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Pollution of the biosphere has increased strongly since the beginning of the industrial revolution. 

Organochlorine compounds and petroleum hydrocarbons are the most prevalent kinds of 

pollutants. The industrial application of chlorinated ethanes, chlorinated ethenes and chlorinated 

benzenes ranges from degreaser and solvent to biocide and precursor (Dijk 2005). They are of 

major concern for human and environmental health because some are known for their acute and 

chronic toxicity, persistence and bioaccumulation. Many organochlorines are present on the EPA 

list of priority pollutants, indicating their potential hazard for the environment (van Eekert 1999). 

The total amount of chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons 

that reached the surface water in the Netherlands in 2001 was 11.23 and 1.89 ton, respectively 

(Dijk 2005). Besides an anthropogenic origin, more than 3500 organohalides are known to be 

produced naturally, comprising mainly chlorinated and brominated metabolites (Häggblom & 

Bossert 2003; Smidt & de Vos 2004).  

Petroleum hydrocarbons are the most common environmental contaminants (Chayabutra & Ju, 

2000). Major sources of petroleum hydrocarbon pollution are natural seepage and accidental 

spillage during transportation (www.eia.doe.gov). Petroleum hydrocarbons consist of four major 

components: saturates, aromatics, resins and asphaltenes (Head et al. 2006). On the average, 

saturated and aromatic hydrocarbons together make 80% of the crude oil (Widdel & Rabus 

2001). Alkanes are the chemically least reactive, due to the lack of a functional group, presence 

of only sigma bonds, non-polar nature and low solubility in water.  

Aromatic compounds comprise of a large variety of natural and synthetic compounds (Fuchs 

2008). Various aromatic compounds like benzene, toluene, phenols, aniline, naphthalene and 

phenanthrene are of concern due to their persistence and toxicity (Harwood & Parales 1996: Cao 

et al. 2008). 

Remediation of these various sorts of pollution are carried out with physical, chemical or 

biological processes. Bioremediation is an environmentally safe and cost effective method to 

eliminate the pollutants from the environment. Various microorganisms can metabolize these 

compounds either aerobically or anaerobically. 

Aerobic degradation of organic pollutants 

Oxygen is the most prevalent and most preferred electron acceptor in an oxic environment as it 

allows the highest growth yield to an organism (Lovley 1991). In the aerobic metabolism of 

organic pollutants oxygen not only acts as terminal electron acceptor but also as a co-substrate. 

The introduction of molecular oxygen in organic compounds is mediated through mono- and 

dioxygenases. Once the oxygen atom has been incorporated in a molecule it can be further 

degraded more easily, both aerobically and anaerobically.  
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Chlorinated aliphatics with low chlorine atom substitutions, such as vinyl chloride (VC) and 

monochlorobenzene (MCB), which are often found accumulated in anoxic ecosystems, can be 

degraded by aerobic bacteria (Davis & Carpenter 1990; Coleman 2002a). Similarly, 

dichloroethenes (DCE’s) have been shown to be degraded aerobically (Coleman et al. 2002b; 

Chapelle & Bradely 2003). Epoxidation has been suggested to be the first step during this 

reaction (Coleman 2002b). An aerobic oxidative metabolism often involves the electrophilic 

attack by mono- and dioxygenases and ultimately yields carbon dioxide, chlorine and water as 

end products.  

Among petroleum hydrocarbons n-alkanes are degraded faster than branched alkanes and 

aromatics (Leahy & Colwell 1990; Röling et al. 2003), yet quantitatively they are the major 

fraction of crude oil (Head et al. 2006). Alkanes may adsorb aromatics due to their 

hydrophobicity and their degradation may then increase the bioavailability of aromatics (Widdel 

& Rabus 2001). Moreover alkanes are involved in the co-oxidation of other components of 

hydrocarbons (Rontani et al. 1985; Leahy & Colwell, 1990). Degradation of alkanes by aerobic 

microorganisms goes fast (Berthe-Corti & Fetzner 2002; Wentzel et al. 2007). The physiology, 

biochemistry and genetics of aerobic alkane degraders has been studied extensively (Shanklin et 

al. 1997; Berthe-Corti & Fetzner 2002; Rojo et al. 2005; Head et al. 2006; van Beilen and 

Funhoff 2007; Wentzel et al. 2007). During aerobic degradation, oxygenases incorporate 

molecular oxygen into the n-alkanes to form the corresponding alcohols, which are further 

degraded by beta-oxidation (Wentzel et al. 2007). This initial step of oxygen incorporation is 

thought to be the rate-limiting step, and further degradation may occur without the involvement 

of oxygen (Chayabutra & Ju 2000). The oxygenases involved in the initial activation of alkanes 

are monoxygenases, but in one case the involvement of a dioxygenase has been reported (Maeng 

et al. 1996). The major types of monooxygenases involved are the rubredoxin dependent alk B 

and cytochrome P450 type monoxygenases and their genes alkB, alkM, AlmA and cyp153 family 

of P450 monooxygenases have been studied extensively (Ratajczack et al. 1998; van Beilen et 

al. 2006; Throne-Holst 2007; van Beilen & Funhoff 2007). 

Aromatic compounds are difficult to degrade due to the resonance energy of the aromatic ring 

(Harwood & Parales 1996). During the aerobic degradation of aromatic compounds the aromatic 

ring is activated by modification of the aromatic ring by incorporation of oxygen by mono- or 

dioxygenases. The catechol and to a lesser extent benzoate, are the central intermediates in the 

aromatics degradation pathway (Fig. 1).  
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Fig. 1: Catechol and to a lesser extent benzoate as central intermediates in the aerobic degradation of 
aromatic hydrocarbons (Figure modified from Harwood & Parales 1996) 
 

The next step is the cleavage of the aromatic ring, which is exclusively mediated by 

dioxygenases. Cleavage of the ring between two hydroxyl groups is called ortho-cleavage or 

intradiol cleavage and cleavage adjacent to one of the hydroxyl group is called meta-cleavage or 

extradiol cleavage. (Harwood & Parales 1996; Vaillancourt et al. 2006).  

