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Abstract 

   To describe the velocities of particles such as ions, protein molecules and colloids dispersed or dis-

solved in a fluid, it is important to also describe the forces acting on the fluid, including pressure gradi-

ents and friction of the fluid with the particles and with the porous media through which the fluid flows. 

To account for this problem, the use of a two-fluid model is described, familiar in the field of fluid me-

chanics, extended to include osmotic effects. We show how familiar relationships follow in various 

situations and give examples of combined fluid/particle transport in neutral and charged membranes 

driven by a combination of electrostatic, diffusional and pressure forces. The analysis shows how the 

same modeling framework can be generally used both for multidimensional electrokinetic flow through 

macroscopic channels and around macroscopic objects, as well as for mean-field modeling of trans-

port through porous media such as gels and membranes. 

 

   One of the basic problems in electrokinetics, colloid science and membrane science is how to de-

scribe simultaneously the transport rates of particles (like ions, molecules, colloids) and the fluid in 

which the particles are dissolved or dispersed.1-12 Examples abound such as the flow of aqueous solu-

tions in microfluidic systems,13,14,15 desalination using electrical fields across porous electrodes,16-18 

energy recovery from water salinity differences,19-22 and membrane processes for water treatment 

such as nanofiltraton and reverse osmosis.23-29 In such processes, several forces act on the fluid such 

as pressure and friction, while the particles are subject to forces such as concentration gradients and 

the electrical field.30 The fluid and the particle transport rates are not independent but couple through 

mutual friction, i.e., the transfer of momentum. How to describe this problem?  

   Here we suggest the following mathematical framework. First of all, the velocity vi of each of the par-

ticle types relative to the fluid can be described by a modified Nernst-Planck equation 

( )t ex
i F i i i i i i ilnD c z y V P m− = − ⋅ ∇ + ∇ + ∇ − + ∇µ + ∇χv v g  (1) 

where vi is the velocity of particle type i, and vF is the fluid velocity (typesetting in bold is used to de-

note vector quantities). Di is the binary (fluid-particle) diffusion coefficient, ci the concentration of the 

particles, zi unitary charge (e.g. +1 for a cation), y the dimensionless electrical potential to be multi-

plied with RT/F=kT/e to obtain the dimensional voltage, Vi the volume per particle, Pt the total pressure 

to be discussed below, mi the mass per particle (=ρi⋅Vi, where ρi is the particle mass density), g an 

acceleration factor for gravity and centrifugation, µex an excess contribution to the chemical potential 

(equivalent to lnγ, with γ the activity coefficient), e.g. describing volumetric interactions between the 

particles, χ an interaction energy of the particle with the medium (solvation energy), and where ∇x de-

notes gradients in x, i.e., the change of x with the spatial coordinate. Parameters Pt, g, µex and χ are 
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reduced quantities and need to be multiplied by the thermal energy, kT, to return to the conventional 

dimension of Pt in Pa, g in m/s2, and µex and χ in J. 

   Eq. (1) describes how the velocity difference of the particle with the fluid is proportional to a total 

force which has possible contributions from a concentration gradient (diffusional term), electrical field-

effects, pressure gradients, gravity (centrifugation), an excess contribution for concentrated solu-

tions,31,32 and a gradient in solvation energy. In Eq. (1) all frictional interactions go via the fluid, and 

thus we neglect direct particle-particle and particle-wall (or particle-matrix) frictions (ref. 1, p. 56).  

   Eq. (1) can be rewritten to give the particle flux, Ji=ci⋅vF, as a summation of a convective term, ci⋅vF, 

and a term due to the forces acting on the particle,1,28,33  

( )t ex
i i F i i i i i i i i i i ic D c c z y P c m c c= − ⋅ ∇ + ∇ + φ ∇ − + ∇µ + ∇χJ v g . (2) 

   Next, an expression is required for the fluid velocity, vF. To this end we propose the use of a modi-

fied two-fluid model, which is a modified Navier-Stokes equation for fully developed flow of a Newto-

nian fluid of constant viscosity and density where we include porosity effects and friction of the fluid 

with all dispersed particle types i, resulting in 

( ) ( ) ( )t 2 i
F F i F

i i

1
c

P
D

∇ − ρ − µ∇ ⋅ − φ = ⋅ −∑g v v v  (3) 

where the index i runs over all dispersed particles, ρF is the fluid mass density, µ is the viscosity of the 

fluid and φ is the volume fraction of all particles combined (φ=Σiφi, φi=ci⋅Vi), i.e. φ is equal to one minus 

the porosity. Eq. (3) extends the two-fluid model from fluid mechanics34-37 by replacing the hydrostatic 

pressure by the total pressure (including osmotic effects) and by allowing for friction with multiple par-

ticle species. One of these species can have zero velocity and then represents the porous medium. 

Note that Eq. (3) only follows from the formal expression when the porosity, 1-φ, is the same every-

where, which can be assumed for flow through a porous medium of constant density, with dispersed 

particles (ions) that can be approximated as being volumeless. Otherwise, the term (1-φ)⋅µ∇2vF in Eq. 

