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Introduction

Defence mechanism against pathogens and parasitdsecdivided into two: resistance and

tolerance. Disease resistance is the host trditpitesvents infection or reduces performance
of the enemy on a host, both factors reducing ggthdurden within an individual. Disease

tolerance is the ability of the host to limit thegact of a given pathogen burden on host
performance (Simms (2000)). In animal science frémlee is often termed 'resilience' (Bisset
and Morris (1996)). A great deal is known aboutgkeetics of resistance but there is a lack
of work on disease tolerance (Raberg et al. (2083hneider and Ayres (2008)).

Tolerance needs to be defined as a change in leofirmance in response to increasing
pathogen burden to ensure that there is a causdiorebetween the two (Simms (2000);
figure 1). Thus, measuring tolerance follows thethodology of reaction norm analysis.
Genetic variance in tolerance can be estimateteagdnetic variance in regression slope of
host performance along a gradient of increasin@pquan burden. Furthermore, a genetic
cost of tolerance can be measured as a genetielation between tolerance slope and host
performance in a pathogen-free environment (ilee, t

© G3 intercept). A genetic trade-off occurs if a toldran
£ genotype has low fitness in a pathogen-free enwret

§ . - (NUfiz-Farfan et al. (2007)). Contrary to reactiasrm

g T —— analysis, analysing tolerance as host performahaage

g Gl wrrmrmemeenns from before to after pathogen attack confounds both
t natural temporal variation in host performance .(e.g

growth curves) and impact of pathogen burden on the
host.
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Figure 1: Reaction norms of host performance for thee genotypes along a pathogen
burden gradient. Flat slope means high tolerance (§, and steep slope low tolerance
(G3). Note that neither 'average host performanceslvel' nor a trait calculated as
‘performance divided by pathogen burden' reflects he level tolerance

Using a simulation, | assessed the potential ofyairay tolerance using random regressions,
when a host population is under a natural enenaclattMany animal breeding data sets
include data on natural exposure to diseases asj@as. Random regressions have not been
applied for tolerance analysis before. Two chaleentp be encountered when analyzing data
were considered. Firstly, the genetic analysisotdrance uses in particular within-family
information (fullsibs and halfsibs, and more disteeiatives) to estimate the tolerance slope.
Thus, family size is a crucial parameter influegcestimation accuracy. Secondly, under
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natural infection, pathogen burden (i.e. resistansetypically non-randomly distributed
across individuals. When pathogen burden and refvmnance before infection are initially
correlated, biased estimates for tolerance variatan be potentially obtained. The degree of
bias and precision in estimates of genetic (coswae for slope and intercept were evaluated
in alternative scenarios.

Material and methods

Simulation of data. Full-sib data were simulated. The parental pomiatonsisted of 200
unrelated animals, 100 males and 100 females, wutithioenotypes. Without a loss of
generalization, genetic variance here refers tesfhlfamily variance. In offspring
population, phenotypic values of pathogen burd¥ui(den;), tolerance slopeby;), and
intercept By) of an individuali were simulated as the sum of genetic and envirotahe
effects randomly sampled from a multitrait disttibn. A genetic value of an individual was
simulated as the average of parents breeding vplussa Mendelian sampling term (equal
to half genetic variance). Genetic and environmeaffacts were randomly sampled from
~N(4,0.3) and ~N(4,0.7) for pathogen burden, fra{100,120) and ~N(100,280) for
intercept, and from ~N(0,9) and ~N(0,21) for totera slope. Thus, simulatédwas 0.3 for
all three traits. In the base scenario, covariabedseen pathogen burden, slope and
intercept were simulated to be zero. A phenotypite §) of host performance of an
individuali at its own pathogen burden phenotype level wasutated asy; = by + by
Pburden.

The simulated values result in phenotypic coeffitiaf variation CVp) of 20% and
heritability of 0.3 for host performance in a pajba-free environment. This represents a
normal growth trait. The simulated values resul€ifp of 30% for host performance under
pathogen burden, ard for host performance remains constant 0.3 alongsite burden
gradient.

Alternative scenarios studied Firstly, to assess the effect of sample size, lfagize was

set to either 10, 30, 50, 100, or 200. Secondlgstess the effect of non-zero environmental
correlation (g) between intercept and pathogen burdemyas simulated to be either -0.5,
-0.3, 0, 0.3, or 0.5, and family size was fixed @®. The simulation was repeated 500 times
for each alternative scenario.

Genetic analysis of simulated dataTolerance is the slope of host performance when
regressed against individuals' own pathogen buptiemotype (Simms (2000)). Thus, data
on individual's pathogen burden and its performaradee at that burden were used. Data
points for intercept were not utilized and thusteadlividual had only one host performance
observation. A full-sib random regression modehgshSReml software was applied; ¥ u

+ by + by Pburden; + ¢; [1], where y is host performance of an individudrom familyj at

its parasite burdem, is the population meaby; is the random genetic effect of intercept for
a familyj, by is the random genetic effect of regression slope ffamilyj, Pburden; is
pathogen burden of an individudior family j, ande; is the random error term.
Heterogeneous error variance was modelled withielsisses along the x-axis. When non-
zero environment correlation between interceptattiogen burden was simulated, an
additional genetic model was used in which the rhfidevas upgraded with a covariate of



phenotypic values of host performance in a pathdgsmenvironment. Estimated genetic
variance was calculated as two times the full-aibify variance.

