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Abstract: The cultivation of algae in photo-bioreactors shows similarities to crop cultivation in 
greenhouses, especially when the reactors are driven by sun light. Advanced methodologies for dynamic 
optimization and optimal control for greenhouses are known from earlier research. The aim here is to 
extend these methodologies to microalgae cultivated in a flat plate photo-bioreactor. A one-state space 
model for the algal biomass in the reactor is presented. The growth rate vs. light curve is parameterized 
on the basis of experimental evidence. Spatial distribution of light and growth rate between the plates is 
also considered. The control variable is the dilution rate. Dynamic optimal control trajectories are 
presented for various choices of goal function and external solar irradiation trajectories over a horizon of 
3 days. It was found that the algae present in the reactor at final time represent a value for the future. 
Numerical and theoretical results suggest that the control is bang-(singular-)bang, with a strong 
dependence on the weather. The optimal biomass also depends on the available light, and achieving it to 
reach a new optimal steady cycle after a prolonged change in weather may take several days. A 
preliminary theoretical analysis suggests a control law that maximizes the effective growth rate. The 
analysis shows that like in the greenhouse case, the co-state of the algal biomass plays a pivot role in 
developing on-line controllers. 

Keywords: Optimal control; Photo-bioreactor; Microalgae; Dynamic Optimization; State-space model; 
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1. INTRODUCTION 

Algal biomass production is receiving considerable attention 
because of the potential for the production of valuable 
chemicals for food supplements as well as lipids that can be a 
source of sustainable bio-fuels. Most studies on algae focus 
on the physiology of biomass and valuable substance 
production, and on the design of suitable bio-reactors 
(Barbosa et al. 2005; Bosma 2010; Cuaresma et al. 2009; 
Janssen et al. 2003; Richmond and Cheng-Wu 2001). The 
control aspects of photo-bioreactors (PBRs) have received 
much less attention, and focussed on pH control (Berenguel 
et al. 2004) or CO2 supply (Buehner et al. 2009) . 

Over the past years, considerable efforts have been devoted 
to the development of an optimal control strategy for crop 
production in greenhouses (van Straten et al., in press, 2010) 
This consists essentially out of two hierarchical steps: (i) 
dynamic optimization, to be performed with smooth, 
assumed nominal weather, and (ii)  on-line receding horizon 
optimal control. The dynamic optimization delivers a co-state 
trajectory of the biomass, which represents the marginal 
value of an extra unit of biomass at any time. It can 
subsequently be used to derive suitable on-line control laws. 
The approach requires (i) a dynamical state space model of 

the system, (ii) the formulation of an suitable (economic) 
goal function, (iii) the forecast of the external variables 
(weather), (iv) a suitable solution method.  

This paper explores the applicability of this methodology for 
control of a flat plate PBR. We first derive a model, 
formulate a goal function, and then solve the control problem 
for two sample light patterns over 3 days. Numerical results 
as well as a preliminary analysis are presented that shed light 
on the optimal control problem of the PBR. Finally, 
similarities and difference with the greenhouse case are 
briefly discussed, suggesting directions for further 
investigations. 

2. THE PBR BIOMASS MODEL 

This paper focuses on the biomass production. At this stage, 
the generation of the final chemical valuables, which 
constitutes a more elaborate control problem, is not yet 
explored. It is assumed that supply of CO2 and nutrients are 
non-limiting, and that surplus dissolved oxygen is removed 
with a rate that is sufficient to prevent growth inhibition.  
Temperature and pH are assumed to be ideally controlled at a 
level considered optimal for the algal type studied. The 
reactor consists of vertically placed transparent sheets in 



 
 

     

 

which the biomass broth is contained, ideally mixed by air 
flow agitation. The reactor receives time varying diffusive 
and direct sunlight on both sides. A light model is used to 
derive the photon flux towards the algae as a function of 
measured direct and diffuse sunlight. Light irradiance inside 
the reactor is attenuating towards the centre according to 
Lambert-Beer 

( ) ( )( )( , ) ( ) ( )t z t d z
o dI z t I t e I t eε ε− − −= +   (1) 

where ( )oI t  and ( )dI t  are the incident radiation through the 
vertical flat plates in mol[phot]s-1m-2 at time t at 0z =  and 
z d= , respectively, with d  the distance (in m) between the 
plates, and ε (t) the extinction coefficient (m-1),  given by the 
self-shading equation 