(3) must be replaced by the full expression for the viscous stress tensor, ∇(1-φ)⋅τ, see ref. 38, p. 349.  

   For flow through channels or around objects, Eq. (3) can be used and the fluid velocity set to zero at 

all solid walls. An important difference with literature on two-phase flow of non-colloidal particles34-37 is 

that we propose to use a total pressure Pt in Eq. (3) instead of the hydrostatic pressure Ph. At equilib-

rium (when all vi’s=0, and vF=0), and without external forces acting on the fluid such as gravity and 

centrifugation (i.e., for g=0), Eq. (3) shows how the gradient in total pressure is zero, ∇Pt=0, and thus 

in Eqs. (1) and (2) which at equilibrium describe the density distribution of the dispersed particles, the 

term Vi⋅∇Pt disappears. This simplification of Eq. (1) is in agreement e.g. with Poisson-Boltzmann 

double layer theory which describes the equilibrium ion distribution near charged interfaces. In the lit-

erature of two-phase flow (e.g. refs. 34,35), the term β=ci/Di in Eq. (3) is sometimes empirically de-

scribed by a modified Stokes-equation, e.g. for low Reynolds-numbers given by β=18⋅µ⋅φi/σi
2/(1-φ)2.65, 

where σi is particle size. For multicomponent suspensions, more elaborate expressions are avail-

able.37,39,40 

   As Eqs. (1)-(3) show, to describe the fluid flow, we use a very different expression compared to that 

for the dispersed particles. This difference reflects how the fluid is fundamentally different from the 
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particles, the fluid being continuous and having to fill at all times the space in between the particles, 

which are dispersed. Note for instance how electrostatic forces are included in Eqs. (1) and (2) and not 

in Eq. (3), as such forces only act directly on the ions and not on the fluid. However, interestingly, we 

can derive from Eq. (3) the classical expression used in electrokinetics for the relation between hydro-

static pressure gradients and electrostatic body forces, but only via coupling with the expressions for 

particle velocity, Eq. (1), as we will show below. 

   For transport through a porous medium (a ‘matrix’ phase) such as gels, membranes and porous 

electrodes, we can include the matrix, m, into the summation term on the right-hand side of Eq. (3), 

and set the velocity of the “m”-particle to zero, |vm|=0, thereby modeling the matrix as a collection of 

particles with positions fixed in space. For the matrix-fluid friction, we can then replace cm/Dm by a fric-

tional coefficient fm. Interestingly, we then arrive at a generalization of the Brinkman equation, which 

describes fluid flow through porous media, next to fixed walls, or open channels.41,42,43 

   As we will show, the above equations can be recombined into familiar expressions for combined fluid 

and particle flow in various applications, but it is necessary to use the total pressure Pt in Eqs. (1)-(3) 

and equate Pt to the hydrostatic (or, hydraulic) pressure Ph minus the osmotic pressure, Π, i.e., 

Pt=Ph-Π. Note that this ‘total pressure’ is a classical concept, see Mauro,45 Ray46 and the ‘solvent par-

tial pressure’ in Osterle.4,5 In many situations we can neglect Π such as for non-colloidal suspensions 

of large particles and/or when non-osmotic forces are much larger, but when we make this assumption 

in general, then the physics of many classical problems cannot be explained, such as osmosis, the 

phenomenon where fluid moves against a hydraulic pressure gradient toward locations of higher os-

motic pressure, Π. Also, to derive several well-known equations to be discussed below, it is necessary 

to include Π in Pt. Thus, we argue that in Eqs. (1)-(3) Pt must be a combination of a hydrostatic pres-

sure Ph and an osmotic contribution, Π. 

   As a first example, when we aim at describing electrokinetic flow through capillaries or around mac-

roscopic objects, we can implement Eq. (1) in Eq. (3), which (when leaving out the solvation term) re-

sults in1,4,7,30,47,48,49 

2 h
F i i t

i

P zc yµ∇ = ∇ + ⋅ ∇ − ρ∑v g  (4) 

which is familiar in physico-chemical hydrodynamics and describes how besides a pressure gradient 

and gravity, there is an electrostatic body force which acts on any fluid element that is locally not in 

charge-balance. Our analysis shows how this result can be derived from combination of Eqs. (1) and 

(3), without making the intuitively perhaps difficult assumption how an electrostatic body force directly 

acts on an uncharged fluid. In a full calculation, Eq. (4) can be combined with Eq. (1) for each of the 

particle types, as well as with Poisson’s law, 2
B i i

i

4y zc∇ = − πλ ⋅∑ with λB the Bjerrum length, and con-

servation balances for all particle types, ∂ci/∂t=-∇(ci⋅vi). This set of equations then describes electroki-

netics of incompressible fluids with dispersed particles, including particle volume effects, as long as 

direct particle-particle and particle-wall friction can be neglected (i.e., all frictional effects go via the 

fluid). Constitutive relations are required which describe how effective viscosity µ and diffusion coeffi-

cients Di depend on particle volume fractions and velocities.40,50,51 
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   From this point onward we focus on flow through porous media sufficiently far away from macro-

scopic edges of the porous medium with either open channels or a hard wall, such that we can leave 

out the fluid dissipation term µ∇2vF from Eq. (3), and describe fluid dissipation solely by the term fm⋅vF, 

which results in 

( ) ( ) ( )t i
F m F i F

i i

1
c

P f
D

∇ − ρ ⋅ − φ + ⋅ = ⋅ −∑g v v v . (5) 

