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IMARES is:    

• an independent, objective and authoritative institute that provides knowledge necessary for 

an integrated sustainable protection, exploitation and spatial use of the sea and coastal 

zones; 

• an institute that provides knowledge necessary for an integrated sustainable protection, 

exploitation and spatial use of the sea and coastal zones; 

• a key, proactive player in national and international marine networks (including ICES and 

EFARO). 
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Summary 

 

A ‘minimal’ model was constructed to simulate the development of phyto- and zooplankton communities 

with and without the presence of elevated copper concentrations and to investigate if there is a food web 

effect in addition to the direct effect of copper. Data from a mesocosm experiment carried out in 2009 

studying the effect of copper were used to compare model output.  

 

It was decided to separate the phyto- and zooplankton groups according to their size since it is believed 

that individual size has important implications for the physiology, ecology and potential food web effects. 

The micro-phytoplankton group consisted of species <8 µm in size, the macro-phytoplankton group of 

species >8 µm in size. The micro-phytoplankton could only be consumed by the micro-zooplankton being 

<200 µm in size. The macro-phytoplankton could only be consumed by meso-zooplankton, >200 µm in 

size which also predated the micro-zooplankton community. The model consisted of a set of differential 

equation in which food intake was modelled using a modified Holling type II equation. Parameter values 

were set assuming that micro-phytoplankton can utilize resources more efficient than macro-

phytoplankton, have lower maintenance cost and background mortality and a higher maximum growth 

rate. Micro-zooplankton has higher background mortality and maximum growth rate than meso-

zooplankton. The effect of copper was incorporated into the model by adjusting the food intake. 

 

The model was able to simulate the major direction of the phyto- and zooplankton as observed in the 

mesocosm data. Initial peaks in the different groups and the decline of the species observed in the blank 

treatment were both predicted by the model. In the (modelled) equilibrium situation macro-

phytoplankton was not able to sustain itself when micro-phytoplankton was present. In nature extinction 

of macro-phytoplankton could be prevented by seasonal effects which are not incorporated in the model.  

 

Three copper situations were modelled, by reducing the food intake, affecting each group of species 

equally; a high effect (decline of food intake by 70%), low effect (decline of 10%) and intermediate 

effect (decline of 50%). Next to a direct effect of copper on the development of the species also a food 

web effect was found. When zooplankton peaks decrease by a factor of 0.5, phytoplankton peaks were 

only reduced by a factor 0.75 – 0.9. The negative effect of copper for phytoplankton was partly 

compensated for by a decrease in predation pressure. At the highest copper treatment modelled meso-

zooplankton was not able to sustain itself, this was observed in the mesocosm data as well. Mesocosm 

data show that macro-phytoplankton is able to re-establish itself in the copper treatments. This was not 

observed in model-output. 

 

Even though model output is able to qualitatively predict most observations from the mesocosm 

experiment it is not known to which level individual species contribute to the observed development in 

biomass of the clusters. It is expected that by looking at the dynamics of individual zoo-/ phytoplankton 

species the effect of copper on the population can be assessed in greater detail. However the time span 

of this project didn’t allow to conduct an in depth data analysis. It is therefore recommended to perform 

a data analysis to study the mechanisms with which the different plankton species are affected by the 

copper further together with the biology of the species (feeding behaviour etc). This could result in an 

alternative division of the plankton species ultimately resulting in even better model predictions and 

better understanding the effect copper has on the lower part of the food web.   
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1. Introduction 

Ecosystems consist of very complex interactions between different species and their physical 

environment. Alterations on one part of the ecosystem can cause, via food web interactions, unexpected 

changes somewhere else. Translation of effects on one end of the organisational level, for instance 

individuals, to other levels of organisation, population or community, are complex and not obvious. In 

general measurements are mainly carried out for short periods of time and on individual level because of 

budget and practical reasons.  

 

Unique exceptions are the salt water mesocosm experiments carried out by IMARES. In these systems 

the effect of mainly toxic substances are studied on a more complex ecosystem and represent therefore 

a more environmental relevant situation. 18 mesocosm tanks are available in total with a capacity of 4 

m3 each. In each experiment several species of different trophic levels, linked by feeding interactions and 

competition for resources, are added. The development of the community is monitored over a longer 

period of time in which species grow, reproduce and die. From the monitoring activities a database is 

constructed. Combination of the available data from these studies with the result of an ecosystem model 

is a unique chance to extrapolate effects on individual level to effects on population- and ecosystem 

level.  
 

Problem definition 

A model is by definition a simplified form of the real world, but they differ in complexity. Existing applied 

ecosystem models are in general very complex, resulting in a great number of parameters. It is not 

uncommon that for certain parameters an independent measured value is lacking. This lack of data leads 

in practice to complex estimation procedures with the aim to synchronise model output with available 

time series. In the attempt to construct a model that include almost all existing relations known a system 

is made that resembles to great extent the natural world but at the same time makes it very hard to 

relate outcome to responsible ecological mechanisms. Model predictions have to be taken as it is without 

getting true insight in the system. 

 

The challenge therefore is to construct a model that is simple enough to relate model output with model 

assumptions made and at the same time consist of sufficient complexity to deliver output relevant for the 

‘real’ system, the outside world. 

 

Project aim 

By developing a model capable of describing a simple ecosystem several objectives can be reached; 

 

o making a model available for IMARES that describes the interactions and succession of phyto- and 

zooplankton groups in a marine environment; 

o extend our knowledge of complex interactions between different trophic level groups as they occur in 

marine ecosystems; 

o exploring the effect of copper on the development of phyto- and zooplankton groups, both direct and 

indirect via food web interactions. 

