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Thesis abstract 

 

In the light of the competitive exclusion principle, which states that complete competitors 

cannot coexist, many explanations have been sought to explain the high diversity found in 

nature. The most common explanation is the niche differentiation hypothesis: coexistence is 

obtained through differentiation of species in ecological niches. Spatial structure is thought to 

be a factor capable of providing opportunities for niche differentiation. We have focused on 

four aspects of spatial structure enabling genetic diversity to emerge and /or to be maintained.  

First of all, population fragmentation, resulting from growth in spatially structured 

habitats, can increase diversity, because the resulting smaller subpopulations, due to their 

smaller population size, are more likely to adaptively diverge. By allowing small and large 

populations of E. coli to evolve for 500 generations in two different nutrient environments, we 

test this hypothesis. The results demonstrate higher variance in fitness among small 

populations, and consequently more heterogeneous adaptive trajectories for small populations, 

some of which surprisingly lead to higher fitness peaks than reached by even the best adapted 

large population.  

In a short-term invasion experiment between a superior E. coli competitor and its 

inferior ancestor, we demonstrate that populations residing in structured environments 

experience slower invasion dynamics of beneficial mutations than well-mixed populations due 

to limited dispersal, and therefore local competition. Moreover, our results demonstrate a 

deceleration of invasion with increasing size of the invading subpopulation. This is caused by 

a decrease of inter specific competition relative to intra specific competition. Since inferior 

competitors are present in the community for a longer period of time, they can recombine with 

other persisting lineages or obtain new mutations, some of which might be beneficial. It is 

therefore possible that polymorphisms arise which would not have had the opportunity to 

emerge in a well-mixed environment. Even though both population fragmentation and slower 

competitive dynamics can increase the emergence of diversity, they do not provide a means 

for their maintenance.  
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Environmental heterogeneity on the other hand can cause maintenance of diversity. 

Environmental heterogeneity can be introduced by spatial structure, e.g. by providing 

gradients in biotic and abiotic factors, thereby increasing the number of niches. By allowing 

E. coli populations to evolve for 900 generations in either a well-mixed environment or two 

structured environments (with or without dispersal), we demonstrate stable coexistence of 

diversity in structured populations without dispersal. This can be attributed to negative 

frequency-dependent fitness interactions among niche specialists that either inhabit existing 

niches provided by the heterogeneous environment or new niches constructed by organisms 

inhabiting the environment.  

In addition to examining aspects of spatial structure that provide means for populations 

to diversify, we examine a specific consequence of slower dynamics and environmental 

heterogeneity: the probability of mutators to hitchhike to fixation. Understanding the 

emergence of mutators is not only scientifically important, but also relevant for human health, 

since high frequencies of mutators have been found in bacterial populations and drug resistant 

mutants arise more often in mutator populations. E. coli mutator populations were introduced 

at different starting frequencies in a well-mixed environment and two structured environments 

differing in their dispersal rate. Contrary to expectations, we find an advantage in the rate of 

invasion for mutators in well-mixed environments. Faster competitive dynamics may allow a 

rapid increase of population size and hence a greater supply of mutations for subsequent 

adaptation. Due to a delay in mutator extinction in structured environments at low 

frequencies, mutators may gain from fluctuating conditions.  
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1 Introduction 

 

With species disappearing at a rate equalled by few mass extinctions, the preservation of 

biodiversity has become a matter of public urgency. However, the effectiveness of strategies 

for preserving diversity is constrained by our limited knowledge of the mechanisms giving 

rise to and maintaining diversity (Tilman 2000). Even though many hypotheses have been put 

forward to explain the great diversity found in ecosystems, empirical evidence is limited.  

Diversity exists within species (genetic diversity), among species (species diversity) 

and at the level of the ecosystem (ecosystem diversity). These levels of diversity are not 

mutually independent; diversity within a species can be necessary for the coexistence between 

species and vice versa (Lankau & Strauss, 2007). In addition, it has been demonstrated that 

higher species diversity leads to greater ecosystem stability (McCann 2000). Studying all 

levels of diversity is essential to better understand ecosystem stability. In this thesis we will 

focus on the emergence and maintenance of diversity within species.  

 

The competitive exclusion principle states that competitors occupying the same niche cannot 

coexist (Hardin 1960), since elimination of all but the superior competitor is expected. 

However, species do coexist; hence, clarifications are needed. The most common explanation 

for polymorphisms in populations and sympatric speciation is niche differentiation: 

heterogeneity of the environment gives populations the opportunity to diverge and specialize 

into the various niches provided by this heterogeneity (but see Maynard Smith & Hoekstra 

1980). A well-described example of niche differentiation is the adaptive radiation in 

sticklebacks. A large benthic species feeds on large prey and lives in the littoral zone, whereas 

a smaller species feeds on plankton in the open water. Of a morphological intermediate form, 

feeding on both plankton and invertebrates, specialization in favour of one phenotype has 

been demonstrated experimentally, in the presence of strong competition by the opposite 

extreme (Schluter 1994).   

Niche-differentiation is not the exclusive means by which diversity can arise and 

coexistence can be maintained (for a review see Scheffer et al. 2003). Other mechanisms that 
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have been proposed are for example oscillations and chaos caused by resource competition 

(Huisman & Weissing 1999), antibiotic interactions in microbial communities (Czárán et al. 

2002), and neutral theory (Hubbell 2001). Unfortunately, empirical support for these models 

is, at present, limited.  

 

Specialization to different niches is not enough for stable coexistence: trade-offs have to 

accompany these specializations, i.e. improvement in one trait leads to a disadvantage in other 

traits. Trade-offs may exist between any combination of traits, for example between 

competitive ability and dispersal ability (Tilman 1994), between the abilities to compete for 

different resources, or between competitive ability and susceptibility to toxins (Bohannan et 

al. 2002). Two different genetic mechanisms can cause trade-offs (Elena & Lenski 2003): 

mutations beneficial under certain conditions can be deleterious in other conditions 

(antagonistic pleiotropy), or mutations that are neutral in one niche can be deleterious in 

another niche (mutation accumulation).  

Specialization and trade-offs lead to a higher intra specific competition versus 

interspecific competition (Chesson 2000), necessary for coexistence. However, even though 

trade-offs are necessary for stable coexistence, they are sometimes not sufficient. For stable 

coexistence it is necessary that populations can recover from low population densities. 

Therefore, the fitness of coexisting populations needs to be negatively frequency dependent 

(Turner et al. 1996; Chesson 2000).  

  

The literature on adaptive radiation –the evolutionary divergence of members of a single 

phylogenetic line into a variety of adaptive forms (Futuyama, 1998) - is extensive. However, 

few examples are generally accepted to be adaptive radiations (Schluter 2000). Many other 

radiations lack evidence that they are adaptive. It is difficult to verify whether natural 

selection gave rise to a trait; using functional, experimental and genetic methods, hypotheses 

of adaptive radiations are tested, however, it is often difficult to go back in time and expressly 

determine why a trait evolved (Losos, 2000). 

  Selection experiments with animals have been performed that provide evidence for 

adaptive radiations (Schluter 1994; Losos et al.1997; Losos et al. 2001). However, due to the 
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complexity of these organisms and of their environment, it remains difficult to isolate the 

object of natural selection. In addition, even though maintenance of coexistence can often be 

confirmed (e.g. by perturbation experiments), demonstrating emergence of diversity remains 

complicated for higher animals.  

Microbes have proven to be valuable model systems for investigating the genetic and 

ecological causes of diversity. Since the work presented here is embedded in the field of 

microbial experimental evolution, the introduction will mainly consist of examples from this 

field. Extrapolating results obtained from experiments using asexual, haploid organisms to 

sexual and / or diploid organisms must be done with caution. An important difference is that 

heterozygous advantage (Ford 1965), and sexual selection, contribute to the maintenance of 

polymorphisms in diploid and sexual organisms only.  

 

Experimental evolution  

Studying diversification processes using micro-organisms as a model system has proven to be 

fruitful for a number of reasons. Because experiments can be set up with high replication 

using genetically identical ancestors and a controlled selective environment, the evolutionary 

outcome can be directly attributed to the selective conditions in the experiment (Travisano & 

Rainey 2000). Aliquots of populations can be frozen at -80˚C, providing the opportunity to 

directly compare the fitness of any of the evolved types with the ancestor in competition 

experiments (Lenski et al.1991). An additional advantage is the relative small genome size of 

micro-organisms, making it easier to track down mutations than it is for higher organisms, 

especially for the many micro-organisms whose genomes have been sequenced. And lastly, 

owing to the relatively short generation time of micro organisms, adaptation can take place for 

up to thousands of generations per year.   

 

Polymorphisms in homogeneous environments 

Because experimental microbial populations tend to be quite large (in the order of millions), 

mutations are expected to arise every generation. In bacterial populations, Atwood and his 

colleagues (1951) found, that mutants with a selective advantage would arise and would 

replace the original bacterial population. This process would repeat itself, as soon as the 
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number of mutants would reach sufficiently high densities. Adaptation in asexual populations 

consists of these sequential substitutions of beneficial mutations within the same line of 

descendants (Koch 1974; Levin 1981). Even though several beneficial mutations will be 

present simultaneously and compete for fixation, it is expected that the largest beneficial 

mutations will win, thereby eliminating the pre-existing variation in a process called ‘clonal 

interference’ (Gerrish and Lenski 1998).  

In accordance with the competitive exclusion principle, polymorphisms in homogeneous 

environments are not expected from this model of adaptation in asexual populations. 

Polymorphisms have nevertheless been found in a number of studies (Levin 1972; Helling et 

al. 1987; Rosenzweig 1994; Rozen & Lenski 2000; Maharjan et al. 2006). In a long-term 

evolution experiment of Helling and colleagues (1987), a stable polymorphism was found in a 

population in a simple glucose environment, founded by a single clone of E. coli. Data 

showed that the polymorphism was dependent on resource partitioning - the partitioning of a 

resource by multiple specialists diverged from a single ancestor- due to the excretion of 

secondary metabolites and cross feeding.  It appeared that one evolved ecotype had become 

more efficient in utilizing the main resource component, whereas a second and third ecotype 

could grow more efficiently on a secondary metabolite excreted by the first one. In this case, 

the environment had become heterogeneous due to evolved metabolic changes in the 

organisms; a new niche was provided by evolution itself. 

  

Polymorphisms in heterogeneous environments   

A heterogeneous environment consists of multiple niches giving populations a chance to 

specialize on the different available niches. Niche opportunity can arise from e.g. diversity in 

resources, fluctuations in environmental factors or spatial structure (Rainey et al. 2000; 

Travisano & Rainey 2000; Kassen & Rainey 2004; Maclean 2005).   

 

Resource heterogeneity 

Using Chlamydomonas populations, it has been shown that pre-existing variance in fitness 

can be maintained in heterogeneous resource environments, but decreases in homogeneous 

environments (Bell 1997). Though this only demonstrates maintenance of diversity, later 
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experiments with Pseudomonas populations show a rapid diversification when populations 

consisting of isogenic genotypes are introduced into a complex resource environment 

(Maclean et al. 2005), but not in simple resource environments (Barrett et al. 2005). 

Diversification evolved at a greater rate in complex nutrient environments (Barrett & Bell 

2006). Maintenance of diversity in these populations is established due to frequency-

dependent selection (Maclean et al. 2005).  

 

Temporal heterogeneity 

Temporal variability of e.g. resource concentration, temperature and light, has been shown 

theoretically to promote coexistence of species (Dempster 1955; Dean 2005). This is evident 

in the seasons; competing species of higher organisms can survive unfavorable environments 

for which they are not adapted by having a life-history that avoids that particular environment, 

like seed dormancy or diapause (Hedrick 2006).  

The serial- transfer method used in most microbial evolution experiments – and the 

feast-famine conditions micro-organisms experience in nature - resemble seasonal 

environments, where resources are abundant at the beginning of a transfer cycle and scarce 

after exponential growth has taken place (Turner et al. 1996). At least two studies have 

demonstrated the stable coexistence of two E. coli genotypes growing solely on glucose 

owing to the fluctuation of glucose during a transfer cycle (Turner et al. 1996; Rozen & 

Lenski 2000). In one study, one genotype was a superior competitor when glucose was 

abundant, the other when glucose was scarce (Turner et al.1996). However, the frequency 

dependence found was too strong to be explained by this demographic trade-off alone. In 

addition, cross-feeding was detected, which was necessary to explain strain coexistence. 

Another study found specialization to different parts in the growth cycle (D.E. Rozen, 

personal communication). One ecotype in the evolved population had become better at 

growing on cell debris during stationary phase, whereas the other ecotype had become 

competitively superior in growing on glucose during the exponential phase.   

 

Differential ecological species responses preventing competitive exclusion are also found 

when temperature (Jiangl & Morin 2007; Descamps-Julien & Gonzalez 2005) or light 
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fluctuates. In aquatic systems, where light has a complex pattern of spatio-temporal 

variability, maintenance of diversity has been demonstrated for phytoplankton communities 

due to fluctuations in light intensity (Floder & Burns 2005) and light supply (Litchman1998).  

Using Chlamydomonas, Bell and Reboud (1997) revealed that in fluctuating light-dark 

environments diversification occurs due to a trade-off associated with adaptation to either 

light or dark environments. This genetic diversity is, however, only maintained in a spatially 

variable environment, not in a temporally fluctuating environment (Reboud & Bell 1997).  

 

Complex interactions 

Another contributing factor to the high diversity found in nature is predation (Chesson 2000) 

or parasitism. Laboratory experiments have shown the stable coexistence of sensitive and 

resistant E. coli bacteria in the presence of a phage (Levin et al. 1977; Chao et al. 1977; 

Bohannan & Lenski 1997) due to a trade-off between competitiveness for the primary 

resource (i.e. glucose) and phage resistance (Lenski 1988). Experiments using species of 

Pseudomonas have demonstrated diversification into multiple resistant forms (Buckling & 

Rainey 2002; Brockhurst et al. 2004; Brockhurst et al. 2005).  

Many other factors and interactions have been shown to promote diversity, like 

productivity (Kassen et al. 2000), disturbance (Connell 1978; Gallet et al. 2007; Buckling et 

al. 2000) and allelopathy (Czárán et al. 2002; Kerr et al. 2002; Kirkup & Riley 2004). In 

many of these, spatial structuring has been implied to be essential for the maintenance of 

diversity because it provides for example refuges free of predators, or environmental 

heterogeneity (Kerr et al. 2002; Buckling et al. 2000; Kassen et al. 2000; Kirkup and Riley 

2004; Schrag & Mittler 1986; Brockhurst et al. 2006). Few investigations however, have 

examined the role of spatial structure on diversification isolated from other factors (Rainey & 

Travisano 1998; Korona et al.1994; Korona 1996). In this thesis I focus on the role of 

spatially structured environments on the diversification of E. coli populations. 

 

Spatial structure  

Spatial structure could be a major factor explaining diversity, given that for example marine 

fauna, living in the relatively unstructured environment of the sea, lacks the astonishing 
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diversity of terrestrial fauna despite its large geographic range (Thorson, 1957). Spatial 

structure can enhance diversity in several ways. 

First of all, through the presence of physical-chemical gradients, spatial structure 

provides additional niches to the environment (Korona et al. 1994; Korona 1996; Rainey & 

Travisano 1998). Rainey & Travisano showed that Pseudomonas fluorescens diversified 

rapidly in spatially heterogeneous microcosms (no shaking), but not in homogeneous 

microcosms (constantly shaken). In the homogeneous environment, only the original morph 

was found, whereas in the heterogeneous environment two additional ecotypes emerged; the 

wrinkly spreader and the fuzzy spreader (referring to the morphs they produce on agar plates). 

The wrinkly spreader occupied the air-broth interface by forming a biofilm, while the original 

morph occupied the broth. Maintenance between these types was ensured by an advantage for 

the wrinkly spreader when rare, due to oxygen limitation in the broth phase, together with a 

disadvantage when common, due to the destruction of the mat by its own weight. Coexistence 

of the fuzzy spreader seemed to depend on the interaction of the other two ecotypes.  

Environmental heterogeneity can also be caused by organisms’ ability to modify their 

surroundings. For example, by exploiting resources, fluctuations in resource supply can arise; 

light intensity can vary on the soil due to plant growth; and secondary metabolites can be 

excreted into the environment.  In this manner, subpopulations may change abiotic and biotic 

gradients in their vicinity, creating new niches (Laland et al. 1999). As described before, in 

homogeneous environments organisms can change their environment in such a way that 

coexistence between two genotypes is possible (Helling et al. 1987); however, the ways to do 

this are more limited than in a structured environment because firstly, in a homogeneous 

environment, gradients cannot occur, and secondly, because if the population is not 

subdivided, the chances of interactions to occur are smaller simply due to a lower number of 

(sub)populations.  

