Non-thermal production of pure hydrogen from biomass

EU FP6-SES Integrated Project HYVOLUTION

Pieternel Claassen on behalf of partners in HYVOLUTION: www.hyvolution.nl

Partners in HYVOLUTION

Aim:

Blue print for a bioprocess for decentral hydrogen production from biomass

22 partners
13 countries
Jan 2006 – Dec 2010
14 M€ budget
10 M€ EC grant
www.hyvolution.nl

- -Maximum efficiency in conversion of biomass to hydrogen
- -Reactors for thermophilic and photo-heterotrophic hydrogen production

- -Increase of public awareness and societal acceptance
- -Identification of market opportunities and future stakeholders

The core of HYVOLUTION

$$C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 12H_2$$

$$\Delta G_o' = +3 kJ$$

$$C_6H_{12}O_6 + 2H_2O \longrightarrow 2CO_2 + 2CH_3COOH + 4H_2$$
(hyper)thermophilic bacteria

photons

$$\Delta G_{o}' = -206 \text{ kJ}$$

$$CH_3COOH + 2H_2O \longrightarrow 2CO_2 + 4H_2$$

photosynthetic bacteria

$$\Delta G_o' = +104 \text{ kJ}$$

Advantages of thermophilic fermentation

- Equilibrium towards hydrogen production
- High yield as compared to mesophilic fermentation
- Natural selection pressure
- Decrease of size for subsequent photofermentation

Caldicellulosiruptor sp., Thermotoga sp., co-cultures and new isolates.

WP 1 BIOMASS; some highlights

Agro-industrial residues and energy crops Biomass critical parameters:

- Composition
- Regional availability in EU-27
- Cost
- Sustainability
- Co-products utilization

- Socio-economic desk studies
- Experimental practices

Biomass mapping

Biomass selection

Selected biomass for HYVOLUTION:

Sugar beet: sucrose

Potato steam peels: starch

Wheat bran: starch and lignocellulose

Barley straw: lignocellulose

Biomass pretreatment

High solids, conical screw reactor

Experimental parameters:

- -acid/ alkaline
- -temperature(s)
- -duration
- -enzymes

Fermentability test: production of acids

Caldicellulosiruptor saccharolyticus

Caldicellulosiruptor owensensis

Thermotoga neapolitana

WP 4 GAS UPGRADING; some highlights

- Gas upgrading critical parameters
 - Low concentrations and quantities of hydrogen:
 60 kg H₂ /h (2 MW_{th})
 - Fluctuating concentrations
 - Energy demand
 - Sustainability
 - Security and risk analysis
 - Process control

Membrane contactor separation

Active,
dense membrane
(0.5 mm);
Driving force; selective
absorption

Advantages of MC separation:

- No loss of liquid carrier
- Compression of gas not required
- Low energy demand
- Flexible in application
- Recirculation possible

Membrane contactor prototype

 CO_2 removal at T=293 K. Influent gas is He=87%, CO_2 =13%(v/v) at flow rate 200 mL/min.

Energy demand for gas upgrading

Gas analysis

- Use of electrochemical H₂-sensors (measuring range: 0-5%; ~ € 500 / sensor);
- Inclusion of state-of-the-art sensors (CO₂, CH₄, O₂, H₂S) in separate channels
- Development and construction of a dilution device

Hydrogen sensor

Automated dilution device

Blue print for a 2 MW HYVOLUTION plant

Future scenario's and state of the art

	Scenario's		Current HYVOLUTION data	
	Base case	Longterm case: >2030		
Thermophilic fermentation	Glucose	Biomass	Biomass ¹	Biomass ²
Substrate (g glucose /L)	13	40	7.5	10
Yield (% of maximum)	67	85	88	60
Productivity (mmol H ₂ /L.h)	5.4	53	29	17
Stripping	CO ₂	-	~N ₂	N ₂
Photofermentation	Acetate	DFE	DFE ³	DFE ⁴
Substrate (mM acetate)	40	120	40	40
Yield (% of maximum)	50	85	67	34 - 45
Productivity (mmol H ₂ /L.h)	0.33	3.3	1.5	0.3 - 0.5

¹: CFTB Thick juice; ²: CSTR Molasses; ³: Hup- mutant; ⁴: Wild type

Future hydrogen production costs

Cost breakdown into process steps.

	Base case	Long term case
	Cost (€/kg)	Cost(€/kg)
Raw material (PSP)	1.19	0.70
Pretreatment	1.74	1.23
Thermophilic fermentation	6.07	1.47
Photofermentation	8.78	1.37
Gas up-grading	2.15	1.37
Total production cost	19.93	6.14

Critical parameters from cost-point of view:

-raw material and pretreatment lignocellulosics

-thermophilic fermentation substrate concentration and yield

-photofermentation productivity

-gas upgrading energy demand

HYVOLUTION presentations