 

Next to extending our knowledge about the dynamic interactions that occur in the marine environment, 

model expertise at IMARES is increased and becomes more readily available for the different 

departments. 
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2. Research questions and method 

Studies in which a model is linked to repeatable experiments on population- and community level are  

rare in ecological literature. As far as they occur they are usually statistical models which describe 

observed patterns rather than explain them.  

 

In this study we try to formulate, on the basis of commonly accepted  theory about ecological 

interactions and specific knowledge about the role individuals and groups play in the mesocosm, a model 

that creates time series which can be compared to observed results. Next we also try to examine how 

copper pollution/poisoning affects communities both directly and indirectly via food web interactions. 

 

Independent of the extent in which the model can predict the development of phyto- and zooplankton as 

observed in the mesocosm experiments this research will lead to more insight in understanding the 

aspects and interactions of mesocosm ecosystems. 

 

Research question 

This study intends to answer the following question:  

 

“Is it possible, on the basis of ecological mechanisms, to capture the dynamics of phyto- and zooplankton 

communities in the IMARES saltwater-mesocosms in an independently constructed and relative simple 

model and is it possible to assess the food web effect of copper toxicity on both groups with this tool?” 

 

Methodology 

In this study a model is developed and analysed describing the food web interactions as observed in a 

marine mesocosms experiment. In the experiment, carried out in 2009 by Edwin Foekema, the effect of 

copper is determined. Data from this experiment is very useful for several reasons: 

 

o the mesocosm communities consist of roughly 3 trophic levels (phyto- / zooplankton, snails and 

worms); 

o a semi-natural environment is created in the mesocosms; 

o development of the systems are monitored (both chemical- as biological parameters) for an 

extended period of time (100 days); 

o treatments are carried out in triplicate, replicas don’t show big differences in development (Foekema 

et al., in prep). 

 

Although in the mesocosms also snails and worms (a somewhat third level species) were present these 

were not considered because the life history of these species was too long (or duration of experiment too 

short) to show dynamics in numbers. Therefore only the interactions of phyto- and zooplankton groups 

are mathematically described in this study.  

 

To compare the development of the measured and modelled plankton groups the available biomass data 

from the experiment must be converted into the same unit (mg C/l) first. The amount of carbon per 

individual (zooplankton) or ml (phytoplankton) will be derived from values found in literature. When no 

data can be found for a species an average value will be used. Note: this can lead to an over- or 

underestimation of the carbon content. Although meso-zooplankton is as small as micro-zooplankton in 

their early life stages differences between life stages within species are not accounted for.  
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First mesocosm without elevated copper concentrations (the blank treatments) are compared with model 

output. Next effects of copper is incorporated into the model and compared with experimental data. The 

results and set up of the mesocosm experiment is described by Foekema et al., (in prep.). A short 

description is given in chapter 3.  
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3. Short description of mesocosm experiment(s) 

The development of a relatively simple ecosystem consisting of three trophic levels (primary producers, 

primary consumers and secondary consumers) is monitored for a period of 100 days under the influence 

of five different copper concentrations (the treatments) together with a system without an elevated 

copper concentration (the blank). Each treatment, including the blank, was carried out in triplicate, 

therefore 18 mesocosm systems were followed over time in total. 

 

The mesocosm are made of round glass fiber tanks with a height of 180 cm and an internal diameter of 

190 cm (top) and 175 cm (bottom). These tanks were partly buried. Approximately 20 cm of North sea 

sediment and 140 cm of saltwater (Eastern Scheldt) were added to each system. In order to obtain a 

similar development of species in each tank, the water of all tanks was continuously exchanged between 

the tanks in the acclimatization period lasting for 3 to 4 weeks. After this period the tanks were 

hydraulically isolated. Water movement was created in each tank by aeration. Loss of water due to 

evaporation was compensated for by additions with tap water. To minimize the influence of precipitation 

the tanks were shielded with a transparent screen. 

 

Plankton and invertebrates were introduced via the sediment and water added to the system. As addition 

several other species were introduced as can be seen in Table 1. 

 

Table 1: Introduced species to the mesocosm tanks. 

Group Species – Latin name Specie – common name 

Macro algae Ulva Lactuca Sea lettuce 

Sponge Halichondria panicea Bread-crumb sponge 

Crustaceans Corophium volutator Mud shrimp 

Molluscs Littorina Littorea 

Hydrobia ulvae 

Cerastoderma edule 

Periwinkle 

Laver spire shell 

Cockle 

Annelid Arenicola marina Lugworm 

 

Several biological and chemical parameters were regular monitored during the 100 days in which the 

systems could develop. In Table 2 an overview of the measured biological parameters and the frequency 

of measurement is given, in Table 3 an overview of the chemical analyses is given. 
 

Table 2: Overview and frequency of monitored biological parameters. 

Parameter Sort measurement Frequency 

Phytoplankton chlorophyll –a two times a week 

Phyto- and zooplankton density and composition first 28 days; every week 

after 28 days; every two weeks 

Pheriphyton Biomass every 28 days 

Sponge Biomass At the start of the experiment, after 

acclimatization period and at the end of the 

experiment 

Crustaceans amount, length and weight At the end of the experiment 

Molluscs amount, length and weight At the end of the experiment 

Annelid amount, length and weight At the end of the experiment 
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Table 3: Overview and frequency of monitored chemical parameters. 