Anaerobic degradation of organic pollutants 

Numerous mixed and pure culture studies of the past two decades have revealed that reductive 

dehalogenation is the main mechanism for the initial attack and degradation of a variety of 

aliphatic and aromatic organohalides in anoxic environments (El Fantroussi et al. 1998; 

Häggblom & Bossert 2003; Smidt & De Vos 2004). In anoxic environments the presence of an 

electron withdrawing group is favourable for an initial reductive attack (Bosma et al. 1988; 

Knackmuss 1992; Dolfing & Harrison 1993; Field et al. 1995). Molecules with more electron-
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withdrawing substitutions such as highly chlorinated compounds are difficult to degrade 

aerobically (Okey & Bogan 1965; Knackmuss 1992; Field et al. 1995). Chlorinated aliphatics 

like tetrachloroethene (PCE) and trichloroethene (TCE) and chlorinated aromatics like 

hexachlorocyclohexane (HCH), which are aerobically recalcitrant are easily degraded via 

anaerobic degradation (van Doesburg et al. 2005; Cheng & He 2009). However, as these 

molecules are converted into less substituted chlorinated compounds it becomes more difficult to 

degrade them anaerobically. This may lead to persistence of less susbstituted chlorinated 

compounds in anoxic environments. For example, the reductive dechlorination of 

tetrachloroethene (PCE) and trichloroethene (TCE) may lead to the formation of cis-

dichloroethene (DCE), vinyl chloride (VC) or ethene (Davis & Carpenter 1990; Coleman et al. 

2002b). Especially vinyl chloride has been found to accumulate in many polluted soils (Fennel 

2001; Coleman 2002a). Similarly, the end products of the degradation of the beta isomer of 

hexachlorocyclohexane (β-HCH) are benzene and monochlorobenzene (MCB), which are very 

recalcitrant compounds in the absence of molecular oxygen (van Doesburg et al. 2005).   

Little is known about the anaerobic degradation of n-alkanes. The first step in the anaerobic 

degradation of n-alkanes is thermodynamically difficult. It has been proposed to occur via 

carboxylation in the sulfate-reducing bacterium strain Hxd3 (So et al. 2003). Another proposed 

mechanism of alkane activation resembles the anaerobic toluene activation mechanism i.e. n-

alkane activation through fumarate addition by an alkylsuccinate synthase (Rabus et al. 2001). 

Molecular evidence for this mechanism has recently been obtained (Callaghan et al. 2008; 

Grundmann et al. 2008). Anaerobic degradation of n-alkanes is slow compared to aerobic 

degradation and the number of isolates and range of substrate alkanes degraded is limited (So 

and Young 1999; Ehrenreich et al. 2000; Wentzel et al. 2007). 

Aromatic compounds are quite recalcitrant in anoxic environments. The breaking of the aromatic 

ring which is quite easily mediated by the ring cleaving dioxygenases is energetically difficult in 

anoxic environments (Fuchs 2008). The mechanisms of anaerobic benzoate and toluene 

degradation are well understood. Facultative anaerobes use a so called “hybrid pathway” where 

benzoate is degraded via CoA-thioesters as intermediate and aromatic ring cleavage does not 

require oxygen (Zaar et al. 2001, Gescher et al. 2006). The activation of ring in the anoxic 

environment is mostly brought by carboxylation, phosphorylation or fumarate addition (Fuchs 

2008). Anaerobic toluene degradation occurs via fumarate addition. A glycyl radical enzyme, 

benzylsuccinate synthase, which is highly oxygen sensitive, catalyzes this reaction. 

Benzylsuccinate is further oxidized to benzoyl-CoA, which is the central intermediate of 

anaerobic degradation of aromatic compounds (Leutwein & Heider 1999, Heider 2007, Fuchs 
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2008). Most of the aromatics like benzene and monochlorobenzene are anaerobically persistent. 

Similarly very little is known about the anaerobic degradation of the central intermediate of 

aromatics i.e. catechol. There are only a few pure culture studies (Szewzyk & Pfennig 1987; 

Schnell et al. 1989; Kuever et al. 1993, Gorny & Schink 1994; Ding et al 2008). This is in strong 

contrast with the aerobic pathway of catechol degradation, which is well characterized and 

completely understood (Vaillancourt et al 2006; Harwood & Parales 1996). 

Aerobic versus anaerobic biodegradation 

There are few anaerobic hydrocarbon degrading bacteria described upto now in comparison with 

aerobic bacteria. The rates of anaerobic hydrocarbon degradation in general are much lower than 

in the presence of oxygen. Aerobic hydrocarbon degrading bacteria can use a wider range of 

substrates than anaerobic ones (Wentzel et al. 2007; Chayabutra & Ju 2000). Compared to the 

large number of aerobic benzene degrading bacteria, only 5 bacterial isolates that can degrade 

benzene anaerobically, have been obtained (Coates et al. 2001; Kasai et al. 2006; Weelink et al. 

2008). No bacterium has yet been isolated that can degrade MCB anaerobically, while several 

bacteria have been characterized that can degrade MCB aerobically (Reineke & Knackmuss 

1984; Schraa et al. 1986; Kaschl et al. 2005; Blacke et al. 2008).  

Moreover, aerobic pathways are well characterized, while we just have started to understand the 

(probably many different) mechanisms of anaerobic degradation of various compounds. 

Remediation strategies of polluted soils are mainly focused on the aerobic degradation of low 

substituted chlorinated compounds, alkanes and aromatics. Anoxic conditions may develop 

quickly upon soil pollution with hydrocarbons, due to the activity of aerobic bacteria (Logan and 

Wu 2002). As a consequence, the contaminated soil is often removed and treated elsewhere. As 

an alternative, oxygen may be injected under high pressure to stimulate aerobic hydrocarbon-

degrading bacteria. The introduction of air/oxygen is not very effective due to the low solubility 

of oxygen. The introduction of oxygen in the form of hydrogen peroxide (H2O2) is a widely used 

technique, but hydrogen peroxide is toxic to many organisms and may instead inhibit the 

degradation of hydrocarbons (Morgen et al. 1993). The use of solid oxygen releasing 

compounds, like oxides of CaO2 and MgO2, is a costly process and an even distribution of the 

oxides is problematic (Weelink et al. 2008).  

