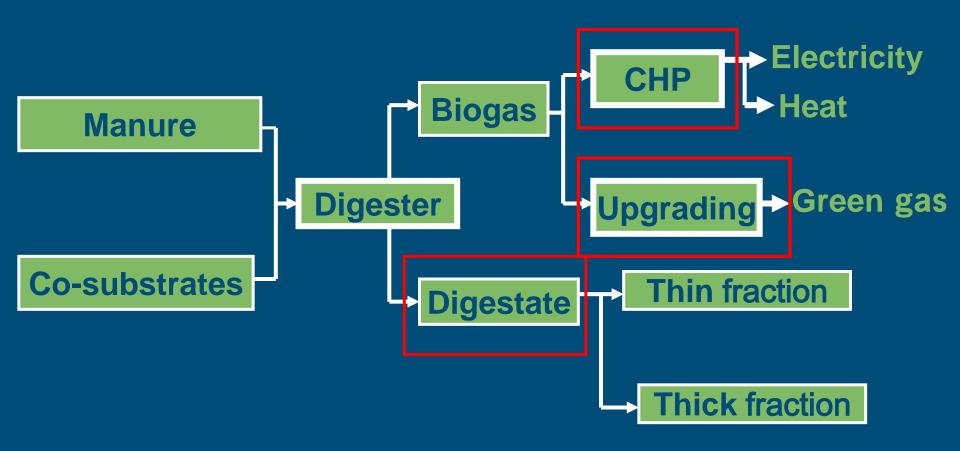
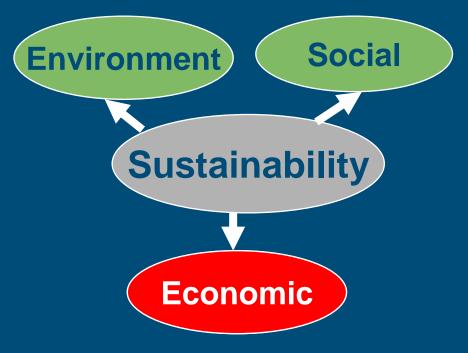
Energy-neutral dairy chain in the Netherlands: an economic feasibility analysis

Solomie A. Gebrezgabher Business Economics, Wageningen UR


Background

Environmental legislation on renewable energy

- Share of renewable energy 20% by 2020
- Energy saving and improvement of 30% in 2020
- Less GHG emissions, 30% in 2020
- Growing interest in the anaerobic digestion of organic waste
- Manure residues a major source of environmental pollution



Anaerobic digestion

Energy-neutral dairy chain

- Initiatives at sector level
- By 2020, the dairy chain aims for energy-neutral production
- Total energy consumption in the dairy chain 60 PJ
- 17 PJ green gas to be produced from codigestion
 - Towards a sustainable dairy chain

<u>This paper</u>

 Assess the profitability and associated risks of green gas production (17 PJ) by the dairy chain

Develop:

- Business models and their likelihood
- Simulation model
 - Technical & financial data: 23 operating biogas plants in NL

Business models: Green gas

Two business models

- Stand alone (4-5 million m3)
- Central upgrading (5-6 million m3)
- Green gas one of the energy transition paths of the Ministry Of Economic Affairs
- Ambitions to substitute natural gas with green gas:
 - 8-12% in 2020
 - 15-20% in 2030 and
 - 50% in 2050

Data: Descriptive statistics (n=23)

	Small scale (n = 4)		Farm		Large	
			scale		scale	
			(n = 17)		(n = 2)	
	Mean	SD	Mean	SD	Mean	SD
Biogas yield (m ³ /ton)	150	26	118	26	98	16
Methane (%)	57	1	58	4	57	1
Engine efficiency (%)	36	4	35	2	36	1
Price maize (€/ton)	27	5	30	6	31	1
Price grass silage (€/ton)	20	1	23	6	n.a	n.a

Model assumptions

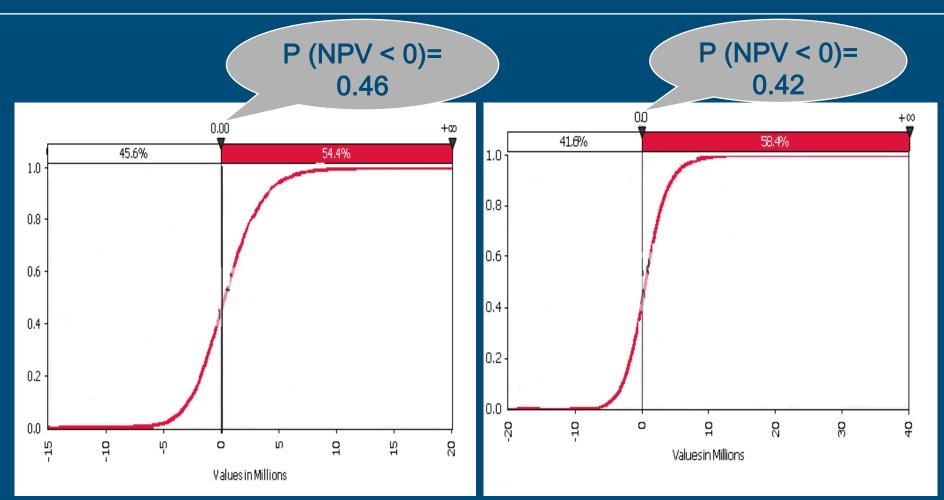
Stochastic variables:

- Biogas yield
- Upgrading efficiency
- Investment cost
- Feedstock prices
- Deterministic variables:
 - Digestate production and disposal cost
 - Operating and maintenance cost
 - Fixed costs
 - Output price (New subsidy levels for 2009 € 58.3 ct./m³)

Results (1)

Technical results of business models

Item	Stand alone		Central upgrading		
	Mean	SD	Mean	SD	
Green gas (million m ³ /year)	4.50		5.50		
Total feedstocks (1000 ton)	62	17	69	20	
Digestate (1000 ton)	49	14	55	15	
Thin fraction (1000 ton)	42	12	46	13	
Thick fraction (1000 ton)	7	2	8	2	


Results (2)

Simulation results of business models (€ million)

	Stand alone	Central upgrading
Total investment	3.60	4.00
Operating profit:		
Mean	0.26	0.31
90% confidence interval	-0.33-0.95	-0.36-1.00
NPV:		
Mean	0.48	0.68
90% confidence interval	-3.75-5.28	-3.95-5.90

Results (3) Cumulative distribution function

NPV of stand alone

NPV of central upgrading

Conclusions

 Risk analysis more informative to decision makers

- More than 50% chance of economic success for both models
- A total of 109 plants needed

8.5% of the total amount of cattle manure will be processed

Discussion...

Operationalization of the initiative:

- Availability of feedstocks
- Location of digesters
- Availability of subsidy

 Integrated sustainability assessment (economic, environmental and social aspect)