Results and discussion

Effect of family size on genetic variance estimatekow family size resulted in increased,

not decreased, estimates for tolerance genetianagi(table 1). For instance, with family

size of 10, the estimated genetic variance foreshwps 2.0 times higher than the simulated
value. To obtain unbiased estimates for toleraraetic variance, family sizes of 100 were
needed (table 1). The intercept showed a patterifesito the slope (table 1).

The tolerance slope is estimated within each faraiy thus family size is a crucial
parameter influencing estimation accuracy. Withrdasing family size, it is increasingly
difficult to accurately estimate the true slope.afita small number of individuals is sampled
for each family, the sample no longer is repredengteof the true distribution and single
observations have strong impact on the slope esinféeor some families the slope is
underestimated, for others overestimated, and ganetic variance estimate for slope is
artificially increased. This result is similar ta@by Knap and Su (2008).

Table 1; Estimated genetic parametersH{s.d.) for a scenario with varied family size

Family size
Parameter  Simulated 10 30 50 100 200
estimated value Estimated values
SlopeVg 9.0 174179 11.57.80 10.25.57 9.223.79 9.132.47
InterceptVs 120 228t247 148t110 13@83.3 11450.7 12@34.4
I'siope-intercept 0.0 -0.51+0.47 0.06t0.60 0.040.53 0.0&0.42 0.030.22

Vg: Genetic variance;(Slope-Intercept): Genetic correlation betweenelapd intercept.

Table 2: Genetic parameters£ s.d.) for a scenario with varied environmental
correlation (rg) between slope and intercept, estimated with a gtatical model either
including or excluding host performance in a pathogn-free environment as a covariate

e
Parameter Simulatec -0.5 -0.3 0 0.3 0.5
estimated value Estimated values
Statistical model without the covariate
SlopeVg 9.0 140+12.2 56.#8.35 9.4@3.59 57.27.97 142117
InterceptvVs 120 905+245 409127 112516 413121 921251
I'siope-intercept 0.0 -0.89t0.03 -0.7&0.07 0.020.41 -0.7&0.06 -0.820.03
Statistical model with the covariate
SlopeVg 9.0 9.35:1.93 9.321.66 9.481.78 9.331.82 9.441.82

Vs: Genetic variance;(Slope-Intercept): Genetic correlation betweenelapd intercept.

Environmental correlation between pathogen burden ad host performance.With non-
zero environmental correlation between pathogemdiurand intercept either the initially
smallest (negativeg) or biggest (positiveg) of each family are more prone to diseases.
Whenrg was changed to be either negative or positiveetiewariance for tolerance slope



increased symmetrically (table 2). For example, whevironment correlation was -0.5 (or
0.5), the estimated genetic variance for slope a6 times higher than the simulated value.
This occurs because pathogen burden is non-randdistiybuted within a family, and part
of initial variation in host performance is transih to tolerance variation. Yet, genetic
variance of slope was estimated without bias whest Iperformance in pathogen-free
environment was included as a covariate in theisfital model (table 2). It is well
established that individuals with initially differeproduction or life-history trait levels are
differently exposed to diseases, parasites anduptimh diseases. Consequently, it is
expected that individuals with initially differergrowth and life-history traits receive
differential pathogen burden, confounding the cearsd-effect relation between pathogen
burden and reduction in host performance. In fidita, this issue can be reduced by
including initial host performance as a covariatdhe statistical model. This is convenient
for traits that can be repeatedly recorded fromstme animals.

Cost of tolerance.In the above scenarios, zero genetic correlatietvden intercept and
slope was simulated, i.e. no genetic trade-off assumed between the two. A decrease in
family size lead to strongly negative genetic clatien between slope and intercept (table
1). When slopeh? of 0.05 was simulated, negative genetic corrafati@s obtained with
family sizes of 10-50. Similarly, with increasing decreasing environmental correlation
between pathogen burden and performance in patHogenenvironment, the genetic
correlation between slope and intercept becamelhhigbgative (table 2). The negative
correlation occurs because when the slope for dyfasnoverestimated, the intercept for the
family will go down (and vice versa). The resuligply that the analysis may falsely indicate
the presence of a genetic trade-off (i.e., cosvlefance).

Conclusion

Random regressions provide powerful means for amajydisease tolerance genetics. Yet,
analysing tolerance genetics from field data seta challenge. A care should be taken to
assess potential for bias due to small sample @&k correlations between initial host
performance and pathogen burden. Separating neséstand tolerance is a challenge but
possible using the approach presented here.
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