The problem may be solved by the addition of oxygen in a highly soluble form to the anoxic 

zone. (Per)chlorate is such a highly soluble compound e.g. sodium perchlorate has a solubility of 

2 kg/l (Xu et al. 2003). 
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(Per)chlorate reduction and (per)chlorate-reducing microorganisms 

(Per)chlorate is a term commonly used for perchlorate (ClO4
-) and chlorate (ClO3

-). Both have 

been found to be reduced by bacteria (Rikken et al. 1996; Wolterink et al. 2002). (Per)chlorate 

has a higher reduction potential than nitrate and oxygen (Table 1) and it has been suggested as an 

alternative electron acceptor in the oxidation of hydrocarbons (Coates et al. 1999a; Stams et al. 

2004; Tan et al. 2006; Weelink et al. 2008). It was found to yield molecular oxygen upon 

reduction (Rikken et al. 1996; Wolterink et al. 2002; Dudley et al. 2008). The microbial 

reduction of perchlorate proceeds as depicted in Fig. 2. 

Perchlorate (ClO4
-) is reduced to chlorate (ClO3

-) through a perchlorate reductase which in turn 

is reduced to chlorite (ClO2
-) by a chlorate reductase. In perchlorate-reducing bacteria one 

enzyme may reduce both the perchlorate and chlorate (Kengen et al. 1999). Chlorite is then split 

into Cl- and O2 by a chlorite dismutase (Rikken et al. 1996; Wolterink 2002). This oxygen 

formation during anaerobic respiration is unique for (per)chlorate reducing bacteria (Coates et al. 

1999a). Enzymes involved in the (per)chlorate reduction pathway have been isolated and 

characterized (van Ginkel et al. 1996; Kengen et al. 1999; Stenklo et al. 2001). 

 

 

 

Fig. 2: (Per)chlorate reduction pathway. 

 

(Per)chlorate was initially considered to be anthropogenic. It is used as solid rocket fuel, in road 

flares, fireworks, blasting agents, explosives, lubricating oils, nuclear reactors, air bags, making 

matches. (Urbansky 1998; Gullick et al. 2001; Aziz & Hatzinger 2008). In past (per)chlorate was 

used to treat hyperthyroidism (Urbansky, 1998). Chlorate is used as defoliant (Kengen et al. 

1999). Chlorate is produced when chlorine dioxide is used as a bleaching agent in the paper and 

pulp industry (Kengen et al. 1999). Ammonium perchlorate represents approximately 90% of all 

perchlorate salts manufactured. Since 1950 more than 15.9 million kg of perchlorate salts have 

Perchlorate reductase 
Chlorate reductase Chlorite  

dismutase 

2[H]  H2O 2[H]  H2O 
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been discharged into the environment (Motzer, 2001). Since perchlorate salts are highly soluble 

in water, they are readily transported through surface water and groundwater (Xu et al. 2003). 

Perchlorate has been detected in groundwater in 35 states of the USA (NAS 2005). In Henderson 

(Nevada), this perchlorate contamination ranged from 51.4 to 630 mg/l. Low levels of 

perchlorate have also been found in drinking wells in southern parts of Texas in an area of more 

than 30000 square miles (Urbansky 1998).  

Table 1: Biologically relevant redox couples 
         E0’ (Volts) 

SO4
2- + 3 H+ + 2 e-  → HSO3

- + H2O   -0.516 

Ferredoxin (Fe3+) + e-  → Ferredoxin (Fe2+)   -0.420 

NAD(P)+ + H+ + e-  → NAD(P)H   -0.320 

S + 2 H+ + 2 e-   → H2S    -0.274 

FAD + 2 H+ + 2 e-  → FADH2    -0.180 

HSO3
- + 6 H+ + 6 e-  → HS- + 3 H2O   -0.110 

NO3
- + 2 H+ + 2 e-  → NO2

- + H2O    0.430 

NO2
- + 8 H+ + 6 e-  → NH4

+ + 2 H2O    0.440 

ClO3
- + 2 H+ + 2 e-  → ClO2

- + H2O    0.709 

ClO4
- + 2 H+ + 2 e-  → ClO3

- + H2O    0.788 

O2 + 4 H+ + 4 e-   → 2 H2O     0.815 

2 NO + 2 H+ + 2 e-  → N2O  + H2O    1.175 

ClO2
- + 4 H+ + 4 e-  → Cl- + 2 H2O    1.199 

N2O + 2 H+ + 2 e-   →  N2 + H2O    1.355 

E0’ = standard reduction potential at pH 7.0 and 25 °C. 

 

From a microbiological point of view the anthropogenic origin of perchlorate was puzzling since 

(per)chlorate reducing bacteria have not only been found in contaminated environments but also 

in pristine environments. However, there is now evidence that (per)chlorate is also produced via 

natural processes and that it is ubiquitously present at low concentrations in arid and semi-arid 

areas in the world (Bao & Gu 2004; Plummer et al. 2006; Rajagopalan et al. 2006; Kang et al. 

2008). Natural deposits of perchlorate are the mineral deposits in the hyper arid region of the 

Atacama desert of Chile (Orris et al. 2003). Isotopic analyses of the Atacama deposits showed a 

natural atmospheric origin (Bohlke et al. 1997; Bao & Gu 2004). Perchlorate is likely to be 

formed in the atmosphere by ozonation of aqueous solutions of chloride (aerosols) or ozonation 

of chloride coated sand and glass surface (Dasgupta et al. 2005; Kang et al. 2008). Homogenous 

photochemical reactions of aqueous oxyanions (hypochlorite, chlorite, and chlorate) precursors 

also yield perchlorate (Kang et al. 2006). Lightning may also cause the synthesis of atmospheric 
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perchlorate (Dasgupta et al. 2005). Natural occurrence of perchlorate has also been reported on 

Mars (Hect et al. 2009). Interestingly, Atacama desert soils have a strong resemblance with the 

Martian soil (Navarro-Gonzalez 2003). 

