

the effect of calamities? 

 

Because of the many interactions between the various factors as well as the time dependency of 

several of these interactions, a model was developed to provide answers to these questions. This 

model has a focus on the changes during and directly after a calamity in production, consumption 

and prices of a limited set of agricultural products: grains, roughage, soybean equivalents, milk, beef, 

eggs, chicken meat and pork. To model the time-dependency of production, consumption and 

prices, the model has a time-step of calculation of 3 months. Consequently, the simulated course in 

time of these variables and of the size of the various stocks is a direct result of the interactions 

described in the model. Chapter 5 gives a general description of the model and how it is used. A 

detailed model description is given in Appendix II. 

 

Chapter 2 summarizes current land use and productivity of selected crops in the EU, as well as 

possible future trends in productivity; Chapter 3 does the same for animal production systems. 

Appendix I gives more details on these issues. 

                                                           
1 Currently known as ‗ LNV Platform Knowledge and Society‘  
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Chapter 4 depicts possible changes in demand for food depending on expected population size 

and potential changes in diet of that population. Chapter 6 provide results of the model, which are 

discussed in Chapter 7. Finally, Chapter 8 lists conclusions and recommendations. 
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2 Land use and Production in the EU of cereals, 

soybean and fodder 

2.1 Present situation 

Of the total 432 million hectares EU-27 territory, 90% is taken up by rural areas, with 184 million 

hectares (43%) as utilised agricultural area (UAA) in 2005 (see section 1). Majority of the UAA (59%) is 

arable land, 34% are under permanent grassland, while set-aside land is around 7 million hectares, or 

3.8% of UAA. 

Average area and productivity of selected arable crops is given in Table 3. 

 

Table 3 Area and productivity of selected arable crops in 2005 in the EU-27. 

Crop Area (mio ha) Average yield (t/ha) 

Cereals – total 51.5 4.9 

    Wheat 23.3 5.3 

    Barley 13.1 4.0 

    Maize 6.1 7.8 

Silage 5.2  

Pulses/protein crops 1.4  

Soy 0.4 2.7 

Source: Eurostat 

 

For several agricultural products, the EU 27 is near or above 100% self-sufficiency, but specifically for 

soybean products, the EU is almost 100% depending on imports (Table 4). 

 

Table 4 EU-25 / EU 27 self-sufficiency, selected crop products, 2005/06 (%) 

Durum wheat 88.0 

Common wheat 103.5 

Sunflower oil 52.0 

Rape seed oil 92.0 

Soybean oil 5.0 

Soybean Cake & equivalent 2.0 

Source: Agriculture in the European Union Statistical and Economic Information 2007; 

http://ec.europa.eu/agriculture/agrista/2007 

 

 

2.2 Trends in productivity of crops and grasslands 

2.2.1 Effects of trends in climate change, CO2 concentration and technology development  

Cereals 

Yields of major European crops have steadily increased since the 1960s, which has largely been due 

to technology development. The steadily increasing CO2 concentration in the air is another factor 

that may affect crop productivity, while climate change, manifested in rising temperatures and 

changing rainfall patterns, is becoming a factor that increasingly may play a role in changing 

productivity of crops and grasslands. 

 

Ewert et al. (2005) modelled changes in crop productivity, accounting for effects on crop 

productivity, due to climate change, increasing CO2 concentration and technology development 

that are known as the most important drivers of productivity change (Table 5). These effects reflect 

http://ec.europa.eu/agriculture/agrista/2007
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the average impact of such changes. As one particular effect of climate change, extreme events, 

such as long term and severe droughts and heavy rainstorms, are expected to occur more 

frequently than before. In our approach, these extreme events are treated as calamities (section 

5.2). 

As wheat is by far the most important food crop in Europe, it is considered as reference crop and 

relative changes in its productivity are assumed to hold also for other crops and forage. 

 

Table 5  Estimated relative changes in wheat productivity compared to 2005 as affected by changes 

in climatic conditions, CO2 concentration and technology development for different scenarios of the 

IPCC Special Report on Emission Scenarios (Ewert et al., 2005). 

Factor  Year Scenario 

  A1FIa A2b B1c B2d 

Climate 2020 0.99 0.99 1.01 1.00 

 2050 0.98 0.97 1.00 0.99 

CO2 2020 1.04 1.04 1.03 1.04 

 2050 1.16 1.13 1.09 1.11 

Technology 2020 1.37 1.37 1.30 1.20 

 2050 1.87 1.81 1.63 1.28 

All factors 2020 1.41 1.40 1.34 1.25 

 2050 2.01 1.92 1.72 1.37 

a Global economic and fossil fuel intensive world; b Regional economic world; c Global 

environmental world. 
d Regional environmental world. 

 

Grasslands 

Grasslands will differ in response to climate change depending on their type (species, management, 

soil type). In general, intensively managed and nutrient-rich grasslands will respond positively to 

increases in both CO2 concentration and temperature, provided that water supply is sufficient 

(Thornley and Cannell, 1997; Lüscher et al., 2004). Nitrogen-poor and species-rich grasslands, which 

are often extensively managed, may respond differently to climate change and increase in CO2 

concentration, while their short-term and long-term responses may be completely different (Cannel 

and Thornley, 1998). Management and species richness of grasslands may increase their resilience to 

change (Duckworth et al., 2000). 

Fertile, early succession grasslands have been found to be more responsive to climate change than 

more mature and/or less fertile grasslands (Grime et al., 2000). Generally, productivity of European 

grassland is expected to increase (Byrne and Jones, 2002; Kammann et al., 2005). 

 

Since no concise quantitative estimates for changes in grassland production were found in literature, 

here similar relative changes in future productivity are assumed as for wheat. 

 

2.2.2 Effects of trend in phosphorus availability 

Until recently, studies on expected future productivity of crops and grassland generally did not pay 

attention to possible effects of a reduced availability of phosphorus (P). Lately this has changed, and 

potential P shortages are being discussed, e.g. in the report by Smit et al. (2009), who argue that due 

to lack of sufficient easily available sources for P, shortages may start to occur from 2050, with 

strongest effects occurring from 2080 onwards. Clear estimates for effects of P shortages on crop 

production are not provided, among others because of lack of insight in the changes in availability 

of P relative to requirements and in the increases of price for P fertilizers. Apart from possible changes 

in (access to) P deposits, also the unknown potentials regarding recycling of P play a role in this 

uncertainty. 
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In agricultural production, P is also used as additive to animal feed to enhance the feed conversion 

efficiency and the build-up of skeletons by the animals. When lower P levels in feed reduce the feed 

conversion efficiency, more feed will be required to produce the same amount of animal products.  

However, no literature was found to get insight into the question whether P shortage would reduce 

the P content of feed, nor whether possibilities to re-use animal bones as source for P in feed will 

become acceptable (again). Therefore, this aspect of P shortage is left out of this study. 

 

Taken into account for this study, are tentative estimates of effects of P shortage on productivity of 

crops and grass are introduced (Table 6), which vary according to assumptions for 2020 and 2050 

regarding  

1. population pressure and consumption pattern to reflect the intensity of food production and 

the type of food that is produced as a driver of the rate of using available resources of P 

2. amount of biofuel produced within Europe: autarchy where all required biofuel is produced 

within Europe and import where large part is imported; biofuel production uses poses P 

resources in addition to that used for food and feed production. 

3. P-availability: relative high availability, where also currently not exploitable P becomes 

available and P recycling is relatively successful versus low availability where only current 

resources can be used.  

 

Table 6 Relative effect of P-availability on arable crop and roughage production 

 Year 2020 2020 2050 2050 

 P-avail High Low High Low 

Pop & Diet1 Biofuel2     

Hi_Pop_Hi_pro Autarch

y 

0.950 0.900 0.855 0.810 

Hi_Pop_Hi_pro Import 0.970 0.920 0.873 0.828 

Hi_Pop_Mod_pro Autarch

y 

0.930 0.880 0.837 0.792 

Hi_Pop_Mod_pro Import 0.950 0.900 0.855 0.810 

Hi_Pop_Lo_pro Autarch

y 

0.910 0.860 0.819 0.774 

Hi_Pop_Lo_pro Import 0.930 0.880 0.837 0.792 

Lo_Pop_Hi_pro Autarch

y 

1.000 0.990 0.941 0.891 

Lo_Pop_Hi_pro Import 1.000 1.000 0.960 0.911 

Lo_Pop_Mod_pr

o 

Autarch

y 

1.000 0.968 0.921 0.871 

Lo_Pop_Mod_pr

o 

Import 1.000 0.990 0.941 0.891 

Lo_Pop_Lo_pro Autarch

y 

1.000 0.946 0.901 0.851 

Lo_Pop_Lo_pro Import 1.000 0.968 0.921 0.871 

1 Population and Diet: Hi_/Lo_Pop: high respectively low population size estimate; Hi_/Mod_/Lo_pro: 

high, moderate and low amounts of protein in diet; 2 Biofuel: Autarchy: all crop produce needed for 

EU target of biofuel use are produced within EU; Import: large part of the biofuel is imported from 

outside EU. 
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3 Livestock production  

3.1 Current situation 

While currently having to import about 5% of consumption of beef and veal, the EU-27 is more than 

self-sufficient in the production of pork, poultry meat and eggs (Table 7). 

 

Table 7 Production, consumption and self-sufficiency of meat and eggs in EU-27 in 2005. 

Product group 

(1,000 t) 

Milk Beef and 

veal 

Pork Poultry 

 

Eggs 

Production EU-27 142.717 8044 21572 11294 7003 

Consumption EU-25/27 ? 8445 20370 11169 16837 

Self-sufficiency (%) >100% 95.3 105.9 101.1 102.4 

1 including 622000 tons eggs for hatching 

Source: meat: EC, 2007; eggs: Van Dijk, 2008; milk: Eurostat  

 

In the dairy sector, roughage is the main feed ingredient, while in the other production systems, large 

amounts of compound feed are used (Table 8). The major ingredient is formed by cereals, with 

oilseed meals and cakes (including soy) as a good second. 

 

Table 8 EU compound feed production by main ingredient 2003 (1000 T) 

Ingredient Production % of total 

ingredients used 

Cereals 55.189 44% 

Oilseed meals and cakes (inc. soy) 34.033 27% 

Co-products from the food industry 

(e.g. brewers grain, citrus pulp, 

molasses)  

16.608 14% 

Minerals & vitamins 3.245 2,5% 

Dried forage 2.379 1,9% 

Oils and fats 1.861 1.0% 

Others (Tapioca, pulses, dairy 

products, etc) 

11.545 9,6% 

Total 124.860 100% 

Source: FEFAC Feed & Food Statistical Yearbook, 2003  

 

As illustrated in Table 9, soybean meal is the most used and preferred protein source in the EU animal 

feed sector accounting for 68% of total protein material used (in protein equivalent terms). 

No other vegetable protein sources used (maize gluten feed, rapeseed meal, dried forage, pulses, or 

sunflower meal) come near soybean meal in terms of importance, each individually accounting for 

less than 10% of total proteins used in protein equivalent terms.  

This importance of soybean meal reflects its high level of protein in relation to all other, consistent 

availability and price competitiveness and its higher level of lysine compared to other vegetable-

based products like rapeseed meal (giving it a higher level of digestibility). It is particularly attractive 

as an ingredient for feeds used in the pig and poultry sectors. In the ruminant sector, protein content 

is less crucial and other meals like rapeseed meal tend to be more readily substituted for soybean. 

The relative high fraction of grain and soybean products in the feed is the reason to simulate their 

production and import in the model. Availability of other products used in feed is assumed unlimited 

in the model. 
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Table 9 Use of protein material by the EU animal feed sector 2003 (1000 T) 

Protein source Volume of 

material used 

Volume in protein 

equivalents 

% of the total use in 

protein equivalents 

Soybean meal 32.580 14.415 68% 

Rapeseed meal 5.510 1.888 9% 

Sunflower meal 3.685 1.106 5% 

Copra-Palm meal 2.591 453 2% 

Cottonseed meal 544 221 1% 

Others (Corn gluten feed, Pulses, 

Dried forage, Fish meals) 

15560 18083 15% 

Total 60.470 21.658 100% 

Source: FEFAC Feed & Food Statistical Yearbook, 2003 

 

3.2 Trends in animal production 

Main factors that contribute to the productive and economic performance of animal production 

systems are 

1. efficiency of conversion of feed into product in relation to quality of the feed 

2. maximum/optimal production per animal under optimal diet 

3. optimal composition of feed (fraction roughage, protein) 

4. losses of animals during the production cycle 

5. effective reproduction rate 

 

Various studies show that differences in these characteristics exist between countries, breeds, herds 

and individual animals. These differences are partially related to management, e.g. care/hygiene, 

milking frequency, slaughter weight, and partially to genetic potential of the animals, e.g. daily 

volume of feed intake, efficiency of digestion of feed, fertility, milk production capacity (e.g. Beever 

& Doyle, 2007; Bereskin et al., 1976; Britt et al., 2003; Fulkerson, 2001; Grainger & Goddard, 2004; 

Havenstein et al., 2003; Hyun et al., 1998; Quiniou et al., 1999). There is apparently quite some scope 

for further improvement (see also Johnson et al, 2003; McGuirk, 2000; McKay et al., 2000; Merks, 2000; 

Preisinger & Flock, 2000). Historic data may indicate some trends (e.g. Figure 1), but no clear 

predictions/expectations for future situations were found in literature. 
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Figure 1 Changes in time of body weight, feed conversion ratio and yearly egg mass-produced for 

Lohmann LSL layers (data from Preisinger & Flock, 2000). Dotted lines and equations reflect linear 

regression fits. 
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In the model, parameters are used to quantify these various characteristics and estimates for 

parameter values are provided that lay within the range of possibilities (Table 10 until Table 14). An 

indication of how certain and correct these values are can however not be provided, nor are 

possible undesirable side effects of breeding for high production efficiency considered (Rauw et al., 

1998). 

 

Table 10 Parameters for scenarios for dairy production system 

 2005 2020 2020 mod 

 Standard Moderately 

efficient 

Highly 

efficient 

Efficiency of conversion of feed into milk (kg milk / kg 

dw feed of optimal quality) 

1.36 1.38 1.40 

Maximum production of milk at optimum intake and 

quality (kg milk / cow / year) 

8900 9000 9100 

Optimal fraction roughage (dw roughage / total dw 

feed)1 

0.735 0.725 0.720 

Standard dying rate of animals (per year): calf 0.101 0.085 0.075 

-do-  heifer 0.019 0.017 0.015 

-do-  first year cow 0.010 0.0088 0.0075 

-do-  cow  0.005 0.004 0.003 

1 remainder is taken in by compound feed with 40% grain, 10% soybean and 50% other substances 

 

Table 11 As Table 10 for beef production system 

 2005 2020 2020 mod 

 Standard Moderately 

efficient 

Highly 

efficient 

Maximum efficiency of conversion of feed into meat 

(kg body growth / kg dw feed with 18.6% protein ) 

0.180 0.185 0.190 

Minimum efficiency of conversion of feed into meat 

(kg body growth / kg dw feed with 4% protein) 

0.050 0.055 0.060 

Standard dying rate of animals (per year): calf 0.100 0.0875 0.075 

-do-  heifer 0.040 0.0275 0.015 

 

Table 12 As Table 10 for broiler production system 

 2005 2020 2020 mod 

 Standard Moderately 

efficient 

Highly 

efficient 

Maximum efficiency of conversion of feed into meat 

(kg body growth / kg dw feed with 16.7% protein ) 

0.600 0.625 0.650 

Minimum efficiency of conversion of feed into meat 

(kg body growth / kg dw feed with 8.2% protein) 

0.400 0.425 0.450 

Standard dying rate of animals (per year) 0.050 0.045 0.040 
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Table 13 As Table 10 for egg production system 

 2005 2020 2020 mod 

 Standard Moderately 

efficient 

Highly 

efficient 

Efficiency of conversion of feed into eggs relative to 

standard 

1.000 1.025 1.050 

Maximum production of egg at optimum feed intake 

and quality (# eggs/ chicken / year) < 3 mnth 

215 252 290 

-do- < 12 mnth 227 268 308 

-do- > 12 mnth 216 256 295 

Standard dying rate of animals (per year): < 6 mnth 0.0360 0.0345 0.0330 

-do-   < 12 mnth 0.0480 0.0455 0.0430 

-do-   > 12 mnth 0.0600 0.0440 0.0500 

 

Table 14 As Table 10 for pork production system 

 2005 2020 2020 mod 

 Standard Moderately 

efficient 

Highly 

efficient 

Maximum efficiency of conversion of feed into meat 

(kg body growth / kg dw feed with 15% protein ) 

0.345 0.352 0.360 

Minimum efficiency of conversion of feed into meat 

(kg body growth / kg dw feed with 10% protein) 

0.294 0.302 0.310 

Standard dying rate of animals (per year): < 6 mnth 0.050 0.038 0.025 

-do-   < 12 mnth 0.010 0.008 0.005 

Yearly number live piglets produced per sow per year 22.8 23.0 23.5 
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4 Present and future consumption of agricultural 

products in the EU 

The human population of the EU 27 is expected to grow a little more, from 489 million in 2005, to 496.4 

million in 2020. Thereafter, the population will decline, to an estimated 472 million people in 2050 

(Eurostat, yearbook 2006-07). 

 

Various visions and scenarios exist about how the diet of the EU-27 citizens may change in the future. 

While some forecast consumption of animal products to increase further, others hope that the diet 

will become nearly vegetarian. Weidema et al. (2008) forecast EU-average meat consumption to 

increase by 3.6% from 2001 to 2020, with a 2.6% increase for pork, 14.3% for poultry, a reduction of 

6.9% for beef and veal, and a stable consumption of dairy products. Nowicki et al. (2007) assume a 

slightly larger increase of 4.5% per capita from 2005 to 2020, but with less variation between meat 

types: 6% for pork, 6.4% for poultry and less for beef. 