A third factor increasing the emergence of diversity in spatially structured 

environments is the segregation of the population into many small, semi-isolated 

subpopulations. Small populations are more likely to diverge due to a larger role of genetic 

drift (Wright 1931) and due to their tendency to follow more diverse adaptive routes owing to 

their preferential access to beneficial mutations conferring smaller benefits (Orr 1998; Burch 
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& Chao 1999; Miralles et al. 1999; deVisser and Rozen 2005), which are more abundant 

(Rozen et al. 2002; Orr 2005). Another consequence of fixing smaller mutations is a decrease 

in the rate of adaptation (Burch & Chao 1999; Miralles et al. 1999; deVisser et al. 1999). 

Not only fixing smaller-effect beneficial mutations will lead to a slower adaptation rate 

in a structured environment, so will limited dispersal. Even though an invading mutant may 

have a higher competitive ability, limited dispersal and associated local resource competition 

will reduce its invasion rate (Crawly 1990; Burke & Grime 1996). This is a possible fourth 

factor influencing the emergence of diversity in structured environments. If the adaptation 

dynamics are slower, several mutants can coexist temporarily, possibly opening the way for a 

further increase in genetic diversity through recombination and the appearance of mutants 

able to coexist with others.  

 Fragmentation and slower invasion dynamics can increase diversity in populations, but 

only transiently. They do not provide a mechanism for coexistence of evolved diversity. For 

maintenance of the generated diversity, either heterogeneity of the environment is necessary 

or trade-offs have to exist between competitive ability and mechanisms preventing 

competition, like dispersal. The latter is an important aspect of coexistence in communities, 

but not one that will be examined in this thesis.     

 

Aims and outline  

The aim of the work presented in this thesis is to disentangle the various means by which 

spatial structure influences genetic diversity in ways described above. To investigate whether 

fragmentation of the population increases diversification, we first examined whether small 

populations follow more divergent adaptive routes than large populations (chapter 2). To this 

end, small and large E. coli populations were serially transferred for 500 generations in a 

simple and a complex (unstructured) nutrient environment. After evolution, fitness trajectories 

were compared.  

 

Chapter 3 describes the influence of environmental heterogeneity, provided by spatial 

structure, with or without fragmentation and slower competitive dynamics, on the 

diversification of E. coli populations. The divergence of clones from E. coli populations that 
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were serially transferred in either a homogeneous environment (shaken liquid culture) or a 

spatially structured environment (agar surface), with or without dispersal was examined. In 

the structured environment without dispersal, we expected the population to be maximally 

fragmented, and therefore have the slowest competitive dynamics.  

 

In chapter 4, we describe an experiment carried out to study the rate of invasion of a 

beneficial mutation in a spatially structured environment. This was done to test the hypothesis 

that adaptation would slow down in structured environments due to limited dispersal leading 

to inefficient local resource competition. While this is not a direct test of the causes of 

diversification within populations, slower dynamics increase transient diversity thereby 

possibly increasing the probability of stable coexistence of evolved ecotypes. To verify slower 

competitive dynamics in structured environments, a superior E. coli competitor was competed 

against an inferior one for five days in various environments that differed in the rate of 

dispersal.  

 

A specific consequence of slower dynamics in structured environments is described in 

chapter 5. The fate of an E. coli mutator subpopulation was studied in both a homogeneous 

and a structured environment. Due to a difference in structure in the environments, we 

expected the mutator population to have different competitive dynamics. Understanding 

conditions that favour the emergence of mutator phenotypes is relevant for human health. 

High frequencies of mutators have been found in clinical bacterial populations (Leclerc et al. 

1996). Mutator populations can cause treatment failure of antibiotics because resistant 

mutants arise more often in mutator populations. Even though it has been shown that in highly 

compartmentalized lungs of cystic fibriosis patients many mutators are present (Oliver et al. 

2000), costs and benefits have been investigated solely in homogeneous environments (but 

see Giraud et al. 2001).  

  

In chapter 6, I summarize and discuss the work presented in this thesis. I have tried to fit the 

data presented here in a broader ecological context. In addition, some future studies are 

suggested. 
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Abstract  

 

Small populations are thought to be evolutionarily handicapped, not only because they suffer 

more from deleterious mutations but also because they have limited access to new beneficial 

mutations, particularly those conferring large benefits. Here, we test this widely held 

conjecture using both simulations and experiments with small and large bacterial populations 

evolving in either a simple or a complex nutrient environment. Consistent with expectations, 

we find that small populations are adaptively constrained in the simple environment; however, 

in the complex environment small populations not only follow more heterogeneous adaptive 

trajectories, but can also attain higher fitness than the large populations. Large populations are 

constrained to near deterministic fixation of rare large-benefit mutations. While such 

determinism speeds adaptation on the smooth adaptive landscape represented by the simple 

environment, it can limit the ability of large populations from effectively exploring the 

underlying topography of rugged adaptive landscapes characterized by 

complex environments. Our results show that adaptive constraints often faced by small 

populations can be circumvented during evolution on rugged adaptive landscapes. 
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Introduction 

It is widely held that the efficiency of natural selection is positively related to the size of an 

evolving population (Willi et al. 2006; Gerrish & Lenski 1998; Wilke 2004; deVisser et al. 

1999; Reed 2005). This intuition derives from the expectations that small populations are 

more subject to the chance fixation of deleterious mutations by genetic drift (Muller 1964; 

Lande 1998; Lynch et al. 1993; Lynch et al. 1995; Chao 1990; Silander et al. 2007) and that 

fewer beneficial mutations arise in small populations compared to large ones (Fisher 1958; 

Muller 1932; Burch & Chao 1999; Miralles et al. 2000; Orr 1998; Rozen et al. 2002; Zeyl et 

al. 2003). An unexplored factor that could mitigate these constraints in small populations 

arises from the fact that beneficial mutations are unevenly distributed, with few mutations 

causing large fitness benefits and most causing more modest gains (Burch & Chao 1999; Orr 

1998; Rozen et al. 2002; Barrett et al. 2006; Kassen & Bataillon 2006; Imhof & Slotterer 

2001). This skewed distribution implies that smaller populations will substitute a more diverse 

set of beneficial mutations (deVisser & Rozen 2005), with the consequence that they may 

follow more heterogeneous adaptive trajectories than large populations (Jain & Krug 2007), 

particularly if mutations interact epistatically. While the effects of genetic drift on the fixation 

of deleterious mutations are well appreciated and studied, for example in Phase 1 of Wright’s 

Shifting Balance Theory (Wright 1932), the effects of stochasticity on the fixation of 

beneficial mutations have not been considered in any experimental context. The aim of the 

present contribution is to examine conditions where heterogeneity in the fixation of beneficial 

mutations enables the constraints associated with a limited population size to be overcome.   

 

Using the fitness landscape metaphor of Wright (1932), we consider the evolution of 

populations on two distinct fitness landscapes, one that is “smooth” with a single fitness peak, 

and another that is “rugged” with several peaks. We imagine that populations begin their 

evolutionary trajectories from fitness valleys; they will have already drifted, or been otherwise 

displaced, from a local fitness peak in Phase 1 of the Shifting Balance process (a process that 

is thought to be more efficient in small populations (Goodnight 2006), but see Weinreich et 

al. (2005)) and are awaiting the appearance and fixation of new beneficial mutations that will 

bring them into the domain of attraction of other, perhaps higher, peaks (Wright 1932). The 
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adaptive route taken by any given population is likely to be a function of the underlying 

topography of the fitness landscape (Colegrave & Buckling 2005; Burch & Chao 2000; 

Korona et al. 1994). On smooth adaptive landscapes with only a single peak, locating the 

fittest solution, or global optimum, is a matter of successively substituting the largest 

available beneficial mutations. It is assumed that this process will be slower in small 

populations as a result of their diminished access to (large) beneficial mutations (Silander et 

al. 2007; Burch & Chao 1999; Miralles et al. 2000; Orr 1998; Rozen et al. 2002). In contrast, 

reaching the global optimum on rugged landscapes is expected to be a function of the specific 

mutations that become substituted, because fitness on complex landscapes is determined by 

the epistatic interactions among combinations of mutations (Colegrave & Buckling 2005; 

Weinreich et al. 2006; Whitlock et al. 1995). Therefore, on rugged fitness landscapes small 

populations, owing to increased variability in the fitness effects of beneficial mutations that 

become substituted (deVisser & Rozen 2005), may locate a more diverse set of adaptive 

peaks, and on occasion ascend higher adaptive peaks than large populations. In contrast, by 

deterministically substituting only the largest beneficial mutations (DeVisser & Rozen 2005; 

Hegreness et al. 2006), large populations will be limited to fewer adaptive routes that climb 

the nearest fitness peak with the steepest slope, but not necessarily the highest peak. We note 

that this general prediction is consistent with Wright’s conjecture that small populations 

(subdivided demes) offer the best opportunity to allow the Shifting Balance process to 

proceed (Wright 1932; Whitlock et al. 1995). However, the solution we outline suggests that 

small populations are not only more likely to drift away from local fitness peaks in Phase 1, 

but also that they are more efficient seekers of distant, and occasionally higher, fitness peaks 

under the influence of natural selection in Phase 2 of the Shifting Balance process due to their 

broader sampling from the distribution of beneficial mutations.   

 

Here we first test these suppositions experimentally using evolving bacterial populations, and 

then explore the generality and limitations of our results using simulations. Twenty-four small 

and six large populations initiated with a single clone of E. coli were allowed to evolve for 

500 generations in either a simple or a complex nutrient environment. The simple 

environment is a glucose minimal medium (DM) that has been shown to lead to considerable 
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adaptive parallelism (Cooper et al. 2003; Pelosi et al. 2006; Woods et al. 2006), consistent 

with a relatively smooth fitness landscape. The complex environment, Luria-Bertani Broth 

(LB), contains a variety of carbon sources and other nutrients that offer a broader array of 

adaptive options, consistent with a more rugged fitness landscape (Habets et al. 2006). 

Population size was manipulated by adjusting the culture volume, causing a ~ 50-fold 

difference (5 x 105 versus 2.5 x 107). The extent of adaptation of each population was 

determined by measuring the relative fitness of population samples against a differently 

marked ancestor in head-to-head competition in the same environment in which they had 

evolved. 

 

 

Materials and Methods 

Bacteria and media  

The Escherichia coli B strains used in this experiment, REL606 and REL607, have been used 

extensively in experimental evolution and are described elsewhere (Lenski et al. 1991). These 

ancestral strains are genetically identical except for a difference in their ability to catabolize 

L-Arabinose, which can be used as a marker to distinguish both strains when plated on 

tetrazolium-aribinose (TA) indicator plates.  

Two nutrient environments were used for the serial transfer experiment: a simple 

medium -with glucose as sole carbon source- and a complex medium. The simple medium is 

Davis’ minimal broth supplemented with 2* 10-6 thiamine hydrochloride and 0.25 g glucose 

per liter (DM250) and the complex medium is a 1/10 dilution of Luria-Bertani broth 

(1/10LB). The contrasting environments were chosen following experiments showing that E. 

coli maintained in LB evolved more phenotypic and genetic heterogeneity than populations 

evolved in DM, consistent with more niches and alternative adaptive peaks in the former 

environment (Habets et al. 2006). The population density at stationary phase for both media 

types is 5*108 cells/mL. 
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Evolution experiment 

Populations derived from both ancestral strains were maintained for 500 generations by serial 

transfer in unshaken tubes (4.8 mL) or in wells of a 96-well plate (100μL), representing large 

and small populations, respectively. Every 24 hours the populations were diluted by a 1,000-

fold dilution into fresh medium, and then incubated at 37ºC; for the small populations 5*104 

cells were transferred (Ne = 5*105) using a 96-pin replicator (Boekel Scientific), while for the 

large populations this was 2.5*106 cells (Ne = 2,5*107). Each culture underwent roughly 10 

generations of daily growth. Every 100 generations, the populations were stored in a 15% 

glycerol solution at -80 ºC. Large populations were replicated six-fold, small populations were 

replicated 48-fold, in two separate 96-well plates. For reasons of experimental tractability, 

following the 500 generations fitness assays were conducted on a randomly sampled subset of 

24 from the 48 small populations from each medium type. Fitness trajectories of small 

populations were estimated for a random set of 12 populations from the original 24, and for 

all six large populations. 

 

Fitness assays 

The relative fitness of evolved populations was measured according to previous protocols 

(Lenski et al. 1991) by competing populations against the reciprocally marked ancestral clone 

for 10 generations. Conditions in competitions were equivalent to those during serial transfer. 

Prior to the competition, competitors were separately grown for 24 hours in the appropriate 

medium, to insure that both were in equal physiological states. At the beginning and the end 

of the competition, the frequency of both competitors was determined by plating onto TA. 

From these frequencies, relative fitness was estimated as the ratio of each strain’s Malthusian 

parameter. Competitions for mean fitness of the populations were replicated three-fold; all 

other competitions were replicated six-fold.   

 

Statistical analyses 

To account for the difference in sample size between small and large populations, we tested 

the robustness of the results of our analyses by using a bootstrap procedure (Manly 1991). 

This was achieved by resampling with replacement from the original replicate fitness 
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estimates to generate 10,000 sets of 24 versus six pseudo-populations (of 12 versus 6 pseudo-

populations for the analysis of fitness trajectories). For each set, an F-test on the among 

population variation in fitness of the 24 versus the six pseudo-populations was calculated. 

This distribution of F-values was then used to calculate the proportion of test values higher 

than the F-value corresponding to the real data, which reflects the probability that the higher 

among-population variation in small than large populations arose from random processes (or 

an asymmetry in sample size) (Orr 2006). A similar bootstrapping approach was employed to 

carry out t-tests comparing the rate of adaptation in small versus large populations in both 

environment types. 

 

Fitness data were analyzed using t-tests with unequal variances; the greater fitness variation of 

small versus large populations precludes the use of standard ANOVA. Repeated-measures 

ANOVA were used to examine the adaptive trajectories of small or large populations. In order 

to avoid the problem of heterogeneous variances, we applied this ANOVA to small and large 

populations separately. We were particularly interested to see whether small populations 

showed evidence for significant heterogeneity in their respective adaptive dynamics, which 

would be apparent as a significant interaction between population and time of the repeated-

measures ANOVA on individual adaptive trajectories. 

 

Simulation design 

The simulations were designed to approximate critical features of our experiments. The digital 

bacteria grow by dividing at rates determined by their fitness. The population starts at size N0 

and growth continues until the population reaches carrying capacity, at which point serial 

transfer, modelled as multinomial sampling, reduces the population size back to N0 which 

initiates another round of exponential growth. This procedure is iterated until the desired 

number of generations is reached. Effective population sizes, Ne, calculated as N0 * 

(generations grown between transfers)(Gerrish & Lenski 1998), are equivalent to those used 

during the bacterial experiments (5e5 or 2.5e7 for small and large populations, respectively). 

Initial populations are clonal, but at division, each clone generates mutants at a rate μ that 

differ in fitness from the parent clone. By convention, the ancestral clone is assigned a fitness 
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value of 1 and offspring a value of 1+s, where values of s are drawn from an exponential 

distribution f(s) = αe−αs, with α = 42.5 (Silander et al. 2007). Because recent simulations have 

suggested that higher fitness peaks can be reached by first going through an intermediate step 

with reduced fitness (Cowperthwaite et al. 2006; Lenski et al. 2003), we also performed 

simulations that included only a small fraction of mutations that lead to fitness larger than that 

of the ancestral strain, while the majority of mutations reduced fitness (i.e.: deleterious 

mutations >> beneficial mutations). However, due to the strong bottlenecks imposed by the 

repeated serial passages, these less fit mutants never survived long enough to produce 

consecutive, fitter mutants. Therefore, their inclusion had no effect on the outcome of the 

simulations. Because including deleterious mutations significantly increased computational 

demands but did not affect our conclusions, the results presented here are for simulations that 

only included beneficial mutations. At division, offspring remain unchanged or attain the state 

of any of L single mutant neighbours. Once a mutation occurs, a new mutant is created with 

fitness drawn randomly from the L possible neighbourhood values. Additionally, the new 

mutant obtains its own one-step neighbourhood of L mutants. To generate a smooth 

landscape, the newly created mutant is assigned a mutant neighbourhood which is identical to 

that of the ancestral strain, leading to a landscape with only a single global optimum. To 

approximate a rugged fitness landscape, we consider the other extreme, where 100% of the 

neighbourhood is replaced, with values for the possible fitness increase resampled from f(s). 