   Eq. (5) describes how a pressure gradient and gravitational contributions acting on the fluid are bal-

anced by friction of the fluid with a stagnant matrix and by friction with dispersed particles. Leaving out 

the term fm⋅vF and dividing each side by 1-φ, Eq. (5) is given in ref. 44 to describe multicomponent flu-

idization and sedimentation, with the right-hand side of Eq. (5) then equal to the hydrodynamic drag 

force acting on the fluid. 

   For the simple case where we only have fluid (water) transport through a stationary matrix (thus Π=0 

and all ci’s zero), without gravity-effects, Eq. (5) simplifies to the classical Darcy equation, 

h
F mk P= − ∇v  (6) 

where the permeability km equals (1-φ)/fm.  

   For more general situations, let us combine Eqs. (1) and (5) to obtain several familiar results and 

expressions. First of all, we include Eq. (1) in Eq. (5), and make use of the Gibbs-Duhem relationship9 

ex
i i i

i i

c c∇Π = ∇ + ∇µ∑ ∑  (7) 

to obtain 
h

m F i i t i i
i i

P f zc y c∇ + ⋅ = − ⋅ ∇ + ρ − ∇χ∑ ∑v g  (8) 

where the average, suspension, density is ( )t i i F
i

1ρ = φ ρ + ρ − φ∑ , where φi=Vi⋅ci. 

   At equilibrium, or in an unrestricted medium, without gravity and solvation effects, Eq. (8) simplifies 

to the well-known equality47 
h

i i
i

0P zc y∇ + ⋅ ∇ =∑  (9) 

often applied in the study of forces in electrostatic double layer theory.  

   For the flow of the dispersed particles, we first implement Eq. (8) in Eq. (1), and making use again of 

∇Pt=∇Ph-∇Π, we obtain the following rather unwieldy equation, 

( ) ex
i F i i i i i i i i m F i i t i i

i i

lnD c z y V zc y c f V
  − = − ⋅ ∇ + ∇ − ∇Π + ⋅ ∇ + ∇χ + ⋅ − ρ − ρ + ∇µ + ∇χ  

  
∑ ∑v v v g . (10) 

   For mixtures of sedimenting non-colloidal (i.e., large) and uncharged particles without solvency and 

matrix effects (i.e., Π=0, z=0, χ=0, µex=0, fm=0), Eq. (10) then simplifies to31,39,44 

( )
2 *
i

i F i i t18
h

σ
− = ρ − ρ

µ
g

v v  (11) 

where σi is the particle size, g* the dimensional acceleration factor (=g⋅kT), and hi a hindrance factor, 

describing the reduction of particle mobility in dense suspensions, which for mixtures where all parti-

cles have the same velocity and size can be described by the Richardson-Zaki equation, hi=(1-φ)n-2, 
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with n=4.65 for laminar flow. To derive Eq. (11) we have made use of i i
i3

kT
D h=

πσ µ
. Eqs. (10) and (11) 

correctly show how for sedimentation (centrifugation), the effective driving force on a particle is the 

mass density difference of the particle, ρi, not with the pure fluid, ρF, but with the mass density of the 

suspension, ρt.
31,39,44 

   Next we consider the equilibrium sedimentation profile of a multi-component molecular or colloidal 

mixture in a centrifugal or gravity field (e.g., the earth’s atmosphere), i.e., all velocities are zero. Inter-

estingly, whether the space (fluid) in between the particles (molecules) is empty, or an incompressible 

fluid, does not matter when equilibrium is considered (but is very important for transport modeling). As 

Eqs. (3) and (5) show, at equilibrium, when the right-hand side of Eqs. (3) and (5) is zero, the osmotic 

pressure gradient ∇Π  exactly equals the hydrostatic pressure gradient hP∇  minus the fluid pressure 

gradient ρF⋅g,52 

h
FP∇ = ∇Π + ρ g . (12) 

   Because the hydrostatic pressure gradient must be equal to  

( )h
L i i t

i

1P∇ = ρ − φ + ρ φ = ρ∑g g g  (13) 

we can, in a multicomponent colloidal mixture, directly obtain the pressure gradient hP∇  from the 

measured density profiles φ1(h)…φn(h) as function of height h, and thus measure the osmotic pressure 

gradient, ∇Π , allowing to reconstruct the equation-of-state Π(φ1…φn). That the pressure gradient 

hP∇ must necessarily be given by Eq. 13 is in line with the above theory, as shown by inserting 

vi-vF=0, z=0, χ=0 and fm=0 in Eq. (10), multiplying by ci and adding up for all particle species, which 

leads to ( ) ( )i i t
i

1  − φ ∇Π = φ ρ − ρ∑ g  which can be combined with Eq. 12 to result in Eq. 13.  