 

A disadvantage of the above approaches is that they do not provide alternative scenarios that 

could result from policies or health considerations. The model, therefore, follows the approach as 

described by Bindraban et al. (2009; building upon WRR, 1995) with three scenarios for diet 

composition: Affluent, Moderate and Vegetarian, varying in daily intake of energy and (animal) 

protein (Table 15). The Affluent diet, which delivers more than sufficient energy and (animal) protein, 

is considered the type of diet that people are moving to when having more income to spend on 

food; as such, it is currently found mostly in rich societies, such as Western Europe and the US. The 

Moderate and Vegetarian diets provide sufficient energy and protein. Especially in the Vegetarian 

scenario, increased consumption of pulses will have to compensate for the reduction in animal 

products. In the Moderate and Vegetarian scenarios, still substantial milk consumption is foreseen, 

while consumption of beef is strongly reduced. The inherent assumption must be that the EU will start 

exporting beef under these scenarios. 

 

Table 15 Consumption scenarios for 2020 in comparison to actual consumption in 2005 

Year  2005 2020 2020 2020 

  Actual Affluent Moderate Vegetarian 

Population (million) 489 496.4 496.4 496.4 

per capita consumption (kg/person/year)   

 Cereals 171 98.2 179.2 203.7 

 Milk1 273 365 568 169 

 Eggs 13.5 13.1 5.8 1.5 

 Beef 17.3 23.4 5.1 0 

 Pork 41.6 38.3 2.9 0 

 Poultry 22.8 16.8 0.4 0 

Total consumption (million kg/year)   

 Cereals 83619 48746 88955 101117 

 Milk 133500 181199 282223 84345 

 Eggs 6602 6503 2879 745 

 Beef 8460 11616 2532 0 

 Pork 20342 19012 1440 0 

 Poultry 11149 8340 199 0 

1 milk is including industrial milk products (e.g. cheese, butter) 

After Bindraban et al., 2009 
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Due to the higher use of agricultural products per capita in the Affluent diet (also due to its high 

content of animal products), this food scenario will lead to land use and import strategies that are 

more sensitive to calamities in production or trade than the other two. Therefore, this study assumes 

the situation that all EU citizens follow the Affluent diet. 



 

 12 

5 Model 

5.1 General Setup of the Model 

 

Availability of food and fodder is affected by changes in production, imports/exports and stocks of 

grains, soybean, fodder, milk and meat. Linking these changes to determining factors, like climate, 

geo-politics, energy prices etc, is considered too complex and hence too time-consuming to be part 

of this project. Instead, scenarios regarding trends of change in these factors were introduced to the 

model as external factors. As much as possible, these scenarios were based on existing studies.  

To estimate the consequences of changes in these factors, a standardized calculation scheme (in 

other words, a model) was developed to evaluate additional scenarios with differences in the 

variability of production, trade and of policy decisions on stock size over a certain number of years 

(flowchart in Figure 2). 
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Figure 2 Flow diagram of the model for the quantification of food availability and pricing with 

variable production, trade and stock size options. Light gray indicates factors not explicitly taken into 

account but imposed onto the model through trends and scenarios. Arrows ‘Trends’, ‘Calamities’ 

and ‘Policy options’ indicate factors in which scenarios differ. 

 

In case calculated production cannot meet assumed demand, the model calculates additional 

volumes required from domestic stocks or the world market. Depending on EU stock volume and 

possibility to acquire goods on the international markets, prices are calculated of grains, soybean, 

fodder, and animal products (milk, beef, pork, chicken meat and eggs). A feedback between prices 

and demand results in a change in demand, varying with the different uses of the various goods, 
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with consequences for calculated consumption and, in the case of grains and soybean, also on the 

production of animal products. Outcomes of the model are prices and consumed volumes per good 

per type of ‗consumer‘ (human population, animals, international trade). 

 

Variability in demand, production, trade, stocks, has three underlying causes:  

1. Trends in production, trade and demand related to changes in population size, lifestyle, climate, 

technology (in Figure 2 indicated by the ‗Trends‘ arrow). 

2. Occurrence of calamities. Since here the resilience of the food system is studied in situations with 

shortages of food, only those calamities are taken into account that reduce production and 

international trade of the goods (‗Calamities‘ arrow).  

3. Effects of policy decisions, which here are assumed to only be directed towards the maximum 

stock size for the goods in Europe. Policy decisions in and outside EU affecting technology 

development, area of arable land assigned for production of other goods, e.g. for biofuel, 

demand, etcetera, will be reflected in trends. Policy decisions outside the EU having immediate 

and strong effect on international trade, e.g. export stop on grains, are introduced as calamities. 

 

In the model, strength of trends and calamities are expressed as effects relative to a baseline 

situation. In this study, specific sets of strength, duration and recurrence of calamities and trends will 

be discussed, although in principle the model can handle a wide range of such calamities and 

trends, differing in the variables mentioned in Table 16. 

As baseline serves the liberalization scenario in the EU in 2020 (Bindraban et al., 2009), without the 

effect of a reduced availability of phosphorus.  

 

Table 16 Variables in the model and the underlying assumptions of trends, calamities and policy 

options to be considered 

Variable Trends Calamities / policy option 

EU production of cereals, 

soybean, fodder, milk and 

meat 

Climate, technology, 

availability of phosphorus 

Drought, plant diseases, 

nuclear accident, volcanic 

eruption 

EU demand cereal, soybean, 

fodder, milk and meat 

Population size, diet None 

EU-stocks of cereal, soybean, 

fodder, milk and meat 

None Stock capacity  

Global trade volume , 

soybean, fodder, milk and 

meat 

Climate, technology, 

availability of phosphorus, 

world population, diet 

Severe global production 

reduction, geopolitical 

constraints, protectionism by 

exporting countries, failures in 

transport system 

 

5.2 Scenarios and Calamities 

In the model, the combined effect of long-term trends in climate change, CO2 concentration in the 

air, technology and P availability is modelled as a continuous change in productivity of crops and 

grassland, relative to that in 2005, by combining the estimated effects in Table 5 and Table 6. For 

example, the total effect of climate change, CO2 and technology in 2020 under scenario A1FI (Table 

5) can be combined with the effect of P shortage under the scenario of a high population with a 

high protein diet and imported biofuel (Table 6). The productivity of crops and grasslands as used in 

the model will then be 1.41 * 0.970 = 1.3677 times that of 2005. 

Similarly, effects of developments in management and genetically determined production potential 

in animal production systems are taken constant during the whole simulation for a certain scenario 

for animal production. 

 

These trend values are used during all simulated ‗years‘. 
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Calamities are defined in the model as negative effects on productivity or import/export and are 

only invoked during a certain time in the simulation, e.g. only during year 0 or in years 0 and 1. 

Causes for calamities are not part of the model, as for the evaluation of a calamity in this study only 

the effect is important. However, for reference, causes for calamities can be related to adverse 

weather conditions, such as drought, heavy storms, excessive rainfall and (long) spells of extreme 

cold or high temperatures, to geological events such as tidal waves that destroy harbours, and 

volcanic eruptions, to (geo)political decisions that may stop export of soybean to Europe, and 

epidemics of (new or evolved) animal diseases. See Bindraban et al. (2009) for an overview of such 

calamities that have occurred recently. 

 

Volcanic eruptions disrupting agricultural production 

 

In historic times, several volcanic eruptions have caused strong reductions in agricultural production. 

Famous examples are eruptions of Laki volcano (Iceland) in 1783 and Tambora volcano (Sumbawa 

Island in Indonesia) in 1815. Ash clouds reduced global temperatures and level of solar radiation 

reaching the surface of the earth thereby reducing crop yields in large part of the world. Acid clouds 

and rains (caused by emissions of sulphur) destroyed part of the crops. In large parts of Europe, food 

production was strongly reduced for at least two years, resulting in very high prices for grains and 

famine, which in its turn caused many riots. 

 
Sources: Wikipedia and http://www.w8.nl/tambora.htm 

 

An argument for the relevance of the possibility to introduce calamities that affect crop production 

in two consecutive years is given by the general agreement that climate change may very well 

result in more frequent extreme weather events than currently. Even if the cause for the calamity 

differs between the two years, the effect on crop production could be very similar. 

Especially because of the trend in climate change to make the average weather in many places 

warmer and dryer, extreme events may have strong effects. Crops often respond nonlinearly to 

changes in their growing conditions and have threshold responses, which greatly increase the 

importance of climatic variability and frequency of extreme events for yield, yield stability and 

quality (Porter and Semenov, 2005). As such, an increase in temperature variability will increase yield 

variability and reduce average yield (Trnka et al., 2004). Therefore, the projected increases in 

temperature variability over Central and Southern Europe (Schär et al., 2004) may have severe 

impacts on the agricultural production in this region. In addition to the linear and nonlinear responses 

of crop growth and development to variation in temperature and rainfall, short-term extreme 

temperatures can have large yield-reducing effects (Porter and Gawith, 1999; Wheeler et al., 2000). 

This is particular the case when such temperatures occur during flowering and fruiting periods, where 

short-term exposure to high temperatures (usually above 35o C; Porter and Semenov, 2005) can 

greatly reduce fruit set and therefore yield. Exposure to drought during these periods may have 

similar effects. 

Usually, individual extreme events will not have lasting effects on the agricultural system. However, 

when the frequency of such events increases, production could be more severely affected, 

especially when such events occur in two sequential cropping seasons. 

 

Calamities that affect crop production are implemented by introducing relative production losses for 

crops to occur in year 0 and in some cases also in year 1. Those that affect imports (of soybean in 

particular), are introduced by indicating in which years (0 and possibly 1) such import stop occurs. 

The model then automatically selects also the relevant pricing mechanism for that situation (see also 

sections 7.4 and II.1). 
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6 Results and discussion 

6.1 Introduction 

The initial settings of production and demand in the model are determined by the trend scenario 

chosen (section 5.2). Each scenario is composed of expectations of future developments (trends) in 

consumption and production, which come from different studies. This may result in a scenario where 

production and consumption are not in equilibrium according to the pricing system that is implied in 

the model, and it takes the model some simulation ‗years‘ before such an equilibrium is achieved. In 

the standard trend scenario, this is the case about 5 years after initialization of the model (Figure 3).  
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Figure 3 Simulated relative price of beef over the simulated years (year -5 is the start of simulation) in 

the standard trend scenario. 

 

If a calamity would be introduced directly at the start of the model, evaluated effects not necessarily 

would reflect only the impact of such a calamity, but also effects of the disequilibrium. 

Therefore, the results discussed here refer to the effects of calamities that are introduced after the 

required equilibrium is achieved. Since the focus of this study is on the effects of calamities, the year 

0 in figures and tables refers to the first year that a calamity is introduced.  

 

 

6.2 Trade and production shocks in the standard trend for 2020 

Trade shocks take the form of shocks to prices, but may also be the result of trade disruptions. For the 

feed sector, prices of grain and soybean (and their substitutes) are important. In the standard trend 

for 2020, the EU is a net grain exporter and a large soybean importer. Thus, trade disruptions (i.e. no 

imports, no exports) leave the EU with a surplus of grain and a shortage of soybean. 

Even without trade disruptions, the EU can experience trade shocks, for example, due to excessive 

demand for soybean from outside the EU or reduced production, with the consequence that prices 

in the world market rise steeply. 

The following calamities will be dealt with: 

 a sudden and permanent doubling of world market prices 

 an import stop on soybean lasting two years and starting in quarter I of year 0. 

 an import stop on soybean, and an export ban on grains of the same duration 

 a severe yield reduction, e.g. caused by drought or by ash from volcanic eruptions during 

two years 

 a severe yield reduction,  combined with import stop on soybean, of two years‘ duration 

 

The simulations are made for the situation (population, yields, areas) expected to prevail in 2020. The 

standard assumption is that the EU is integrated in the world market for grains and soybeans, but not 
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for animal products. Hence, without trade disruptions feed prices in the EU are the same as world 

market prices. Prices of meat are supposed to be determined inside the EU. Currently, little net 

exports of meat takes place amounting to approximately 3% of consumption. This percentage is 

expected to decline by 2020. Hence, while trade is possible, it is uncommon. Sharp falls in production 

will therefore not easily be met by imports, especially not for fresh products such as milk and eggs. 

Prices within the EU can go up therefore despite open borders. To have this effect in the model, we 

assumed no trade to occur at all. 

 

Scenario 1: Soybean price shock 

Assumption: world market prices of soybeans shift to twice the original values as of year 0, without 

affecting the world market prices for grain 

 

The assumption is that world market prices rise to twice the original value, starting from year 0, 

accounting for increasing elasticities (at fixed elasticities, the price rises fourfold). Demand for 

soybean will therefore drop. Supply of soybean in the EU will respond, but soybean can only be 

produced in the third quarter of the year. Grain prices, meanwhile, are assumed to remain steady.  

The dairy sector will find it advantageous to shift to using grain instead of soybean. For pigs and 

chicken, such a radical shift is not possible, and their production will be adjusted downward in 

response to higher feed prices. As a result, the prices of pork, eggs and poultry will rise. 
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Figure 4 Responses to a 2-fold increase in soybean prices as of year 0; production and prices are 

relative to those in the standard scenario. Year after start of calamity on X-axis, Relative quantities 

and prices on Y-axis. 

 

The area allocated to protein crops almost doubles in response to this price increase, while the grain 

area falls by 3%. Production of poultry drops by some 30%, while smaller decreases occur in egg and 

pork production, and milk and beef hardly respond (Figure 4 left). As a result, prices of the pork, 

poultry and eggs will go up, as shown on the right hand side. The rise of product prices, then, triggers 

more production and the production of the three types of animal products increases again to levels 

close to those in the standard scenario. Eventually, equilibrium is reached in which prices of these 

products are between 25% (eggs) and 40% (poultry) higher than they were, while production 

quantities are between 4% (eggs) and 8% (chicken) lower. 
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Figure 5 Changes in use of grains (left) and soybean (right) feed (on X-axis) by sector in response to a 

doubling of soybean prices  

 

Milk production and beef production show little response: there is slightly less milk production, due to 

the reduction of herd size and a minor change from soybean to grains, and beef prices move to 

levels that are some 12% higher, due to slightly lower production and the increased demand due to 

higher pork and poultry prices. 

The price shock thus hurts the industry quite strongly in the initial two quarters, mostly due to the slow 

transmission of feed prices into product prices. 

 

Total demand for soybean will fall by around 20%, while grain feed demand rises by 3%, mostly due 

to increased demand for grain in the pig and broiler sector (Figure 5). The grain-soybean ratio in the 

feed for the different animal production systems changes in favour of grains. Taking all sectors 

together, the ratio changes from 3.26 to 3.9 kg grain per kg soybean. 

 

Scenario 2: Trade disruption in soybean only 

Assumptions: no soybean imports possible during the 8 quarters of years 0 and 1, grain trade remains 

free. 

 

The next simulation shows the results of a stop in imports of soybean (meal) in years 0 and 1. This 

important ingredient of feed then must be curtailed. Prices shoot up, and availability is also otherwise 

limited. After year 1, however, trade resumes its normal course, but the effects of the trade shock will 

linger on for some years as shown in Figure 6. 
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Figure 6 Responses to a stop on soy-imports in years 0 and 1. Year after start of calamity on X-axis, 

Relative quantities and prices on Y-axis. 

 

The immediate changes in production of meat are quite severe. To reduce the consumption of 

soybean (meal) to levels that can be provided from the existing stocks, prices of soybean increase to 

2.9 times the initial value (with increasing elasticities) in the first quarter. It reflects the scarcity and 

incidental unavailability of the feed. 
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In response to this sharp increase in feed prices, meat and egg production drops and prices of 

products start rising. These higher product prices leads to a later recovery of meat production. The 

recovery is quickest in sectors such as poultry, which produces the original quantities again by the 

fourth quarter, using much less soybean meal (-75%), and more grain (65%). The pork sector is not 

that flexible, and restores the original levels of production only by the end of quarter 8. As can be 

seen in Figure 6 (left), the pork production shows a small hick-up in quarter 2. This reflects the delayed 

supply of pigs that were being fattened when the ban on soybean imports became effective. On 

average, production of pork during the two years 0 and 1 is down by 7%, while soybean 

consumption in the sector is reduced by two third.  

This shows that the effects of an import ban of soybean are not as severe as tentatively indicated by 

Bindraban et al. (2009), who took a reduction of pork production by a third to be the likely outcome. 

In the egg sector, the effects are not so strong, and the responses are not so quick, due to the longer 

natural cycle of the hens, and the more moderate responses to price changes. Again, we see that 

the effects on the dairy sector are minimal. In this sector, and elsewhere, a shift is made from using 

soybean (meal) to using grains as feed ingredient. Taking all animal sectors together, the demand for 

grains increases by 50%. Prices are not affected, as all this grain comes at the cost of exports, and 

the reduced exports have negligible effects on the world market price, given its small effect on total 

world trade. In the period after the import ban, it takes another two years before normal conditions 

prevail again. 

 

Changes in grain and protein use by sector are shown in Figure 7. 
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Figure 7 Change in use of grains (left) and soybean (right) feed by sector resulting from soybean 

import stop 

 

Scenario 3: Trade disruption in soybean and grains 

Assumptions: no soybean imports and grain exports possible during the 8 quarters of years 0 and 1. 

 

A further stop on trade in grains, additional to the import ban on soybean, amounts to a ban on 

exports of grain. This would typically reduce the price of grains, but the lack of soybean leads to 

increased demand for grains, as we have seen above. In addition, grain production in the years of 

the trade embargo will respond to the change in prices. Whether this leads to higher prices of grains 

too, we shall discuss now. 