( ) ( )o Xt C tε ε α= +  (2) 

in which oε is the extinction coefficient of the cultivation 
medium (m-1), XC is the algal biomass (g[dw]m-3), and α the 
absorption coefficient (m2g-1[dw]). The dependency of the 
growth rate is modeled according to the Steele equation 
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where sI is the irradiance at which the growth rate is 
maximal. Define the effective growth rate (d-1) at temperature 
T as 

( )( )

[ ]{ }max
0 0

( ), ( ),

1 , , , ( ) ,

T o d X

d h

p X sp
z x

I t I t C t

f I x z t C t T dxdz
hd

µ

µ
= =

=

 
 (4) 

where x is the vertical dimension to height h  and z  the 
horizontal dimension to thickness d . Defining the 
maintenance rate (d-1) at temperature T as mTk , then the algal 
biomass dynamics is given by 

( )( ) ( ( ), ( ), ( )) ( ) ( )X
T o d X mT X

dC t I t I t C t k D t C t
dt

µ= − −  (5) 

where ( )D t is the dilution rate (m3[water]m3[rv]d-1; rv stands 
for reactor volume). Note that (4) integrates the growth rate 
over the horizontal optical path and over the height of the 
reactor. In this paper, for simplicity, the vertical light 
distribution (relevant for direct light and shading) is 
encapsulated in the calculation of a representative uniform 
irradiance at the surface. The simple one-state model (5) does 
not describe any adaptation of the parameters to prolonged 
light regimes. 

The model is parameterized on data from Bosma et al., 
(2007) for the alga Monodus subterraneus. In particular Fig. 
1 shows the behaviour of the Steele equation, viz. some data 
at the optimal temperature 23.5 oC, and the polynomial curve 
presented by Bosma. The parameter values used in all 
calculations are 0.02d = m, max 0.9Tµ = d-1, 0.1mTk = d-1, 

350sI =  mol[phot]s-1m-2, 2oε = m-1, 0.15α = m2g-1[dw]. It 
is nice to note that the saturation light value coincides with 

values derived from production experiments for ‘warm’ algae 
in Lake Balaton (van Straten and Herodek, 1982). 
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Fig. 1. Parameterization of the Steele function (solid line), 
compared to data (‘o’) and polynomial approximation. 

3. THE OPTIMAL CONTROL PROBLEM 

By defining the state Xx C= , control input u D= , external 
inputs [ , ]T

o dv I I= , and the parameters p as above, (5) can 
be written in standard state space form 

( , , , )x f x u v p=  (6) 

with f given by obvious substitutions in the right hand side 
of (5). A possible goal for the operation of the PBR is to 
maximize volumetric productivity, which leads to the goal 
function 

f

o

t

X
t

J DC dt=   (7) 

or 

( , )
f

o

t

t

J L x u dt=   with L ux=  (8) 

 The optimal control problem is to find the optimal control 
trajectory * ( )u t  that maximizes J  subject to the control 
constraint,  

0 ( ) 2u t≤ ≤  (9) 
determined by the maximum dilution rate (set at 2 d-1 here). 
The computation of the trajectory requires the specification 
of a nominal light trajectory. Case A is a repetitive three day 
pattern, shown in the graphs below, and case B assumes that 
the irradiance on the second day is only half of standard. 

4. RESULTS 

Numerical calculations were done in Matlab with the 
tomlab/propt toolbox (Tomlab Optimization AB, Västerås, 
Sweden). All trajectories are approximated by polynomials 



 
 

     

 

with a collocation method, which turns the problem into a 
standard NLP optimization. 

4.1 No final constraint 

Figure 2 shows the external inputs (sum of light on both 
sides), the optimal control trajectory, and the associated 
biomass pattern. The goal function value J  in gm-3[rv] over 
3 days is presented in the figure title bar. It is clear that 
without restrictions on the minimum algae biomass, it is 
optimal to harvest all algae still present in the reactor near the 
final time. The time the draining starts depends upon the 
control constraint (not shown). Clearly, in a continuous 
cultivation this is not what we want, as in this way there is no 
biomass left to produce in the days to come (of which the 
optimization has no knowledge). In order to avoid this 
behaviour it is conceivable to attach a value to the remaining 
algal concentration at final time, which can be seen as an 
investment to the future. This reminds to the situation in 
greenhouses, where leaves represent a value to ensure future 
production.

 

Fig. 2. Optimal control with free final state. Left scale: Total 
incident irradiation (In mol[phot]s-1m2), biomass (CX gm-3), 
right scale: dilution rate (control signal, D d-1). 