   It is possible to theoretically predict the equilibrium density profiles for colloidal systems. E.g., for a 

one-component mixture of hard-sphere particles, we can use the Carnahan-Starling equation of state 

to describe the excess contribution to the potential, given by ( ) ( ) 3ex,CS 3 1 3
−µ = − φ ⋅ − φ −  and 

( ) ( ) 3CS 2 3
i 1 1V

−Π ⋅ = φ + φ + φ − φ ⋅ − φ (refs. 31,32,52) and obtain from Eq. (10) the equality       

( )ex
i i i i Fc c∇Π = ∇ + ∇µ = φ ρ − ρg , resulting in the implicit expression for concentration versus height 

given by 

( ) ( )
0

b,i3 3
0 0

33
ln

1 1

c
m h

c

− φ− φ+ − =
− φ − φ

g  (14) 

with c0 and φ0 conditions at h=0 (note, φ=c⋅Vi), and mb,i the particle mass relative to the fluid, 

mb,i=Vi⋅(ρi-ρF); note here that g<0 when the coordinate h points upward in earth’s gravity field. For low 

densities (when µex=0), Eq. (14) result in the classical barometric profile for density 

( )0 b,iexpc c m h= ⋅ g , and (osmotic) pressure ( ) ( )( )0 0 b,i1 exph c m hΠ − Π = ⋅ − g . 

   Next we will apply Eqs. (1)-(10) to two classical membrane problems where osmotic, electrostatic, 

hydrostatic and solvency-effects all play a role. We neglect volume effects of the dispersed particles 
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(i.e., Vi=0, µi
ex=0) and only discuss planar membranes and steady-state transport problems. We also 

neglect gravity. 

 

   Example I. Ultrafiltration: fluid and particle transport through a neutral membrane.  

   In this example, we consider a planar homogeneous membrane of thickness δ placed in between 

two bulk phases with unequal hydraulic pressure Pj
h,∞ and unequal concentration of a neutral particle 

(solute) cj
∞ (where j is “L” for the left compartment and “R” for the right compartment). The superscript 

“∞” stands for the bulk phase outside the membrane, while “m” describes concentrations and pres-

sures inside the membrane. We neglect the stagnant diffusion layers (Nernst layers, mass transfer 

films) on either side of the membrane. In steady state the flux of the solute, Ji=ci⋅vi, is constant across 

the membrane. We assume also that the fluid velocity vF is constant across the membrane, which re-

quires that the solute particles are without volume (and the membrane is everywhere equally open). 

Otherwise the gradients that develop in the solute concentration and the membrane density lead to a 

gradient in open pore space and thus -for the fluid flow rate to remain constant- this would lead to a 

gradient in fluid velocity vF. These effects are presently not included.  

   Eq. (1) can be applied to describe solute flow within the bulk of the membrane, as well as for the 

membrane edges where we assume that gradients are steep over a very thin layer. There we can as-

sume (quasi-)equilibrium which implies that the sum of forces in Eq. (1) adds up to zero, or equiva-

lently, that the total potential for the solute, µ, is constant across the membrane/solution-boundary. For 

a neutral membrane and neutral solute, this results in ( )m
j j/ expc c S∞ = −∆χ = , where ∆χ=χm-χ∞ , and S 

is the socalled sieving coefficient. Implementing this relation in Eq. (8) leads to 

( ) ( ) ( )( )h h
j j j exp - 0P c x P x c x∞∇ + ∇χ = ∇ − ∇ χ = ,  (15) 

which can be integrated across the interface, resulting in 

( )h,int h,int
j j j jexp - 1 1 0P c P c S∞ ∞ ∆ − ∆χ − = ∆ + − =     (16) 

where h,int h,m h,
j j jP P P ∞∆ = − . Thus, with ∆χ -the solvation energy increase for a particle to enter the 

membrane- positive, we have 0<S<1, i.e., the concentration of particles just within the membrane is 

lower than in the adjacent solution, which results in a decrease both in the osmotic and hydraulic pres-

sure upon entering the membrane (with the total pressure Pt remaining constant across the inter-

face).1,7,8,46 

   Within the membrane, χ is constant and we can integrate Eq. (1) across the membrane to obtain1,8,53 

( )
( )

m 1 m
L F i

i F 1
F i

exp ( )

exp 1

c v xD c x
J v

v xD

−

−

−
=

−
. (17) 

   Particle flux Ji follows explicitly when x=δ is inserted. Eq. (17) can be rewritten to an explicit expres-

sion for the particle concentration profile in the membrane53 

( )
( )( ) ( ) ( )

( )
1 1

L F i R L R F im

1
F i

exp exp

exp 1

c v D c c c v xD
c x S

v D

∞ − ∞ ∞ ∞ −

−

δ − − −
=

δ −
. (18) 
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   This solution of Eq. (1), i.e., the concentration profile due to the superposition of a diffuse Fickian flux 

on a convective contribution, was first given by Hertz.54 Eq. (18) predicts that when the fluid velocity 

goes to zero (vF→0), then, making use of exp(x)→1+x, the particle flux becomes Ji=S⋅Di/δ⋅(cL
∞-cR

∞), 

which is the classical expression for simple diffusion through a stagnant medium, with S the ‘solubility’, 

Di mobility, δ thickness, and the driving force being the linear concentration difference, ∆c∞. In this 

case the concentration profile also decays linearly (see the curve labelled vF⋅Di/δ=0 in Fig. 1a). Eqs. 

