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Abstract

In addition to induced direct defence, plants can defend themselves indirectly by

improving the effectiveness of enemies of herbivores. Plants can respond to arthropod

herbivory with the induction of a blend of volatiles that attracts predators and/or

parasitoids of herbivores. Carnivorous arthropods can discriminate between infested

plants and mechanically wounded plants, and between plants infested by different

herbivore species. The volatile blends emitted by different plant species infested by the

same herbivore show large qualitative differences, whereas blends emitted by plants of

the same species, but infested by different herbivore species are mostly qualitatively

similar with quantitative variation. Carnivores can discriminate between blends that differ

qualitatively and/or quantitatively. However, it remains unknown what differences in

blends are used by carnivorous arthropods in this discrimination.

Signal-transduction pathways involved in the induction of direct and indirect defence

seem to overlap. Direct and indirect defence may interfere with each other’s

effectiveness. For application of direct and indirect defence in agriculture, it is important

to compare the relative importance of these two defence types in the same plant

species.
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Introduction

Insects dominate the world’s fauna in terms of number of species and individuals. Plants

are under the constant threat of being attacked by insects. They have evolved a

fascinating array of defences that can be grouped into two categories: (1) direct defence

that affects the attackers directly through e.g. toxins, repellents, digestibility reducers,

spines and thorns and (2) indirect defence that promotes the effectiveness of natural

enemies of herbivores through e.g. the provision of shelter, alternative food or the

production of SOS-signals that enable carnivorous arthropods to locate the herbivores.

Each of these two defences can be constitutively present or can be induced by attack.

This chapter will concentrate on induced defences and especially on the relative

contribution of induced direct and induced indirect defence. The induction of defences

may occur in response to mechanical damage and/or herbivore damage. Whether a

plant responds differently to mechanical damage vs. herbivore damage or to different

herbivore species is a measure of the specificity of the plant’s induced response.

Different degrees of specificity of the plant’s response to damage can be distinguished,

depending on quantitative and qualitative differences in the responses to mechanical

damage, and damage inflicted by different herbivore species. Qualitative differences in

plant response characterise a higher degree of specificity than quantitative differences.

Induced direct defence

Induced direct defence against herbivores has been recorded since the 1970’s for more

than 100 plant species in 34 families (Karban & Baldwin 1997). Induced direct defence

can comprise the induction of various characteristics such as toxins, digestibility

reducers, repellents  and trichomes (Karban & Baldwin 1997). Several plant species,

such as tomato, potato, tobacco, and cotton have been studied in considerable depth.

Specificity of induced direct defence: chemical and biological evidence.

In many cases direct defence can be induced by mechanically wounding a plant or by

herbivore feeding damage, often with similar effects. For instance, mechanical wounding

just like herbivore damage results in the induction of proteinase inhibitors in tomato and

potato plants, leading to a reduction of the digestibility of plant tissues for herbivores

(Green & Ryan 1971). Mechanical wounding and caterpillar (Manduca sexta) damage

both induce the production of nicotine in tobacco plants, albeit that caterpillar damage

results in lower levels of nicotine than mechanical damage (McCloud & Baldwin 1997).

However, some reports demonstrate that induced plant responses can be specific for

the type of damage that is inflicted. For instance, caterpillars (Helicoverpa zea),
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leafminer flies (Liriomyza trifolii) and russet mites (Aculops lycopersici) induce different

combinations of polyphenol oxidase, peroxidase, lipoxygenase and proteinase inhibitors

in tomato plants (Stout et al. 1994).

When studying the effect on herbivores, specificity may be more difficult to detect.

Different plant responses may have a similar effect on herbivores because each

combination of induced responses negatively affects subsequent herbivores attacking

the plant. In fact, the induction of toxins and more likely that of digestibility reducers will

affect a range of insects. This is similar to the observation that constitutively present

secondary plant chemicals have similar effects on a variety of herbivore species, with

only specialist species being able to overcome the effects of the phytochemicals. For

example, spider mite damage to cotton plants results in lower population increase during

subsequent spider mite infestations (Karban & Carey 1984). Similar results are obtained

with mechanical wounding or fungus (Verticillium dahliae) infestation (Karban et al.

1987).