Perchlorate is known to affect the thyroid gland in mammals by binding to the sodium iodide 

symporter. It inhibits competitively the uptake of iodide by thyroid gland which results in fatal 

bone marrow disease (Stanbury & Wyngaarden 1952; Achenbach et al. 2001). Several cases of 

aplastic anemia and renal damage were observed when perchlorate was administrated 

chemotherapeutically for the treatment of hyperthyroidism (Foye 1989; Urbansky 1998). Despite 

criticism, the US EPA has decided not to regulate the use perchlorate but instead has established 

a reference dose of 0.0007 mg/kg/day of perchlorate (Renner 2009). 

Microbial (per)chlorate reduction has been reviewed by Logan et al. (2001), Xu et al. (2003), 

Coates and Achenbach (2004). A list of known (per)chlorate reducing bacterial isolates is given 

in table 2.  

(Per)chlorate-reducing bacteria are spread among α, β, γ, and ε subclasses of proteobacteria 

(Korenkov et al. 1976; Stepanyuk et al. 1992; Wolterink et al. 2002; Kesterson et al. 2005). 

Recently, a firmicute has also been isolated (Balk et al. 2008). (Per)chlorate-reducing bacteria 

have been isolated from pristine as well as contaminated soils and sediments (Coates et al. 

1999b; Wolterink et al. 2005). 

The ubiquity of (per)chlorate reducing-bacteria was shown by most probable number count 

assays in samples from a variety of soils and sediments. The numbers of (per)chlorate-reducing 

bacteria ranged from 2 × 103 to 2 × 106 cells per gram (Coates et al. 1999b). Kesterson et al. 

(2005) showed that (per)chlorate reducing bacteria could even be two orders of magnitude higher 

at some locations. 

Most of the (per)chlorate reducers are related at the species level with a non-(per)chlorate 

reducers. For instance, Pseudomons chloritidismutans AW-1T, a chlorate reducer has 100% 16S 

rDNA similarity with P. stutzeri DSM 50227, but this P. stutzeri cannot reduce chlorate. 

Similarly, the chlorate reducer and benzene oxidizer Alicycliphilus denitirificans BC is 99.7% 

similar with a non-chlorate reducer Alicycliphilus denitrificans K601. Similar observations were 

made by Achenbach & Coates (2000). The majority of the perchlorate-reducing bacteria is 

facultative anaerobic, mesophiles and has a pH optimum close to neutral. However, some 

members of Dechloromonas and Azospira are capable of (per)chlorate reduction at pH 5 (Coates 

& Jackson 2008). Most of them are gram negative, but a gram positive thermophilic 

(per)chlorate reducer was isolated in our laboratory (Balk et al. 2008). Okeke et al. (2002) 

reported that Citrobacter strain IsoCock 1 reduced 35% perchlorate up to 7.5 % salinity, but 
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growth coupled to perchlorate reduction could not be demonstrated (Coates and Jackson 2008). 

P. chloritidismutans and M. perchloritireducens can grow in a medium containing up to 4 g/l of 

NaCl (Wolterink et al. 2002; Balk et al. 2008). (Per)chlorate-reducing bacteria require 

molybdenum as an essential trace element (Bruce et al. 1999; Chaudhuri et al. 2002). Growth 

rates and cell yields on (per)chlorate are comparable with aerobic ones (Logan et al. 2001). 

Dechlorospirillum WD can grow with 80 mM of (per)chlorate (Michaelidou et al. 2000). 

 
Table 2: List of known (per)chlorate reducing isolates with references 

Strain  Reference  Strain  Reference  

Vibrio dechloraticans 
Cuznesove B-1168  

Korenkov et al. 1976 Pseudomonas chloritidismutans 
AW1T 

Wolterink et al 2002 

Acinetobacter 
thermotoleranticus  

Stepanyuk 1992 
 

Dechloromonas sp. PC1 Nerenberg et al. 
2006 

Ideonella dechloratans   Malmqvist et al. 1994 16 isolates (Azospirillum & 
Dechloromonas) 

Waller et al. 2004 

Azospira oryzae GR-1  Rikken et al. 1996 Citrobacter JB101 and JB109 Bardiya & Bae 2004 

Wolinela succinogenes HAP-1 
& W. succinogenes 
ATCC29543 

Wallace et al. 1996 Dechloromonas hortensis MA- 
1T &  P. chloritidismutans 
ASK1 

Wolterink et al. 
2005 
 

Azospira sp. Perc1ace Herman & 
Frankenberger 1998 

Dechloromonas sp. JDS5 & sp. 
JDS6 

Shrout et al. 2005 

Dechloromonas agitata CKB 
  

Bruce et al. 1999 Dechloromonas denitrificans 
ED-1T 

Horn et al 2005 

13 isolates 
(Pseudomonas,Azospirillum & 
Dechloromonas) 
Dechloromonas sp. SIUL, 
Dechloromonas sp. MissR, 
Dechloromonas sp. CL, 
Dechloromonas sp. NM 
Azospira sp. SDGM, Azospira 
sp. PS  

Coates et al. 1999b 
 

27 isolates  
Genus Aeromonas, Azospira, 
Rahnella & Shewanella 
isolates. 

Kesterson et al. 
2005 

Dechloromonas sp. JM 
  

Miller & Logan 2000 Azospirillium lipoferum DSM 
1691 T 

Peng et al. 2006  

Dechlorospirillum WD & 
Azospira suillus PS  

Michaelidou et al. 
2000 

Dechlorospirillum VDY Thrash et al. 2007 

10 isolates 2 in detail 
Azospira KJ, & PDX 

Logan et al. 2001 
 

Moorella perchloratireducens  

 

Balk et al. 2008 

Dechloromonas agitata Achenbach et al. 
2001 

Azospira  sp. HCAP-C (PCC) Dudley et al. 2008 

Dechloromonas aromatica 
RCB  

Coates et al. 2001 Dechlorospirillum anomalous 
JB116 

Bradiya & Bae 2008 

Dechloromonas sp. HZ  Zhang et al. 2002 Alicycliphilus denitrificans BC Weelink et al. 2008 

 

All (per)chlorate reducers are chlorate reducers but vice versa is not always the case. Most 

bacteria can grow with acetate as the carbon and energy source. However, chemolithoautotrophic 
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perchlorate reducers are also known (Zhang et al. 2002; Shrout et al. 2005; Nerenberg et al. 

