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Introduction 
Defence mechanism against pathogens and parasites can be divided into two: resistance and 
tolerance. Disease resistance is the host trait that prevents infection or reduces performance 
of the enemy on a host, both factors reducing pathogen burden within an individual. Disease 
tolerance is the ability of the host to limit the impact of a given pathogen burden on host 
performance (Simms (2000)). In animal science, tolerance is often termed 'resilience' (Bisset 
and Morris (1996)). A great deal is known about the genetics of resistance but there is a lack 
of work on disease tolerance (Råberg et al. (2007); Schneider and Ayres (2008)). 
 
Tolerance needs to be defined as a change in host performance in response to increasing 
pathogen burden to ensure that there is a causal relation between the two (Simms (2000); 
figure 1). Thus, measuring tolerance follows the methodology of reaction norm analysis. 
Genetic variance in tolerance can be estimated as the genetic variance in regression slope of 
host performance along a gradient of increasing pathogen burden. Furthermore, a genetic 
cost of tolerance can be measured as a genetic correlation between tolerance slope and host 

performance in a pathogen-free environment (i.e., the 
intercept). A genetic trade-off occurs if a tolerant 
genotype has low fitness in a pathogen-free environment 
(Núñz-Farfán et al. (2007)). Contrary to reaction norm 
analysis, analysing tolerance as host performance change 
from before to after pathogen attack confounds both 
natural temporal variation in host performance (e.g. 
growth curves) and impact of pathogen burden on the 
host.  
 

Figure 1: Reaction norms of host performance for three genotypes along a pathogen 
burden gradient. Flat slope means high tolerance (G1), and steep slope low tolerance 
(G3). Note that neither 'average host performance level' nor a trait calculated as 
'performance divided by pathogen burden' reflects the level tolerance 
 
Using a simulation, I assessed the potential of analysing tolerance using random regressions, 
when a host population is under a natural enemy attack. Many animal breeding data sets 
include data on natural exposure to diseases or parasites. Random regressions have not been 
applied for tolerance analysis before. Two challenges to be encountered when analyzing data 
were considered. Firstly, the genetic analysis of tolerance uses in particular within-family 
information (fullsibs and halfsibs, and more distant relatives) to estimate the tolerance slope. 
Thus, family size is a crucial parameter influencing estimation accuracy. Secondly, under 
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natural infection, pathogen burden (i.e. resistance) is typically non-randomly distributed 
across individuals. When pathogen burden and host performance before infection are initially 
correlated, biased estimates for tolerance variation can be potentially obtained. The degree of 
bias and precision in estimates of genetic (co)variance for slope and intercept were evaluated 
in alternative scenarios. 

Material and methods 
Simulation of data. Full-sib data were simulated. The parental population consisted of 200 
unrelated animals, 100 males and 100 females, without phenotypes. Without a loss of 
generalization, genetic variance here refers to full-sib family variance. In offspring 
population, phenotypic values of pathogen burden (Pburdeni), tolerance slope (b1i), and 
intercept (b0i) of an individual i were simulated as the sum of genetic and environmental 
effects randomly sampled from a multitrait distribution. A genetic value of an individual was 
simulated as the average of parents breeding values plus a Mendelian sampling term (equal 
to half genetic variance). Genetic and environmental effects were randomly sampled from 
~N(4,0.3) and ~N(4,0.7) for pathogen burden, from ~N(100,120) and ~N(100,280) for 
intercept, and from ~N(0,9) and ~N(0,21) for tolerance slope. Thus, simulated h2 was 0.3 for 
all three traits. In the base scenario, covariances between pathogen burden, slope and 
intercept were simulated to be zero. A phenotypic value (y) of host performance of an 
individual i at its own pathogen burden phenotype level was calculated as: yi = b0i + b1i 
Pburdeni. 
 
The simulated values result in phenotypic coefficient of variation (CVP) of 20% and 
heritability of 0.3 for host performance in a pathogen-free environment. This represents a 
normal growth trait. The simulated values result in CVP of 30% for host performance under 
pathogen burden, and h2 for host performance remains constant 0.3 along parasite burden 
gradient. 
 
Alternative scenarios studied. Firstly, to assess the effect of sample size, family size was 
set to either 10, 30, 50, 100, or 200. Secondly, to assess the effect of non-zero environmental 
correlation (rE) between intercept and pathogen burden, rE was simulated to be either -0.5,  
-0.3, 0, 0.3, or 0.5, and family size was fixed to 100. The simulation was repeated 500 times 
for each alternative scenario. 
 
Genetic analysis of simulated data. Tolerance is the slope of host performance when 
regressed against individuals' own pathogen burden phenotype (Simms (2000)). Thus, data 
on individual's pathogen burden and its performance value at that burden were used. Data 
points for intercept were not utilized and thus each individual had only one host performance 
observation. A full-sib random regression model using ASReml software was applied: yij = µ 
+ b0j + b1j Pburdenij + εij [1], where yij is host performance of an individual i from family j at 
its parasite burden, µ is the population mean, b0j is the random genetic effect of intercept for 
a family j, b1j is the random genetic effect of regression slope for a family j, Pburdenij is 
pathogen burden of an individual i for family j, and εij is the random error term. 
Heterogeneous error variance was modelled within six classes along the x-axis. When non-
zero environment correlation between intercept and pathogen burden was simulated, an 
additional genetic model was used in which the model [1] was upgraded with a covariate of 



phenotypic values of host performance in a pathogen-free environment. Estimated genetic 
variance was calculated as two times the full-sib family variance. 

