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Drought: A Major abiotic stress 

Unlike animals, higher plants are sessile and therefore cannot escape from unfavorable 

conditions such as abiotic stresses. Plant productivity is severely affected by abiotic stress 

factors such as drought, salinity, flooding, high and low temperatures, UV radiation, excess 

ozone and heavy metals. Abiotic stress is the primary cause of crop losses worldwide, causing 

average yield losses of more than 50% for major crops (Boyer 1982). Among the different 

abiotic stresses, drought is by far the most complex and devastating on a global scale (Pennisi 

2008). Agriculture is a major user of water resources in many regions of the world and 

drought affects agriculture in 45% of the world geographical area. Rainfed agriculture 

accounts for 80% of cultivated land area in the world and contributes 60% of world food 

(Rockstrom 2003). The lower yield levels in rainfed crop production are caused by limited 

and unpredictable rainfall which leads to drought stress. With increasing aridity and a 

growing world population, water will become an even scarcer commodity in the near future. 

The growing world population requires more food production but good agricultural land 

surface is decreasing.  The challenge to feed more people with the same or even less 

agricultural land may be met by enhancing the productivity of crops grown on stress-affected 

lands, and increasing yield under irrigated agriculture. As yield levels may have already 

reached a plateau in irrigated agriculture, it is essential to increase the productivity of abiotic 

stress-affected areas to meet the growing global food demands. Genetic enhancement of 

drought tolerance crops is one of the important strategies to enhance productivity of crops 

under less then optimal agricultural conditions. 

 

Drought tolerant mechanisms in plants 

Plants have evolved different ways to respond to drought stress namely escape, avoidance and 

tolerance strategies. An overview of plant adaptive response to water stress is shown in Figure 

1. Plants that escape drought exhibit a rapid phenological development and high degree of 

developmental plasticity, being able to complete their life cycle before physiological water 

deficit occurs. Escape strategies rely on successful reproduction before the severe stress is 

perceived.  A short life cycle is particularly advantageous in environments with terminal 

drought stress or where physical or chemical barriers inhibit root growth (Blum 1988, 

Bidinger and Witcombe 1989).  

Drought avoidance refers to the plant’s ability to retain a relatively high level of hydration 
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Figure 1 An overview of plant adaptive responses to water stress (modified from Chaves et al 2003) 

 

under conditions of soil or atmospheric water stress (Blum 1998). Drought avoidance has two 

components: enhanced water uptake and reduced water loss. Improvement of water uptake 

can be achieved by adapting root traits such as root thickness, root penetration ability through 

compacted soil layers, and root depth and mass (Price et al 2002). Water loss can be 

minimized through reduced epidermal conductance, reduced absorption of radiation by leaf 

rolling and reduced leaf area to minimize evaporative surface.  

 

Drought tolerance is defined as the relative capacity of plants to maintain functional growth 

under low leaf water status. Drought causes reduction in water potential of the cell, as a result 

of solute concentration gradients and osmosis, and leads to loss of cell turgor. Some plants 

have the ability to tolerate dehydration or maintain turgor pressure through an osmotic 

adjustment via the active accumulation of solutes called osmoprotectants, or compatible 
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solutes. These molecules, which act as osmotic balancing agents, are accumulated in plant 

cells in response to drought stress and are subsequently degraded after alleviation of the 

stress. Osmoprotectants include amino acids, sugar alcohols, polyols and quaternary 

ammonium and tertiary sulfonium compounds and help in protecting cell components from 

the adverse effect of water loss through expression of cell rescue mechanisms and through 

increased capacity of plants to recover after stress.   

 

Drought response is a quantitative trait under complex phenotypic and genetic control 

(McWiliam, 1989). In many crop species, the capacity for drought escape, avoidance and 

tolerance has been reported. These strategies are not mutually exclusive and plants may 

combine a range of response types (Ludlow 1990). This response is probably based on 

severity of the drought stress but also could involve other factors such as the developmental 

stage, the level of metabolic reserves and also the ability of plant to predict the nature of the 

stress it faces using memory (physiological or genetic) and environmental indicators other 

than the drought stress itself (i.e., light level, temperature, time of year etc). However, these 

adaptation mechanisms have some disadvantages. Drought escape by reducing growth 

duration leads to reduced yields. Drought avoidance, by reducing water loss through stomatal 

closure and leaf area reduction, might result in reduced photosynthetic ability ultimately 

resulting in reduced carbon assimilates and yield. Increased solute concentrations responsible 

for osmotic adjustment may have a detrimental effect in addition to energy requirement for 

osmotic adjustment. Another example of avoidance is decreasing canopy by reducing growth 

and shedding of older leaves. Accelerated leaf senescence and leaf abscission are associated 

with drought in nature as means to decrease canopy size; this strategy reduces the yields of 

annual crops, with concomitant economical loss to farmers. Therefore, adaptation of plants to 

stress should reflect a balance between escape, avoidance and tolerance while maintaining 

adequate productivity. Hence drought is a complex trait for breeding, expression of which 

depends on action and interaction between different characters such as morphological, 

physiological, biochemical and cellular level processes. Insight in the genetic mechanisms 

that condition these characters is limited. Improving the tolerance of crops to drought, 

compared with other abiotic stresses, requires a broader interdisciplinary approach, involving 

an understanding of the factors determining yield in particular target environments. 
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Drought response at the molecular level 

A better understanding of the effects of drought on plants is vital for improved management 

practices and breeding efforts in agriculture. Plants activate a diverse set of physiological, 

metabolic and defense systems to survive and to sustain growth. Any change in the optimal 

growth conditions is perceived by plants as stress and transduced in the form of signals 

involving protein phosphorylation and/or dephosphorylation, calcium sensing, protein 

degradation etc. This activates stress responsive mechanisms either by directly leading to 

expression of certain genes involved in repair mechanisms or leading to expression of 

transcription factors which in turn regulate further downstream stress response genes (Bartels 

and Sunkar 2005). Transcriptomics, proteomics and gene expression studies have identified 

the regulation and activation of several drought stress-related transcripts and proteins, which 

are generally classified into two major groups. The first group (functional proteins) includes 

proteins that probably function in stress tolerance. They are protection factors such as 

chaperones, LEA proteins, and lipid transfer proteins, proteins involved in repair and 

protection from damages, such as proteinases, detoxification enzymes, protease inhibitors, 

ferritin and plant defense-related proteins and proteins involved in synthesis of 

osmoprotectants (proline, glycine betaine, sugars). This group also includes proteins involved 

in cellular metabolic processes such as carbohydrate metabolism, secondary metabolism, 

fattyacid metabolism, biosynthesis of plant hormones (ABA, ethylene, IAA and JA), proteins 

regulated by plant hormones (ABA, auxin and JA), RNA binding proteins, cellular structure 

and organization-related proteins such as arabinogalactan proteins, senescence related 

proteins, cytochrome P450, alcohol dehydrogenase, aldehyde dehydrogenase, reproduction 

development-related proteins such as pollen coat-like protein and respiration related proteins 

such as flavin-containing monooxygenase. 

The second group (regulatory proteins) is involved in regulation of signal transduction and 

transcription as part of the drought response. These are transcription factors of multiple gene 

families such as DREB, ERF, zinc finger, WRKY, MYB, MYC, HD-ZIP, bZIP and NAC 

families. Among the regulatory proteins protein kinases such as MAPK, MAPKKK, CDPK, 

S6K and PRK can be found. This group also includes protein phosphatases such as PP2C, PI 

turnover related proteins such as PLC, PLD, PIP5K, DGK and PAP, and calmodulin-binding 

protein and Ca2+ -binding proteins. Understanding the mechanisms by which plants perceive 

environmental signals and transmit such signals to the cellular machinery to activate 
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responses is a fundamental issue in plant biology and is also vital for the continued 

development of rational breeding and transgenic strategies to improve stress tolerance in 

crops.  

 

Potato: Origin and its importance 

Potato (Solanum tuberosum.L) is the world’s 3rd major food crop in terms of food 

consumption, and 8th in terms of area under cultivation (FAO statistics 2008). The potato 

tuber is a high energy staple food in many countries around the world and since it provides 

high productivity per unit area, it can be cultivated intensively. Thus potato represents one of 

the best candidates for alleviating food shortages. The cultivated potato S. tuberosum is an 

autotetraploid (2n=4x=48). The domestication of potatoes (Solanum spp.) probably started at 

least 7 000 years ago around Lake Titicaca (in modern-day Peru and Bolivia), when the first 

inhabitants of this region began selecting edible forms of wild potato species (Simmonds 

1995; Spooner et al 2005). The wild species eventually crossed with each other and produced 

increasingly better varieties. The modern potato (Solanum tuberosum) was apparently 

domesticated from wild potato species of the Solanum brevicaule complex (Spooner et al 

2005). However, the emergence of agricultural communities, in this and other regions of 

South America, only occurred some 3800 years ago at the beginning of the Formative Period. 

Several taxonomical studies suggest that wild solanum species are well spread from North to 

South America and highly diverse (Hawkes 1990; Spooner and Hijmans 2001). The ploidy 

level ranges from diploid (2n=2x=24) to hexaploid (2n=6x=72) in which the majority of 

diploid species are self-incompatible and tetraploids and hexaploids are self-compatible 

allopolyploids that exhibit disomic inheritance (Hawkes 1990).  

 

The first introduction of potato in Europe was probably around 1570 in Spain (Hawkes 1990). 

After the potato was introduced, it spread through Europe via three main routes. The potato as 

an “object of curiosity” was disseminated by a network of scholars and botanists. The potato 

as an “object of cultivation” spread among the monasteries of Carmelite Friars. The third 

route of dissemination within Europe was by the continuous trek of the Protestants, who took 

the potato with them when religious persecution forced them to flee their homes and lands 

(CIP, Odyssey of potato 2008). By the late 1700s, potato cultivation was widespread in 

Europe and they were taken from Europe and cultivated in many other parts of world 
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(Hawkes and Francisco-Oetega 1993; Pandey and Kaushik 2003). In the mid-1800s the 

devastating potato late blight disease was introduced with the onset of famine in Ireland and 

other regions of Europe (Fry 2008; Schumann 1991). Nonetheless, potato has persisted as a 

staple food throughout Europe and currently Europeans have the highest per capita 

consumption of potatoes in the world. 

Today, potato is the most important food crop in the world, after rice and wheat. Potatoes are 

grown in more than 130 countries and consumed by over a billion people worldwide. In 2005, 

for the first time, more area was planted with potatoes in the developing nations than in the 

industrialized nations and the area was around 20 million hectares with a total world 

production of over 300 million tons (Haverkort et al 2009). At present, the major potato-

producing countries are China, Russia, India, USA and Ukraine accounting for 22, 12, 7, 7 

and 6% of world production respectively (FAO statistics 2008). Potato is not only used for 

human consumption but also for industrial purposes mainly for starch in textile, papermaking, 

glue, flocculating agents and building materials. More uses are anticipated mainly as 

bioreactors for biopharmaceuticals for encapsulation and controlled release of functional 

ingredients (Li et al 2009) and designer starches (Davies 1998).  Increasingly severe weather 

events, increasing costs of staple grains, and growing use of food for biofuels suggest that 

potato production will become even more important as a food security crop in the world. 

 

Impact of drought on potato 

Potatoes grow optimally under relatively cool conditions and the formation and tuber bulking 

depends mainly on day and night temperatures, to enable metabolites produced during 

daytime to accumulate in the tuber during night (Hooker 1981). One of the major factors that 

limits potato cultivation is susceptibility to drought and this is mainly due to its shallow root 

system with a depth ranging from 0.5 to 1.0m (Vos and Groenwold, 1986). About 85% of the 

total root length is concentrated in the upper 0.3m of soil.  Gregory and Simmonds (1992) 

showed that the potato root system displays a relatively small root length per unit area and 

this makes the potato plant a poor conductor of water. This is further complicated by the fact 

that potato extracts less of the available water from the soil compared to other crops (Weisz et 

al., 1994).  

Early growth and tuber formation require large amounts of water and recovery is difficult 

once potato plants experience water deficit (Harris 1978; Deblonde and Ledent 2001). The 
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critical level of soil moisture tension for potato yield and quality is around -0.7 bar (Mould 

and Rutherford 1980) and short periods of water shortage can reduce tuber production and 

tuber quality (Miller and Martin, 1987). Average tuber yield reduction per mm water deficit 

has been estimated at 117 kg/ha (Vos and Groenwold 1988). Plants facing drought conditions 

during the tuber formation stage are more susceptible to scab (Streptomyces scabies) and soil 

cracking can make tubers vulnerable to insect pests such as the potato tuber moth 

(Phthorimaea opercullella; Hide and Lapwood 1978). Drought affects transpiration and 

evaporation which leads to the elevation of soil and plant temperatures. Increased 

temperatures are detrimental to tuber formation and during the late growth stage, drought and 

heat stress acting in tandem may cause problems such as brown spots inside the tubers (Hide 

and Lapwood 1978).  

 

Several studies have shown that drought has a drastic effect on morphological and 

physiological traits of the potato plant, such as leaf size, leaf number, shoot height (Deblonde 

and Ledent, 2001), rate of photosynthesis and most importantly tuber number (MacKerron 

and Jefferies, 1986; Haverkort et al., 1991), tuber yield and biomass (Dalla Costa et al., 

1997). The effect of drought on tuber yield depends on the aggregate of morpho- 

physiological processes, such as photosynthesis, leaf area expansion, leaf senescence, 

partitioning of assimilates, tuber initiation, bulking and tuber growth (van Loon, 1981). In 

addition, potato yield under water deficit conditions depends on the timing and duration of the 

stress within the growth period (Jefferies 1995b) as well as on the climate and soil conditions. 

Dramatic reduction of yield occurs when stress coincides with the irreversible reproductive 

processes, making the genetic analysis for drought tolerance at the reproductive stage 

crucially important.  

 

Potato breeding for drought tolerance 

Water availability is crucial to obtaining high yields in the potato crop. Improvements in the 

tolerance to drought of potato could decrease the input of fresh water in potato cultivation, 

and increase the cultivation area to drought prone regions in the world. Genetic improvement 

of potato is mainly hampered by its high level of heterozygosity, tetrasomic inheritance and 

incompatibility barriers. Classical breeding in potato involves evaluation and selection based 

on several traits within the clonally propogated progeny of a cross between two tetraploid 
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clones. These clones can be existing cultivars or clones with introgressions from wild species. 

Potato relatives range from diploid to hexaploid and although most cultivated potato species 

are tetraploid, over 74% of naturally occurring species are diploid.  Thus, the disadvantages of 

breeding tetraploid potato plants can be circumvented by using wild type diploid species. 

Further the diploids can be bred to tetraploids because of their 2n gametes.  

 

The differential response of potato cultivars to water stress indicates that there is genetic 

variability for drought tolerance in cultivated potato (Harries 1978; Levy 1983). In addition, 

several wild species of potato growing in its center of origin in South-America have been 

adapted to harsh environments at high altitudes more than 3,000 meters above sea level and 

are regularly exposed to water-scarce conditions (Schafleitner et al 2007). This genetic 

variability within potato and its relatives can be exploited by breeders to improve drought 

tolerance of the crop. However, selection for drought tolerance while maintaining maximum 

productivity under optimal conditions is difficult because several plant attributes are involved 

in drought tolerance mechanisms and because water stress itself varies in time and intensity 

and is therefore difficult to define.  Breeding for drought is further complicated by the fact 

that several types of abiotic stress such as high temperatures, high irradiance and water deficit 

can challenge crop plants simultaneously. In addition, successful breeding requires exact 

information on effective tolerance traits, their heritability and their genotype x environment 

interaction as well as suitable selection tools for the traits of interest. Selection of useful traits 

through visible phenotypic traits requires vast and time consuming efforts. Currently two 

basic genetic approaches utilized to improve stress tolerance are 1) exploitation of natural 

genetic variation, either through direct selection in stressful environments or through the 

mapping of quantitative trait loci (QTL) and subsequent marker assisted selection, and 2), 

generation of transgenic plants to introduce novel genes or alter expression levels of existing 

genes to affect the degree of drought tolerance.  

 

Molecular markers 

Genetic variation is the basis for biodiversity of life (Schlotterer 2004). Variations in the 

DNA sequence of genes and their regulatory regions underlie most of the phenotypic 

variation that has been exploited in modern crops (Bryan et al. 2000;  Masouleh et al. 2009). 

Breeding strategies aimed at improving crop agronomical properties have gained momentum 
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in the last few decades by the use of molecular marker technologies that visualize DNA 

polymorphisms (Collard et al, 2005). Starting with hybridization-based markers like RFLP, in 

the late nineteen eighties and early nineties PCR-based markers like AFLP have proven to be 

quite useful in marker-assisted breeding, for genome-wide screens for variation, genotype 

identification/fingerprinting, evolutionary and ecological studies. Simple sequence repeats 

(SSRs), also known as microsatellites and single nucleotide polymorphisms (SNPs) are the 

modern genetic markers currently being used in plant genetic analysis. With advances in 

genome sequencing technologies, SNPs that are suitable for high throughput genotyping 

methods turn out to be markers of choice to extensively map large sets of individuals. The 

generation of novel markers allows the production of high-density genetic maps and enables 

the genotype-phenotype link to be defined with greater precision.  

 

Plant breeders often select for and want to track more than one trait including quantitative 

traits and as the number of genes controlling a trait expands there is a need for rapid, simple, 

inexpensive, high-throughput genotyping techniques. A large number of individuals must be 

genotyped with a large number of markers. The ideal genotyping method must possess many 

attributes like: i) the assay must be easily and quickly developed from sequence; ii) the 

reaction must be robust, such that even suboptimal DNA samples should yield reliable results; 

iii) the assay must be easily automated and must require minimal hands-on operation; iv) the 

data analysis must be simple with automated, accurate genotyping calling; and v) the reaction 

format must be flexible, scalable and capable of performing a large number of samples per 

day. Currently several technologies exist which can be used to screen numerous numbers of 

markers with large number of individuals. Now that the high-throughput marker genotyping 

methods and the DNA sequences of whole genome for a number of organisms are available. 

In addition, with advancement in next generation sequencing platforms along with 

development of very efficient software tools to analyze high dimensional data made the ideal 

genotyping methods come true. 

 

Recent technological advancements in discovery and detection have made SNP markers 

attractive for high-throughput use not only in model species, but also in crop plants  (Rafalski 

2002). In species for which no genome sequence is available, large scale SNP discovery has 

generally relied on sequence variation found in libraries of expressed sequence tags (ESTs) 
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(Somers et al. 2003) or on re-sequencing (Choi et al. 2007). The new Next Generation 

Sequencing techniques (NGS) can produce nucleotide databases that can be mined for SNP 

with relatively little effort. Several software tools are available for SNP discovery from 

nucleotide databases, including Polybayes, AutoSNP, and QualitySNP  (Marth 1999; Barker 

et al. 2003; Tang et al. 2006). Along with the development of tools to mine a large number of 

SNPs from nucleotide databases, new SNP genotyping platforms were developed that could 

analyze a large number of SNPs in parallel in a large set of individuals (Syvanen 2005). An 

increasing number of reports indicate that the GoldenGate system of Illumina is a reliable and 

cost-effective SNP genotyping platform. It is capable of multiplexing from 96 to 1536 SNPs 

in a single reaction  (Fan JB 2003).  

 

The first potato genetic maps were constructed concurrently by following the segregation of 

RFLP markers in different genetic backgrounds (Bonierbale et al. 1988; Gebhardt et al. 

1989b). These maps were then compared and also aligned with the tomato RFLP map 

(Gebhardt et al. 1991; Tanksley et al. 1992). With the development of new molecular markers 

the potato map was enriched with more than 350 markers (Gebhardt et al. 2001). Currently, 

the ultra high density potato map (van Os et al., 2006) for the SHxRH cross is one of the most 

highly saturated maps with different molecular markers such as AFLP markers (over 10,000), 

RFLP, SCAR, CAPS recently SSRs and SNPs and is a valuable tool for localizing genes that 

control the expression of useful traits. The availability of molecular markers in the last 

decades has allowed potato breeding research to be greatly improved. The use of molecular 

markers in potato breeding is reported for many purposes, such as cultivar identification 

(Gebhardt et al. 1989a), analysis of recombination between genomes, identification of genes 

controlling traits (Gebhardt 1994, Chen et al 2001, Menendez et al 2002, Werij et al 2007,), 

marker-assisted selection (Hamalainen et al. 1997) and phylogenetic studies (Kardolus et al. 

1998; Jacobs et al 2008). In particular with complex traits involving many genes, like drought 

tolerance, the use of molecular markers to identify and locate different genes and genomic 

regions which influence drought tolerance may help to gain insight in the factors contributing 

to this trait. These properties and prospects have initiated an increased interest in the 

application of marker assisted selection (MAS) for improving drought tolerance in many 

crops. Molecular marker tools can likewise be used for better understanding of different 

biochemical, molecular and physiological pathways involved in drought tolerance of potato. 
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QTL studies 

Understanding the genetic networks underlying agronomic trait variation will provide new 

targets for plant breeders. However as they are generally under the control of many genes, 

those characters are quantitatively variable and their study requires specific strategies and 

techniques. Moreover, the large variability in the timing and severity of drought stress and the 

inadequate understanding of its complexity have made it difficult to characterize the 

physiological and/or phenotypic traits required for screening and selection in order to improve 

crop performance under drought stress. Quantitative trait locus (QTL) mapping provides a 

means to dissect complex phenotypic characters such as drought tolerance into their 

component traits (QTLs), and allows the identification of molecular markers linked to 

desirable QTL alleles, so that they can be directly used in marker assisted selection (MAS) 

(Tanksley 1993, Prioul et al 1997).  

 

Most of the QTL mapping studies in potato have been performed on diploid potato 

populations for a wide range of traits including late blight resistance, insect, pest resistance 

and agronomic and quality traits such as leaf senescence (Malosetti et al 1994), dormancy 

(Freyre et al 1994), tuberization (Fernandez-Del-Carmel et al 2007), yield and starch content 

(Schafer-Pregl et al 1998), tuber shape, eye depth and flesh color (Sliwka et al 2008; van Eck 

et al 1994 a,b), cold sweetening (Menendez et al 2002) and enzymatic discoloration (Werij et 

al 2007). Recently QTLs have been identified in tetraploid populations for traits such as plant 

height, maturity, crop emergence, tuber size, and for quality traits such as after-cooking 

darkening, regularity of tuber shape, fry color and yield components (Bradshaw et al 2008; 

D’Hoop et al 2010). However, knowledge about genetics of drought tolerance in potato is still 

limited, and hardly any QTLs have been identified for potato drought tolerance traits. The 

genetic dissection of the quantitative traits controlling the adaptive response of potato to 

drought stress is a prerequisite to allow cost-effective applications of genomics-based 

approaches to breeding programs aimed at improving the sustainability and stability of yield 

under adverse conditions.  
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Genes for drought tolerance in potato 

Genetic modification of successful potato cultivars offers the possibility of targeted 

improvements which can be achieved using two types of genetic resources: the allelic and 

genic diversity already present in cultivated potatoes and wild relatives, or genes from any 

other living organism. A large number of genes are known or thought to be involved in plant 

responses to drought. These include genes involved in signal transduction and transcriptional 

regulation, biosynthesis of osmolytes and other protectors, and oxidative stress-related genes. 

Through genetic engineering several of these genes have been well characterized in potato. 

Potato transgenic plants over-expressing Arabidopsis CBF3 under a stress-inducible rd29A 

promoter and the DREB transcription factors and associated genetic components exhibited 

tolerance to drought and other abiotic stresses (Celebi-Toprak et al 2005; Kasuga et al 1999). 

Compatible osmolytes such as proline and trehalose, accumulate under water stress and their 

biosynthetic genes have been introduced into potato plants (Yeo et al 2000; Hmida-Sayari et 

al 2005). In addition transgenic potato plants that generated a high level of the soluble 

carbohydrate fructan were developed to investigate whether or not water stress could induce 

proline synthesis in transgenic potato plants. However, these transgenic potato plants did not 

accumulate proline under water stress (Knipp and Honermeier 2006), suggesting that 

modification of carbohydrate metabolism might affect water stress-induced proline 

accumulation.  Gene encoding regulatory proteins like StRD22 are also well characterized in 

potato (Byun et al 2007). 

Though many stress responsive genes are characterized in potato, commercial transgenic 

potato plants that are tolerant to drought have not yet been successful. This may be due to the 

quantitative nature and multiple loci of genes involved in plant stress tolerance, it is possible 

that crop growth and yield may not simply be improved through over expression of a single 

gene.  

 

Genomics approaches  

The limited success of the physiological and molecular breeding approaches until now 

suggests that a careful rethink is needed of the strategies for better understanding and 

breeding for drought tolerance. Some of the new plant genomic techniques and platforms may 

allow us to overcome the previous limitations. The tools of genomics offer the means to 

produce comprehensive datasets on changes in gene expression, protein profiles and 
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metabolites that result from exposure to drought.  The most commonly used approach is 

transcriptome profiling using microarrays. Recently a high quality expression profiling 

platform has been established for potato (Kloosterman et al. 2008) and this platform has been 

successfully employed to capture drought response in Andean potato genotypes (Vasquez-

Robinet et al 2008). Three native Andean potato genotypes (SA2563, Sullu and Negra Ojosa) 

along with two varieties (Cosanera and Atlantic) were well studied for their response to water 

stress using transcriptome and metabolite analyses. These studies showed that the S. andigena 

genotypes were more resistant to drought than the S. tuberosum genotypes and they reported 

several candidate genes, such as genes involved in osmotic adjustment, in changes in 

carbohydrate metabolism, membrane modifications and strengthening of cuticle and in cell 

rescue mechanisms (Schafleitner et al 2007; Vasquez-Robinet et al 2008). These studies 

provide insights into potato response to water stress at the transcriptional level, yet the genetic 

regulation of these transcriptional responses is largely unknown.  

 

The availability of the complete Arabidopsis and rice genome sequences together with several 

plant ESTs has greatly shifted the focus from determining the sequences to understanding 

their function. Recent work in functional genomics employing genome-wide strategies, such 

as expression genomics, proteomics and metabolomics has been widely used in model plants 

to unravel genetic architecture, complex inheritance, and possible interactions with in and 

with environmental variables. Extension and refinement of these functional genomics will 

become possible in crop plants such as rice and others (tomato, potato) which are heading 

towards completion of genome sequences. In addition, small non-coding RNAs have recently 

been brought into focus as regulators of transcription and post-translational gene silencing. A 

few reports are available in which their function has been studied in abiotic stress such as 

mechanical stress responsive miRNAs in Populus, phosphate starvation-responsive miRNAs 

in Arabidopsis, and dehydration, cold, salt and ABA responsive miRNAs in Arabidopsis 

(Sunkar and Zhu 2004; Fujii et al 2005; Lu et al 2005). In the future more detailed 

information will become available using the ~omics techniques together with an integrated 

bioinformatics system. Genome-wide strategies have accelerated the deciphering of complex 

stress responsive networks, and will help in the identification of key networks and their 

associated genes, which can be exploited through breeding strategies and genetic engineering.   
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Objectives and scope of the thesis 

In this thesis we made a first step towards identifying the genetic basis for drought tolerance 

in potato. For this, we use diploid potato populations that have been genetically well 

characterized (CxE, SHxRH). The main objectives were i) establishing an advanced genetic 

map and populate the map of CxE with functional molecular markers like SNPs, ii) screening 

and understanding of physiological responses of CxE potato population for drought tolerance, 

iii) identification of QTLs for physiological and growth parameters that are affected by 

drought and/or may contribute to drought tolerance, and iv) to understand the transcriptome 

response to drought and to identify candidate genes underlying QTLs by genome-wide 

transcriptome profiling.    

 

In Chapter 2, we develop a pipeline for effective mining of SNPs from public EST databases 

using QualitySNP software, selection of reliable SNPs and preparation of the loci for analysis 

on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was 

demonstrated using publicly available potato EST data, mine the SNPs, genotype individuals 

from two diploid mapping populations with a 384 SNP array and subsequently map the SNP 

markers (putative genes) on the respective genetic maps. Using the same approach a 768 SNP 

array was composed and successfully applied for genotyping the populations. This array was 

enriched for markers in genes putatively involved in abiotic stress response.  

 

Chapter 3 investigated the possibility of screening a mapping population (CxE) in vitro for 

PEG-induced water deficit stress and recovery potential. Significant variation was observed 

for genotype response to drought and recovery potential. Several shoot and root growth 

parameters or traits were measured. The study showed genetic variation and heritability 

estimates were high to very high for the measured traits depending on growth condition. In 

order to identify potato QTLs/genes that contribute to drought tolerance and recovery 

potential, an SNP marker rich integrated linkage map was used. In total 23 QTLs were 

detected under control, stress and recovery treatments. Interesting putative candidate genes 

underlying stress response QTLs were identified. The pros and cons of using in vitro plants 

are discussed as well. 

 

Chapter 4 further explores the genetic basis of drought tolerance and presents a 
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comprehensive QTL analysis for drought tolerance traits in the CxE potato population. The 

CxE population was extensively evaluated for drought tolerance in two successive years 

(2008, 2009) under greenhouse conditions by measuring a number of physiological, growth 

and yield traits. In this study, physiological parameters like Relative Water Content, 

chlorophyll content, δ13C, and chlorophyll florescence provide rapid indicators and selectable 

traits for the study of potato in response to water stress. Multi year, multi treatment QTLs 

were identified for several traits. QTL x Environment interaction was found for traits like leaf 

δ13C under drought conditions. The response of potato to drought and recovery, important 

physiological traits to evaluate drought, QTL analysis and their implications for research and 

breeding are discussed. 

  

In Chapter 5, genome wide eQTL analysis was performed for the drought of potato using 

whole genome microarray (POCI array) which contains 42,034 features. The genetic 

architecture of transcript-level variation for drought response was captured in the diploid 

potato population CxE and mapped as expression QTLs (eQTLs).  Genome wide distributions 

of eQTLs allowed the identification of regulatory hot spots for drought response. To compare 

the position of genes and their eQTLs and see whether the genetic variation responsible for 

eQTLs is cis- or trans-regulated, we anchored the genes to the physical map and genome 

sequence of potato. Distribution of important genes known to be involved in drought signal 

transduction, drought-induced transcriptional regulation, and the cellular response to drought 

are discussed. Interesting results were obtained by combining QTL analysis of phenotypic 

traits and gene expression traits and examining co-localization of eQTLs and phenotypic 

QTLs. The advantages of genome wide expression analysis, the complexity and exciting 

prospects and possibilities by unlocking the information contained in the genome-wide 

transcriptome dataset are discussed in this chapter.  

 

In Chapter 6, the results from Chapters 2 to 5 are integrated and the implications further 

explored. The overall retrospect and prospects of breeding for drought tolerance in potato in 

relation to our findings are discussed.   
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Abstract 
 
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic 

variation that can be used as molecular markers. The SNPs that are hidden in sequence 

databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, 

the sequence set should be error-free as much as possible, targeting single loci and suitable for 

the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs 

from public EST databases with or without quality information using QualitySNP software, 

select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping 

platform. The applicability of the pipeline was demonstrated using publicly available potato 

EST data, genotyping individuals from two diploid mapping populations and subsequently 

mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs 

were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 

SNPs on the SNP array, 88% of SNPs gave detectable signal. For the two potato mapping 

populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective 

genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation.  