This leads to a completely rugged landscape, where a single mutation changes the fitness 

effects of all other possible mutations. The mutation rate μ was set to 5e-6 (Perfeito et al. 

2007) and the total number of 1-mutant neighbours, L, to 500. While these two parameters are 

chosen rather arbitrarily, we found that the results remain qualitatively unchanged for 

different parameter values, as long as the effective mutation supply rate for small populations 

is significantly smaller than the mutant neighbourhood, i.e. Ne* μ <<L, and Ne* μ ≈ L for 

large populations. Such a situation allows the small populations to evolve stochastically, while 

the large populations will evolve in an essentially deterministic manner. The model was 

written in Matlab and will be provided upon request to A.H. 
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Results and Discussion 

Fitness estimates of populations taken after 500 generations support the prediction that 

adaptation is more heterogeneous in small populations (Fig 1); significant among population 

variation for fitness was found for small populations in both environments (simple: F21,44 = 

4.21, P < 0.001; complex: F22,45 = 3.58, P < 0.001), while large populations show no apparent 

heterogeneity for fitness in either one (simple: F5,12 = 0.80, P = 0.57; complex: F5,12 = 0.85, P 

= 0.54). Furthermore, we found that the among-population fitness variation was higher for 

small than large populations in the complex nutrient environment (F22,5 = 5.20, P = 0.038), 

but did not differ in the simple environment (F21,5 = 2.10, P = 0.21). To account for the 

asymmetry in sample size between small and large populations, we tested the robustness of 

this F-test by using a bootstrap procedure (Manly 1991) and found results that were consistent 

with the original test (complex environment: P = 0.043; simple environment P = 0.45). As 

expected, given that large populations have increased access to beneficial mutations 

conferring large benefits, we found that large populations adapted faster than small ones in the 

simple environment (t11,5 = -3.36, 2-tailed P = 0.0060). However, the reverse was found in the 

complex environment (t11,5 = -3.36, 2-tailed P = 0.0060). As earlier, this result was confirmed 

using a bootstrap approach (P = 0.0039 and P = 0.0073, respectively). These data reveal that 

although adaptive heterogeneity is increased in small populations, the evolutionary 

consequences of this variation are highly dependent upon the topography of the adaptive 

landscape, because only on the rugged fitness landscape are benefits to this heterogeneity 

realized.   

 

To explore the interactions between population size, environment, and fitness gain in more 

detail, the adaptive trajectories of a subset of small and large populations during evolution in 

the complex resource environment were obtained (Fig. 2). Whereas large populations showed 

parallel fitness gains (F10,36 = 1.90, P = 0.077), small populations explored the rugged 

adaptive landscape in different ways (F22,46 = 4.06, P < 0.001) indicating that they have 

followed divergent adaptive trajectories. The effect of this heterogeneity is particularly 

evident for three small populations with final fitness significantly higher than even the most 
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Figure 1: Relative fitness of large and small bacterial populations after evolution on either a simple or complex 
nutrient environment. A value of 1 indicates no change.   
 

 

fit large population (t2=3.90, 1-tailed, P = 0.03) (dotted lines Fig 2a). The fitness trajectories 

of these three populations were significantly different from those of the other nine small 

populations (F1,33 = 11.83, P = 0.0016). Moreover, while they were more fit after 500 

generations (t10 = 5.13, 2-tailed P < 0.001), at 100 generations their average fitness 

improvement was significantly lower than that of the other nine small populations (t10 = 2.79, 

2-tailed P = 0.019).   

 

Our experimental data demonstrate that the dynamics of fitness gain in complex environments 

depend on the topographical details of the fitness landscape. We show that this dependence is 

a function of the adaptive routes followed by evolving populations, and that this varies 

significantly between small and large populations. Finally, we show that adaptive walks that 

ascend “steep hills” do not always climb the highest peaks. Indeed, only those small 

populations that initially substituted smaller beneficial mutations obtained the largest fitness 

gains.    
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Figure 2: Fitness trajectories of 12 small (A) and six large (B) populations evolving in the complex environment. 

Dotted lines highlight small populations that have attained higher fitness than other small and even the most fit 

large populations (see text for details).  

 

An assumption of our experimental model is that simple and complex resource environments 

correspond to adaptive landscapes that are “smooth” and additive, and “rugged” and epistatic, 

respectively. Although our data are consistent with this interpretation and there is precedent 

for this approach (Colegrave & Buckling 2005), it is not feasible to experimentally determine 

a priori the epistatic contingency of evolution in any experimental environment. In order to 

overcome this limitation, we performed computer simulations of populations evolving on 

adaptive landscapes where the levels of mutational epistasis could be explicitly defined. The 

simulations also enabled us to consider the evolutionary response of small and large 

populations over a vastly extended time scale that would not have been experimentally 

feasible. 
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In our computer simulations, digital bacteria undergo iterated cycles of exponential growth 

and serial dilution. Every clone grows according to a fitness value that is initially scaled to 1. 

Additionally, every clone has a fitness neighbourhood of fixed size L, which corresponds to 

the number of possible 1-step mutations the clone can reach. During growth, mutant offspring 

arise at a rate, μ, and thereby obtain a new fitness value that corresponds to one of the L 

neighbouring fitness values. Each mutant clone can either retain a fraction of the fitness 

neighbourhood of its parent, or obtain an entirely new fitness neighbourhood. If the parental 

fitness neighbourhood is retained, the result is a smooth fitness landscape with few maxima 

among the L fitness values and no epistasis. At the other extreme, if all fitness neighbours are 

replaced, the result is a maximally rugged fitness landscape with complete epistasis and many 

local optima. In both cases, the landscapes we utilize are likely to be exaggerated versions of 

what might be found in nature. Our use follows earlier pioneering fitness landscape 

simulations (Orr 2006; Perelson & Macken 1995; Macken & Perelson 1989; Kauffman & 

Levin 1987), and is intended to establish the simplest boundary conditions and not to 

faithfully reproduce the experiment. 

Broadly, the simulations provide strong qualitative support for our interpretation of the 

experimental results. Figures 3a and 3b show the fitness trajectories for fifty individual small 

or large simulated populations evolving on either a smooth (Fig. 3a) or rugged (Fig. 3b) 

fitness landscape. In a manner consistent with our experimental results, a number of small 

populations on the rugged landscape, but not on the smooth landscape, obtain higher long-

term fitness than even the most fit large populations. That this result is only found on the 

rugged landscape supports the idea that the dynamics of fitness gain are highly dependent on 

the topography of the underlying fitness landscape, with epistatic interactions among 

mutations providing a critical advantage to small populations. We next calculated variation 

over time in fitness among small and large populations as a function of landscape topography 

(Fig. 3c), from which we draw two conclusions. First, this analysis shows that among 

population heterogeneity is higher for small than large populations irrespective of landscape 

complexity. Secondly, it reveals that variance in evolutionary response is increased for both 

small and large populations during adaptation on rugged adaptive landscapes relative to their 
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behaviour on the smooth landscape. This latter effect is likely the result of the fact that rugged 

landscapes contain more fitness peaks, while the former is a consequence of the fact that small 

populations follow more heterogeneous adaptive trajectories. Most interestingly, these 

simulation results show that the benefits that accrue to small populations by following diverse 

adaptive trajectories are only realized when fitness is determined by epistatic interactions 

among beneficial mutations. Otherwise, small populations remain adaptively constrained. 

  
Figure 3: Simulation results of fitness gain in 50 small (dotted line) and large (unbroken line) populations on 
either a smooth (a) or complex (b) fitness landscape. The number of 1-step neighbours, L, is 500 and the 
mutation rate, μ, is 5e-6. Variation in fitness across treatments and population size is shown in Fig 3c.  
 
 

In summary, our data provide experimental and theoretical evidence that limits to adaptation 

in small populations can be overcome during evolution on complex fitness landscapes. 

Furthermore, we show that the topography of the fitness landscape is an important 
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determinant of this outcome, because those small populations with the greatest final fitness 

improvement were ones that initially ascended relatively shallow slopes. It is important to 

note that benefits from more effective landscape searching are far from assured in small 

populations. Indeed, many small populations, both in the experiment and in the simulations, 

faced handicaps consistent with their diminished access to beneficial mutations of large effect. 

However, whereas the outcome of adaptation in large populations is nearly deterministic, 

adaptation in small populations can generate unpredictable results and unexpected benefits.   

 

Although our experiments were not designed to specifically test Wright’s Shifting Balance 

Theory (Wright 1932), it has not escaped our notice that our results are of particular relevance 

to Phases 2 and 3 of the theory. In Phase 2, populations previously displaced from their 

original adaptive peaks via genetic drift in Phase 1, are envisioned to ascend new peaks via 

the accumulation of beneficial mutations. Genetic drift in small populations, in Phase 1, and 

epistatic interactions among mutations, in Phase 2, are thought to facilitate this process. The 

results here are consistent with this view in two ways. First, we find that small populations are 

better able to locate a diverse range of fitness peaks than large populations, and second that 

advantages to this diversity are only realized on landscapes where epistatic interactions are 

expected to be common. In Phase 3, migration from the fittest populations causes demes 

resident on lower fitness peaks to cross fitness valleys in order to shift towards higher fitness 

peaks. Because our experiments did not include a migration treatment we lack experimental 

support for this final phase; however, it seems likely that appropriate rates of migration 

among small populations would have the effect of causing more efficient peak shifts among 

small than large populations. Tests of this conjecture are currently in progress.  

 

Two further implications emerge from our data. First, although our experimental results partly 

depend on the specifics of the environments applied in our study, it is likely that our complex 

nutrient treatment actually underestimates the complexity of most environments, because it 

lacks both spatial structure (Korona 1996; Rainey & Travisano 1998) and interactions with 

other organisms such as predators and parasites (Brockhurst et al. 2005; Brockhurst et al. 

2004; Meyer & Kassen 2007).  If natural fitness landscapes are actually more rugged than 
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those used here the potential evolutionary advantage to small, marginal, or fragmented 

populations may be further enhanced, and this may somewhat mitigate risks to threatened 

populations of animals and plants. Second, we note that our experimental population densities 

are consistent with the population bottlenecks experienced by many microbial pathogens 

during initial infection (Rubin 1987). Such bottlenecks are thought to be costly to microbial 

populations due to the accumulation of deleterious mutations by Muller’s ratchet, which may 

in turn serve to diminish microbial virulence (Bergstrom et al. 1999). However, the 

emergence of heterogeneous populations following infection in small inocula may serve as an 

important diversifying factor for microbes, perhaps providing microbes with an adaptive edge 

in the co-evolutionary “tug-of-war” between pathogens and their hosts. These implications 

await further testing.   
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Abstract 

Spatial structure is thought to be an important factor influencing the emergence and 

maintenance of genetic diversity. Previous studies have demonstrated that environmental 

heterogeneity, provided by spatial structure, leads to adaptive radiation of populations. In the 

present study, we investigate not only the impact of environmental heterogeneity on adaptive 

radiation, but also of population fragmentation and niche construction. Replicate populations 

founded by a single genotype of Escherichia coli were allowed to evolve for 900 generations 

by serial transfer in either a homogeneous environment, or a spatially- structured environment 

that was either kept intact or destroyed with each daily transfer. Only populations evolving in 

the structured environment with intact population structure diversified: clones are 

significantly divergent in sugar catabolism, and show frequency-dependent fitness interactions 

indicative of stable coexistence. These findings demonstrate an important role for population 

fragmentation, a consequence of population structure in spatially structured environments, on 

the diversification of populations.  
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Introduction    

A central focus in evolution and ecology is the study of the relationship between adaptive 

radiation and ecological opportunity (Futuyma and Moreno 1988; Schluter 1996; Rainey et al. 

2000; Travisano and Rainey 2000). Ecological opportunity can take the form of niche 

differences or niche partitioning (Amarasekare 2003). In a homogeneous environment, niche 

partitioning can occur when different genotypes specialize on different available resources 

(resource partitioning) or when they are limited by the same resources but at different times, 

e.g. when species grow at different times of the year (temporal niche partitioning). In the 

absence of these mechanisms, coexistence between diverged phenotypes can still occur if 

populations evolve in spatially structured environments (spatial niche partitioning; 

Amarasekare 2003).  

 Several consequences of spatial structure may enhance opportunities for adaptive 

radiation. First, spatial structure introduces environmental heterogeneity, e.g. by providing 

gradients in abiotic or biotic factors. When the fitness of different genotypes depends on 

spatially varying physical factors and trade offs are associated with specialization on these 

factors, coexistence is possible. The influence of environmental heterogeneity provided by 

spatial structure on the evolution of diversity has been studied in a variety of experimental 

systems using microbes (Korona 1994; Korona 1996; Rainey and Travisano 1998).  

 Second, in a spatially structured environment, the population is effectively subdivided 

into a number of more or less independently evolving subpopulations. Since these 

subpopulations are relatively small they are more likely to adaptively diverge, mediated by 

two mechanisms. First, genetic drift plays a larger role in small subpopulations (Wright, 

1931). Second, small populations tend to fix beneficial mutations conferring smaller benefits, 

because they do not have access to the rare beneficial mutations of large effect that large 

populations have access to (Orr 1998; Burch & Chao 1999; Miralles et al. 1999; de Visser & 

Rozen 2005).  Since smaller-effect beneficial mutations are more abundant than those causing 

substantial fitness increases (Rozen et al. 2002, Orr 2005), the small subpopulations of a 

spatially subdivided population are likely to follow diverse adaptive routes, an effect that may 

be amplified by epistatic interactions between beneficial mutations (D.E. Rozen, M.G.J.L. 

Habets, A. Handel and J.A.G.M. de Visser, unpublished results). Another consequence of 
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fixing smaller mutations is a decrease in the rate of adaptation (Burch & Chao 1999; de Visser 

et al. 1999; Miralles et al. 1999). Because the small, isolated subpopulations individually 

adapt more slowly, the population as a whole will consequently adapt more slowly than a well 

mixed population.  

 Third, the effect of population fragmentation may allow for additional diversity if the 

diverging subpopulations provide novel niches by modifying environmental conditions. They 

may do so in two ways: they can change (or provide a gradient in) abiotic or biotic factors, 

increasing heterogeneity of the environment (e.g. cyanobacteria can change the structure of 

the soil thereby providing increased access of desert plants to water; Jones 2005), or they may 

provide new resources (e.g. metabolic byproducts on which new specialists may feed). This 

modification of environmental conditions by organisms already inhabiting the environment 

has been called ‘niche construction’ (Laland et al. 1999) or ‘ecosystem engineering’ (Jones et 

al. 1994). Niche construction can occur in unstructured environments, but the likelihood may 

be increased in structured environments due to limited dispersal and therefore increased 

abundance of relatively independent subpopulations. Simply due to a larger number of (sub) 

populations, there are a larger number of potential niche constructors. In addition, gradients in 

(a)biotic factors cannot be generated in an unstructured (well-mixed) environment.  

 While the role of spatial structure in the emergence of genetic diversity has been well 

considered from a theoretical standpoint (Tilman & Kareiva 1997; Chesson 2000; 

Amarasekare 2003), experimental evidence is scarce (Korona et al. 1994; Rainey and 

Travisano 1998). The present study seeks to explore systematically how spatial structure 

affects both the emergence and the maintenance of diversity with the aim of disentangling the 

various consequences of spatial structure that are responsible for adaptive radiation. To this 

end, we propagated replicate populations of Escherichia coli, founded by a single genotype, 

for 900 generations in three environments that contained identical nutrients but had different 

structures: one unstructured environment (shaken liquid culture), and two structured 

environments (the agar surface of a Petri plate): one where the population structure was kept 

intact (no dispersal) and one where it was destroyed each day (maximum dispersal). This 

allowed us to distinguish the effects of environmental heterogeneity by itself, and 

heterogeneity in combination with maintained population structure (fragmentation and 



Chapter 3 

 
 

38

 
 

possibly niche construction) on the diversification of the populations.   

 Overall, we find support for the hypothesis that adaptive radiation is facilitated in 

populations with intact population structure, in contrast to populations evolving in spatially 

structured environments but lacking population structure; significant diversity in catabolic 

change among clones was only found in populations evolved in spatially structured 

environments with intact population structure. Moreover, we find that this diversity is 

maintained by frequency dependent fitness interactions, resulting from trade-offs between 

adaptations either to newly constructed niches or to existing niches that are filled more 

efficiently by spatially-structured, fragmented populations. 

 

 

Materials and methods 

Strains, media and experimental design 

The ancestral strains (Escherichia coli B, REL606 and REL607) used in this study have been 

used extensively in experimental evolution and have been previously described by R.E. 