4.2 Steady cycle 

One option is to assign a soft penalty to deviations of the 
final state of a fixed target value. The disadvantage is that the 
proper choice of the fixed value is not known. In order to 
remedy the situation, here the choice was made to enhance  
the problem with an additional final constraint 

( ) ( )f ox t x t=  (10) 

This creates a steady cycle of biomass. First, Table 1 shows 
how the optimal goal function depends upon the initial (and 
hence, final) condition itself. The optimal volumetric biomass 
yield (goal function) and the overall photon yield (g          
mol-1[phot]) are given as function of the biomass. The photon 
yield was computed by dividing the harvested biomass by the 
light sum absorbed between the plates. The generation of this 

table required several optimizations with every time a new 
initial/final state. It can be seen that it is not optimal to 
maximize the biomass. In fact, the biomass needs to be 
balanced for the prevailing light in such a way that the 
effective growth rate Tµ , taken over the entire day, is as high 
as possible. The range over which the biomass can vary 
without much difference is quite large. However, it was 
observed that the optimal dilution rate pattern changes from 
harvesting only at the first day when the initial and final 
biomass are set at a high value, and harvesting only at the last 
day at a low value (not shown). Harvest is performed every 
day only when the biomass is approximately at its optimum 
(see also Fig. 3 below).  

Next, the optimization was allowed to optimize the initial 
biomass itself, leading to the result shown in the table with an 
asterix, and with the control pattern in Fig. 3.  It can be seen 
that the optimal solution is bang-bang (see section 5). 
Pumping starts at the end of the day, before sunset, and stops 
when it gets dark, or slightly after. 

 

Table 1. Volumetric production and quantum yield for a 
steady 3 day cycle, with fixed initial and final biomass 

Biomass  
CX (gm-3) 

Production 
J (gm-3[rv]) 

Photon Yield 
Y(g mol-1[phot]) 

500 685 0.189 

1000 846 0.214 

1250 856 0.215 

1261* 856* 0.215* 

1500 851 0.213 

2000 811 0.202 

2500 706 0.174 

 

Fig. 3. Optimal control with steady cycle. Left scale: Total 
incident irradiation (In mol[phot]s-1m2), biomass (CX gm-3), 
right scale: dilution rate (control signal, D d-1). 



 
 

     

 

Next, the optimal pumping trajectory was applied to a 
situation where the initial concentration was not optimal. By 
repeating the calculation starting with the final value from the 
previous 3 days, a steady cycle was iteratively found. 
Depending upon the discrepancy between initial biomass and 
optimal biomass, this can take 10-20 days or more. This 
suggests that in an on-line situation, after a spell of dull days, 
thoughtless application of a canned pumping regime might 
result in production loss for quite some time. System (5) has 
time varying time constants. At zero pumping the time 
constant is in the order of 1 d. On the other hand, lowering 
the biomass can be done with time constants that can be 
chosen almost at will, as the pumping rate is, theoretically, 
free to choose. This means that in the reverse situation, where 
bright days are followed by dull days, the biomass can be 
lowered quickly. This heuristic argument suggests that it is 
imperative to adjust the pumping regime to the light 
conditions. 

4.3 Variable weather 

The optimal pumping regime under variable weather is 
shown in Fig. 4. The optimization adapts the dilution rate to 
the prevailing conditions, and no pumping occurs on the 
second day. The optimal volumetric production is with 716 
gm3[rv] over 3 days obviously lower than with the weather of 
case A, but the quantum yield appeared to be slightly better 
(0.22 g mol-1[phot]). 

 

 

Fig. 4. Optimal control with steady cycle in response to dull 
day 2. Left scale: Total incident irradiation (In mol[phot]s-

1m2), biomass (CX gm-3), right scale: dilution rate (control 
signal, D d-1). 

5. THEORETICAL CONSIDERATIONS 

The dynamic optimizations performed in the previous section 
give insight into the problem, but require full knowledge over 
the complete horizon, which is not really available on-line. 
One possibility is to use on-line a receding horizon controller, 

using the same goal function, and making model predictions 
based on weather forecasts. It is, however, necessary to 
consider the ‘end effect’ observed above. Further work is 
needed to see how a value can be attached to algae left in the 
reactor at final time. The greenhouse experience suggests that 
the co-state that appears in the theory of dynamic optimal 
control can play a major role. 