(17) and (18) show how flow of fluid modifies this simple behavior, even for the simple problem of 

steady-state diffusion through a stagnant matrix phase. 

   In Fig. 1 we show calculation results based on Eqs. (17) and (18) as function of the dimensionless 

group vF⋅Di/δ. As Fig. 1a shows, only for a zero fluid velocity is the classical linear decay of concentra-

tion observed, while positive fluid velocities ‘push’ the profile ‘outward’, and vice-versa for negative 

fluid velocities, similar to Fig. 10 in ref. 1, and Fig. 10 in ref. 53.  

   In Fig. 1b (related to Fig. 3 in ref. 55), the particle flux Ji is plotted versus fluid velocity vF and we ob-

serve how for a zero particle concentration in the right bulk the particle flux is always positive (directed 

to the right) irrespective of fluid velocity, and thus is oriented opposite to the fluid velocity for vF<0. The 

range of fluid velocities vF where particles and fluid move in opposite direction (i.e., where Ji is positive 

and vF negative) shrinks with increasing cR
∞, but disappears only when cR

∞=cL
∞.  

   Next we calculate vF which according to Eq. (8) is simply  

( ) 1 h,m
F mv f P

−= δ ⋅ ∆  (19) 

where h,m h,m h,m
L RP P P∆ = − ; i.e., in the membrane fluid flow is simply due to a hydraulic pressure gradi-

ent. But what about an osmotic effect influencing fluid flow? Interestingly, the osmotic effect follows 

from the solution/membrane boundaries where (when S<1) the hydraulic pressure in the membrane is 

decreased relative to outside, the more so at the side with the highest outside concentration, i.e., 

where cj
∞ is highest. Thus, (when S<1) different outside solute concentrations lead to a contribution to 

∆Pm that works to push fluid in the direction of the high-concentration side. Implementing the above 

derived equality, ( )h,int
j j 1P c S∞∆ = − − , across each interface, we arrive at 

( ) ( ){ }1 h,
F m 1v f P S

− ∞ ∞= δ ⋅ ∆ − − ∆Π  (20) 

where h, h, h,
L RP P P∞ ∞ ∞∆ = −  and L R L Rc c∞ ∞ ∞ ∞ ∞∆Π = Π − Π = −  and δ is membrane thickness. To have os-

motically driven flow of fluid (i.e., fluid flow to the concentrated solution phase, in the absence of a hy-

draulic pressure difference), Eq. (20) shows that S<1 is required, i.e., the concentration of dispersed 

particles in the membrane must be below that in the bulk phases outside the membrane.  

   Eq. (20) can also be found in literature discussing phenomenological approaches based on linear 

flux-force relationships55-61 for membrane transport, with the group 1-S replaced by the reflection coef-

ficient σ. The above analysis shows how the same relation also follows from Eqs. (1) and (5) and pro-

vides us with a clear physical definition of σ, namely being dependent only on an energy penalty for a 

particle to enter the membrane, independent on further process parameters, such as velocities, pres-

sures or concentrations. Instead, in the literature on phenomenological approaches to membrane 

transport, the description of σ is generally much more ambiguous, see e.g. ref. 57, pp. 59-66. More 
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generally, for problems of combined diffusion and convection, the phenomenological approach has 

been criticized for its significant deviation from models that describe transport microscopically, even for 

low driving forces, and even for the simple problem of Fickean diffusion combined with convective 

transport, i.e. the phenomenological approach does not agree with the Hertz equation, Eq. (17).3,7,62-67  
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Fig. 1. Transport of a single solute through a neutral membrane. Concentration profiles and fluxes in a 
membrane separating two bulk phases with different particle concentration as function of the parame-
ter vF⋅Di/δ (S=1, cL

∞=1). (a). Particle concentration in membrane (cR
∞=0). (b). Particle flux vs. fluid ve-

locity. 
 

   Example II. Osmotic flow across ion-exchange membrane.  