Lenski and coworkers (1991). The two ancestral strains only differ in their ability to 

catabolize L-arabinose, a difference that can be distinguished on Tetrazolium Arabinose 

indicator agar (TA). On this medium Ara- cells grow as red colonies, while Ara+ cells produce 

white colonies. TA plates contain per liter: 10 g tryptone, 1 g yeast extract, 5 g NaCl, 16 g 

agar, 10 g arabinose, and 1 ml of a 5% stock of tetrazolium (2,3,4-triphenyltetrazolium 

chloride). 

 To obtain a general view of the role of spatial structure on diversity, two nutrient 

environments were used for the evolution experiment: a minimal medium–with glucose as the 

sole carbon source- (simple environment) and a rich medium with multiple carbon sources 

(complex environment). For the simple environment we used Davis’ minimal broth (Lenski et 

al. 1991) supplemented with 2* 10-6 thiamine hydrochloride and 0,25 g glucose per liter 

(DM250) and for the complex medium 1/10 Luria Broth (1/10 LB). The agar used for the 

structured environments (Agar bacteriological No.1, OXOID) had a mineral content that was 

insufficient to support replication on the agar alone. Final densities at stationary phase were 

equal for tubes and plates (F1,9 = 2.330, P = 0.161), while the complex environment had an 
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approximately 1.7 higher density than the simple nutrient environment (F1,9 = 8.221, P = 

0.019). The latter result is not likely to influence the effect of spatial structure and population 

structure on diversity, as our conclusions rely on comparisons within the same nutrient 

environment. 

  

Populations derived from either ancestral genotype were propagated for 900 generations in 

three environments that differed in spatial structure: an unstructured environment (liquid 

cultures in shaken tubes), a structured environment (agar plate) with a population structure 

that was kept intact, and an intermediate treatment with a structured environment (agar plate) 

but a population that was mixed before each transfer. We shall refer to those treatments as 

tubes, structured plates and mixed plates, respectively. We transferred the mixed plates by 

scraping the cells off the plate into 10ml of saline and plating a sample of this on a new plate. 

A velvet cloth was used as a stamp for transferring the structured plates to keep the population 

structure intact. The number of cells transferred in all treatments was equal. 

 

In the evolution experiment and the fitness assays we used small plates (diameter 60mm) and 

20ml tubes.  Tubes were shaken at 225 rpm. Culture volume for all treatments is 10 ml (either 

liquid or agar). Every day, 50μl (containing ~2,5* 107 cells) of a stationary phase culture was 

transferred to fresh medium and incubated for 24 hours at 37°C. The populations grew 

approximately 200-fold each day until they reached a density of about 5*108 cells per ml, 

which represents ~8 generations. Every hundred generations, a sample from all populations 

and three isolated clones from each population were stored in 15% glycerol at -80°C.  

 Each treatment was replicated six-fold. Due to contamination in some plate 

populations, only two mixed plate populations of each medium type and three structured 

plates of the simple nutrient environment were analyzed. To balance the analysis, we 

investigated only four populations of all other treatments.  
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Fitness assays 

Relative fitness of the evolved populations was measured by competing three randomly 

isolated clones from each population against the ancestral clone. Competitions took place in 

the same environment and medium in which the clones had evolved. Both competitors were 

grown for 24 hours prior to competition in that particular environment to make sure that they 

were in the same physiological state. At the beginning and the end of the one- day 

competition, the frequency of the competitors was estimated by plating dilutions on a TA 

plate. To distinguish both competitors, competitions were always conducted between 

reciprocally marked strains. For each competitor, their Malthusian parameter was computed 

(m = ln[Ni(1)/ Ni(0)/1d] where Ni(0) is the density at the start of the competition and Ni(1) the 

density after one day of competition). Fitness relative to the ancestor was computed as the 

ratio of the Malthusian parameters (Lenski et al. 1991). Competitions were done with four-

fold replication. Fitness of clones with a coefficient of variation higher than 10% were 

replicated an additional four times. All assays that had fewer than 20 colonies of one of the 

competitors on either day were excluded from analysis, because low colony numbers can lead 

to inaccurate fitness measures.  

 To investigate the specificity of adaptation, the three clones from each population at 

generation 900 were also competed collectively against the ancestor, with 3-fold replication, 

in their own and the alternative environment (tubes and plates).  

 

Phenotypic MicroArray plates 

Commercially available Phenotypic MicroArray plates (BIOLOGTM, Hayward CA, USA) 

were used to measure within-population genetic diversity. These 96-well plates are designed 

to quantitatively measure numerous phenotypes of the cell at once. The wells of the PM1 

plates each contain a different carbon source; respiration of each carbon source is quantified 

by reading the OD595 of a reduced tetrazolium dye.  

 From two random populations of each treatment, evolved for 900 generations in the 

complex medium, eight clones were isolated and examined in duplicate; the ancestor was 

assayed six fold. This amounts to 102 PM1 plates total. Protocols were according to 

BIOLOG. Briefly, clones were preconditioned for 24 hours in 1/10 LB tubes and plates 
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respectively after which each well of a PM1 plate was inoculated with 100 µl of a cell 

suspension (85% turbidity) of one clone. The PM1 plates were incubated for 24 hours at 37ºC 

after which the OD was measured with a 96-well plate reader. For analysis, we first divided 

performance on each of the 95 carbon sources (one well is the blank) by eye into three groups: 

no growth, partial growth and full growth. Carbon sources that either showed no growth or 

full growth for all clones and for the ancestor, were excluded from analysis. Next, the OD of 

the blank well was subtracted from the ODs of the remaining 48 carbon sources. Afterwards, 

the catabolic divergence of each evolved clone from its ancestor was measured by its 

deviation from a perfect correlation between mean performance on these 48 carbon sources of 

evolved clone and ancestor (see Cooper et al. 2003).  

 

Frequency dependence  

Negative frequency dependence for fitness of the evolved clones was measured by competing 

clones against the rest of the population from which they were sampled. For this purpose, 

spontaneous Ara+ colonies were isolated from the clones of all Ara- populations of both 

simple and complex medium, in order to distinguish the clone during competition from the 

rest of its population. Since it is not feasible to isolate Ara- colonies from Ara+ populations, 

only Ara- populations were investigated for frequency dependence. By having the clones 

compete at two different frequencies, 1:1 and 1:10, with four-fold replication, we could 

calculate the advantage when rare (AWR) as the difference between mean fitness when 

initiated at low frequency versus mean fitness when started at high frequency (Elena and 

Lenski 1997). If the AWR is significantly higher than 0, and both competitors, when rare, 

have a higher fitness than the common competitor, there is mutual invasibility, indicating a 

negative frequency dependent interaction.  
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Results  

Relative fitness differs between treatments and media 

Population mean fitness was measured by competing three clones from each population 

against the ancestor at two different time points (300 and 900 generations); overall, all 

treatments exhibited significant fitness gains (Fig.1; P < 0.05). Populations evolved in the 

complex nutrient environment gain higher fitness than populations evolved in the simple 

nutrient environment (repeated measures ANOVA: F1,13 = 318.414, P < 0.001), which can be 

attributed to several factors, including a dissimilarity in pre-adaptation of the ancestor to the 

environments, a slightly higher effective population size (see Methods), or a difference in the 

number of available niches. An increase in the number of niches in the complex nutrient 

environment could lead to an increase in the number of potential beneficial mutations and 

may include additional larger-effect beneficial mutations. In the homogeneous tube 

environment we find support for the assumption that the complex nutrient environment 

contains more niches, because the among- population variance in fitness is significant only in 

the complex nutrient environment (F3,7 = 8.339, P = 0.01), and not in the simple nutrient 

environment (F3,8 = 0.618, P = 0.623). 

Irrespective of nutrient environment, rates of adaptation were significantly different between 

the three treatments with different levels of spatial structure (F2,13 = 5.242, P = 0.021). Mixed 

plates show significantly higher fitness than structured plates in both the simple (F1,3 = 15.548, 

P = 0.029) and the complex nutrient environment (F1,4 = 9.641, P = 0.036). This is consistent 

with expectations, because population fragmentation on the structured plate is expected to 

decrease the rate of adaptation. Additional experiments have been done to explain these 

differences in more detail and will be reported elsewhere.  

 Overall, we find significantly higher fitness of populations evolving on plates 

compared to tube populations (F1,15 = 5.253, P = 0.037), in spite of the fact that resources are 

identical. To further explore this difference, we examined the specificity of adaptation to these 

treatments. 
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Specificity of adaptation  

The observed differences in fitness between plates and tubes could result from a difference in 

number or composition of niches across treatments. The plate environments may either 

provide additional niches relative to the tube environment (as a consequence of spatial 

structure) or both environments may provide different niches altogether. The presence of 

distinct niches in the two environments may be inferred if specialization in these niches 

involves trade-offs that affect performance in the alternative environment.  
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Figure 1. Mean relative fitness (± S.E.M.) of populations evolved in either tubes (circles), structured plates 
(triangles) or mixed plates (squares). Dashed lines represent populations evolved in the simple nutrient 
environment, solid lines the ones evolved in the complex nutrient environment. Fitness was measured by 
competing three clones of each population against the ancestor.  
 
 

We tested this by competing three evolved clones from populations at generation 900 together 

against the ancestor in both environments (tubes and plates). Populations evolved in tubes did 

not show a difference in fitness when competed versus the ancestor on plates (Fig 2; paired t-

test for the simple nutrient environment: t3 = -0.019, two-tailed P = 0.986; complex nutrient 

environment: t3 = 1.282, P = 0.290). Populations evolved on plates, however, had significantly 

lower fitness in tubes (simple nutrient environment: t4 = 4.313, P = 0.013; complex nutrient 

environment: t5 = 10.721, P < 0.001). One possible reason for the observed asymmetry in the 



Chapter 3 

 
 

44

 
 

specificity of adaptation to plate and tube environments is that, in addition to niches shared by 

the tube and plate environments, plates harbor one or many additional niches that may 

contribute to the potential for adaptive radiation. 
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Figure 2. Relative fitness of the evolved populations at generation 900 when competed versus the ancestor in 
tubes and in plates. A. Tube-evolved populations; B. Plate-evolved populations. Dashed lines show the 
populations evolved in the simple nutrient environment, solid lines the populations evolved in the complex 
nutrient environment.  
 
 
 

Diversity within populations  

Fitness  

As a first method to examine the emergence of genetic variation within populations we 

examined fitness variation among the three clones that were isolated from each population at 

900 generations. In this first analysis, we found no significant fitness variation among clones 

for any population (results not shown). Extra replicates were conducted for those clones that 

had a coefficient of variation higher than 10%, which may obscure relevant and genuine 

genetic variation. However, this only minimally increased our ability to detect within-

population variance for fitness: only the mixed-plate populations in the simple nutrient 

environment showed marginally significant variation among clones from the same population 

(F4,26 = 2.777, P = 0.048).  Relative fitness is, however, expected to be a poor indicator of 

variation within populations, since convergence for this trait is anticipated.  

A   B  
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Figure 3. Divergence from the ancestor of eight isolated clones of six populations evolved in the complex 
nutrient environment, at generation 900. Tube populations are represented by circles, structured plate populations 
by triangles and mixed plate populations by squares.  
 
 

Carbon catabolism 

As a more sensitive method to detect within- population genetic variation, we assayed 

changes in the ability of evolved clones to catabolize 48 arbitrary carbon sources. The 

catabolic phenotypes of eight clones from two populations of each treatment, evolved in the 

complex nutrient environment, were determined using PM1 BIOLOG plates. These were used 

to estimate the catabolic divergence of each clone from its ancestor as the deviation from a 

perfect correlation. We tested the variation in catabolic divergence of clones from their 

ancestor between and within populations. The tube populations diverged from each other, but 

we found no significant variation within these populations (Fig. 3; nested ANOVA: between: 

F1,16 = 10.359, P = 0.005; within: F14,16 = 1.476, P = 0.226). The mixed-plate populations 

showed neither significant between-population nor within-population divergence (between: 

F1,16 = 0.002, P = 0.963; within: F14,16 = 1.518, P = 0.210). Only the structured-plate 

populations showed significant variation between clones from the same population, while no 

between-population divergence was found (between: F1,16 = 0.645, P = 0.434; within: F14,16 = 

24.219, P < 0.001). When all populations were independently considered, significant variation 

between clones in their catabolic divergence from the ancestor was again only found for both 
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structured plates (population ara +1: F7,8 = 25.372, P < 0.001; population ara +2: F7,8 = 

23.875, P < 0.001).  These results support our hypothesis that maintained population structure 

adds considerably to the diversification of a population. 
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Figure 4. Box plots for the overall Advantage When Rare (AWR) for Ara- populations evolved in tubes or 
plates. Three clones were competed versus the remainder of the population at two different frequencies (1:1 and 
1:10). Negative frequency dependence is evident when AWR > 0, indicating the ability for clones to invade from 
initial rarity. 
 
 

Frequency dependence of fitness  

We next tested whether the variation found in the populations evolved on plates was transient 

or sustained. One of the primary mechanisms maintaining genetic variation within populations 

is negative frequency-dependent selection (Levin 1988; Elena & Lenski 1997). We tested for 

negative frequency dependent fitness interactions by competing three clones from each ara+ 

population, of both the simple and complex environment, against the remainder of the 

population at two different frequencies (1:1; 1:10). One problem with this assay is that any 

advantage when rare (AWR) found in the structured plates is expected to be weak, because 

clones are competed against the whole population instead of against the particular 

subpopulation with which they evolved the putative frequency-dependent interaction. Before 

storing population samples in the freezer, the structure is necessarily destroyed, thus finding 

signs of frequency-dependent fitness interactions is conservative evidence for their existence. 

Nevertheless, when we conduct an overall ANOVA to test the difference in mean AWR of 
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clones evolved on plates and in tubes, we found a highly significant difference (Fig. 4; F1,18 = 

8.560, P = 0.009): clones from plates exhibit significant AWR (t11 = 3.256, one-tailed P = 

0.004), whereas clones evolved in tubes do not (t9 = -0.487, P = 0.319). These data show that 

diversity in the populations evolved in spatially structured environments was at least partly 

sustained by negative frequency-dependent fitness interactions between clones from the same 

population.  

 To further examine whether the populations evolved in a structured habitat with a 

structured population show higher AWR than those without population structure, we 

conducted separate t-tests for the four plate populations for which the analysis was possible 

(see methods). Only clones from the structured-plate populations exhibit significant negative 

frequency- dependent fitness (Table 1). Despite limitations in the number of populations we 

examined, it is encouraging that both the BIOLOG data and the frequency-dependence data 

reveal a significant impact of population structure on diversity.  

 
 

Table 1: Estimates of the Advantage When Rare (AWR) for the 4 plate populations. Three clones were 
competed versus the remainder of the population at two different frequencies. P-values are based on a one-tailed 
t-tests of the hypothesis that AWR > 0.    
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Average 
AWR 

 
SD 

 
T 

 
d.f. 

 
P-value 

Structured plate 
Simple: ara-1 

.0418 .0148 4.89 2 .020 

Structured plate  
Simple: ara-2 

.0471 .0130 6.25 2 .012 

Structured plate  
Complex: ara-2 

.0246 .0098 4.35 2 .024 

Mixed plate   
Complex: ara-1 

.0180 .0734 .42 2 .356 
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Discussion  

This study attempted to assess the impact of several consequences of spatial structure on the 

adaptive radiation of asexual populations of bacteria. The results demonstrate a positive effect 

of population structure on the diversification of the population. Not only did we find more 

diversity in structured populations (Fig. 3), we also found negative frequency-dependent 

interactions indicative of stable coexistence of this diversity (Table 1). Structuring of a 

population leads to population fragmentation and this can increase the opportunities for new 

genotypes to arise and persist, in part because organisms have a local impact on their 

environment.  

 A fragmented population consists of many smaller, relatively independently evolving 

subpopulations. Because smaller populations tend to fix beneficial mutations with higher 

variance, but with smaller impact on fitness (Orr 2005), and because genetic drift plays a 

larger role in small populations, fragmentation is expected to facilitate adaptive radiation. 

However, fragmentation will not necessarily lead to stable coexistence, because stable 

coexistence is defined by mutual invasiveness: individual genotypes must be able to increase 

from rarity in the presence of the remainder of the community. Fragmentation, by itself, does 

not provide a mechanism by which this can occur. 

 In addition to increasing diversity, the fixation of smaller-benefit mutations decreases 

the rate of adaptation of the subpopulations (Burch & Chao 1999; de Visser et al. 1999; 

Miralles et al. 1999) and therefore of the population as a whole. Consistent with this expected 

effect of population fragmentation, we found slower adaptation in the structured-plate 

populations relative to the mixed-plate populations in both nutrient environments (Fig. 1).   