The initial responses to the trade embargo will not differ much from the previous simulation, as 

soybean price should rise again to choke off the demand for it. Grain now is more easily available, 

but its prices are only slightly below the normal prices, as stockholders have no incentive to sell the 

grain very cheaply. (In the model, this is implemented by restricting downward adjustment of prices 

to 10% per quarter) As this consideration holds for every stockholder, competition will not drive prices 

down quickly. The lower prices of grain lead to somewhat less sown area in year 0 and again in year 

1, with production down by 10% in each year. Grains stock levels will continue to rise during these 

years, however, leading to ever lower prices of grains. 

The effects on meat production and product prices will therefore be slightly weaker than in the 

previous scenario (Figure 8). 
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Figure 8 Responses to a stop on soybean imports and grain exports in years 0 and 1. Year after start of 

calamity on X-axis, Relative quantities and prices on Y-axis. 

 

The effects on use of grain and soybean can be seen in Figure 9, which shows that grain use in pork 

sector, for example, more than doubles to compensate for the lower use of soybean and is higher 

than in Figure 7, where grain was more expensive. 
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Figure 9 Grain (left) and soybean (right) use in quarter 8 with trade stop/disruption in years 0 and 1 

 

Scenario 4: A yield reduction 

Assumptions: effective roughage availability and yields of grains and protein crops fall by 25% in 

years 0 and 1, free trade in soybeans and grains 

 

We now simulate what the effects would be of a yield reduction only, starting in January of year 0 

and lasting until the end of year 1. We assume that prices of grains and soybean remain unchanged 

and equal to the world market prices of 1, as trade is still possible. 
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Figure 10 Responses to a 25% yield reduction in years 0 and 1. Year after start of calamity on X-axis, 

Relative quantities and prices on Y-axis. 

 

We see that in fact only the dairy sector and the connected beef sector respond to such a shock 

(Figure 10). A severe shortage of roughage in the first quarter of year 1 leads to culling of cows, 
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reduced milk production, higher beef supply. Milk prices soar, and beef prices fall temporarily in year 

1. When arable production recovers, however, cattle stocks on the dairy farms soon are replenished, 

not least because of the attractive product prices prevailing in year 3.  

The small changes in pork prices shown in the figure are due to the substitution effects between beef 

and pork: the higher beef prices lead to more demand for pork and higher pork prices. 

 

Scenario 5: Trade disruption in soybean, combined with a yield 

reduction 

Assumptions: Effective roughage availability and yields of grains and protein crops fall by 25% in 

years 0 and 1, free trade in grains 

 

Here, a reduction of yields is added to the import stop on soybean. This reduction applies to grains, 

soybean and roughage production. This affects the availability of soybean and grains to the extent 

that these have to be produced in the EU, while the reduced production of roughage will have 

strong effects on the dairy sector (Figure 11). 

 

The yield reduction affects roughage production in year 0, but its supply falls short of demand only in 

the first quarter of year 1. At this point, price of roughage shoots up and demand is curtailed 

drastically. With no alternative roughage feed available, the only option is to cut in the number of 

animals to be fed. The shortage of roughage leads to the culling not only of older cows, but also of 

more productive cows. Milk production drops temporarily by 40%, and beef supply rises as more 

cows are put up for slaughter. Supply peaks in the second quarter of the second year, at 45% above 

normal. While milk prices rise (in quarters 3 and 4 to only 3% and 7% above normal, but after the 

roughage shortage becomes acute, to 13, 28, 51 and 71% above normal in the second year), beef 

prices first rise (to +6% in Q5) along with pork and poultry, then fall briefly (to -4% in Q7) before rising 

as a result of reduced beef supply (-28% at the end of year 2) later on. 
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Figure 11 Responses to an import stop on soybean combined with yield reduction in years 0 and 1. 

Year after start of calamity on X-axis, Relative quantities and prices on Y-axis. 

 

Effects on the other sectors look similar to the earlier simulations with an import stop only. Soybean 

prices are somewhat higher, at 3.23, because of the low production within the EU, hence meat 

production is cut even more. In the first quarters chicken production is reduced to 41% (Q1) and 70% 

(Q2), pork production in Q1 shrinks by 27%, but the annual total pork production for the first year is 

reduced by 11% only (for poultry 29%). 

 



 

 21 

 
Figure 12 Use of grain (left) and soybean (right) (in kilotons) in quarter 8 after a stop on soybean 

imports, combined with 25% reduction in yields of roughage, grains and soybean in years 0 and 1 

 
Figure 12 shows the changes in use of feed. The beef sector adjusts its use of soybean feed only little, 

while pork, poultry and egg and milk sectors all reduce soybean use dramatically. 

 
 

6.3 Trade and yield reduction shocks with more biofuel for 

2020 

The above scenarios are for shocks to what could be the situation in the EU by 2020 under standard 

assumptions on policy. These standard assumptions do not include a purposive policy of the EU to 

increase the acreage under bio-fuel crops in the EU. Yet, if such policy were implemented, much 

more protein would be available within the EU (for the seed of biofuel crops contains both oil and 

protein rich meal) and an import stop on soybean could be much less harmful for the protein 

provision of the EU livestock. For this reason, this paragraph looks at the repercussions that trade 

shocks and other calamities would have in a situation where the EU would grow its own biofuels. 

The biofuel scenario sketches what might happen to the market for protein feed in case of stringent 

implementation of EU policy regarding the production of biofuel crops. 

Present plans of the EU include the compulsory mixture of biofuel into the gasoline and diesel fuel by 

2020 to the amount of 10%, and to reach 5.75% already by 2010. Market share in 2008 was 2.62%.2 

Without restrictions on EU trade in biofuels, most of the extra biofuel requirements will be met by 

imports. This will raise world market prices, and divert agricultural land from food or feed crops to 

biofuel crops. Area consequences within the EU would be minor. Bindraban et al. (2008) indicate that 

with full liberalization of agricultural markets (including those for meat and dairy), and no restrictions 

on where the biofuel crops should be grown, the EU area for energy crops would take 8.8 M ha. For 

comparison, the 2005 area in the EU for soybean, sunflower, rapeseed and pulses amounted to 9.4 M 

ha. The demand for land in the EU as a consequence of biofuel requirement will therefore be 

negligible under this assumption of full tradability of biofuels. 

With restrictions on where the biofuel crops are grown, more impact on EU land use is to be 

expected. Bindraban et al. (2008) elaborate a case in which 57% of the biofuel must come from EU 

sources. This would claim 13.9 M ha in the EU consisting of 8.5 M ha of oilseeds (rapeseed and 

sunflower) for bio-diesel and 5.4 M ha of grains and sugar beets for ethanol production. They further 

comment that by 2020 some 26 M ha of agricultural land can be expected to be taken out of 

production compared with 2005, due to regular abandonment of farmland. This should enable these 

crops to be grown without necessarily crowding out of other food and feed crops. 

 

We take the rather extreme case that all biofuel crops must be grown within the EU. Bindraban et al. 

(2008) calculate that in this scenario some 24.4 M ha must be grown for biofuel purposes, including 

6.3 M ha grain, 3.1 M ha sugar beets, and 15 M ha oilseeds. If no additional land would be taken into 

cultivation, this implies that the area for food and feed grain production diminishes by at least 6.3 M 

                                                           
2 http://www.plateforme-biocarburants.ch/en/infos/eu-results.php 
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ha and that the area under oilseeds increases from 9.4 to 15 M ha, or by 6.6 M ha, which may also 

come at the cost of grain area. The other side of the coin is that the oilseed production from this 15 M 

ha produces – in addition to the oil – 21 M tons of soybean meal (sbm) equivalents (ibidem, p 47). 

This may replace imports of soybean (meal). In addition, the processing of the grain for ethanol 

production yields as a by-product DDGS (Distillers dried grain soluble) which would provide another 

8.8 M tons of sbm-equivalents. 

 

The additional 29.8 M tons of sbm equivalents would be equivalent to an area of soybean 

equivalents of 13.4 M ha (with a yield of 2.2 tons of sbm per ha in 2020). 

For the simulation of this case, we could depart therefore from the following changed conditions: 

Basic grain area: minus 6.3 M ha 

Basic ‗soybean‘ area: plus 13.4 M ha 

 

The original area under oilseed crops (of 9.4 M ha) remains cultivated and can be left out of these 

calculations. The same holds for sugar beet area. But the use of DDGS requires further consideration: 

if we subtract grain area (as the grain is no longer available for feed) and add the sbm equivalent of 

DDGS to the ‗soybean‘ area, we do as if the area required to produce the 8.8 M ton of sbm eq in the 

form of DDGS would be 4 M ha (=8.8/2.2). But it took actually 6.3 M ha (of grain). Similarly, to produce 

the other 21 M tons of sbm eq in the form of rapeseed and sunflower requires 15 M ha, rather than 

the calculated 9.4 (= 13.4 – 4). 

To accommodate for this change in source of proteins, from soybean to less protein-rich crops, we 

diminish the assumed yields of ‗soybean‘ area from 2.2 t/ha to 1.4 t/ha. With this yield, the sbm eq of 

29.8 M ton requires 21 M ha. 

The original area of soybean will, in this scenario, no longer is grown, as it would be more attractive to 

grow the (other) biofuel crops that yield more oil, while still yielding the by-product of sbm 

equivalents. 

 

A final consideration is the price. In the biofuel studies, these crops fetch higher prices. Only then will 

farmers be willing to grow the crops. The higher prices are induced by the demand for the oil, and 

not by demand for the meal. Actually, in a free trade world, more biofuel production may lead to 

lower meal prices. This is not included in the model, however, as the relevant scenario (calamity) is 

the one in which no trade is possible for some years. 

 

Summarizing, the biofuel scenario is implemented in the model by assuming  

 grain area to be lower by 6.3 M ha,  

 ‗soybean‘ area to be higher, 21 M ha, but  

 yields of sbm to be 1.4 t/ha rather than 2.2 t/ha. 

 

Obviously, this would all be of no consequence for the simulations under the assumption of open 

borders. The scenario is only relevant when combined with no-trade calamities. 

 
Simulations 

 

By assumption in the Biofuel scenarios, the EU produces much more oil seed crops and, with the 

assumptions made above, it is hardly importing proteins anymore. Instead of importing some 25 M 

tons of feed per year, these imports would dwindle to a mere 2 M ton or thereabout in soybean 

equivalents. This has implications for the stockholders too. In the traditional conditions, they would be 

storing what is usually imported for a quarter, hence stock levels close to 7,000 kton. In the new 

conditions, with a production in the third quarter of every year of around 28 M tons, they must store 

this much, at least for some time. In line with the assumptions for the grain market and the reality as 

observed for the USA, they are modelled to release the stock only gradually over the year, in each 

quarter they release a quarter of the stock level above the minimum quantity of 4,000 kt. Therefore, 

the general price level of sbm in the EU will be marginally lower than in the previous simulations. 
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The new situation in which the EU produces much biofuel itself impacts on its resilience to trade 

shocks. We make the following simulations for this case. We start with a trade stop for soybean. This is 

likely to have mild effects on the animal production, compared with the case above when the EU 

produced only little protein feed. The next simulation is for an import stop of soybean, combined with 

a two-year yield reduction of 25% in protein crops, grains and roughage. While the reduced 

production of grains has no effect, as this can be imported freely, the reduced production of 

roughage will affect the dairy sector immediately. 

 

Scenario 6: No trade in soybean (meal), with more biofuel 

Assumptions: no imports of soybean, free trade in grains, with more biofuel 

 

We simulate the situation of no trade in soybean (meal), starting in the first quarter of year 0.  

The stockholders actually have not much reason to change their policy. A crop in the order of size of 

90% of usual demand is expected to be produced in two quarters time, and what is in stock equals 

normal demand for three quarters. Holding on to a minimum stock level of 4000 (equal to annual 

imports) seems a reasonable policy. Higher prices will ‗automatically‘ result from stocks running lower 

than normal. Charging high prices at the onset of the trade ban would leave stockholders with larger 

amounts of soybean for later quarters, and also trigger higher levels of production. Prices result from 

comparing the standard released quantity (stocks above the minimum, divided by the number of 

months to go before harvest) to the normal demand and using an elasticity of 0.4 to tentatively set 

the price that equates the two. When stocks go down, prices go up, and supply (in the third quarter) 

responds. With the sizeable share of land devoted to oil seeds, the soybean area elasticity is 

somewhat smaller (around 0.7) than when the area was much smaller. 

 

This release of sbm will cause sbm prices to go up, initially to 1.5. Grain prices will remain the same, as 

grain trade is still possible. Product prices will rise, but by no more than 15% (Figure 13). The higher 

prices will depress demand by about 4 percent. Supply of sbm rises from 30 to 35 million tonnes in the 

first year. This will push prices back to the original levels by the end of the second year. The reduced 

grain production (- 20 million tonnes) is compensated by reduced exports. The SBM market can 

therefore, rather easily deal with the trade block in this situation. 

 

For animal production, this scenario works out rather mild: egg prices go up by 15% following the 

higher sbm prices, fall below par in the third year and return with some oscillation to the original levels 

in a few years‘ time.  

Comparing Figure 13 with Figure 6 shows that the effects of a trade embargo of soybean are far less 

in the biofuel scenario, where the EU grows its own protein crops. 
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Figure 13 Responses to a stop on soybean imports in years 0 and 1, with more biofuel. Year after start 

of calamity on X-axis, Relative quantities and prices on Y-axis. 
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Scenario 7: Yield reduction without trade in soy, with more biofuel 

Assumptions: Effective roughage availability and yields of grains and protein crops fall by 25% in 

years 0 and 1, free trade in grains, with more biofuel 

 

Combining the trade disruption with a yield reduction in the EU will change these conditions. 

The simulation is for a reduction of yields of grains, oil seed crops and roughage by 25%, with effects 

on prices of soybean and roughage. Grain is assumed to be traded freely and its price equals the 

world market price. 

 

A very severe shortage of roughage will result for the middle of the period, which is during the winter 

after the first year of yield reduction. Shortage is so severe that more cows are culled than otherwise 

would be the case and herd size will be reduced by 30%. This will result in less milk production as of 

midyear 1 (-40%) leading to higher milk prices (+70%). Young stock will remain to be reared however, 

so that the yield reduction will not have a long lasting impact: by year 5 production and prices will 

have come back to their original levels. It is mainly the roughage shortage that plays a role here. As 

many cows can no longer be fed, they are culled. Initially the meat supply will increase (in the 

quarter after the acute roughage shortage, meat supply goes up by 42%). Thereafter the beef sector 

will suffer from lack of supply of young stock and decreased investments given the lower product 

prices and higher feed prices. The ensuing shortage of beef supply will push up prices to a maximum 

of 65%. By year 5 normal levels are reached again. 
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Figure 14 Responses to a trade embargo combined with yield reduction in years 0 and 1, with more 

biofuel. Year after start of calamity on X-axis, Relative quantities and prices on Y-axis. 

 

In the simulation of scenario 7, shortages of sbm will become acute in the second year. During the 

first year prices go up mildly, but the disappointing harvest after the import stop reduces supply 

before the second harvest to such low levels that prices shoot up (to a maximum of 2.8). Pork 

production is affected: prices go up to 1.5 in quarter 4 of year 1. For eggs and poultry, the effects are 

even stronger. Comparing Figure 14 with Figure 11, we see that the pork sector is quite less affected 

by this scenario than in the case of no biofuel crops. 

 

Conclusion on the biofuel scenario 

The case of biofuel production in the EU implies more domestic production of biofuel crops, by 

assumption. This helps the feed sector in providing much more domestically produced protein feed. 

Only little import would be required if all crops are grown to fulfil the requirement of 10% biofuel in 

2020. Therefore, trade disruption can be more easily dealt with. Stocks are normally higher (as a 

larger annual production must be kept in store), and the resilience to trade disruptions is stronger too. 

Yield shocks on the other hand can be more dramatic. 

 

Figure 15 shows the effects of the two important scenarios (of no soybean imports, combined or not 

with low yields) for the three most sensitive sectors egg, pork and poultry production. The graphs 

show the relative maxima and minima of prices and production, taken as a ratio with respect to the 
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base scenario. As shown in the three graphs on the left, the import stop on soybean causes much 

stronger price and production movements when no large EU production of biofuels is undertaken: 

the S-bars are typically longer than the B-bars. Measured by difference between maximum and 

minimum prices, growing biofuels reduces sensitivity from 67 to 18 percent for egg prices, 87 to 10 

percent for pork prices, and 106 to 9% for poultry prices. 

 

 
Figure 15 Ranges for production and prices for eggs, pork and poultry (top, middle, bottom), relative 

to base scenarios, with (B) and without (S) large-scale biofuel production in the EU. Left: no soybean 

imports, right: no soybean imports and 25% lower EU-yields 

On the right hand side, the three graphs show the ranges resulting from no soybean imports, now 

combined with a 25% yield reduction. While the S-bars are not that much affected by the additional 

assumption of low yields, the B-bars are now much longer, showing the sensitivity of prices to 

domestic yield shocks in the biofuel case. As a result, egg production and prices has now become 

more sensitive to shocks under the biofuel case than in the no-biofuel case. For pork and poultry, 

growing biofuels in the EU still means less sensitivity to trade+yield shocks. Measured again by 

difference between maximum and minimum prices, growing biofuels increases sensitivity from 98 to 

167  percent for egg prices, and decrease it from 91 to 75 percent for pork prices, and 121 to 91% for 

poultry prices.   

 

Overall, an EU with domestic production of protein feed shows higher levels of resilience to trade 

shocks. Its resilience as to multiple shocks (here represented by trade+yield shock) is still higher when 

looking at the pork and poultry sectors, while lower in the egg production sector.  