Induced indirect defence

The major form of induced indirect defence is the emission of herbivore-induced plant

volatiles that attract carnivorous enemies of the herbivores. This induced defence has

been reported since the 1980’s for more than 20 plant species in 13 families (see review

by Dicke 1998). Two major categories of plant response may be distinguished (Dicke

1998). (1) The emission of large amounts of novel compounds that dominate the blend

from herbivore-induced plants. These novel compounds are not, or only in trace

amounts, emitted by undamaged plants or by mechanically wounded plants. Examples

comprise Lima bean, corn, and cucumber. (2) Plants that emit qualitatively similar but

quantitatively different blends in response to herbivory or mechanical wounding or when

undamaged. Examples are e.g. tomato, potato, and cabbage. A large amount of

information is present on the effect of these induced plant volatiles on the behaviour of

carnivorous arthropods such as predators and parasitoids. Herbivore-induced plant

volatiles are very important to carnivorous arthropods. Their herbivore victims usually do

not emit large amounts of volatiles: they are small components in the environment, and

the emission of volatiles that attract their enemies is strongly selected against. Volatiles

from undamaged plants, though more abundant than herbivore volatiles, do not provide

information to carnivores on herbivore presence. In contrast, plant volatiles induced by

herbivory are both well-detectable and often reliable indicators of not only herbivore

presence but also herbivore identity. Thus, herbivore-induced plant volatiles provide a

solution to the reliability-detectability problem that carnivorous arthropods face and
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consequently the production of herbivore-induced plant volatiles is an important

mechanism of increasing the effectiveness of carnivorous enemies of herbivores (Vet &

Dicke 1992).

Specificity of herbivore-induced plant volatiles: chemical and behavioural evidence.

Induced carnivore attraction can occur rather specifically. This is obvious from chemical

as well as behavioural evidence. Many plant species emit volatile blends that are

qualitatively very different in response to mechanical or herbivore damage (Dicke 1998).

For instance, Lima bean leaves infested with spider mites emit a blend that is

qualitatively very different from that emitted from mechanically wounded Lima bean

leaves (Dicke et al. 1990). The predatory thrips Scolothrips takahashii discriminates

among volatiles from spider-mite infested Lima bean leaves and mechanically wounded

Lima bean leaves; they are not attracted by mechanically wounded leaves (Shimoda et

al. 1997). However, even when qualitative differences are absent or minor, carnivores

may discriminate between mechanically damaged and herbivore-damaged plants.

Cabbage leaves infested with P. brassicae caterpillars emit a qualitatively similar blend

as mechanically wounded cabbage leaves, but caterpillar-infested leaves emit larger

amounts and for a longer time period after damaging the plant halts (Mattiacci et al.

1994). The parasitoid Cotesia glomerata is attracted by mechanically wounded cabbage

leaves, but when offered vs. cabbage leaves infested with their hosts, Pieris brassicae

caterpillars, they prefer the volatiles from caterpillar-infested cabbage leaves (Steinberg

et al. 1993). Plants can also emit different volatile blends in response to pathogens or

herbivores. For instance, bean plants (Phaseolus vulgaris cv. Red Mexican) that are

infested with the bacterium Pseudomonas syringae pv. phaseolica emit a blend of

volatiles that is produced through the lipoxygenase pathway, with (Z)-3-hexen-1ol as

major component, but no terpenoids are emitted (Croft et al. 1993, A.J. Slusarenko,

pers. comm.). In contrast, when bean plants of the same cultivar are infested with the

spider mite Tetranychus urticae, the plants emit a blend in which (Z)-3-hexen-1ol is a

minor component, several terpenoids are induced and the homoterpene 4,8,-dimethyl-

1,3(E),7-nonatriene is the dominant blend component (M. Dicke & M.A. Posthumus,

unpubl. data; Figure 1).

In addition to differences in response to mechanical wounding, pathogen infestation and

herbivory, plants may also emit different blends when infested by different herbivore

species. For instance, apple foliage infested with either of two herbivorous mite species,