 
Key words: EST database, Illumina GoldenGate assay, QualitySNP, Potato 
 

Introduction 

Genetic variation is the basis for the biodiversity of life  (Schlotterer 2004). Variations in the 

DNA sequence of genes and their regulatory regions underlie most of the phenotypic 

variation that has been exploited in modern crops  (Bryan et al. 2000;  Masouleh et al. 2009). 

Breeding strategies aiming to improve crop agronomical performance have gained momentum 

in the last few decades by the use of molecular marker technologies that visualize DNA 

polymorphisms (Collard et al. 2005). Molecular markers have proven to be extremely useful 

in breeding, for genome-wide screens for variation, genotype identification and/or 

fingerprinting, evolutionary and ecological studies.  

In breeding programs that are aimed at transferring genes or alleles within or between 

different species with the aid of molecular markers several steps can be discerned. The first 

step in this process is the identification of one or more markers closely linked to or within the 

traits to be introgressed. For this, a high density map of markers on the genome and/or 

markers in genes that are likely to be involved in the trait of interest can be an invaluable tool. 

SNPs are very well suited for this purpose. Their astonishing abundance has been reported in 
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several discovery projects in many species including humans  (Sachidanandam R et al.The 

International SNP Map Working Group 2001), model species such as Arabidopsis thaliana  

(Jander et al. 2002) and Drosophila melanogaster  (Hoskins et al. 2001) and in crop plants 

such as barley (Rostoks et al. 2005), maize (Ching et al. 2002), rice (Shen et al. 2004; 

McNally et al. 2006), soybean (Zhu et al. 2003) and wheat  (Ablett et al. 2006). Recent 

technological advancements in discovery and detection platforms have made SNP markers 

attractive for high-throughput use not only in model species, but also in crop plants  (Rafalski 

2002). In species for which no genome sequence is available, large scale SNP discovery has 

generally relied on sequence variation found in libraries of expressed sequence tags (ESTs) 

(Somers et al. 2003) or on re-sequencing  (Choi et al. 2007). 

 

Several software tools are available for SNP discovery from nucleotide databases, including 

PolyBayes, AutoSNP, and QualitySNP  (Marth 1999; Barker et al. 2003; Tang et al. 2006). 

QualitySNP is especially useful in extracting reliable SNPs from EST sequence databases that 

lack quality information, and is in many cases capable of distinguishing paralogs from allelic 

sequences effectively (Tang et al. 2006). Along with the development of tools to mine a large 

number of SNPs from nucleotide databases, new SNP genotyping platforms were developed 

that can analyze a large number of SNPs in parallel in a large set of individuals (Syvanen 

2005). An increasing number of reports indicate that the GoldenGate system of Illumina is a 

reliable and cost-effective SNP genotyping platform. It is capable of multiplexing from 96 to 

1536 SNPs in a single reaction  (Fan 2003).  

 

In this paper we describe a bioinformatics pipeline starting from SNP discovery in ESTs to 

genotyping using the Illumina GoldenGate assay. Following SNP discovery, the SNP loci are 

further screened for suitability to be analyzed with the Illumina GoldenGate Genotyping 

platform. We demonstrate the applicability of this pipeline for potato, which is the third most 

important food crop in the world. Potato is a heterozygous crop, and commercial varieties are 

generally tetraploid. For potato, approximately 200,000 ESTs mainly from three cultivars are 

publicly available. We show here that SNPs identified by QualitySNP from this collection of 

SNPs can effectively be turned into markers that can be mapped in different diploid potato 

mapping populations, showing the versatility of the pipeline and the produced SNP markers. 

Our results indicate that the pipeline produces a large number of SNP markers, and that the 
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selection of SNPs for genotyping on the Illumina GoldenGate genotyping platform yields a 

high number of reliable functional co-dominant markers that can be easily placed on a genetic 

map. 

 

Materials and methods 

Mapping populations 

a) SH×RH: A cross between two diploid heterozygous potato clones SH83-92-488 and RH89-

039-16 (SH×RH) resulted in an F1 mapping population of 135 individuals (van Os et al. 

2006). Using a Selective Mapping strategy (Vision et al. 2000) 57 individuals were selected 

which captured the highest number of recombination events.   

b) C×E: This diploid backcross population consisting of 250 genotypes was obtained from the 

cross between clones C [USW5337.3; (Hanneman RE 1967)] and E [originally named 

77.2102.37;  (Jacobsen 1980)]. Clone C is a hybrid between S. phureja PI225696.1 and S. 

tuberosum dihaploid USW42. Clone E is the result of a cross between clone C and the S. 

vernei-S. tuberosum backcross clone VH3 -4211 (Jacobsen 1978). A set of 94 randomly 

selected individuals was used for this study, along with the parents of the cross.  

 

DNA extraction 

Genomic DNA was isolated from 50-100 mg of young leaves. After freeze-drying, the leaf 

material was ground using the MM300 Mixer mill (Retsch Inc., Haan Germany)  and DNA 

extraction was performed using the DNeasy 96 Plant Mini kit (Qiagen, Valencia, California, 

USA) according to the manufacturer’s protocol. 

 

SNP identification pipeline designed for the GoldenGate genotyping platform 

For SNP discovery, 219,765 EST reads were downloaded from the EMBL database 

[(http://www.ebi.ac.uk/embl] (version 88). Functional annotation of the ESTs was obtained 

from the TIGR gene index (http://compbio.dfci.harvard.edu/cgi-

bin/tgi/gimain.pl?gudb=potato or  UniGene  (Wheeler et al. 2003)  and additional BLASTN 

and BLASTX analyses (Altschul et al. 1990). The ESTs were aligned into contigs and 

analyzed for true SNPs using the QualitySNP software 

(http://www.bioinformatics.nl/tools/snpweb), with D-value set at 0.6 and default values for 

quality regions and other filters as described by Tang et al. (2006). The resulting data are 
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stored in a ‘contig database’. In an additional routine/programme the QualitySNP output was 

analyzed for SNP loci flanked by 30-50nt reliable sequences on each side to allow for assay 

development using the Illumina GoldenGate design tool. The output was formatted to fit the 

requirements for the assay design tool 

(http://www.illumina.com/downloads/GoldenGateDesign_TechNote.pdf) and stored in the 

‘100 bp fragment’ database.  As for potato no reference genome sequence is available we 

performed an additional BLAST analysis to eliminate fragments that have more than 90% 

homology with each other to maximize the chances of single locus amplification.  Only 

fragments occurring once in the contig database and with less than 90% similarity to all other 

contigs in the database were maintained and considered for the GoldenGate assay 

development.  

 

Selection of SNPs for the Illumina GoldenGate Assay 

A selection of the SNP loci was made based on putative gene functions in abiotic, biotic stress 

responses, metabolic and biosynthesis pathways. Functional annotations were taken from the 

EST annotations in the DFCI potato gene index (hosted at http://compbio.dfci.harvard.edu/tgi/ 

as part of The Gene Index Project). For some genes several SNPs within the same gene were 

selected. GoldenGate primers were designed using Illumina’s design tool and SNP scoring 

was performed by Service XS (Leiden, The Netherlands), using Illumina’s high-density array 

technology for standard or custom SNP genotyping of 96 samples. For each sample 250 ng of 

DNA was used for genotyping with the Illumina standard GoldenGate protocol  (Shen et al. 

2005). Our experimental setup included two separate genotyping runs; one for the SH×RH 

population, including the parents C and E, and one for the C×E population, again including 

the C and E parents.. The data was analyzed using Gencall software (Illumina, San Diego, 

CA) which is integrated in the Illumina bead station package 

(http://www.illumina.com/Documents/products/technotes/technote_gencall_data_analysis_sof

tware.pdf) (Shen et al. 2005).  

 

Additional molecular marker development 

AFLP markers were generated according to standard protocols with radioactive labels, using 

4 Eco-Mse primer combinations (Vos et al. 1995). Bands were scored as present or absent. 

AFLP markers were encoded by standard AFLP marker coding, with an ID and a 
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chromosomal location; for example E39M60-40c10 is a marker from the Eco39 primer and a 

Mse60 primer, ID number 40 and mapped on Chromosome 10. The SSR markers used in this 

study were obtained from different sources  (Milbourne et al. 1998;  Feingold et al. 2005). 

The CAPS markers were developed for interesting candidate genes with (putative) functions 

in amongst others quality traits in the CxE population (manuscript in preparation by Werij et 

al.).  

 

Genetic mapping 

The potato SNP markers were first mapped in the two mapping populations using JoinMap 

4.0 (Van Ooijen 2006) together with AFLP (only 1:1 segregating markers), SSRs and CAPS 

as backbone markers. SNP markers were also mapped on the existing SH×RH genetic map 

using a bin mapping approach  (van Os et al. 2006). 

 

Results  

Potato SNP array construction 

In the 219,765 EST sequences 12,184 reliable SNPs were discovered. A set of 7592 SNPs 

remained after extra filters were set to select for SNP loci with flanking regions suitable for 

primer design in Illumina’s Goldengate assay (at least 30-50nt flanking sequence on each 

side, no SNPs detected in the flanking regions and no other sequences that are more than 90% 

similar present in other contigs/clusters).  

The last selection of 384 SNPs for the Illumina array was based on putative functions of the 

genes containing the SNP loci as deduced from annotations at the DFCI potato gene index 

website (hosted at http://compbio.dfci.harvard.edu/tgi/). The final selection (hereafter called 

384PotSNP array) of SNP markers with their putative functions, locations along with their 

database ID’s (TC numbers) is provided in Supplementary Table. 

 

Evaluation of the 384PotSNP array 

The 384PotSNP array was evaluated by genotyping two diploid potato populations and 

mapping the SNP markers. The quality of each SNP is reflected in the Gencall (GC) score, a 

value between 0 and 1  (Shen et al. 2005). The Gencall score is a representation of the 

separation between the heterozygote and homozygote clusters for a particular SNP, and how a 

SNP score is placed in these clusters. R values below 0.2 generally indicate failed SNP 
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detection, while scores above 0.5 are considered as highly reliable SNP scores. For C×E, 45 

SNPs (12%) did not produce a detectable signal or the signal was too low to use it as a 

reliable marker. Forty-two of these (11%) were also not successful in SH×RH, indicating that 

these were SNPs for which the assay was not working. Another 7 SNPs did not produce a 

good result in SH×RH. Of the remaining 339 SNPs in C×E, 173 were not polymorphic 

between both parents and did not show a segregating polymorphism. For SH×RH, 149 

markers were not polymorphic between both parents. Ninety markers were not polymorphic 

in both the populations.  

Six markers in C×E were homozygous in both parents and polymorphic between the parents 

with a uniform heterozygous offspring (AA×BB→AB). Another set of 6 markers that were 

homozygous in both parents C and E, polymorphic between parents and segregated according 

to a 1:2:1 Mendelian ratio (AB×AB→AA, AB and BB). Table 1 summarizes the results of the 

384PotSNP array for both populations. 

 

Table 1: Results of 384 PotSNP array performed in two (C×E and SH×RH) independent 
assays 
384 PotSNP array  Mapping 
309 out of the 384 are useful markers (80%) 165 markers could be mapped in C×E 
42 dropped out in any sample (11%) 186 markers could be mapped in SH×RH 
33 were monomorphic in all material 1(9%) 99 markers could be mapped in both 

populations 
1 Including a set of 220 tetraploid varieties 
 

Genetic mapping of SNP loci 

CxE: 

Out of 165 polymorphic SNP markers, fifty were heterozygous only in parent C; 59 were 

heterozygous only in parent E and 56 segregating markers were heterozygous in both the 

parents (AB×AB→AA, AB, BB).  These 165 SNP markers were placed on parental genetic 

linkage maps using Joinmap 4.0 (van Ooijen 2006) together with 93 AFLPs, 45 SSRs, and 24 

CAPS markers. Only markers with LOD scores of 3.0 and above were considered. Thirteen 

and 12 linkage groups were obtained in C and E parental maps, respectively (Fig 1). Linkage 

group 6 was divided into two subgroups in the maternal (C parent) map. Nineteen of the 165 

SNP markers could not be assigned to a parental linkage group. The C and E genetic parental 

map span 1012.4cM and 774.6cM respectively with average distance between adjacent loci 

7.2 and 4.5cM.  
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Fig. 1 Location of the SNP markers on parental maps C and E. The number on the left side is the 
genetic distance in centiMorgans (cM) right side is marker designations. The parental maps were 
drawn by the MapChart 2.2 program (Voorrips 2002) 
 

SHxRH: 

A set of 151 AFLP markers from the same four AFLP primer enzyme combinations used in 

the C×E population were selected from the ~10,000 available AFLP markers in SH×RH. 

Parental maps of SH and RH were constructed with 15 SSR and 24 CAPS, 151 AFLP and 186 

SNP markers using Joinmap 4.0 (van Ooijen 2006). Out of 186 polymorphic SNP markers, 71 

were heterozygous in parent SH; 69 were heterozygous in parent RH and 46 segregating 

markers were heterozygous in both parents (AB×AB→AA, AB, BB). Table 2 lists the 

markers used for mapping in both populations. 

Twelve parent specific linkage groups were obtained for both SH and RH (Fig. 2) The 

Linkage group RH01 was divided into two subgroups. In SH the length of the linkage groups 

ranged from 52.6 cM to 115.9 with the average distance between the loci of 4.05 cM. The RH 

parental map spans 686.7cM and the average distance between loci is 3.8 cM.  

To confirm the SH×RH SNP markers with their bin signatures to calculate error frequency of 

our mapping results, we compared the marker segregation pattern with the map segregation 

patterns (bin signatures) and placed these 186 SNP markers in the ultra dense potato map 

(Van Os et al. 2006). All of the markers were anchored to the bins of the highly saturated 

parental reference maps and distributed over all linkage groups. Marker order was identical to  
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Table 2: Number of markers used for construction of C and E parental maps according to 
marker type. 
 

Total markers used in 
construction of parental maps 

Markers on the map Marker type 

C and E SH and RH C and E SH and RH 
SNP markers 165 186 146 168 
AFLP markers 93 151 82 131 
SSR markers 45 16 33 16 
CAPS markers 24 21 22 21 

 
the map positions in the parental maps constructed in this study. Bin mapping procedure not 

only gives the bin position but also the goodness of fit to that position. Distance to the bin is a 

measure for the number of singletons or error in the data. Out of 186 markers, 183 showed 

error scores below 0.1%, the remaining 3 markers had error scores more than 0.1 and showed 

LOD scores less than 3. 

There were 99 markers segregating in both the potato populations. These markers were used 

to align the C×E with SH×RH maps (Fig. 3), linking the genetic loci of the C×E population 

are aligned to the ultra dense map and the increasing amount of genomic sequence 

information of clone RH generated by the Potato Genome Sequencing Consortium (PGSC, 

http://www.potatogenome.net/). 

 

Discussion 

This paper describes the successful development and implementation of a bioinformatics 

pipeline for the identification of putative SNPs in public EST databases, to convert these 

SNPs in assays compatible to the Illumina GoldenGate SNP platform, and to map the SNP 

markers using this genotyping platform. The identification and selection of potato SNPs for 

the GoldenGate assay results in a score of 89% of working GoldenGate assays, and at least 

77% of the full electronic SNP dataset are true SNPs amenable to the GoldenGate genotyping 

platform. 

The first step of this pipeline is the identification of putative SNPs, for which we used 

QualitySNP. For many SNP assays, including Illumina’s GoldenGate assays, the SNP locus 

needs to be amplified with locus-specific primers that do not amplify any other locus. The 

paralogous sequences that are placed in separate clusters by QualitySNP may be putative 

binding targets of the SNP amplification primers designed for a SNP detected in the allelic 

clusters. The Illumina design tool can eliminate paralogous sequences only when a fully  
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Fig. 2 Location of the SNP markers on parental maps SH and RH. The number on the left side is the 
genetic distance in centiMorgans (cM) right side is marker designations. The parental maps were 
drawn by the MapChart 2.2 program  (Voorrips 2002) 
 
sequenced reference genome is available. However, this is currently not the case with many 

crop species like potato. To circumvent this problem of paralogous sequences, our pipeline 

includes a similarity search using the flanking sequences of the SNP to identify clusters with 

high similarity to the SNP locus. In this study we eliminate SNPs for which the similarity 

search found other clusters with more than 90% similarity. This implies that SNPs are 

eliminated that might be suitable for a SNP assay if the primer binding sites are carefully 

chosen. If a SNP in a specific gene is required, or only a limited number of SNPs have been 

identified, it may be worthwhile to look into the SNP loci for which a similarity conflict has 

been identified, and design primers for these SNPs. However, we intend this pipeline to be 

used for high through-put analysis of SNPs from databases to produce a genome-wide SNP 

array. For efficiency purposes, the SNP loci that might be problematic for GoldenGate assays 

are therefore eliminated from the list that is used for SNP selection for the SNP array rather 

than evaluated manually. 

 

Performance of the 384PotSNP array 

Of the 384 SNPs that we assembled on a GoldenGate SNP genotyping array and used for 

genotyping two diploid potato mapping populations only 42 SNPs (11%) failed to produce an 

interpretable output in two separately performed assays. There are several possible 

explanations for these SNPs to fail. Firstly, failure may be due to incorrect primer synthesis. 

In other studies it was observed that 10% of validated SNP loci do not give a result in 

standard GoldenGate assays, pointing to failure as a result from the assay design (Rostoks et 
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al. 2006, Hyten et al. 2008). Secondly, the SNP frequency in potato is exceptionally high, and 

therefore SNPs in the primer target sequences could be common. This will likely affect 

primer annealing as well as signal interpretation. Thirdly, this might have been caused by 

large introns within the amplicon or introns at the primer sites; the amplification primers were 

designed on EST sequence information, whereas the SNP assays were performed on genomic 

DNA. Presence of introns in the SNP amplified region can be detected if genomic sequence 

information of the SNP locus is available from potato or related species. This was the case for 

only four of the SNPs with failing assays. Nevertheless, for two out of those four indeed an 

intron was present within the SNP amplified locus, indicating that in approximately 50% of 

the failing SNP assays intron presence may be the cause of failure.  With the advent of an 

available genome sequence for potato, the detection of intron-exon boundaries in the vicinity 

of a SNP will be possible for most if not all SNP loci selected for the array. This information 

can then be used for primer design, either by filtering out the SNP loci with introns near the 

SNP site, or by designing primers based on genomic sequence. However, assays with primers 

based on intron sequences may be more prone to failure than assays with primers in exon 

sequences, as intron sequences are more variable than exon sequences.  

 Fig. 3 Alignment of C8 linkage group with the SH8, and E2, E10 with the RH2, RH10 linkage 
groups respectively using markers common to both populations. Left side number indicates genetic 
distances in centiMorgan (cM), right side marker designations 
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We have shown that the SNP GoldenGate assay linked to the pipeline is a proficient strategy 

for SNP genotyping in potato, with SNP markers successfully mapped in two potato 

populations. In total, 342 out of 384 SNP account for the 89% success rate of the combination 

of QualitySNP with the GoldenGate assay which is comparable to the 90% success rate 

previously reported in barley (Rostoks et al. 2006) and 89% in soybean  (Hyten et al. 2008). 

However, the barley SNP array from Rostoks et al. (2006) is based on resequencing of 

selected genes with the parents of a mapping population included, whereas the 384PotSNP 

array contains SNPs from whatever information available in the EST databases, 

demonstrating the effectiveness of our pipeline in selecting SNPs that are likely to produce 

reliable data on the GoldenGate genotyping platform. 

 

Level of polymorphism 

The PotSNP array permits the rapid generation of a high number of polymorphic markers. 

Out of 339 SNPs in CxE (342 in SH×RH), 164 could be mapped (186 in SH×RH). In CxE 

161 SNP (155 SH×RH) were monomorphic. The high number of monomorphic SNPs is not 

surprising; the SNPs were discovered in ESTs from only three varieties namely Shepody, 

Kennebec and Bintje and the parents in the mapping population are not directly related to any 

of these varieties. Preliminary data obtained using the potato genotyping array with potato 

cultivars indicated that 60% of these non-segregating SNP loci were in fact polymorphic in a 

large cultivar set (data not shown) indicating that these are true SNPs. Six markers in C×E 

were homozygous in both parents and polymorphic between the parents, with heterozygous 

offspring. For the population C×E this is a highly unexpected result, as C×E is a backcross 

population (C is a parent of E). At least one allele of parent E should have been inherited from 

C, so an AA×BB→AB genetic model for these six loci should not be possible. Neither could 

this be caused by primer annealing polymorphisms creating a null allele (A0×B0) as this 

would result in a segregating rather than a uniform offspring. Similarly, for nine SSRs four 

alleles were detected in the C×E population. These markers could be mapped consistent with 

an AB×CD→AC, AD, BC, BD genetic model for these 9 loci so this is not an artifact. We 

currently do not have a satisfying explanation for these observations.  

Another set of 6-8 markers that were homozygous in both parents and polymorphic between 

parents segregated in the population consistent with e.g. an A0×B0→A0, AB, B0 genetic 

model. These were found in both populations, and may represent markers with null alleles in 
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one or both parents. These null alleles may be caused for instance by SNPs or other 

polymorphisms in one of the alleles that interfere with primer binding and/or subsequent 

amplification. The results from both runs with the 384PotSNP array were highly comparable, 

indicating that the reproducibility of the GoldenGate assay is high. 

 

Mapping 

The SNP markers in both the potato populations are well distributed over the chromosomes, 

with minimal clustering. In the parental map of RH linkage group RH01 was divided into two 

subgroups most likely because the number of markers was not high enough. For some genes 

more than one SNP within the same open reading frame was selected, for instance SNP38, 

SNP39 (from ESTs identical to S. tuberosum clone transcription factor APFI-like mRNA, 

TC1649610) and SNP143, 144, 145 (from ESTs identical to S. tuberosum StPDC mRNA for 

pyruvate decarboxylase, TC167230). The SNP markers originating from a single gene all 

mapped at the same positions. PotSNP156 is located in the coding region of the POT32 gene, 

and maps at the same position as the CAPS marker POT32A developed for the same gene on 

chromosome 8 by  Werij et al. (2007). For some of the SNP marker loci (genes), the 

chromosomal location was already known either in potato or in the related species tomato. 

For each of those markers, the mapping positions agreed with the published mapping 

positions of the genes. For example PotSNP002 mapped on chromosome 8 in our two 

populations, and is nearly identical to tomato clone 132639F which also maps on 

chromosome 8 of tomato. PotSNP009 on chromosome 8 showed a high homology with 

tomato BiP/grp78 gene, also located on tomato chromosome 8. 

In the SH×RH population the positions of 186 markers were confirmed by placing them on 

the ultra dense bin map (Van Os et al, 2006). Most (98.4%) of the polymorphic markers 

showed error scores below 0.1%. Hence, the Illumina GoldenGate assay is capable of 

producing high number of error free markers. These SNP markers can be used not only to 

align CxE map with SH×RH but also as anchors in the potato physical map (Van Os et al, 

2006).  

 

Perspectives 

Our bioinformatics pipeline produced over 7500 SNPs using the EST dataset that are 

amenable to be assayed on the GoldenGate genotyping platform. Therefore, it is reasonable to 
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expect that more than 7000 remaining SNPs will produce a similar percentage of true and 

technically scorable SNPs as obtained from the current pilot of 384 SNPs, and are a valuable 

source for SNP markers in potato populations and cultivars. The EST dataset that was used to 

mine the SNPs contains sequences from four cultivars: Bintje, Kennebec, Shepody and Kuras. 

Bintje is an ancient cultivar; Kennebec is a variety from the USA with a pedigree that differs 

significantly from Bintje. Shepody and Kennebec have a pedigree that is partly overlapping. 

Especially the parents of the C×E population are only distantly related to these cultivars, but 

still half of the SNP markers generated by the pipeline are polymorphic in the population. 

This illustrates the wide usability for mapping, association, marker assisted breeding and 

biodiversity studies of SNP marker assays such as offered by the GoldenGate platform. 

 

Conclusion 

The combined use of Quality SNP and Illumina GoldenGate assay in a pipeline has proven to 

be an efficient tool for the construction of a genetic linkage map.  The pipeline produces a 

large number of co-dominant, polymorphic loci rapidly with a good distribution of markers 

over the chromosomes. The SNP markers have been selected from EST sequences which 

were annotated based on sequence similarity to genes with a known function, or in an isolated 

case based on gene function in potato. The SNP based genetic map therefore allows a 

candidate gene-based QTL mapping approach. This SNP array offers markers in genes with a 

variety of putative functions, including biotic and abiotic stress tolerance. Marker assisted 

breeding with such SNP markers can accelerate the improvement of potato for important 

traits. 
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Abstract 

Drought stress is a major abiotic constraint limiting crop production worldwide. Screening for 

drought tolerance and the traits that enhance drought tolerance is not straightforward in large 

mapping populations. In this study, we investigated the possibility of screening a mapping 

population in vitro for PEG-induced water deficit stress and recovery potential. We have 

measured several shoot and root growth parameters or traits in the CxE diploid potato 

mapping population. Significant variation was observed for genotype-specific responses to 

water deficit and recovery potential. Genetic variation and heritability estimates were high to 

very high for the measured traits depending on growth conditions. In order to identify potato 

QTLs for drought tolerance and recovery potential an SNP marker-rich integrated linkage 

map was used. A total of 23 QTLs were detected under control, stress and recovery treatments 

explaining 10.3 to 22.4% of the variance for each phenotypic trait. Among these, 10 QTLs 

were located on chromosome 2. Three QTLs involved in the important trait root to shoot ratio 

were identified on linkage groups 2, 3 and 8. These loci explained together 41.1% of the 

variance for this trait, and may be breeding targets for stress tolerance and yield in the field as 

well. The SNP markers derived from EST sequences underlying these QTLs led to the 

identification of putative candidate genes for further study in potato. This study constitutes the 

first knowledge of in vitro screening of a mapping population for drought tolerance in potato.  

 

Key words: Drought, In vitro, PEG, Potato, QTL, Recovery 

 

Introduction 

Drought is one of the most common environmental stresses affecting plant growth and 

productivity (Boyer, 1982). The consequences of water deficit include adverse effects on 

plant phenology, phasic development, growth, carbon assimilation, assimilate partioning and 

plant reproduction. Climate models have indicated that drought episodes will become more 

frequent because of long-term effects of global warming (Salinger et al 2005; Cook et al 

2007) emphasizing the urgent need to develop adaptive agricultural strategies for a changing 

environment. These strategies range from changes in traditional management and agronomic 

practices to the use of marker assisted selection for the improvement of drought-related traits 

and the development of transgenic crops with enhanced tolerance to drought and improved 

water use efficiency that might minimize drought-related yield losses and ensure food 
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production for a growing population of humans.   

 

Plants utilize various resistance mechanisms in response to drought stress. These mechanisms 

range from adapting whole plant characteristics such as life cycle timing (maturity), deep 

rooting, to cellular-level functions (osmoregulation) (Mohamed et al 2000). A single trait 

alone may not ensure successful survival; however, it may enhance water stress resistance. 

Plant cell and tissue culture has been a useful tool to study stress tolerance mechanisms under 

in vitro conditions. In vitro techniques can make it possible to screen a large number of 

genotypes rapidly for stress tolerance since in vitro plant cultures even at different stages of 

development may exhibit their capacity to withstand stress (Gosal and Bajaj 1984; Tewary et 

2000). Polyethylene Glycol (PEG) of high molecular weights has been widely used to 

simulate drought stress in plants as a non-penetrating osmotic agent, lowering the water 

potential in a way similar to soil drying (Larher et al 1993). Although there are biochemical, 

genetic and physiological constraints in obtaining stress-tolerant plants through in vitro 

culture, Nabars (1990) pointed out that this technique has been successfully used to produce 

stress-tolerant plants from several species.  

 

Potato (Solanum tuberosum) is the most consumed food crop world wide after wheat and rice, 

yet it is relatively susceptible to drought (Harris 1978). Several authors have reported that 

limited soil water availability may affect the potato plant at all developmental stages, resulting 

in earlier crop maturity and decrease of plant growth, tuber yield, number of tubers per plant, 

tuber size and tuber quality (MacKerron and Jefferies 1988; Tourneux et al 2003). Recent 

studies have mainly focused on identifying drought tolerant varieties (varieties with limited 

decline in tuber yields upon drought) as well as unraveling drought tolerant traits either by 

physiological (Tourneux et al., 2003) or molecular approaches (Watkinson et al 2006, 

Schafleitner et al 2007). Many researchers identified Quantitative Trait Loci (QTLs) for 

different traits like tuber dormancy (van den Berg et al 1996), tuber yield and starch content 

(Schfer-Pregl et al 1998), tuber shape (Van Eck et al 1994), tuber flesh color (Bonierbale et al 

1988), tuber skin color (Gebhardt et al 1989, 1991), yield, agronomic and quality traits 

(Bradshaw et al 2008) in potato under normal conditions. However, knowledge about genetics 

of drought tolerance in potato is still limited, and hardly any QTLs have been identified for 

potato drought tolerance traits. 
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Potato is highly amenable to tissue culture (Espinoza et al 1986) and in vitro techniques like 

micropopagation and micro-tuberization have become established methods for rapidly 

multiplying cultivars as well as for germplasm conservation and exchange (Roca et al 1979; 

Ranalli et al 1994; Gopal et al 2005; Donnelly et al 2003). Simko et al (1999) studied the 

similarity of QTLs detected for plant height and tuberization earliness under in vitro and 

greenhouse growing conditions. Gopal and Iwama (2007 and 2008) showed that in vitro 

culture of potato cultivars under normal and water limited conditions by raising plantlets from 

nodal cuttings obtained from in vivo grown plants may provide an effective screening system 

for selecting genotypes with a high root mass production potential under dry field conditions. 

However, there are no reports on in vitro screening and assessment of drought tolerance to 

dissect the genetic variation for drought tolerance in potato mapping populations. This study 

was aimed at i) evaluation of a mapping population under in vitro control, water-stressed 

conditions induced with PEG and studying the recovery potential, and  ii) identification of 

QTLs for root and shoot traits at the juvenile stage of potato plant growth under in vitro 

conditions.   

 

Materials and methods 

Plant materials 

The potato diploid mapping population C×E consisting of 250 genotypes was obtained from 

the cross between clones C [USW5337.3; (Hanneman RE 1967)] and E [originally named 

77.2102.37;  (Jacobsen 1980)]. Clone C is a hybrid between S. phureja PI225696.1 and S. 

tuberosum dihaploid USW42. Clone E is the result of a cross between clone C and the S. 

vernei-S. tuberosum backcross clone VH3 -4211 (Jacobsen 1978). The entire population has 

been maintained in vitro. A set of 94 randomly selected individuals was used for this study, 

along with the parents of the cross.  