Parameter Sort measurement Frequency 

Cu dissolved water concentration two times a week 

DOC, NH3, NO2, NO3, PO4, Si dissolved water concentration once every week 

CaCO3, Zn, Cd, Pb, Ni, Fe, Mn dissolved water concentration once every two weeks 

Cu, AVS, SEM en TOC sediment concentration At the start and the end of the experiment  

Cu  concentration in biota  At the start and the end of the experiment 
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4. Model outline and assumptions 

As can be seen in chapter 3 no fish-species were added to the mesocosm systems, experience has 

learned that addition of fish makes the systems very unstable: the addition of even a single fish can lead 

to the annihilation of zooplankton (E. Foekema, pers. comm.). Pheriphyton, sponges, crustaceans, 

molluscs, annelids, phytoplankton and zooplankton groups were present and monitored during the 100 

days duration of the experiment. The development of the plankton community (both phyto- and 

zooplankton) was measured most frequent resulting in a good dataset. The life-history of the ‘higher 

trophic level species’ such as snail and worms, were too long so dynamics were not studied. Since phyto- 

and zooplankton groups form the basis of almost all marine ecosystems it was decided to focus on these 

functional groups for development of the model. A lot of papers are published in which plankton 

interactions and dynamics are studied in the marine environment. The model was constructed based on 

several hypotheses found in literature which are described here. 

 

Phyto- and zooplankton interactions 

Autotrophic communities (such as planktonic, periphytic-, micro- and macro algae) are responsible for 

the primary production and form the basis of the food web leading (via zooplankton) to fish and birds. 

The composition and dominance of these communities differ however due to an array of factors such as 

exposure to waves and currents, substratum composition, grazing, light and nutrient availability. These 

factors can determine alone the abundance of a species, but also via complex interactions, (Sand-Jensen 

and Borum 1991).  

 

Phytoplankton is the major contributor to algal biomass and primary production in the North Sea 

(Mackinson and Daskalov 2007). Individual size has important implications for the physiology and 

ecology of the phytoplankton. Individual size effect processes such as nutrient uptake, light affinity, 

photosynthesis and respiration, settling rates and physical transport and plant herbivore interactions 

(Sabetta et al. 2008). Riegman and others suggest a size differential control of phytoplankton structuring 

the plankton communities resulting from nutrient and light competition of the phytoplankton. Four 

factors were proposed determining the food web structure under oligotrophic and eutrophic conditions 

(Riegman et al. 1993); 

 

1. Small algae are better competitors for light and nutrients than larger algae; 

2. The potentially high reproduction rate of their predators makes the smaller algae more 

susceptible to grazing control by micro-zooplankton than the larger algae; 

3. Larger algae escape from micro-zooplankton grazing, due to their size, but experiences losses 

through sedimentation; 

4. Micro-zooplankton is an important food source for meso-zooplankton in oligotrophic areas. 

 

Modelled processes 

Based on these assumptions the following model outline is proposed consisting of two phytoplankton 

groups and two zooplankton groups structured by their size, see Figure 1. We have assumed that 

nutrient concentration and grazing is most important for the phytoplankton dynamics in the mesocosms, 

and have ignored other factors such as waves and currents. In a meeting with employees of IMARES 

working with models and/or with expertise on nutrient, phyto-, zooplankton dynamics, it has been 

decided not to model nutrient dynamics explicitly. Instead resources, not further specified, are available 

for the phytoplankton groups. 
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Figure 1: Modelled processes. 
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5. Model equations and parameter values 

The different processes depicted in Figure 1 are modelled using a set of ordinary differential equations. 

Biomass (phyto- and zooplankton) is expressed as mgC/l. While in reality  phytoplankton growth can be 

limited by a number of resources(N/P/light etc), we assume that only a single resource limits growth of 

phytoplankton. .  To parameterize this limiting resource, we have used nitrogen data. We use the 

modelling framework  developed by Yodzis & Innes  to model the change in biomass of populations on 

the basis of individual-level processes (Yodzis & Innes, 1992). 

 

First objective was to model the blank treatments, without the presence of elevated copper 

concentration. In a follow up the effect of copper was incorporated into the model and compared with  

measurements from the experiment. 

 

The software package Content was used to solve the differential equations and visualize model output. 

Content was developed by Yu. A. Kuznetsov and V.V. Levitin at the ‘Centrum voor wiskunde en 

informatica’ in Amsterdam and is freely available on the internet. 

 

Resources 

Resources (nutrients) enter the mesocosm water column via both mineralization processes in the water 

column and in the sediment. Factors affecting the mineralization rate are not incorporated into the 

model, the mineralization rate is considered constant. Resources that become available for utilization by 

both micro-phytoplankton (PS) and macro-phytoplankton (PL) is modelled as a continuous flux, 

representing both sediment and water mineralization processes, see equation 1.  

 

Uptake of resources by phytoplankton is determined from the amount of nitrogen needed per unit carbon 

growth of phytoplankton, using carbon to nitrogen ratio of 250:40, see equation 2. 