To shed some light on this, here a preliminary analysis is 
made. With the model equations (5), (6), and the goal 
function equations (7), (8), and assuming no final constraint, 
it can be shown that one of the necessary conditions for 
optimality amounts to 

, ( ) 0X fF u tλ λ λ− = + =  (11) 

where λ is the co-state associated to the biomass, and where 

( )( , , ) T
X T o d X mT

X

dfF I I C k D
x dC

µ
µ

∂
= = − −
∂

 (12) 

This term can be determined at any time from the prevailing 
biomass, and the measured external disturbances. The other 
condition follows from setting the derivative of the 
Hamiltonian to u equal to zero, and appears to be 

0 x xλ= − +  (13) 
The latter condition is not a function of u which implies that 
the solution is bang-singular-bang. However,  (13) is 
intriguing since it suggests that 1λ =  for all times except final 
time. This makes sense as it means that the marginal value of 
a unit of biomass is constant over time (and independent on 
the weather). However, at final time, because of (11), the co-
state must be zero, and this can only be not in conflict with 
(13) if ( ) 0fx t = . Hence, in the unconstraint situation, at final 
time the remaining algae will be harvested at infinite rate, to 
make the biomass zero. All this applies only when there are 
no constraints on the control. If no constraints are hit (11) 
leads to an interesting control law that takes the form 

XF u= −  (14) 
and that can be worked out to 

( )1 ( , , )
1

T o d X mT
T

X

D I I C kd
dC

µ
µ

= −
+

 (15) 

This is a control law that could be applied on line, as with 
help of the model, and measured values of light intensity and 
optical density as measure of biomass, all values can be 
computed. In this way, (15) is a kind of self-optimizing 
controller. It has an appealing interpretation. When the 
biomass density causes the spatial mean growth rate to be to 
the left of the maximum of the growth rate – biomass curve, 
i.e. where / 0T Xd dCµ > , the optimal dilution rate is lower 
than the net growth rate, leading to biomass increase, whereas 
to the right the dilution rate will be higher, bringing the 
biomass down. Hence, this control law would automatically 
adjust the biomass to a more appropriate value, which will 
vary dynamically, depending on the light.  



 
 

     

 

Further investigations are needed to expand the theory to the 
situation with a lower bound on D . With ( )u t ≥ 0, the 
necessary conditions must be expanded with an additional 
term caused by the constraint. It also involves and additional 
co-state (Stengel, 1994). These expanded conditions only 
apply when the constraint is on the bound, while (11) still 
applies when the control is off the lower bound. 
Transversality conditions are needed to link the off bound 
and on bound situations, and also the switching instants need 
to be found. This is the subject of further studies. 

6. COMPARISON WITH THE GREENHOUSE 

The common factor between the greenhouse cultivation 
control and solar driven PBR control is the wish to exploit 
the opportunities of the external signals as much as possible. 
The optimal control methodology is a powerful framework to 
assist in finding the best solutions. Quick and automatic 
adaptation to changes in economic parameters and goals is 
one of the major advantages of the methodology. In both the 
greenhouse as well as the PBR quite a number of on-line 
measurements are available. Also, in both cases, there is no 
easy direct measurement of the photosynthetic rate, which 
makes it necessary to use other data plus the model to 
optimize the plant’s operation.  

There are also differences. Whereas in the greenhouse time-
scale decomposition is possible, this is not relevant in the 
algal plant; conversely, the PBR shows widely time varying 
time constants. The situation will be more involved when 
also the production of valuable chemicals by stressing the 
algae is taken into account. And, in addition, the other control 
aspects like temperature control, pH control, CO2 supply and 
oxygen removal will also have to be taken into account. 

Part of the power of the optimal control methodology is the 
consideration of co-states, that measure the sensitivity of the 
optimal solution to state variations (Stengel, 1994). This 
information is useful for the design of optimal on-line 
controllers. 

7. CONCLUSIONS 

The dynamic optimal control of the PBR appears to be bang-
singular-bang. No switching rules have been derived yet that 
could guide on-line feed-back decisions on timing of 
pumping, but a receding horizon control should be no 
problem. The preliminary co-state analysis suggests that 
maximizing effective growth rate (thus realising maximum 
photon yield) in an on-line fashion might also be a good 
policy. In order to cope with inevitable variations in dynamic 
behaviour of the algae, this will require a model based 
observer to construct the actual growth rate from available 
measurements, such as acid needed for pH control, the 
oxygen production rate, and the optical density. Maximizing 
biomass concentration is not the best policy to maximize 
volumetric yield. It need to be said, however, that for reasons 
of downstream processing maximizing the biomass 
concentration can bring cost savings. Also pumping costs and 
nutrient costs may be relevant in some cases. The power of 
optimal control is that it is easy to adapt the goal function to 

include these and similar factors that influence the overall 
economic performance. It then leads immediately and 
automatically to a new optimal control. 
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