2006). Azospira (Dechlorosoma) sp. HCAP-C is a unique perchlorate reducer which accumulates 

chlorate. The maximum observed chlorate accumulation is more than 20% of the initial 

perchlorate concentration (Dudley et al. 2008). 

The Dechloromonas and Azospira genera are the two dominant genera of (per)chlorate reducers 

(Coates & Achenbach 2004). However, the genus Azospirillum may be more dominant at 

contaminated sites with low concentrations of (per)chlorate (Waller et al. 2004). Monod half 

saturation constants of two Azospirillum isolates were lower than those for the members of other 

genera, suggesting their effectiveness at low (per)chlorate concentrations. 

Competition with other electron acceptors 

Apart form chlorate and perchlorate, (per)chlorate reducing bacteria can utilize oxygen and 

nitrate as electron acceptor. Oxygen inhibits the (per)chlorate reduction (Rikken et al. 1996). The 

reason is the sensitivity of the enzyme (per)chlorate reductase for oxygen (Kengen et al. 1999; 

Wolterink et al. 2003). However, Pseudomonas sp. PDA performs perchlorate reduction in the 

presence of oxygen (Xu et al. 2004). Though the chlorate reductase of P. chloritidismutans is 

oxygen sensitive (Wolterink et al. 2003), the bacterium can simultaneously reduce chlorate and 

oxygen when oxygen is added to a chlorate-reducing culture (Wolterink et al. 2001). Recently, 

Shete et al. (2008) described aerobic perchlorate reducing bacteria, but neither growth coupled to 

(per)chlorate reduction nor complete reduction of (per)chlorate was demonstrated.  

Historically, it was thought that perchlorate reduction is an ancillary activity of nitrate reducing 

organisms (Quastel et al. 1925; Hackenthal 1965). In addition, (per)chlorate reducing bacteria 

also use nitrate as electron acceptors. A competition for nitrate and chlorate may occur. The 

response to both electron acceptors is species specific (Sun et al. 2009). The (per)chlorate-

reducing bacterium Wolinella succinogenes HAP-1 only reduces nitrate to nitrite (Wallace et al. 

1996). Dechloromonas agitata strain CKB, is unable to grow on nitrate but can reduce the nitrate 

to nitrite while actively growing on perchlorate, suggesting a fortuitous reduction of nitrate 

(Chaudhuri et al. 2002). Strain Azospira sp. per1ace concomitantly utilizes perchlorate and 

nitrate without significantly affecting the reduction rates. It seems to have two separate 

reductases (Giblin & Frankenberger 2001). Nitrate reduction preceded (per)chlorate reduction 

when either (per)chlorate or nitrate pre-grown cells of Azospira suillium were inoculated in 

medium containing both nitrate and (per)chlorate (Chaudhuri et al. 2002). Azospira suillium has 

a unique perchlorate reductase which can distinguish between perchlorate and nitrate (Sun et al. 

2009).  
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The (per)chlorate reductase and nitrate reductase are separate and inducible in Azospira sp. KJ 

(Xu et al. 2004). Pseudomonas sp.  PDA is a chlorate reducer that is unable to degrade 

perchlorate or nitrate (Xu et al. 2004).  

(Per)chlorate reduction for bioremediation of pollutants  

Except for toluene, only a few bacterial strains have been isolated that are able to grow on BTEX 

anaerobically (Rabus and Widdel 1995; Kniemeyer et al. 2003). None of these purely anaerobic 

isolates is able to degrade all the BTEX compounds (Chakraborty et al. 2005). Two denitrifying, 

benzene degrading bacteria, Dechloromonas aromatica strain RCB and strain JJ have been 

described. Strain RCB was enriched on 4-chlorobenzoate and chlorate (Coates et al. 2001). In 

addition to benzene, this strain was able to grow on all the BTEX compounds i.e. toluene, all the 

isomers of xylene and ethylbenzene. The rates of benzene degradation were slightly higher when 

oxygen or (per)chlorate were used as electron acceptor, instead of nitrate (Chakraborty et al. 

2005). Two more denitrifying bacteria, Azoarcus sp. strain DN11 and strain AN9, were reported 

to grow on benzene as sole source of carbon and energy (Kasai et al. 2006;  2007), but these 

strains have not been tested with (per)chlorate.   

Weelink et al (2008) isolated Alicycliphilus strain BC from a chlorate-reducing community, that 

had 20-1650 times higher benzene degradation rates than reported till then for anaerobic benzene 

degradation. This bacterium is able to grow on benzene, toluene, phenol, and catechol with 

chlorate and oxygen, but not with nitrate. This suggests that during growth on chlorate, the 

oxygen that is formed during chlorite dismutation is incorporated by an oxygenase in the 

aromatic ring (Weelink et al. 2008).  Some characteristics of pure cultures that degrade benzene 

anaerobically are given in table 3 and 4.  

Another mechanism that may play a role in the enrichment obtained by Weelink et al. (2007) is 

interspecies oxygen transfer. A bacterium related to Mesorhizobium sp. WG dominates the 

enrichment when grown on benzene and oxygen. Another bacterium, related to 

Stenotrophomonas acidaminophila, is enriched when the culture is supplied with acetate and 

chlorate. It seems that the latter one is a chlorate reducer, which forms oxygen during chlorite 

dismutation, and the former one is an aerobic benzene degrader, which utilizes this oxygen to 

degrade benzene (Weelink et al. 2007). In another study, 14C labeled naphthalene was quickly 

converted under anoxic conditions to 14CO2, when chlorite was directly added to washed whole 

cell suspensions of a chlorate reducing, non-hydrocarbon degrading bacterium, D. agitatus strain 