 

( ) ( )CfIPCfIPNflux
dt
dN

plLpsS ⋅⋅−⋅⋅−=    Equation 1 

 

187.0
__

__
250
40

=
⋅⎟
⎠
⎞

⎜
⎝
⎛

=
CmassMolair

NmassMolair
Cf    Equation 2 

  
N Nitrogen concentration (mgN/l) 

Nflux Flux of nitrogen into the system (mgN/l/d) 

Ips Intake rate resources by micro-phytoplankton (d-1) 

PS Micro-phytoplankton biomass (mgC/l) 

Ipl Intake of resources by macro-phytoplankton (d-1) 

PL Macro-phytoplankton biomass (mgC/l) 

Cf Conversion factor from C to N (mgN/mgC) 
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Micro-phytoplankton (<8 µm) 

The rate of micro-phytoplankton (PS) change is determined by growth, cell maintenance, cell death and 

grazing. The growth of phytoplankton is determined by the intake of resources (I) and the food 

assimilation efficiency (ε) which express how efficient resources are converted to biomass. Cell death is 

expressed as mortality (M) and cell maintenance as (T), and both represent the fraction of the 

phytoplankton community that dies or is used for maintenance every day. Grazing depends on the micro-

zooplankton (ZS) specific ingestion rate which itself depends on the phytoplankton density, see equation 

3. 

( ) ( )zsSpspspspsS
S IZMTIP

dt
dP

⋅−−−⋅∋⋅=     Equation 3 

The intake rate by phytoplankton is resources limited according to a (modified) Holling type II functional 

response with maximum growth rate Imax, a half saturation value (H) (at which concentration growth is 

half of its maximum) and available resources (N), see equation 4.For computational reasons we set an 

arbitrary threshold for nutrient uptake to prevent nutrient concentration to approach zero slowing down 

the model computations. , see equation 5. 

 

PsEffps

psPsEff
ps NH

IN
I

+

⋅
= max      Equation 4 

 

( )0,max PsTHPsEff NNN −=    Equation 5 

 

PS Micro-phytoplankton biomass (mgC/l) 

εps Assimilation efficiency (-) 

Ips Intake rate resources by micro-phytoplankton (d-1) 

Tps Mass specific maintenance rate (d-1) 

Mps Loss rate due to sedimentation (d-1) 

ZS Micro-zooplankton biomass (mgC/l) 

Ips_max Maximal intake rate  (d-1) 

Hps Half saturation constant for nitrogen intake (mgN/l) 

NPsEff Available nitrogen for micro-phytoplankton (mgN/l) 

NPsTH Threshold concentration for nitrogen uptake by micro-phytoplankton (mgN/l) 

N Nitrogen concentration (mgN/l) 

 

Macro-phytoplankton (>8 µm) 

Macro-phytoplankton dynamics is governed by the same processes as for the micro-phytoplankton with 

the only difference that macro-phytoplankton (PL) is grazed by meso-zooplankton (Matsumura-Tundisi et 

al.), see equation 6, 7 and 8. 

 

( ) ( )zlplLplplplplL
L IZMTIP

dt
dP

⋅−−−⋅∋⋅=     Equation 6 
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PlEffpl

plPlEff
pl NH

IN
I

+

⋅
= max      Equation 7 

 

( )0,max PlTHPlEff NNN −=     Equation 8 

 
PL Macro-phytoplankton biomass (mgC/l) 

εpl Assimilation efficiency (-) 

Ipl Intake rate resources by macro-phytoplankton (d-1) 

Tpl Mass specific maintenance rate (d-1) 

Mpl Loss rate due to sedimentation (d-1) 

ZL Meso-zooplankton biomass (mgC/l) 

Izlpl Intake rate macro-phytoplankton by meso-zooplankton (d-1) 

Ipl_max Maximum intake rate  (d-1) 

Hpl Half saturation constant for nitrogen intake (mgN/l) 

NPlEff Available nitrogen for micro-phytoplankton (mgN/l) 

NPlTH Threshold concentration for nitrogen uptake by micro-phytoplankton (mgN/l) 

N Nitrogen concentration (mgN/l) 

 

Micro-zooplankton (<200 µm) 

The rate of micro-zooplankton (ZS) change is determined by growth, maintenance, death and grazing. 

The growth of micro-zooplankton is determined by the intake rate of phytoplankton (I) and the food 

assimilation efficiency (ε) which express how efficient consumed phytoplankton is converted into 

biomass. Cell death is expressed as mortality (M) and cell maintenance as (T), both represent the 

fraction of the micro-zooplankton community that dies or is used for maintenance every day. Micro-

zooplankton is subject to grazing itself as well by meso-zooplankton (Matsumura-Tundisi et al.). The 

grazing rate is depending on the meso-zooplankton (Matsumura-Tundisi et al.) specific ingestion rate 

which itself depends on the macro-phytoplankton and micro-zooplankton density, see equation 9. The 

intake rate of micro-phytoplankton is determined by a Holling type II functional response see equation 

10. 

 

( ) ( )zlzsLzszszszsS IZMTIZ
dt

dZs
⋅−−−⋅∋⋅=     Equation 9 

 

Szs

zsS
zs PH

IPI
+

⋅
= max     Equation 10 

 
ZS Micro-zooplankton biomass (mgC/l) 

εzs Assimilation efficiency micro-zooplankton (-) 

Izs Intake rate micro-phytoplankton by micro-zooplankton (d-1) 

Tzs Mass specific maintenance rate (d-1) 

Mzs Mortality rate micro-zooplankton (d-1) 

ZL Meso-zooplankton biomass (mgC/l) 
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Izlzs Intake rate micro-zooplankton by meso-zooplankton (d-1) 

PS Micro-phytoplankton biomass (mgC/l) 

Izsmax Maximum intake rate of micro-phytoplankton by micro-zooplankton (d-1) 

Hzs Half saturation constant for phytoplankton intake (mgC/l) 

 

Meso-zooplankton (>200 µm) 

The rate of meso-zooplankton (Matsumura-Tundisi et al.) change is determined by growth, maintenance 

and death. In the model it is assumed that there is no predation of meso-zooplankton. Cell death is 

expressed as mortality (M) and cell maintenance as (T), both represent the fraction of the meso-

zooplankton community that dies or is used for maintenance every day. The growth of meso-zooplankton 

is determined by the food assimilation efficiency (ε) and the intake rate of both macro-phytoplankton 

(Ipl) and micro-zooplankton (Izs). Food assimilation efficiency is considered the same for both food 

sources, see equation 11. 