In the no-biofuel case, the added yield shock increases price swings by 31, 4 and 15 percentage 

points for the three sectors egg, pork and poultry. In the biofuel case, the additional effects on the 

price amplitude is 149, 66 and 82 percentage points, showing the increased sensitivity to domestic 

climatic disturbances within the EU. 
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6.4 Animal diseases 

‗The blight in the beef market caused by BSE may pale in comparison to the potential damage to 

world chicken supplies that may be caused by avian influenza. One disease after the other becomes 

a focus of preoccupation and potential market disruption. ... Considering the rapidity with which 

either disease spreads, by animal transport or migratory vectors, veterinary pandemics are likely to 

occur with increasing frequency. This eventuality is impossible to predict in its exact nature, but the 

effects within the agricultural economy are possible to model.‘ (Nowacki et al., 2007) 

 

Assumptions: diseases strongly reduce animal production (directly through dying of affected animals 

and indirectly through active culling); availability of animal products from outside EU is very limited, 

due to import stop and/or lack of capacity of world market to compensate for the drop in production 

in EU. 

 

Outbreaks of infectious animal diseases (epizootics) can be virulent and affect large parts of animal 

populations at the regional level. Especially when these diseases also infect humans (zoonoses) or 

provoke in trade barriers, control measures generally resort to massive culling and destruction of 

infected animals and also of (possibly not yet infected) animals around known infected farms/areas. 

Even when vaccines against these diseases exist, culling may still take place on a large scale instead 

of using the vaccines preventively, if their use may result in strong private or public trade restrictions 

(e.g. Berentsen et al., 1992). This may especially be the case if the vaccine does not have a marker 

to distinguish vaccinated from infected animals in tests. 

 

The model is used to estimate the effects of a hypothetical infectious disease that equally affects the 

three types of animals in the model: cattle, pigs and chicken, and all over Europe, without the 

possibility to use a vaccine. This disease may be completely new or mutated from an existing 

disease. Alternatively, various different specific diseases equally affect the three kinds of livestock. 

Whether this is feasible or not, and what characteristics this disease would (need to) have are not 

questions to be answered by this study where we simply evaluate the ‗what if such disease situation 

occurs‘ question. We evaluated three levels of severity of the disease situation, expressed in three 

mortality rates (from disease plus culling) of the whole animal population: 1%, 5% and 10% mortality 

per quarter, and we assumed that this disease has this effect for two consecutive years (0 and 1). This 

mortality includes  

1. the animals that die after having been infected (either naturally or by active culling) 

2. the possibly infected animals on farms around infected farms that are preventively culled 

3. animals culled to overcome overpopulation in farms that are affected by a prohibition to 

transport live animals (so-called ‗welfare culling‘). 

 

Before evaluating the results, we emphasise that the model does not take into account the response 

of consumers other than through effects of changes in prices, though it is clear from experiences that 

epidemics of animal diseases will reduce at least temporarily the consumption of meat from affected 

livestock. 

 

In addition, the model in fact assumes agricultural production to take place in one big virtual farm 

that covers the whole EU. This farm has no financial limitations, and it cannot go out of business, e.g. 

due to bankruptcy (as may happen to individual producers). It can therefore react continuously and 

instantaneously to market conditions, such that recovery of production capacity can be swift and is 

not affected by delays related to the time it takes to build up new production capacity to replace 

vanished capacity. This is particularly so, because setting up of starter animals is not prohibited in the 

model, while in reality this could be an explicit policy measure to prevent the disease to maintain 

itself in a region or the result of (temporary) prohibition of transport of life animals. In fact, the model 

will calculate a higher number of starters when prices of products increase due to lower production. 

For this reason, model results may underestimate effects of diseases on production and prices. 
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Finally, effects of animal diseases on availability and prices of animal products depend on the 

possibility to import these products from outside Europe. If import is unrestricted, prices and 

availability will be affected by additional transport costs, and the higher world market price due to a 

lower global availability. However, the model does not include this type of interaction between EU 

and world markets and it cannot calculate these effects. For the purpose of this study, this is not such 

a big issue, because in a fully open market, import of animal products into EU may counteract the 

reduction of animal production in the EU caused by the diseases, albeit at higher prices. This may 

create shortages and higher prices of animal products in other parts of the world, but that is beyond 

the scope of this study. 
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Figure 16 Effects of different severity levels of disease (mortality in fraction of living animals per 3 

months) on production of milk (top left), beef (top right), poultry meat (middle left), eggs (middle 

right) and pork (bottom left). Production is given as a fraction of production level under the standard 

scenario. 

 

On the other hand, because the model assumes the disease(s) to be everywhere, there is no 

compensation for lost productivity in affected areas by increased production in disease-free regions. 

For diseases that spread slowly, this may result in an overestimation of the effects of the disease. 

 

Quantification of the importance and relevance of these potential under- or overestimation of 

effects cannot be done on the basis of this model. 

 

Only if import of animal products is restricted, may animal diseases cause severe shortages and high 

prices of such products. Such import restriction could be part of the strategy to fight the disease 

being a measure to prevent further import of the same or other diseases. The scenarios in this section 

therefore assume the extreme situation that import of animal products is effectively not feasible 

during the period that diseases are active. 
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Outcomes 

As expected, production in all animals systems drops after initiation of the infection (Figure 16). Where 

milk and beef production only start to recover after the infection has stopped (end year 1), the other 

animal production systems have their lowest production already in the 2nd (poultry) or 3rd (pork) 

quarter of year 0. These systems respond faster to increasing prices (Figure 17) that result from the 

lower production, because of the much higher number of offspring per female animal per year 

compared to the single calf that a cow can produce per year. The dairy system recovers slowly 

because of its low reproduction rate, with cow calves comprising only about 50% of total calves 

produced, and because it takes these calves minimally about 9 months to start lactating. The beef 

sector has an even slower recovery, because less calves become available from the dairy system, 

where also less of the underperforming (older) animals are selectively removed than under normal 

conditions. 
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Figure 17 As Figure 16 for prices of products. 

 

The mortality rate has for all production systems an expected negative relation with the lowest 

production per quarter during the epidemic and an equally expected positive relation with the 

highest relative price in that period (Figure 18). Especially if even higher mortality rates are included 

(such as 25% per quarter), these relations become strongly non-linear, which implies that it will not be 

easy to derive simple rules of thumb to predict possible effects of diseases. 
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Conclusions 

Particularly the dairy and beef production systems may show strong reactions in production, price of 

produce and time needed for full recovery when hit by an epidemic. The other animal production 

systems also show strong reactions, but over a much shorter period as they show fast recovery. Due 

to overcompensation, some cyclic ups and downs in production and (inversely) of prices show up, 

but whether this puts a lot of strain on the stability of the sectors is doubtful.  
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Figure 18 Effect of mortality rate on the lowest production (left) and highest price (right) in a quarter, 

after initiation of the epidemic for the various animal production systems 

 

Even at 25% mortality per quarter (which seems a rather absurd high rate to occur EU wide3) over a 

period of 2 years in all of EU (which is rather long compared to known epidemics of classical swine 

fever), total meat production in the worst quarter is at most reduced by about 60% (Figure 19). To a 

large extent, this is related to the limited reduction in production and a fast recovery thereof in the 

pork, chicken and egg production systems.  
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Figure 19 Total meat production (beef + pork + chicken) as affected by mortality rate (indicated by 

the values in the headers) 

A production of 4200 million kg meat in the quarter with the lowest production (mortality due to 

disease at 25% per quarter; Figure 19), and a population of 496.4 million in 2020, results in an average 

daily meat availability of (4200/90)/496.4 = 0.094 kg meat per person per day in that quarter. This is 

slightly below the advised amount averaged over adults and children by the Dutch Food Centre (a 

                                                           

3 For reference: in the Netherlands, about 9.7 million pigs out of a total population of about 20 million 

were culled between February and September 1997 during an epidemic of classical swine fever. This 

roughly translates to about 20% mortality per quarter. Only about 650 thousand culled animals came 

from infected farms, about 1 million from neighboring farms (preventive culling) and about 8 million 

(welfare culling) from overpopulated stables due to a prohibition regarding transport of living pigs. 

http://www.volkskrant.nl/binnenland/article173552.ece/Test_voorkomt_massaal_ruimen_varkens 
 

http://www.volkskrant.nl/binnenland/article173552.ece/Test_voorkomt_massaal_ruimen_varkens
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daily meat ration for adults of 0.100-0.125 kg and for children of 0.080-0.100 kg; 

www.voedingscentrum.nl/nl/acties-achtergronden/schijf-van-vijf.aspx). 

Therefore, availability of protein from animal production may be affected, but not easily be reduced 

to levels that are below minimum requirements to sustain on average sufficiently high protein content 

in the diet of EU citizens. However, although in this worst case scenario total meat production may still 

be sufficient to cover the minimal meat demand per individual within the EU, this does not imply that 

indeed everybody will have access to sufficient sources of meat-protein. It seems realistic to assume 

that especially poorer people will have less access than the average EU citizen to such protein 

sources (see also section 7.4), which may lead to malnutrition in these groups. However, this study is 

not geared to give a reliable quantification of the number of people possibly affected. 

http://www.voedingscentrum.nl/nl/acties-achtergronden/schijf-van-vijf.aspx
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7 General discussion and conclusions 

7.1 Model approach 

The analysis of the results of the model simulations helped clarify the impact that shocks may have on 

the EU animal production sector. In scenarios with and without biofuel crops being grown, we 

simulated the impacts of trade embargoes and yield reductions. The simulations make clear that 

yield reductions are particularly important for the dairy and beef sectors, while embargoes on trade 

in protein crops would affect the pig, poultry and egg sectors, unless these crops are grown at a 

large scale within EU‘s borders. 

The yield reduction in roughage is simulated in its strictest sense: a clear lack of roughage available 

to feed the cows. In practice, such a severe shortage is unlikely to result from a mere drought, as 

access to natural sources of roughage, like grass from nature reserves, may to some extent substitute 

for pasture-grown grass (even though grass production will be reduced in those reserves as well). 

While the costs of roughage would go up (and quality could go down), the shortage may not 

necessarily lead to culling of cows at large scale. Alternatively, we can think of the simulations as 

depicting what might occur if roughage became scarce not (only) because of a physical reduction 

of production, but also because of roughage becoming unfit for animal consumption, e.g. due to 

nuclear or other contamination. 

 

There are various reasons why our model may lead to an over- or underestimation of the effects of 

calamities; major factors are: 

- Single big farm approach in the model 

We simulated the responses of agriculture to calamities as if there is only one representative 

farm all over Europe, with the same decision making everywhere, and with an unlimited 

capacity to recover from any physical or financial shock. In reality, individual farms may 

show a more variable response to financial and physical shocks, possibly resulting in a 

different total effect of a calamity when compared to the big farm model approach. The 

different decision making of individual farms, may lead to part of them to collapse without 

being able to recover. Surviving farms then will have more room for expansion, partially 

helped by the then prevailing higher prices for the products. Eventually, however, it is unlikely 

that full recovery will be achieved within a few years. Therefore, the simulations are more 

optimistic than the actual world is likely to be, especially regarding the medium term effects 

of calamities. In principle, the model could be made more sensitive to risks for individual 

farms, by incorporating different farm types according to type, scale and intensity of 

production. Adding type specific risks of going out of business (as fraction of the total 

production within that farm type) in relation to the ratio of prices of products and inputs 

could be used to better mimic boom and bust cycles for the different farm types. While this 

would require a major effort in model formulation and data gathering, which was beyond 

the available budget, it is doubtful whether this approach would provide drastically different 

results for the short-term effects of calamities: most farms that go out of business will do so 

only after a calamity has affected production or imports. Effects on longer term may 

however be more pronounced. 

- Europe as a single, perfect market of goods and services 

In our approach, we assume in fact that production and consumption of the different 

agricultural products is evenly spread over Europe, that a calamity has the same effects 

everywhere in Europe, and that transport of goods is never limiting the use of agricultural 

products for food and feed. In reality, however, Europe has some regionalization of 

production, e.g. for dairy products and a calamity may not have the same effects 

everywhere. Transport of goods may be hampered, either by a calamity or by policy 

decisions in countries to make agricultural products available with preference to certain 
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groups within Europe (e.g. citizens of its own country). Effects of a calamity then will be 

differentiated over Europe, which may lead to effects in some production sectors to be 

(much?) more pronounced than indicated by the model, both at national/regional level as 

well as at the European level. The current model could be adapted by separating Europe in 

regions or countries, each with its own setting of agricultural production and consumption. 

This could give a more realistic estimate of the regionalisation of the effect of a calamity and 

give the option to evaluate the effects of calamities with a regional impact only. 

- Farm decision making: use of relative prices vs. financial margins 

In the current model, decision making on whether to in- or divest in agricultural production 

depends fully on (the ratio of) relative prices of products and inputs. This assumption may be 

adequate to estimate longer-term economic effects of prices, but in situations with strongly 

fluctuating prices, it does not allow to determine whether farms will generate enough 

income to be able to sustain their businesses and/or whether they had better shifted to 

production of other agricultural products. Especially for the period after calamities, 

modelling the margins of farms may generate a more realistic (and possibly bleaker) effect 

of calamities. Such ‗margin modelling‘ would not be feasible with the big farm concept used 

in our model, but warrant an approach with farm types (see also discussion about the single 

big farm approach above). 

- Limited import of dairy and meat products 

Currently, the EU is self-sufficient in the production of most animal products (e.g. Table 7). To 

quite some extent, this is achieved by subsidizing EU farmers at a rate of € 60 billion in 2009 

from EU budget only (AFP, 2010) and not counting country specific subsidies, to keep them 

competitive in the world market. In addition, the EU regulates imports of meat through 

veterinary control measures (EU Directorate General for Health and Consumers, 2010). Similar 

health related conditions apply to the import of milk and milk products 

(http://ec.europa.eu/food/animal/animalproducts/milk/index_en.htm), while also additional 

regulations on animal welfare may become important (Stones, 2010). Current lack of 

compliance with these regulations by (potentially) exporting countries such as Brazil, 

Argentina and USA resulted in a rather limited import of meat (specifically beef) into the EU. 

However, in the future, exporting countries may comply better to these regulations, while 

also the competitiveness of EU producers may become less (e.g. as Evans (2008) indicates 

for poultry). The latter may be the result from increasing costs of production, but also to a 

reduction of financial support to EU farmers (which is heatedly debated in the political arena 

of the EU, e.g. AFP, 2010). This may result in imports of meat becoming more important than 

currently is the case and as is assumed in the model. The EU would then become less then 

self-sufficient in the production of meat and dairy, and become less dependent on soybean 

imports but more on meat and milk imports.  

In our model we assume that the EU is completely self sufficient in meat and dairy production 

(while in reality being a net exporter in most animal products), especially regarding the price 

formation within the EU. All changes in production level compared to consumptive demand 

are reflected in the modelled prices of the products. If we would include trade, most volume 

changes would not have a direct effect on prices, but merely result in a change in netto 

export. In fact in the effects on prices calculated in our model therefore overestimate the 

real situation. For dairy, where the EU is a rather big player on the world market (>30% share 

of trade), changes in export volume would logically lead to changes in the world market 

price. In fact, we have included that relation as a consequence of the zero-trade or closed 

borders, albeit a bit extreme. On the other hand, the modelled increases in prices due to 

reductions in production lead to faster recovery in production (and therefore again in 

recovery of prices to former levels) than would be the case if only costs of production would 

change, but not the prices of products. 

- Use of products from animal origin in animal feed 

http://ec.europa.eu/food/animal/animalproducts/milk/index_en.htm
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Before the BSE4 crisis, use of animal products in animal feed was quite normal in Europe. 

From 1996 onwards, restrictions on this use were imposed (e.g. 

http://ec.europa.eu/food/fs/bse/bse28_en.html), in effect, requiring animal feed to contain 

relatively more soybean than before. Better traceability of source, and quality of the 

contents in animal feed could make it possible to withdraw some of these restrictions. This 

could reduce the need for protein from plants and as such make the animal production 

sector in the EU less dependent on import or from domestic production of soybean or 

equivalents. The current study does not take into consideration this use of animal protein in 

feed, and as such may overestimate effects of a reduced availability of soybean 

(equivalents). 

- Elasticities of consumption and production 

While the model assumes that demand elasticities in the feed market rise with higher prices, 

such an assumption is not made for the consumer demand. The base run of the model uses 

elasticties for meat demand from the Food and Agricultural Policy Research Institute (FAPRI) 

as in Table 17. The own-price elasticity of, particularly, pork is rather low, implying that a given 

supply shock leads to high prices. 

 

Table 17 Base and alternative values for meat demand elasticities 

 Price of beef Price of pork Price of poultry 

 Base Alternative Base Alternative Base Alternative 

Beef -0.40 -1.44 0.10 0.97 0.01 0.10 

Pork 0.03 0.32 -0.13 -0.79 0.01 0.07 

Poultry 0.02 0.13 0.06 0.00 -0.31 -0.84 

 

These elasticities led to the outcomes as shown in the Figures of Chapter 6. How the 

elasticities affect the outcomes for product prices is simulated by taking another set of 

elasticities, namely those applied to Germany in the CAPSIM model that simulates (normal) 

evolutions of EU agriculture (Witzke and Zintl, 2005:166). The values of the elasticities are as in 

Table 17 in the ‗alternative‘ columns and include stronger own-price elasticities in particular.  
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Figure 20 Comparison of prices and volumes of pork in two sets of price elasticities (base and 

alternative as in Table 17). X-axis shows the quarter after the start of calamity (in unit 

year.quarter) 

 

After new calibration of the model for a base run, and new simulations, prices are generated 

for the various scenarios. We compare the prices resulting from the rather extreme scenario 

where soybean imports are not possible, and domestic yields of roughage and feed crops 

are reduced by 25%. Figure 20 shows the outcomes for pork prices for the two sets of 

elasticities. 

 

                                                           
4 Bovine Spongiform Encephalopathy, commonly known as Mad Cow Disease. 

http://ec.europa.eu/food/fs/bse/bse28_en.html
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As shown, the simulated price increase is reduced from more than 80% to less than 20%, due 

to the stronger elasticties. However, volume changes are quite similar with peak downward 

changes of 26% in both simulations, followed by another peak 4 quarters later of 15%, and 

18% respectively for the base and the alternative scenario. 