CKB, and the hydrocarbon oxidizing Pseudomonas strain JS-150 (Coates et al. 1999a). They 

even found higher degradation rates under anoxic conditions compared to aerobic controls which 

was attributed to the limited diffusion rate of oxygen. 
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Table 3: Comparison of selected features reported for all the isolates (all belong to the subclass β-proteobacteria ) described to be capable of anaerobic benzene 
degradation.  
Name of strain Isolated from Isolated on shape Size (µm) Opt. 

temp. 
(oC) 

Opt. 
pH 

Doubling time Highest conc. of 
benzene tested (µM) 

Reference 

Dechloromonas 
aromatica strain 
RCB 

River sediment 4-chlorobenzoate + 
ClO3

- 
Rod 1.8 × 0.5 30 7.2 4 days3 

Benzene + ClO3
- 

160 Coates et al. 2001, 
Chakraborty et al. 
2005 

Dechloromonas 
strain JJ 

Lake sediment HDS1 + NO3
- acetate 

as C source 
Rod 1.8 × 0.5 30 7.2 ND ND Coates et al. 2001 

Alicycliphilus 
strain BC 

Waste water 
treatment plant 

Benzene + ClO3
- with 

0.125g/l FYE 
Rod 1.2 × 0.6 30-37 7.3 1.4 days 

Benzene + ClO3
- 

1000 Weelink et al. 2008 

Azoarcus strain 
DN11 

Contaminated 
ground water  

Benzene + NO3
-  on 

dCGY2 medium 
ND ND 30 7 9 days4 

Benzene + NO3
-   

15 Kasai et al. 2006; 
2007 

Azoarcus strain 
DN9 

Contaminated 
ground water 

Benzene + O2 on 
dGCY medium 

ND ND 25 ND 13 days4 
Benzene + NO3

-   
15 Kasai et al. 2006 

1 2,6-anthrahydroquinone disulphonate; 2 dCGY medium (Bact. Casamino acid, Glycerol, Yeast extract, Agar); 3 Estimated from Fig. 2 (Chakraborty et al., 2005); 4 Estimated from Fig. 4 (Kasai et 
al., 2006); ND = not described/ not detected 
 
 
Table 4: Comparison of degradation of hydrocarbons under different electron accepting conditions reported for isolates described to be capable of anaerobic benzene 
degradation.  

ND = not described/ not detected; + = growth; - = no growth; 1 20%-90% of amended substrate degraded. References for the organisms can be found in table 3

Dechloromonas aromatica RCB Dechloromonas strain JJ Alicycliphilus strain BC Azoarcus strain DN 11 Azoarcus strain AN 9  

O2 NO3
- ClO3

- O2 NO3
- ClO3

- O2 NO3
- ClO3

- O2 NO3
- ClO3

- O2 NO3
- ClO3

- 

Acetate + + + + + ND + + + ND ND ND ND ND ND 

Toluene + + + + + ND + - + ND + ND ND + ND 

Benzene + + + + + ND + - + + + 1 ND + 1 + ND 

Phenol ND + ND ND ND ND + - + - - ND ND ND ND 

Catechol ND ND ND ND ND ND + - + ND ND ND ND ND ND 

Benzoate ND + ND + + ND - - - + + ND ND ND ND 
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In a study by Logan and Wu (2002), toluene degradation rates were 1.36 fold enhanced when 

chlorate was amended to a sand column. This increase in toluene degradation was attributed to 

oxygen formation by chlorate-reducing organisms. The oxygen is thought to be taken up by 

toluene degrading bacteria to hydroxylate the toluene ring through oxygenases.  

In another soil column study, high benzene degradation rates (31µmol/l/hr) coupled to chlorate 

reduction were observed. The results with batch cultures showed that only chlorate and not 

nitrate was used as an electron acceptor. This again points to an involvement of an oxygenase 

mediated mechanism of action (Tan et al. 2006). 

To our knowledge, only one study has been published about the application of chlorate reduction 

in soil remediation. 14C labelled benzene and chlorite were added to anoxic soil samples that 

were pre-treated with Dechloromonas agitatus strain CKB, a non hydrocarbon-degrading 

chlorate reducer. The indigenous hydrocarbon degrading population was rapidly stimulated and 

more than 90% of 14C labeled benzene was recovered as 14CO2. The rates were similar as in the 

aerobic controls (Coates et al. 1999a). 

Bioremediation of soils contaminated with hydrocarbons depends on many factors, including 

availability of the hydrocarbons, presence of nutrients and electron acceptors, temperature, 

salinity, water activity and pH (Leahy and Colwell 1990). Since most of the (per)chlorate 

reducing organisms have a pH optimum close to neutral, the pH may have to be adjusted before 

the actual bioremediation starts. The addition of fertilizers along with the soluble electron 

acceptor, the (per)chlorate, may enhance the remediation process in soils lacking nutrients. The 

addition of (per)chlorate alone may not be sufficient. Therefore a dosage of a readily degradable 

substrate like acetate to enhance (per)chlorate reduction and production of oxygen may be 

essential (Tan et al. 2006). 

Biochemistry of (per)chlorate reduction  

(Per)chlorate reductase 

(Per)chlorate reductases belong to the type II dimethyl sulfoxide reductase (DMSO) family of 

enzymes (Danielsson et al. 2003; Bender et al. 2005). Type II DMSO reductases have a common 

molybdenum cofactor known as bis(molybdopterin guanine dinucleotide)Mo (Moura et al. 

2004). (Per)chlorate reductases are similar to other type II DMSO reductases like nitrate 

reductase and selenate reductase and ethyl benzene dehydrogenase. Most (per)chlorate 

reductases can also reduce nitrate.  

The α subunit containing the molybdopterin is the catalytic subunit. The β subunit contains the 

Fe-S cluster and may be involved in electron transfer to the catalytic subunit. The γ subunit is a 



General Introduction 

 15

cytochrome C moiety of chlorate reductase. The δ subunit is not a part of the mature enzyme and 

is proposed to be a chaperone involved in the assembly of the αβ complex (Bender et al. 2005, 

Danielsson et al. 2003). All (per)chlorate reductases are periplasmic. The chlorate reductase of P. 

chloritidismutans has 16 moles of iron, while (per)chlorate reductase of strain GR1 contains 11 

moles of iron and the chlorate reductase of Ideonella 10 moles of iron (Kengen et al. 1999; 

Danielsson et al. 2003; Wolterink et al. 2003). Strain GR1 perchlorate reductase also contains 

selenium (Kengen et al. 1999). The γ subunit of chlorate reductase of Ideonella contains heme b 

(Karlson et al. 2005). Some of the other characteristics of the (per)chlorate reductases are 

presented in table 5.   