   In the second example we consider steady-state electro-osmotic flow through an an ion-exchange 

membrane. We consider a 1:1 salt solution on both sides of the membrane and allow access of both 

anions and cations into the membrane. We take equal diffusivities of both ions and assume absence 

of effects of solvation, gravitation or ion-volume (or other non-idealities), thus χ=0, g=0 and µex=0. The 

membrane has a concentration X of fixed charges (the ion-exchange capacity) with charge-sign ω 

(e.g., ω=-1 for a cation exchange membrane).68 Assuming local electroneutrality, at each position in 

the membrane we have c+-c-+ωX=0 thus ∇c+=∇c-, while zero net current implies J=J+=J-. Thus, we do 

not consider the case of electrodialysis where a net current flows through the membrane, but instead 

only consider situations where cation- and anion-fluxes are equal, such as for pressure-driven or os-

motically-driven flow. Driving forces considered are a difference in hydraulic pressure, osmotic pres-

sure differences (i.e., differences in salt concentration) and resulting electrostatic effects. 

   For these assumptions, Eq. (8) results in1,49,69 

h,m m
m FP f v X y∇ + ⋅ = ω ⋅ ∇  (21) 

while Eq. (2) simplifies for both ions to2 

( )i i F i i i iJ cv D c c z y= − ⋅ ∇ + ∇ . (22) 

   Assuming D=D+=D-, Eq. (22) results for concentration and potential across the membrane in 

F2v c c J
c c

D Dc c

+ −
+ −

+ −∇ = ∇ = −
+

, (23) 
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FvX
y

Dc c+ −

ω∇ = −
+

. (24) 

   Applied to the solution-membrane boundaries, Eq. (8) results in 

( ) ( ) ( )h
i i

i

0P x zc x y x∇ + ⋅ ∇ =∑ . (25) 

   Here we can implement the Boltzmann equilibrium, ci=ci,∞⋅exp(-zi⋅yi) resulting in 

( ) ( )( )h
j2 cosh 0P x c y x∞∇ − ⋅ ∇ =  (26) 

which we can integrate to 

( )( )h,int int m int
j j j j j j2 cosh 1 2P c y c c∞ ∞∆ = ⋅ ∆ − = − = ∆Π  (27) 

where int m
j j jy y y ∞∆ = − and m

jc is the total (position-dependent) ion concentration in the membrane 

( m
jc =cm,++cm,-), here evaluated at the two solution/membrane interfaces. Eq. (27) shows how  the os-

motic pressure difference across the interface equals the hydraulic pressure difference, and thus the 

total pressure Pt=Ph-Π remains invariant across the interface.2,7 The higher ion concentration in the 

ion-exchange membrane (relative to outside) leads to an increase in osmotic pressure across the in-

terface equal to the increase in hydraulic pressure. It is at the side of the membrane where the ion-

concentration outside the membrane is lowest, that the increase in hydraulic pressure is highest. Thus, 

osmotic effects across each membrane-solution interface lead to the development of a hydraulic pres-

sure gradient within the membrane, pushing fluid to the high-concentration side (i.e., osmosis is posi-

tive).1,7  

   With  

( )int
j j2 sinhX c y∞ω = ∆   (28) 

at each solution/membrane-interface, the pressure increase across the interface can also be calcu-

lated as1 

( )2h,int int 2
j j j j2 2P X c c∞ ∞∆ = ∆Π = + − , (29) 

i.e., is a direct function of outside ionic strength and membrane charge.  

   Assuming vF to be constant, as in Example I, we can integrate Eq. (21) across the interior coordinate 

of the membrane to obtain1 

( ) ( )1 h,m m
F mv f P X y

−= δ ∆ − ω ⋅ ∆  (30) 

where ∆ym=ym
L-y

m
R. Eq. (30) is an extension of Eq. (19) and shows that within the membrane hydro-

static and electrostatic effects drive the fluid, not osmotic effects.  

   In a practical calculation, we can subtract the pressure drops across both membrane interfaces from 

the total hydraulic pressure difference between the two bulk solutions, and obtain the internal mem-

brane hydraulic pressure drop, ∆Ph,m which must be used in Eq. (30). Across the membrane, Eq. (23) 

can be integrated (after implementing c+-c-+ωX=0) to obtain an analytical, but implicit, solution for con-

centration c vs. position x. However, inserting that result in Eq. (24) and integrating for potential y then 

proves impossible.  
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   Highly interestingly, Schlögl1,2 has obtained an exact, semi-analytical, solution for this problem, i.e., 

a solution for Eqs. (23) and (24), requiring two additional equations, as well as the two dummy vari-

ables r and s. Even more admirable is that his solution also includes the situation of unequal coion and 

counterion diffusion coefficients, and also includes a possible current through the membrane (non-

equal fluxes of cations and anions), i.e., the case of electrodialysis. Therefore, these equations by 

Schlögl1,2 are a very signficant extension of the classical semi-analytical models for ion-exchange 

membranes where the solvent (fluid) velocity is set to zero and pressure effects are not consid-

ered.56,57,70,71,72 Those theories are valid for normal osmosis and electrodialysis with the assumption of 

negligible fluid flow, and are therefore extended in Schlögl’s formalism to also consider reverse (pres-

sure driven) osmosis. Schlögl also describes how at both membrane edges we have jumps in concen-

tration and hydrostatic pressure. Schlögl’s work (which is in German) is not often mentioned in the 

english literature – some exceptions are the books by Helfferich73 and Lakshminarayanaiah.74 