 

Stronger volume responses could be generated in a model with stronger elasticities with 

respect to pork-feed price ratios. If setting up young piglets would respond to the pork-feed 

price ratio with an elasticity of 0.4, rather than the present value of 0.2 taken from FAPRI (and 

using the high pork demand elasticities as we did above), pork quantities would fall to -30% 

in quarter 1.1 (compared with -18%), while pork prices would rise again to 2. The initial 

responses in the first year would be quite similar however. 

 

 

7.2 Speculation and exploitation 

In the scenarios with import stops on soybean (and grain), the EU will have to make do with whatever 

stock there was in the region before the embargo struck. The owners of the stock will be in a position 

to ask almost any price for their feed. What are reasonable assumptions about their behaviour in 

these conditions?  

Note that the behaviour of the stockholders in normal times is to carry stocks just for smoothing 

transactions. Speculative motives in normal times are not considered here, as they are bound to be 

negligible compared to what happens in case of calamities. 

In case of a sudden stop in supply to these stockholders, they change their behaviour. Prices are no 

longer given by the world market, but determined within the EU. In addition, stockholders can no 

longer just pass on the feed to their customers, as this would soon exhaust their stock.  

If stocks were held by a single firm, this firm will try to maximize its profits from selling the stock and it 

will consider that by supplying less, prices will go up. There are three forces that put restrictions on the 

extent to which supply is withheld. One is that higher prices in the present quarter lead to ever-lower 

demand now and later. If demand would hardly respond, prices can be set very high. In our case, 

demand becomes more and more responsive when prices go up. In addition, the supplier must take 

into account that higher prices in year 1 will trigger more production in year 2, which also erodes the 

possibilities for monopolistic profits. This by itself would not be sufficient reason for restraint by the 

monopolist. But then, another force has to be considered: the value of his remaining stock. Unlike the 

case of a standard monopolist, this stockholder looses the value of his stock if it is not sold! The 

stockholder has a clear incentive to sell the stock within the period during which trade is curtailed. 

This timing is also affected by the harvest that is realized in Q3. 

 

The third force is uncertainty about the duration of the import stop. This reinforces the second point in 

that the stockholder has an incentive to sell (at the ruling high price) before the import stop ends. 

In the process of the rise in prices, speculators (large and small) are likely to intervene. They can 

speculate on the future market conditions in the same way as sketched above for the stockholder 

himself, but they can also speculate on the short-term rise in prices, typically shortly after the import 

stop is in place. This latter type will reinforce the rise in prices, and may well lead to overshooting of 

any ―equilibrium price‖ that would materialize in the absence of short-term speculation. There are 

some measures that a government may take to prevent such speculation, e.g. by prohibiting the 

selling of what is not yet owned, or by making speculation transactions more expensive, e.g. by 

demanding ownership of a minimum amount of physical products per transaction (relative to the 

total volume of the transaction). 

 

The likely outcome of the process – if not disturbed too much by overshooting – is that a monopolist 

would spread his supply over the period as smoothly as possible, but with some preference for earlier 

selling months. The model is used to elaborate this in more detail. We focus on the returns to the 

holder of the original stock. Hence, we look at the revenues of selling this stock over the coming 
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quarters, as a function of the price set in the first quarter. In the other quarters, prices are determined 

by the standard behaviour, which is that stockholders make an estimate of the price at which the 

remaining stock can be sold in more or less equal amounts until the next harvest. The question is if the 

stockholder would benefit from setting very high prices at the onset of the trade stop. We measure 

their profits by looking at their sales until Q7, i.e. until the crop of the second year enters the market 

(going beyond this until the end of the trade stop would render a loss for stockholders as expensively 

bought feed is then sold at world markets). We subtract the costs of buying the initial stocks and the 

first-year crop. No discounting is done, no storage costs are considered. Figure 21 shows that initially 

stockholders will do well in raising the price, from 1 to 2.65. Setting the price still higher is not 

attractive, as less is bought and more is produced. 
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Figure 21 Profits of stockholders (Y-axis) by price set in Q1 after start of calamity (X-axis) 

 

Of course, other strategies can be thought of, including setting a fixed price throughout the period. 

Any strategy strongly depends on the duration of the import stop: if it lasts only for 4 quarters, setting 

a very high price would certainly not be optimal, as much of the stock may remain unsold.  

 

The standard as modelled in the base run is to assume an initial target setting by stockholders to sell 

more or less the same quantity in each quarter. That is, prices are set, such that – with the 

approximated demand elasticity of 0.4 (which normally applies to a price level of 1.5) – this amount 

could be sold. Actual sales can differ, and are reflected in higher or lower stock levels in the next 

quarter, when again a redistribution is made. This results in a level of profits over the original opening 

stocks that is only marginally different from the above ―optimal‖ set-price strategy, with a profit of 

22.9 compared to an optimum of 23.4.  Prices now fluctuate more, between 2.55 and 2.98. 

 

The same outcome results from the situation in which there are many stockholders, competing 

among themselves, and all knowing that aggregate supply is restricted. They will typically smooth the 

total supply so as to have more or less equal supply in every period. Nevertheless, herd-like behaviour 

may occur with all stockholders clinging to their stocks despite enormous price spikes. Further 

research on this could be useful. 

Stockholders will not normally know how long the period is for which their aggregate stocks should 

last. They may well sell too much in the early quarters, expecting that the disruption will not last long, 

or that a good crop will soon be harvested. If these expectations are frustrated, by continued 

embargo, or by a drought, the region will find itself in an even more difficult situation. 

 

Concluding, we can say that the model shows how sensitive the outcomes are to assumptions on 

how the actors involved will react. Rational stockholders, we argue, should smooth the supply over 

the quarters during which scarcity prevails. However, without knowledge about its length, even these 

rational actors are at a loss. Concerted action with governments, e.g. on communication to 

producers and consumers and in regulating use of stocks, may be helpful here, the more so if helped 

by regulation. As shown by Dutch legislation, the existing legal framework includes regulation against 

hoarding food and bringing stocks under government control5.  

                                                           
5 Hamsterwet, Noodwet voedselvoorziening, Coördinatiewet uitzonderingstoestanden. 
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The present simulations suggest tripling of prices is likely in the case of soybean import stop. It seems 

unlikely that speculation would lead to even higher prices than this, as it would only reduce demand 

any further – and even in the short term irreversibly so when cattle is culled and no young stock is set 

up. However, the stage is set for ‗irrational‘ behaviour, as the duration will be unknown. 

 

 

7.3 The role of minimum stock requirements 

A possible measure that governments can impose, or that the private sector could decide to 

implement by itself, is a minimum level of stocks that must be kept in store during normal times. The 

higher this level, the larger the resilience will be as to possible shocks. One way to show the effects is 

to simulate what would happen in case imports of soybean are suddenly disrupted under three 

assumptions as to the normal minimum stock levels that are held. 
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Figure 22 Maximum prices after soy-trade stop for various levels of minimum stocks of soybean; left: 2 

years shortage, right: 1 year shortage 

 

Higher levels of minimum stock requirements have a smoothing impact on the prices (Figure 22). 

Lower levels of minimum stocks imply that traders under normal conditions will keep smaller quantities 

of soybean in store. Once the imports are disrupted, this lower level of soybean available at the start 

of the crisis leads to higher prices required to squeeze demand to volumes that can be supplied for 

the next quarters. Note that during the crisis period, the model assumes that no minimum stocks 

requirements are taken into account. 

However, the effects of larger minimum stock levels are not constant. The left graph shows the 

maximum prices that occur after an import stop, for different levels of minimum stock requirements. 

Quarterly consumption is around 8000 kt. We see a decline in the effect of additional stock between 

20 and 40 thousand kt. This decline in effectiveness is caused by the influence that the first year has 

on the second: larger levels of stock imply lower prices in the first year, which leads to lower levels of 

production in that year. This contributes to later scarcity of soybean and puts some upward pressure 

on the prices. Only beyond 40 thousand kt, a further decline can be observed. At this point, the 

stocks are larger than what is required for 5 quarters‘ normal consumption. Combined with 

production this amount suffices to overcome shortages easily. 

The right hand graph shows the same simulations for a one-year import ban. Here, an amount in store 

of at least 40 kt is clearly sufficient to prevent any price effect. This amount is sufficient to cover more 

than the duration of the shortage. 

 

Economic considerations 

Carrying large stocks entails costs for buying and storage. It brings benefits in terms of stability of 

prices and avoidance of extreme prices. The balance of costs and benefits depends on how this 

stability is valued. 
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Cost of storage critically depends on technology and the size of the facilities. Further research would 

be required to elaborate the details. 

Benefits of stability are often expressed in a normative sense by referring to risk aversion on the side of 

the producer. This ‗aversion‘, however, is for income risk, not price risk per se. While costs are 

fluctuating due to price shocks, so do revenues. With some delay, prices of the products respond to 

fluctuations in supply and therefore to fluctuations in feed prices. It is yet unclear, how this price 

volatility works out on profits and therefore on agricultural income. Volatility in the product prices will 

affect farm income more than that in input prices, as a result of substitution opportunities on the input 

side.  

The variability of product prices will also affect consumers. As meat is a relative luxury (within food), 

stabilization of its price per se would bring only limited benefits for consumers. 

The major benefit of reduced price variability might therefore lie in the avoidance of extreme prices. 

Extreme feed prices may have irreversible effects on some firms, such as bankruptcy, while other firms 

may survive because of their access to own or borrowed funds. The extent to which these 

considerations are relevant depends on the distribution of individual farms by the degree of their 

exposure: pig fatteners growing their own feed will not be affected by feed prices; large fatteners 

using purchased feed will be heavily exposed The EU network of farm data can provide a source, 

but further study is required to assess the extent of vulnerability of individual firms to price shocks. 

 

 

7.4 Effects on consumers 

The various simulations show that consumer will face (sometimes dramatically) higher prices of milk, 

meat and eggs in case of sudden disruptions in soybean trade and/or very serious yield reducing 

events. Therefore, their consumption of grain products will fall, assumingly with a rather small elasticity 

of -0.13. Similarly, consumption of animal products will fall too. However, consumer expenditure on 

these goods is likely to rise. 

 

In 2008, average spending on food (not including catering services) in the EU as a whole and in the 

Netherlands was about 15 and 13 % respectively (Eurostat, 2008a). Within these expenditures, the 

cost related to consumption of animal products is important: some 25% of food expenditures are on 

meat and meat products, not counting the expenditures outside the house, or 3.6% of total 

household expenditures. The share of dairy products plus eggs in total food expenditures is around 

14%, which equals 2.1% of total expenditures. In total, animal products comprise about 5.7% of total 

household expenditures. 

 

The extreme scenario of trade embargo and yield reduction leads to (temporarily) higher prices for 

feed and food, except for grains. In the quarter with the highest prices for products, consumer 

expenditures on milk and beef rise by 50%, on pork by 120%, on poultry by 76% and on eggs by 25%. 

However, these changes do not occur simultaneously, and in some quarters, prices are (much) 

lower. Overall, therefore the expenditures of households on food may rise by at most 50% of their 

expenditures on meat, eggs and dairy, or by around 20% of total food expenditures, which equals 

less than 3% of total consumer budget. 

 

Judging from these average data, we could assume that calamities hardly affect the consumer 

budgets. This may be true for the higher income countries, with good social security: in the 

Netherlands, expenditure on food as fraction of disposable income shows negligible differences 

between income categories. However, country specific data in the EU show that the fraction of 

expenditure on food (excluding catering services and alcoholic beverages) is strongly related to 

average GDP (Figure 23), with households in lower income countries spending up to 3 times more on 

food as fraction of their income than in the higher income countries. In addition, these country 

specific data show income levels to have a strong relation with expenditure on food plus non-

alcoholic beverages, which are around 67% higher for households in the lowest income quintile than 
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in the highest quintile (Eurostat, 2008a). In extreme cases, the lowest income quintile in low-income 

country Romania spends about 60% of its income on food plus non-alcoholic beverage, compared 

to about 7% by the highest income quintile in Luxembourg. 
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Figure 23 Relation between GDP per inhabitant (in Purchasing Power Standard relative to EU 

average of 100) and average relative expenditure on food by households in 2007 in 27 EU countries. 

Black dot: EU average; red dot: NL data; open dots: other countries (Eurostat, 2008a, 2008b) 

 

The spending on meat, milk, cheese and eggs as a fraction of total spending on food shows no clear 

relation with GDP (Figure 24). Assuming that prices of these products relative to those of other food 

products are the same within the EU27, this would indicate that the fraction of meat, milk, cheese 

and eggs in the diet as such is independent of GDP in the EU 27. 

 

It will not come as a surprise, that these findings indicate that drastic increases in prices of animal 

products may affect poorer people in poorer countries more than the richer people in rich countries, 

and most likely would require them to change their diet considerably by reducing consumption of 

animal products, or to buy cheaper, in general more fatty and unhealthy products. Under current 

economic conditions, lack of adapting the diet will force the poorest income quintile in Romania to 

increase their spending on food from 60 to about 70% of total disposable income. This seems rather 

impossible in view of the need to also buy clothing, pay rent or mortgage for housing, etcetera. Most 

likely, the reduction in amount (and quality) of animal products for the lower income groups may 

lead to a less healthy diet, with insufficient intake of protein and vitamins and higher intake of fat. 

However, this study cannot provide details on this issue. 
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Figure 24 Relation between GDP in EU 27 countries in 2007 and expenditure on meat (dots) and milk, 

cheese & eggs (triangles) relative to total spending on food and non-alcoholic beverages; Black 

symbols: EU average; red: NL data; open: other countries (Eurostat, 2008a, 2008b) 
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8 Conclusions and Recommendations 

This study focused on the possible effects of two types of potential calamities in the European food 

production:  

 a (strong) reduction in availability of protein crops for the fodder industry, e.g. because of 

sudden disruption of soybean import and/or an increase in the price of soybean, and  

 a (strong) reduction in availability or usability of EU grown crop products, e.g. as result of 

droughts or contamination with radioactive materials 

 

Results of the study indicate that both types of calamities may have strong effects on the EU food 

sector by causing a considerable drop in animal production (see also summary of results in Table 1). 

This in turn may cause low availability of and high prices for animal products for human consumption, 

and the more so when the two types of calamities occur simultaneously, The effects of calamities 

were often not confined to the period that these calamities occurred, but also resulted in longer term 

fluctuations in prices and production, causing longer term uncertainties about prices. 

 

While reduced availability of vegetable protein for feed affected mainly the pork and poultry/egg 

production systems, a reduced availability of roughage had strong impacts on the dairy and beef 

sectors only. This implies that options for mitigation of effects could partially be different for those two 

groups of animal production systems. 

 

Evaluation of the situation where the production of biofuels was coupled to that of vegetable protein 

useable for human and animal consumption, resulted in less extreme reductions of production and 

increases in prices for animal products as it made the animal feed sector less dependent on imports 

of soybeans and thereby less exposed to import stops and price shocks of this commodity. 

 

This raises the interesting question whether for the EU there could be a kind of ‗optimal dependence 

combination‘ on EU based production and import of agricultural products as well as on the options 

to allow fast shifts between own production and import. Further research into this issue seems 

advisable as well as on the question on how such an optimum could be established through policy 

measures (e.g. regarding procedures and financing for setting-aside of agricultural land that 

specifically would be fit for production of products that otherwise would have to be imported).  

 

The model used in this study provides likely aggregate responses. As a basis for concrete policy 

formulation, this is not sufficient. To gain insights into the range of possible individual responses and 

their sensitivity to policy measures, micro-simulations would be required. This should take the finances 

of individual farms into consideration, and thus provide some insights into the financial problems in 

the agricultural production sector that result from calamities. It should also distinguish the consumers 

by their consumption patterns and the effects of prices on these patterns. Finally, for both groups a 

regional disaggregation is in order. Such elaboration and underpinning of concrete policy measures, 

including financial measures, would require a different modelling approach. 

 

A note on the scientific base of the model: where possible, the model is based on empirical 

information and scientific knowledge and logic. However, in fact very limited empirical data on 

responses in the food sector on trade and other shocks is readily available in scientific literature. 

Therefore we would like to suggest that research into the effects of and responses to such shocks 

would be of interest to provide a more empirical base for the type of study as in this report. Situations 

that could be studied include for example BSE in the UK, classical swine fever in Ireland, transport 

strikes in Italy (and maybe France), exchange rate shocks in Brazil, Thailand, Indonesia. 
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The following specific policy options were identified that may contribute to mitigation of the effects 

of calamities: 

 Stimulation of larger minimum stocks for grains and specifically soybean (and equivalents). 

Larger stocks lowered the price hikes of animal products during calamities. More research is 

warranted on whether such keeping larger stocks could be efficiently implemented, how it 

could be stimulated or enforced, and how costs of such additional stock keeping could be 

paid for and by whom. 

 Promotion of co-production of biofuel and protein. In this study, it was shown that coupling of 

production of bio-fuel to that of protein reduced the effects of calamities. While such 

coupled production may reduce the dependency of the EU on soybean import, it would 

make the EU more sensitive to droughts and other events that reduce production. In 

addition, it may well be that such co-production, e.g. through protein rich crops, will not be 

the most efficient system to produce energy, nor to produce protein. Therefore, such 

coupling may very well not be included in policies that focus explicitly on energy or on 

protein. Enhancing the production of biofuel & protein, would most likely to some extent be 

at the expense of the area of grains in the EU. While this may affect the availability of grains 

in Europe in view of the current and expected surplus in grain production, it may affect the 

availability of grain to feed other parts of the world. More research into the positive effects of 

coupling biofuel and protein could contribute to the development of policies that favour a 

more integrated approach, with attention to resilience of the EU food production sector. 