Panonychus ulmi or Tetranychus urticae, emit blends that, although qualitatively similar,

differ in the relative contribution of the compounds to the total blend (Takabayashi et al.
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1991).  Carnivorous mites discriminate between volatiles emitted by apple plants

infested by either of the two herbivorous mite species. The predators Amblyseius

finlandicus and A. andersoni are attracted to apple foliage infested with P. ulmi, their

preferred prey species and not to apple foliage infested with T. urticae, while the

carnivore Phytoseiulus persimilis, a specialist predator of T. urticae has the reverse

response (Sabelis & Dicke 1985). These quantitative differences in blend composition

may allow the predatory mites to discriminate. However, it cannot be excluded that

qualitative differences in components that were present below the detection level of the

equipment, play a role. In some systems, chemical analyses reveal hardly any

differences in blend composition, either in qualitative or in quantitative respect, while

carnivorous enemies of the herbivores are able to discriminate among the blends. An

example is the discrimination by the parasitoid Cotesia glomerata between cabbage

plants infested by either caterpillars of P. brassicae or caterpillars of P. rapae (Geervliet

et al. 1998). Chemical analyses revealed no qualitative differences and only minor

quantitative differences among the blends of cabbage plants infested by either

caterpillar species (Blaakmeer et al. 1994, Geervliet et al. 1997). The discrimination by

the parasitoids was only recorded after several oviposition experiences (Geervliet et al.

1998). Learning to discriminate among very similar odour blends has been recorded for

other carnivorous arthropods as well (Turlings et al. 1993, Vet et al. 1998, Dicke & Vet

1998). Moreover, a few examples are known where parasitoids that had no previous

oviposition experience discriminated between odour blends emitted by plants infested

with different herbivores. In these instances, the odour blends differed qualitatively

(Takabayashi et al. 1995, Powell et al. 1998). The ability of carnivores to discriminate

between plants infested by different herbivore species has been recorded for a range of

plant-herbivore-carnivore systems (see Dicke & Vet 1998 for review).

What variation in blend composition is important to carnivorous arthropods?

Initially, odour blends emitted by herbivore-infested plants seemed to have a simple

composition, comprising ca. 10-20 compounds (Dicke et al. 1990, Turlings et al. 1990).

However, with the development of more sensitive analytical methods, more and more

blend components have been identified. For instance, in 1990 we reported 17

compounds in the blend emitted by spider-mite infested Lima bean plants (Dicke et al.

1990). Recent analyses resulted in the identification of more than 60 compounds from

the same odour blend (Dicke et al., unpublished data). Odour blends emitted by

herbivore-infested plants may be composed of 100 or more compounds, many of which

occur as minor constituents (Gols et al., unpublished data). The composition of the
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volatile blends induced by herbivory varies with plant species, plant genotype, leaf age,

time of the day and herbivore species or instar that damages the plant (Turlings et al.

1995, Takabayashi & Dicke 1996). Among plant species, blend composition varies

qualitatively in many components although shared compounds also occur. Commonly

induced compounds are e.g. the two homoterpenes 4,8,-dimethyl-1,3(E),7-nonatriene

and 4,8,12-trimethyl-1,3(E),7(E),11-tridecatetraene (Dicke et al. 1990, Turlings et al.

1990, 1995, Takabayashi & Dicke 1996). In contrast, among plants of the same species

blend composition varies predominantly quantitatively, leading to blends that differ in

ratios of similar compounds (Takabayashi et al. 1991, Turlings et al. 1993, De Moraes et

al. 1998).

Although a lot of knowledge exists on the chemical compositions of herbivore-induced

plant odour blends and on the behavioural responses of carnivorous arthropods to the

blends emitted by herbivore-damaged plants, little is known about the relative

importance of blend components for the response of carnivores. This is partly due to the

blends having a complex composition, which sharply contrasts to e.g. the composition of

sex pheromones of moths. For instance, in studies on sex pheromones, the total

number of compounds emitted from the pheromone gland is usually restricted to 2-10

(Carde & Minks 1997), while infested plants can emit tens to more than 100 different

compounds (Turlings et al. 1993, Mattiacci et al. 1994, Gols et al. unpublished data).

The parasitoid Cotesia marginiventris is attracted to a synthetic mixture of the 11 major

components of the blend emitted by corn plants infested by their hosts, Spodoptera

exigua. However, although the synthetic mixture was composed as a close mimic of the

natural mixture, the parasitoids’ response to the natural and synthetic mixture

significantly differed (Turlings et al. 1991). This may have been due to minor

components in the natural blend or to small differences in the 11 major compounds

between the natural blend and the synthetic blend. The predatory mite Phytoseiulus

persimilis is attracted to four chemicals identified in the blend emitted by Lima bean

plants infested with their prey, the spider mite Tetranychus urticae, even though the

compounds were offered individually (Dicke et al. 1990a). No comparison of the effect of

the single components or a synthetic mixture of them and a natural odour blend has

been made for this predatory mite.