 The second consequence of population structure is the localization of the effects 

organisms have on their environment. Organisms not only depend on environmental 

conditions, but are also able to transform these conditions through their own physical or 

biochemical actions. Some organisms can modify their environment in such a way that they 

provide ecological opportunities for new genotypes or for other species, adding new niches to 

the environment (Jones et al. 1994; Laland et al. 1999). For example, the secretion of 

secondary metabolites can add a new niche to the environment allowing cross-feeding 

interactions to evolve; cross-feeding has been shown to lead to the emergence of stable 
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polymorphisms in bacterial populations (Helling et al.1987; Rozen and Lenski 2000). If niche 

construction occurs, genotypes become interdependent, because it is the genotypes themselves 

and not the environment that provide the conditions for coexistence. Fragmentation alone 

cannot provide a mechanism for stable coexistence, thus our data that show maintained 

diversity for populations evolving with a fixed population structure (Table 1) are consistent 

with the hypothesis that niche construction facilitates adaptive radiation.  

 However, the fact that we found significant diversity on the structured plate and not on 

the mixed plate may also be explained by an alternative mechanism, resulting from an 

interaction between environmental heterogeneity and fragmentation: large (mixed) 

populations may not be able to fill all niches available in the plate environment, because, as a 

consequence of more rapid substitution of beneficial mutations, variation is purged more 

rapidly by periodic selection. Furthermore, adaptation to a specific niche can constrain the 

population’s ability to diversify in other niches because of antagonistic pleiotropy (Buckling 

et al. 2003). Because small populations, in contrast, have a greater adaptive exploratory 

ability, fragmentation can facilitate exploration of the various niches present in a 

heterogeneous environment (D.E. Rozen, M.G.J.L. Habets, A. Handel and J.A.G.M. de 

Visser, unpublished results). Additional experiments will need to be done to examine the 

nature of the negative frequency-dependent interactions we found, to distinguish between both 

hypotheses. 

 Despite evidence that diversification resulting from competition for resources in 

complex environments lacking spatial structure can occur (MacLean et al. 2005; Barrett et al. 

2005), our system does seem to require spatial structure for adaptive radiation. The cause of 

this discrepancy in study outcome is currently unclear and may be the result of system 

specific differences in species used, resource base, or interactions between these two factors. 

In our system, environmental heterogeneity by itself doesn’t facilitate the emergence of 

diversity either. Our mixed plate treatment was designed to test the effect of environmental 

heterogeneity, absent population structure, and as we have seen, neither variation in catabolic 

divergence, nor frequency dependence of fitness was found.  Both Ralstonia sp (Korona et al. 

1994) and Pseudomonas fluorescence (Rainey and Travisano 1998) populations diversify into 

several morph types when propagated in a structured, but not in a homogeneous habitat. The 
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structured environment used in the Ralstonia experiment resembles our structured 

environment with daily mixing of the population, and hence only environmental 

heterogeneity, provided by spatial structure, could have an influence on diversification 

(Korona et al. 1994). For the structured environment of the Pseudomonas experiment, non- 

shaken flasks were used, thus providing spatial structure as well as fragmentation of the 

populations. The diversity found by Rainey and Travisano (1998) might therefore also depend 

on fragmentation.  

 

 

Conclusion  

Our study is the first to systematically explore the impact of several aspects of spatial 

structure on the diversification of populations.  We found that spatial structure can slow down 

the rate of adaptation by fragmenting populations into many smaller subpopulations. Further 

research will be directed towards finding causes and consequences of this decreased rate of 

adaptation. In addition, fragmentation facilitates the diversification of the population. Because 

fragmentation by itself cannot provide a mechanism for stable coexistence, we attribute the 

observed stable coexistence of subpopulations to the construction of new niches by organisms 

already inhabiting the environment or to the more diverse adaptive trajectories of effectively 

fragmented populations. Our results show the importance of not only ecological factors, but 

also of population genetic factors for understanding the role and consequences of spatial 

structure in adaptive radiation.  
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Abstract  

Populations in spatially structured environments may be divided into a number of (semi-) 

isolated subpopulations due to limited offspring dispersal. Limited dispersal and, as a 

consequence, local competition could slow down the invasion of fitter mutants, allowing 

short-term coexistence of ancestral genotypes and mutants. We determined the rate of 

invasion of beneficial mutants of Escherichia coli, dispersed to different degrees in a spatially 

structured environment during 40 generations, experimentally and theoretically. Simulations 

as well as experimental data show a decrease in the rate of invasion with increasingly 

constrained dispersal. When a beneficial mutant invades from a single spot, competition with 

the ancestral genotype takes place only along the edges of the growing colony patch. As the 

colony grows, the fitness of the mutant will decrease due to a decrease in the mutant’s fraction 

that effectively competes with the surrounding ancestor. Despite its inherently higher 

competitive ability, increased intra-genotype competition prevents the beneficial mutant from 

rapidly taking over, causing short-term coexistence of superior and inferior genotypes. 
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Introduction             

Adaptation in asexual populations consists of sequential substitutions of beneficial mutations 

within the same line of descendants via periodic selection (Koch 1974; Levin 1981). Several 

beneficial mutations that are simultaneously present will compete with each other for fixation 

(Muller 1932; Gerrish and Lenski 1998). It is expected that the largest beneficial mutation 

will sweep through the population following exponential dynamics until it is fixed, thereby 

eliminating pre-existing variation. The substitution rate of beneficial mutations will be lower 

in a spatially structured environment than in a homogeneous population, where purging is 

expected to be a relatively rapid process (Gordo and Campos 2006), because of the slower 

invasion of beneficial mutations due to limited offspring dispersal and localized competition –

i.e., due to spatial constraints of population dynamics (Czárán 1998).  

In a spatially structured environment, dispersal will often be limited to a certain 

degree, causing the population to become structured. Without dispersal, a beneficial mutant 

will invade as a single growing colony. This has a two-fold disadvantage: first, since growth 

mostly happens at the perimeter of the colony, the radius of a colony increases at a constant 

rate, which means a quadratic increase in time of the number of cells; although colonies 

exhibit vertical growth, this is expected to be at least an order of magnitude smaller than 

radial growth at the centre of a colony (Grimson & Barker, 1993). Comparing this to the – 

faster – exponential increase of cells in a well-mixed environment, population structure can be 

said to slow down growth of cells, independent of a competitor, because of limited expansion 

ability. Second, if nutrient diffusion is limited in a spatially structured environment, cells 

influence the availability of nutrients only for their immediate neighbors. Despite a difference 

in competitive ability, the mutant/ancestor ratio will change slowly, because most ancestral 

cells are not affected by the mutant. The mutant essentially limits its own growth, because 

most competition takes place among mutant clone mates (Pacala, 1986; Ives 1988; Hanski and 

Cambefort, 1991), and it can only take advantage of its competitive superiority at the 

perimeter of the mutant colony. Moreover, as the invasion process progresses, the invading 

strain is expected to lower its own fitness due to changes in the ratio of inter- to intra-specific 

competition. Thus, even though the invading strain has a higher competitive ability, limited 

dispersal and local resource competition will reduce the invasion rate (Crawley, 1990; Burke 
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& Grime, 1996).    

Because of the slower dynamics of exclusion, several mutants can coexist temporarily, 

possibly opening the way for further increase in genetic diversity, e.g. through recombination 

and/or the appearance of mutants that can coexist with other mutants.  With respect to 

adaptation to changing environments, higher genetic variation may be of great advantage to 

the populations (Boles et al. 2005). Since most species grow in spatially structured 

environments and are limited, to different degrees, in their dispersal rate, the implications of 

our study are not restricted to micro-organisms.  

 

In a previous study, we have demonstrated experimentally that the long-term rate of 

adaptation slows down due to limited dispersal in a structured environment (Habets et al. 

2006). Here, we investigate the reason for this decrease; we study how the rate of invasion 

and the fitness of a beneficial mutant are affected by dispersal in a structured environment 

directly, both experimentally and theoretically. This was done by measuring the rate of 

fixation of two E. coli mutants, each with an approximate 50% fitness advantage relative to its 

ancestor. To manipulate dispersal, we used a non-motile E. coli strain, which we dispersed to 

different degrees at the beginning and during the invasion assay. We show both 

experimentally and theoretically a conspicuous divergence in fixation dynamics as a function 

of spatial structure, the proximate reason for which is the decline of the mutant fitness due to 

spatial constraints on population interactions.  

 

 

Materials & methods 

Bacteria, media and experimental design 

The invading strains (representing a beneficial mutant) were obtained in a previous 

experiment. Thirty-six populations derived from the E. coli B strains REL 606 or REL 607, 

were propagated for 900 generations in either a homogeneous environment or two spatially 

structured environments; one where the population structure was kept intact by using velvet to 

replicate the populations and one were the population was mixed before each daily transfer 

(Habets et al. 2006). From each structured environment, we isolated a clone from one 
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population at generation 900; these were used for the invasion assays against an ancestral 

clone. Due to a difference in the ability to use L-arabinose, ancestral cells grow as red 

colonies on indicator plates, whereas the invading strains (which originated from an isogenic 

strain except for the marker) produce white colonies. Indicator plates (Tetrazolium Arabinose 

indicator agar) contain per liter: 10 g tryptone, 1 g yeast extract, 5 g NaCl, 16 g agar, 10 g 

arabinose, and 1 ml of a 5% stock of tetrazolium (2,3,4-triphenyltetrazolium chloride).  

The invading strains competed versus the ancestor for five days in an environment 

identical to the one they had adapted to: Petri plates (diameter 60mm) containing 10 ml of 

1/10 Luria-Broth agar. Prior to the assay, each competitor was preconditioned to the same 

environment they would compete in, to make sure both clones were in the same physiological 

state. At the beginning of the invasion assay the ancestor (2.5 *107 cells) was spread on the 

agar surface, while the invader (5 *104 cells) was introduced in one of three different ways: in 

the first treatment (A), cells were introduced in one spot in the middle of the plate (1µl), in the 

second treatment (B) cells were introduced in 20 different spots (1 µl each), and in the third 

and fourth treatment (C and M) we uniformly mixed both competitors before spreading them 

evenly on the plate. The total number of cells of both competitors at the start of the 

experiment was the same for all treatments: 500:1. Every day, the populations were 

transferred to new plates containing fresh medium; populations of the first three treatments 

(A, B, and C) were transferred using velvet; in the fourth treatment (M) cells were scraped off 

the plate, diluted and mixed in 10 ml of saline before transfer. Fifty μl (containing ~2.5* 107 

cells) of a stationary phase culture was transferred to fresh medium and incubated for 24 

hours at 37°C. The populations grew approximately 200 fold each day, until they reached a 

density of about 5*108 cells per ml, which represents ~8 generations.  

At day 1, 2, 3 and 5 of the invasion assay, the relative frequency of the invader was 

estimated by plating a dilution of the population on indicator plates. For this, cells were 

scraped of the plates after the population was transferred, diluted in saline and mixed. Because 

it is not possible to accurately estimate the frequency at the start of the experiment (because 

cells cannot be scraped off without ending the experiment), experimental values are 

represented beginning at generation 8 (day 1). 

In order to exclude the possibility that the results would be influenced by pre-
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adaptation of the evolved clone to the transfer method (velvet versus mixing) invading strains 

with a fitness advantage of ~ 50% relative to the ancestor were used from each of the 

structured environments (Habets et al. 2006). Both clones were competed in all four 

treatments; every treatment was replicated 6 fold. No significant differences between clones 

were found (Table 1).  

 

Rate of diffusion  

Fifty µl of a 10-fold diluted stationary phase LB culture of the ancestral clone (~2.5*107 cells) 

was spread out on an agar plate (100 * 15 mm) partitioned into 20 ml of nutrient free agar and 

5 ml of concentrated LB agar.  The total nutrient concentration was the same as used for the 

invasion experiment. Cells were spread either on the nutritious agar, in close proximity to the 

nutritious agar, or at some distance from it. After 24 hours, the density of the populations was 

tested. This was done by scraping the cells off the plate. 

 

Model  

We used a simple stochastic cellular automaton (CA) model to imitate the 4 different 

treatments of the experiment. The CA space is a 1000 x 1000 square grid of sites representing 

the surface of the agar medium in a Petri dish. Each site is assumed to be capable of harboring 

a single bacterial cell, so growth is purely two-dimensional. Of the 106 sites, 0,5 % were 

inoculated at time 0 by bacteria at a mutant to ancestor ratio of 1:500, equal to the 

experimental design. The ancestral strain was dispersed on the plate at random. For treatment 

A, the invading cells were clumped into a single spot in the middle of the plate; in B the same 

number of cells was distributed into 20 spots and the spots spaced out evenly on the plate; in 

C and M the invaders were dispersed over the plate at random. A generation consists of 106 

independent, random updating steps, so that each site is updated once on average every 

generation. An updating step starts with the random choice of a focal site and one of its 

neighboring sites. If the focal site contains a single cell and the neighboring one is empty, then 

the cell may put a copy of itself into the empty site with a probability equal to its basic fitness 

fi, a parameter of the strain the focal cell belongs to.  We used fancestor = 0.67 and fmutant = 1.00 

to maintain a relative fitness of 1.5 for the invader. Every 8th generation, a 0,5 % sample of 
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the bacteria present on the plate is transferred to a new plate. In treatments A, B and C the 

bacteria in the sample keep their previous site on the new plate; in treatment M the sample is 

reshuffled and dispersed on the new plate at random. Using this updating algorithm we have 

recorded the relative frequency and the relative fitness of the invading strain over 40 

generations (5 days, 8 generations per day).  

 Note that the number of simulated cells is two orders of magnitude smaller than that in 

bacterial experiments described above, because the fates of enormous numbers of cells are 

impossible to follow even with the most powerful of recent computers. Therefore, a 

quantitatively correct simulation of the dynamics on a Petri dish is not feasible; rather the 

simulation model is intended to provide a qualitative explanation to the experimental data. 

 

 

Results 

Rate of invasion in model 

We investigated the rate of invasion of a superior competitor in a spatially structured 

environment when mixed to different degrees with its well-dispersed ancestor. Simulations 

show that the superior clone can invade in all four treatments (Figure 1), but the rate at which 

this happens depends on the degree of mixing, with daily mixing (treatment M) leading to the 

quickest invasion. A rigid spatial population structure with a single invasion center (treatment 

A) delays the invasion process considerably. Keeping the rigid spatial structure but increasing 

the number of invasion centers (in treatments B and C) provides the invader with an 

additional competitive advantage, so that a relatively short time is sufficient for it to increase 

towards fixation. 
 

Rate of invasion in experiment   

In accordance with the simulations, the experimental results show that the superior competitor 

invades in all four treatments (Figure 2), and that the rate of invasion depends on the degree of 

mixing (Table 1), with daily mixing (treatment M) leading to the fastest invasion. 
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Table 1: Repeated-measures ANOVA testing the effect of four different degrees of dispersal on the rate of 

invasion of two evolved clones. 

 

Between subjects 

Source Df MS F P 

Dispersal (treatment) 3 1.820545 418.034 < 0.001 

Invading strains 1 0.001042 0.239 0.628 

Dispersal*Invading strains 3 0.007549 1.733 0.179 

Error 34 0.004355   

 

Within subjects 

Source df MS F P 

Time 3 2.43519 1165.930 < 0.001 

Time*Dispersal 9 0.44386 212.515 < 0.001 

Time*Invading strains 3 0.00441 2.112 0.103 

Time*Dispersal*Invading strains 9 0.00442 2.115 0.035 

Error 102 0.00209   

 

 

A potential dissimilarity between simulations and experimental data is a difference in 

diffusion rates of nutrients. A difference in diffusion rates would affect the rate of invasion, 

because diffusion of nutrients, together with the rate of uptake of nutrients by cells, 

determines the local nutrient concentration in a structured environment.  If diffusion of 

nutrients is fast, cells can exhaust nutrients over a larger area, increasing the impact they have 

on their environment (Huston and DeAngelis, 1994). Whereas no diffusion takes place in the 

simulations, the dominant competitor in the experiment might rapidly obtain nutrients from a 

larger area, thereby preventing not only cells in close proximity, but also cells further away 

from growing. With a high rate of nutrient diffusion, the dynamics of invasion in a spatially 

structured environment would resemble the dynamics in a well-mixed environment.  

We found that the rate of nutrient diffusion was negligible relative to the rate of 

nutrient uptake, because growth after 24 hours differed significantly between cells that grew 

either on nutrients, in close proximity to nutrients or at some distance from the nutrients in a 
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Petri plate that was partly nutrient-rich and partly nutrient-free (F2,6 = 50,975,  P < 0.001). We 

can therefore conclude that diffusion was roughly similar for simulation and experimental 

conditions, consistent with the general similarity in invasion dynamics produced by 

simulations and experiment.  