 

The intake rate of macro-phytoplankton and micro-zooplankton is modelled as a Holling type II functional 

response depending on both the macro-phytoplankton and micro-zooplankton densities. If the macro-

phytoplankton density is high, the main food-source for meso-zooplankton will be phytoplankton, when 

the micro-zooplankton density becomes high meso-zooplankton will gradually to micro-zooplankton 

becoming its main food source, see equation 12 and 13.  

 

IIn the mesocosm experiments, each zooplankton group consists of many species and individuals of 

different sizes. This has consequences for their food particle size selection which we have chosen, for 

simplicity, not to deal with in this study. 
 

( )( )zlzlzlzszlplzlL
L MTIIZ

dt
dZ

−−+⋅∋⋅=     Equation 11 

 

SLzlpl

zlplL
zlpl ZPH

IP
I

++
⋅

= max    Equation 12 

 

SLzlzs

zlzsS
zlzs ZPH

IZI
++

⋅
= max    Equation 13 

ZL Meso-zooplankton biomass (mgC/l) 

εzl Assimilation efficiency by meso-zooplankton (-) 

Izlpl Intake rate macro-phytoplankton by meso-zooplankton (d-1) 

Izlzs Intake rate micro-zooplankton by meso-zooplankton (d-1) 

Tzl Mass specific maintenance rate (d-1) 

Mzl Mortality rate meso-zooplankton (d-1) 

PL Macro-phytoplankton biomass (mgC/l) 

Izlplmax Maximum intake rate macro-phytoplankton by meso-zooplankton (d-1) 

Hzs Half saturation constant for macro-phytoplankton and micro-zooplankton 

intake 

(mgC/l) 

Zs Micro-zooplankton biomass (mgC/l) 

Izlzsmax Maximum intake rate micro-zooplankton  (mgC/l) 
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Parameter values 

A literature search was carried out to find initial parameter values which could be used in the model. The 

result is shown in Table 4. 

 

Table 4: Initial parameter values as found in literature, note: these are not the values used in the 
modelling work. 

Parameter Symbol Value Unit Reference 

Resources     

Flux of nitrogen Nflux 0.015 (mgN/l/d) (Kristensen and Blackburn 1987) 

Conversion factor from C to N Cf 0.187 (mgN/mgC)  - 

Micro-phytoplankton         

Assimilation efficiency micro-phytoplankton εps 0.98 (-)  -  

Mass specific maintenance rate Tps 0.0005 (d-1)  - 

Maximal intake rate of resources Ips_max 2 (d-1) (O'Brien 1974) 

Half saturation constant for resources intake Hps 0.008406 (mgN/l) (Klausmeier et al. 2004) 

Loss rate micro-phytoplankton Mps 0.01 (d-1)  - 

Threshold for micro-phytoplankton NPsTH 0.0028 (mgN/l) (Gentleman and Neuheimer 2008) 

Macro-phytoplankton         

Assimilation efficiency macro-phytoplankton εpl 0.9 (-)  - 

Mass specific maintenance rate Tpl 0.0006 (d-1)  - 

Maximal intake rate of resources Ipl max 2 (d-1) (O'Brien 1974) 

Half saturation constant for resources intake Hpl 0.008406 (mgN/l) (Klausmeier et al. 2004) 

Loss rate macro-phytoplankton Mpl 0.02 (d-1)  - 

Threshold for micro-phytoplankton NPlTH 0.0028 (mgN/l) (Gentleman and Neuheimer 2008) 

Micro-zooplankton         

Assimilation efficiency micro-zooplankton εzs 0.75 (-) (Nugraha et al. 2010) 

Mass specific maintenance rate Tzs 0.006 (d-1) (Yodzis & Innes, 1992) 

Mortality rate micro-zooplankton Mzs 0.055 (d-1) (Nugraha et al. 2010) 

Maximum intake rate of micro-phytoplankton 

by micro-zooplankton Izsmax 4 (d-1) (Leising et al.) 

Half saturation constant for phytoplankton 

intake Hzs 0.0075 (mgC/l) (Leising et al.) 

Meso-zooplankton         

Assimilation efficiency meso-zooplankton εzl 0.75 (-) (Nugraha et al. 2010) 

Mass specific maintenance rate Tzl 0.006 (d-1) (De Roos et al. 2008) 

Mortality rate meso-zooplankton Mzl 0.02 (d-1) (Corkett et al. 1979) 

Maximum intake rate of macro-

phytoplankton by meso-zooplankton Izsplmax 0.17 (d-1) (Saage et al. 2009) 

Half saturation constant for phytoplankton 

intake Hzlpl 0.027 (mgC/l) (Saage et al. 2009) 

Maximum intake rate micro-zooplankton by 

meso-zooplankton Izlzsmax 1.07 (d-1) (Saage et al. 2009) 

Half saturation constant for micro-

zooplankton intake Hzlzs 0.141 (mgC/l) (Saage et al. 2009) 

 

Not all parameter values could be defined separately. For some parameters the same values were found 

for the different phytoplankton/zooplankton groups. The parameters were slightly altered with the 

following conditions, based the hypotheses and conditions described in chapter 4, in mind: 
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Phytoplankton groups 
 Micro-phytoplankton can utilize resources more efficient than macro-zooplankton  

(expressed by a lower N-threshold and half-saturation constant) 
 Micro-phytoplankton has lower maintenance cost than macro-phytoplankton 
 Micro-phytoplankton has lower background mortality due to lower sedimentation rates  
 Macro-phytoplankton has a higher maximum growth rate than micro-phytoplankton 

 

Zooplankton groups 
 Micro-zooplankton has higher background mortality than meso-zooplankton 
 Micro-zooplankton has higher maximum growth rate than meso-zooplankton 
 Micro-zooplankton can become an important food-source for meso-zooplankton 

 
The parameter values as used in the model are presented in Table 5. 
 