 

Media and water deficit treatment 

Water potential was lowered by the addition of polyethylene glycol (PEG) (molecular weight 

8000; Sigma St Louis, MO) to the growth medium. The PEG-infused tube system was 

modified as described by van der Weele et al (2000) and Gopal and Iwama (2007). PEG- 

infused tubes were made by dissolving solid PEG in a sterilized solution of basal media (half 

strength Murashige and Skoog salts with 2mM MES buffer) and pH was adjusted to 5.7. This 
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PEG solution was then overlaid on agar-solidified (8gL-1 Bacto agar) basal 10ml media in 

15cm x 2.5 cm test tube. The agar media and PEG solution were then allowed to equilibrate 

for 3 days. The excess PEG solution was removed from the tubes.  400g of PEG was added 

per liter of overlay solution to achieve -0.7 Mpa water potential of PEG-infused tubes (Gopal 

and Iwama, 2007).  

 

Explant and culture conditions 

From each genotype of the in vitro maintained CxE population plants were cut into 1.5 to 2 

cm nodal segments. The segments were transferred to a 15 cm x 2.5 cm test tube and cultured 

on fresh growth medium and 14 replications were made and maintained for 2 weeks. Once the 

genotype shootlets or nodal segments were adapted and started to grow, they were transferred 

to PEG-infused tubes. Each genotype with seven replications was maintained under normal 

and water deficit conditions. The cultured tubes were incubated at 24 ±1ºC growth chambers, 

under 16 hours photoperiod/day for seven weeks.  

 

Measurement of drought-related traits 

After seven weeks, when control plants were fully grown with stout stems and broad leaves, 

traits like root length, root fresh weight, dry weight, plant height, shoot fresh and shoot dry 

weight were measured on four replications under control and water deficit treatments. The 

remaining three replications from each treatment were transferred to fresh growth medium 

without PEG to study recovery potential of the genotypes. Recovery treatment was 

maintained for 4 weeks prior to root and shoot traits were measured.    

 

Statistical analysis 

The phenotypic data were tested for normality and when the trait values were not normally 

distributed the data was transformed (loge).  Analyses of variance (ANOVA) of the different 

traits and other statistical analyses were done with GenStat software 12th edition (VSN 

international, Hertfordshire HP1 1ES UK). Relative reduction (RR) of each trait was 

calculated as RR= (control- drought)/control, and expressed in terms of percentage. Broad 

sense heritability (h2
m) was estimated on a genotype mean basis as a ratio of σ2

g / (σ
2
g+ σ2

e/r), 

where (σ2
g) is the genetic variance, (σ2

e) is the error variance and r is the number of 

replications.  
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Genetic map and QTL mapping  

The genetic map of CxE as described in Anithakumari et al. (2010) was extended with 339 

markers from a 768 SNP Illumina GoldenGate genotyping array. The CxE integrated maps 

were constructed using JoinMap 4.0 (Van Ooijen 2006) for QTL analysis.  

MapQTL version 5 (Van Ooijen et al. 2006) software was used to identify QTL for all traits.  

First the interval mapping procedure was performed to identify the major QTLs. Markers with 

LOD scores exceeding the threshold (3.5) were used as cofactors in multiple-QTL-model 

(MQM) mapping procedures. If new QTLs were identified, the linked markers were added to 

the cofactor list and the analysis was repeated. If the LOD value of a marker dropped below 

threshold in a new model, it was removed from the cofactor list and the MQM was rerun. This 

procedure was repeated until the cofactor list became stable. The final LOD scores were 

determined by restricted MQM. The 2 LOD support interval was calculated to estimate the 

position of significant QTLs with 95% confidence. For each trait a 1,000 x permutation test 

was performed to identify the LOD threshold corresponding to a genome-wide false discovery 

rate of 5% (P < 0.05). 

 

Results 

96 individuals of the CxE diploid potato mapping population including the parents were 

grown in vitro and subjected to osmotic stress for a period of seven weeks. Following the 

stress period, 4 replications were harvested, and another 3 replications were allowed to 

recover for 4 weeks and harvested. 

Quantitative variation, heritabilities and correlations 

The mean values of different root and shoot traits of the parents C and E under normal, PEG 

stress and recovery conditions are shown in Table 1. Parents C and E significantly differed in 

their response to water stress and recovery potential. Parent C had lower mean values under 

normal conditions when compared to parent E. However, under PEG induced water deficit 

conditions parent C performed better when compared to parent E which showed drastic 

reduction in biomass. Parent C had good root growth, root dry weight and root to shoot ratio 

under stress conditions. The ability of plants to recover completely after stress is crucial to 

survive and complete their life cycle. In natural situations recovery potential is very important 

under intermittent drought conditions. Upon alleviation of stress parent E extremely 

outperformed parent C with higher recovery potential.  
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Table 1 Mean performance of parents and progeny, estimates of genetic and non-genetic components 
of variance, heritability and relative reduction of measured traits in different growth conditions. 

Performance 

Parents Progeny Variance 

Trait Treatment* C E Min Max Mean σ
2
g σ

2
e h2

m RR (%) 

Con1 193.88 389.73 5.70 545.60 153.70 6330.75 1095.00 0.85   

PEG 131.80 81.55 5.80 184.90 51.75 469.90 202.53 0.70 66.33 

Con2 185.27 1567.20 38.30 2450.00 499.90 0.36 0.05 0.87   

Fresh biomass 
(mg) 

Rec 97.37 1097.93 18.90 1372.00 312.40 35544.25 2708.25 0.93 37.51 

                  

Con1 16.45 26.28 0.10 34.30 11.11 28.84 5.00 0.85   

PEG 15.03 11.30 0.00 24.60 7.28 9.71 3.54 0.73 34.46 

Con2 23.80 89.43 7.20 163.00 45.78 0.27 0.04 0.88   
Dry biomass 
(mg) 

Rec 13.30 83.30 2.80 113.10 26.74 220.25 16.09 0.93 41.59 

                  

Con1 11.00 17.25 0.50 29.00 14.34 23.88 3.12 0.88   

PEG 7.75 10.63 0.80 18.00 5.34 3.59 1.33 0.73 62.79 

Con2 12.03 19.83 4.50 34.00 17.70 13.89 2.58 0.84   
Plant height 
(cm) 

Rec 11.43 18.00 2.70 51.10 13.06 10.08 1.25 0.89 26.21 

                  

Con1 4.88 12.38 0.00 22.00 6.95 12.12 1.58 0.88   

PEG 5.63 7.75 0.00 17.50 4.66 7.22 1.34 0.84 32.95 

Con2 7.47 15.33 1.33 30.50 9.99 0.06 0.00 0.93   

Root length 
(cm) 

Rec 6.77 14.63 0.50 22.00 8.95 17.40 0.60 0.97 10.36 

                  

Con1 14.80 20.03 0.10 28.00 9.38 15.15 3.56 0.81   

PEG 12.23 8.40 0.00 20.30 5.88 4.81 2.05 0.70 37.31 

Con2 20.10 59.87 4.60 101.00 33.46 0.20 0.04 0.85   

Shoot dry 
weight (mg) 

Rec 11.17 50.80 2.80 71.30 19.15 84.98 6.55 0.93 42.77 

                  

Con1 1.65 6.25 0.00 9.20 1.81 3.16 0.36 0.90   

PEG 2.80 2.90 0.00 8.50 1.44 1.36 0.50 0.73 20.22 

Con2 3.70 29.57 0.00 95.30 12.32 0.14 0.02 0.87   
Root dry 
weight (mg) 

Rec 2.13 32.50 0.00 80.90 7.59 32.86 2.90 0.92 38.40 

                  

Con1 161.50 257.90 3.30 461.80 131.30 4068.25 973.25 0.81   

PEG 103.35 68.03 5.80 149.80 42.85 326.45 119.43 0.73 67.36 

Con2 165.23 910.23 36.10 1408.00 366.80 0.05 0.01 0.85   
Shoot fresh 
weight (mg) 

Rec 92.00 677.77 18.40 706.00 220.50 13543.75 1161.00 0.92 39.89 

                  

Con1 32.38 131.83 0.00 109.90 23.89 460.70 60.15 0.88   

PEG 28.45 13.53 0.00 40.00 7.98 33.07 13.99 0.70 30.00 

Con2 20.03 656.97 1.40 1246.00 133.00 1.06 0.15 0.88   

Root fresh 
weight (mg) 

Rec 5.37 420.17 0.00 932.90 91.97 5554.25 451.75 0.92 30.85 

                  

Con1 0.11 0.31 0.00 1.00 0.18 0.02 0.00 0.81   

PEG 0.23 0.35 0.00 1.43 0.22 0.02 0.01 0.65 -20.65 

Con2 0.18 0.19 0.00 2.32 0.32 0.05 0.01 0.83   

Root:shoot 
ratio 
  

Rec 0.19 0.64 0.00 2.32 0.34 0.03 0.00 0.91 48.65 

σ
2
g : genetic variance, σ2

e: variance that is not explained by genetic effects, h2
m: broad sense heritability, RR: 

relative reduction.* Treatments- Con1: control conditions at time point 1, PEG: PEG induced drought stress, 
Con2: control conditions at time point 2, Rec: Recovery treatment 
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All the trait distributions were continuous, reflecting their quantitative nature. The mid parent 

values for all the traits were higher than the population mean and the progeny displayed 

transgressive segregation, with more extreme values in the progeny than the parents. 

Analyses of variance revealed significant differences between the progeny for all the traits 

measured, indicating that the traits related to the juvenile growth stage under water stress and 

recovery conditions are genotype-dependent in in vitro grown potato and interaction between 

genotype and treatment was found for all the measured traits. When compared to control 

conditions, a decrease in mean value of all measured traits was observed as an effect of water 

stress on traits with the exception of root to shoot ratio. The root to shoot ratio increased 

under water stress conditions and there was no relative reduction when compared to other 

traits indicating an increased partitioning of biomass towards roots as an adaptive mechanism. 

Water deficit conditions had a drastic effect on shoot fresh weight and fresh biomass as 

indicated by their relative reduction of about 67.4 and 66.3%, respectively. Root dry weight 

showed less relative reduction of about 20.2% (Table 1). Broad-sense heritabilities were 

calculated for all traits measured under controlled condition and water stress (Table 1). The 

estimates were in general high under control conditions and tend to be somewhat higher than 

those found under water stress. How ever, under PEG induced water deficit conditions, the 

estimates for root length, dry biomass and shoot fresh weight were higher with values ranging 

from 73.2 to 84.3%. The root to shoot ratio trait of in vitro grown potato seems to be 

moderately heritable.  

 

After alleviation of stress, the progeny showed considerable variation for recovery potential. 

Interaction between genotypes and treatment was observed under recovery treatment. In vitro 

potato plants seemed to have good recovery potential, as there was increase in mean values of 

all measured traits when compared to drought stress. However, when compared to control 

genotypes, progeny showed decreased trait mean values after recovery (Table 1). Under 

recovery all the traits showed very high heritabilities compared to control and stress 

conditions. Root length had a high heritable value of 0.97. Plant height showed the lowest 

heritability of about 0.89 (Table 1). 

 

The coefficients of correlation among traits under PEG induced water stress are presented in 

Table 2 with the direction (+ or -). All the shoot and root traits measured under drought stress 
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Table 2 Matrix of Pearson coefficients of correlation among the traits under drought stress at significance levels *Significant at P≤ 0.05; ** 
Significant at P≤ 0.01; *** Significant at P≤ 0.001 
 
 
Trait  Fresh 

Biomass  
Root fresh 
weight 

root 
length  

shoot dry 
weight  

shoot fresh 
weight  

Plant 
height  

Dry 
biomass 

Root:shoot 
ratio 

Fresh Biomass (mg)  -        
Root fresh weight (g) 0.73***  -       
Root length (cm) 0.37** 0.60***  -      
Shoot dry weight (g) 0.88*** 0.51*** 0.22**  -     
Shoot fresh weight (g) 0.87*** 0.54*** 0.25** 0.89***  -    
Plant height (cm) 0.45** 0.22** 0.23** 0.34*** 0.50***  -   
Dry biomass(mg) 0.91*** 0.69*** 0.37*** 0.66*** 0.87*** 0.36***  -  
Root:shoot ratio 0.32** 0.68*** 0.58*** 0.16* 0.16* 0.15* 0.40***  - 
Root dry weight (g) 0.67*** 0.87*** 0.58*** 0.55*** 0.52*** 0.27** 0.76*** 0.81*** 

 
 
Table 3 Pearson coefficients of correlation between the traits under normal and PEG induced drought stress at significance levels 
*Significant at P≤ 0.05; ** Significant at P≤ 0.01; *** Significant at P≤ 0.001 
 
 
Treatment PEG induced stress 

Traits 
Dry 

biomass 
Root dry 
weight 

Root fresh 
weight 

Shoot dry 
weight 

Shoot fresh 
weight 

Fresh 
biomass 

Root:shoot 
ratio 

Root 
length 

Plant 
height 

Root dry weight 0.19* 0.15 0.08 0.18 0.13 0.13 0.14 0.18 0.15 
Root fresh weight 0.16 0.13 0.13 0.15 0.13 0.14 0.14 0.11 0.04 

 Shoot dry weight 0.51*** 0.28* 0.18 0.53*** 0.46*** 0.42*** 0.08 0.09 0.31** 
Control Shoot fresh weight 0.48*** 0.28* 0.18 0.49*** 0.43*** 0.40*** 0.09 0.06 0.28* 

Fresh biomass 0.45*** 0.27* 0.18 0.46*** 0.40*** 0.38** 0.12 0.08 0.25* 

Root: shoot ratio -0.02 0.03 -0.03 -0.03 -0.06 -0.06 0.14 0.19 0.03 

Root length -0.01 0.08 0.21 -0.04 -0.05 0.02 0.17 0.40*** 0.02 

Plant height 0.07 -0.09 -0.07 0.12 0.11 0.07 -0.17 -0.10 0.29* 

 Dry biomass 0.48*** 0.28* 0.17 0.50*** 0.43*** 0.40*** 0.10 0.11 0.31** 
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conditions positively correlated with each other. Shoot fresh weight was highly correlated 

with fresh biomass (0.87***). Plant height showed relatively less correlation with root length 

and root fresh weight. Similar correlations patterns were seen in recovery condition (Data not 

shown). Phenotypic traits measured under well watered and PEG induced stress correlations 

are presented in Table 3. The traits related to biomass production (shoot fresh and dry 

weights, shoot fresh and dry weights) were significantly correlated between control and PEG 

induced stress. Biomass productivity traits were positively correlated with plant height under 

stress conditions. However, there is no considerable correlation of the root:shoot ratio with 

other traits measured under non-stress condition. 
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Figure 1 Location of the QTLs on the C x E integrated map. Only the linkage groups (chromosomes) 
with QTLs are shown. The scale on the left side is the genetic distance in centiMorgans (cM), marker 
designations are given on the left side of linkage group. QTLs are shown at the right side in vertical 
bars with trait names in different shades for different treatments (Open with horizontal lines- well 
watered, Solid filled bars- Stress, and open with cross vertical lines- Recovery). The integrated maps 
were drawn by the Map Chart 2.2 program. The vertical bar shows the 1LOD support interval and the 
dotted line 2 LOD interval of the QTL.  
 
 
QTL analysis 

In total 23 QTLs on 7 linkage groups were detected for the normal, PEG induced water stress 

and recovery conditions (Figure 1).  However the number of separate loci may be less, as we 

found a number of stable co-segregating QTLs over traits and treatments. Map positions, QTL 

names and effects of these QTLs are summarized in Table 4. Stable QTLs were found for 

shoot fresh weight, dry biomass and fresh biomass and most of them localized on 

chromosome CE2. The proportion of the variance explained by single QTLs ranged from 10.3 

to 22.4%. Three QTLs involved in the root to shoot ratio were identified: r:s1 on linkage 

group 8, r:s2 on linkage group 3 and r:s3 on linkage group2. These loci explained altogether 

41.1% of the variance for this trait. Three QTLs were detected for plant height under control 

conditions on linkage groups CE7, CE9 and CE2 together explaining 43% of the total 

variation. A QTL on linkage group CE3 under recovery treatment was associated with plant 
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height that explained variance of 19.3%. Two regions of CE2 and CE12 had QTLs (sfwcon1, 

sfwcon2) for shoot fresh weight measured under control conditions. sfwstress and sfwrec 

QTLs for shoot fresh weight measured under stress and recovery conditions were found on 

linkage group CE2. One QTL explaining 16.1% of the variance and located on linkage group 

12 was found to be linked with root length under water deficit conditions. Two QTLs on 

linkage group CE2 and CE12 together explained 37% of the variance for shoot dry weight 

under control conditions. A total of 10 QTLs were found on chromosome CE2, and QTLs for 

shoot fresh and dry biomass co-localized at this location. QTLs on linkage group CE2 for 

fresh biomass and shoot fresh weight after a recovery period co-localized with QTLs for plant 

height under controlled conditions. 

 

CxE genetic map was populated with functional markers such as SNPs. These SNP markers 

were mined and developed from EST sequences having putative functions. SNP markers with 

their putative functions underlying root to shoot ratio trait were presented in Table 6. Several 

interesting putative candidate genes involved in drought response were identified. SNP 

markers having sequence homology with genes such as dehydration responsive protein 

underlies with QTL for root to shoot ratio on chromosome CE2. Root border cell specific 

protein, transcription factor from AP2 family and protein kinases were identified on 

chromosome CE3. On chromosome CE8, eight SNP markers with putative functions were 

detected under third QTL for root shoot ratio. These genes had homology with genes involved 

in signaling and other functions such as calcium dependent protein kinase, aquaporin protein, 

vacuolar membrane ATPase. These genes may be putative candidates for PEG induced stress 

response in potato. 

 

Discussion 

Significant genetic variation for all the measured traits was observed under well watered, PEG 

induced stress conditions and after a four week recovery period. The parents differed in their 

response to PEG induced drought tolerance and recovery potential. Transgressive segregation 

was observed for all the traits measured under non-stress, PEG-induced stress and recovery 

conditions and this may be due to complementary action of alleles of different genes affecting 

a trait; alleles which were dispersed between the parents but may come together in the 

progeny (Tanksley 1993). Broad sense heritabilities were high to very high ranging from 0.65 

to 0.97 under different treatments.  These high heritabilities may be the consequence of in 
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vitro culture techniques, which minimize environmental variation due to defined nutrient 

media, controlled conditions and homogeneity of stress application. This relatively simple 

setup enables the study of large plant populations and application of well-defined stress 

treatments in a limited space and short period of time, irrespective of the crop season and thus 

holds the potential for pre-selection of genotypes for complex trait evaluation in the 

greenhouse or in the field. 

 

Table 4 Main characteristics of QTLs with a LOD score >3.5 for the traits under well 
watered, water stressed and recovery conditions. 
 

Name of the Trait QTL name Treatment 
Linkage 
group 

LOD 
score 

Marker linked 
to trait 

% variation 
explained 

Shoot fresh weight sfwcon1 Control 2 5.8 PotSNP912 22.3 

  sfwcon2 Control 12 4.3 PotSNP750 13.3 

  sfwstress Stress 2 3.8 PotSNP912 15.0 

  SFWrec Recovery 2 3.7 PotSNP838 15.5 

Shoot dry weight sdwcon1 Control 2 6.1 PotSNP671 22.4 

  sdwcon2 Control 12 4.7 PotSNP1132 14.6 

Root fresh weight rfwcon Control 9 5.1 E32M61-8e9 16.2 

  rfwstress Stress 7 3.5 E32M61-25c7 12.9 

Root dry weight rdwcon1 Control 7 5.5 E32M61-25c7 18.8 

  rdwcon2 Control 9 3.4 E32M61-8e9 12.3 

Plant height phtcon1 Control 7 4.5 PotSNP138 15.3 

  phtcon2 Control 9 4.3 PotSNP911 14.9 

  phtcon3 Control 2 4.1 PotSNP838 12.8 

  phtrec Recovery 3 4.4 PotSNP67 19.3 

Dry biomass dmass Stress 2 3.8 PotSNP912 16.0 

  dmass Control 2 4.9 PotSNP912 21.4 

Fresh biomass fmasscon1 Control 2 4.6 PotSNP912 16.8 

  fmasscon2 Control 5 4.1 myb_t10 13.0 

  fmassRec Recovery 2 3.9 PotSNP838 15.5 

Root length rlstress Stress 12 3.8 STM2028 16.1 

Root:Shoot ratio r:s1 Stress 8 6.9 
Wrky_M14, 

E32M51-11e8 19.3 

  r:s2 Stress 3 5.0 E39M60-13e3 11.5 

  r:s3 Stress 2 4.1 WrkyH15 10.3 

 

PEG and mannitol containing nutrient solutions are often used in in vitro labs as a medium for 

inducing osmotic stress in plants and tissue cultures. PEG is an inert, non-ionic, long chain 

polymer, highly soluble in water and available in a wide range of molecular weights. Because 

of its properties, PEG has been used in tissue culture studies to simulate drought stress as it 
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occurs in plants in the field or greenhouse. Previous research revealed that PEG gives more 

consistent results than mannitol as an external osmoticum in studies of water relations in 

stressed plants (Hohl and Schopfer 1991; Pandey and Agarwal 1998). Mannitol can be taken 

up by plants as it is a natural product that is known to accumulate in certain lower and higher 

plants (Lipavska and Vreugdenhil, 1996). The differences in ability to take up mannitol 

between plants may affect screening for drought tolerance.  Such an osmoticum therefore is 

considered not to be suitable for the study of plant responses to root medium water status. 

PEG with molecular weights ≥ 6000 cannot penetrate the cell wall pores (Carpita et al 1979). 

Therefore, PEG solutions mimic dry soil more closely than solutions of lower molecular 

weight osmotica, which infiltrate the cell wall as solute (Verslues et al 1998). However, care 

must be taken when interpreting the results from desiccation experiments using osmolytes 

such as PEG. Although PEG with high molecular weight was used in many studies to 

simulate the effect of drought on the root system (Lawlor 1970; Money 1989; van der Weele 

et al 2000; Nayyar and Gupta 2006) and to differentiate among genotypes (Sanguineti et al 

2006, Gopal et al 2008), it should be kept in mind that drought stress in the field does not 

affect the soil water potential alone. For example, drought goes along with changes in the 

mechanical resistance and soil-grown plants respond to drought in a complex way. However, 

PEG-treatment in in vitro cultured plants may be used for a first and rapid screening for 

drought tolerance.  

Thirteen QTLs were detected for traits measured under well-watered conditions, as well as 

seven stress-related QTLs and three recovery QTLs. Six QTLs for shoot fresh and dry 

biomass co-localized on chromosome CE2 and were highly correlated, QTLs for root fresh 

weight, dry weight and plant height colocalized on linkage groups CE7 and CE9. Not 

surprisingly these traits were significantly correlated (r = 0.27, P≤ 0.01).  

A good indicator of drought adaptation is an increased root to shoot ratio under water stress 

(Begg and Turner 1976; Harries 1978; Jefferies 1993). Partitioning of carbon in favor of roots 

is a typical response of plants to amongst others water deficit stress and nutrient deficiency. 

Three genomic regions were associated with variation in root to shoot ratio in the in vitro CxE 

population, together explaining 41% of the variance for this trait. It is imaginable that some of 

these QTLs may be relevant under field conditions.  
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Table 5 Functional markers underlying root to shoot ratio QTLs with their putative functions. 
 
Chromosome 
number  Marker name Sequence Homology 

PotSNP105 Homologue to  UPST14_SOLTU (Q41495) STS14 protein precursor,  complet 

PotSNP441 Similar to  RFNP protein binding {Arabidopsis thaliana}  

PotSNP703 
Similar to  UPQ9SVL6_ARATH (Q9SVL6) Cold acclimation protein WCOR413-
like protein  

PotSNP686 weakly Similar to  GBAA At5g39890 {Arabidopsis thaliana} 

PotSNP807 Similar to  UPQ653G1_ORYSA (Q653G1) Dehydration-responsive protein-like 

Chromosome 
2 

PotSNP001 Similar to  UPQ3E9C6_ARATH (Q3E9C6) Protein At5g19130 
PotSNP154 UPQ2XPX4_SOLTU (Q2XPX4) Root border cell-specific protein-like protein 

PotSNP920 UPQ2XPX4_SOLTU (Q2XPX4) Root border cell-specific protein-like protein 

PotSNP887 
Homologue to Ethylene-responsive transcription factor 1  (EREBP-1) (ERF1-like 
protein) 

PotSNP755 Similar to  UPQ8HME2_9TELE (Q8HME2) NADH dehydrogenase subunit 2,  

PotSNP906 
Similar to  UPQ8H2L4_ORYSA (Q8H2L4) ABC1 family protein kinase-like 
protein,  

Chromosome 
3  

PotSNP644 Similar to receptor-like protein kinase {Arabidopsis thaliana}  
PotSNP155 UPQ41427_SOLTU (Q41427) Polyphenol oxidase,  complet 

PotSNP700 Homologue to Vacuolar membrane ATPase subunit c 

PotSNP104 Similar to  UPQ69K57_ORYSA (Q69K57) Smr domain-containing protein-like 

PotSNP637 
Similar to  UPQ8RUF8_ARATH (Q8RUF8) AT5g12040/F14F18_210,  partial 
(83% 

PotSNP1122 Homologue to  UPQ948X8_TOBAC (Q948X8) CIG2,  complet 

PotSNP821 Similar to aquaporin NIP5.1 (NOD26-like intrinsic protein 5.1)  

PotSNP474 Similar to Calcium-dependent calmodulin-independent protein kinase 5 

PotSNP749 Similar to Vacuolar ATP synthase subunit E  (V-ATPase E subunit)  

Chromosome 
8 

PotSNP091 Similar to  UPQ2PGG3_ARATH (Q2PGG3) Serine racemase 

 

Genes underlying the QTLs may be related to stress response regulation, hormone signaling, 

transport channels and proteins and the factors regulating partitioning of carbon and the 

enzymes mediating changes in partitioning under stress conditions. Several putative candidate 

genes underlying QTLs were detected in the present study. Aquaporins are channel-forming 

membrane proteins with extraordinary ability to combine a high flux with high specificity for 

water. In our study putative genes underlying root to shoot ratio QTL was identified. These 

putative genes may have interest in further study as candidates in potato for drought tolerance, 

since rice and tobacco plants over expressing an aquaporin (PIP1) gene increased their 

drought tolerance (Lian et al 2004; Yu et al 2005).Transcription factors and signaling 

molecules such as protein kinases, ERF1 transcription factor were identified that share a 

homology to known genes previously studied in other species (Liu et al 1998; Zou et al 2010), 

proving some clues about putative regulatory and signaling pathways that might be involved 
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in drought response in potato under in vitro conditions. 

 

Two QTLs were detected for root fresh and dry weight on chromosomes CE9 and CE7. A 

root length QTL was found on chromosome 12 under stress conditions. Root morphology and 

architecture are usually not directly accessible traits for breeding. The obvious reason is that 

roots are located in the soil and cannot be assessed properly without destruction of the plant. 

QTL analysis in combination with proteome and transcriptome analysis have given insights 

into the genetic basis of root architecture affecting crop yield under different water regimes 

(Hochholdinger and Tuberosa 2009). The detection of QTLs for root traits offers an 

opportunity to use markers and marker-assisted selection (MAS) as a non-destructive 

alternative approach to root sampling in selection for root traits. Since potato has a smaller 

and shallower root system than most other field crops (Yamaguchi and Tanaka 1990) 

screening for root characteristics is considered to be important for the improvement of 

drought tolerance in potato. Moreover, an improved root system has been associated with 

increased tuber yield (Iwama 1982). 

 

Obviously, the root environment of in vitro cultured plants is quite different from soil 

conditions. In addition, the plants are grown under highly controlled conditions, and do not go 

through the same developmental changes as field grown plants. Nevertheless, Gopal and 

Iwama (2008) have shown that differences in root traits of in vitro grown potato cultivars 

reflected the differences in the same cultivars grown in the field. Morpugro (1991) has shown 

in another study that highly significant correlation between tuber yields in the field and root 

fresh weight of the in vitro cultured plants. Hence studying root traits under in vitro may be of 

interest for breeding. For plant height three non-stress QTLs were detected on chromosomes 

CE7, CE9 and CE2 and one single recovery QTL on CE3. Simko et al. (1999) found QTLs 

for plant height under in vitro and greenhouse conditions on the same chromosomes except 

for chromosome 9. They also found similar QTLs under in vitro and greenhouse conditions 

for tuberization earliness. Plant height trait QTL was consistently found on same linkage 

groups on different genetic backgrounds and in in vitro as well as in field trials.   Hence, there 

may be a possibility of using an in vitro system combined with marker-assisted selection for 

preliminary selection for root traits. 

 

The comparison of QTLs detected under in vitro and greenhouse or field conditions could be 
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a valuable tool to confirm the results obtained in this study. This QTL mapping study suggests 

the possibility of developing an in vitro system that would allow a preliminary screening and 

selection for drought tolerance traits, of which the root-to-shoot ratio may be the most 

relevant.  From this point of view the use of in vitro screening for drought tolerance is of 

particular interest as it enables large-scale testing of plants in a short period of time. This 

study constitutes the first knowledge of in vitro screening for drought tolerance in potato and 

has led to the description of important traits for screening and identification of interesting 

QTLs which may be useful for potato breeding. Several interesting putative candidate genes 

underlying QTLs were identified. The next step will be the characterization of these genes in 

potato. Further work is necessary to investigate whether the QTLs identified in this study 

using in vitro plantlets are (stably) expressed in greenhouse environments, multi-locational 

field trials, as well as in analyses of the variation for these traits at variable growth stages in 

potato. Further investigations in this CxE population will focus on identifying QTLs for 

drought tolerance under greenhouse conditions and field conditions, and to compare those to 

the QTLs in this study. 
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Abstract 

Potato is the third most important staple food crop in terms of consumption, yet it is relatively 

susceptible to yield loss because of drought. As a first step towards improving drought 

tolerance in this crop we set out to identify the genetic basis for drought tolerance in a diploid 

potato mapping population. Experiments were carried out under greenhouse conditions in two 

successive years by recording four physiological, seven growth and three yield parameters 

under stress and recovery treatments. Genotypes showed significant variation for drought and 

recovery responses. The traits measured had low to moderately high heritabilities (ranging 

from 22% to 74%). A total of 47 Quantitative Trait Loci (QTL) were identified, of which 28 

were drought specific, 17 and two under recovery and under well watered conditions 

respectively. The majority of these growth and yield QTLs colocalized with a QTL for 

maturity on chromosome 5. Four QTLs for δ
13C, three for chlorophyll content and one for 

chlorophyll fluorescence (Fv/Fm) were found to co-localize with yield and other growth trait 

QTLs identified on other chromosomes. Several multi-year and multi-treatment QTLs were 

detected and QTL x Environment interaction was found for δ13C. The response to drought and 

recovery and the QTL analysis provide insight in physiological traits that can be used for 

drought evaluation and breeding for drought tolerance. To our knowledge, this is the first 

comprehensive QTL study on water deficit and recovery potential in potato.  

 

Key words: Chlorophyll florescence, Chlorophyll content, Drought, Potato, QTL, Recovery, 

δ13C 

 

Introduction 

Potato (Solanum tuberosum) is the predominant non-cereal food crop in the world and ranks 

third in total food consumption after rice and wheat. Yet, this versatile crop is susceptible to 

drought stress and often considered to be drought sensitive (van Loon, 1981), mainly due to 

its shallow root system with a depth ranging from 0.5 to 1.0m (Vos and Groenwold, 1986). 