Results and discussion 
Effect of family size on genetic variance estimates. Low family size resulted in increased, 
not decreased, estimates for tolerance genetic variance (table 1). For instance, with family 
size of 10, the estimated genetic variance for slope was 2.0 times higher than the simulated 
value. To obtain unbiased estimates for tolerance genetic variance, family sizes of 100 were 
needed (table 1). The intercept showed a pattern similar to the slope (table 1). 
 
The tolerance slope is estimated within each family and thus family size is a crucial 
parameter influencing estimation accuracy. With decreasing family size, it is increasingly 
difficult to accurately estimate the true slope. When a small number of individuals is sampled 
for each family, the sample no longer is representative of the true distribution and single 
observations have strong impact on the slope estimate. For some families the slope is 
underestimated, for others overestimated, and thus genetic variance estimate for slope is 
artificially increased. This result is similar to one by Knap and Su (2008). 
 
Table 1: Estimated genetic parameters (±±±± s.d.) for a scenario with varied family size 

  Family size 
  10 30 50 100 200 Parameter 

estimated  
Simulated 
value  Estimated values 

Slope VG 9.0 17.7±17.9 11.5±7.80 10.2±5.57 9.22±3.79 9.13±2.47 
Intercept VG 120 228±247 148±110 130±83.3 116±50.7 120±34.4 
rSlope-Intercept 0.0 -0.51±0.47 0.06±0.60 0.04±0.53 0.08±0.42 0.03±0.22 
VG: Genetic variance; r(Slope-Intercept): Genetic correlation between slope and intercept. 
 

Table 2: Genetic parameters (±±±± s.d.) for a scenario with varied environmental 
correlation (rE) between slope and intercept, estimated with a statistical model either 
including or excluding host performance in a pathogen-free environment as a covariate 

rE 
 -0.5 -0.3 0 0.3 0.5 

 
Parameter 
estimated 

  
Simulated 
value  Estimated values 

          Statistical model without the covariate 
  Slope VG 9.0 140±12.2 56.7±8.35 9.40±3.59 57.2±7.97 142±11.7 
  Intercept VG 120 905±245 409±127 117±51.6 413±121 921±251 
  rSlope-Intercept 0.0 -0.89±0.03 -0.76±0.07 0.07±0.41 -0.76±0.06 -0.89±0.03 

       

      Statistical model with the covariate   
 Slope VG 9.0 9.35±1.93 9.32±1.66 9.48±1.78 9.33±1.82 9.44±1.82 

VG: Genetic variance; r(Slope-Intercept): Genetic correlation between slope and intercept. 

 
Environmental correlation between pathogen burden and host performance. With non-
zero environmental correlation between pathogen burden and intercept either the initially 
smallest (negative rE) or biggest (positive rE) of each family are more prone to diseases. 
When rE was changed to be either negative or positive, genetic variance for tolerance slope 



increased symmetrically (table 2). For example, when environment correlation was -0.5 (or 
0.5), the estimated genetic variance for slope was 15.6 times higher than the simulated value. 
This occurs because pathogen burden is non-randomly distributed within a family, and part 
of initial variation in host performance is translated to tolerance variation. Yet, genetic 
variance of slope was estimated without bias when host performance in pathogen-free 
environment was included as a covariate in the statistical model (table 2). It is well 
established that individuals with initially different production or life-history trait levels are 
differently exposed to diseases, parasites and production diseases. Consequently, it is 
expected that individuals with initially different growth and life-history traits receive 
differential pathogen burden, confounding the cause-and-effect relation between pathogen 
burden and reduction in host performance. In field data, this issue can be reduced by 
including initial host performance as a covariate in the statistical model. This is convenient 
for traits that can be repeatedly recorded from the same animals. 
 
Cost of tolerance. In the above scenarios, zero genetic correlation between intercept and 
slope was simulated, i.e. no genetic trade-off was assumed between the two. A decrease in 
family size lead to strongly negative genetic correlation between slope and intercept (table 
1). When slope h2 of 0.05 was simulated, negative genetic correlation was obtained with 
family sizes of 10-50. Similarly, with increasing or decreasing environmental correlation 
between pathogen burden and performance in pathogen-free environment, the genetic 
correlation between slope and intercept became highly negative (table 2). The negative 
correlation occurs because when the slope for a family is overestimated, the intercept for the 
family will go down (and vice versa). The results imply that the analysis may falsely indicate 
the presence of a genetic trade-off (i.e., cost of tolerance). 

Conclusion 
Random regressions provide powerful means for analysing disease tolerance genetics. Yet, 
analysing tolerance genetics from field data sets is a challenge. A care should be taken to 
assess potential for bias due to small sample size and correlations between initial host 
performance and pathogen burden. Separating resistance and tolerance is a challenge but 
possible using the approach presented here. 
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