 

1       2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fitness of the superior competitor 

We next tested whether the rate of invasion of the superior competitor is dependent on its 

frequency. The previous results suggested that with an increase in the number of invaders, 

intra- specific competition increases relative to inter- specific competition, reducing the rate 

of invasion. We tested this hypothesis by calculating the fitness of the invading strain, relative 

to its ancestor, at three different time points during invasion in both the simulation as well as 

the experimental data. The relative fitness is calculated by the ratio of the Malthusian 

Figure 2: Relative frequency over time (generation) of 
the superior competitor during the competition 
experiment. Closed symbols represent the clone evolved 
on structured plate of our long-term experiment; open 
symbols represent the clone evolved on the mixed plate. 
No significant fitness difference is found between the 
clones. The different treatments represent the different 
degrees of mixing. The difference in density of the 
various starting “spots” of the superior competitor is 
negligible (the density on the plate is everywhere about 
8.9* 105 per cm2) and does not influence the competition.  

Figure 1:   Simulated relative frequencies of the 
 superior competitor over time. Parameters: Basic 
fitness: fancestor = 0.67, fmutant = 1.00; Initial 
ancestor to mutant frequency ratio: 500:1; 
Transfer dilution: 200-fold; Transfer frequency: 
every 8th generation.  
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parameters (m) of the competitors; m = ln[Ni(1)/ Ni(0)/1d], where Ni(0) is the density at the 

start of the competition, Ni(1) the density after one day of competition assay, and d is the 

number of days (Lenski et al. 1991).  

 

The simulation data show that the fitness of the superior clone depends on two aspects: the 

initial distribution of the superior competitor and the amount of mixing during invasion 

(Figure 3). Fitness is lowest if the invader is clumped in one spot, and highest when mixed at 

the start of the experiment. If besides mixing at the start, the population is mixed in between 

transfers (treatment M), an increase in fitness is observed. A conspicuous decrease in fitness 

of the invader was found in all other treatments (Figure 3). The results of the model confirm 

the hypothesis that reproduction of the invading cells is constrained by the increasing within-

strain aggregation, preventing the bulk of invaders from directly interacting with the inferior 

competitive ancestral population, and therefore inhibiting their increase in relative frequency. 

The unexpected increase in fitness in the mixed treatment (M) of the simulations, which we 

did not see in the experimental data (see Figure 4), remains unexplained.  

The experimental data exhibit the same dependence on both initial distribution of the invader 

and dispersal during invasion. Like the theoretical results, there is a significant difference in 

treatments (repeated measures ANOVA for differences in treatments: between subjects F3, 35 = 

80.697; P < 0.001); the better the superior competitor is distributed over the plate at the start 

of the experiment, the higher the fitness at all time points (Figure 4).  

When the competitors are not mixed daily (treatments A, B and C), there is a 

significant fitness decrease over time between generations 16 and 40 (Figure 4; A: F2,27 =  

4.449, P = 0.021; B: F2,27 = 30.981, P< 0.001; C: F2,27 = 6.923, P = 0.004; M: F2,24 = 0.466, P 

= 0.386). This fitness decrease is significantly different between the treatments (time-

treatment interaction:  F3,35 = 4,307, P = 0.011) and appears to be largest in treatment B. The 

more dispersed the invader is at the beginning of the experiment, the faster the ratio of inter- 

to intra-specific competition changes, and thus the larger the predicted fitness decrease; we 

would therefore expect treatment C to have the largest fitness decrease. However, in treatment 

C the invasion progresses faster and towards the end of the invasion experiment, the 

population mainly consists of mutants with well-dispersed small islands of ancestral cells. 
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This leads to a deceleration of the rate of fitness decline. Because we measure over the same 

time period for all treatments, this deceleration in fitness decrease leads to a slower overall 

fitness decrease in treatment C than treatment B, even though all treatments demonstrate this 

fitness decline over time (Figure 4).  

 

 

 

 

Discussion 

We have assessed the rate of invasion of a beneficial mutant under the spatial constraints of 

competitive interaction. In a well-mixed environment, the difference in fitness between an 

ancestral strain and a new beneficial mutant is constant throughout competition, i.e., the 

mutant can realize its fitness advantage at a maximum level. When population growth occurs 

in a spatially-constrained fashion with limited dispersal and local interactions, however, the 

fitness of any genotype will depend on the fitness of neighboring genotypes, since nutrients 

are limiting in each spot. Moreover, space also counts as a limiting factor for sedentary 

organisms. Without dispersal, a mutant with higher fitness will not be able to exploit its 

advantage to the full, because it is mostly in competition with its clone mates. The rate of 

invasion will consequently be reduced if the dominant competitor is constrained spatially. 

Figure 3: Relative fitness of the superior competitor 
over time (generation) in the simulation. Parameters 
as in Figure 1. 
 

Figure 4: Relative fitness of the superior competitor 
over time (generations) during the competition 
experiment. Closed symbols represent the clone 
evolved on structured plates; open symbols represent 
the clone evolved on mixed plate.  

Figure 3: Relative fitness of the superior competitor 
over time (generation) in the simulation. Parameters 
as in Figure 1. 
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This finding helps to understand our previous findings, that populations evolving in spatially 

structured environments that were not mixed had a lower rate of adaptation than populations 

that were mixed regularly (Habets, et al. 2006). In contrast to these results, previously 

published theoretical data show that mixing in a spatially structured environment leads to a 

decrease in the rate of fixation of beneficial mutations due to an increase in the role of drift 

(Perfeito et al. 2006). By spatial reshuffling, the mutants are scattered which spoils the 

protective clumps they would form without mixing, thus increasing the chance the mutant will 

be lost by drift. Although a direct comparison with our model cannot be made – since we 

study the rate of invasion of a single beneficial mutant and not the rate of fixation (the number 

of beneficial mutants fixed within a certain time frame) – there is a clear difference in the role 

of demographic stochasticity due to a much larger population size in our study.  

  

Due to slower invasion of adaptive mutants, we expect not only the ecology, but also the 

evolution of the community to be affected. Since inferior competitors are present in the 

community for a longer time, they can recombine with other persisting lineages or obtain new 

mutations, some of which might be beneficial. It is therefore possible that genotypes arise 

which would not have had the opportunity to emerge in a well-mixed environment. In short, 

spatial constraints can cause the maintenance of more genetic variation, which might help the 

population to adapt to changing environments (Boles et al. 2005). In addition, stable 

coexistence may arise between certain genotypes in a population, because a higher standing 

genetic variation provides more opportunities for such interactions. Thus we arrive at the 

conjecture that by slowing down the exclusion dynamics between competing genotypes, 

spatial constraints may increase evolutionary diversification in populations.  

In an evolution experiment with E. coli in environments with varying degrees of 

spatial structure, we found support for this view. We observed a lower rate of adaptation and 

higher maintained diversity in bacterial populations evolved in a spatially structured 

environment with intact population structure relative to populations evolved in mass action or 

a structured but regularly mixed environment (Habets et al. 2006). Spatial structure has also 

been proposed as a crucial factor for the maintenance of diversity in communities with non-

transitive competitive interactions (Czárán et al. 2002; Kerr et al. 2002). The associated 
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slower dynamics that we observe here may be an additional factor causing the short-term 

coexistence of competitors in such communities.  

Our findings show that improving resource competitive ability (i.e. growth rate) in 

spatially structured environments is not as advantageous as in a well mixed environment. This 

suggests the importance of evolving other strategies, such as increased dispersal or 

interference competition to reduce local competition. We are currently exploring these 

proposals.  
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Abstract 

The probability that mutators will invade populations of wild-type individuals by hitchhiking 

with beneficial mutations depends on the extent of adaptive opportunities. Consequently, 

mutators are expected to benefit from fluctuating or heterogeneous environments consisting of 

multiple ecological niches. However, experimental data on the dynamics of mutator 

populations in heterogeneous environments are scarce. Here, we investigate whether mutator 

populations of E. coli benefit from spatial structure of the environment by considering two 

features of such environments, i.e. environmental heterogeneity and slower competitive 

dynamics. Contrary to expectations, we found an increased invasion probability for mutators 

in the well-mixed environment only. We also tested the possibility that local conditions in 

structured environments may give rise to a higher mutation rate and hence a higher production 

rate of mutator mutants, but no such effect was found. A possible explanation for the observed 

mutator advantage in well-mixed environments is that the faster competitive dynamics among 

coexisting beneficial alleles allows a rapid increase of population size of each mutant 

subpopulation, and hence their supply of mutations for subsequent adaptation, in situations 

where the mutator fixes the first beneficial mutation.  Our results only apply to constant 

environmental conditions, because the slower invasion dynamics associated with spatial 

structure cause a delay in mutator extinction at low frequencies, possibly giving them an 

advantage with changes in environmental conditions, such as the addition of antibiotics.  
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Introduction 

Mutators are mutants with defective DNA-repair functions, and consequently have a higher 

mutation rate. A higher production of deleterious mutations appears to give mutators lineages 

an immediate slight growth disadvantage (Chao & Cox 1983). However, because mutators 

produce not only more deleterious but also more beneficial mutations, mutators can increase 

to high frequencies in populations by hitchhiking with the (genetically linked) beneficial 

mutations they produce. This indirect selective benefit depends upon the occurrence of 

beneficial mutations, and hence on opportunities for adaptation (Sniegowski et al. 2000; de 

Visser 2002); a well-adapted population presents fewer opportunities for a mutator to 

hitchhike to fixation than a poorly-adapted population. Mutators are thus predicted to be 

found in either rapidly changing environments (Oliver et al. 2000; Travis & Travis 2002) or 

spatially heterogeneous environments with multiple niches to which adaptation is possible 

(Oliver et al. 2000; Travis & Travis 2004).    

Understanding the conditions that favor the emergence of mutator phenotypes is not 

only important scientifically, but is also relevant for human and animal health. High 

frequencies of mutator have been found in clinical bacterial populations (Leclerc et al. 1996; 

Oliver et al. 2000; Björkholm et al. 2001). Because drug resistant mutants arise more often in 

mutator populations, antibiotic treatment of clinical bacterial populations may directly select 

for the rise of mutator phenotypes present in low frequencies in most wild type populations 

(Oliver et al. 2000; Blázquez 2003) which could lead to clinical treatment failure (Giraud et 

al. 2002).  In order to develop strategies to limit this complication it is critical to develop an 

understanding of the ecological conditions that lead to increases in the frequency of mutator 

cells. 

 

So far, the evolutionary costs and benefits of hypermutability have been investigated in simple 

unstructured environments only (but see Giraud et al. 2001), despite the environmental 

structure present in almost any natural environment. We examined the invasion dynamics of a 

mutator strain of E. coli in structured and unstructured environments. We are particularly 

interested in the effects of three features of structured environments on the fate of a mutator 

subpopulation.  First, the high number of niches arising from physico-chemical gradients in a 
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spatially structured environment will allow more opportunities for adaptation (Rainey & 

Travisano 1998), and hence for mutators to hitchhike with selected beneficial mutations. 

Second, the slower competitive dynamics among newly arising beneficial mutations caused 

by local resource competition in structured environments (Gordo & Campos 2005; Habets et 

al. 2007) may prevent mutants from being driven rapidly extinct when at low frequency. 

Persisting in a population may give the mutator strain the possibility of fixing additional 

beneficial mutations, which increases the likelihood of fixation. This might be especially 

important if the environment changes, for example due to the addition of an antibiotic 

(Tanaka et al. 2003). Third, it is possible that mutators arise more often in structured 

environments due to a higher mutation rate imposed by such environments. The low growth 

rate found in the centre of the biofilm (Wentland et al. 1996), could for example lead to 

higher mutagenesis, due to the starvation of cells (Bjedov et al. 2003). Other physico-

chemical factors, like oxygen gradients in colonies growing in structured environments could 

also cause differences in mutagenesis (Bjedov et al. 2003). 

To test the influence of these potential consequences of spatial structure, we performed 

competition experiments between a mutator and a wild-type strain of Escherichia coli at 

varying ratio’s in three environments with different heterogeneity and competitive constraints. 

We compared a well-mixed environment (shaken liquid culture) with a spatially structured 

heterogeneous environment (agar surface), with and without dispersal. The results show an 

invasion benefit for the mutator in the well-mixed environment. In contrast to our predictions, 

in the structured environments, the mutator gains no added benefits. The disadvantage in 

structured environments may be attributable to either the slower dynamics in such 

environments, or to the drift loss of rare beneficial mutations in the mutator lineage caused by 

our method of transfer.  
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Methods & Materials 

Strains & media 

The ancestral strain (Escherichia coli B, REL606) has been used in previous evolution 

experiments and is described elsewhere (Lenski et al. 1991). From this strain, a DNA-repair 

deficient strain (Ara+ mutS-)  was derived that can be distinguished from the ancestral strain 

due to its ability to utilize arabinose (de Visser et al. 1999); on Tetrazolium Arabinose 

indicator agar (TA) Ara- cells grow as red colonies, while Ara+ cells produce white colonies. 

TA plates contain per liter: 10 g tryptone, 1 g yeast extract, 5 g NaCl, 16 g agar, 10 g 

arabinose, and 1 ml of a 5% stock of tetrazolium (2,3,4-triphenyltetrazolium chloride). 

Minimal Arabinose (MA) plates (Davis minimal medium in which glucose is replaced by 

arabinose) only allow the growth of Ara+ strains. The mutation rate of the Ara+mutS strain is 

approximately 33-fold higher than that of the ancestral strain (deVisser et al. 1999). The 

invasion experiments were done in 1/10 Luria Broth media (LB). 

  

Invasion experiment 

Individual colonies of the ancestral strain Ara–mutS+ and the Ara+mutS– were isolated from 

agar plates, grown overnight in LB, and used to inoculate three different 1/10 LB 

environments; a homogeneous environment (liquid culture in 20 ml shaken tubes; 225rpm) 

and two spatially structured environments (60mm agar plates), one where the population 

structure was kept intact (structured plate), and one where the population was mixed during 

each daily transfer to fresh medium (twist plate). In each treatment, the competitors were 

introduced at three different starting ratios of mutator to wild type strain: 1:100; 1:1,000 and 

1:10,000. Every treatment was replicated fourfold. Culture volume for all treatments is 10 ml. 

Every day, 50μl (containing ~2,5* 107 cells) of the stationary phase culture was transferred to 

fresh medium and incubated for 24 hours at 37°C. The plate populations were transferred 

using sterile velvet; the twist population was mixed by twisting the donor plate a few times 

while transferring the cells (Kerr et al. 2002). The populations grew approximately 200-fold 

each day until they reached a density of about 5*108 cells per ml, which represents ~8 

generations. Twice a week samples were plated on both TA and MA plates to estimate the 

ratio of the competitors. At generation 100 and 200, a sample of the population was stored in 
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15% glycerol at -80°C.  

 If mutators were no longer detectable at day 25, the mutator frequency was scored 

with the value corresponding to the lowest detectable limit. Therefore, the slope of the 

trajectories of these populations is a conservative estimate of their rate of extinction. In 

addition, one population was excluded because it had already fixed a beneficial mutation prior 

to the commencement of the experiment. 

 

Fitness assay 

Relative fitness of the evolved clones was measured for all populations except the 1:100 ratio 

treatments. To measure the fitness of both wild type and mutator subpopulations, we isolated 

6 clones of each, and competed them together versus the reciprocally-marked ancestor. 

Competition assays were performed with threefold replication as described in Lenski et al. 

(1991). Since mutators are identified by the state of their arabinose marker and not their 

mutator phenotype, and wild-type cells revert at the Ara locus at very low frequencies, we 

tested whether cells carrying the mutator marker found in very low frequencies possessed an 

increased mutation rate by conducting fluctuation tests on rifampicin. When no cells with 

mutator phenotype were found in a population, we assumed a fitness of 1 for the mutator 

subpopulation, indicating that it declined because it failed to generate a beneficial mutation 

rather than that it declined owing to the accumulation of a deleterious one. 

 

Fluctuation test  

We estimated the mutation rate of ancestral strain REL606 in the unstructured (liquid culture 

in tube) and structured environment (agar surface) by fluctuation test analysis following the 

protocol of Sniegowski et al. (1997). Tests were replicated 15-fold for resistance to rifampicin 

and reversion to the ability to utilize arabinose. Analysis of the fluctuation test data was 

conducted with a local program (website P.D. Sniegowski: 

http://www.bio.upenn.edu/faculty/sniegowski/). 
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Results 

Difference in invasion dynamics between treatments 

We examined the invasion dynamics of mutator subpopulations introduced at various 

frequencies in environments with varying degrees of spatial structure. As anticipated, invasion 

rate, as measured by the slope of the change in frequency with time, was dependent upon the 

mutator’s initial frequency (Fig 1; two-way ANOVA on all slopes: F2,26 = 4.051, P =   0.029).  