The ability of carnivorous arthropods to discriminate among odour blends is significantly

characterised by phenotypic plasticity. Important factors affecting behavioural responses

are e.g. starvation, specific hunger, successful and unsuccessful foraging experiences

(Vet & Dicke 1992, Turlings et al. 1993, Dicke et al. 1998, Vet et al. 1998, Vet, this

volume). For instance, the parasitoid C. marginiventris was strongly attracted to a
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synthetic odour blend made to mimic the natural, plant-emitted, odour blend after the

wasps had a successful oviposition experience in the presence of the synthetic blend,

but not after a successful experience in the presence of the natural odour blend

(Turlings et al. 1991). Very subtle differences between odour blends may be learned by

parasitoids and qualitative differences in odour blends can be learned with more ease

than quantitative differences (Vet et al. 1998, Vet, this volume).

Some knowledge on the importance of variation in the composition of plant volatile

blends for the behavioural response of arthropods is available for herbivorous beetles.

The Colorado potato beetle is strongly attracted by volatiles emitted by potato foliage,

either when undamaged, mechanically wounded, or damaged by herbivores (Visser &

Ave, 1978, Bolter et al. 1997). Volatiles emitted by potato plants are not specific for

potato, but are emitted by a wide variety of plant species. However, the composition of

the blend is characteristic for potato. When individual components were added to the

natural blend of potato so that quantitative variation in blend components was achieved,

the behavioural response of the beetles was disturbed in several, but not all, treatments

(Visser & Ave, 1978).

Elucidating how carnivores cope with variation in blends of herbivore-induced plant

volatiles will be an exciting challenge, now that chemical information on variation in

blend composition and the factors influencing behavioural responses of carnivores are

well-known.

Specificity of SOS-signals: how do plants do it?

The differences in plant responses to herbivory and mechanical wounding can be

explained by the involvement of herbivore oral secretions. The application of oral

secretion onto a mechanical wound results in the same response as herbivory (Turlings

et al. 1990, Mattiacci et al. 1994, 1995, Alborn et al. 1997). Oral secretions may also be

applied through the plant’s cut stem and then induce odour emission from undamaged

plant leaves (Turlings et al. 1995). Oral secretions may also explain the specificity of the

plant’s response to different herbivores. For instance, corn plants infested with 1st/2nd

instar caterpillars of Pseudaletia separata emit a different volatile blend than corn plants

infested with 5th/6th instars. Plants infested with 1st/2nd instars attract the parasitoid

Cotesia kariyai  while plants infested with 5th/6th instars do not. When oral secretions

from young and old caterpillars were applied onto a mechanical wound a similar

difference in response of the parasitoids was recorded (Takabayashi et al. 1995).

Interestingly, a single component of a herbivore’s oral secretion can induce a complex

volatile blend that is similar to the blend induced by herbivory (Mattiacci et al. 1995,
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Alborn et al. 1997). The blend components result from several different biosynthetic

pathways such as the isoprenoid, shikimic acid and lipoxygenase pathways. It remains

unclear how a single herbivore elicitor can induce different pathways resulting in

quantitative differences in blend composition. Herbivory (Blechert et al. 1995) and oral

secretion (McCloud & Baldwin 1997) can induce jasmonic acid in plants and jasmonic

acid application to Lima  bean or corn plants results in the induction of e.g. the

homoterpene 4,8,-dimethyl-1,3(E),7-nonatriene, which is also induced by herbivory

(Hopke et al. 1994). However, it seems that jasmonic acid cannot fully explain the plant’s

response. For instance, the homoterpene 4,8,12-trimethyl-1,3(E),7(E),11-tridecatetraene

is not induced in bean plants by jasmonic acid application (Hopke et al. 1994, Dicke et

al., unpublished data). Also, in induced direct defence, jasmonic acid seems unable to

explain the plant response completely (McCloud & Baldwin 1997). Induced indirect

defence is expressed systemically (Takabayashi et al. 1991b, Turlings & Tumlinson

1992, Dicke et al. 1993) and a systemic elicitor can be extracted from plants (Dicke et al.

1993). The nature of this systemic elicitor remains unidentified. In systemic induction of

nicotine production in tobacco plants jasmonic acid is involved and it may be the

systemically transported elicitor (McCloud & Baldwin 1997).

Are direct and indirect defence similarly induced?