About 85% of the total root length is concentrated in the upper 0.3m of soil.  Gregory and 

Simmonds (1992) showed that the potato root system has relatively small root length per unit 

area and this makes the potato plant a poor conductor of water. In addition potato extracts less 

of the available water from the soil compared to other crops (Weisz et al., 1994). Even short 

periods of water shortage can reduce tuber production and tuber quality (Miller and Martin, 
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1987). The relative inability of potato to withstand drought limits its productive range to areas 

with adequate rainfall or suitable irrigation.  

 

Several studies have shown that drought has a drastic effect on the morphological and 

physiological traits of the potato plant, such as leaf size, leaf number, shoot height (Deblonde 

and Ledent, 2001), rate of photosynthesis, tuber number (MacKerron and Jefferies, 1986; 

Haverkort et al., 1991), tuber yield and biomass (Dalla Costa et al., 1997). The effect of 

drought on tuber yield depends on the aggregate of morpho- physiological processes, such as 

photosynthesis, leaf area expansion, leaf senescence, partitioning of assimilates, tuber 

initiation, bulking and tuber growth (van Loon, 1981). In addition, the timing and duration of 

the stress within the growth period are factors affecting potato yield (Jefferies 1995b), as well 

as on the climate and soil conditions. Dramatic reduction of yield occurs when stress 

coincides with irreversible reproductive processes, making the genetic analysis for drought 

tolerance at the reproductive stage crucially important. 

 

Potato is a highly heterozygous cross pollinating crop in which many traits show continuous 

variation. Cultivar-dependent differences of responses to drought have been reported for S. 

tuberosum ( Levy, 1983; Jefferies and Mackerron, 1987). In addition, several wild species of 

potato growing in its center of origin in South-America have been adapted to harsh and water-

scarce conditions (Vasquez-Robinet et al 2008). This indicates that genetic variability exists 

within potato and its relatives that can be exploited by breeders to improve drought tolerance. 

Successful breeding requires exact information on effective drought tolerance traits, their 

heritability, the genotype x environment interaction and in addition, suitable selection tools 

for the traits of interest. 

Molecular investigation of complex physiological traits and their genetic relations to 

agronomic traits has raised a lot of interest. In recent years molecular mapping approaches 

have been used to dissect agronomically important and physiologically complex traits that are 

quantitative rather than qualitative. Quantitative trait loci (QTLs) for traits like plant height, 

maturity, crop emergence, tuber size, and quality traits such as after- cooking darkening, 

regularity of tuber shape, fry colour and yield components have been identified (Bradshaw et 

al., 2008). However, insight in genetics and genes underlying quantitative trait loci that are 

related to drought tolerance is still limited in potato. Locating QTLs for drought tolerance 
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mechanisms by the use of controlled greenhouse or growth chamber experiments combined 

with field evaluations under relevant conditions should allow the merits of different drought 

tolerance mechanisms to be established. 

 

In this study we made use of a diploid potato mapping population to increase our 

understanding of potato plant performance under water stress conditions, and to establish the 

nature of phenotypic correlation and genetic association of various physiological and 

morphological traits. Our main objectives were i) to evaluate physiological and morphological 

parameters or secondary characters that are correlated with performance and tuber yield under 

drought stress and subsequent recovery, ii) to determine the heritability of traits under drought 

and recovery and iii) to identify QTLs for these complex traits in the potato genome as a first 

step towards identifying candidate genes underlying QTLs of drought related traits.   

 

Material and Methods  

Plant material 

A population of nearly 250 genotypes was developed from a cross between clones C 

(USW5337.3) and E (77.2102.37) Clone C is a hybrid between S. phureja PI225696.1 and S. 

tuberosum dihaploid USW42. Clone E is cross between clone C and the S. vernei-

S.tuberosum backcross clone VH34211. Population details can be found in Celis-Gomba B.C 

(2002).  

 

Phenotyping  

For the drought experiment, a core set of 94 CxE progeny and their parents were selected. The 

experiments were conducted in the greenhouse in two successive years (2008 and 2009) 

during late spring to summer season at Wageningen UR Plant Breeding, Wageningen 

University and Research Centre, the Netherlands. The weather conditions and stress period 

are indicated in Table 1.  The greenhouse temperature was matched as much as possible to the 

external air temperature. The air circulation inside the greenhouse was regulated through 

openings in the roof. Tubers were planted in pots (19 cm2 diameter, 3L volume). Eight 

replications were maintained in a completely randomized design. Each parental line was 

repeated four times in each replication to monitor position or corner effects. Irrigation was 

withheld for six replications starting from the stolon initiation stage. Two replications were 
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maintained as controls with optimal irrigation until the end of each experiment. Three 

replications out of six were subjected to recovery after three weeks of stress period. Samples 

were collected and measurements were taken for several traits as follows: 

Leaf Relative Water Content (RWC): The uppermost fully expanded leaf was sampled, fresh 

weight (Wf) was taken as quickly as possible and placed in de-ionized water and left for 12-

24 hrs at room temperature. Then turgid weight (Wt) was measured, leaf sample was dried at 

850C and dry weight (Wd) measured. Leaf RWC was calculated according to the formula 

RWC (%) = {(Wf – Wd) / (Wt – Wd)}*100 (Barrs H. D, 1968). 

Carbon isotope composition (δ 13C): δ13C is a measure of the ratio of stable carbon isotopes 
13C:12C, expressed in parts per thousand (per mil, ‰).  In C3 plants, δ13C  signature is used as 

a reflection of leaf water-use efficiency (WUE, Condon et al., 2004). Fully expanded mature 

leaf samples were collected nine days after initiation of stress. Leaves were oven dried at 

65˚C. The leaf material was fine powdered using the MM300 Mixer mill (Retsch Inc., Haan 

Germany) and samples were analyzed using Isotope Ratio Mass Spectrometer (IRMS), 

(Mamrutha et al., 2010) at the Department of Crop Physiology, University of Agricultural 

Sciences Bangalore, India and CNR- Institute of Agro environmental and Forest Ecology, 

Porano (TR), Italy.  

Chlorophyll fluorescence (CF): Drought induced decrease in photosynthesis have been 

associated with photo damage of PSII reaction centres (He et al., 1995). Chlorophyll 

fluorescence is widely accepted as an indication of the energetic behaviour of PSII (Krause 

and Weis, 1991). Potential quantum efficiency of PSII (Fv/Fm) can be used as a reliable 

indicator to evaluate the energetic/metabolic imbalance of photosynthesis and yield 

performance across genotypes under water deficit conditions. Chlorophyll fluorescence 

parameters including initial fluorescence (F0), maximal fluorescence (Fm), variable 

fluorescence (Fv) and maximum quantum efficiency of PSII (Fv/Fm) were monitored on 

uppermost fully opened and expanded mature leaves under both well watered and drought 

stress conditions using an OS-30p handheld chlorophyll fluorometer (Opti- science, Inc. 

USA) following the manufacturer’s instructions. Dark adaptation period for all the 

measurements was about 30 min, measurements were taken (in two replications) at four day 

intervals after the beginning of stress and during the recovery period. 

Chlorophyll content (CC):  In each genotype five leaves were measured (bottom, upper 

bottom, middle, upper middle and top leaf) using SPAD-502 chlorophyll meter (Minolta Co., 
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Ltd. Japan), and the mean of these five values was taken. It was repeated in the biological 

replicate of the same genotype. 

Plant height: At the end of stress period the plant height was measured in centimetres (cm) 

from the soil surface up to the uppermost leaf. Stems were upheld vertically during the 

measurement. Measurements were taken on three biological replicates of each genotype.  

Root length: Roots were washed with water to remove all soil particles adhered to the roots 

and the longest root length was measured. 

Shoot and root biomass (Fresh and dry): Shoot and root fresh weights were taken 

immediately after two harvests; one at the end of stress period and another at the end of 

recovery. Dry weights were taken after complete drying of the plant material in an oven at 

105°C.   

Stolon, tuber number and weight: Number of stolons was counted for each genotype in three 

biological replicates. Stolon ends with >1cm diameter were considered tubers; tubers were 

counted for each genotype and total fresh weight of tubers per plant was measured. 

 

Statistical analysis 

All statistical analysis was done with software GenStat 11th edition. Broad sense heritability 

(H2) was computed from simple one-way Analysis Of Variance (ANOVA) according to the 

formula H2 = (σ2
G / σ2

G+ σ2
e/r), where (σ2

G) = genetic variance, (σ2
e) = environmental 

variance and r = number of replications. Relative reduction (RR) of each trait was calculated 

as RR= (control - drought)/ control and expressed in terms of percentage. 

 

Genetic map 

The genetic map of CxE as described in Anithakumari et al., (2010) was extended with 339 

markers from a 768 SNP Illumina GoldenGate genotyping array. This array is enriched for 

markers in genes putatively involved in abiotic stress response. The polymorphic markers 

were first mapped on parental maps using JoinMap 4.0 (Van Ooijen 2006) and parental maps 

were integrated for QTL analysis.  

QTL mapping 

MapQTL version 5 (Van Ooijen et al. 2006) software was used to identify QTLs for all traits. 

First interval mapping was performed to identify the major QTLs. For each trait a 1,000x 

permutation test was performed to identify the LOD threshold corresponding to a genome- 
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Table1 Weather data [Temperature and Relative Humidity (RH)] in the greenhouse at time of 

experimentation in two successive years.  

Year Temperature (°C) RH (%) Stress period Recovery 

 Minimum Maximum Minimum Maximum (Days) (Days) 

2008 13.1 33.1 43.2 87.0 21 12 

2009 16.5 37.9 45.7 86.8 17 30 
 

wide false discovery rate of 5% (P < 0.05). Markers with LOD scores exceeding the threshold 

were used as cofactors in multiple-QTL-model (MQM) mapping procedures. If new QTLs 

were identified, the linked markers were added to the cofactor list and the analysis was 

repeated. If the LOD value of a marker dropped below threshold in new model, it was 

removed from the cofactor list and the MQM was rerun. This procedure was repeated until the 

cofactor list became stable. The final LOD scores were determined by Restricted MQM. The 

2 LOD support interval was calculated to estimate the position of significant QTL with 95% 

confidence. The integrated maps and QTLs were drawn using Map Chart 2.2. (Voorrips 2002) 

 

Results:  

Effect of water stress on CxE population 

The CxE progeny displayed a wide contrast in drought tolerance, with individuals surviving 

and recovering completely after three weeks of drought and others completely wilted beyond 

recovery (Figure 1). The frequency distribution of genotypes for most of the traits evaluated 

in this study fitted a normal distribution and parents were always in the middle. The progeny 

displayed extreme performances for all the traits when compared to the parents indicating 

transgressive segregation, as exemplified by the frequency distribution of the traits plant 

height and δ13C (Figure 2). The results revealed that drought affected all the measured traits, 

although the severity of stress perceived differed as indicated by trait mean values for the 

population (Table 2). The drought stress had a drastic effect on tuber number and tuber weight 

as indicated by their relative reduction of about 60 and 80% respectively. Drought had much 

less of an effect on number of main stems with relative reductions of 4% to 10% in two 

successive experiments.  The root to shoot ratio increased under stress, indicating an 

increased partitioning of biomass towards root as an adaptive mechanism. 
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Figure 1 CxE progeny showing contrasting responses after 21 days of drought period and one day recovery. 

 

Genetic variation of traits under water stress and recovery conditions 

Analysis of variance showed that there was highly significant variation (p<0.001) among the 

genotypes for all the traits under stress conditions. There were significant differences between 

well-watered and water stress treatments for all the traits except for number of main stems. 

Genotypic differences were often specific to the stress response as there was highly 

significant interaction between treatment and the genotypes for most of the traits. Plant height 

showed considerable differences between genotypes; however, consistent interaction between 

genotype and treatment was not noticed. The majority of traits showed moderate to high 

heritabilities under stress ranging from 41.5 to 79.8% as listed in Table 2. 

 

Drought tolerant plants either seemed to maintain water status of tissues, tolerate a reduction 

in tissue water content, or recover more completely after re-watering. The ability of plants to 

recover completely after stress is crucial for plants to survive and complete their lifecycle 

with optimal yield. Under the recovery treatment all traits varied significantly among 

progeny. Two-way ANOVA revealed significant differences between the drought and 

recovery treatments. Growth and yield parameters revealed significant interaction between 

treatment and genotype except for number of main stems and root length (Table S1). After 

alleviation of stress, heritabilities for all traits were relatively high when compared to those 

for the drought treated plants (Table S1).  
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Figure 2 Frequency distribution of the traits, plant height and δ13C measured under drought. 

 

Evaluation of physiological traits under water stress and recovery 

Relative Water Content: RWC is closely related with cell volume. It may more closely reflect 

the balance between water supply to the leaf and transpiration rate. Drought generally reduced 

the relative water content of leaves as reflected in the mean population values (Table 2). 

Although there was significant variation among the genotypes for RWC under drought, no 

considerable interaction between genotypes and the treatment was observed.  RWC was 

reduced by 30% upon stress induction and showed 37% heritability under drought.  

Carbon isotope composition (δ 13C): Significant differences in δ13C among the CxE progeny 

upon stress were found in two successive experiments. Significant interaction between 

genotypes and treatment were observed in the 2008 experiment. However, there was no such 
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interaction in the 2009 experiment. Heritability of δ13C was 58.2% and 22.6% in 2008 and 

2009 trials, respectively. Mean population values over two experiments between well-watered 

(more negative) and stress conditions (less negative) clearly revealed enrichment of δ13C 

under stress (Table 2).  

Chlorophyll Florescence (CF): The chlorophyll fluorescence measured as Fv/Fm decreased in 

the CxE progeny under drought. As expected, under well-watered conditions the mean value 

of Fv/Fm was 0.8+ and the value reduced as the stress period advanced (Fig. 3). There was 

significant variation among the genotypes drought and significant differences were observed 

between treatments. However, significant interaction between genotype and treatment was 

observed only at 4th and 16th day after stress initiation. Fv/Fm had high heritabilities at one 

day after stress initiation but heritabilities decreased as severity of stress increased (Table S2). 

After re-watering plants recovered quickly as reflected by a considerable increase in Fv/Fm 

over time reaching normal values of 0.81 after 17 days of recovery (Fig 3). Significant 

variation in Fv/Fm was observed four days after recovery among the progeny tested. We also 

observed a significant treatment effect over the recovery time period but only at four DAR 

considerable interaction between genotype and treatment was observed. Heritabilities were 

low under recovery treatment when compared to stress and inconsistent over the time (Table 

S2). 

0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82

1DAS 4DAS 8DAS 17DAS 1DAR 4DAR 8DAR 16DAR

C
hl

or
op

hy
ll 

F
lo

re
sc

en
ce

 (
F

v/
F

m
)

Time period 

2008 stress

2009 stress

control 

Recovery

 

Figure 3 Chlorophyll fluorescence (Fv/Fm) measured during stress and recovery period DAS: days 

after stress, DAR: days after recovery. 
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Chlorophyll Content (CC): Water stress typically reduces overall plant chlorophyll content 

and maintenance of chlorophyll stability is considered an important trait. Our results revealed 

a linear decrease in chlorophyll content with increasing stress severity (Fig. 4). The progeny 

showed significant variation for chlorophyll content under stress. Except at day three after 

stress initiation there was a significant treatment difference. However, genotype by treatment 

interaction was not observed. There was a decrease (70% to 37%) in heritability of the trait 

with increasing severity of stress (Table S2). 
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Figure 4 Chlorophyll content measured under drought and well watered conditions at series of time 

points. 

 

Correlations  

Under drought conditions δ13C showed a highly significant (P≤0.0001) positive correlation 

with root dry weight and plant height, significant positive correlation with number of stolons, 

shoot dry weight and dry biomass, whereas δ
13C did not have significant correlation to any of 

the measured traits under well watered condition (Table 3 and Table S3). Under well-watered 

conditions shoot fresh weight, dry weight and root fresh weight showed significant negative 

correlations with maturity type previously scored in field trials under normal conditions. This 

implies that genotypes that matured late had higher shoot biomass. However, this correlation 

was not significant under drought stress (Table 3). Root traits were positively correlated with 

shoot fresh and dry weight and plant height. Root length was positively correlated with plant 

height, dry biomass, root to shoot ratio and negatively correlated with number of main stems 
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under drought stress. After recovery growth parameters were negatively correlated with 

maturity whereas tuber weight showed a significant positive correlation with maturity type 

(Table S4). 

 

QTLs  

QTL analysis was performed in order to identify the genomic regions contributing to the 

drought response phenotypes of different physiological, growth and yield traits. Figure 5 is a 

graphical representation of locations of the QTLs with two-LOD support intervals. Table 4 

illustrates the QTL positions at one-LOD interval, LOD scores and percentage phenotypic 

variance explained by each QTL. A total of 47 significant QTLs were identified on the 

integrated CE genetic map under well watered, drought, and recovery conditions over two 

successive years. However the number of separate loci may be less, as we found a number of 

stable QTLs over treatments and in two successive experiments for growth and yield 

parameters like number of main stems, plant height, shoot fresh weight, dry weight, tuber 

number and tuber weight. Two genomic regions on chromosomes 5 and 4 accumulated 31 

significant QTLs for different traits in stress, well watered and recovery conditions (Fig 5). 

Out of 47 QTLs 28 QTLs were detected under stress conditions. Two independent QTLs were 

detected for plant height under stress on chromosome numbers CE7 and CE2 which explained 

phenotypic variance of 30% and 21% respectively. Under recovery stable QTLs were found 

for plant height on chromosome CE5 and one on chromosome CE9. Number of main stems 

had a stable QTL on chromosome CE4 under stress and recovery treatments. Along with 

other QTLs on Chromosome CE4, CE9 and CE2 very stable QTLs were found across the 

treatments for shoot fresh, dry weight, tuber number and tuber weight on chromosome CE5.  

For the physiological parameter δ13C a total of four QTLs were detected, including one on 

chromosome CE10 under well-watered and stress conditions. When the experiment was 

repeated new QTLs were found on chromosome CE4, CE1 and CE9. Epistasis between QTLs 

for δ13C was analysed by two-way analysis of variance (ANOVA). Significant interaction 

(P<0.005) was detected between the QTLs on chromosome CE1 and CE9, with total variance 

explained by these two chromosomal regions was 28%. Two independent QTLs on 

chromosome CE10 and CE4 explained 24% and 19% of variance respectively. On 

chromosome CE10, the δ13C QTL co-localized with QTLs for Chlorophyll Content, on 

chromosome CE1 with dry biomass under stress, on chromosome CE4 with root traits like dry 
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weight, root length under stress and tuber weight under recovery conditions. On chromosome 

CE9 the δ13C QTL was detected in between QTLs for shoot fresh weight under stress and 

plant height under recovery. Under stress, a QTL on linkage group CE1 for Chlorophyll 

Fluorescence explained 20% of the phenotypic variation. Three dependent QTLs were 

detected for Chlorophyll Content. One major QTL was found on chromosome CE10 for 

Chlorophyll Content at different time points during the stress period, along with two other 

QTLs on chromosome CE2 and CE4.  

Root length and root dry weight had QTLs co-localizing on chromosome CE4 under stress. 

Under recovery however QTLs for root dry and fresh weight and root length were found on 

chromosome CE5. Two independent QTLs were detected for dry biomass under stress on 

chromosome CE5 and CE1 capturing 24% and 15% of phenotypic variation respectively. Dry 

biomass QTLs co-localized with other traits on chromosome CE5 and on CE1 with δ13C.   

 

Discussion 

Genetic variation of parameters under stress and recovery  

We screened a diploid potato mapping population for drought tolerance and recovery 

potential. Most of the drought tolerance traits are quantitative and difficult to measure in a 

large number of plants and segregating lines. Indeed the genetic part of the phenotypic 

variation is often masked by the environmental differences acting on the trait, which in turn 

makes it difficult to manage the trial and perform relevant measurements in a particular 

window of time. In the present study we measured a number of growth, physiological and 

yield parameters in the CxE diploid potato mapping population. There was significant 

variation for drought response among the progeny with clear treatment effects and interaction 

between treatment and genotypes under water stress and recovery conditions. Progeny 

showed extreme performances for all the traits when compared to the parents indicating 

transgressive segregation. The most plausible cause proposed for transgression is 

accumulation of complementary alleles at multiple loci inherited from two parents in the 

progeny (Tanksley, 1993). Moderate to high heritability was observed for shoot fresh weight, 

tuber number, tuber weight, plant height and δ
13C content under stress and recovery 

conditions. Heritability estimates provide the basis for selection on the phenotypic 

performance. Therefore, direct or indirect selection based on these traits may be helpful to 

improve drought resistance and recovery potential in potato. 



   

   

Table 2 Population mean values of the traits under control and drought treatments, analysis of variance for the traits under stress and well 

watered condition and relative reduction and heritabilities of the traits under drought condition. 

Two Way ANOVA (P values)  

Trait Year Control  Drought  Genotype (G) Treatment (T) G*T 

Relative 

 Reduction (%)  

Heritability 

 (%) 

Number of main stem 2008 4.30 4.13  < 0.001 NS NS 4.03 74.7 

  2009 3.46 3.12 <0.001 NS NS 9.83 59.5 

Shoot dry weight (g) 2008 21.03 12.34 <0.001 <0.001 <0.001 41.32 70.1 

  2009 17.51 10.36 <0.001 <0.001 <0.001 40.83 61.2 

Shoot fresh weight (g) 2008 259.30 102.50  < 0.001  < 0.001  < 0.001 60.47 79.8 

  2009 270.11 113.20 <0.001 <0.001 <0.001 58.09 56.5 

Plant height (Cm) 2008 137.30 98.28  < 0.001  < 0.001  < 0.001 28.42 64.0 

  2009 137.93 98.88 <0.001 <0.001 NS 28.31 49.3 

Tuber number 2008 7.17 3.21  < 0.001  < 0.001 0.002 55.23 73.2 

  2009 2.60 1.04 0.014 0.003 0.021 60.00 70.6 

Tuber weight (g) 2008 33.79 5.53  < 0.001  < 0.001  < 0.001 83.65 69.2 

  2009 10.16 1.06 <0.001 <0.001 <0.001 89.57 65.1 

δ
13C ( ‰) 2008 -31.61 -30.28  < 0.001  < 0.001 0.032 4.21 58.2 

  2009 -30.48 -29.78 0.034 <0.001 NS 2.29 22.6 

RWC (%) 2008 83.95 58.73 0.004 <0.001 NS 30.04 36.8 

Root dry weight (g) 2009 1.36 1.07 <0.001 0.012 NS 21.32 41.5 

Root length (Cm) 2009 30.62 24.84 <0.001 <0.001 0.011 18.88 45.1 

Root: shoot ratio 2009 0.07 0.11 <0.001 <0.001 NS -43.50 42.3 

Number of stolons 2009 5.84 4.09 <0.001 <0.001 NS 29.97 52.3 

Dry biomass (g) 2009 18.87 11.43 <0.001 <0.001 <0.001 39.43 60.0 
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Table 3 Pearson coefficient of correlations among the traits under drought stress at significance levels *Significant at P≤ 0.05; ** 

Significant at P≤ 0.01; *** Significant at P≤ 0.001 

 

Trait 
δ13C Nr main 

stems 

PM RDW R: S wt SDW SFW Tuber wt Dry biomass Nr main 

stems 

Nr 

tubers 

Pl ht 

Nr stolons 0.400 * -           

PM -0.003 0.005 -          

RDW 0.473*** 0.319 -0.277 -         

R: S wt 0.109 0.057 -0.022 0.247 -        

SDW 0.370* 0.26 -0.337 0.814*** -0.34 -       

SFW 0.264 0.08 -0.307 0.669*** -0.358* 0.873*** -      

Tuber wt 0.187 0.444* 0.012 0.17 -0.077 0.187 -0.078 -     

Dry biomass 0.385* 0.27 -0.337 0.844*** -0.292 0.867*** 0.868*** 0.188 -    

Nr main stem 0.031 0.144 0.196 -0.314 -0.302 -0.138 0.048 0.1 -0.156 -   

Nr tuber 0.244 0.542*** 0.025 0.188 -0.141 0.246 0.047 0.935*** 0.244 0.177 -  

Pl ht 0.525*** 0.148 0.024 0.518** 0.125 0.353 0.231 0.156 0.373 -0.193 0.157 - 

Root length 0.284 -0.048 -0.206 0.628*** 0.443** 0.338 0.265 -0.117 0.369* -0.410* -0.21 0.395* 

 

Traits were Number of stolons (Nr stolons), Plant maturity (PM), root dry weight (RDW), root to shoot day weight ratio (R:S wt), shoot dry weight 

(SDW), shoot fresh weight (SFW), shoot to root length ratio (S:R length), tuber weight (Tuber wt), number of main stem (Nr main stem), number of 

tubers (Nr tubers) and plant height (Pl ht). 
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QTL analysis of Physiological and growth parameters 

The central objective of this study was to identify QTL regions underlying important 

physiological and growth parameters under water stress and recovery treatments.  We found 

multi-year as well as multi-treatment QTLs for drought response and recovery potential. We 

identified several QTLs for carbon isotope discrimination under well- watered and water 

stress conditions. The results indicate that four genomic regions are involved in δ13C 

variation. As would be expected from the complex nature of a trait representing the ratio of 

two major processes, carbon assimilation (A) and transpiration (T), the control of δ13C is 

strongly polygenic in potato. Any gene(s) that affects either A or stomatal conductance (gs) 

can have an effect on δ13C. No single, large-effect QTL was identified, and QTLs breaking 

the strong correlation between A and T have not yet been discovered in potato. Moreover, 

temperature and relative humidity have a significant impact on T, influencing QTL detection 

 for δ13C. Understanding the inheritance of δ13C is crucial for the development of cultivars 

with high WUE via selecting high δ13C lines. Several studies have demonstrated that genetic 

variation in δ13C can be attributed to nuclear factors, and QTLs for δ13C have been reported in 

many species including Arabidopsis (Juenger et al., 2005; Masle et al., 2005), tomato (Martin 

et al., 1989), rice (Laza et al., 2006; Takai et al., 2006), soybean (Specht et al., 2001), cotton 

(Saranga et al., 2004)  and barley (Handley et al., 1994; Teulat et al., 2002).  

 

We found a highly significant positive correlation between δ13C and plant height under 

drought. Variation in development and plant height has been shown to affect δ13C across 

different plant species. Plant height and flowering date could strongly influence yield 

dependent variation in δ13C (Laza et al., 2006; Ehdaie et al., 1991; Hall, 1994; Mckay et al., 

2003). Phenology and stature also affect plant growth to change biomass and water use under 

drought, particularly when drought is terminal (Richards et al., 2002). However, the 

physiological basis for the relationship between δ
13C and plant height is unclear. In addition, a 

significant positive correlation was found between δ
13C and dry biomass of the foliage of the 

plant, in agreement with studies from Jefferies and Mackerron (1994) and Jefferies (1995a) 

who found a positive correlation between dry matter production and δ13C in two main crop 

cultivars of potato.  

 

Carbon isotope composition (δ13C) as a selection criterion for drought tolerance improvement 
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has been largely documented in cereals, where it has been argued that molecular markers 

linked to genetic factors controlling δ13C could enhance selection in breeding programmes 

(Condon et al., 2004). The recent release and success of two wheat cultivars with high WUE 

namely Rees and Drysdale for production in rainfed wheat growing regions of Australia 

demonstrate that it is effective to breed for water-use-efficient cultivars by selecting for δ13C  

(Richards, 2006). The major advantage of using δ
13C over instantaneous measurements is that 

sampling is fast and easy with minimal tissue destruction. Sampling can thus be performed in 

a short time window, which is more preferable for breeding programs. It is also possible to 

measure gas exchange parameters directly, which would give more detailed information on 

the assimilation and transpiration. However, these measurements are time-consuming, and not 

practically applicable in a large population.  

 

Leaf RWC may be used for indirect selection for drought resistance (Chandrasekar et al., 

2000). RWC is a measure of plant water status, which represents also variation in water 

potential, turgor potential and osmotic adjustment. RWC is closely related with cell volume; it 

may more closely reflect the balance between water supply to the leaf and transpiration rate 

(Schonfeld et al., 1988). This influences the ability of plant to recover from the stress and 

consequently affects yield and yield stability (Lilley and Ludlow, 1996). This parameter can 

also be easily determined, and therefore be applied for use in large populations. Significant 

decreases in RWC upon water stress were observed in our study. This result confirms earlier 

findings in potatoes (Jefferies and Mackerron, 1989; Liu et al., 2005). However, no QTLs 

were detected for RWC under well-watered and water stress conditions.  
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Figure 5 Location of the QTLs on the C x E integrated map. Only the linkage groups (chromosomes) 
with QTLs are shown. The number on the left side is the genetic distance in centiMorgans (cM), 
marker designations are given on the right side. QTLs are shown at the right side in vertical bars with 
trait names in different colors for different treatments (Green: well watered, Red: Stress, and Blue: 
Recovery).The solid vertical bar shows the 1-LOD interval and the dotted line 2-LOD intervals.  
 

Several studies have reported on a genotype dependent decrease of fluorescence quantum 

yield (Fv/Fm) in potato under drought and small decreases were associated with drought 

tolerance, at least in early maturing varieties (Van der Mescht A., 1999). Ranalli et al. (1997) 

showed clone-specific variation in CF in drought-exposed potato with a high association with 

tuber yield. In the current study drought stress affected chlorophyll fluorescence parameters. 

The decrease in Fv/Fm may result from photoinhibition under stress (Baker and Horton 

1987). A decline in Fo could reflect damage to regulatory processes external to P680 (reaction 

center of PSII), such as impairment of photoprotective processes that facilitate the dissipation 

of excess energy with the leaf (Angelopoulous et al., 1996). A reduction of Fv/Fm represents 

either a reversible photoprotective downregulation or irreversible inactivation of PSII (Baker 

and Bowyer 1994; Long et al., 1994). Our results revealed significant differences in 

chlorophyll fluorescence parameters between genotypes and treatments. Although interaction 

between genotype and treatment was observed in our experiment, the results were not 

consistent at different time points. Schafleitner et al., (2007) showed that there were no 
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significant differences in CF between potato clones and treatments in a field trial but the same 

clones in the greenhouse showed significant difference under stress, demonstrating the 

environmental impact on CF measurements. We found that as severity of the stress increased 

the heritability of Fv/Fm was decreased. In agreement with Jefferies (1992) and Zrůst et al. 

(1994) our results also indicated that as severity of the stress increased the Fv/Fm decreased 

as shown in Figure 3. Hence, CF provides rapid indicators and a method for the study of 

changes in photosynthetic capacity of the potato in response to water stress. In the present 

drought response study, an Fv/Fm QTL was detected on chromosome CE1, which is adjacent 

to QTLs for dry biomass and δ13C under stress. Whether there is a causal relationship between 

these QTLs remains to be established. 