Perchlorate reductase of GR-1 is the only enzyme of which kinetic parameters for both chlorate 

and perchlorate have been determined. It has a more than five times higher affinity for chlorate 

than for perchlorate and a Vmax for chlorate that is about four times higher than for perchlorate. 

The chlorate accumulation in the Azospira sp. HCAP-C (Dudley et al. 2008) might be due to a 

different type of perchlorate reductase which has a higher affinity and a higher Vmax for 

perchlorate than for chlorate. A unique type of chlorate reductase is the one of Pseudomonas sp 

PDA. It is constitutively expressed under both oxic and anoxic conditions (Xu et al. 2004). 

Pseudomonas sp. PDA is a chlorate reducer that is unable to degrade perchlorate and nitrate. The 

N-terminal amino acid sequence of 60 kDa protein of this enzyme did not show any similarity 

with that of other (per)chlorate reductases (Steinberg et al. 2005).  

Chlorite dismutase 

Chlorite dismutase is a key enzyme in the chlorate reduction pathway. The systematic name of 

this enzyme should be chloride:oxygen oxidoreductase (Hagedoorn et al. 2002). Chlorite 

dismutase is a heme-containing homotetrameric enzyme. It is periplasmic in location (van Ginkel 

et al. 1996; Stenklo et al. 2001). It is one of the few oxygen-generating enzymes in nature and 

the only one to form an O-O double bond besides photo system II (Streit & Dubious 2008). A 

detailed literature review and comparison of different chlorite dismutases is given in table 1 of 

chapter 4 of this thesis. 
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Table 5: Characteristics of (per)chlorate reductases 
 P.mirablis1 Azospira oryzae 

GR-12 
Pseudomonas 
chloritidismutans3 

Ideonella 
dechloratans4 

Azospira sp. 
Per1ace5 

Pseudomonas sp. 
PDA6 

Azospira sp. KJ6 

Location membrane periplasmic cytoplasmic periplasmic periplasmic periplasmic periplasmic 

Electron acceptor chlorate a perchlorate, 
chlorate, nitrate, 
iodate & bromate 

chlorate, bromate  chlorate, bromate, 
iodate, nitrate & 
selenate  

perchlorateb chlorate chlorate, perchlorate 

Size of subunit 
(kDa) 

75, 63, 56 95, 40 97, 38, 34 94, 35.5, 27 35, 75 60, 48, 27 100, 40 

Composition 
native enzyme 

heterotrimer 
α1 β1 γ1 

trimer of 
heterodimers 
α3- β3  

heterotrimer  
α1 β1 γ1 

heterotrimer 
α1 β1 γ1 

heterodimer 
α1 β1 

heterotrimer 
α1 β1 γ1 

heterodimer 
α1 β1 

EPR parameters of 
Mo(V) (g values) 

- 1.976 
2.016 
2.091 

2.024 
2.076 

- - - - 

Vmax (U/mg)  - 13.2 for ClO3
- 

3.8 for ClO4
- 

51 - 4.79 - - 

Km (µM)  - < 5 for ClO3
- 

27 for ClO4
- 

159 850 34.5 - - 

a only chlorate and nitrate were tested; b purified enzyme was not checked for chlorate or nitrate reductase activity; 1 Oltmann et al. (1976); 2 Kengen et al. (1999);  3 Wolterink et al. (2003); 
4 Danielssonl et al. (2003); 5 Okeke & Frankenberger (2003); 6 Steinberg et al. (2005) 
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Molecular studies on (per)chlorate reducing bacteria 

The genetics of chlorate reduction have not yet been studied in detail. There are only a few 

studies on the molecular aspects of chlorate reductases and chlorite dismutase.  

The genes encoding the enzyme chlorate reductase in Ideonella dechloratans have been 

sequenced and are arranged as clrABDC which encode the α, β, γ and δ subunits, respectively. 

The order of genes of the perchlorate reductase of two Dechloromonas strains i.e. D. aromatica 

and D. agitata is pcrABCD. The analysis of chlorate reductase of Ideonella dechloratans 

predicted that its α subunit has a twin arginine motif for transport to the periplasm via Tat 

pathway. The β and δ subunit does not contain any signal peptide. It has been suggested that the 

β subunit first binds with the α subunit and is then transported outside. The γ subunit has a signal 

peptide and was also found to contain the heme b. The Ideonella perchlorate reductase has an 

upstream insertion sequence which is preceded by the chlorite dismutase gene oriented in 

opposite direction (Danielsson et al. 2003). Pseudomonas strain PK has a similar organization of 

chlorate reductase and chlorite dismutase genes. The chlorite dismutase genes in D. aromatica 

are downstream of the (per)chlorate reductase operon while in D. agitata they are upstream in 

the same orientation (Fig. 3 taken from Coates & Achenbach 2004). The clustering of chlorate 

reductase and chlorite dismutase suggests an evolution towards a functional succession.  

 
Fig. 3: Organization of chlorate reductase and chlorite dismutase genes in some isolates (figure taken from 
Coates & Achenbach 2004). 
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Molecular studies of (per)chlorate reductase genes show that the expression of the pcrA gene was 

completely inhibited by oxygen in D. agitata. The D. aromatica mutant lacking the pcrA gene 

has lost the ability to grow with perchlorate while still retaining the ability to grow with oxygen 

and nitrate (Bender et al. 2005). This characteristic together with the loss of a taxis response 

towards (per)chlorate by the pcrA gene mutant (Sun et al. 2009), suggests that D. aromatica has 

separate chlorate and nitrate reductases. Phylogenetic analyses of the pcrA gene showed that the 

perchlorate reductases of two Dechloromonas strains formed a separate monophyletic group 

from the chlorate reductase of Ideonella dechloratans. The analyses also indicated that 

perchlorate reductases are more closely related to nitrate reductases than to chlorate reductases 

(Bender et al. 2005). This can also been seen from the physiological properties of the known 

perchlorate reducers (Azospira GR1, Dechloromonas aromatica) that also reduce nitrate 

efficiently, while some of the chlorate-reducers (Pseudomonas sp. PDA, P. chloritidismutans) 

can not efficiently reduce nitrate. A qPCR assay targeting the catalytic unit of a (per)chlorate 

reductase gene showed 3.4 × 104 to 9.6 × 104 copies of the pcrA gene per gram of dry soil when 

treated with acetate or hydrogen as electron donor and perchlorate as electron acceptor (Nozawa-

Inoue 2008). 