Table 5: Parameter values used in the model 

Parameter Symbol Value Unit 

Resources    

Flux of nitrogen Nflux 0.015 (mgN/l/d) 

Conversion factor from C to N Cf 0.187 (mgN/mgC) 

Micro-phytoplankton       

Assimilation efficiency micro-phytoplankton εps 0.9 (-) 

Mass specific maintenance rate Tps 0.0008 (d-1) 

Maximal intake rate of resources Ips_max 1.2 (d-1) 

Half saturation constant for resources intake Hps 0.01 (mgN/l) 

Loss rate micro-phytoplankton Mps 0.1 (d-1) 

Threshold for micro-phytoplankton NPsTH 0.002 (mgN/l) 

Macro-phytoplankton       

Assimilation efficiency macro-phytoplankton εpl 0.8 (-) 

Mass specific maintenance rate Tpl 0.0012 (d-1) 

Maximal intake rate of resources Ipl_max 1.5 (d-1) 

Half saturation constant for resources intake Hpl 0.02 (mgN/l) 

Loss rate macro-phytoplankton Mpl 0.2 (d-1) 

Threshold for micro-phytoplankton NPlTH 0.004 (mgN/l) 

Micro-zooplankton       

Assimilation efficiency micro-zooplankton εzs 0.7 (-) 

Mass specific maintenance rate Tzs 0.006 (d-1) 

Mortality rate micro-zooplankton Mzs 0.06 (d-1) 

Maximum intake rate of micro-phytoplankton by micro-zooplankton Izsmax 0.8 (d-1) 

Half saturation constant for phytoplankton intake Hzs 0.0075 (mgC/l) 

Meso-zooplankton       

Assimilation efficiency meso-zooplankton εzl 0.6 (-) 

Mass specific maintenance rate Tzl 0.008 (d-1) 

Mortality rate meso-zooplankton Mzl 0.02 (d-1) 

Maximum intake rate of macro-phytoplankton by meso-zooplankton Izsplmax 0.35 (d-1) 

Half saturation constant for phytoplankton intake Hzlpl 0.027 (mgC/l) 

Maximum intake rate micro-zooplankton by meso-zooplankton Izlzsmax 0.7 (d-1) 

Half saturation constant for micro-zooplankton intake Hzlzs 0.2 (mgC/l) 
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Effect of copper 

It is assumed that all species which are modelled are equally (negatively) affected by elevated copper 
concentrations. In the model the intake rate (I) is reduced by a factor (CC) see equation 14. Hence, the 
presence of copper leads to that a fraction of the food acquired by individuals is ‘wasted’, and the usable 
fraction of the intake is reduced. In this way the overall effect for the development of the modelled 
species could easily be tested for several values for CC. The value for CC is not altered over time since in 
the mesocosm experiment copper is, in different quantities to obtain different treatments, continuously 
added throughout the duration of the experiment to obtain a constant copper concentration. We assume 
that it is this ‘background concentration’ of copper which determines the magnitude of the effect on 
intake. 

CCII xxcopperwith ⋅=_     Equation 14 

 
Iwith copper Reduced intake rate with the presence of copper (d-1) 

Ixx Original intake rate without the presence of copper (d-1) 

CC Factor at which intake rate is reduced (-) 
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6. Development in the mesocosm (blank treatments) 

In this chapter the development of the phytoplankton and zooplankton groups as observed in the 

mesocosm experiment is presented.  

 

Measurement of phyto- and zooplankton 

For the determination of the phytoplankton community composition during the experiment, water 

samples were collected every week. The samples were preserved with Lugol and stored in the dark. 

Samples collected at days -2, 12, 26, 54 and 82 were analysed by visual microscopic determination and 

counting of the various taxa Foekema et al., (in prep). 

 

For the determination of the zooplankton community, five water samples of about 1.5 L each were 

collected using a core water sampler and pooled together per mesocosm. The zooplankton was collected 

using a 55 µm plankton net and preserved in a formaldehyde solution until visual microscopic analysis. 

Zooplankton samples collected at days -0, -5, -2, 12, 26, 54 and 82 were analysed Foekema et al., (in 

prep). 

 

Separation according to size 

Phytoplankton is modelled as gram C/l while measured in the experiment as cells/ml, therefore the 

density is converted  using data from Table 6. The phytoplankton community is separated according to 

their size specified in the model (Figure 1); <8 µm being micro-phytoplankton, >8 µm being macro-

phytoplankton, see Table 7. 

 

Table 6: Carbon content of various phytoplankton species. 

Species 
Carbon content cell 

(pico gram C/cell) 
Reference 

Chroococcus turgidus 225* (Watanabe et al. 2000) 

Micro flagelate < 3 µm 0.4 (Menden-Deuer and Lessard 2000) 

Medium Flagelate 3-10  µm 100 (Menden-Deuer and Lessard 2000) 

Macro flagelates >10 µm 4000 (Menden-Deuer and Lessard 2000) 

Nitzschia closterium 1000 - 

Peridinium sp. 1270 (Mullin et al. 1966) 

* estimated according to Strathmann equation  

 

Table 7: Division of phytoplankton species in two size classes; micro- and macro- phytoplankton. 