 

Chlorophyll is one of the major chloroplast components associated with photosynthesis, and 

relative chlorophyll content has a positive relationship with photosynthetic rate in barley (Li 

et al., 2006). Whether a higher chlorophyll content (i.e. stay green trait) contributes to yield 

under drought conditions is still under debate (Blum, 1998). Many studies in cereals indicate 

that the stay green trait is associated with improved yield and transpiration efficiency under 

water limited conditions (Borrell et al., 2000; Haussmann et al., 2002; Verma et al., 2004). 

Therefore maintaining higher chlorophyll content for a longer period may be one of the 

strategies for increasing crop production, particularly under water limited conditions. Saranga 

et al., (2001) detected different chlorophyll content QTLs under well-watered and dry 

conditions in cotton. In the CxE population, there was substantial decrease in Chlorophyll 

Content as the severity of water stress increased (Fig 4). Three independent genomic regions 

were associated with CC, which may contribute to improved chlorophyll stability under 

drought. One QTL co-localized on chromosome CE10 with δ13C, which also relates to 

photosynthesis. Other QTLs co-localized on chromosome CE2 with plant height under stress 

and on chromosome CE4 with number of stems and shoot dry weight under stress, suggesting 

a relationship of chlorophyll content with growth parameters of plant. 
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Table 4 Main characteristics of QTLs with a LOD score >4.2 for the traits under well 
watered, water stressed and recovery conditions. 
 

Name of the trait Year Treatment 
Linkage 
group 

LOD 
score 

Interval 
(cM) 

% variation 
explained 

Number of stem 2008 Stress 4 4.3 54-64 19.2 
  2009 Recovery 4 5.07 47-55 15 

Plant height 2008 Stress 2 7.05 77-102 21.9 
    7 6.5 59-71 30.9 
  2008 Recovery 5 4.83 34-48 26.2 
  2009 Stress 7 6.57 93-98 18.3 
  2009 Recovery 9 8.8 38-45 56.7 
      5 6.09 26-40 6.9 

Shoot fresh weight 2008 Stress 5 11.34 26-48 42.3 
    9 7.74 16-30 24.6 
  2008 Recovery 5 14.37 26-40 57.9 
  2009 Stress 5 5.1 47-60 21.6 
  2009 Recovery 5 14.95 26-43 60.6 

Shoot dry weight 2008 Stress 4 4.99 59-71 22.4 
  2008 Recovery 5 8.7 35-48 28.8 
    2 4.98 55-65 10.8 
  2009 Stress 5 4.6 54-62 20.2 
  2009 Recovery 5 7.89 26-44 35.3 

Tuber number 2008 Stress 5 10.7 26-39 40.8 
  2008 Recovery 5 15.74 26-39 58.3 
  2009 Stress 5 6.05 20-39 25.9 
  2009 Recovery 5 14.6 32-39 51.1 

Tuber weight  2008 Well watered 5 16.4 26-39 66.7 
  2008 Stress 5 10.48 20-39 40.2 
  2008 Recovery 5 13.19 26-39 40.7 
    4 4.96 23-35 9.1 
  2009 Stress 5 7.7 20-33 28.8 
  2009 Recovery 5 15.12 33-39 52.3 
δ

13C 2008 well watered 10 5.2 63-74 22.8 
   Stress 10 5.62 47-58 24.3 
  2009 well watered 4 4.8 14-21 20.7 
  2009 Stress 4 5.1 14-22 18.9 
    9 4.55 34-40 12.7 
      1 4.1 15-37 15.7 

Root fresh weight 2009 Recovery 5 6.54 26-48 35.3 
Root dry weight 2009 Stress 4 5.62 0-18 24.7 

    6 5.35 77-87 17.8 
  2009 Recovery 5 8.26 26-43 33.3 

Root length 2009 Stress 4 4.48 25-36 19.2 
  2009 Recovery 5 8.09 26-35 36.3 

CF 2009 Stress 1 4.57 54-63 19.7 
CC3day 2009 Stress 2 7.21 89-102 16.4 

    10 6.95 64-75 15.4 
      4 5.47 47-58 12.2 

CC8day 2009 Stress 10 4.76 82-95 20.8 
Dry biomass 2009 Stress 5 6.81 51-62 23.9 

      1 4.5 29-47 15.3 
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Association of QTLs of different traits 

Tuber yield cannot be assessed properly in the early stages of plant growth within selection 

processes of a breeding programme. However, physiological and agronomical or 

morphological parameters measured in the drought-stressed plants may affect tuber formation 

and bulking at a later stage, and may thus be related to tuber yield performance. Tuber yield 

was determined by total tuber weight per plant. In our study tuber dry matter content was 

highly correlated with root and shoot fresh weights, root length and δ13C under stress 

conditions. Genetic factors which control plant biomass (shoot, root fresh and dry weights) 

and δ13C may affect tuber weight and therefore, tuber yield, which would be reflected by 

localization of QTLs for these traits in the same genomic regions. 

 

Time to plant maturity and tuberization are related physiological traits, which are controlled 

by genetic factors as well as day length. In the present study time to plant maturity and 

tuberization are also significantly correlated with shoot and root dry matter content but only 

under well-watered conditions and after alleviation of stress. Many researchers (Berg et al., 

1996; Schäfer-Pregl et al., 1998; Šimko et al., 1999) identified major QTLs for plant maturity 

on linkage group V in independent mapping populations. On chromosome CE5 we also found 

stable QTLs for plant biomass, dry matter content under stress, plant height, tuber number and 

tuber weight under recovery. The genetic effects were mostly stable over years in a 

greenhouse environment. These findings suggest that gene(s) with pleiotropic effects on plant 

growth, tuberization, plant maturity and tuber yield are located on potato chromosome 5.   

On chromosome 10, a QTL of δ13C co-localized with a QTL for Cholorophyll Content under 

stress as assessed with SPAD meter readings under stress. SPAD meter reading is a good 

indicator of chlorophyll stability, leaf N and RuBisCo content. These parameters help to 

evaluate photosynthetic processes, which in turn have possible effects on inter cellular CO2 

concentration (Ci) and δ13C. Several QTLs for δ13C overlap with the QTLs for other 

physiological traits and or for yield components. 

 

QTLs for root dry weight or root dry mass and root length were colocalized with independent 

QTLs for δ13C under water stress on chromosome CE4, together with a QTL for tuber weight 

under recovery condition. This co-localization of QTLs is in agreement with previous 

research showing that tuber yield, reduction of stomatal conductance, photosynthesis and leaf 
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area significantly correlate to root dry mass under water deficit conditions. Consequently, root 

mass or traits associated with root dry mass could be used as a selection criterion for 

enhancing tolerance of potato to drought (Iwama, 2008; Lahlou and Ledent, 2005). The 

measurement of the root system is tedious and destructive and thus focusing on shoot or other 

physiological traits highly correlated with root traits and their QTL co-localization may be 

another possibility of assessing root traits indirectly. We found that root dry mass and root 

length highly correlated with plant height and shoot fresh and dry masses under water deficit 

and recovery conditions. Hence, the co-localization QTLs for root dry mass and root length 

on chromosome CE4 and CE5 with other physiological and growth traits may be of further 

interest for indirect selection criterion for root traits. 

In this study, all these associated traits and their co-localized regions are of interest in terms 

of plant breeding as they control both important drought-adaptive traits and yield components. 

Confirmation of the influence of these genomic regions by refining the map or observing 

similar effects in different populations could help to elucidate biological processes underlying 

complex traits such as yield or yield stability.  

 

QTL x E interaction 

Variations in climatic conditions are expected to have significant influence on δ13C values 

(Merah et al., 2001). This was the case in the present study, in the 2008 trial a δ13C QTL was 

detected on chromosome CE10. While in the 2009 trial three new QTLs were detected on 

chromosome CE1, CE4 and CE9 and the QTL on Chromosome 10 was not detected. The fact 

that the different QTLs were identified for δ13C in successive years suggests that QTL x 

Environment interactions influenced the expression of trait. Documented differences in 

environmental conditions between the two years were observed in the greenhouse particularly 

in terms of temperature and relative humidity. Whelan et al., (1973) showed increasing 

discrimination by 1.2‰ per °C rise in temperature. The basis of the biochemical 

discrimination against 13C in C3 plants lies with the primary carboxylation enzyme ribulose-

1,5-bisphosphate (RuP2) carboxylase. At a fixed ambient CO2 concentration, δ13C is 

negatively associated with the intercellular CO2 concentration (Ci). At any moment in time, 

the Ci is also negatively correlated with leaf transpiration rate (Hall et al., 1994; Farquhar and 

Richards, 1984). Under water limitations, leaf transpiration efficiency is the major 

determinant of long term plant WUE. Under drought conditions a typical response of plants is 
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simultaneous decrease in photosynthesis and transpiration due to altered leaf conductance 

(Farquhar et al., 1982). If the supply function (leaf conductance) decreases at a faster rate 

under stress than the demand function (photosynthesis), this effect should be measurable as 

either an increase in carbon isotope composition or correspondingly as decrease in carbon 

isotope discrimination. In the present study an increase in δ values was observed under 

drought stress. In the 2009 trial severity of drought was higher mainly because of higher 

temperatures and lower relative humidity when compared to the previous year. We speculate 

that the δ13C QTL on chromosome CE10 specific for the 2008 trail is mainly representing the 

demand function (photosynthesis) which in turn co-localized with QTL for chlorophyll 

content which is a good indicator of leaf N and Rubisco content. In the 2009 trail, the higher 

average temperatures and greater vapour pressure deficit of the air may have acted more on 

stomatal conductance resulting in higher δ
13C.  The δ13C QTLs that were detected on 

chromosome CE4, CE1, and CE9 may therefore represent supply functions. Previous reports 

in wheat and rice documented that variation in temperature, vapour pressure, stomatal 

aperture and leaf conductance were identified as driving variation in δ13C and thereby water 

use efficiency (Condon et al., 1992; Dingkuhn et al., 1991; Kondo et al., 2004). Further 

studies are needed to understand precisely how temperature, humidity or vapour pressure, 

light intensity and other environmental factors contribute to expression of WUE at different 

stages in potato plant development, to dissect the δ
13C trait in more detail in different 

components and to confirm whether the QTL identified in this study are stably expressed in 

other environments.  

 

QTLs and their implications 

QTLs identified by genetic dissection of complex characters such as drought tolerance can be 

used in marker assisted breeding which may ultimately improve selection efficiency for yield, 

reduce problems associated with genotype x environment interactions, and facilitate 

combining different tolerance traits into a single genotype. For any trait to be used as an 

indirect selection criterion in breeding programs, its measurement should be easy, rapid and 

non-invasive. Such an indirect measurement should have a high genetic correlation with the 

trait that is being selected for and it should have a high heritability. In our study physiological 

parameters like RWC, chlorophyll content, δ
13C, and chlorophyll florescence provide rapid 

indicators of drought stress, and methods for the study of the response to water stress of 
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potato. These physiological parameters as well as plant growth and yield parameters had 

moderate to high heritabilities and may be of interest to breeders. From our initial QTL 

studies, response of a potato plant to water stress appears to be strongly quantitative and 

controlled by many genetic factors rather than a few loci of large effect. The strong 

multigenic nature of the traits and the transgressive variation observed in our mapping 

population suggest that even lines that do not themselves have high trait value for WUE, tuber 

number or tuber weight might still contribute favourable alleles. Related wild species might 

similarly have unique alleles that would be valuable for improvement of potato for drought 

tolerance. This study constitutes the first knowledge of genetic determinism of important 

physiological and growth parameters under drought stress and recovery potential in potato. To 

confirm whether the QTLs identified in this study are stably expressed in other environments 

multiple location field trials are necessary as well as analysis of these traits at variable growth 

stages in potato. Further efforts of QTL mapping in this population will focus on trait x QTL 

interactions. Sequence data from individual QTL and flanking regions can be compared to the 

forthcoming genome sequence of the heterozygous diploid line RH (RH 89-039-16) and the 

doubled monoploid DM1-3 516R44 (DM) potato genome sequence (www.potatogenome.net) 

to determine the putative candidate genes underlying drought and recovery-specific QTLs.  

 

Supplementary material  

 

Table S1 Population mean values of the traits recovery treatment, analysis of variance for the 

traits under stress and recovery condition and relative reduction and broad sense heritabilities 

of the traits under recovery condition. 

Table S2 Population mean values of the traits Chlorophyll florescence (Fv/Fm) and 

Chlorophyll content measured at series of time points during stress and recovery period, 

analysis of variance for the traits under stress and recovery condition and relative reduction 

and broad sense heritabilities of the traits under stress and recovery condition. 

Table S3 Coefficient of correlations for the traits under well watered condition (harvested at 

the end of stress period) *Significant at P≤ 0.05; ** Significant at P≤ 0.01; *** Significant at 

P≤ 0.001 

Table S4 Pearson coefficient of correlations for the traits after recovery *Significant at P≤ 

0.05; ** Significant at P≤ 0.01; *** Significant at P≤ 0.001 
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Abstract 

Potato is a very important food crop grown in many parts of the world but unfortunately it is 

sensitive to drought. Drought tolerant potato varieties would help to ameliorate the adverse 

affect of drought on potato yield. Drought tolerance however is a genetically complex trait 

that involves multiple genes and pathways. Breeding for drought tolerance therefore is a 

challenge, even more in a crop like potato that is heterozygous, tetraploid and outcrossing. 

Gene expression studies have shown that the expression of hundreds up to even thousands of 

genes are altered in response to drought stress. To understand the variation in drought 

tolerance found within a segregating potato population, a genome-wide transcriptome analysis 

was performed. For many genes, variation in expression could be explained by expression 

quantitative trait loci (eQTL). In total 24,571 significant eQTLs could be detected under 

normal growth and water stress conditions. 67% of the quantitatively controlled transcripts 

were qualified as cis eQTL’s, against 23% of trans-eQTL’s under normal growth conditions. 

Interestingly the number of trans eQTLs strongly increased under stress conditions and 

revealed genomic regions which were identified as hotspots for transcriptional regulation. 

Several thousands of eQTLs associated with large phenotypic variation were detected, but 

trans acting eQTLs had small phenotypic effects (R2 <0.2). Based on gene ontology, eQTLs 

were classified based on sequence homology with well known drought responsive genes such 

as transcription factors, signaling molecules, redox genes, chaperones and transporters.  A 

subset of identified eQTLs co-localized with phenotypic trait QTLs measured under drought. 

To our knowledge, this is the first global eQTL mapping study under control and water stress 

response in potato. It reveals that the genetic control of transcript level in potato is highly 

variable and complex in response to drought. This approach yielded information that leads to 

the genome-wide identification of putative candidate genes involved in drought tolerance 

their distribution, regulation and identification of putative candidate genes underlying 

phenotypic trait QTLs for drought response.  

 

Key words:eQTL, drought, genome-wide, potato, transcriptome profiling 
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Introduction 

Genetic variation underlying differences in transcript levels contributes considerably to 

phenotypic differences and divergence between species and their ability to cope with stress 

conditions in nearly all organisms studied (Whitehead and Crawford 2006). Drought tolerance 

is a genetically complex adaptation of plants to adverse conditions that involves multiple 

genes and pathways (Shinozaki and Yamaguchi-Shinozaki 2007). Several studies have 

focused on the molecular response of plants to water stress using the model plant Arabidopsis 

thaliana (Ingram and Bartels 1996; Shinozaki and Yamaguchi-Shinozaki 1997). Gene 

expression studies have shown that expression levels of hundreds up to even thousands of 

genes are altered in response to drought stress (Ozturk et al 2002; Talame et al 2007; Zhou et 

al 2007).  

Three basic types of transcriptional changes can occur in response to drought stress. A plant 

suffers the effect of drought physiologically through decreased hydraulic conductance and 

loss of cell turgor resulting in reduced photosynthetic activity, growth and development (Lu 

and Neumann 1999; O’Toole and Cruz 1980). The plant adapts the expression of genes 

encoding the proteins that function in these metabolic processes to the changing conditions 

(Bray 2002). Secondly, the cellular disequilibria brought about by disrupting normal 

metabolism causes the accumulation of reactive oxygen intermediates resulting in changes in 

transcription in defense pathways (Mittler 2002; Ramanjulu and Bartels 2002). A third effect 

is transcriptional changes that bestow the ability to endure dehydration through a physio-

chemical change in cell structure or water potential (Ingram and Bartels 1996; Tripathy et al 

2000). These alterations in expression levels are complex and varying widely depending on 

the magnitude and duration of the drought stress (Drame et al 2007). Such complexity makes 

understanding the genetic mechanisms of drought tolerance a major challenge.  

Improvements in quantitative trait loci (QTL) mapping methodology have led to increased 

understanding of the genetic complexity and location within plant genomes of genetic 

determinants of traits conferring drought tolerance ( Campos et al 2004; Tuberosa and Salvi 

2006). However, despite considerable efforts in QTL mapping the underlying molecular basis 

of most quantitative traits remains unknown. 

 

Rapid advances in the field of molecular biology and genomics methodologies 

(transcriptomics, metabolomics, and proteomics) have led to the availability of approaches 
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that can help to better identify and understand the nature of genes, metabolites or proteins and 

their networks underlying quantitative traits of interest. One of the more successfully used 

approaches is transcriptome profiling using microarrays. Several studies of gene expression 

profiling using cDNA or oligo microarray technology has advanced our basic understanding 

of gene regulatory networks that are active during the exposure of plants to drought stress 

(Seki et al 2001; Chen et al 2002; Kawaguchi et al 2004; Swindell 2006; Ma and Bohnert 

2007, Zhou et al 2007; Drame et al 2007, Vasquez-Robinet et al 2008).  

Another level of integration is added to these genome-wide expression analyses by including 

genetic information to the expression data as described in the concept of “genetical genomics” 

(Jansen and Nap 2001). In this concept, variation in gene expression or metabolite content is 

associated with marker information in mapping populations. Within a population, variation in 

mRNA transcript abundance can be treated as a heritable trait that is subjected to statistical 

genetic analysis and can lead to the identification of a so-called expression QTL (eQTL).  

 

Expression variation of a gene can either derive from sequence variation that lies within or in 

the close proximity of the gene (cis eQTL) or indirectly from a distant location on the genome 

(trans eQTL). Genes underlying trans eQTLs are assumed to encode trans acting factors like 

transcription factors that control the expression of the target and potentially the correlated 

expression of several functionally related genes. Expression QTL studies are gaining 

importance in plant genetics because they represent a potential approach to shortcut the 

tedious process of positional cloning, especially for genes underlying quantitative traits 

(Hansen et al 2008). Several large scale expression profiling studies have shown the potential 

of the methodology to generate the information required to construct a robust and 

comprehensive sequence based genetic framework map (West et al 2007; Luo et al 2007; 

Potokina et al 2008), and provide data for eQTL analysis that is directly coupled to candidate 

gene identification (Shi et al 2007, Druka et al 2008). Furthermore, the eQTL datasets can be 

potentially used to explore complex networks between genes and which may significantly 

lead to unravel the complexity underlying specific biological phenomena (Jansen et al 2009).  

    

Potato is the third most important food crop in the world after rice and wheat but its 

production is hampered by drought stress in most growing regions. Several wild species of 

potato growing in its centers of origin in South-America have been adapted to harsh 
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environments at high altitudes above 3,000 meters above sea level and are regularly exposed 

to water-scarce conditions (Schafleitner et al 2007). Recently high quality expression 

profiling platforms have been established for potato (Kloosterman et al. 2008), and Vasquez-

Robinet et al (2008) successfully employed microarrays to capture transcriptional changes in 

drought response in two Andean potato genotypes. Therefore, the tools are available for a 

genetical genomics approach in potato to elucidate genes and networks that underlay QTLs 

for drought tolerance traits.  

In this study, the concept of eQTL mapping was applied to a diploid potato population that 

had previously been used for QTL mapping of physiological and morphological traits for 

drought response (Chapters 3 and 4). Population-wide expression profiles were generated and 

analyzed in order to i) determine the general changes in gene expression in response to water 

stress, ii) to asses and report on the genome wide genetic architecture of transcript-level 

variation under optimal and water deficit conditions iii) to determine the transcriptome-wide 

expression pattern of genotypes and of the position of eQTLs and iv) to identify candidate 

genes underlying phenotypic QTLs for drought tolerance.  

 

Material and methods 

 

Plant materials and drought treatment 

Tubers of a core set of 94 CxE progeny and their parents were planted in pots under 

greenhouse conditions. CxE is a diploid potato mapping population of nearly 250 genotypes 

was developed from a cross between C and E. Clone C is a hybrid between S. phureja 

PI225696.1 and S. tuberosum dihaploid USW42. Clone E is the result of a cross between 

clone C and the S. vernei-S.tuberosum backcross clone VH34211 (Celis-Gamboa 2002). Eight 

replications were maintained under completely randomized design. Irrigation was withheld 

for 6 replications starting from the stolen initiation stage. Two replications were maintained as 

controls with optimal irrigation until the end of the experiment. Leaf samples were collected 

for RNA isolation after 4 at which first wilting symptoms were observed (early response) and 

9 (late response) days of drought stress. 

 

RNA isolation 

Approximately 0.5g of frozen leaf tissue was ground to a fine powder in liquid nitrogen. 
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Aliquot of 5mg of grounded leaf tissue was used for RNA extraction.  RNA was isolated 

using the KingFisher Flex system and the MagMAX™-96 Total RNA Isolation Kit according 

to the manufacturer’s instructions. The extracted RNA solutions were treated with DNase I, 

(Amplification Grade –Invitrogen) and quantified using a NanoDrop ND-100 

spectrophotometer (Thermo scientific). RNA quality was visualized with 1% agarose gel 

electrophoresis and samples were stored at -80ºC until use. 

 

Microarray hybridization 

200ng of total RNA was used to synthesize cRNA according to the Agilent two-color 

microarray-based gene expression analysis protocol. The non-stressed samples were labelled 

with the Cy3 dye and stress RNA samples labelled with the Cy5 dye. Labeling efficiency was 

estimated spectrophotometrically using the NanoDrop ND-100 (Thermo scientific).  Control 

(Cy3) and stress (Cy5) labelled cRNA of the same genotype was hybridized to the potato 

oligo array based on the Agilent 60-mer oligonucleotide platform (Kloosterman et al. 2008) 

and washed following manufacturer’s protocol (Agilent technologies). Hybridized slides were 

scanned using the Agilent G2505B scanner using the extended dynamic range setting. 

 

Statistical analysis and data mining 

Microarray images were imported into Agilent Feature Extraction software (V.9.1.3.1) and 

normalized using the standard two-color protocol. Different data sets were extracted for all 

hybridizations and were imported in GeneMaths (V 1.6.1) for visualization and further 

analysis. Transcript levels of 22,192 and 25,941 unique potato features passed the 

significance and filtering test in control and stress data sets. Data were treated in three 

different sets: Control samples (non-normalized (Cy3), stress samples (non-normalized) (Cy5) 

and control to stress (Cy3/Cy5) ratios (normalized). For control and stress data sets, filtering 

was applied to remove consistently lowly expressed genes and relevant expression was 

considered when raw intensities were a factor of 3 above background in at least 20 genotypes 

of the 94 individuals and parental lines. Using GenStat software (12th edition) quantile 

normalization was carried out across all arrays for the control and stress samples 

independently. After quantile normalization, expression values were log10 transformed. 

Previously calculated log ratio’s (control to stress) were filtered to contain only those features 

that are present in either cy3 or cy5 filtered data sets.  
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eQTL analysis 

Large scale eQTL analysis was performed using the R-program MetaNetwork (Fu et al 2007). 

Potato is an outcrossing species and therefore separate genetic maps for both parents have to 

be used in the analysis. Genetic maps used in the analysis were based on the genetic maps 

presented by Anithakumari et al. (2010) (Chapter 2). Genome-wide 1,000x permutation test 

was performed to identify the log p threshold corresponding to a genome-wide false discovery 

rate of 5% (α < 0.05). The genome wide log p threshold was 3.4 and 3.1 in C and E parental 

maps, respectively. 

The potato 60-mer oligonucelotides present on the microarray were derived from assembled 

EST unigene sets (Kloosterman et al 2008). Unigene sequences were blasted against the 

released potato genome database (www.potatogenome.net) and significant hits with potato 

scaffolds allowed the mapping of array feature on the genome. The majority of the large 

genome scaffolds have been anchored to the physical map of potato and were assigned to 

their respective chromosomes. Using the mapping information, identified eQTL’s can be 

classified as either cis- or trans-acting depending on whether their genetic position coincides 

with the physical position of the gene itself or not. In current study, as we are in initial stages 

of anchoring genetic markers to genome sequence, we differentiated trans QTLs when the 

physical location of gene is present on different chromosome.  For gene sequences that cannot 

unequivocally be assigned to any genome scaffold or reside on scaffolds that were not 

anchored to the physical map, no classification could be made.  

 

Results 

A pilot experiment was carried out to understand the variation in transcriptional changes in 

early and late response to drought stress using the microarray. Three progeny plants of CxE 

were selected depending on their phenotypic response (wilting) to water stress at 4 and 9 days 

after stress (DAS) initiation and differentially expressed genes were monitored and analyzed. 

Several hundred to thousands of genes were differentially expressed (induced and repressed) 

under stress (Supplementary Table1). The number of differentially expressed genes varied 

significantly between genotypes. Genotypes showed higher variation at 4 DAS than at 9 DAS. 

Though a higher number of genes were differentially expressed after 9 DAS, the difference 

between individual genotypes was lower at that time point. Therefore the early time point (4 

DAS) was chosen for genome-wide transcriptional profiling.  
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Table 1 Summary of eQTLs detected on parental maps under well-watered and water stress 
conditions. 
 
 

  Control Stress 

 C E C E 

Total eQTLS 8672 9384 8801 12163 

Unique in each map 6420 7132 6514 9876 

Common between parental maps 2253 2287 

Unique in each treatment 5893 8766 

Common between control and stress 9912 

Total of distinct eQTLS 24571 
 

Number of eQTLs detected and their genomic distribution 

To determine the effect of genetic factors involved in the regulation of expression in response 

to well-watered and drought stress conditions, we analyzed genome-wide gene expression in 

the parents and progeny of the CxE population. The majority of transcripts within the potato 

genome in well watered and drought stressed plants exhibited heritable variation in gene 

expression that is attributed to genomic regions visualized by an eQTL.  A total of 18,044 and 

20,964 eQTLs were detected under well-watered and water stress conditions respectively. 

After separation of common and unique eQTLs, a total of 24,571 distinct eQTLs were 

detected and the number of eQTLs detected per transcript varied from 0 to 3. Out of 24,571 

expression QTLs 24% of eQTLs were specific to non-stress conditions, 36% specific to 

drought-stressed plants and 40% of the eQTLs were detected under both conditions (Table 1). 

The positions of the eQTLs were well distributed across the potato genome. 

 

Cis vs Trans eQTLs 

To detect the position of genes and their eQTLs, the sequence of the differentially expressed 

genes was anchored to the potato genome physical map where possible.  Under well-watered 

condition for 67% of the eQTLs the position overlapped with the position of the gene itself 

and was thus classified as a cis-acting eQTL. In the same manner, identified genes showing 

eQTLs in genome positions other than their physical map position (different chromosome) 

were classified as trans-acting (Table 2). The number eQTLs were spread almost evenly 

across the 12 chromosomes of potato with a slightly higher number on chromosome 1. The 

significance and magnitude of cis-eQTLs varied from chromosome to chromosome and their 

distribution based on log p values is presented in Figure 1. Under drought conditions cis 
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eQTLs were more or less equally distributed over all chromosomes but trans eQTLs were 

non-uniformly distributed across the chromosomes, with the majority of eQTLs localized on 

chromosome 5 and 2 (43% and 14% respectively) (Table 3). The majority of individual 

eQTLs accounted for only a small proportion of the associated transcript estimated 

phenotypic variation (R2). Around 52% of eQTL had an estimated phenotypic effect R2 that 

was lower than 0.2 for each transcript (Figure 2a). Cis-eQTLs typically explain more of the 

observed differential expression than trans-acting eQTLs (Figures 2b and 2c). For example, 

3,885 (34%) cis eQTLs explained phenotypic variation between 10-20%. Around 580 (5%) 

cis eQTLs explained variation above 70% whereas for trans eQTLs a large number (86%) of 

eQTLs explains observed variation between 10-20% (Figure 2c). A minor number of genes 

with multiple QTLs showed both cis and trans eQTLs, and the physical position of 3,898 

genes were unknown.  

Table 2 Genome-wide eQTL analysis and eQTL distribution under well-watered conditions   
 

C map (Threshold log p 3.4) E map (Threshold log p 3.1) 

Chromosome cis trans unknown cis trans unknown Total  

1 804 521 108 609 146 50 2238 

2 528 168 66 642 363 73 1840 

3 661 68 60 564 237 82 1672 

4 462 140 73 678 181 91 1625 

5 468 235 72 525 359 86 1745 

6 497 90 67 387 85 42 1168 

7 605 141 81 301 36 20 1184 

8 461 99 76 260 55 50 1001 

9 352 90 50 598 325 104 1519 

10 389 44 67 599 194 115 1408 

11 494 61 67 344 208 52 1226 

12 309 127 59 597 235 91 1418 

Total 6030 1784 846 6104 2424 856 18044 

 

eQTL analysis of major drought-responsive genes 

A number of eQTLs were detected for known and well-characterized drought responsive 

genes such as genes encoding members of transcription factor gene families, signaling 

molecules, late embryogenesis abundant proteins, heat shock proteins, genes involved in 

protection of cell damage like redox genes such as peroxidases, catalases, super oxide 

dismutase, and genes involved in the drought inducible hormone ABA pathway. The eQTLs 

for transcription factors and signaling molecules were well distributed across the genome 
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(Figure 3a), whereas the eQTLs related to the phytohormone ABA pathway were detected 

only on chromosome 2, 5, 10 and 11. Genes with eQTLs associated with redox functions were 

detected on all chromosomes except chromosome 10. For all above-mentioned groups the 

majority of eQTLs clustered on chromosome 5 (Figure 3a). A most remarkable observation is 

that more than 90% of these eQTLs are trans eQTLs, so transcript variation was detected on 

chromosome 5 but the physical positions of the genes were found to be on other 

chromosomes in the genome. In fact, the genes were distributed across all other chromosomes 

as illustrated in Figure 3b. The highest percentage (18%) of genes whose expression was 

mapped on chromosome 5 were physically located on chromosome 1 and the lowest 

percentage was on chromosome 10 and 12 (6%).  
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Figure 1 Genome wide distribution of stress eQTLs with log p values. Number of eQTLs for each 
log p category (different colors) are indicated in the columns. 
 

eQTL analysis of differentially expressed genes (Control/Stress) 

The stress specific response of genes was analyzed by calculating the expression ratio of 

control to stress (control/stress). A total of 25,966 genes were considered to be differentially 

expressed which accounted for 61.7% of all genes present on the oligo array. From these, 

4,393 eQTLs were detected and distributed across twelve chromosomes as shown in Figure 4. 

Remarkably, a disproportionally large number of the eQTLs (3,119 eQTLs; 71%) were trans-
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acting. The control/stress ratio eQTLs were grouped into functional categories based on their 

ontology (Table 4). The functional class RNA processing, regulation of transcription had a 

high number of eQTLs. The majority of eQTLs belonged to signaling, protein degradation 

and cell wall, cell wall proteins, cell division functional classes. More than half of the genes 

could not be functionally annotated.  