 Allowing more use of animal products in feed. Part of the animal production is not fit for 

human consumption. Allowing better use of this in animal feed, under conditions that would 

safeguard animal health and food safety, could reduce the dependence of EU on import or 

within EU produced soybean (or equivalents). 

 Facilitation of emergency support services to farmers during and after calamities. In the 

model used in this study, the agriculture in the EU was in fact assumed to take place in one 

big farm with unlimited resources. Recovery of agricultural production after calamities was 

therefore swift in the model study. However, in reality, effects of calamities may include 

bankruptcy of individual farms, if not during the calamity (specifically in the pork and 

poultry/egg sectors) then thereafter (more likely in the dairy and beef sector, due to longer 

recovery times). Apart from direct economic effects, this may result in loss of production 

capacity for the longer term, e.g. because of loss of expertise, loss in market share, and in 

the EU becoming more dependent on agricultural production elsewhere. Research into the 

possible magnitude of this problem is needed to get better insight in the need to work on 

policies to develop and implement such emergency support services as well as to give 

guidance on the type of these services. 

 Price regulation and rationing of feed. In times of scarcity of feed, stockholders of such feed 

will make large windfall profits, at the expense of livestock farmers and consumers. 

Alternative price regulation implies rationing of supply, and limited transmission of feed prices 

into product prices, with adverse effects for some firms. Policies on how to achieve such 

price regulation in times of emergency may need to be developed. 

 Developing emergency food rationing systems. This study indicated that during and (shortly) 

after calamities, availability of food, specifically of animal origin, may be low. The resulting 

high prices may make it difficult or near impossible for the lower income groups in the EU to 

access sufficient protein rich food. A more detailed study into the importance of this 

problem, and on which groups in which countries would be most vulnerable could lead to 

better insight whether and where such rationing system would be needed. 

 Developing a reliable and transparent information policy. The (expected) duration and 

severity of a calamity and the induced shortages in food and feed are crucial variables for 

producers, stockholders, retail and consumers to base their decision making on. Reliable and 

trusted information on this and on the size of available stocks may help rational decision-

making and smooth supply, demand and prices. 
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 Reduction in consumption of traditional animal products in favour of other sources of protein 

(e.g. pulses, insects). In addition to the focus on production of protein rich food, also 

attention could be paid to the consumption of such foods. Current policies on stimulating 

the EU consumers to change their diets are not (yet?) having large impacts. Additional 

policies need to be developed, e.g. to increase prices of (certain) animal products (e.g. 

through taxation), and to actively stimulate production and marketing of protein rich food 

products that make more efficient use of inputs (e.g. pulses, fish, insects, mushrooms) and is 

healthier for the consumer. 

 Allowing farmers to use roughage from nature and set aside areas. Low availability of 

roughage was found to have drastic effects on the dairy and beef sectors. It would be 

interesting to see in which situations giving farmers access to additional roughage coming 

from nature and set-aside areas would help to reduce these effects, and whether it is 

worthwhile to actively develop policies and rules on this issue. 

 

This study focused on a situation where imports of protein could be disrupted, and where limited 

trade in animal products was taken into account. Only in this setting will trade restrictions on inputs 

have strong impact on consumer prices. Openness to trade in animal products helps stabilizing the 

consumer end of the market in case supply of inputs is disrupted (by trade or climatic events). 

However, the producer side may be in even worse trouble. 

 

The dependence on imported protein exposes the European industry to the world market and 

consequently to possible disruptions in trade. However, at the same time, large-scale trade reduces 

the exposure to local climatic shocks that affect yields in particular regions, including the EU itself. 
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Appendix I 

Current agricultural production EU 

I.1 Land use and productivity 

Total EU-27 territory covers 432 million hectares, of which 90% rural areas comprising agricultural land 

and forest. A total of 184 million hectares (43%) is reported as utilised agricultural area (UAA) in 2005 

(Table 18). Majority of the UAA (59%) is arable land, 34% and 7% are dedicated to permanent 

grassland and permanent crops (orchards, vineyards, olive plantations) respectively. Forests and 

other wooded land cover approximately 160 million hectares (35% of the EU territory), of which 117 

million hectares are available for wood supply (EC, 2007f). In 2005, the total set-aside land was 

reported to be 7 million hectares, of which 4 million hectares were obligatory set-aside. 

 

Table 18. EU: area and agricultural area by land use (mio ha), 2005. 

(mio ha) EU-15 EU-25 EU-27 

Total area 323.5 397.3 432.3 

1Utilised agricultural area 130.5 164.1 183.6 

Of which:    

2Arable land 72.6 97.1 109.4 

3Permanent grass-land 48.1 57.1 63.6 

4 Land under permanent 

crops 

11.6 11.6 12.2 

1 Utilised agricultural area (UAA): total area used for crop production, described as arable land 

including temporary grass and fallow and green manure, permanent grassland, land under 

permanent crops, crops under glass and other utilized agricultural areas. 
2 Arable land: land worked regularly, generally under a system of crop rotation, which includes fallow 

land. 
3Permanent grassland and meadow: herbaceous forage crops permanently (> 5 years), cultivated 

or naturally, that is not included in the crop rotation on the holding; used for grazing or mowed for 

silage or hay. 
4Permanent crops: crops, other than permanent grassland, not grown in rotation for a long period. 

Source: Eurostat 

 

Arable land 

Over half of the arable land is cultivated under cereals, one of the most important crop groups 

(Figure 25). With a production quantity of over 287 million tonnes, the EU-27 accounted for 12.5 % of 

the world production of all cereals including rice in 2005. Wheat is the most widely grown cereal type 

in the EU accounting for nearly half of the production quantity in 2004. Over 60% of the domestic use 

of cereals in the EU-27 is animal feed.  
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Figure 25 Structure of arable land, EU-27, 2005. Source: Eurostat 

 

Other land uses important for this study, include silage crops, pulses/protein crops and soybean. 

 

Table 19 Area and average yield, and production of selected arable crops in the EU-27 in 2005. 

Crop Area (mio ha) Average yield (t/ha) Usable production (mio 

tons) 

Cereals – total 51.5 4.9 253.2 

    Wheat1 23.3 5.3 123.4 

    Barley1 13.1 4.0 52.6 

    Maize1 6.1 7.8 47.7 

Silage2 5.2   

Pulses/protein crops 1.4   

Soy 0.4 2.7 1.1 

1 EU-25; 2excluding grass silage 

Source: Eurostat 

 

Grasslands 

Grassland systems in Europe are diverse, ranging from extreme Tundra vegetation in the far North to 

dry Mediterranean in the South. A classification for forage and grassland types (Table 20) is provided 

by Eurostat as reported by Smit et al (2009), which defined permanent as not being (re)sown for five 

years. This classification includes natural grasslands, and herbages and covers the greater part of the 

grassland area in Europe. Permanent grassland can be used for both grazing (pastures) and cutting 

(meadows). Temporary grasslands are newly sown meadows. Temporary grassland is often classified 

under arable crops. Therefore, it is not always possible to know the area for these crops in each 

country and region. 

 

Grasslands, which cover more than one third of the utilized agricultural area of the EU-27, have a 

basic role in feeding herbivores and ruminants and provide important ecosystems services. Grassland 

productivity is affected by climatic factors such as rainfall and temperature. The role of 

management and the underlying effect of technology change on grassland are not well-described 

(Smit et al., 2008). 

 

Table 20 Definitions of forage categories as provided by Eurostat. 

Forage 

plants 

Green 

fodder from 

arable land 

Annual green fodder Fodder maize 

Other annual green 

fodder 

Fodder beets 

Other root crops 

Perennial green fodder Temporary grasses 

and grazing 

Temporary grasses 

Temporary grazing 
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Clover and mixtures 

Lucerne 

Other legumes 

Green 

fodder from 

permanent 

grassland 

Permanent pastures Herbages 

Rough grazing 

Permanent meadows  

Source: Smit et al., 2008. 

 

In Western Europe, permanent grassland is an important land use system, covering more than 45% of 

the UAA in the Netherlands, Luxembourg and UK. In Central Europe, grasslands are especially 

important in mountainous areas like in Austria and Slovenia (> 50 % UAA), while lowlands grasslands 

covers just 20-25 % of the UAA. In the Mediterranean, grassland is an important land use and mainly 

grazed by sheep and goats (Smit et al., 2008). 

 

The highest productivity, about 10 t/ha is achieved in the Atlantic zones which comprise North 

western Spain, Western France, Ireland, Wales and England, the Benelux, the North of Germany and 

the South-western part of Norway. The Netherlands has the highest recorded yields, which is the result 

of a suitable climate and highly intensive pasture use. In addition, the high fertilization rate is a major 

determinant of attained yields. The grassland species in these ecosystems are usually Lolium perenne 

and Poa spp. 

 

Regions with lowest productivity are located in the Mediterranean, with yields of about 1.5 tons/ha 

due to severe moisture stress. When irrigation is applied, yields as high as 15 tons/ha are achieved. 

Mediterranean grasslands are highly diverse ecosystems, consisting of grass species annual plants 

and herbaceous species. 

The Scandinavian countries are also low in productivity but slightly higher productivity is achieved 

due to more intensive management that involves frequent grass sowing, often with Phleum pratense. 

Central European countries, such as Germany, reach yields of about 6 tons/ha, while Poland and 

Czech Republic and Slovakia achieve around 4 t/ha. In Hungary, Bulgaria grassland in steppe 

conditions yield about 1.5 tons/ha. In mountainous areas with greater precipitation, higher yields are 

achieved. Grass species used in Central Europe are often Festuca or Agrostis spp. (Smit et al., 2008). 

 

Variation in productivity between years can be large, e.g. with standard deviation of 0.6 ton/ha in 

France. Most likely, this variation is due to climate. Especial droughts have an impact on productivity, 

as happened in 1976 and 2003, when both France and Germany showed significant drops in 

productivity. 

 

I.2 Pig farming and feed requirement in the EU 

After China, the EU is the largest production region for pork on a global scale (IFIP, 2006). In the EU, 

pork production consumes about 36% of total soybean meal used. 

Pig production in Europe takes place mainly in large specialised units following the same system, 

although differences may occur in feed composition. Currently, two main systems may be 

distinguished (Weidema et al., 2008): 

- one system with optimised feed, which is assumed to cover the situation in North-Western European 

countries such as Germany, France and Denmark and Southern European Countries like Spain;  

- one system with reduced feed efficiency, which is assumed to cover roughly the situation in Poland 

and other Eastern European countries 

 

The required pig feed (complete feed requirement) was calculated, based on the following 

parameter values: a pig carcass yields about 77% meat (Van Cauwenberghe et al., 2003). The feed 
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conversion rate is 3.0 for the EU-15 and 3.3 for the EU-12 (Van Cauwenberghe et al., 2003; Hoste and 

Puister, 2008; Weidema et al., 2008). 

 

Table 21 Key assumptions for pig production systems in Europe. 

System ‘Intensive’  

(EU-15) 

‘Low efficiency’ 

(EU-12) 

Total annual production volume (net production in mio 

t) 

18.1 3.8 

Pig feed conversion rate (kg dw feed / kg pork live 

weight) 

3.0 3.3 

Required pig feed (mio t)1 70.5 16.3 

1. Including consumption by piglets. 

 

Breeding sows and fattening pigs consume about 107 million tons, comprising about 63.6 million tons 

cereals and 13.9 million tons soybean meal (Table 22).  

 

Table 22 Pig production in EU-27; total feed intake and share of cereals and soybean meal in the 

ration. 

 Total annual 

feed intake 

(mio tons) 

Cereal  

inclusion rate 

(%) 

Soybean 

meal 

inclusion rate 

(%)  

Cereal in 

ration 

(mio tons) 

Soybean 

meal in ration  

(mio tons) 

Pigs  87  70 20.0 60.9 12.2 

Breeding sow      

Gestation  12 8 3.0 1.0 0.4 

Lactation 8 21 16.5 1.7 1.3 

Total 107   63.6 13.9 

 

 

I.3 Egg and Poultry sector 

The poultry population in the EU counted 1453.5 million heads in the EU in 2005, of which broilers 770.2 

million heads, layers, 478.6 million heads and other poultry 204.7 mio heads (Source: Eurostat). 

 

Table 23 Feed intake and production of meat and eggs 

 Population  

(mio heads) 

Production1 

(mio t) 

Feed 

conversion 

(kg feed/kg 

product) 

Feed intake 

(mio t) 

Broilers (meat) 770.2 11.2 1.8 22.9 

Layers (egss) 478.6 6.3 2.1 13.2 

Total 1248.8   36.1 

1 Poultry meat: conversion from carcass weight to retail weight: 0.88 (OECD-FAO, 2001) 

 

Table 24 Composition of feed for broilers and layers. 

 Total annual 

feed intake 

(mio tons) 

Cereal in 

ration 

(%) 

Soybean 

meal 

In ration 

(%)  

Cereal in 

ration 

(mio tons) 

Soybean 

meal in ration  

(mio tons) 

Broilers 22.9 45. 36.8 10.3 8.4 

Layers 13.2 60. 22.4 7.9 3.0 

Total 36.1   18.2 11.4 
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I.4 Cattle 

Dairy farming is concentrated on the coast of continental Europe from the Normandy region to 

Denmark. The area in and around the Alps are a second hotspot. Meat production in the form of 

beef cattle and sheep is dominant in the North and West of the British Isles, Central and Southern 

France and the Mediterranean. 

 

Of the total milk production in EU-25, 85 % is produced within EU-15 countries. Five countries – 

Germany, France, United Kingdom, Netherlands and Italy – produce more than 60 % of the EU-25 milk 

(Eurostat). Outside EU-15 Poland is the main producer with 8 % of EU-25 production. Among and 

within these countries, production conditions differ. 

 

More than 90 % of the total EU-25 consumption of beef/veal is produced in EU-15 countries. An 

increase is expected in the import (Eurostat). The major suppliers (in descending order) are France, 

Germany, Italy, United Kingdom, Spain, and Ireland, representing together 75 % of total EU-25 

production. The beef systems in these countries therefore largely represent the total systems for beef 

production. Beef production systems differ concerning the age and weight at which animals are 

slaughtered, the method of feeding, and the type of housing.  

Two main categories exist, depending on whether the animals come from dairy farms or from suckler 

herds. 
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II Appendix II 

Model description 

II.1 Modelling the economics of the feed system 

Free market regime. 

In this regime, imports and exports are free. On the initial assumption that trade is costless, the 

domestic prices are equal to world market prices. This amounts to perfect arbitrage. Provisionally, we 

make the additional assumption that the trade amounts to small quantities relative to world trade in 

the commodity, and that therefore the world price can be taken as given. 

Local production and stocks enter into the market at this price. How much is traded depends on the 

local production and stocks on the assumption that local demand is met first by local production 

and available stocks. 

Some issues arise due to the quarterly nature of the model. Local production (plus stock) at the end 

of the harvesting period may or may not exceed the requirements for the year, exports or imports will 

balance supply and demand. How much of this trade is done in each quarter? 

 

We distinguish first the case of an exporter and then look at mixed exporter/importer case. 

 

For an exporter, it appears reasonable to assume stocks after harvest to be depleted by the end of 

the crop year, and to spread this depletion of the stocks gradually over time. An example is the level 

of stocks of soybean in the USA from December to September every year (Figure 26). 

 

Levels of stocks of soy USA, 2001/2-2006/7

  December 1   March 1   June 1   September 1

Series1

Series2

Series3

Series4

Series5

Series6

 
Figure 26 Levels of stocks of soybean, USA, by quarter over the years 2001/2-2006/7; ‘series1’ 

corresponds to 2001/2, etc.  

 

Thus, if availability exceeds demand  we may take as a first approximation that the stocks will 

diminish over periods 1, 2 and 3 after the harvest period by a third of the difference between 

opening stocks and minimum stocks.  

 

In case production plus stocks are insufficient to cover the whole year‘s demand for the commodity, 

empirical evidence points out that imports and exports are spread rather equally over the months of 

the year, which indicates that domestic stocks are depleted gradually over the year. Hence, stocks 

are not used first, before imports come in. This smooth pattern is demonstrated in Figure 27 that shows 

the EU-27 imports of feeding stuff (except un-milled grains) by quarter, taken as a percentage of the 

whole calendar year import. On average the shares are 25, 25, 24 and 26% for quarters 1 to 4. 
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The implication is that we can assume that also in cases where stocks plus production are not 

enough to cover the year‘s needs, the use of domestic production take place gradually over the 

year. Hence, again we can use the approximation that one third of the accumulated stocks at the 

end of the harvest quarter will be used in each of the following quarters, and that imports adjust. 

 

Quarterly import EU27 as % of annual imports
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Figure 27 Quarterly shares of EU27 feeding stuff import quantities. 

 

The procedure then is model imports in quarter t as equal to demand in t-1, minus what can be 

supplied from stocks plus production. This latter supply is set equal to a quarter of annual production 

plus opening stocks minus the minimum level of stocks. The corresponding formula – using Z for 

opening stocks – is (Z-Zmin)/4 for the first quarter after the production quarter, and divided by 3, 2 and 

1 in each subsequent quarter. 

In case stocks fall below the minimum, the formula is changed by replacing the term between 

parentheses by just Z. 

 

Prices could be adjusted to reflect the net importer or net exporter status, with obviously higher prices 

for the net importer‘s case. The relative amount that is exported or imported does not matter for this 

price difference, however. For the difference we assume a percentage of 5%. Thus, when exporting, 

domestic prices are 5% below the world market price, and when importing these are 5% above the 

world market price. 

 

For the grain market this leads to 

 

supply 

release from previous stocks Rt:  

(Z0-Zmin)/4 for quarter 4 in a calendar year 

(Z0-Zmin)/3 for quarter 1 in a calendar year 

(Z0-Zmin)/2 for quarter 2 in a calendar year 

(Z0-Zmin)    for quarter 3 in a calendar year 

in case Z0 < Zmin, Zmin is set to 0 in the above equations. 