Species Size (µm) Phytoplankton size class 

Micro flagelate < 3 µm < 3 Micro phytoplankton 

Medium Flagelate 3-10    3 - 10 Micro phytoplankton 

Macro flagelates >10 µm > 10 Macro phytoplankton 

Nitzschia closterium 33 Macro phytoplankton 

Peridinium sp. 45 Macro phytoplankton 

Chroococcus turgidus 8 - 32 Macro phytoplankton 

 

The zooplankton community is separated into micro-zooplankton, being <200 µm in size, and meso-

zooplankton, being >200 µm in size. The zooplankton community is measured as individuals per liter 

while modelled as gram C/l, therefore also the zooplankton density is converted, see Table 8. 
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Table 8: Division of zooplankton species in size two classes; micro-, and meso-zooplankton. 

Species 

size  

(µm) 

Carbon 

(µgC/indv) 

Reference* Zooplankton 

size class 

Keratella cochlearis 100 - 150 0.014 (Telesh et al. 1998) Micro-zoopl. 

Keratella quadrata 180 - 220 0.058 (Telesh et al. 1998) Micro-zoopl. 

Mytilina sp? 150 0.036  - Micro-zoopl. 

Acartia clausi 880 2.19 (Cataletto and F. Umani 1994) Meso-zoopl. 

Bivalve larvae  3.51  - Meso-zoopl. 

Centropagus hamatipes +/- 1000 11.0 (Costa et al. 2006) Meso-zoopl. 

Cladocera species (Podon ) 0 - > 5000 1 (Bamstedt 1998) Meso-zoopl. 

copepoda nauplii 150 - 350 0.54 (Fernández 1979) Meso-zoopl. 

copepodites  3.51  - Meso-zoopl. 

Cypris larvae 200 - 300 3.51  - Meso-zoopl. 

Gastropoda larvae 650 3.51  - Meso-zoopl. 

Harpacticide copepoda 650 2 (Bamstedt 1998) Meso-zoopl. 

Nematodes 500 3.51  - Meso-zoopl. 

Ostracode sp.  2 (Bamstedt 1998) Meso-zoopl. 

Polychaeta larvae 200 - 1200 3.51  - Meso-zoopl. 

Temora longicornis 1000 - 1350 3.51  - Meso-zoopl. 

* Reference for carbon content. ‘-‘ means no data could be found about the carbon content, instead an carbon content of 3.51 

µgC/individual was used in case of the meso-zooplankton and 0.036 µgC/individual for the micro-zooplankton. This are average 

values calculated from the species were the carbon content was found in literature. 

 
 

 

 
  



Report number C025/11 21 van 38 

 

7. Model results 

Both model outcome for the blank treatments and for the treatments with elevated copper 

concentrations are presented in this chapter. 

Blank treatments 

The modelled development of the phytoplankton and zooplankton groups in the blank treatments 

(without elevated copper concentrations) over a duration of 100 days calculated and compared to results 

from the mesocosm experiments. Because in the experiment the three replicas had different start 

conditions each replica is modelled individually and compared to model output. 

 

Model outcome for blank treatment 1 

Initial values are set as found by mesocosm blank treatment 1, see Table 9. Figure 2 and Figure 3 show 

both measured and model results for the first 100 days.  

 

Table 9: Initial values of mesocosm blank treatment 1 as found in the mesocosm data. 

Parameter Symbol Value Unit 

Nitrogen N 0.6 mgN/l 

micro-phytoplankton PS 1.4 mgC/l 

macro-phytoplankton PL 2.5 mgC/l 

micro-zooplankton ZS 0.00001* mgC/l 

meso-zooplankton ZL 0.21 mgC/l 

* there wasn’t found any micro-zooplankton, therefore a very low value of 0.00001 mgC/l is used. 
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As can be seen in Figure 10 the starting point for the phytoplankton community is approximately the 

same, a little bit more micro-phytoplankton than macro-phytoplankton. In the lowest copper treatment 

tested (2.9 µg/l) micro-phytoplankton declines gradually to near extinction. In this treatment meso-

zooplankton shows a small peak after which it declines as well to very low concentrations while micro-

zooplankton biomass fluctuates. Macro-phytoplankton can re-establish itself (after day 54) which could 

be due to lower grazing pressure. 

 

In the 9.9 µg/l copper treatment the micro-phytoplankton declines gradually as well but the macro-

phytoplankton seems to behave differently with a peak in biomass between day 20 – 60 with very low 

biomass as well on day 82. Meso-zooplankton shows a peak in between day 12 and 26 although less high 

compared to the 2.9 µg/l treatment, after this peak the declines gradually while micro-zooplankton 

declines rapidly from the beginning showing a small increase at the end. 

 

In the 31 µg/l copper treatment micro-phytoplankton shows a peak in biomass in between day 20 – 60 

but declines near to extinction at the end of the experiment. Macro-phytoplankton biomass declines from 

the beginning but can increase at the end of the experiment (day 82) to even very high concentrations 

namely 8.9 mgC/l. Both zooplankton groups decline rapidly in biomass from the beginning, no peak is 

observed, although micro-zooplankton biomass is able to increase at the end.  