Table 3 Genome-wide eQTL analysis and their distribution for drought stress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trans-eQTLs reveal transcriptional Hotspots 

Mapping of differentially expressed genes revealed several genomic hotspots for trans eQTLs 

as shown in Figure 4. These hotspots were detected mainly on chromosome 1 and 12 (C-map) 

and 2, 4, 5 and 12 (E-map). Under control conditions eQTLs were distributed evenly across 

all chromosomes, but under water stress conditions a large number of eQTLs were detected 

on chromosome 5. In total 4,592 genes which have variation in expression were mapped on 

the genetic map of chromosome 5 and more than 65% were trans eQTLs (Table 3). Hence 

this chromosome was considered to be an eQTL hotspot, and possibly a hotspot for 

transcriptional regulation under drought stress. 

 

Co-localization of eQTLs with phenotypic trait QTLs for drought response  

Several drought responsive phenotype QTLs under in vitro and greenhouse conditions have 

previously been identified in the CxE population (Chapters 3 and 4). A cluster of phenotypic 

traits colocalized on chromosome 4 and 5. We examined which eQTLs co-localized with 

C map (Threshold log p 3.5) E map (Threshold log p 3.2) 
Chromosome cis trans unknown cis trans unknown Total  

1 648 206 96 543 117 50 1660 
2 461 67 58 704 935 144 2369 
3 628 136 74 502 189 94 1623 
4 423 95 71 644 364 125 1722 
5 541 1041 156 663 1978 213 4592 
6 459 40 67 349 126 44 1085 
7 570 106 94 289 42 31 1132 
8 429 56 96 269 48 70 968 
9 335 185 72 595 317 123 1627 
10 354 53 84 551 116 111 1269 
11 498 151 91 343 253 75 1411 
12 270 39 51 641 399 106 1506 

Total 5616 2175 1010 6093 4884 1186 20964 
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major phenotypic trait QTLs and detected several hundreds of eQTLs co-localizing within 

phenotypic trait QTL intervals under drought conditions. Table 5 presents QTL regions with 

each 10 eQTLs mapping to the same region, along with the % of expression variance 

explained by each eQTL. Several interesting putative candidate genes were detected among 

these eQTLs. The eQTL for a gene that was annotated with a putative function in the 

photosystem II light reaction colocalized with trait QTL of chlorophyll florescence (Fv/Fm) 

on chromosome 1, along with other genes involved in drought response such as heat shock 

proteins and signaling proteins with known induced expression under stress conditions. 

On chromosome 4, around 500 eQTLs colocalized with phenotypic QTLs such as root length, 

δ13C, number of branches, root dry weight measured under water stress conditions, which 

covered almost half of the chromosome. Some of these eQTL genes belong to the putative 

functional classes of signaling, transcription factors of multiple gene families such as AP2, 

MYB, NAC, WRKY and genes involved in carbohydrate metabolism.  

 

Under water deficit conditions a considerably higher number of eQTLs were detected on 

chromosome 5 in comparison to control conditions. The majority of growth and yield 

phenotypic QTLs observed under water deficit and recovery conditions were associated with 

a region on chromosome 5 known to control plant maturity. Nearly 1,600 eQTLs colocalized 

with yield and growth trait QTLs. These eQTL genes represent diverse functional classes such 

as amino acid, carbohydrate and lipid metabolism, transport, signaling, redox, hormones and 

secondary metabolism.  

Phenotypic QTLs for chlorophyll content and δ
13C were located on chromosome 10 and at the 

same position we found eQTLs for genes involved in carbon partitioning, signaling receptor 

kinase, transcriptions factors and hormone and lipid metabolism (Table 5). Co-localization of 

eQTLs was detected for traits such as plant height, root dry weight, shoot fresh weight on 

other chromosomes as well (data not shown).  

The CxE population was evaluated previously under in vitro conditions for PEG induced 

water stress (Chapter 3). Several QTLs were detected under control and under PEG induced 

stress on chromosome 2.  In total 685 eQTLs were detected on chromosome 2 that colocalized 

with the cluster of QTLs measured under in vitro conditions (Chapter 2). Some of these 

interesting eQTLs are presented in Table 5.  
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Figure 2. Distribution of estimated phenotypic effect (R2) for all eQTLs. A distribution of R2 values 
for all 20,964 eQTLs is shown in intervals of 0.1, with minimum R2 of 0.12 and a maximum of 0.97. 
The two pie graphs (b and c) illustrate the distribution of % variation explained by cis (b, total 11,386) 
and trans (c, total 7059). The color scale to the right indicates the color categories for % explained 
variance. 
 
Discussion  
 
Transcript expression is in many ways an extraordinary phenotype with special attributes that 

can be of particular importance for genetic studies. The primary potential of genome-wide 

gene expression genetics is the total number of traits (variation in transcript abundance) that 

can be assayed simultaneously. In the current study, we unravel the complexity of transcript 

abundance in potato in relation to the early response to drought. The metabolic changes that 

occur in plants in response to dehydration stress are described in several reviews (Bray 2002; 

Ramanjulu and Bartels 2002; Zhu 2002). The large number of drought- or dehydration-

induced transcriptome changes underscores the difficulty in understanding the global context 
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of the drought stress response. As a first step to unravel the complexity of potato 

transcriptome changes under drought, we performed a genome wide eQTL analysis. A total of 

20,968 eQTLs were detected under stress of which 8,766 eQTLs were specific to stress 

treatment.  
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Figure 3 a) eQTL distribution of important drought response genes b) Distribution of gene locations 

of trans eQTLs on chromosome 5. 

For differentially expressed genes (control vs stress expression levels) a relatively low 

number of eQTLs (4,393) were detected when compared to the number of eQTLs identified in 

the control and water stress data sets. Interestingly, the majority of eQTLs for genes induced 
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or repressed by drought was trans-acting and most of them accumulated on chromosome 2, 4, 

5 and 12. The majority of differentially expressed genes showed a quantitative expression 

profile with complex inheritance patterns. This is because in general genes can be regulated 

by several independent factors, which may result in a trans eQTL. Because of the multiplicity 

of regulators and often observed epistasis, each trans eQTL is expected to have a relatively 

small effect as confirmed by our results (Figure 2b). In addition, compared to the local 

regulation of cis eQTLs, the variation in the expression of trans regulated genes is indirectly 

also determined by the expression variation of one or more regulators. As a result the detected 

number of trans eQTLs relative to the number of cis eQTLs drops when the stringency for 

detection is increased (Doss et al 2005).  

 

 

 
Figure 4 Genome wide eQTL distributions of differentially expressed genes between control and 
stress on parental genetic maps of C (upper) and E (lower)  
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In data sets of control and stress separately, we identified 24, 571 significant eQTLs with a 

genome-wide false discovery rate of 5% (α < 0.05) affecting the expression of 18,568 genes. 

Among the genes with variation, 89% have only one eQTL while the rest have two to three 

eQTLs; hence we have a higher number of eQTLs than genes. This also implies that 

genotypic differences in expression are often mainly determined by a single factor. When 

comparing the location of the eQTL to that of the gene itself in potato, under well watered 

conditions 67% of the observed eQTLs were cis and 23% were trans. The majority of the 

genotypic expression differences may therefore be determined by differences within the gene 

or its regulatory regions itself. Genetic variation in the promoter region is the most likely 

underlying reason for these cis eQTLs. Under drought stress however the number of trans 

eQTLs detected increased to 34% and cis eQTLs accounted for 55%. Several large scale 

microarray studies on plant eQTLs have been published in different plant species such as 

Arabidopsis (DeCook 2006, Keurentjes et al 2007; West et al 2007) maize (Schadt et al 2003; 

Shi et al 2007) wheat (Jordan et al 2007) poplar (Street et al 2006) eucalyptus (Kirst et al 

2004) and barley ( Potokina et al 2008 ). These studies report varying numbers of cis vs trans 

eQTLs. In one study one third of eQTLs were cis eQTLs (West et al 2007) and in another it 

was 50% trans eQTLs and 50% cis eQTLs (Keurentjes et al 2007). A study with a barley 

population found an intermediate value for number of cis and trans eQTLs when compared 

with studies in Arabidopsis (Potokina et al 2008). Overall the proportion and number of cis 

and trans eQTLs identified in an experiment depends on many factors such as the inherent 

genetic architecture of the population under study, the number of lines used, the degrees of 

replication and the external conditions or treatment (Hansen et al 2008). Across the different 

studies the number of eQTLs identified and their significance varies dramatically. In all these 

studies a complex inheritance is consistently observed for thousands of transcript traits.  

 

It is important to realize that sequence polymorphisms have been shown to influence the 

efficiency of hybridization between probe and target on arrays, causing Single Feature 

Polymorphism (SFP) (Rostoks et al 2005). These SFPs can cause a difference in the estimated 

transcript abundance of a specific gene (Luo et al 2007). The differences as found on the 

arrays are then not expression differences, but DNA variations in the region of probe 

hybridization. This is most likely only a complicating factor for the cis eQTLs, as the effect 

on the expression levels is caused by the gene itself. As potato is highly heterozygous, 
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variation in gene expression may also occur as the result of different hybridization specificity, 

making it even more complex in potato than in other species.  

 

Table 4 List of functional classes of differentially expressed gene (control/stress) eQTLs 
 

Functional class cis trans Unknown Total  

Amino acid metabolism. 19 42 5 66 

Cell wall.cell wall proteins, division , organisation 28 131 6 165 

Development. lea/storage 12 21 3 36 

DNA.synthesis/chromatin structure-histone, repair, unspecific 10 52 3 65 

Hormone metabolism. 25 62 5 92 

Lipid metabolism. 17 63 5 85 

CHO metabolism 16 41 3 60 

Metal handling 7 7 1 15 

Misc.cytochrome P450 14 22 6 42 

Misc. other  34 101 8 143 

Nucleotide metabolism. 7 21 1 29 

Mitochondrial electron transfer and PS light reaction, calvin cycle 9 44 4 57 

Protein. degradation 21 177 11 209 

Protein. postranslational modification 16 103 8 127 

Protein. synthesis.targeting 14 59 4 77 

Redox 9 26 1 36 

RNA. process, regulation of transcription 55 267 15 337 

Secondary metabolism 24 62 9 95 

Signalling 36 109 11 156 

Stress. abiotic 13 68 2 83 

Stress. biotic 16 20 9 45 

Transport 43 90 8 141 

Not assigned.unknown 49 2090 24 2163 

 

cis QTLs and trans QTL difference in R2 

In the present study cis and trans eQTLs are associated with different distributions of R2, 

which indicates that cis QTLs generally have a stronger effect on expression differences than 

trans QTLs. This was also observed in several other studies (West et al 2007, Wayne et al 

2004, Hughes et al 2006). A probable explanation for this observation is that the transcript 

abundance of most genes is regulated by multiple factors at multiple levels, like the 

expression levels of transcription factors, the posttranslational regulation of these factors, the 

cellular environment, and the genetic variation in regulatory regions of the target gene itself. 

Polymorphism in any one of these regulatory levels may be functionally limited to only a 



Chapter 5 

 94 

small change in transcript accumulation. Trans QTL genes are more likely to be regulated at 

multiple levels than cis QTL genes, explaining the lower average R2 for trans QTLs vs cis 

QTLs. Yet natural mutations in transcription factors can still generate large expression 

differences in genes regulated in trans by the transcription factor, so high R2 are not exclusive 

for cis QTLs. Polymorphisms in the promoter region of a gene can make the difference 

between expression or silencing and underlie a strong cis QTL with high R2, but may also 

have a more modulating effect for instance in efficiency of binding of transcription factors 

(resulting in lower R2). The polymorphism underlying a strong trans-eQTL does have greater 

potential to be pleiotropic than a cis-eQTL. Large-effect mutations in pleiotropic genes are 

more likely to be deleterious than mutations in less interconnected genes (Wright 1977; 

Turelli1988; Wagner 2000; Jeong et al 2001; Yu et al 2004). There may be an evolutionary 

fitness limitation on the potential genetic effect of polymorphisms that generate trans-eQTL 

hotspots. 

 

Stress response 

Among the eQTLs that were detected only under drought conditions, a large number of 

transcription factors and signaling molecules were identified that share homology with known 

genes previously studied in other species, proving some clues about putative regulatory and 

signaling pathways that might be involved in the drought response and drought tolerance in 

potato. These eQTLs were well distributed across the potato genome (Figure 3a and b).  

Expression QTLs for genes involved in biosynthesis and signaling of the stress hormone ABA 

as well as ABA activated genes were identified on chromosome 2, 5, 10 and 11 (Figure 3). 

The eQTLs for ABA biosynthesis genes were all trans-regulated, whereas signaling, ABA 

induced and response-regulating genes were cis-acting. The involvement of ABA in 

mediating drought stress has been extensively studied. ABA plays a critical role in regulating 

growth and plant water status through guard cells that mediate stomatal closure. In addition, 

genes that encode enzymes and other proteins involved in cellular dehydration tolerance are 

induced (Zhu 2002). Early work showed that ABA can act as a long distance water stress 

signal in sensing incoming soil drying (Davis and Zhang 1991). ABA produced in dehydrated 

roots is transported via xylem and regulates stomatal opening and leaf growth in shoots. 

Considerable progress has been made in the last decade in identifying ABA dependent and 

independent pathways (Zhu 2002; Shinozaki and Yamaguchi-Shinozaki 2007). Thus in many 
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ways ABA plays a pivotal role in whole plant responses to drought stress. Hence, ABA 

related cis eQTLs in our dataset may directly serve to identify potato genes important for 

ABA mediated drought stress tolerance, whereas trans eQTLs can help to identify the 

regulatory network of the ABA drought response pathway in potato. In addition, the eQTLs 

related to the ABA-dependent drought response pathway may be linked to metabolic changes, 

adding yet another functional level to the genes. 

 

Heat Shock Proteins (HSP) are a group of proteins that is induced in plants subjected to water 

deficit (Joshi and Nguyen 1996; Vierling 1991). HSP function as molecular chaperones that 

assist in protein folding and prevent protein denaturation (Zhu et al 1993). During stress HSP 

are necessary to protect proteins against aggregation and denaturation. Like the small HSP, 

LEA proteins are mainly low molecular weight (10-30kDa) proteins that are involved in 

protecting higher plants from damage especially during drought (Hong-Bo et al 2005). 

Several genes with homology to HSP and LEA varied in gene expression within the CxE 

population. Interestingly several of the identified eQTLs for those genes colocalized with 

phenotypic QTLs for drought response traits, leaving room for speculation on a role of these 

chaperones in response to water stress in potato and labeling them as putative candidate genes 

for drought tolerance.  

Drought affects root hydraulic conductivity which is mainly regulated by abundance and/or 

activity of water channel proteins (aquaporins). Aquaporins are channel-forming membrane 

proteins with the extraordinary ability to combine a high flux with high specificity for water 

(Javot and Maurel 2002). Transcript profiles of several aquaporins were identified in our 

study. These putative genes may be interesting for further study as candidates for drought 

tolerance; overexpression of an aquaporin (PIP1) gene in rice and tobacco plants conferred 

drought tolerance (Lian et al 2004; Yu et al 2005). Water deficit may also cause changes in 

post-transcriptional regulation of aquaporins. Aquaporin activity has been shown to be 

regulated by phosphorylation, divalent cations and pH (Luu and Maurel 2005). Also it is 

known that ABA modulates the expression of some PIP genes in roots and leaves (Suga et al 

2002; jang et al 2004; Zhu et al 2005).  

 
eQTL Hotspots 

As mentioned before, variation in the expression of differentially expressed genes was 

captured on particular genomic positions of the potato genome (Figure 4). In addition, under 
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stress conditions the majority of eQTLs accumulate on chromosome 5 (Table 3, Figure 1). 

Potato chromosome 5 is known to control plant maturity and affects a large number of 

phenotypic traits. The observed eQTL hotspot does however not coincide with the plant 

maturity locus. Further genetic dissection of each trans eQTL hotspot is needed to understand 

the biological function of such hotspots. These hotspots may reflect local gene-dense regions, 

in contrast to cold spots, which may reflect low gene density regions such as centromers. 

Alternatively, hotspots may contain master regulators such as transcription factors (gene 

controlling expression of many other genes). In addition, the hotspot on chromosome 5 in 

particular has a disproportionally high percentage of trans-acting QTLs.  The hotspot on 

chromosome 5 may contain key regulators of stress-induced changes. During drought stress 

and indeed other stresses, the plant needs to adapt its growth, physiology and metabolism in 

order to survive the adverse conditions. A genome-wide reprogramming is necessary. It is not 

unlikely that some of the key transcription factors that affect metabolic routes and 

biosynthetic pathways may present at the locations of the eQTL hotspots. Obviously these 

hotspots deserve extra attention for abiotic stress tolerance research, and may provide 

switches for adaptation to adverse conditions of the potato plants. 

 

Co-localization of Phenotype QTLs and eQTLs 

Phenotypic traits related to abiotic stress have proven to be quantitative and genetically 

complex, with multiple underlying genes and interactions among the loci as well as with 

environmental parameters. Several interesting putative candidate genes are detected in our 

study with their eQTLs co-localizing with phenotypic trait QTLs (Table 5). One such example 

is an eQTL on chromosome 1 of a gene encoding a photosystem II reaction center W protein 

which has a putative function in the photosynthesis light reaction. This eQTL co-localized 

with a QTL for the chlorophyll fluorescence parameter Fv/Fm. Drought induces a decrease in 

photosynthetic activity, which has been associated with photo damage of PSII reaction centers 

(He et al 2005). Chlorophyll fluorescence is widely accepted as an indication of the energetic 

behavior of PSII (Dau 1994). The potential quantum efficiency of PSII (Fv/Fm) is used as a 

reliable indicator to evaluate the metabolic imbalance of photosynthesis and yield 

performance across genotypes under water deficit conditions. Our results suggest that the 

photosystem II reaction center W gene may play a role in photosynthetic activity and affect 

the Fv/Fm parameter under drought. 
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Table 5 List of colocalized eQTLs with phenotypic trait QTLs (10 eQTLs from each linkage group are presented) 
 

Chromosome Phenotypic trait QTL QTLmk log p 
% variation 
explained 

QTL type (physical 
location of gene) Gene id on array Functional class 

PotSNP481 4.7 17.9 trans (9) MICRO.1149.C2 PS.lightreaction.photosystem II.PSII polypeptide subunits 

PotSNP392 15.1 50.8 cis MICRO.5413.C2 lipid metabolism.lipid degradation.Carnitine racemase 

PotSNP392 3.3 12.6 trans (2) MICRO.6010.C2 UDP-glucosyltransferase family 1 protein 

PotSNP481 5.6 21.5 cis SSBN003N09u.scf not assigned.unknown 
PotSNP392 9.7 35.9 cis bf_mxlfxxxx_0057g04.t3m.scf RNA.regulation of transcription.MADS box transcription factor  

PotSNP392 4.2 16.2 trans (8) MICRO.5912.C2 RNA.regulation of transcription.General Transcription 

PotSNP392 15 50.6 -- MICRO.919.C1 Signalling.G-proteins 

PotSNP481 12.5 43.9 cis MICRO.11727.C1 not assigned.unknown 
PotSNP392 4 15.2 cis MICRO.12105.C1 Stress.abiotic.heat shock protein 

1 
 Chlorophyll 
florescence 

PotSNP481 4.9 18.7 cis STMIF10TV RNA.regulation of transcription.C2C2(Zn) DOF zinc finger family 

  POCI_30301 18.2 57.8 cis cSTB30E7TH stress.abiotic.heat 

  PotSNP569 17.2 56.1 cis MICRO.327.C1 TF.APETALA2/Ethylene-responsive element binding protein  
Tuber wt recovery PotSNP1072 17.4 56 -- STMGE18TV not assigned.unknown 
Root length PotSNP1072 17.1 55.5 -- STMGI80TV not assigned.unknown 
root dry weight POCI_30301 16.8 54.7 cis MICRO.5064.C1 TF-NAC domain transcription factor family 
δ

13C PotSNP391 13.3 46.2 cis ACDA00306B06.T3m.scf stress.abiotic.drought/salt 
number of branches PotSNP391 13.2 46 trans (1) MICRO.171.C2 protein.postranslational modification 
Chlorophyll content PotSNP609 13.2 46 cis MICRO.14759.C1 protein.degradation.ubiquitin.E3.SCF.FBOX 
  PotSNP569 13 45.8 trans (5) MICRO.2200.C3 not assigned.unknown 

4 

  PotSNP815 13.2 45.8 trans (1) cSTD9O1TH not assigned.unknown 

  Mando 22.6 66.5 cis BF_TUBSXXXX_0036H03_T3M.SCF not assigned.unknown 

  StPho1b 21.8 66.3 cis MICRO.16058.C1 RNA.regulation of transcription.unclassified 

Tuber weight stress Sti032 21.9 66.1 cis bf_arrayxxx_0078f11.t7m.scf not assigned.unknown 

Tuber number stress Mando 17.7 57.1 cis MICRO.12780.C1 Late blight resistance protein homolog R1B-17 
Tuber nr  Recovery StPho1b 16.9 56.5 cis bf_swstxxxx_0052e03.t3m.scf not assigned.unknown 

Tuber wt recovery StPho1b 12.5 45.4 cis MICRO.765.C7 cell wall.cell wall proteins.RGP 

Root length Sti032 12.5 45.1 cis MICRO.9523.C1 redox.thioredoxin 

Shoot dry wt recovery StPho1b 12.3 44.9 cis MICRO.765.C6 not assigned.unknown 
plant ht recovery StPho1b 11.5 42.6 cis MICRO.763.C1 stress.abiotic.Heat shock protein 90 

5 

  StPho1b 11.4 42.4 cis MICRO.9765.C1 stress.biotic.receptors-Tospovirus resistance protein E 

  PotSNP776 31.7 78.5 cis MICRO.9387.C2 RNA.regulation of transcription.Global transcription factor group 

Chlorophyll content PotSNP27 29.4 75.8 cis MICRO.10029.C1 RNA.regulation of transcription.putative DNA-binding protein 
δ

13C PotSNP605 28.3 74.5 cis POAB769TP not assigned.unknown 

10 

  PotSNP605 29.1 75.5 cis MICRO.11873.C1 
hormone metabolism.gibberelin.induced-regulated-responsive-
activated 
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 StLin8 16.8 56.7 cis MICRO.4223.C1 major CHO metabolism.degradation.sucrose.invertases.cell wall 

 PotSNP53 17.2 55.6 cis MICRO.7298.C1 transport.amino acids 

  PotSNP776 17.1 55.5 cis MICRO.280.C2 lipid metabolism.Phospholipid synthesis 

  PotSNP776 17.1 55.5 cis MICRO.5814.C1 Co-factor and vitamine metabolism 

  PotSNP776 17 55.3 trans (3) POCAC91TV signalling.receptor kinases.DUF 26 

  PotSNP776 16.8 54.7 cis SDBN002G04u.scf development.late embryogenesis abundant 

In vitro PotSNP986 49.9 91.3 cis MICRO.10921.C1 not assigned.no ontology 

  PotSNP792 49.8 91.3 cis MICRO.11641.C1 not assigned.unknown 

  PotSNP986 38.8 84.9 cis STMHK73TV DNA.repair 

Fresh biomass control PotSNP18 38.5 84.6 -- MICRO.6663.C7 not assigned.unknown 

Dry biomass control PotSNP56 37.1 83.5 trans (8) MICRO.5912.C1 RNA.regulation of transcription.General Transcription 

Dry biomass stress PotSNP893 29.4 75.9 cis MICRO.141.C2 redox.glutaredoxins 
shoot fresh weight 
stress PotSNP56 27.5 73.4 cis bf_stolxxxx_0042c03.t3m.scf TF-bHLH,Basic Helix-Loop-Helix family 

  PotSNP986 26.6 72.2 cis POCAE94TV nucleotide metabolism.synthesis.pyrimidine.dihydroorotase 

  PotSNP56 24 68.4 -- STMHZ36TV signalling.calcium 

2 (1) 

  PotSNP893 20.8 63 cis MICRO.16545.C1 Receptor-like serine-threonine protein kinase 

In vitro PotSNP838 88.4 98.7 cis cSTB2J20TH transport.metabolite transporters at the envelope membrane 

  PotSNP567 49.3 91.1 cis MICRO.6230.C2 secondary metabolism.wax 

  PotSNP567 47.5 90.2 cis MICRO.12870.C2 not assigned.unknown 

Fresh biomass 
recovery Sti024 39.7 87.1 cis MICRO.16695.C1 not assigned.unknown 

Plant height control PotSNP838 38.4 84.6 cis bf_suspxxxx_0030b01.t3m.scf not assigned.unknown 

Shoot fresh weight 
recovery PotSNP838 36.1 82.7 cis MICRO.12327.C1 protein.folding 

  PotSNP838 36.1 82.7 cis MICRO.7159.C1 transport.potassium 

  PotSNP838 35.3 82 cis MICRO.17393.C1 not assigned.no ontology 

  PotSNP838 34.1 80.9 cis MICRO.8097.C2 protein.postranslational modification (protein kinase) 

  PotSNP838 32.8 79.6 cis MICRO.15171.C1 CONSTANS-like zinc finger protein 

2 (2) 

  Sti024 29.3 77.6 cis MICRO.10417.C1 Zinc ion binding protein 
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Regulation of gene expression influences or controls many of the biological processes in a 

cell or organism, such as progression through the cell cycle, metabolic and physiological 

balance and responses and adaptations to the environment. Development is based on the 

cellular capacity for differential gene regulation and is often controlled by transcription 

factors acting as switches between regulatory cascades (Scott 2000). In addition, alterations in 

the expression of genes coding for transcriptional regulators are emerging as a major source 

of the diversity and changes that underlie evolution (Carroll 2000). In the present study, 

eQTLs of transcription factor genes of members of multiple gene families co-localized with a 

cluster of phenotypic trait QTLs on chromosome 4 under water stress conditions. Several of 

those genes belong to AP2 and NAC domain transcription factor families. Several studies 

reported that AP2 domain proteins control the expression of amongst others abiotic stress 

responsive genes, ethylene-responsive genes involved in ethylene, salicylic acid and jasmonic 

acid responses and disease resistance (Liu et al 1998; Sakuma et al 2002; Gutterson and 

Reuber 2004; Karaba et al, 2007). The plant specific NAC transcription factors play diverse 

roles in plant development and stress response. Over-expression of NAC genes as well as 

AP2 transcription factors in Arabidopsis, brassica and rice showed significant increase in 

drought resistance (Hegedus et al 2003; Lu et al 2007; Nakashima et al 2007). Hence, eQTL 

genes of transcription factors may be important genes for drought response and drought 

tolerance in potato and particular members of these families may be identified as candidate 

genes by further analysis of our datasets.  

 

In the current study several hundreds of eQTLs co-localized with phenotypic trait QTLs, 

making it difficult to identify a causal relationship between genes and the phenotypic traits.  

Though eQTL analysis is potentially a powerful approach for the identification of genes 

underlying particular biological phenotypes (Chen et al 2010; Kliebenstein et al 2006), for the 

approach to be applicable to a specific trait, variation in the observed and measured phenotype 

of the trait is required to visualize the biological manifestation of variation in the expression 

of causal genes.  In order to be able to pinpoint a candidate gene for a specific trait, the 

variation in expression of a gene in the drought response should correlate with the drought 

response phenotypic trait. In addition both the causal genes and their eQTLs should co-

localize with the phenotypic QTL, which means it is regulated in cis. If these criteria are not 

met it is difficult to identify genes underlying the trait of interest. A fundamental issue in 
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quantitative genetics is how the genotype determines the quantitative trait phenotype (Mackay 

2001). A study of transcriptional variation may only answer part of this question. Determining 

the actual biological relationship between transcript level variation and phenotype may also 

require protein and metabolite data that in turn influence trait phenotypes further downstream. 

Integration of all these datasets is still highly complex but may be very rewarding (Jansen et 

al 2009).  

Prospective 

Genome wide identification of genes regulated by drought conditions has many benefits. 

Firstly, it provides a more comprehensive understanding of the transcriptional response to 

drought. Secondly, it provides novel candidate genes that can be the subject of further 

research. Thirdly, it aids in the identification of regulatory networks based on cis- and trans-

acting QTLs that can serve as a basis for novel plant breeding strategies and crop engineering. 

The current study demonstrates that the genetic control of transcript levels is highly variable 

and multifaceted. Based on gene ontology, a number of eQTLs were detected for genes which 

have homology to very well known drought responsive genes such as transcription factors of 

multiple families, signaling molecules, redox genes, chaperones and transporters. This eQTL 

approach led to the genome-wide identification of putative candidate genes involved in 

drought tolerance, their distribution and regulation as well as identification of putative 

candidate genes underlying phenotypic trait QTLs for drought response. However, due to 

complexity of the required statistical analyses involving both large number of tests and a large 

number of eQTL, we have only touched the surface of the information contained in the 

transcriptome dataset combined with the phenotyping data. Processes like epistasis will be 

investigated in a subsequent effort. Knowledge of and insight in regulation and interaction of 

genes contributing to specific phenotypes is often limited. Further analyses will be focusing 

on construction of regulatory networks which may narrow down the number of candidate 

genes in an eQTL interval and to select the best candidate gene.  
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Introduction 

Drought is one of the most common abiotic stresses that limits crop growth and productivity 

worldwide and its effects on crop plants can range from minor reductions in yield to the 

destruction of crops leading to famine (Hetherington 1998). Research into the plant response 

to water stress is becoming increasingly important, as most climate change scenarios suggest 

an increase in aridity in many areas of the globe (Petit et al 1999). This increase in arid land 

and the world’s growing population will have direct impact on water resources and water 

availability. The response to drought at the whole plant and crop level is complex because it 

reflects the integration of stress effects and responses at all underlying levels of organization 

over space and time (Bray 1997). Breeding activities have led to some yield increase in 

drought environments mainly in cereal crop plants. Meanwhile, fundamental research has 

provided significant gains in the understanding of the physiological and molecular responses 

of plants to water deficits, but there still is a large gap between yields in optimal, sub-optimal 

and stress conditions. Minimizing the yield gap and increasing yield stability under different 

stress conditions is of strategic importance for food security in the near future. 

Potato is the most important non-cereal food crop in the world and cultivated worldwide 

under various environmental conditions. Besides being important in human diet, potatoes are 

also used as animal feed and as raw material for several industrial purposes.  This versatile 

crop is sensitive to water stress. This thesis describes the initial efforts made in dissection of 

drought tolerance in potato by genetic and genomics approaches using a diploid mapping 

population. 

 

Molecular markers 

An important requirement for genetic dissection of a complex trait like drought is a good 

quality genetic map. Single nucleotide polymorphisms (SNPs) are used as molecular markers 

for a variety of tasks in crop improvement including quantitative trait loci (QTL) discovery, 

assessment of genetic diversity, association analysis and marker assisted selection. SNPs have 

two main advantages over other molecular markers; they are the most abundant form of 

genetic variation within genomes (Zhu et al 2003), and a wide array of technologies have now 

been developed for high-throughput SNP analysis. 