At low starting frequencies (1:10,000), the likelihood of the mutator to fix the first beneficial 

mutation and invade the wild-type cells is low.  A mutator subpopulation requires a mutation 

rate which is increased by approximately the inverse of its numerical disadvantage to have a 

higher chance of fixing the next beneficial mutation (Chao & Cox 1983; de Visser & Rozen 

2005). Consequently, at high initial frequencies, fixation of the mutator seems a likely future 

outcome for all treatments (Fig 1).  

We also found a marginally significant difference between environments in the 

invasion rate of mutator populations (Fig 1; ANOVA on all slopes: F2,26 = 3.233, P = 0.056). 

This is mostly driven by the difference at the highest initial frequency (1:100). Although the 

mutator appears likely to fix in all treatments at this frequency, the rate at which this occurs 

differs (ANOVA on slopes of 1:100 frequency: F2,9 = 5.167, P = 0.032). This was anticipated, 

because we have previously found that the rate at which a beneficial mutation achieves 

fixation increases with the rate of dispersal (Habets et al. 2007), and this varied between the 

environments; the well-mixed treatment allowed the highest dispersal rate and the structured-

plate treatment allowed almost no dispersal, while in the third treatment some dispersal was 

allowed by twisting the velvet during daily transfer in a structured environment 

Due to the slower invasion dynamics in the structured and twist-plate treatment, we 

had anticipated that the mutator subpopulation would persist for a longer period of time in 

these environments when their initial frequency was low, whereas they might be driven to 

extinction in the well-mixed environment upon the fixation of a beneficial mutation in the 

wild-type population. Overall, we could not detect a significant difference in invasion rates 

between treatments at lower frequencies (1:1,000: F2,8 = 3.633, P = 0.075; 1:10,000: F2,9 = 

0.060, P = 0.942). In the twist plate treatment at 1:10,000, (all but one) mutator populations 

are still present at roughly the same frequency as the initial frequency after 200 generations  
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Figure 1:  
Ratios of the mutator/wild-type population during 200 generations in either a well-mixed environment (tube: 
black lines), a structured environment with mixed population (gray lines), and a structured environment with 
intact population structure (dashed lines). A) represents populations where the initial ratio of the mutator wild-
type was 1:100; B) represents populations with a 1:1,000 initial ratio; C) initial ratio of 1:10,000.  
 

A

1.00E-05
1.00E-04

1.00E-03
1.00E-02

1.00E-01
1.00E+00

1.00E+01
1.00E+02

1.00E+03

0 5 10 15 20 25 30

days

m
ut

at
or

/w
ild

-t
yp

e

A

1.00E-05
1.00E-04

1.00E-03
1.00E-02

1.00E-01
1.00E+00

1.00E+01
1.00E+02

1.00E+03

0 5 10 15 20 25 30

days

m
ut

at
or

/w
ild

-t
yp

e

B

1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0 5 10 15 20 25 30

days

m
ut

at
or

/w
ild

-t
yp

e

B

1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0 5 10 15 20 25 30

days

m
ut

at
or

/w
ild

-t
yp

e

C

1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02

0 5 10 15 20 25 30

days

m
ut

at
or

/w
ild

-t
yp

e

C

1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02

0 5 10 15 20 25 30

days

m
ut

at
or

/w
ild

-t
yp

e



Chapter 5 

 
 

70

 
 

 
(one way ANOVA between beginning and ending frequency: F1,7 = 0.288, P = 0.611). In 

contrast and consistent with faster competitive dynamics, all but one of the mutators in the 

well-mixed environment have either been replaced or have invaded the population. 

In the structured-plate environment, we failed to find any evidence for the persistence 

of the mutator population. We believe that genetic drift may have been a more powerful driver 

of this result than the fact that the competitive dynamics are slower in these populations. 

Serial transfer of each population was carried out using velvet, which may have caused 

sampling to be clumped, thereby sometimes missing small colonies. Because the 

subpopulation of the mutator is very low in the 1:10,000 treatment, this drift effect will 

hamper the mutator population more than the wild type, and may explain the decrease after 20 

days in almost all mutator populations. 

 

 

Fitness of mutator and wild-type subpopulation  

Because no significant differences in the rate of invasion of the mutator could be found 

between treatments at lower initial frequencies, we examined the relative fitness of both the 

mutator and wild-type strains in order to extrapolate the outcome of competition. Significant 

differences between both strains were found (Fig 2; 3-way ANOVA using strains, initial 

mutator frequency and environment as factors: F1,32 = 10.419, P = 0.003), as well as 

significant differences between environments (F2,32 = 6.982, P = 0.003). In addition, the 

fitness difference between wild type and mutator varied marginally among environments 

(interaction strain x environment: F2,32 = 3.270, P = 0.051).  In the structured environments 

with lowest initial frequency, the higher fitness of wild-type relative to mutator subpopulation 

is most apparent (one-way ANOVA: structured plate 1:10,000: F1,7 = 7.991, P = 0.030; twist 

plate 1:10,000: F1,7 = 11.584, P = 0.014). All other factors and interactions of the 3-way 

ANOVA are non-significant.  

 

Two other interesting results were found. First, there is a difference in the final fitness of the 

wild-type between treatments, with lowest mean fitness in the well-mixed environment and 
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highest mean fitness in the twist-plate environment (Fig 2; F2,16 = 11.566, P = 0.001). This is 

in accordance with previous results of the same E. coli strain in the same environment after 

900 generations of evolution (Habets et al. 2006). Mutator fitness did not conform to this 

pattern (F2,16 = 1.404, P = 0.155), possibly due to the small population size of mutator 

subpopulations. Second, we found that in the 1:10,000 twist-plate treatment, where the 

mutator subpopulations persisted, mutators have a significantly lower mean fitness (F1,7 = 

11.584, P = 0.014) than the wild-type. Thus, even though the wild type has on average a ≈ 

20% fitness advantage compared to the mutator (assuming that their fitness is transitive), it 

has not driven the mutator to extinction.  This persistence indicates that spatial environments, 

owing to slower invasion dynamics, are somewhat protective of diversity. 
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Mutation rate in structured and unstructured environments  

To test the possibility that mutator mutants arise more frequently in spatially-structured 

environments due to prevailing higher mutation rates in those environments, the mutation rate 

in the well-mixed and structured environment was investigated by fluctuation tests. For 

Figure 2:  
Relative fitness of the wild-type and mutator subpopulations after 200 generations of evolution. 
Circles represent the values for the initial frequency of 1:1,000, triangles represent values for the 
initial frequency of 1:10,000.  
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rifampicin resistance, no difference in mutation rate was found between environments (Fig 3). 

However, for arabinose reversion, the mutation rate is 2-fold higher in tubes than in plates, 

indicating that mutators are unlikely to arise more frequently by mutation in spatial than in 

well-mixed environments.  
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Discussion 

This study attempted to assess the competitive dynamics between mutator and wild-type 

subpopulations of E. coli in environments that differed in their degree of spatial structure. We 

had expected more frequent invasions of the mutator strain in spatially-structured 

environments, either because the prevailing heterogeneous conditions associated with such 

environments provide more opportunities for hitchhiking with the beneficial mutations they 

produce, or because mutators are given more time to substitute a beneficial mutation when at 

low frequency due to the slower competitive dynamics caused by local resource competition 

(Habets et al. 2007). Contrary to expectations, we found an invasion advantage for the 

mutator in the well-mixed environment, although this effect is only significant when the initial 

frequency of the mutator is relatively high (1:100). This result likely reflects the enhanced rate 

of mutator invasion due to faster competitive dynamics in a situation where the mutator is 

Figure 3:  
Mutation rates for rifampicin resistance and arabinose reversion in both the unstructured 
(tube) and structured environment (plate). Error bars are 95% confidence limits. 
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anticipated to invade. However, we had not anticipated a benefit for the mutator when its 

initial frequency is low in well-mixed environments compared to structured environments.  

 

Slower dynamics in structured environments  

A possible explanation for the disadvantage in the structured-plate environment is the way we 

transferred population samples to fresh medium. Transfer by velvet produces clumped 

samples of the population and this may burden the smallest population most. Another 

possibility is that due to slower competitive dynamics, the mutator subpopulation does not 

increase in population size fast enough to fix additional beneficial mutations at a higher rate 

than the wild-type. On the other hand, its longer persistence in structured environments, what 

was especially surprising in light of the considerable fitness advantage of the wild-type over 

the mutator strains, may benefit the mutator population in the long term, perhaps particularly 

when the environment would change dramatically and selection is lethal.  When the mutations 

fixed by the wild-type are neutral in the new environment, the competition would start over, 

with the renewed possibility that the mutator wins, whereas in an unstructured environment, 

due to a possible sweep of the wild-type beneficial mutation the mutant would have already 

gone extinct 

 

Differences in dynamics due to heterogeneity  

It has been shown, both theoretically and experimentally that mutators may benefit from novel 

environmental conditions such as encountered in fluctuating or heterogeneous environments 

(Mao et al. 1997; Taddei et al. 1997b; Tenaillon et al. 1999; Travis & Travis 2002; Tanaka et 

al. 2003; Oliver et al. 2003; Travis & Travis 2004). Even though our spatially structured 

environment provides more niches due to heterogeneity, we did not find an additional 

advantage for the mutator strain.  

 It is possible that the supply rate of beneficial mutations in our experimental system is 

very high. If so, having a higher mutation rate would only provide the mutator strain with a 

negligible advantage in finding new beneficial mutations, and this would fail to offset their 

numerical disadvantage versus the wild-type lineage. In a previous experiment using the same 

E. coli strain and environment, small and large structured populations adapted equally rapidly 
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to the complex  environment used here (Rozen et al. unpublished) suggesting that beneficial 

mutations in this environment are abundant; for this reason, a higher mutation rate might not 

lead to faster adaptation. It could be argued in this case, that if the initial population was better 

adapted, the mutator might realize its hypothesized advantage, because then the population 

would be limited by the supply of beneficial mutations (de Visser et al. 1999). Accordingly, 

the likelihood that the mutator subpopulation will fix the first few mutations, necessary for 

invasion of the mutator lineage, may be higher when the population is beneficial mutation 

limited. 

 

Differences in mutation rate 

Our results show an invasion benefit for the mutator population in well-mixed environments, 

and a higher fitness for the wild-type populations, but no difference could be found in 

mutation rate. However, Taddei and colleagues (1997a) show that mutagenesis in structured 

environments increases with time spent in stationary phase, whereas mutagenesis remains 

equal for well-mixed populations. It is possible that gradients in physical and chemical factors 

increase with the amount of time a population has spent in a structured environment, and this, 

together with stress due to starvation, could lead to a higher mutation rate. Evidence for this is 

found by Bjedov et al. (2003); their results show that mutagenesis in aging colonies depends 

on starvation together with the diversity of selective pressures found in structured populations.  

 

It remains questionable whether spatial structure can increase the likelihood of a mutator to 

invade a population from low frequencies either through the slower competitive dynamics or 

elevated heterogeneity associated with structured environments. Our results would suggest a 

benefit for the wild type populations when mutator subpopulations are rare, because we did 

find a higher fitness for the wild-type in the 1:10,000 treatment in structured – and twist 

plates. However, we believe that the method of transfer may have affected this outcome.  

Additionally, we believe that the increased persistence time of mutators, even in the face of 

sizable fitness deficits, does offer a potential clue to mutator invasion in spatially structured 

environments. Namely, in fluctuating environments that would allow the mutator the 

opportunity to gain secondary beneficial mutations. This two-step process, as outlined in 
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Tanaka et al. (2003), and suggested by our data, warrants testing and will represent a direction 

of our future work on this clinically important topic. 
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6   General Discussion 

 

Spatial structure has the potential to provide solutions to the paradox of diversity – the 

problem of the coexistence of many species, all seemingly competing for few limiting 

resources. Population dynamics and species interactions can be strongly influenced by spatial 

structure, demonstrated by numerous mathematical models (Tilman & Kareiva 1997). 

Empirical evidence, supporting the models, is still scarce. We have attempted to investigate 

experimentally several consequences of spatial structure that can increase the adaptive 

radiation of populations. 

  

Population fragmentation 

In Chapter 2, the hypothesis was tested that small populations, representing population 

fragments in structured environments, are more likely to diverge than large populations. 

Twenty-four small and six large E. coli populations were serially transferred for 500 

generations in either a simple or a complex environment. We found that small populations 

followed heterogeneous adaptive trajectories when adapting to a new environment, whereas 

large populations seem to adapt in a more deterministic way. We believe that large 

populations did not show divergence in adaptation because they tend to fix beneficial 

mutations conferring large benefits. Small populations, on the other hand, fix beneficial 

mutations with smaller benefits. Because the latter class of mutations is more abundant, more 

genetic diversity in adaptation arises between small populations than between large 

populations. Surprisingly, even though small populations are thought to be constrained due to 

the fixation of small mutations, this was not found when populations evolved in a complex 

nutrient environment. Due to a combination of epistasis among and greater diversity of 

selected mutations, the small populations that had fixed a smaller- effect beneficial mutation 

after 100 generations, reached higher fitness after 500 generations.  

In a complex environment, the adaptive landscape consists of several adaptive peaks. 

Small populations explore the landscape more widely, with some populations finding low 
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peaks and others high peaks. Large populations, due to their wider sampling of the 

distribution of beneficial mutations, are more likely to fix rare large-effect beneficial 

mutations, and will be ‘forced’ to go up the steepest hills, which do not necessarily lead to the 

highest peak.  

 

Bearing in mind many restrictions, our experiment can be viewed as relevant for the so-called 

SLOSS (Single Large Or Several Small) debate. In conservation biology, there is controversy 

as to whether effort and money should be put into reserving large natural reserves, or many 

small ones. Whereas some conservationists argue that large areas contain a higher diversity – 

based on the theory that species richness increases with habitat area (MacArthur and Wilson 

1967) -, others challenge this view because it is based on the premise that large areas contain 

the same species as many small ones do. If small areas, however, contain unshared species, 

species richness may be higher in a collection of small areas.  

 Forty-eight small populations in our experiment have the same effective population 

size and resources as the single large population with which they were compared. Even 

though not all small populations were tested, it is clear from the fitness data that these show 

an enormous diversity when compared to one large population. When direct comparisons are 

made between many small islands and one large one, Quinn & Harrison (1988) found similar 

effects. For example, even though the island of Hawaii represents 63% of the land area of the 

Hawaii archipelago, only 30 of the 70 native land bird species are found here, whereas the 

small islands harbor 51 species  

Obviously, the simple and controlled experimental conditions are very different from 

the complexity of interactions between many species in nature reserves. In addition, even 

though the population size of the small populations of E. coli is consistent with bottleneck 

sizes in microbes, 5*105 is not a small population size for some higher organisms.  

 

Competitive dynamics in spatially structured environments  

In chapter 4, we examined how the rate of invasion and the realized fitness of a beneficial 

mutant are affected by dispersal in a structured environment. A beneficial mutant of a non-

motile E. coli strain (isolated from the previous experiment) invaded populations of ancestral 
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cells under different dispersal regimes. In the treatment with lowest dispersal, cells of the 

beneficial mutant were introduced in one spot. In the second treatment, the mutant was 

introduced in a number of small spots. In the third and fourth treatment, they were completely 

mixed with the ancestral cells. The fourth treatment differed from the third in that cells were 

mixed before transfer to a fresh agar plate, making it the treatment with highest dispersal.  

We found slower dynamics for an invading beneficial mutation when dispersal was 

limited. When dispersal was highest so was the rate of invasion. We also found that with 

increased invasion, the fitness of the mutant declines due to an increase in the ratio of intra- 

specific versus inter- specific competition.  

 

Even though we have investigated the consequences of spatial structure on the adaptive 

radiation of populations in the framework of the niche differentiation hypothesis, both 

population fragmentation and slower competitive dynamics are capable of increasing diversity 

in populations in homogeneous structured environments: fragmentation most noticeably 

through allopatric divergence, slower dynamics through increased local competitive 

interactions, including those leading to stable coexistence. 