   Following refs. 1 and 2, we can describe the steady-state transport of a mixture of cations and ani-

ons across a charged planar membrane by 

( ) ( )m m
m R R

m m
L L

ln ln
r U s s U rc rX c sX

y
r s r sc rX c sX

− ω − ω− −
∆ = −

− −− −
, (31) 

m m
F R R

m m
L L

1 1
ln ln

2

v c rX c sXr s
r s r sD D c rX c sX+ −

δ − − + = −  − −− − 
, (32) 

( )( )F 1
4

v X D
J r s

D

+
+

−

 ω
= − + ω − ω − 

 
, (33) 

( )( )F 1
4

v X D
J r s

D

−
−

+

 ω
= + ω + ω + 

 
, and (34) 

( ) ( ) ( ){ }
2

F 1
4

D D
I F J J Fv X U r s rs

D D

+ −
+ −

+ −

+
= ⋅ − = − ω − ω + + , (35) 

where r and s are related according to 

( )1 0U r s rs+ + + =  (36) 

and U is given by 

D D
U

D D

+ −

+ −

−=
+

. (37) 

   This set of 9 explicit equations (Eqs. 30-37) gives a full description for ion-exchange membrane 

transport with the 9 unknowns r, s, U, J+, J-, I, vF, ∆Ph,m and ∆ym. The two parameters ∆Ph,m and ∆ym 

are related to conditions outside the membrane using Eqs. 28 and 29, while the salt concentration, 

m
Rc , just within the membrane, at the edges, relate to outside concentrations according to 

( )2m 2
R j2c X c∞= + . In any membrane process, two of the six operational parameters J+, J-, I, vF, ∆Ph,m 

(or ∆Ph,∞) and ∆ym (or ∆y∞) are prescribed, e.g., zero current, I=0, and a certain value for ∆Ph,∞ are 

prescribed in a nanofiltration- or reverse osmosis-process. Eqs. 30-37 can thus be considered to be 

the semi-analytical solution to the problem of steady-state flow through an ion-exchange membrane 

that allows passage of both ions, as well as allowing for fluid flow, including osmotic, electrostatic and 
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pressure effects. This model is very broadly applicable and does not seem to be “extremely difficult to 

apply in practice” (ref. 57, p. 53). 

   In the case of zero current (I=0), and assuming also U=0 (equal ion diffusivities), thus r=-1/s, Eqs. 

31-37 simplify to  

m h,m
m R

F m
L

ln
f c rX Pr

v r
D X Xc rX

− ∆ δ − = −  − 
, (38) 

m h,m
m R

F m
L

ln
f c sX Ps

v s
D X Xc sX

− ∆ δ − = −  − 
, (39) 

( )1
F2J J J v X r s+ −= = = + . (40) 

   For the condition of I=0 and U=0, we compared Schlögl’s solution, Eqs. 30, 38-40, to the full numeri-

cal calculation based on Eqs. 23-30 and they gave exactly identical results.  

   Results from this model (for I=0 and U=0) are reported in Fig. 2 as full solid lines to be discussed 

below. Let us first discuss a simplified solution valid when the membrane charge density is much 

larger than the outside salt concentration (on both sides), X>>cj
∞. In this case we have 

cm,counterion ~ X >> cm,co-ion, which allows us to solve for the co-ion concentration in the membrane, 

cm,co-ion, as 

( ) ( ) ( ) ( ){ }1m,co-ion m,co-ion
F F L F2 2 exp 2 /c x v J v c J v x D

−= + −   ,   (41) 

and thus salt flux J is given by7 

( )
( )

( )( )
( )

m,co-ion m,co-ion
F L RR L F F

F L R
F F

sinh / ln /exp 2 / 2
2

1 exp 2 / sinh /

v D c cc c v D v
J v c c

v D X v D

∞ ∞

∞ ∞
δ +− δ

= =
− δ δ

   (42) 

where at the solution/membrane-interfaces use is made of ( )2co-ion,-
j j /c c X∞= , valid in this limit of a 

strongly charged ion-exchange membrane. To calculate vF, we make use of Eq. (30) which in this limit 

of a high membrane charge results in  

( ) ( )1 h, m
F mv f P X y

− ∞ ∞= δ ∆ − ∆Π − ω ⋅ ∆   (43) 

where ( )L R2 c c∞ ∞ ∞∆Π = − . Implementing Eq. (24), which for a highly charged ion exchange membrane 

is given by FD y v⋅ ∇ = −ω , we arrive at7 

h,

F
m /

P
v

f X D

∞ ∞∆ − ∆Π
δ =

+
, (44) 

describing how the fluid flow is driven by a hydrostatic pressure difference minus an osmotic contribu-

tion. These expressions are similar to those by Sonin (ref. 7) who also describes general z:z salts and 

unequal ion diffusivities. Eq. (44) shows that in this limit where the co-ion is blocked from the mem-

brane, the full osmotic driving force is effective (as if the reflection coefficient σ=1), which is not the 

case in the general case of finite values of the ratio of membrane charge X to outside salt concentra-

tion. Furthermore, Eq. (44) shows how in this limit of high ratios of X over c∞, the fluid flow is a direct 

function of two resistances which are placed in series, namely the fluid-membrane friction (described 

by the resistance factor fm), and the fluid-ion friction. This fluid-ion friction is due to friction of the fluid 
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with the almost stagnant counterions in the membrane, which have a negligible velocity because their 

concentration is much higher than that of the co-ion, namely by a factor (X/c∞)2. This ion-fluid friction is 

proportional to the concentration of counterions (which is ~X) and inversely proportional to the diffu-

sion coefficient of the co-ion through the fluid-filled pores. 