 

Model output for increased copper concentration 

The effect of copper on the phyto-/zooplankton development is modelled as well. The influence of copper 

is incorporated into the model via the factor CC (see chapter 5), reducing (when below 1) the usable 

fraction of food which is taken up by the organisms (I) equally for all four groups of species. 

 

To explore if a small (copper) effect could be enlarged via food web interactions and if a large effect 

might be reduced three situations were simulated: A slight effect of copper (factor CC = 0.95), a large 

effect of copper (factor CC = 0.3) and a situation in between (factor CC = 0.5).  

 

The starting point for all three situations with elevated copper concentration were similar, the average 

biomass for the copper treatments was taken as found after the acclimatization period, see Table 13. 

Development of the (modelled) phytoplankton and zooplankton biomass can be seen in Figure 11 and 

Figure 12. 

 

Table 13: Initial values set in the model. 

Parameter Symbol Value Unit 
Nitrogen N 0.73 mgN/l 
micro-phytoplankton PS 1.6 mgC/l 
macro-phytoplankton PL 1.3 mgC/l 
micro-zooplanktom ZS 0.0000084 mgC/l 
meso-zooplankton ZL 0.26 mgC/l 
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8. Conclusion & Discussion 

Relations were made as simple as possible in the model, only the major processes were incorporated. For 

instance meso-zooplankton is not able to consume micro-phytoplankton in the model. In reality this 

division will probably not be so strict. Other processes that will influence phytoplankton development 

were excluded such as weather conditions (temperature, light intensity etc.) and the influence of 

seasons. These processes affect nutrient- and light availability and thereby the development of the 

different groups of species in the mesocosms. But the goal of this study was not to incorporate all 

processes that could be important and predict the development of the different species with great 

quantitative accuracy but to investigate major trends in development and possible food web effects by 

exposure to elevated copper concentrations. Constructing a ‘minimal model’, leaving out all unnecessary 

processes, made it easier to understand observed change in model output by changing parameter values 

(copper effect) and initial conditions (blank treatments). 

 

The model was able to simulate the major direction of the phyto- and zooplankton development as 

observed in the blank treatments despite its simple set up. Initial peaks in the different groups and the 

decline of the species observed in the blank treatment were both predicted by the model. What the 

model couldn’t predict was the observed increase in phytoplankton after day 80 or so. An increase 

eventually occurred in the model, but after a much longer time than observed in the mesocosms (as can 

be seen in the equilibrium situation). Investigating the stable limit cycles, macro-phytoplankton was not 

able to sustain itself. Only when no micro-phytoplankton was present, macro-phytoplankton was able to 

exist in the stable limit cycles (blank treatment 3). In reality macro-phytoplankton is able to sustain itself 

also with the presence of micro-phytoplankton. The reason for this could be that in the model seasonal 

influences, that set the system back in succession, are not incorporated.  

 

The effect of copper was incorporated into the model affecting each modelled group of species equally by 

reducing the food intake (I) by a copper factor (CC). To investigate if food web effects were occurring 

three situations were modelled; a low copper effect (CC = 0.95), a high copper effect (CC = 0.3) and a 

situation in between (CC = 0.5).  

 

Model results show that both phytoplankton and zooplankton groups were affected by the presence of 

copper, resulting in lower biomass. Although the direct effect was the same for each group of species, 

the zooplankton groups were affected more than the phytoplankton groups. When the ‘low’ copper 

treatment was compared to the ‘high’ copper treatment peaks in zooplankton biomass were decreased 

by a factor 0.5, while peaks in phytoplankton were reduced by only a factor 0.75 – 0.9. A food web effect 

was thereby found; it seems that direct negative effect of the copper on the food intake by 

phytoplankton was more or less compensated for by the decrease in predation pressure by zooplankton.  

At the highest copper effect modelled, meso-zooplankton was no longer able to sustain itself. By 

increasing copper effects peaks in micro-phytoplankton become higher and oscillations become longer as 

well. 

 

A sharp decline in meso-zooplankton was also observed in the mesocosm experiment under the highest 

copper treatment. Micro-zooplankton was able to increase in biomass at this treatment while meso-

zooplankton was not, corresponding with model output. Macro-phytoplankton was also able to re-

establish itself in the experiment, this was not observed in model output. This could be due to spatial 

complexity not incorporated into the model. Some macro-phytoplankton could be escaped from predation 

pressure by its specific location in the system.  

Overall it can be concluded that the model, although very simple in its set-up, is able to predict the 

development of the plankton species reasonably well according to the data measured in the mesocosm 

experiment for both the blank- and the copper treatments. We believe that this preliminary model is a 
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useful tool to study food web effects (for plankton species) resulting from pressures such as elevated 

copper concentrations.  

 

Recommendation for further research 

In order to extent our knowledge about food web effects of elevated copper concentrations and to 

develop the model further a thorough literature review and data analysis is proposed to investigate the 

importance of the assume interactions made here. A literature review will help to understand the 

mechanisms in which copper affects the different plankton species. This might lead to a different 

separation of the plankton groups as is made currently in this study. Instead groups could be divided for 

instance in the way they feed (filter feeders versus predators) or according to the same toxic mechanism 

in which they are affected by the copper. Once groups are defined based on new insight an extended 

data analysis can be performed to check these assumptions with observed data from the mesocosms. 

Questions that could be answered are: What aspects underline the increase or decline in biomass for 

certain species under elevated copper concentrations? Are observed peaks in biomass a result of the 

development of one single species? And if so what kind of species is it and how is it dealing with the 

copper. After the literature review and data analysis the model can be altered according to the newly 

obtained insight. 
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