Intra specific clustering due to limiting dispersal can allow coexistence if life history 

differences create spatial niche differences (Amarasekare 2003). For example, inter specific 

trade- offs between colonization ability and competitive ability may lead to coexistence 

because inferior competitors can persist by occupying sites the superior competitor has not 

occupied yet. In grasslands with nitrogen as the limiting resource, more than 100 species can 

coexist, even though one species is the best competitor (Tilman 1994). The superior 

competitor has, due to a greater allocation to roots, a lower allocation to reproduction. If by 

death and disturbance, open patches are always available, stable coexistence can arise by the 

competitive colonization trade-off.  

Our results demonstrate transient coexistence of both strains; however, we could not 

test any of the coexistence mechanisms, since we used a non-motile E. coli strain in our 

experimental set up. 
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Intrinsic & extrinsic heterogeneity of the environment  

Environmental heterogeneity is expected to be one of the main contributors to diversification 

of populations in structured environments. Microclimates arise due to gradients in light, 

oxygen, moisture, pH and many other abiotic or biotic factors. These gradients can be caused 

by extrinsic factors, but also by the organisms themselves (intrinsic factors, niche 

construction).  

 

In Chapter 3, we have attempted to investigate the impact of environmental heterogeneity 

together with fragmentation and slower dynamics on the diversification of populations.  To 

this end, thirty- six E. coli populations were serially transferred for 900 generations in three 

different environments; an unstructured environment with a well-mixed population, a 

structured environment with a well-mixed population, and a structured environment where the 

population structure was left intact with each transfer.  

Extrinsic heterogeneity by itself did not lead to the diversification of populations in 

our model system. In the presence of fragmentation and slower dynamics, however, stable 

polymorphisms arose. These can be explained either by intrinsic heterogeneity – organisms 

have provided additional niches, allowing the population to diverge (Laland 1999) or by the 

higher likelihood of fragments of the population to diverge into the niches present in the 

environment.    

 

Few studies have experimentally tested the influence of spatial heterogeneity on adaptive 

radiation (Korona et al. 1994; Rainey and Travisano 1998; Losos 1997) although many 

studies have looked at correlations between environmental gradients and communities (for a 

review see Sollins 1998), or have examined trade-offs of species in laboratory settings (Ter 

Steege 1994) or both. Other studies focus on source- sink dynamics as a mechanism for 

coexistence of species; locally inferior competitors are transported from source habitats to 

sink habitats, preventing exclusion (Codeco & Grover 2001). Abiotic heterogeneity of the 

environment increases the likelihood of source-sink dynamics.  

 In some organisms, maintenance of polymorphisms due to environmental 

heterogeneity can also arise due to genotype specific habitat selection. For example, for the 
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African Finch Pyrenestes, billsize and feeding preference are correlated; billsize is related to 

the time it takes to crack seeds; large morphs feed on hard seeds, small morphs on soft seeds 

(Smith 1993).  

 

Consequences of spatial structure on the invasion of mutators.  

In Chapter 5, we investigated whether mutator populations benefit from the heterogeneity 

and slower dynamics found in spatially structured environments. Thirty-six competition 

experiments between a wild-type and a mutator E. coli strain were performed for 200 

generations in three environments with different heterogeneity and competitive constraints. A 

well-mixed environment was compared to two structured environments, one where the 

population was dispersed, and one without dispersal.  Contrary to expectations, the results 

showed an advantage for the mutator lineage in well-mixed environments. A possible 

explanation for this is that faster competitive dynamics allow for a faster increase in 

population size, and hence of the supply of mutations for subsequent adaptation in situations 

where the mutator fixes the first beneficial mutation. However, these results only apply to 

constant environmental conditions. If fluctuations would occur, the delay in mutator 

extinction at low frequencies caused by slower dynamics, could give them an advantage.  

 Investigating conditions favoring the emergence of mutators is interesting 

scientifically, but more importantly, critical to human health. Because mutators are found in 

high frequencies in pathogenic bacteria, and because they have a higher mutation rate, they 

can cause antibiotic treatment failure.   

 

Future studies 

Several theoretical studies have shown the importance of environmental heterogeneity for the 

adaptive radiation of populations, although most focus on fluctuations in time, rather than 

space. Moreover, few empirical studies have detailed information on adaptive radiations 

(Hedrick 2006). We too have not yet been able to unravel the specific details of the 

interactions between our coexisting strains found in the experiment in chapter 3. Further 

research will focus on examining the nature of this stable coexistence. It is possible that cross-

feeding takes place, especially since this has been observed before in experimental evolution 



Chapter 6 

 
 

82

 
 

studies using E.  coli (Helling et al. 1987). 

  

More generally, a possible direction for further research in population fragmentation, slower 

competitive dynamics and environmental heterogeneity would be to study biofilms in batch 

culture. This would mimic natural conditions better than growth on agar plates. In addition, 

several species could be studied simultaneously, looking at the effects of their mutually, 

evolving interactions on each other. Also, interactions between factors increasing diversity 

should be studied. Due to the many advantages of working with microbes, studying complex 

systems will be easier than it is for higher organisms.   

  

 Another line of research could be to study natural isolates to confirm predictions made in the 

laboratory. For the influence of environmental heterogeneity on diversity, investigations could 

focus on strains living in biofilms compared to “free living” micro-organisms, in the water 

column. The amount of heterogeneity in the environment may be related to the amount of 

diversity found. 

 Further study of the slower competitive dynamics, associated with limited dispersal in 

structured habitats, should focus on the colonization-competition trade-off. Like plants, it may 

be possible for micro-organisms to coexist due to a trade-off between colonization and 

competition. For example, studies could examine commensal bacteria coexisting in 

populations. It is possible that some species spread well, while others are better at competing 

for e.g. iron, or other limiting factors in human bodies. Strains could be isolated and tested for 

dispersal ability and competitive ability in laboratory settings.  

In addition, isolating strains from humans living in densely populated areas (major 

cities) and comparing those with strains from island inhabitants in more remote parts of the 

world would be a way to test if fragmentation has led to a higher amount of diversity among 

commensal bacteria.  
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Nederlandse samenvatting  

Er is een groeiende bezorgdheid over de biodiversiteit aangezien door ontbossing, 

versnippering van leefgebieden en vele andere humane oorzaken, soorten bedreigd worden. 

Dit geldt niet alleen voor tijgers, pandaberen, de das en de otter; soorten in alle rijkdommen 

worden bedreigd. Van de amfibieën zijn zelfs eenderde van de soorten wereldwijd bedreigd. 

Om effectieve strategieën te ontwikkelen om deze afname tegen te gaan is een goed begrip 

nodig van mechanismen die een rol spelen bij het ontstaan en behoud van diversiteit. Dit 

proefschrift onderzoekt  één van de factoren die een rol spelen bij het ontstaan en behoud van 

diversiteit, namelijk spatiële structuur.  

 

De enorme biodiversiteit in de wereld heeft vele onderzoekers verwonderd; immers, de 

verwachting is dat competitie voor nutriënten, zonlicht of andere noodzakelijke bronnen, zal 

leiden tot de overwinning van de beste concurrent. Dit blijkt echter niet het geval en een 

aantal hypothesen is opgesteld om de coëxistentie van concurrenten te verklaren, waarvan de 

niche-differentiatie hypothese de belangrijkste is. Deze stelt dat wanneer er meerdere niches 

aanwezig zijn in de omgeving, en er competitie voor resources is, de populatie zal 

differentiëren in verschillende specialisten, elk aangepast aan een andere niche. Een voorbeeld 

hiervan zijn stekelbaarsjes in kleine meren in Canada. Wanneer voedsel schaars is, kan 

competitie leiden tot de differentiatie in twee soorten: een grote soort die leeft van vertebraten 

die op de bodem leven, en een kleine soort die plankton eet in de waterkolom – op deze 

manier is er minder concurrentie tussen de nieuwe soorten. In meren waar geen schaarste is, 

komt een intermediaire soort voor, die zowel plankton als vertebraten consumeert.  

 Dit voorbeeld is een van de weinige bewijzen voor de niche-differentiatie hypothese. 

Het zoeken naar bewijzen voor deze hypothese is onder andere moeizaam, omdat men niet 

terug kan gaan in de tijd om te onderzoeken waarom diversificatie heeft plaatsgevonden. 

Micro-organismen daarentegen, geven deze mogelijkheid wel, en zijn daarom uitermate 

geschikt voor onderzoek naar evolutionaire processen.  
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Het werken met micro-organismen heeft meerdere voordelen. Zo hebben micro-organismen 

een zeer korte generatie tijd, waardoor binnen enkele maanden 1000-en generaties evolutie 

bereikt kunnen worden in het laboratorium. Micro-organismen kunnen worden ingevroren bij 

-80°C. Dit betekent dat de voorouder van een evolutie experiment direct in competitie kan 

worden gebracht met de geëvolueerde lijnen. Bovendien, nemen ze weinig plaats in het 

laboratorium, waardoor vele replica’s tegelijkertijd kunnen worden gekweekt.  

 

Resultaten  

Wij hebben gekeken naar de invloed van spatiële structuur op de diversificatie van E. coli 

populaties. Ons onderzoek heeft uitgewezen dat wanneer populaties in een gestructureerd 

milieu (agar plaat) voorkomen, in tegenstelling tot een gemengd milieu (geschudde buis), er 

een grotere diversiteit optreedt, mits de populatie-structuur intact wordt gelaten. Dit wordt 

door een aantal factoren veroorzaakt.  

Ten eerste zullen populaties, wanneer ze zich enkel beperkt kunnen verspreiden in een 

gestructureerde omgeving, gefragmenteerd worden in meerdere kleinere subpopulaties. Kleine 

populaties vertonen een hogere variatie dan grote populaties (hoofdstuk 2), aangezien kleine 

populaties meestal mutaties fixeren met een relatief klein fitness-voordeel. Omdat er meer 

mutaties met een klein dan met een groot fitness-voordeel zijn, zullen kleine populaties vaker 

verschillende mutaties fixeren. Aangezien grote populaties mutaties fixeren met een groot 

voordeel, en deze schaars zijn, adapteren zij vaker met behulp van  dezelfde mutaties. Een 

opmerkelijke vondst was dat het fixeren van grotere mutaties op de lange termijn niet hoeft te 

leiden tot een hogere fitness. Kleine populaties die adapteren in een fitness landschap met 

meerdere pieken (zeg meerdere adaptieve oplossingen) kunnen een hogere fitness bereiken 

vanwege hun groter vermogen dit landschap te exploreren.   

 

Spatiële structuur zorgt niet alleen voor de fragmentatie van de populatie, het kan ook zorgen 

voor heterogeniteit van de omgeving. In de bodem kan er bijvoorbeeld een gradiënt zijn van 

zuurstof, waardoor coëxistentie mogelijk is van twee soorten, waarbij de ene soort beter 

concurreert bij een lage en de ander bij een hoge zuurstofconcentratie. Heterogeniteit zorgt 

dus voor het voorkomen van meerdere niches. Het kan ook zijn dat heterogeniteit in een 
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gestructureerd milieu wordt veroorzaakt door de organismen zelf. Organismen kunnen het 

milieu veranderen op vele manieren: planten veroorzaken bijvoorbeeld een schaduwrijke 

omgeving, met een hogere humiditeit en temperatuur. Hierdoor wordt een nieuwe niche 

gecreëerd, die evolutie kan vullen met nieuwe specialisten. Hoofdstuk 3 beschrijft de 

positieve rol van de heterogeniteit van het milieu – veroorzaakt door ruimtelijke structuur -  

op de diversiteit van evolueerde E. coli populaties. Voorwaarde voor een hogere diversiteit is 

echter wel dat de populatie structuur behouden wordt.  

 De resultaten van hoofdstuk 4 tonen aan dat de verspreiding van een voordelige 

mutatie sneller gaat in een gemengd milieu dan in een gestructureerd milieu. Doordat in een 

gestructureerd milieu een mutant met een hoger competitief vermogen dan de voorouder, 

voornamelijk met zichzelf in competitie is, zal de toename niet zo snel gaan als in een 

gemengd milieu - de mutant zal immers alleen aan de rand van de kolonie met de voorouder 

in competitie zijn, en kan dus enkel hier zijn voordeel realiseren. Doordat de mutant langzaam 

toeneemt in aantal, zal de voorouder enige tijd coëxisteren met de mutant. Dit verhoogt de 

kans op langdurige coexistentie van sommige mutanten via de evolutie van specifieke 

frequentie-afhankelijke interacties. 

In het laatste hoofdstuk wordt de invloed van fragmentatie en een langzamere invasie 

van mutanten in een gestructureerde omgeving onderzocht op de toename van mutators. 

Mutators zijn mutanten met een beschadigd DNA-repair mechanisme, waardoor zij meer 

mutaties produceren dan het wildtype. Mutators zijn medisch gezien belangrijk aangezien ze 

vaker resistent zijn tegen antibiotica en gevonden worden in patiënten, zoals in het 

longweefsel van cystische fibrose patiënten, waar ze enorme problemen opleveren. Aangezien 

het interne milieu van een gastheer (bijvoorbeeld een patiënt) wordt gezien als sterk 

gestructureerd, hebben we onderzocht of door deze ruimtelijke structuur mutators een 

voordeel hebben.  Echter, wij konden geen duidelijk voordeel vinden. Wel blijven mutators, 

zoals verwacht, langer aanwezig in een gestructureerd milieu in vergelijking met een 

gemengde milieu, wanneer ze in lage frequentie geïntroduceerd worden. Het is daarom 

mogelijk dat de mutator een voordeel krijgt wanneer de omgeving verandert, bijvoorbeeld 

door het toedienen van antibiotica, en daardoor alsnog in frequentie toeneemt. De tragere 
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invasie van mutanten in gestructureerde milieu’s zou in dit geval zorgen voor een voordeel 

voor mutators.  
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reserve”  Supervisor: Dr. A.W. Boxman  
Thesis: “Consciousness from a neurobiological perspective”                                   
Supervisor: Dr. Dr. F. Soontiens 

 
 
Teaching experience: 
 
Heyendaal Institute Nijmegen, Nijmegen. Assisting the set- up of a new section “Medical 
Sciences” Prof. H. Häring (2002) 
 
Nijmegen University, Nijmegen. Teaching assistant in “Biodiversity and sustainability” to 
Prof J van Groenendael (2002) 
 
Nijmegen University, Nijmegen. Teaching assistant in “Philosophy of Science” to Dr. Dr. F. 
Soontiens (2001) 
 
Nijmegen  University, Nijmegen. Teaching assistant in “Ethics for Biologists” to Dr. Dr. F. 
Soontiens (2000) 
 
Nijmegen University, Nijmegen. Teaching assistant in “Evolutionary Biology” to Prof J. 
Hackstein (1999) 
 
Nijmegen University, Nijmegen. Teaching assistant in “Genetics” to Prof J. Hackstein (1998) 
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Awards: 
2002 Unilever Research Prize  
 
 
 
Publications: 
Habets, M.G.J.L., Czárán, T., Hoekstra R.F and de Visser, J.A.G.M. (2007) Spatial structure 
inhibits the rate of invasion of beneficial mutations in asexual populations. Proceedings of the 
Royal Society B. 274: 2139-2143  
 
Habets, M.G.J.L., Rozen, D.E., Hoekstra R.F. and de Visser, J.A.G.M. (2006) The effect of 
population structure on the adaptive radiation of microbial populations evolving in spatially 
structured environments. Ecology Letters 9(9):1041-8 
 
*Rozen, D. E., *Habets, M.G.J.L., Handel A. and de Visser, J.A.G.M.  Heterogeneous 
adaptive trajectories of small populations on complex fitness landscapes.  In press: Plos ONE 
*-joint first authors 
 
In preparation: 
Habets, M.G.J.L. and de Visser, J.A.G.M. Mutator dynamics in spatially structured 
environments 
 
Presentations: 
 
2007 Habets, M.G.J.L., Czárán, T., Hoekstra R.F and de Visser, J.A.G.M. Spatial structure 
inhibits the rate of invasion of beneficial mutations in asexual populations. Poster presented at 
the XIth congress of the European Society for Evolutionary Biology 
 
2006 Habets, M.G.J.L., Rozen, D.E. and de Visser, J.A.G.M. Release from adaptive 
constraints of small populations evolving on complex fitness landscapes. Poster presented at 
the Annual Meeting of the Society for the Study of Evolution, Stony Brook, NY USA 
 
2005 Habets, M.G.J.L., Rozen, D. E., Hoekstra, R.F. and de Visser, J.A.G.M. "Experimental 
evolution in spatially structured habitats”. Talk presented at Xth Congress of the European 
Society for Evolutionary Biology.  
 
2003 Habets, M.G.J.L., Rozen, D.E., de Visser J.A.G.M. and Hoekstra R. “Experimental 
Evolution in Spatially Structured Environments”.  Poster presented at the IXth Congress of 
the European Society for Evolutionary Biology 
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