   In the limit of X/c∞ large and equal ion diffusivities, Eqs. (42) and (44) describe the full membrane 

problem for combined fluid and salt transport through an ion-exchange membrane, which can be com-

bined with analytical models for the concentration-polarization layers on both sides of the membrane 

and with mass balances in the bulk compartments. When we additionally assume high values for the 

fluid flow rate vF, we can replace in Eq. (42) the sinh-terms with exp-terms, resulting in 

( )2
F

L

2v
J c

X
∞=    (45) 

suggesting that under these conditions the salt flux becomes a linear function of fluid flow rate (which 

is in contrast to results of experiments reported in ref. 75 for NaCl transport in RO membranes). 

   Note that in a typical “dead-end” batchscale experiment there is no fixed concentration on the down-

stream-side (“R”) of the membrane, but instead Rc∞ is self-consistently determined by the salt and fluid 

fluxes through the membrane, i.e., R F/c J v∞ = .7,8,76 In such an experiment and for sufficiently high fluid 

flow rates vF, Eq. (44) then predicts for the effluent salt concentration the value 

( )2

R F L/ 2 /c J v c X∞ ∞= =  (46) 

independent of ion velocity and fluid flow rate. 

   Eq. (46) shows that to obtain a low effluent concentration, Rc∞ , high charge densities X are favorable, 

but at the same time, as Eq. (44) shows, it must be realized that with increasing X the resistance to 

fluid flow also increases. Eq. (46) can be rewritten to give the membrane retention R as 

R
L

L

1 1 2 /
c

R c X
c

∞
∞

∞= − = − , i.e., the retention decreases with increasing upstream ionic strength. This 

term, L2 /c X∞ , can be considered a limiting sieving coefficient.8 That retention is predicted to decrease 

with increasing upstream salt concentration is in agreement with experimental data reported in ref. 77 

(fig. 7) and ref. 78 (fig. 6) but not with those reported in ref. 79 (fig. 2).  

   In Fig. 2 we show results for the downstream salt concentration Rc∞ as function of the applied pres-

sure difference and membrane charge, for a reverse osmosis membrane placed in a dead-end batch 

cell. In such an experiment, Rc∞ will always be below the upstream concentration Lc∞ . In Fig. 2 we com-

pare full model calculations from Eqs. (30)-(40), with results of the analytical model given by Eqs. (42) 

and (44) (valid for high membrane charge X) and with the limiting expression, Eq. (46), valid in the limit 

of both high X and ∆Ph,∞. In Fig. 2a we see how with increasing pressure the effluent concentration 

first decreases and ultimately levels off when we arrive in the limiting regime where Eq. (46) well de-

scribes the downstream concentration. In Fig. 2b we observe how results of the analytical expres-

sions, Eqs. (42)-(46), are close to results of the full “Schlögl” model at sufficiently high X, but predict 

Rc∞ to increase to above Lc∞  at low X, which is unphysical and not predicted by the exact “Schlögl” 

model. This finalizes our brief discussion of Example II. 
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∆P h=15

 
Fig. 2. Salt retention using an ion-exchange membrane in a batch-cell experiment. Solid lines: full 
model predictions given by Eqs. (30)-(40); squares: analytical model given by Eqs. (42) and (44); 
dashed line: analytical solution given by Eq. (46). (a). Downstream salt concentration Rc∞  as function of 

applied pressure difference ∆Ph,∞ (X=8) and (b). as function of membrane charge X (∆Ph,∞=15). Pa-
rameter values for X, ∆Ph,∞ and the downstream salt concentration, Rc∞ , must be multiplied by the 

value of the upstream concentration, Lc∞ , to become dimensional (∆Ph,∞ must again be multiplied by 

RT to arrive at dimension J/m3=Pa; fm⋅D/ Lc∞ =0.1). 

 

   In conclusion, to simultaneously describe the transport of colloidal particles and the supporting fluid, 

including both the forces that act on the particles such as electrostatic field effects, and those that act 

on the fluid such as pressure, it is possible to implement a modified two-fluid equation - an approach 

which is very generally applicable to all kinds of processes in electrokinetics and membrane science. 

Though we have presented two example calculations for one-dimensional steady-state diffusion 

through a planar homogeneous membrane, the theory is equally well applicable to more complicated, 

e.g. dynamical, problems both in free solution and in porous media, taking also into account effects of 

solvation energy and particle volume.  
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