 

Production 

Produced is realized in the third quarter of the year. Yields per ha are taken to be slightly sensitive to 

prices (elasticity of 0.1, source FAPRI), and may vary in a random way. The area sown (in quarter 2) is 

sensitive to prices. Indicative prices are taken to be those of the previous harvest season: prices in 

quarter 3 of the previous year.  
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For the purpose of predicting area adjustments to large price changes, we follow a special 

approach. Typically, the current models distinguish an own price elasticity of supply of grain of 0.1 

and a cross-price elasticity with respect to oil seed prices of minus 0.5 (source: FAPRI model). Our 

purpose is, however, not served well by including such an assumption. The implication of the above 

elasticities would be that a price rise of oilseeds by 10% would lead to a drop in wheat area by 5% or 

approximately 2.5 million ha. The corresponding model parameters for oil seed (or more precisely the 

soybean area) would, however, generate an increase in area of 4% of the soybean area, or 4% of 2 

M ha, which is only 80,000 ha. 

To solve this asymmetry in the effects on grain and soybean area, we model the reactions in two 

stages, one is a change in total area (grains + soy), with an elasticity of 0.2; and the other is a 

change in ratio of grain to soybean area in response to a change in the ratio of the prices with an 

elasticity of 1. 

 

Therefore, the total area sown in quarter 2 of year t is a function of the prices in quarter 3 of year t-1: 

2.0
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The constant C is set to the initial, total area of 53.8 million ha (for 2005). 
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The constant c here is set to the initial ratio of 32.1. For 2005, this is 51.5 million hectares. 

The actual area of each crop, grain or soybean, can be calculated from the two equations.  

The implied elasticities depend on the share: the lower the share, the higher the elasticity. At the 

prevailing ratio of grain to soybean area of 25:1, the area elasticity of grains (w.r.t. grain prices) is 

0.23; the own-price elasticity of soybean area is 0.97. We are working, therefore, with stronger price 

responses than is assumed for business-as-usual models. However, note that we hardly include other 

area than grain and soybean. 

The implied cross-price elasticities are -0.03 and -0.77 for grains and soybean area respectively. 

 

 

Yields 

  )]1.00(95.0.[
1.0

3,113, torandomPCY
g

tt    

 

The constant C1 is set to the normal yield corresponding to the chosen scenario. For 2005 this is 4.92 

ton per ha.  

To simulate calamities, an adjustment factor for this yield can be chosen to reflect droughts etc.  

 

Production then follows as 

3,2,3, ttt YAQ   

 

Imports – if allowed at all by the choice of calamity – are set equal to previous consumption levels 

minus the supply from stocks. 

ttt RDM  1  

 

Demand D consists of demand for food Dc, and demand for feed Df. Food demand depends on the 

price of the previous quarter 
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The variable d is set equal to the initial grains consumption of the chosen scenario. The elasticity is 

taken from FAPRI (and actually refers to wheat). In scenarios where the EU is autarkic in grains, we 

apply a smaller elasticity (-0.13) to reflect the reduction in alternative sources of food and to have 

grains preferentially destined to human consumption. 

Feed demand Df follows from the various demand schedules that are specific for each type of 

cattle, and will be discussed there. 

 

Stock changes result from the addition of production plus net imports minus consumption for food 

and feed: 

11   ttttt DMQZZ  

Note that M includes the release from stocks. 

 

Finally, prices that are relevant for the next period result from setting domestic prices equal to world 

market prices plus or minus a trade margin of 5%, with the plus or minus depending on whether net 

imports or exports occur. 
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No trade 

If no free trade is possible, stockholder‘s behaviour changes. Supply out of stocks no longer follows 

the earlier pattern of gradual depletion of stocks until the next harvest, but is now more careful. While 

the assumptions can be changed, the basic assumption is that planned release of stocks occurs with 

a view to maintaining the stock for two years. Reason is that stocks can be more easily kept in store 

than repurchased later. This planned release affects the price via some ‗planning elasticity‘, but 

actual consumption may exceed the planned release. Thus, for the price formation in times of 

autarky, it is assumed that prices should adjust so as equate – by approximation – demand to the 

planned supply. However, actual demand may be less or more, because it follows the various 

demand schedules of the animal sectors. Resulting stock levels may differ from the planned level 

and prices will accommodate this. Thus, the planning involves: 1. setting a target for supply next 

quarter; 2. setting a price that is expected to bring demand to this level; 3. adjust stocks in view of 

actual developments. 

 

If the original demand function is D = d.P-ε
 with -ε the demand elasticity, then to make this equal to 

an actual supply of S, we need a price of (S/d)-1/ε. In this formula, the parameter d is approximated 

by its equivalent in the previous period, of which we know the value. The demand elasticity used for 

planning is only approximate. 

In a case (say period 0) with information on values for all variables and the elasticity, d can be 

derived from: 
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In a more general setting: price in quarter t equals price in quarter t-1, adjusted by a factor that is 

responsive to the new level of supply, relative to the old level of demand.  

Thus, the sequence at the start of a calamity is that first stocks are assessed. These are then divided 

into equal volumes of quarterly supply until the end of next year. The prices in each quarter then lead 

to demand in the quarter being approximately equal the given supply. The cattle sector responds to 

these prices. 
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This procedure presumes that all supply must be consumed by the sector, and it assumes that there is 

no need to look beyond year 2. We discuss both presumptions and adjust the model accordingly. 

 

In case of a net exporter, a sudden disruption in international trade causes a surplus of the 

commodity. While prices should obviously fall, it need not be so that in this case all supply must be 

absorbed by the sector within a year. Hence, supply from stocks will not strive toward releasing all 

stock in a year. We assume two years for this process. 

In case of a net importer, the trade disruption causes supply to fall short of demand; prices should rise 

by enough to establish a new equilibrium of demand and supply. In fact, as supply is very tight, prices 

may have to rise quite out of the normal range. In these special conditions, the usual elasticities do 

no longer apply. Working with normal demand elasticities would not reduce demand to levels that 

are required (say to a quarter of normal supply) without raising prices to astronomic levels. Therefore, 

we introduce demand elasticities that rise when prices go to extremes.  

In stead of a normal demand function with a constant elasticity 
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One can easily verify that for normal prices, which we set at 1, the elasticity is what it is in normal 

conditions. For high prices, the demand response is however taken to be stronger than normal. 

Figure 28 shows two demand functions. One with a simple elasticity of -0.3, the other with an elasticity 

of -0.3 times p. The adjusted function shows that a price of 2 leads to a demand of 0.66, compared 

to a demand of 0.81 for a constant elasticity. 
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Figure 28 Effect of two elasticities on price (y-axis) and demand (x-axis) relations for grains (see text) 

 

The procedure for setting a price in case of no trade is to ‗predict‘ demand for normal (world 

market) prices, and also to ‗predict‘ production and the normal release from stocks, and then to 

check if predicted supply meets demand. 
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The predicted demand in this formula is set equal to standard demand levels, as recorded before 

the calamity. At this price, demand only approximately equals supply, with any discrepancies solved 

in later quarters, and made possible by the use of the minimum stocks that act as a buffer. When the 

thus generated prices are very high (higher than 1.4) a formula is used to translate these prices into 

more realistic prices, conformable to the assumption that the elasticity increases with the price. The 

approximate formula for Pgen>1.4 is 
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2)(ln014.0ln586.0196.1 gengentrans PPP   (see Figure 29) 
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Figure 29 Relationship between extreme prices that should apply to constant elasticities (‘felt prices’) 

and those that correspond to elasticities linearly increasing with p (‘translated prices’). 

 

Consumption (using constant elasticities) is influenced by the ‗felt‘ prices, which implies that 

consumption is actually characterized by an elasticity that is increasing in prices. Production 

decisions are influenced by the ‗translated‘ prices directly.  

 

 

The oil seed market 

 

World market prices dominate this sector as imports largely outstrip domestic production. Hence, 

prices are dictated by the world market. Cultivated area responds to prices of oil seeds and grains in 

the previous year (similar to the case for grains), and yield responds to oil seed prices. Demand is 

derived from feed demand by the various types of cattle. Domestic prices are allowed to differ 

slightly from the world market prices in response to the ratio of carry-over stocks to demand of the 

previous quarter, with a flexibility of -0.05. 

 

Thus, we have area determined by the relationships described above for grains.  

 

Yields in the 3rd quarter of year t 

  )]1.00(95.0.[
1.0

3,113, torandomPCY s
tt    

 

The constant C1 is set to the normal yield corresponding to the chosen scenario. For 2005 this is 2.85 

ton per ha. In case of calamities, this level of yield can fall to a chosen percentage to reflect 

droughts etc.  

 

 

Production then follows as 

3,2,3, ttt YAQ   

 

 

Net Imports of oil seed follow the same regime as that of grains. It equals last period‘s consumption 

(as a proxy of this period‘s demand) minus what can be supplied from previous stocks. This out-of-

stock supply follows the same formulas as for grains, except that a minimum stock level always 

applies, even to the extent that if previous levels were below the minimum a negative out-of-stock 
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supply results. This is related to the market: oil seeds are imported and a transaction stock must be 

maintained to smooth transport, processing and trade. 

 

Prices follow world market prices, but if changes in stock-to-consumption ratios occur, prices adjust 

slightly. If minimum levels are required that equal one quarter‘s consumption the price ratio between 

domestic and world market prices will be unity, but if lower stocks are needed, higher domestic 

prices will prevail and v.v. for higher minimum stock levels. Rationale is that lower stock levels carry a 

danger of stock-out, and hence cause prices to be higher. 

 

No trade 

A regime with trade restrictions for oil seeds would be much more dramatic than for grains. Actually, 

Europe normally has a surplus of grains, but a tremendous shortage of oil seeds. No normal economic 

market behaviour, i.e. responses to price signals can achieve a change in demand dramatic 

enough to accommodate a sudden blockage in oil seed supply. To reach a consistent result, we 

simulate prices to go to exorbitantly high levels, to reflect scarcity, i.e. difficulty of securing supply. 

Under the assumption of elasticities that are responsive to these high prices too, we then generate 

translated prices and these affect supply responses. 

 

An important element is the release of stocks in these times of scarcity. As derived and explained in 

section 7.2, a rational assumption is that this release is spread equally over the quarters of the period 

of shortage. It takes into account what production will be forthcoming. In the standard case, where 

only little area of soybeans is cultivated in the EU, the predicted supply response is dependent on the 

information available: 

- in the first quarter, no scarcity prices are yet observed. Stockholders take 1.5 times the 

previous harvest as a ‗guesstimate‘ for upcoming production 

- in Q2 and Q3, the Q1-price of soybean acts as a guide: with an elasticity of 1, the best guess 

is the previous crop times the price in Q1 

- in Q4-Q7, the recent harvest of Q3 is known, and is taken as a predictor of the next harvest in 

Q7 (3rd quarter of year 2), but a factor of .75 is used to prevent stockholders from selling the 

crop before it is available 

- in Q8, no new harvest is expected 

 

Prices are established that make predicted demand equal to this release from stocks. Predicted 

demand is simply the standard import before the calamity, adjusted for increases in prices of pork 

and poultry. A demand elasticity of -0.4 is used in this price setting stage. This elasticity would 

correspond to the value that applies to price increases of around 50%, which seems fair as a heuristic 

for the stockholders. 

 

In the case of bio-fuel production, the scheme is adjusted. Areas under soybeans (or other protein 

crops) are much higher than in the standard case, and stockholders should no longer work with a 

unitary elasticity, nor is it sensible if they set their predicted harvest equal to 1.5 the previous, pre-

calamity, level.  

In fact, imports are not that important anymore. They represent only 10% of what is demanded, and 

it seems logical to start from business-as-usual and see if the market adjusts by itself to lower than 

usual levels of stocks. 

Thus, release from stocks is simply the normal quarter of the seasonally adjusted stocks above the 

minimum. Prices no longer equal world market prices, however, and are derived from   
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where Rpred is the normal release from stocks, and Dpred is the predicted demand, taken to be 

standard demand of 8000. The outcome is multiplied by the average prices of pork and poultry, Pp+p 
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of the previous quarter to account for demand shifts. Downward price adjustments are limited to 10% 

per quarter. 

 

 

ROUGHAGE 

 

The roughage market is modelled without imports and exports. Supply comes from areas ‗sown‘ 

every year (between apostrophes because this includes permanent grassland). This area yields 

roughage in the 2nd and 3rd quarter of the year. The output is stocked to provide the fodder in the 

other two quarters. The price is, generally, not very sensitive to changes in demand and supply and is 

modelled to respond to the ratio of actual stocks and the level of stocks normal for the quarter. The 

flexibility is -0.1. If stocks are insufficient to meet the upcoming demand of the next quarter, prices 

respond to the ratio of prospective demand and actual stocks, with a flexibility of 0.2. 

 

In equations: 

 

The area sown in quarter 2 of year t is a function of the average prices in the previous year t-1: 

1.0

12, . 







r
ttt PCA  

 

The variable C is set to the previous area. For 2005 this is 76 million hectares. 

 

Yields in quarter 2 and 3 

 

)]1.00(95.0.[1 torandomCYt   

 

The constant C1 is set to the normal yield corresponding to the chosen scenario. For 2005 this is 2.68 

ton of dry matter per ha in each of the two quarters (5.37 ton per year).  

 

Production then follows as 
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As it happens, the resulting production is much, much higher than the calculated demand from the 

cattle sector. A calibration factor of 3.5 is used to align the calculated demand and supply. 

 

Stocks are released for consumption so as to smooth this gradually over the quarters. Prices respond 

to:  

a) if stocks are higher than minimal: 
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the minimum stock plus consumption of 1, 2, 1, and 0 previous quarters for the targets at the end of 

quarters 2, 3, 4 and 1; 
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In case stocks are projected to reach below half the minimum level, prices adjust so as to induce 

demand to be reduced stronger and to induce supply in the upcoming season to increase. This 

demand will equal – approximately – supply by putting price to be 



 

 58 

harves

t 

harves

t 

5.1

target
1

1






















t

t
t

Z

Z
P  

 

The projected level of stocks depends on the predicted demand. This is set to be a demand function  
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Further considerations as to trade disruptions. 

 

In addition to the possible compulsory culling of cattle, the government should consider the length of 

the period during which trade is disrupted. A single quarter may not be a problem with sufficient 

stocks. In case of more quarters, the available stocks must be distributed over the periods until, until 

what? Until the next harvest if this is large enough, but beyond this harvesting quarter in case the 

disruption continues.  

For a normal exporting country, which has a crop exceeding its consumption, the planned use of the 

commodity in case of trade disruption need not go beyond the next harvest. If the country is a net 

importer, the next harvest plays only a contributory role: planning normally goes beyond the 

(relatively small) crop. 

 

Let demand be relatively steady. At the time of trade disruption, a stock Z0 is in store. With n=1,2 or 3 

periods to go before the next harvest expected to be of size H, how much should typically be 

released per quarter? 

If the planner takes a long view and prepared for equilibrium between production H and demand, 

the planned release should be in the order of H/4 per quarter and prices should be such that 

demand adjusts to this. Initially, available stocks per quarter can be larger than H/4 and a gradual 

transition to the new equilibrium can be accomplished. It is unlikely that this should take long: a quick 

adjustment to the new situation will be helped by providing the appropriate incentives as soon as 

possible. We therefore assume that transition will not take longer than until the next harvest, unless 

there happens to be much more in store by that time than H/4. If that is so, a gradual smoothing is 

applied until the next harvest. 

Thus, we have 

 

If Z/n<H/4: supply in the n quarters until the next harvest is Z/n, after which it becomes H/4 

 

 

 

  

 

   Example of releases for Z/n < H/4, n=3 

 

If Z/n>H/4, a gradual transition to the ‗scarcity‘ situation is more appropriate. 

 

 

 

 

 

 

Example of releases for Z/n > H/4, n=3 

 

Occasionally, the level of stocks can be so high, or the level of production so low, that large 

discrepancies would arise between the release out of stock just before harvest, and the new regime 

after harvest. 
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Example of releases for Z/n >> H/4, n=3 

 

In this case, part of the stocks can be used to top up the release out of domestic production. 

The rationale for gradual transition lies in the beneficial effects of using the feed to complete the 

optimal growth path of the animals. A sudden disruption of the feed provision would necessitate 

early discarding of animals and slaughter at less than optimal weight.  

Stocks cannot be held forever, and we assume that the transition to a new equilibrium between 

domestic supply and demand is made within two years. 

 

Complication may arise if, for example, the levels of stocks available are larger than consumption 

was, and are not needed to facilitate a transition to a new situation.  

 

Simulations with the model are used to select the best policy. The criterion is the development of the 

prices: the smoother these develop toward a new equilibrium, the less painful the transition. 

 

Outlook as perceived 

 

The above transition to an autarkic situation was made as if the disruption in trade were permanent. 

In many situations, this may be the most prudent policy but there can also be situations in which 

trade is disrupted for a specific time, and known to return to normality at some point. To 

accommodate such short-term changes, the provision of feed should be as little disrupted as 

possible. The target may initially be the next harvesting quarter, on the assumption that trade and 

production will be normal by then. If production falls short or trade is not restored a further adjustment 

may be needed. 

Typically, for such a short-lived emergency, the levels of stocks that are held at the start of the 

emergency are important: the larger the stock the better feed provision can be assured. 

 

 

Prices of products 

 

As supply is forthcoming from the meat and eggs producing sector, prices of the products are 

determined in the short run by the confrontation of demand and this given supply. This means that 

prices are a function of the supply: 

For a constant-elasticity demand function of the from 

 

 dPD  

 

the inverse demand function is 

 

 /1/1  DdP  

 

For given supply S=D this gives the price that equates demand to supply. 