Signal-transduction pathways of induced direct and indirect defence seem to overlap. In

both types of induced defence, the octadecanoid acid pathway through jasmonic acid

seems to be central. However, the fact that different herbivores or their oral secretions

can lead to different volatile blends also indicates that there are likely to be regulatory

mechanisms that function differently in the two types of induced defence.

A problem for a sound comparison of signal-transduction in induced direct and induced

indirect defence, though, is that signal-transduction in induced indirect defence is mainly

studied for two plant species, bean and corn, that are characterised by differential

responses to mechanical and herbivore damage in terms of induced volatiles. On the

other hand, signal-transduction in induced direct defence is studied mostly for plants

that have similar responses, in terms of induced volatiles, to these two different types of

damage: tomato, potato, and cabbage. For an appropriate comparison of signal-

transduction in induced direct and indirect defence it is important that future studies

combine an investigation of each of these defence types in a single plant species.

Possibly, some plant species are characterised by specific responses to different types

of damage, while other plant species are characterised by non-specific responses.
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Relative importance of direct defence vs. indirect defence

The two types of defence, direct and indirect defence, available to plants may interfere

with each other’s effectiveness. For instance, tomato plants have an important direct

defence in the form of glandular trichomes.  These trichomes immobilise and intoxicate

herbivores (van Haren et al. 1987). However, these trichomes also negatively affect

carnivorous arthropods, resulting in high carnivore mortality rates and thus in an

impairment of indirect defence. Consequently, if tomato plants would attract enemies of

herbivores, the carnivores would die on the plant rather than feed on the herbivores. It

would be interesting to investigate whether the intensities of direct and indirect defence

are negatively correlated. Some observations seem to support this. For instance, the

emission of a herbivore-induced volatile blend that is similar to the blend induced by

wounding seems more primitive than the emission of a blend that is dominated by novel

compounds. Plants that do not emit novel dominant blend components are well-

characterised by particular secondary metabolites that function as strong direct

defences. solanaceous plants like tomato and potato and crucifers like cabbage are

well-known for alkaloids or glucosinolates respectively that confer strong resistance

against many insect species. These plants emit similar blends in response to herbivory

and mechanical wounding (Mattiacci et al. 1994, Bolter et al. 1997, Dicke et al. 1998).

They are often used as food only by a limited number of specialist herbivores such as

the Colorado potato beetle or cabbage whites. In contrast, plants that emit novel

compounds that dominate the induced blend are plants such as corn and bean. These

plants do not have such highly specialised secondary metabolites and can be used as

food by various herbivore species. For a thorough elucidation of the question whether

the development of direct and indirect defence are negatively correlated, a comparison

of direct and indirect defence characteristics in a range of plant species is necessary.

Crop protection: combining direct and indirect defence

The question of the relative importance of direct and indirect defence is important for

applications in agriculture. Direct defence can be applied in host plant resistance and

indirect defence in biological control through predators or parasitoids.  Pest

management strategies have mostly been developed either through host plant

resistance or through biological control. However, with a reduction of pesticide use the

two methods of pest control will increasingly be applied in the same crop. Therefore,

developments in either of the two pest control methods should take into consideration

what the effects are on the other method so as to reach a synergistic set of control

methods rather than a net reduction in pest control effectiveness.
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Figure legends

Figure 1:  Headspace composition of uninfested or spider-mite-infested (Tetranychus

urticae) bean plants (Phaseolus vulgaris, cultivar Red Mexican) Total peak areas

(arbitrary units) recorded for spider-mite infested plants was 427 and 834, and for

undamaged plants 65 and 0

Compound numbers: 1=  2-butanone; 2= 3-pentanone; 3= 2-methylpropanenitrile; 4= 1-

penten-3-one; 5= 2-butanol; 6= 1-penten-3-ol; 7= limonene; 8= (E)-2-hexenal; 9= (E)-β-

ocimene; 10= (E)-4,8-dimethyl-1,3,7-nonatriene; 11= (Z)-3-hexen-1-ol acetate; 12= (Z)-

3-hexen-1-ol; 13= 2-methylpropanal oxime; 14= 1-octen-3-ol; 15= methyl salicylate; 16=

(E,E)-4,8,12-trimethyl-1,3,711-tetradecaene; 17= benzyl alcohol; 18= indole
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

compound

p
ea

k 
ar

ea

0

50

100

150

200

250

300
uninfested

T. urticae-infested