The initial phase of the potato SNP discovery effort described in Chapter 2 resulted in the 

identification of over 7000 reliable SNPs from public EST databases that met the criteria for 
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high-throughput genotyping on the Illumina GoldenGate platform. The 384 SNPs that we 

assembled on a GoldenGate SNP genotyping array were used in the two diploid mapping 

populations CxE and SHxRH and we achieved an 89% assay success rate. In total 165 and 

185 polymorphic markers (for CxE and SHxRH respectively) were successfully mapped on 

genetic linkage maps (Chapter 2). Another array with 768 SNPs from the same potato SNP 

database was used to further populate the genetic map. A total of 343 polymorphic markers 

were added on the CE genetic map. Using 163 markers that were heterozygous in both parents 

an integrated map was constructed (Figure 1). In both arrays 10-11% of SNPs failed to give a 

result in the standard GoldenGate assay. In Chapter 2 we discussed the possible explanations 

for SNP assay failures, such as SNPs in the primer target sequence and presence of introns in 

the SNP amplified regions. With the availability of the genome sequence of doubled 

monoploid potato DM1-3 516R44 (DM) and of the RH89-039-16 clone, it was possible to 

examine the SNP marker loci for paralogs and intron spanning sequences using BLAST 

analysis (www.potatogenome.net) (Dr. H. van Eck, Wageningen UR Plant Breeding, personal 

communication). From the 384 SNP array 279 SNP sequences had a unique hit on the DM 

scaffolds. However 105 SNPs had on average 2.5 hits. The reason for two or more hits could 

be either the presence of multiple paralogs, or introns within the SNP locus. Based on the 

similarity between the query length of 101 basepairs (or less) and the sequence match a 

distinction between paralogs and intron spanning could be suggested. When the intron/exon 

boundary was between 28 and 73bp from either end of the query sequence the SNP 

amplification was concluded to be intron spanning. When the query sequence and the match 

differed less than 14bp the duplicates were concluded to be paralogs. From the 105 SNPs with 

multiple hits, about half were concluded to have introns in the SNP amplified locus, and the 

other half most likely had paralogous sequences interfering with the SNP assays. The 

possibility of screening potential markers for their usefulness in marker assays is one more 

example of the many ways in which the potato genome sequence can enhance and improve 

genetic research. In total 732 SNP marker loci were unique in the potato genome sequence 

many of these SNP markers not only served as landmarks on the genetic map but also as 

putative genes that may underlie quantitative traits (Chapter 3). In addition these SNP markers 

are now utilized as anchors in the potato physical map.  



Chapter 6 

 104 

E45M60-23e130
E32M61-18e134
PotSNP8265
PotSNP8496
PotSNP10377
AGPS1
StI0098
E39/M60-33c111
PotSNP39417
PotSNP46418
PotSNP86219
PotSNP6221
PotSNP324
E32M61-24c125
PotSNP56326
PotSNP777
PotSNP63027
PotSNP416
PotSNP51429
PotSNP931
PotSNP87030
PotSNP87331
PotSNP48132
PotSNP39233
PotSNP88538
STM513639
PotSNP743
PotSNP76540
PotSNP86441
PotSNP95146
PotSNP4951
PotSNP3657
PotSNP48860
PotSNP1034
E45M60-20c172
PotSNP45177
E32M51-39c180
E32M51-10c185
PotSNP83499
PotSNP646101
PotSNP72115
E32M51-19e1116
STM5127122
PotSNP706
PotSNP842
PotSNP714

124

E32M51-38c1128
E32M51-27c1131

CE1

PotSNP836
PotSNP5670
PotSNP8382
PotSNP434
PotSNP823
SSSII-HinIII350
PotSNP1475
E32M51-5e210
Sti02414
PotSNP111116
PotSNP82821
PotSNP10823
PotSNP12833
PotSNP668
PotSNP79834
PotSNP6536
PotSNP40137
PotSNP40040
PotSNP10741
PotSNP95642
PotSNP14
PotSNP679
PotSNP912

47

SSSIII/HpyF10VI48
PotSNP67153
PotSNP5656
PotSNP89357
PotSNP79158
PotSNP18
PotSNP46860
StI02963
PotSNP44865
PotSNP387
PotSNP98669
PotSNP172
PotSNP80773
PotSNP68674
E39/M60-3276
PotSNP703
PotSNP44177
PotSNP10579
PotSNP90183
PotSNP91084
E39/M60-12e287
E32M61-30e288
PotSNP39
PotSNP3891
Sti05395
E32M61-3e2
E32M51-16c2109

CE2

Sti0600
PotSNP4677
PotSNP11028
PotSNP5419
PotSNP796
PotSNP51910
PotSNP653
PotSNP148
PotSNP518
PotSNP785

11

PotSNP104614
PotSNP19
PotSNP95415
PotSNP114121
PotSNP16322
PotSNP35
PotSNP50525
PotSNP68
PotSNP57126
PotSNP41727
PotSNP9529
PotSNP80934
PotSNP37M40
PotSNP65075
PotSNP107477
PotSNP423
bch_C79
PotSNP100181
PotSNP7582
PotSNP87
bch_E
Sti013-D

83

PotSNP50284
PotSNP887
StPho1a-MspI54087
E39/M60-13e390
PotSNP98591
E32M51-3c392
E32M61-28e395
PotSNP75597
PotSNP906
PotSNP644104
m17361.c1110
PotSNP55
PotSNP54
PotSNP533

127

PotSNP1083130
E32M51-12c3134

CE3

PotSNP8570
PotSNP107222
E32M61-31c425
PotSNP74427
PotSNP105029
PotSNP1112
PotSNP60930
E39/M60-21c4
E45M60-6c434
E32M61-13c435
E39/M60-19c437
PotSNP88
PotSNP63555
PotSNP72957
PotSNP56660
E39/M60-39e465
PotSNP56867
PotSNP5170
PotSNP111771
PotSNP82279
PotSNP102380
PotSNP52381
PotSNP59083
PotSNP1006
PotSNP5985
Sti00186
Sti001-B87
PotSNP87891
PotSNP87792
PotSNP52493
PotSNP92896
Sti012101
PotSNP844104

CE4

PotSNP320
PotSNP11051
PotSNP69710
PotSNP5711
PHYB214
E32M61-32c515
PotSNP43
PotSNP114617
PotSNP114419
R120
PotSNP114321
PotSNP1145
PotSNP62122
STM514825
E39/M60-10e5
E32M51-2e5
E39/M60-27e5

27

PotSNP89930
E45M60-16e531
E39/M60-15c532
E45M60-19c534
E32M61-29c536
SPUD23740
PotSNP4241
PotSNP70242
Sti03243
Mando44
GP21_200745
PBSQ46
PotSNP53052
E39/M60-43c573
PotSNP102592
PotSNP45094
PotSNP5
PotSNP93098
PotSNP419100
PotSNP734102

CE5

E39/M60-35e60
PotSNP9076
PotSNP813
PotSNP486
PotSNP150

9

PotSNP34
PotSNP8110
PotSNP93411
STM110022
PotSNP75828

CE6

E39/M60-23c60
PotSNP9725
PotSNP1051
PotSNP6409
PotSNP10314
PotSNP1135
PotSNP16023
PotSNP89227
PotSNP2630

PotSNP77955
PotSNP96363
PotSNP69975
PotSNP84179
PotSNP12982
STM001983
E39/M60-1c689

PotSNP1003118
PotSNP970123

.

 

PotSNP6930
PotSNP10526
STM30097
PotSNP12413
PotSNP4714
PotSNP54326
PotSNP130
PotSNP48928
PotSNP60
PotSNP2229
PotSNP20
PotSNP109030
PotSNP54232
AGPasB36
PotSNP101138
PotSNP426
PotSNP642
PotSNP63854
PotSNP14166
PotSNP73867
PotSNP91668
PotSNP113670
PotSNP1116
PotSNP12671
PotSNP25
PotSNP45374
Sti03375
PotSNP108876
E32M61-25c7
PotSNP71281
E39/M60-3c785
E39/M60-14c786
PotSNP13888
PotSNP730
PotSNP44791
PotSNP721101
PotSNP495104
PotSNP827108
HQT110

CE7

PotSNP33
PotSNP90
STGBSS6
PotSNP50410
PotSNP214
PotSNP106716
PotSNP11618
PotSNP420
PotSNP1231
StI00337
PotSNP933
PotSNP94838
STM102439
PotSNP88340
StI022
PotSNP110041
PotSNP85346
PotSNP707M
PotSNP8948
POT32Al151
PotSNP46M53
StI02756
PotSNP15559
PotSNP70065
PotSNP103168
E32M61-14c869
E32M51-31e871
PotSNP63772
E39/M60-46e873
E32M51-35e8
PotSNP112274
E32M51-11e875
E32M51-8e8
PotSNP82177
PotSNP47478
PotSNP749
PotSNP9179
E45M60-30c883
PotSNP10486
PotSNP94587
PotSNP60890

CE8

STM11020
PotSNP1021
PotSNP11182
StUCP4
InvGF13
STM301216
ENOLASE19
PotSNP58725
PotSNP7028
E32M61-8e932
E39/M60-45e9
E45M60-24e936
E45M60-12e9
StPho2-HphI850
E45M60-8e9

37

PotSNP89038
E39/M60-36e939
PotSNP402
PotSNP7440
PotSNP91142
PotSNP87243
PotSNP8045
PotSNP59453
PotSNP95854
PotSNP113355
PotSNP17
PotSNP43156
PotSNP45861
PotSNP15366
PotSNP16269
PotSNP90073
PotSNP82375
StTLRP83
STM302391

CE9

PotSNP8630
PotSNP1107
PotSNP59312
PotSNP11113
PotSNP7314
PotSNP7917
PotSNP152
PotSNP8418
PotSNP103619
PotSNP850
PotSNP94
PotSNP639

20

PotSNP53
PotSNP78
PotSNP122

22

STM1106
StLin623
StLin8-DdeI180024
PotSNP111029
PotSNP7730
E32M51-23e1032
PotSNP142
PotSNP81633
PotSNP78434
PotSNP76
PotSNP60536
PotSNP91538
PotSNP143
PotSNP14439
E32M51-22e1040
STM005147
E32M51-13e1052
PotSNP7153
E32M51-28e10
PotSNP905
E45M60-31e10

54

E32M51-14e1055
PotSNP99556
E32M61-2157
LHY64
E39/M60-40c1079
PotSNP44691
PotSNP13492

CE10

PotSNP1140
PotSNP5866
PotSNP9397
UGPase-HpyCH4IV2109
PotSNP991
PotSNP76610
PotSNP67615
PotSNP559
PotSNP51218
PotSNP10019
E32M61-22c1122
PotSNP108523
PotSNP624
StI046-A
StI046-E

24

PotSNP52626
PotSNP75629
PotSNP74630
PotSNP68931
PotSNP91332
PotSNP103535
PotSNP23
PotSNP759
PotSNP580

36

PotSNP45239
PotSNP14940
PotSNP10942
PotSNP65643
PotSNP65544
PotSNP95045
STM200546
PotSNP94947
Sti02851
E39/M60-41e1153
E39/M60-38e11
E32M51-17e1155
E39/M60-6e1156
PotSNP667
PotSNP982
PotSNP118

57

PotSNP773
PotSNP13258
PotSNP983
PotSNP77460
STM003763
E39/M60-5c1171

CE11

PotSNP1370
E39/M60-4e124
STM00036
StI0518
PotSNP547
PotSNP63
PotSNP64
PotSNP11

12

PotSNP1014
PotSNP15815
PotSNP979
PotSNP97816
PotSNP11717
PotSNP75018
PotSNP848
PotSNP53520
PotSNP996
PotSNP71624
E39/M60-9e1229
E39/M60-24e1230
PotSNP903
PotSNP4534
PotSNP106438
PotSNP1091P
PotSNP12141
PotSNP1113
PotSNP11245
PotSNP30
PotSNP104347
PotSNP47850
PotSNP2951
E32M51-40e1253
E39/M60-29e1255
PotSNP598
PotSNP80258
PotSNP90959
STM202868
PotSNP96772
E39/M60-30e1278
PotSNP67879
E39/M60-1890
PotSNP5299

CE12

 
Figure 1 Location of the SNP markers on the integrated map of CxE. The numbers on the left side are the 
genetic distances in centiMorgans (cM) right side shows the marker designations. Color indicates different 
marker types (blue: SNPs, pink: SSRs and CAPs, grey: AFLP markers). 
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QTL analysis  

Molecular markers can be used to explore germplasm through segregation and association 

mapping and identify useful alleles in both cultivated and wild relatives. Most of the data 

available on drought tolerance are based on segregation mapping and QTL analysis. During 

the last decade, the application of QTL analysis has provided unprecedented opportunities to 

identify chromosome regions regulating the physiological, morphological and developmental 

changes observed during plant growth in water limiting conditions. Particular attention has 

been paid to: i) genetic variation of osmotic adjustment (Teulat et al 1998; Robin et al 2003); 

ii) genetic basis of phenological traits such as the stay-green phenotype (Sanchez et al 2002; 

Verma et al 2004); iii) the ability of roots to exploit deep soil moisture to meet evapo-

transpirational demand (Nguyen et al 2004); iv) the limitation of water use by reduction of 

leaf area and shortening of growth period (Anyia and Herzog 2004); v) isotope discrimination 

(Saranga et al 2004; Juenger et al 2005); vi) the limitation of non-stomatal water loss from 

leaves through the cuticle (Lafitte and Courtois 2002) and vii) the response of leaf elongation 

rate to soil moisture and evaporative demand (Reymond et al 2003).  

 

Drought tolerance of genotypes can be assessed by several parameters, namely yield or 

biomass under drought, biomass under drought as a percentage of yield (biomass) in control 

(relative yield) and drought susceptibility index (Fischer 1978). We evaluated the potato CxE 

mapping population for drought response under in vitro and greenhouse conditions (Chapters 

3 and 4). Several physiological traits as well as root, shoot and yield parameters were studied 

under control and stress conditions. In addition, we estimated the relative reduction for all 

measured traits to study the severity of stress effects. Many significant multi-year, multi-

treatment QTLs were detected. However, the QTLs for the estimated relative reduction traits 

were below the threshold levels. This may be due to the presence of more random variation 

resulting from the estimation of relative reduction traits when compared to absolute 

measurements taken under stress and control conditions.  

Many of the QTLs for growth traits measured both in the greenhouse and in vitro were 

specific to either of the growth conditions. Obviously the large difference between growing 

plants in vitro and in pots in the greenhouse has a large effect on the genetic factors 

determining growth under both well-watered and water-deficit conditions. In addition several 

studies show that in many species shoot culture itself is quite stressful for the plants (De Klerk 
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2007; Van Staden et al 2006; Desjardins et al 2009). In vitro plants grow under unnatural  
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Figure 2 Co-localization of QTLs from in vitro (open bars) and QTLs from greenhouse (solid/filled bars). Only 

the linkage groups (chromosomes) with co-localized QTLs are shown. The left side ruler is the genetic distance 

in centiMorgans (cM); marker designations are given on the left side of the linkage group, QTLs are shown at 

the right side in vertical bars with trait names. 

 

conditions: plantlets are wounded first, they receive sugar from the nutrient medium as a 

replacement of photosynthesis in the leaves, and water balance is disturbed by the very high 

humidity in the tissue culture containers. Hence, the in vitro plants do not go through the same 

developmental changes as greenhouse or field grown plants. Therefore, depending on growth 

conditions there may be a different genetic regulation of traits. In addition, the method for 

inducing water stress in both environments is different. The in vitro plants experienced a 
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constant osmotic stress through PEG treatment, while for the greenhouse plants the pot soil 

was completely dried down.  

Despite these differences significant QTLs that were detected for plant height, shoot dry 

weight, fresh biomass for plants grown in the greenhouse were also found when the 

population was grown in vitro (Figure 2). These QTLs may be less affected by environmental 

influences, and we may expect that some of these QTLs will be relevant under field 

conditions as well. This also suggests that the in vitro system may be used for a first and 

preliminary selection in breeding programmes for specific performance-related traits.  

Identification and measurement of secondary traits associated with yield provides a guide to 

specific mechanisms that contribute to final yield under drought. Water depletion patterns and 

canopy temperatures are indicative of root exploration, water extraction capacity and 

transpiration characteristics, and chlorophyll content is a measure of functional stay-green 

(Baker et al 2004). Some secondary traits such as photosynthetic rate are indicative of plant 

growth. Ideally secondary traits should be correlated with yield under stress, highly heritable, 

easy to measure and stable over time and location. Several studies have addressed yield under 

drought stress as a function of single physiological traits in attempts to understand which 

metabolic processes or morpho-physiological traits are crucial in ensuring high yield 

performance under a wide range of environments. We also studied several physiological traits 

such as leaf relative water content (RWC), chlorophyll fluorescence (Fv/Fm), chlorophyll 

content (SPAD meter reading) and carbon isotope discrimination (δ13C) under stress 

conditions (Chapter 4). Significant QTLs were detected for these parameters that provide 

rapid indicators of drought stress and can be used as methods for studying the response to 

water stress of potato.  

It is important to note that QTL x Environment interaction (year 2008 and 2009 experiments) 

does exist for these traits. We found QTLxE interaction for the trait δ13C and we speculated 

that the function of δ13C was genetically split into a stomatal and non-stomatal component 

(Chapter 4). The QTL proposed for the stomatal component on chromosome 10 was mapped 

on a SNP and CAPs marker within a gene annotated as the carbon partitioning enzyme 

invertase. In the absence of stress, sucrose converted by invertases into hexoses is the source 

for starch accumulation in tubers. Water deficit inhibits photosynthesis by closing the stomata 

and thereby the photosynthetic flux decreases, a condition associated with loss of invertase 

activity and a depletion of starch and sugars in sink tissues (Zinselmeier et al 1995). Thereby 
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more sugar accumulates in source tissues, which in turn leads to the feedback inhibition of 

photosynthesis. The δ13C trait depends on several factors including carbon partitioning and 

transport. Carbon portioning between photosynthetically active source tissues and 

photosynthetically less active or inactive sink tissues such as roots, tubers and fruits is 

essential for plant growth and development. The two key enzymes (invertase and sucrose 

synthase) involved in sucrose metabolism are very important both in phloem unloading and 

for the import of sucrose into sink organs (Ho et al 1991). The extracellular invertases are 

well studied for role in source and sink regulation (Roitsch et al 2005). In addition 

extracellular invertase was shown to be an essential component of cytokinin-mediated delay 

of senescence (Balibrea Lara et al 2004). Drought induced senescence is one of the factors 

that reduces plant biomass under water limited conditions. Delayed leaf senescence is often 

associated with drought tolerance and it has been well studied trait in many crops (Campos et 

al 2004; Jiang et al; Rivero et al 2007; Agbicodo 2009). To understand more about the 

essential role of carbon partitioning enzymes to unravel the relationship between δ13C, source 

and sink relationship and drought response we are further focusing on invertases, sucrose 

synthases and sucrose phosphate synthases in the CxE population for drought response. The 

expression and activity of these genes and of associated metabolites will be studied.   

 

In general, the complexity of drought tolerance explains the slow progress in yield 

improvement in drought prone environments. Despite all the advanced work in quantitative 

genetics for drought tolerance, the overall contribution to the breeding of drought-tolerant 

cultivars has so far been marginal. Direct selection for yield traits under water stressed 

conditions is hampered by low heritability, polygenic control, epistasis, significant genotype 

by environment (GxE) interactions, and QTLxE interactions (Piepho 2000).  An important 

pitfall of most QTL studies in drought is that the parental lines have mainly been chosen 

based on differences in target traits rather than on their overall agronomic value, which is 

often poor. Although this approach maximizes the possibility of identifying QTLs for the 

target traits, it doesn’t guarantee any real progress in terms of field performance (Tuberosa 

and Salvi 2006).  In the current study we used a diploid mapping population mainly because 

both drought and cultivated potato genetics are complex in nature. The CxE population has 

other advantages. It has been well characterized genetically for several quality traits. It also 

has the wild relative S. phureja as a parent, which is likely to harbor interesting stress 
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tolerance alleles. CxE shares a parent in its pedigree with the clone RH89-039-16 for which 

the complete genome sequence will be available soon (http://www.potatogenome.net/), 

allowing optimal exploitation of genome sequence information. In addition it segregates for 

drought response. Dissection of the genetics of drought response in this population especially 

with the integration of genomics approaches helps to zoom in onto the gene level (Chapter 5), 

and once the candidate genes for particular traits are identified, allelic variation for these 

genes can be exploited in tetraploid potato cultivars with high agronomic value.    

 

Genomics approaches 

The tools of genomics offer a means to produce comprehensive datasets on changes in gene 

expression, protein profiles and metabolites in response to drought for further understanding 

of the genetic basis of drought tolerance in crops.  Regulation of gene expression at the level 

of transcription influences or controls many of the biological processes in a cell or organism, 

such as progression through the cell cycle, metabolic and physiological balance and the 

adaptive response to environmental changes. The genetic architecture of transcript-level 

variation for the drought response was captured in the diploid potato population CxE and 

mapped as expression QTLs (eQTLs) (Chapter 5). To identify whether the genetic variation 

responsible for eQTLs is cis- or trans-regulated, we anchored the genes to the genome 

sequence of potato. Initial results from our study revealed that genome-wide distributions of 

eQTLs allowed the identification of regulatory hot spots for drought response. Based on gene 

ontology, a number of eQTLs were detected for genes known to be involved in drought signal 

transduction and drought-induced transcriptional regulation, and for redox genes, chaperones 

and transporters. Although interesting results were obtained by examining co-localization of 

eQTLs and phenotypic QTLs, we have only studied the top layer of the information contained 

in the transcriptome dataset combined with the phenotyping data and there is more 

information that can be mined from this dataset in subsequent efforts. For instance, an in 

silico BSA-QTL analysis can be performed. Kloosterman et al (2010) demonstrated the 

identification of genes by a pooling strategy: genotypes with contrasting phenotypes for a 

specific trait were pooled, and transcriptome analysis was performed on the pooled samples. 

Expression differences observed between the pools are expected to be most likely linked to 

the selection criteria of the genotypes in the pool, which is the trait effect. BSA-QTL analysis 

is done on pools of genotypes selected for the presence specific alleles/haplotypes of markers 
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specifying a target QTL. Differences in expression between these pools in transcriptome 

analysis will reveal the genes underlying the QTL. With the dataset presented and discussed 

in Chapter 5, it is possible to do a BSA-QTL analysis for all interesting QTLs by pooling the 

data for genotypes selected for the presence of the different QTL marker haplotypes. This 

would give additional information on genes specifying the QTL effect. In addition, further 

analyses will be focusing on construction of regulatory networks which may narrow down the 

number of candidate genes in an eQTL interval and to select the best candidate gene. In 

addition processes like epistasis will be investigated in a subsequent effort.  

Several interesting genes with putative functions as transcription factors such as AP2, NAC, 

MYB, MYC and B-Zip genes were colocalized with phenotypic QTLs. The genes from the 

AP2/ERF transcription factor family were well characterized for their involvement in abiotic 

stress. The two Arabidopsis genes HARDY (HRD) and SHINE (SHN) belonging to AP2 

family were well studied in Arabidopsis and rice for drought and salt tolerance (Karaba et al 

2007 and Dixit 2008).  Both genes confer enhanced drought stress tolerance to Arabidopsis 

and rice. The effect of over-expression of the HRD gene in rice is especially interesting as it 

has no yield (biomass) penalty under well-watered conditions either. HRD expression both in 

rice and Arabidopsis results in an increased root system, while SHN over-expression affects 

leaf properties like wax deposition. We are currently characterizing the consequences of 

expression of these interesting genes in potato. Potato cultivar Desiree was used for transgenic 

studies with HRD and SHN genes under the control of different promoters (pCaMV35S, 

pRD29A and pAKT1 promoters for HRD and pCaMV35S, pRD29A, pSsuAra promoters for 

SHN). Initial results show better performance of several transgenic plants when compared to 

non-transformed Desiree plants under water stress conditions (data not shown). Experiments 

are continuing for detailed phenotype and expression analysis. 

 

Recent progress in functional genomics employing genome-wide strategies is widening our 

knowledge for better understanding of genetic complexities. The successful exploitation of 

genomics to enhance drought tolerance will only be possible within a coherent, 

interdisciplinary context that enables integrated analysis of several levels of regulation, with 

the potential to gain a thorough understanding of the factors limiting potato yield in drought-

prone environments. In potato further emphasis is needed on following research areas: 

 



  General Discussion 

 111 

1) High throughput precision phenotyping for drought tolerance 

The importance of characterizing and understanding the plant phenotype can not be 

overemphasized. Especially when dissecting complex traits into genetic parameters through a 

QTL mapping approach, it is often useful if not essential to be able to dissect the phenotype 

into parameters which are more heritable and can be measured under normal and stress 

conditions. To unravel the genetic basis of complex traits, genotypic information is associated 

with the corresponding phenotypic data. Despite the spectacular progress in DNA marker 

assays and sequencing technologies during the past decade, the implementation of accurate, 

high-throughput phenotyping for drought tolerance traits remains a major challenge as part of 

plant genomics and genetic (quantitative/population genetics) studies on drought tolerance. 

There is a need for high throughput precision phenotyping that would allow the researcher to 

obtain detailed information of plant characteristics that collectively provide reliable estimates 

of trait phenotypes for many of the underlying genotypes that comprise a typical plant 

breeding population. The ideal precision phenotyping traits should be easily adaptable to field 

conditions, as drought tolerance that impacts field crop yield can only be assessed reliably in 

multi-location field trials. An ideal phenotyping technique should also enable to measure 

dynamic traits such as biomass accumulation in relation to drought tolerance. These traits are 

often only measured once, and ignoring their dynamic nature and progress in time entails a 

tremendous loss of information regarding the analysis of gene networks that are active at 

different phases of plant development but may impact end harvest yield, and their interaction 

with environmental stresses.  

Precision phenotyping might be useful in effective exploitation of the potential benefits 

deriving from QTL discovery. In addition, when genetic and genomics approaches are 

integrated, precision phenotyping would possibly enable identification of only few candidate 

genes related to a trait. Dissection of complex traits into individual gene functions will 

enhance our understanding of the physiology and genetic regulation of the genes and alleles 

that contribute to drought tolerance.  

 

2) Importance of other omics  

With the ever decreasing costs on sequencing technologies, it may be affordable in the near 

future to sequence the full genomes or parts of the genome from the different offspring plants 

or from association panels. This would greatly help us in understanding genetic organization 
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and regulation at transcript level.  However, genome sequence information alone is 

insufficient to reveal how genes function in developmental/regulatory pathways and the 

biochemical kinetics of plants to adapt under stresses and consequently to determine the exact 

responsive mechanism. To investigate this, more comprehensive approaches that include 

quantitative and qualitative analyses of gene expression products are necessary not only at the 

transcriptome level but also at proteome and metabolome levels. 

Several studies in recent years have shown that metabolomics research can be an invaluable 

tool for generating information of use in many research areas. Metabolomics information can 

assist in the establishment of a deeper understanding of the complex interactive nature of 

plant metabolomic networks and their responses to environmental and genetic change. It will 

provide unique insights into the fundamental nature of plant phenotypes in relation to 

development, physiology, tissue identity, resistance, biodiversity and other processes 

(Shinozaki and Sakakibara 2009; Keurentjes 2009).    

Proteomics is also becoming a powerful tool to analyze biochemical pathways and the 

complex response of plant to environmental stimuli. In particular, comparative proteomic 

investigations of plants before and after specific or interactive stresses will allow us to obtain 

information on how tolerance mechanisms are adopted from plants (Timperio et al 2008). In 

addition, proteomics also provides an essential link between the transcriptome and 

metabolome (Cook et al 2004; Gray and Heath 2005), complementing genomics research.    

Systematic analyses of data from different omics are important for integrative biology. For 

thorough understanding of biological function or plant response to stress it is necessary to 

integrate omics data at various levels. Despite the challenges, scientists are making progress 

in identifying, extracting and interpreting biological insights from omics datasets. For 

example, transcriptomics and metabolomics data was integrated to analyse the central plant 

metabolism of the Arabidopsis by biochemical networks and epistasis (Rowe et al 2008). In 

the future more emphasis will be on integration of omics along with modeling predictions and 

this will lead towards a system biology insight, which will paint a complete picture of the 

plant response at several levels leading to its final phenotype. 

 

3) Association mapping  

Most quantitative approaches used to study complex traits such as drought tolerance have 

been conducted in a limited number of mapping populations, which harbor a very small part 
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of the existing allelic variation. This identifies only a fraction of the loci involved in the 

control of the traits.  There is need to be able to add multiple alleles to genetic analyses to get 

insights into the broad genetic architecture of traits. An association mapping (linkage 

disequilibrium mapping) approach is well suited for this because it scrutinizes the results of 

thousands of generations of recombination and selection (Syvanen, 2005). Association 

mapping is increasingly being adopted as a genetic method complementary to traditional QTL 

mapping. The main advantages of association mapping are exploitation of allelic diversity 

from a collection of various more or less related cultivars and breeding materials, and 

providing generic results. In addition, a higher mapping resolution may be reached as many 

more meiotic recombination events are sampled compared to a bi-parental segregating 

mapping population. Application of association mapping also has more advantages 

particularly in crops that are limited to no more than one generation per year (Flint-Garcia et 

al 2003; Gaut and Long 2003). Association mapping has been successfully applied for quality 

traits in tetraploid potato (D’hoop et al 2010). Very recently association mapping was also 

used to dissect the genetic basis of drought-adaptive traits and grain yield in a collection of 

189 elite durum wheat accessions evaluated in 15 environments highly differing in water 

availability (Maccaferri et al 2010). In view of the advantages and applications of association 

mapping, it’s worthwhile to apply it in potato to dissect drought tolerance. It should be noted 

that in an association mapping population, multiple alleles of the genes underlying traits can 

contribute to that trait. This often results in relatively minor effects exerted by many identified 

QTLs. Therefore, it is even more necessary to dissect complex drought traits into individual 

genetic parameters, and to use precision phenotyping of these traits for better analysis and 

understanding. Along with the evaluation of drought tolerance of the diploid mapping 

population CxE we included several commercial tetraploid cultivars namely Bintje, Bildstar, 

Biogold, Desiree, Mona Lisa, Mondial, Mozart, Nicola, Premiere and Russet Burbank. The 

cultivars displayed a lot of genetic variation for traits related to drought tolerance, indicating 

that even in commercial germplasm, ample genetic variation for drought tolerance is available 

that can be explored and possibly utilized with an association mapping approach.  

 

4) Interaction between drought and other abiotic and biotic stresses 

Water deficit is caused not only by a simple lack of water in the soil, but also by other stresses 

like low temperature or salinity that limit water availability for the plant; thus it is not 
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surprising that the responses to these various stresses involve many shared molecular 

components. For example, at molecular level 40% of the genes that are induced by salinity or 

drought are also induced by cold stress (Shinozaki and Yamaguchi-Schinozaki 2007). Some 

responses or mechanisms may have opposing effects under different stresses. Therefore 

tackling tolerance to one stress may lead to sensitivity to another. For example, closing the 

stomata helps to minimize transpiration to decrease the loss of water and maintain turgor 

under water deficit conditions, which has a favorable effect on water use efficiency. However, 

plants can avoid heat stress by increasing stomatal conductance, and consequently cooling of 

the leaf and canopy through transpiration. These mechanisms of stomatal control may be 

conflicting when drought and high temperature stress occur simultaneously. Another example 

is the osmo-protectant proline which may be accumulated under osmotic stress to adjust 

osmotic potential, but has a toxic effect under heat stress. Proline accumulation may therefore 

not be an appropriate tolerance mechanism in field conditions when heat and drought stress 

are combined (Rizhsky et al 2004; Salekdeh et al 2009).  