Substituting for d an expression derived for the base year 
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the expression for P that sets demand equal to supply S becomes 
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In addition to these own-price responses, the demand model includes cross-price effects between 

the three types of meat that are distinguished (beef, pork and poultry). To accommodate this, we 

change the above formula, when applied to quarter t, into: 
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Here εj and εk refer to the cross-price elasticities of demand with respect to the two other types of 

meat.  

This is applied to the price equations for eggs (ε = 0.15), pork (ε = 0.13), poultry (ε = 0.31) and beef (ε = 

0.4), with elasticities equal the FAPRI annual estimates for EU15. Total elasticity matrix is given below, 

where the cross-price elasticities were taken from Witzke and Zintl. 

 

 pbeef ppork ppoultry 

Beef -0.40 0.10 0.01 

Pork 0.03 -0.13 0.01 

Poultry 0.02 0.06 -0.31 

 

The direct application of these formulas to single quarters (with occasional large changes in supply) 

leads, however, to great changes in prices from one quarter to the next. This is unlikely, and in 

practice, product prices are smoothed by changes in stocks of products along the supply chain and 

with consumers. We therefore look at the change in price that would make demand equal to supply 

in the longer run. This is accomplished by introducing (a) price lags into the formula: in stead of the 

formula above we use previous prices (to the power 0.7) and the newly simulated price (to the 

power 0.3), to give a smoother transition to the new equilibrium; and (b) by using a moving average 

of production (St in the formula) over 4 quarters rather than the previous quarter only.  

 

 

II.2 Modelling the Animal production systems 

The animal production sector in the EU is a large consumer of feedstuff, which makes it a 

‗competitor‘ with consumers for grains and oilseeds (part of which currently has to be imported into 

Europe), while at the same time providing specific food for human consumption. As such, modelling 

the reaction of the animal production systems to changes in availability / pricing of feedstuff is 

pivotal in the analysis of effects of trends and calamities on availability and prices of food for the 

human population in the EU.  

 

In this study, the following animal production systems are modelled each in a separate module, 

because of their large demands for feedstuff: 

- dairy cows 

- beef production 

- pork production 

- chicken production 

- egg production 
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A strong relation exists between the dairy and beef production systems, since many of the animals 

used for beef production originate from the dairy system. Regarding the pork production system, 

there is no additional module for the production of the piglets. Instead, feed demands for piglet 

production are calculated in the pork production system, with a standard feed demand for 

production of a piglet, accounting for requirements of sows, boars and piglets. The chicken and egg 

production systems deal in a similar way with the feed demand of the starter chicks. 

 

General set up of the animal production modules 

 

1. In each animal production system, the model keeps track of the number of animals in various 

age groups and the distribution over age groups. These numbers are variable because during 

each quarter, animals may: 

 die from natural causes, in which case they are removed from the production system 

and do not contribute to the production of meat for human consumption; here a 

difference is made between ‗normal‘ causes and extreme situations during calamities 

caused by virulent and deadly animal diseases or zoonoses that require massive culling 

of animals. For the calamity type, it is assumed that also starter animals are directly 

affected at the start of the quarter, whereas for ‗normal‘ causes the effect is assumed to 

build up during the quarter. 

 be selectively removed, either at the end of their productive life or because of 

underperformance during their productive life. Selective removal for underperformance 

is here only applied to the dairy system; 

 be slaughtered when they reach their optimal weight for slaughtering (meat production 

systems); 

 or be culled (e.g. because of lack of sufficient feed); these animals are added to the 

meat production for human consumption; 

 

At the end of each quarter, the remainder of the animals in each age group is shifted to the 

next quarter and next age group: 
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Where 

A
t
q  = number of animals of age group t (with 1 = starter) at the start of quarter q 

 t
d

, c = average fraction of animals of age t dying from natural causes and 

effects of calamities during the quarter  

 t
= average fraction of animals of age t selectively removed during the quarter 

 t
q  = fraction of animals of age t culled during quarter q because of lack of food 

 t
q  = fraction of animals of age t slaughtered during quarter q (only for meat 

production systems 

 

2. Each quarter, new starter animals are introduced in the system; the number of these starter 

animals depends on the number of starters in the quarter before, with an elasticity to quantify 

the effect of the ratio of prices of the product coming from the production system (e.g. milk) and 

the feed (assuming an optimum feed quality and specific fractions of soy/oilseeds, grain and 

roughage). The method to estimate the number of starter animals reflects the differences in set-

up of the various production systems: 

- For the broiler production system, with a very short production cycle, it is assumed that 

setting up new batches of chicken reacts on short notice changes in the ratio of product 

over feed prices. As such, this ratio of the previous quarter determines to a large extent the 

amount of animals that will be set-up. However, it is also assumed that the production of 
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chicks will operate on a more longer term, such that changes in the total amount of chicks 

that are available in a quarter is restricted to 1.25 times the average number of the 

preceding four quarters: 
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A qq
1

1:4   = average number of starter animals the 4 quarters preceding quarter 

q.  

Pq  = ratio of prices for produce over feed in quarter q.  

ε = price elasticity 

 c  = fraction of animals of age t that dies during a calamity caused by 

epidemics of animal diseases  

- For the egg production system, which has a longer production cycle, it is assumed that the 

change in number of starter layers depends on the average price of the four preceding 

quarters and, as for broilers, on the average number of starters in the these quarters 
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- Setting up new piglets in the pork production system a combination of fast response to prices 

in the preceding quarter is slowed down by assuming that the response is related to the 

average number of starters in the four preceding quarters: 
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- In the dairy sector model, starters are assumed to replace the animals that died or that were 

selectively removed (e.g. because of underperformance) in the preceding quarter. When 

the ratio of product over feed prices is high, more starters may be set-up than is needed for 

this replacement. However, since the model allows starters to be recruited only from calves 

produced within the sector, some quarters may see a relative shortage of potential starters, 

when demand for starters is more than the number of cow-calves that were produced in the 

preceding quarter. This shortage is accumulated and added to the demand for starter 

calves in next quarters: 
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Where: 

A
cC
q 1  = number of cow calves produced in the preceding quarter 

A
r
q 1  = number of animals removed (incl., dead and culled/slaughtered) in the 

preceding quarter  

A
rl

q
,

1  = accumulated number of removed animals that were not yet replaced 

- The set-up of new animals in the beef production system differs from that in the other systems 

in the sense that new animals enter not only in the first age group, but also in some of the 

older age groups. In the model, animals younger than 16 months that are selectively 

removed from the dairy system enter the beef production system to be fattened to a desired 

slaughter weight. In addition to animals from the dairy sector, calves are also produced 

within the beef sector itself. To allow modelling of this internal production of calves, both the 

number of cow and of bull animals has to be followed: 

Bulls (starters only from calves; no older entrants from the dairy sector): 
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q
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,
1
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Cows: 

Starter calves:  
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,
1
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Older entrants: 
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Where: 

AA
bC
q

DbC
q 1

,
1 ,  = bull calves available from the dairy respectively beef sector from 

the preceding quarter (with cC,D and cC: same for cow calves) 

A
RDt

q
,,1

1

  = selectively removed animals from the dairy sector 

 

3. During each quarter, the potential demand of the different feed substances (roughage, grain 

and soybean equivalents) is calculated, assuming an optimal performance of the animals during 

the quarter, and assuming that on average animals that die from natural causes do this halfway 

during the quarter, (therefore requiring half the feed) while selection of animals to remove is 

done at the end of the quarter (and therefore requiring full feed): 

   

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oc

t
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t
q
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q UAD
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,, 5.01,0max   

Where: 

D
pf

q
,  = total demand for feed stuff of type f during quarter q for animals of all 

age groups present in that quarter  

U
tf

o
, = optimal use of feed stuff (concentrate, roughage) of type f per quarter for 

each animal of age t (parameter, depending on scenario regarding 

efficiency of animal production) 

 

4. For systems where roughage is used, the use for roughage is related to the potential demand, 

multiplied by the effect of the relative price of roughage: 

 
r

q
pr

q
r
q DU 1

,
  

with 

 r
q 1  = relative price of roughage in the preceding quarter 

ε = price elasticity for use of roughage (set at -0.1) 

 

5. From the potential demand of concentrate, the required amount of protein coming from 

concentrate (c) is calculated: 

)(,
PGPSDP
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q

c
q    

Where: 

P
c
q  = Protein demand from concentrate in quarter q 

S
c
o , G

c
o  = Optimum fraction of soybean and grain equivalents in concentrate 

P
s , P

g = fraction of protein in soybean and grain equivalents 

 

6. Depending on the ratio of the prices for protein from soybean and from grain, the required 

amounts of soybean and grain to supply the protein are chosen: 
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Where: 

D
s
q , D

g
q = total demand for soybean and grain, respectively, in quarter q 
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 s
q ,  g

q = relative price of soybean and grain respectively. Under ‗normal‘ 

conditions, these prices are the average over the 4 preceding quarters while 

under conditions with trade limitations these prices are those of the last 

preceding quarter. This reflects the change in expectations of producers 

when normal price setting mechanisms are not valid any more. Since the 

protein content of soybean is about 3 times higher than that of grains, 

switching to grains will only occur when soybean prices are more than 3 

times higher per unit dry matter than those of grains (Figure 30). 
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Figure 30 Effect of the price of soybean relative to that of grains on the substitution of soybean by 

grain in animal feed. Substitution is expressed in the fraction of soybean in an optimal diet at zero 

price of soybean. 

 

7. Apart from soybean and grain, concentrate contains also other substances. Here it is assumed 

that these additives serve other purposes than to supply energy or protein, and that the amount 

of these additives is independent of the soy-grain ratio. The demand for additives is then 

calculated by  

)1(,
GSDD

c
o
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q

a
q   

 

8. The resulting real demand for concentrate in each quarter then equals the sum of the demands 

for grain, soybean and additives: 

DDDD
a
q

s
q

g
q

c
q   

 

9. The use of concentrate with the resulting soy-grain-additive content is made dependent on the 

relative price of the concentrate, where it is assumed that the relative price for additives equals 

that for grains: 
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With 

ε = price elasticity, being the weighted average of the elasticities for grain and 

soy: 
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In case of a minimum requirement of roughage as fraction of total intake, e.g. to prevent 

problems in the digestion system in high productive dairy cows, the available amount of 

roughage determines the maximum amount of concentrate that can be used: 
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Where  

α = minimal fraction of roughage in the diet 

 

10. The intake of food is translated into production, i.e. meat, milk, eggs.  

Meat is expressed in average carcass weight after slaughtering, which is assumed to be an age 

specific fraction of the live weight that varies between bovines, pigs and chicken. 

For all meat producing systems (including dairy), an optimal growth of live weight of animals is 

assumed to exist (Figure 31 for dairy, beef and pork production). In the case of dairy, it is 

assumed that animals indeed follow this curve and that only the production of milk is affected by 

quantity and quality of feed. In the other meat production systems, the growth of live weight will 

follow this curve when optimal quantity and quality of feed is provided, but will be reduced 

when less quality and/or less quantity is available. 
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Figure 31 Relation of optimal weight of fattening pigs, dairy and beef cattle to their age as used in 

the model 

  

Per quarter, the optimal growth in life weight (G
o

q
) over the whole population of animals is 

calculated as the sum of the optimal growth per age group: 


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t
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o
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      c
t
d

t
o

t
o

t
q

ot
q WWAG   1,0max1,0max1,   

for animals remaining till the end of the quarter 

      c
t
d

t
o

t
o

t
q

ot
q WWAG   1,0max5.0,1min1,   

for animals dying from natural causes during the 

quarter 

With 

W
t
o  = optimal end weight for age group t 

 

From the protein content of the total feed for all animals (except dairy cattle), the actual feed 

conversion rate for all animals is calculated according to 

   
  FC

PCPC
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t
qq min
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minmax
min 




  

Where  

FC = Feed Conversion rate (kg life weight gain / kg dry weight feed consumed) 

PC = protein content (kg protein / kg dry weight feed) 

 

To take the quantity of feed into account, the actual growth as fraction of optimal growth (FG) is 

quantified by 
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Finally, the actual growth rate in life weight is calculated as the optimal growth multiplied by the 

fraction of growth that is achieved: 
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In the dairy system, milk production is related to the uptake of roughage and concentrate, 

where the feed quality determines the feed conversion: 
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Where  

fR  = optimal fraction of roughage in diet 

FC
o
q  = maximal conversion of feed into milk  

Both fR  and FC
o
q vary according to the animal production scenario. 

Thus, an optimum curve of Feed Conversion versus fraction roughage is introduced into the 

model (Figure 32) 
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Figure 32 Relation between conversion of feed into milk in relation to fraction roughage as used in 

the model, for maximal conversion of feed into milk of 1.4 litre milk per kg dm feed, and optimum 

fraction roughage of 0.72.  

 

The total milk production is then calculated by multiplying the Feed Conversion with the total 

amount of feed consumed by cows of 9 months and older. 

 

The optimal amount of feed for dairy is calculated by dividing the average potential milk 

production per cow per year by the maximum Feed Conversion; the optimal amount of 

roughage is then determined by multiplying the total feed by the optimal roughage fraction, 

with the optimal amount of concentrate as remainder. Implicitly, this calculation assumes an 

optimal composition of concentrate, which in the module is described by the fraction of grain 

products, of soybean products and of other material. 

 

In the egg production module, it is assumed that under optimal diet, chicken produce a 

maximum number of eggs per year, depending on their age. When the quality of the diet, 

expressed in protein content, becomes less than optimal, egg production is reduced:  

  EPAAFQE
tdt

q
lt

qq
t
q 










365

90
5.0 ,,   




n

t

t
qq EE

1

 

Where:  

E
t
q , Eq = egg production in quarter q, per cohort of chicken in age group t and 

total over all age groups respectively. 



 

 67 

FQq = feed quality in quarter q 

A
lt

q
, , A

dt
q
, = number of chicken of age t to survive (l) or die from natural causes 

(d) in quarter q 

EP
t  = Optimal yearly egg production per chicken of age t 

90, 365: = number of days in quarter and in year respectively 

 

11. Production of starter animals (calves, piglets, chicks) 

In the pork, broiler and egg production systems, the potential amount of starter animals is 

assumed not to be limiting. In the beef production system, calves that are not needed in the 

dairy system form one part of the potential starters. This is a limited supply and is determined by 

the dynamics in the dairy production system. Another source of starters is formed by the calves 

produced within the beef production system, which here is assumed to respond to the price ratio  

 

In the dairy and beef modules, production of calves is explicitly included, since the amount of 

available cow calves can limit the expansion of the sector. The availability of bull calves and 

unneeded cow calves from the dairy sector generally is an important input to the beef module. 

 

The model assumes that different age groups (heifers, cows between 3 and 7 years and 

‗senior‘cows above 7 years old) have different calving rates, while there is also some seasonality 

in calving. In addition, the model takes into account that not all calves are born alive, and that 

the fraction cow calves may be different from 0.5: 
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Where 

FCFL , = fraction live born calves and cow calves respectively 

CSq = fraction of calves being born in quarter q, relative to total yearly born 

calves 

CCC
b
q

c
qq .. = calves born in quarter q: total, cows (c) and bulls (b) respectively 

AA
dt

q
lt

q
,, , = total number of cows surviving (l) and dying of natural causes (d), 

respectively, of age group t in quarter q 

CR
t  = average number of calves produced per cow of age group t 

 

Animals selectively removed from the dairy sector (see next paragraph) contribute to the 

production of beef. Animals younger than 7 months enter the beef sector for further fattening, 

while older animals are slaughtered directly. 

 

12. Selective removal of animals 

In the beef, pork, broiler and egg production systems, it is assumed that selective removal of 

animals, e.g. because of underperformance, is included in the mortality rate. It is also assumed 

that such selective removal is not affected by the ratio of prices of produce and feed. 

 

In the dairy system, selective removal takes place over the whole range of animals (see item 1 in 

this section, where  t
 expresses the selective removal rate), where fraction of animals being 

removed depends on the age group (Figure 33). 
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Figure 33 Standard fraction of animals selectively removed yearly in dependence of age of the 

animals 

 

In addition, selection of animals is affected by the ratio of prices of milk over feed, such that at 

higher ratios, less animals are removed (Figure 34): 
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Figure 34 Effect of the milk/feed price ratio on selective removal of animals from the dairy sector, 

expressed as a multiplication factor on the standard removal rate. 

 

13. Culling because of food shortage 

When not enough feed is available, the model assumes that in the meat production systems, 

growth of the animals will be slower, leading to a delay in reaching the slaughtered weight.  

In the dairy and egg production systems, some of the animals will be culled to allow the 

remaining animals sufficient access to feed to produce at close as possible as under optimal 

conditions. Animals that will be culled first are the less productive animals, which in the model is 

related to the age group. 

 

Table 25 Order of culling of animals in case of shortage of feed 

Production 

system 

Culling group 

1 2 3 

Dairy Cows > 8 years Calves & heifers <= 2 years Cows >2 and <8 years 

Eggs Chicken > 12 months Chicken <4 and > 9 

months 

Chicken >4 and < 9 

months 

 

In the dairy system, it is assumed that culling starts when a particular culling group has too little 

roughage available: 

  
3

1min cgcr
cr
q

tot
q

cg
q

cg
q RRRRRRAR  



 

 69 


















RR

AR
FC cg

q

cg
qcg

q


1.,0max(,1min  

with 

RRAR
cg
q

cg
q , = available and required roughage respectively per quarter for 

culling group cg, with cr = later culling groups and tot = total over all culling 

groups 

FC
cg
q = fraction of culled animals during quarter q in culling group cg 

  = fraction of required roughage (which includes requirement for milk 

production) before culling actually will start; in the model assumed to be 

0.75.  

 



Responses of the EU feed 
and livestock system 

to shocks in trade and 
production

Platform Agriculture, Innovation & Society

CLM -A3 (5)omslagen2010.indd   3 23-12-2010   10:43:49


	Foodsecurity-voor.pdf
	2010_10_18_EU_Food_Security_final
	Food security-achter