Abiotic and biotic stress response pathways may also interact. Abuqamar et al (2009) have 

shown that the ABA responsive MYB transcription factor SlAIM1 modulates ABA responses, 

thereby integrating the plant response to pathogens as well as abiotic stresses. Similarly, 

several transcription factors from the NAC family have been shown to be up-regulated 

following pathogen infection, as well as under abiotic stresses (including drought), and 

crosstalk between pathogen defense and abiotic stress pathways is also mediated by members 

of the AP2 transcription factor family (Yoshioka and Shinozaki 2009). Interestingly, we 

found MYB, NAC and AP2 transcription factors to co-localize with phenotypic QTLs as 

described in Chapter 5, making these genes putative targets for studying the interaction 

between drought and biotic stress resistance in potato. 

Although the simplified approach of studying isolated stresses has considerably increased our 

knowledge of tolerance mechanisms, interaction between multiple stresses and stress 

combinations should be studied to make even more progress in identifying traits and genes 

that are relevant to the field conditions. 

 

5) The role of small RNAs and epigenetics in drought stress 

Stress induced changes in epigenetic processes have been shown to regulate stress responsive 

gene expression and plant development under stress (Chinnusamy and Zhu 2009). In addition, 
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functional analyses have demonstrated that several plant miRNAs play vital roles in plant 

resistance to abiotic as well as biotic stresses (Kawaguchi et al 2004; Sunkar et al 2007). In 

silico identification of miR395, miR398 and miR399 homologues in diverse plant species 

suggest that these miRNAs are conserved across species. Conservation of these mRNAs 

implies that they have conserved biological functions. Appropriate manipulation of miRNA 

target genes should help to overcome posttranslational gene silencing (Sunkar et al 2006, 

2007; Aung et al 2006; Bari et al 2006). Small RNAs and epigenetic changes add one more 

level of regulation in determining the actual biological relationship between transcript level 

variation and phenotype. Therefore, it is crucial to understand small RNA-guided stress 

regulatory networks and epigenetic variation and this might produce new tools for the genetic 

improvement of plant stress tolerance. 

 

In summary, the results presented in this thesis provide valuable results for screening and 

evaluation for drought tolerance in potato. Chromosomal regions responsible for regulation of 

drought response were identified by QTL mapping. The application and advantages of 

integration of genetic and genomics approaches to unravel the molecular components 

underlying interesting drought response traits were demonstrated. Further exploration of the 

data collected in this thesis and additional focus on specific traits, QTLs and associated genes 

will allow identification of genes and alleles that can be exploited in cultivated potato to 

improve drought tolerance of this important food crop. 
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Supplementary Material  
 
Chapter2  
SNP markers with their putative functions, sequences along with their database ID’s (TC numbers) is provided in table and can be 
downloaded from below link. 
 
http://www.springerlink.com/content/p0r40lx1131l372u/supplementals/ 
 
Chapter 4 
 
Table S1. Population mean values of the traits recovery treatment, analysis of variance for the traits under stress and recovery condition 
and relative reduction and broad sense heritabilities of the traits under recovery condition. 
 

Two Way ANOVA (P values)   
Trait Year 

Recovery 
Mean Genotype (G) Treatment (T) G*T 

Relative 
 Reduction (%)  

Heritability 
 (%) 

Number of main stem 2008 3.9 <0.001 NS NS 3.2 65.4 

  2009 2.7 <0.001 NS NS -7.5 47.4 

Shoot dry weight (g) 2008 14.2 <0.001 <0.001 NS 32.6 82.1 

  2009 27.4 <0.001 <0.001 <0.001 7.1 41.1 

Shoot fresh weight (g) 2008 145.1 <0.001 <0.001 <0.001 44.0 85.4 
  2009 298.8 <0.001 <0.001 <0.001 14.5 64.7 

Plant height (Cm) 2008 107.0 <0.001 <0.001 0.018 22.1 68.3 
  2009 149.6 <0.001 <0.001 NS 15.5 54.7 

Tuber number 2008 2.7 <0.001 NS NS 53.2 81.1 
  2009 5.4 <0.001 <0.001 <0.001 47.1 85.8 

Tuber weight (g) 2008 6.4 <0.001 0.019 0.011 81.1 87.9 
  2009 33.2 <0.001 <0.001 <0.001 73.6 77.7 

Root dry weight (g) 2009 1.9 <0.001 0.012 0.04 16.2 64.6 

Root length (Cm) 2009 33.5 <0.001 <0.001 NS 18.0 50.4 

Root:shoot ratio 2009 0.1 <0.001 <0.001 0.001 10.4 44.4 

Number of stolons 2009 8.1 <0.001 <0.001 0.002 7.8 66.1 

Dry biomass (g) 2009 29.4 <0.001 <0.001 <0.001 7.7 41.6 
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Table S2. Population mean values of the traits Chlorophyll florescence (Fv/Fm) and Chlorophyll content measured at different time points 
during stress and recovery period, analysis of variance for the traits under stress and recovery condition and relative reduction and broad 
sense heritabilities of the traits under stress and recovery condition. 
 
 

Two Way ANOVA (P values)   
Trait 

Time  Mean Values 
Genotype (G) Treatment (T) G*T 

Relative 
 Reduction (%)  

Heritability 
 (%) 

Chlorophyll florescence (CF) 1DAS 0.8 NS NS NS 0.00 96.2 
  4DAS 0.782  < 0.001  < 0.001  < 0.001 2.25 35.2 
  8DAS 0.78 NS  < 0.001 NS 2.50 32.7 
  17DAS 0.747  < 0.001  < 0.001  < 0.001 6.63 14.8 
  1DAR 0.77 0.028 0.04 0.01 3.75 22.2 
  4DAR 0.78 NS 0.034 NS 2.50 33.7 
  8DAR 0.79 NS 0.04 NS 1.25 7.0 
  16DAR 0.81  < 0.001  < 0.001 NS -1.25 14.1 
Chlorophyll content (CC) 3DAS 35.31 <0.001 NS NS -1.03 70.8 
  7DAS 34.60 <0.001 <0.001 NS 1.34 47.4 
  13DAS 33.45 <0.001 0.028 NS 4.13 48.3 
  17DAS 32.31 0.006 <0.001 NS 8.47 37.2 
 

DAS: days after stress; DAR: days after recovery 
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Table S3. Coefficient of correlations for the traits under well watered condition (harvested at the end of stress period) *Significant at P≤ 
0.05; ** Significant at P≤ 0.01; *** Significant at P≤ 0.001 
 
Traits δ13C Nr stolons PM RDW RFW R: S dry wt SDW SFW Tuber wt Nr stems Nr tubers Pl ht 
Nr stolons -0.140            
PM -0.287 -0.211  -          
RDW 0.268 0.486* -0.370  -         
RFW 0.138 0.453* -0.515* 0.762***  -        
R: S dry wt 0.149 0.364 -0.07 0.723*** 0.5623**  -       
SDW 0.257 0.376 -0.468* 0.785*** 0.5579** 0.1633  -      
SFW 0.045 0.442* -0.437* 0.659*** 0.54** 0.0818 0.8768***  -     
Tuber wt 0.339 0.505* -0.031 0.236 0.2297 -0.0355 0.3849 0.3699  -    
Nr stems -0.377 -0.1042 0.228 -0.4434* -0.1768 -0.4216* -0.3651 -0.0839 -0.2174  -   
Nr tubers 0.265 0.543** 0.085 0.2247 0.2615 0.0175 0.303 0.2757 0.8006*** -0.1501  -  
Pl ht 0.326 -0.401* -0.157 0.2092 0.1146 0.1817 0.0989 -0.0693 -0.2515 -0.3952* -0.2358  - 
Root length 0.040 0.031 -0.172 0.5384** 0.275 0.32 0.5534** 0.5176** -0.1087 -0.3638 -0.2189 0.308 
 
Traits were Number of stolons (Nr stolons), Plant maturity (PM), root dry weight (RDW), root to shoot day weight ratio (R:S dry wt), shoot dry weight (SDW), shoot fresh weight (SFW), tuber 
weight (Tuber wt), number of main stem (Nr stems), number of tubers (Nr tubers) and plant height (Pl ht). 
 
 
 

Table S4. Pearson coefficient of correlations for the traits after recovery *Significant at P≤ 0.05; ** Significant at P≤ 0.01; *** Significant 
at P≤ 0.001 
 
Traits Nr tubers Nr stolons PM RDW RFW R: S dry wt SDW SFW Tuber wt Nr stems Pl ht 
Nr stolons 0.279  -          
PM 0.485*** 0.021  -         
RDW 0.051 0.437*** -0.354**  -        
RFW 0.000 0.454*** -0.372** 0.975***  -       
R:S dry wt 0.176 0.443*** -0.147 0.780*** 0.779***  -      
SDW -0.099 0.247* -0.378** 0.731*** 0.672*** 0.174  -     
SFW -0.190 0.297* -0.496*** 0.722*** 0.678*** 0.288* 0.863***  -    
Tuber wt 0.774*** 0.072 0.419*** -0.102 -0.165 0.010 -0.168 -0.28*3  -   
Nr stems 0.030 0.572*** 0.005 0.117 0.161 0.115 0.080 0.176 -0.230*  -  
Pl ht -0.405*** 0.087 -0.421*** 0.306* 0.326** 0.132 0.321** 0.444*** -0.469*** -0.004  - 
Root length -0.114 0.056 -0.224 0.474*** 0.416*** 0.313** 0.489*** 0.548*** -0.079 -0.138 0.358** 
 
Traits were Number of stolons (Nr stolons), Plant maturity (PM), root dry weight (RDW), root to shoot day weight ratio (R:S dry wt), shoot dry weight (SDW), shoot fresh weight (SFW), tuber 
weight (Tuber wt), number of main stems (Nr stems), number of tubers (Nr tubers) and plant height (Pl ht). 
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Chapter 5 
 
S Table Differentially expressed genes of genotypes which showed different phenotypic response to water stress      
 
 
 
 
 
 
 

 
 
  

Early response (4 DAS) Late response (9 DAS) 
Genotype wilting symptom Nr of genes wilting symptom Nr of genes 

CE017 - 265 - 5182 
CE084 - 1992 + 4612 
CE782 + 3742 + 6483 
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Summary 

Drought is the most important cause of crop and yield loss around the world. Breeding for 

drought tolerance is not straightforward, as drought is a complex trait. A better understanding 

of the expression of drought traits, the genes underlying the traits and the way these genes 

interact will significantly increase the success of breeding for drought tolerance.  

Potato is an important food crop, yet it is relatively susceptible to drought. As a first step 

towards identifying the genetic basis for drought tolerance in potato, we make use of diploid 

potato populations that have been genetically well characterized (CxE, SHxRH). The CxE 

population was extensively evaluated for drought tolerance in vitro and for two successive 

years (2008, 2009) under greenhouse conditions and the data were used for QTL mapping. 

For optimal QTL mapping, we expanded the CxE and SHxRH genetic maps with 499 SNP 

markers (two arrays 384 and 768SNP arrays respectively, enriched for putative stress 

tolerance candidate genes). The SNPs were discovered in public EST databases using 

QualitySNP software and detected with the Illumina GoldenGate assay. About 300 SNPs 

served as bridge markers between the CxE and SHxRH maps. This will enable us to make use 

of the extensive genetic and sequence information of the SHxRH population and the RH 

genome sequence. With the availability of the potato genome sequence of the doubled 

monoploid DM1-3 516R44 (DM) (www.potatogenome.net), it was possible to further 

examine the SNP marker loci for paralogs and intron spanning sequences. In total 732 SNP 

marker loci were found to be unique in the potato genome sequence. Many of these SNP 

markers not only served as landmarks on the genetic map but may also as putative genes 

underlying quantitative traits. In addition the validated SNP markers are now utilized as 

anchors in the potato physical map. 

 

We investigated the possibility of screening potato for relevant drought traits in in vitro 

cultures and evaluated the CxE population for the response to PEG-induced water deficit 

stress and recovery potential after stress. Significant genetic variation was observed for the 

response to drought and for recovery potential. Several shoot and root growth traits were 

measured. In this study the genetic variation and heritability estimates were high to very high 

for the measured traits under control and recovery condition. In total 23 QTLs were detected 

in plants under control, stress and recovery treatments. Interesting putative candidate genes 

that may underly stress response QTLs were identified.  
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The drought tolerance evaluation of the CxE population in pots in the greenhouse included 

traits like leaf Relative Water Content, δ13C as a measure of Water Use Efficiency, 

Chlorophyll Fluorescence, Chlorophyll Content, shoot and root biomass and tuber yield. The 

progeny displayed a wide contrast for drought tolerance, with individuals surviving and 

recovering completely after 3 weeks of drought, and others completely wilted beyond 

recovery. Most of the traits had high heritabilities. QTLs effective in multiple treatments and 

years were detected for tuber number, tuber weight, plant height, shoot fresh and dry weight. 

Other QTLs were found to be dependent on the environment: QTL x Environment interaction 

was found for leaf δ13C under drought conditions and we speculate that the function of δ13C 

was genetically split into a stomatal and non-stomatal component. 

 

Many of the QTLs for growth traits measured both in the greenhouse and in in vitro cultures 

were specific to either of the growth conditions. Yet significant QTLs that were detected for 

plant height, shoot dry weight, fresh biomass for plants grown in the greenhouse were also 

found when the population was grown in vitro. These QTLs may be less affected by 

environmental influences, and we may therefore expect that some of these QTLs will be 

relevant under field conditions as well. This also suggests that the in vitro system may be used 

for preliminary selection in breeding programmes for specific performance-related traits.  

 

The genetic architecture of transcript-level variation for drought response was captured in the 

potato population CxE and mapped as expression QTLs (eQTLs). We anchored the 

differentially expressed genes to the genome sequence of potato, and this enabled us to 

determine whether the transcription of these genes (the eQTLs) is in cis or in trans regulated. 

The combined use of genome-wide detection of eQTLs in combination with genome sequence 

information for gene location has enables us to detect regulatory hot spots for drought 

response in the CxE population. Based on gene ontology annotation, a number of eQTLs were 

detected for genes known to be involved in drought signal transduction and drought-induced 

transcriptional regulation, and for redox genes. Examination of co-localization of eQTLs and 

phenotypic QTLs identified several interesting eQTLs for genes that may be involved in 

specifying the phenotypic QTL, for instance, the eQTL for a gene that was annotated with a 

putative function in the photosystem II light reaction colocalized with trait QTL of 

chlorophyll florescence (Fv/Fm) on chromosome 1, along with other genes involved in 
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drought response such as heat shock proteins and signaling proteins with known induced 

expression under stress conditions. On chromosome 10, eQTLs for genes involved in carbon 

partitioning, signaling receptor kinases, transcription factors and hormone and lipid 

metabolism were colocalized with phenotypic QTLs for chlorophyll content and stomatal 

component of δ13C. As we have only touched the surface of the information contained in the 

transcriptome dataset combined with the phenotyping data, continued efforts on mining the 

dataset and in depth analysis will most likely reveal more putative candidate genes for QTL 

effects. 

 

This thesis constitutes the first knowledge of in vitro and greenhouse screening for drought 

tolerance in potato and has led to the description of important traits for screening and 

selection in breeding for drought tolerance. The QTLs identified in this thesis may be 

interesting targets for potato breeding to improve drought tolerance of the potato crop. 

Furthermore, our results illustrate the power of application of integrated genetic and genomics 

approaches to unravel the molecular components underlying abiotic stress tolerance traits.  
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Samenvatting 
 

Droogte is de belangrijkste oorzaak van wereldwijde gewas- en opbrengstverliezen. 

Veredelen voor droogtetolerantie is echter niet eenvoudig, want droogte is een complexe 

eigenschap. De kans van slagen van een veredelingsstrategie voor droogtetolerantie zal 

toenemen bij een beter begrip van de expressie van eigenschappen betrokken bij de 

droogterespons van planten, van de genen die verantwoordelijk zijn voor de eigenschappen en 

de manier waarop deze genen elkaar beïnvloeden. 

 

Aardappel is een belangrijk voedselgewas, maar het is relatief gevoelig voor droogte. Dit 

proefschrift beschrijft de eerste stappen om de genetische basis voor droogtolerantie in 

aardappel op te helderen. Daarvoor hebben we gebruik gemaakt van diploïde 

karteringspopulaties die genetisch goed zijn gekarateriseerd (CxE, SHxRH). De CxE 

populatie is uitgebreid getest voor droogtetolerantie, zowel in vitro als gedurende twee 

opeenvolgende jaren in de kas, en de verzamelde gegevens zijn gebruikt voor het in kaart 

brengen van zgn. Quantitative Trait Loci (QTL). 

Om een optimale QTL kartering te kunnen uitvoeren zijn de bestaande genetische kaarten van 

de CxE en SHxRH populaties uitgebreid met 499 Single Nucleotide Polymorphism (SNP) 

merkers (gebruikmakend van 384 en 768 Goldengate SNP arrays die verrijkt zijn met 

kandidaatgenen voor stress tolerantie). De SNP zijn opgespoord in publieke databases met 

behulp van het computerprorgamma QualitySNP, en gedetecteerd in de populaties met de 

illumina GoldenGate assay. Ongeveer 300 SNP merkers dienen als brugmerkers tussen de 

kaarten van CxE en SHxRH. Dit maakt het mogelijk om gebruik te maken van de uitgebreide 

genetische en sequentie informatie van de SHxRH populatie en van de sequentie van het RH 

genoom. Met het beschikbaar komen van de aardappel genoomsequentie van de verdubbelde 

haploid SM1-3 516R44 (DM) (www.potatogenome.net) werd het ook mogelijk om de SNP 

loci te onderzoeken op de aanwezigheid van paralogen en aanwezigheid van intronen in de 

geamplificeerde fragmenten. Er werden in toaal 732 SNP merkers gevonden die uniek waren 

in het genoom van de DM aardappel. Veel van deze merkers dienen niet alleen als 

markeringen op de genetische kaart maar ook als mogelijke kandidaatgenen die 

verantwoordelijk kunnen zijn voor kwantitatieve eigenschappen. Daarnaast worden de 

gevalideerde SNP merkers nu ook gebruikt om de fysieke kaart van aardappel (RH) te 

verankeren. 
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Wij hebben ook onderzocht of het mogelijk is om aardappelplanten in vitro te screenen voor 

relevante droogte-eigenschappen. Hiertoe is de respons van de CxE populatie op PEG-

geïnduceerde stress als gevolg van watertekort onderzocht, en ook de mate van herstel na 

droogtestress, waarbij verschillende scheut- en worteleigenschappen werden gemeten. Er 

werd significante genetische variatie gevonden met betrekking tot de droogterespons en de 

mate van herstel. De genetische variatie en mate van overerving was met name hoog tot zeer 

hoog voor de gemeten verschillen tussen controle en droogte-behandelde planten. In totaal 

zijn 23 QTLs gedetecteerd voor verschillende eigenschappen in zowel de controle, droogte-

behandelde en herstellende planten. Voor enkele van deze QTLs zijn mogelijke 

kandidaatgenen geïndentificeerd. 

 

Tijdens de evaluatie van droogtetolerantie van de CxE populatie in potten in de kas zijn een 

aantal eigenschappen gemeten waaronder: relatieve waterhoeveelheid van het blad (Relative 

Water Content, RWC), δ13C als maat voor efficiënt watergebruik (Water Use Efficiency, 

WUE), chlorofyl fluorescentie, chlorofyl hoeveelheid, scheut- en wortelbiomassa, en 

knolopbrengst. Het nakomelingschap was sterk contrasterend voor tolerantie voor droogte, 

waarbij een aantal individuen de droogteperiode van 3 weken overleefden en volledig 

herstelden, en andere individuen aan het eind van de droogteperiode volledig verwelkt waren 

en niet meer herstelden. De meeste gemeten eigenschappen hadden een hoge vererfbaarheid. 

QTLs voor aantallen knollen, knolgewicht, plantlengte, versgewicht en drooggewicht van de 

scheut werden gevonden in beide jaren en in zowel controle planten als planten onder. Andere 

QTLs waren juist sterk afhankelijk van de omgeving. QTL x Omgeving interactie werd 

gevonden voor δ13C van het blad in droogte gestresste planten. De functie van δ13C bestaat 

genetisch mogelijk uit twee componenten een stomataire en een niet-stomataire component, 

die een verschillende rol spelen in de beide jaren. 

 

Veel van de QTLs voor groei-eigenschappen die zowel in de kasexperimenten in potten en in 

vitro werden gedetecteerd waren specifiek voor één van beide experimentele omstandigheden. 

Desalniettemin werden enkele significante QTLs voor plantlengte, drooggewicht van de 

scheut, en versgewicht van de scheut zowel in de kasexperimenten als in het in vitro 

experiment gedetecteerd. Deze QTLs lijken minder afhankelijk van de experimentele 

condities en de omgeving, en daarom zouden deze QTLs mogelijk ook relevant kunnen zijn 



  Summary in Dutch 

 143 

onder veldcondities. Dit resultaat laat ook zien dat in vitro cultures mogelijk ook kunnen 

worden gebruikt voor voorselectie in veredelingsprogramma’s voor specifieke eigenschappen 

die gerelateerd zijn aan de prestaties van de plant. 

 

De genetische verschillen in de respons van planten op droogte stress worden in belangrijke 

mate bepaald door verschillen in expressie van genen. Deze expressieverschillen zijn gemeten 

in de CxE aardappelpopulatie, en genetisch gekarteerd als expressie-QTLs (eQTLs). De genen 

waarvan de expressieverschillen zijn bepaald zijn met behulp van de genoom sequentie van 

aardappel verankerd op de genetische kaart, en dit stelt ons in staat aan te geven of de 

differentiële expressie van deze genen (de eQTLs) in cis of in trans gereguleerd wordt. Door 

combinatie van genoom-brede identificatie van eQTLs gecombineerd met informatie over de 

fysieke locatie van deze genen zijn zgn. hotspots van aansturing van genen voor de droogte-

respons gedetecteerd. Bovendien zijn aantal eQTLs geïdentificeerd voor genen waarvan 

bekend is dat ze betrokken zijn bij signaal transductie en bij transcriptionele regulatie na 

droogtestress, en voor genen betrokken bij redox processen. Op grond van co-localisatie van 

de bijbehorende eQTLs en van QTLs voor fenotyische eigenschappen konden verschillende 

interessante genen worden aangewezen die mogelijk betrokken zijn bij het effect van deze 

QTL. Zo viel een eQTL voor een gen geannoteerd als een gen coderend voor een eiwit dat 

deel uitmaakt van de lichtreactie van het fotosyteem II samen met een QTL voor de chlorofyl 

fluorescentie parameter Fv/Fm (capaciteit van fotosynthese) op chromosoom 1. Op deze 

locatie werden ook eQTLs gevonden voor andere genen betrokken bij de droogte respons, 

zoals heat shock eiwitten, en eiwitten betrokken bij signaaloverdracht onder stress 

omstandigheden. Op chromosoom 10 werden eQTLs voor genen betrokken bij 

koolstofverdeling over de plant en hormoon en vetzuurmetabolisme, en genen coderen voor 

signaal receptor kinases en transcriptiefactoren op dezelfde locatie gevonden als fenotypische 

QTLs voor chlorofylhoeveelheden in de bladeren en voor de stomataire component van δ13C. 

Een uitgebreidere analyse van de dataset met expressieverschillen en eQTLs in combinatie 

met de fenotypische informatie en QTLs zal hoogstwaarschijnlijk nog meer mogelijke 

kandidaatgenen voor aan droogtetolerantie gerelateerde eigenschappen opleveren. 

 

Dit proefschrift beschrijft voor het eerst een uitgebreide analyse van droogtetolerantie in 

aardappel in in vitro cultures en in planten in de kas. Dit heeft geleid tot een beschrijving van 
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belangrijke eigenschappen voor screening en selectie voor droogtetolerantie in de veredeling. 

De QTLs die zijn geïdentificeerd in dit proefschrift kunnen gebruikt worden als speerpunten 

in de aardappelveredeling ten behoeve van verbetering van droogtetolerantie in dit gewas. 

Onze resultaten laten ook de meerwaarde zien van een aanpak waarin genetische en 

“genomics” methoden worden geïntegreerd om de moleculaire mechanismen op te helderen 

die ten grondslag liggen aan eigenschappen die bijdragen tot tolerantie voor abiotische stress. 
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1) Start-up phase  date 
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►  Writing or rewriting a project proposal   
  Genetic dissection of drought tolerance in potato Mar-Jun 2007 

►  Writing a review or book chapter   
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  Subtotal Start-up Phase 7,5 credits* 
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  EPS Theme symposia "Genome plastisity", Leiden  University Dec 07, 2007 

  EPS Theme symposia "Metabolism and adaptations", Amsterdam University Feb 18, 2009 
  EPS Theme symposia "Metabolism and adaptations", Leiden University Feb 19, 2010 
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  Seminar by Dr. Anne Osbourn, John Innes Centre (UK) "The evolution of metabolic diversity in plants" Sep 12, 2007 

  Seminar by Prof.dr. R. Scott Poethig, "Regulation of phase change in plants by miRNAs and trans-acting siRNAs" Sep 21, 2007 
  Seminar by Professor Jaakkko Kangasjärvi, University of Helsinki (Finland), "ROS and stomatal regulation" Mar 13, 2008 

  
Seminar by Prof. Jian-Kang Zhu, University of california (USA), "Mechanism and function of active DNA 
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Lecture by Pamela Hines Senior Editor of Science, Washington (USA), "Science from an Editor’s view; Science 
organization, tips about being an author and a referee etc. " Nov 06, 2008 

  
Seminar by Prof.dr. Sjef Smeekens Utrecht University, Molecular Plant Physiology "Sweet connections – 
Reprogramming metabolism in response to stress" Nov 27, 2008 
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Seminar by Dr. Christiane Gebhardt, Max Planck Cologne (Germany), "The molecular basis of quantitative traits in 
potato"  Feb 05, 2010 

  
Seminar by Prof. Kazuto Iwama, Hokkaido University (Japan), "Varietal difference in potato root system and its 
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  Gordon conference (Switzerland) Jun 13-18, 2010 

►  Presentations   

  Molecular maaping & Marker assisted selection in plants Vienna austria - Oral Feb 03-06, 2008 
  ALW meetings Experimental Plant Sciences Lunteren The Netherlands - Poster Apr 07-08, 2008 
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  17th triennial conference of the european association for Potato research. Brasov, Romania - Poster Jul 06-10, 2008 

  The 5th solaneceae genome workshop SOL 2008 Cologne Germany - Oral Oct 12-16, 2008 
  STW-INCAS meeting - Oral Nov 27, 2008 

  Abiotic stress tolerance in plants Vienna Austria - Poster Feb 08-11, 2009 

  STW-INCAS meeting - Oral Jun 11, 2009 

  CNR-IBAF Porano Italy- Oral Sep 03, 2009 
  Inter drought III - Poster Oct 11-16, 2009  

  The 6th solaneceae genome workshop SOL 2009 New Delhi India - Oral Nov 08-13, 2009 

  ICRISAT India - Oral  Nov 24, 2009 

  Department of crop physiology, university of agricultural sciences, Bangalore, India - Oral Dec 08, 2009 
  STW-INCAS meeting - Oral Jan 19, 2010 

  Gordon conference - poster Jun 13-18, 2010 

  STW-INCAS meeting - Oral Oct 07, 2010 

►  IAB interview Feb 17, 2011 
►  Excursions   

  McCain, Hoofddorp, The Netherland Sep 15, 2008 

  Syngenta,Enkhuizen, The Netherland Sep 25, 2008 

  C. Meijer, Rilland,The Netherland Jul 14, 2009 
  DLF - Tripolium, Moerstraten, The Netherland Jul 14, 2009 

  Visit to ICRISAT, Hyderabad, India Nov 23-26, 2009 

Subtotal Scientific Exposure 36,8 credits* 
      
3) In-Depth Studies date 

►  EPS courses or other PhD courses   

  Natural variation in Plants WUR  Aug 26-29, 2008  

  System biology course: Statistical analysis of ~omics data Dec 08-11, 2008 

►  Journal club   
  Participated in literaure discussion group 'Plant Breeding' 2007-2010 

►  Individual research training   

  Carbon Isotope analysis, CNR-IBAF Porano, Italy 
Aug 28-Sep06, 

2009 

Subtotal In-Depth Studies 8,9 credits* 
    

4) Personal development date 

►  Skill training courses   

  Scientific Writing (CENTA), WUR 2008 
  PhD competence assesment  Jun 04, 2009 

  EPS career day (ExPectationS) Nov 19, 2010 

►  Organisation of PhD students day, course or conference   

  Organized biweekly Phd colloquiums at plant breeding  WUR 
Sep 2008 -Oct 

2009 

  Organized international food tasting evening at plant breeding department Jun 24, 2010 

  Organized plantbreeding department one day outing Sep 16, 2010 
►  Membership of Board, Committee or PhD council   

  Member of EPS PhD Council 2009-2011 

Subtotal Personal Development 6,8 credits* 
    

TOTAL NUMBER OF CREDIT POINTS* 60 
Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by the Educational Committee 
of EPS which comprises of a minimum total of 30 ECTS credits  

    

* A credit represents a normative study load of 28 hours of study   
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PROPOSITIONS 
 

 
1) SNP markers derived from ESTs not only serve as landmarks on genetic maps but also 

as candidate genes underlying quantitative traits (This thesis)  
 
2) Co-localization of QTLs under different growth conditions such as greenhouse and in- 

vitro makes the in vitro system a reliable alternative for preliminary selection in a 
breeding program for specific drought tolerance-related traits (This thesis) 

 
3) Genome-wide eQTL analysis opens multiple avenues for network analyses that will 

lead to identification of molecular components underlying abiotic stress tolerance 
traits (This thesis) 

 
4) Comparative studies on stress-responsive epigenomes together with ~omics provide 

the missing link in our understanding of stress adaptations in plants  
 

5) There is no magical single trait to evaluate drought tolerance as it is as complicated 
and difficult to plant biology as cancer is to mammalian biology  

 
6) To explore the genetic basis of complex traits in quantitative genetics the same 

emphasis should be put on high-throughput precision phenotyping platforms as has 
been put on high-throughput sequencing technologies and marker assays.  

 
7) Adaptation to Dutch culture and integration into a multi-cultural society is an 

additional pleasure in doing a PhD in Wageningen UR Plant Breeding. 
 

8) Social discrimination is part of human nature; It can be taken out of language 
dictionaries but it will always be there in one or the other way. 

 
 

Propositions belonging to the thesis, entitled: 

“Genetic Dissection of Drought Tolerance in Potato” 

Anithakumari Arabikothanuru Muniyappa 

Wageningen, 4th March 2011 