Chlorite dismutase is key enzyme in (per)chlorate reduction. Chlorite dismutase (cld) genes are 

highly conserved among (per)chlorate-reducing bacteria. A highly specific immuno probe to 

target chlorite dismutase was developed and shown to bind to (per)chlorate-reducing bacteria. 

The probe did not bind to closely related non-(per)chlorate-reducing bacteria (O’ Connor & 

Coates 2002). A certain level of the chlorite dismutase gene is constitutively expressed and 

transcriptionally up-regulated when grown on (per)chlorate (Bender et al. 2002; Coates & 

Achenbach 2004). In another study, the possible horizontal transfer of chlorite dismutase genes, 

based upon their gene phylogeny and the host taxonomy affiliation was suggested (Bender et al. 

2004). A comparison of native and recombinant chlorite dismutase by MALDI-MS analysis 

showed a covalent cross-link between a histidine and a tyrosine side chain in the native chlorite 

dismutase. Such a cross-link was also found in other heme enzymes active under highly 

oxidizing conditions, and are suggested to increase the stability and electrophoretic mobility of 

the proteins (Danielsson et al. 2004). The cld gene from Pseudomonas chloritidismutans has 

been amplified, and its sequence analysis suggested a horizontal transfer from γ-proteobacteria 

(Cladera et al. 2006). 

A catalytically active chlorite dismutase was found in the nitrite oxidizing “Candidatus 

Nitrospira defluvii”. It was heterologously expressed in E. coli and has been suggested that 

nitrite oxidation might be coupled to chlorate reduction (Maixner et al. 2008). A large number of 
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genes similar to chlorite dismutase were found in sequenced genomes indicating their putative 

(per)chlorate reducing potential. Phylogenetic analysis of these chlorite dismutase genes has 

suggested that the enzyme appeared early in evolution and that it was inherited vertically as well 

as through horizontal gene transfer. The industrial contaminant was ruled out as the substrate of 

the first evolved chlorite dismutase. Functional diversification and still unknown functions of the 

enzyme has been suggested (Maixner et al. 2008). We searched for the presence of nitrate 

reductases in the putative (per)chlorate-reducing organisms from the study of Maixner et al. 

(2008) except for the members of the proteobacteria which are known chlorate reducers. 

Chlorate reductases in most of the genomes are annotated as nitrate reductases since both 

enzymes belong to the same dimethyl sulfoxide (DMSO) reductase family and can reduce each 

others substrate. Bacteria that contain a putative chlorite dismutase with the catalytic subunit of a 

putative nitrate reductase are presented in table 6.  

The chlorate reducing bacterium, D. aromatica strain RCB, has been fully sequenced 

(http://genome.jgi-psf.org/finished_microbes/decar/decar.home.html) and has recently been 

published (Salinero et al. 2009). The analysis of its genome showed that genes involved in 

anaerobic aromatic degradation are missing, except for the phenylphosphate carboxylase enzyme 

which degrades phenol via 4-hydroxybenzoate. However, many enzymes responsible for aerobic 

aromatic degradation were found inside the genome. One of the two monoxygenase clusters is 

76.5% identical to a toluene monoxygenase and 76.9% identical to a benzene monoxygenase. Six 

groups of oxygenase clusters are highly similar to enzymes involved in the aerobic degradation 

of phenol and phenylpropionate. Embedded in one of these clusters is another oxygenase cluster, 

showing a high identity to a dioxygenase capable of degrading bicyclic compounds like 

dibenzothiophene and naphthalene. However, this still has to be experimentally verified. 

Moreover, there is one benzoate dioxygenase cluster containing benzoate transport and 

catabolism genes which are similar to the xylene degradation cluster of Pseudomonas (Salinero 

et al. 2009). The absence of genes responsible for an anaerobic degradation pathway and the 

presence of genes for aerobic degradation pathways of aromatic compounds, suggests that this 

organism is capable of degrading aromatic compounds with oxygen or by utilizing the oxygen 

produced via chlorite dismutation.  

Similarly, Alicycliphilus strain BC has a putative benzene monooxygenase (BC-BMOa) gene and 

a putative catechol 2,3-dioxygenase (BC-C23O) gene. The BC-BMOa gene sequence of A. 

denitrificans strain BC is 76% identical to the putative monoxygenase of the D. aromatica strain 

RCB sequence. Although these sequences are putative, all sequence features and physiological 
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data support the statement that these sequences are active and encode functional proteins 

(Weelink et al. 2008).  

Moreover, a combined carbon and hydrogen isotopic fractionation has indicated the presence of 

a monoxygenase mediated pathway under chlorate reducing conditions in Alicycliphilus strain 

BC (Fischer et al. 2008). 

Recently, Bäckland et al. (2009) were able to explain a part of the respiratory chain mechanism 

in the chlorate reducing bacterium Ideonella dechloratans. With MS analyses they identified a 6 

kDa c cytochrome, which donates electrons to the chlorate reductase and to the cytochrome c 

oxidase. 

 
Table 6: Putative chlorite dismutase containing bacteria that have a putative catalytic subunit of nitrate 
reductase. 

Bacteria 
Nitrate 
reductase 
subunit 

Bacteria 
Nitrate 
reductase 
subunit 

Arthrobacteria sp ABDG Bacillus thuringiensis ABDG 

Mycobacterium avium ABDG Bacillus coagulans 36D1 ABDG 

Mycobacterium smegmatis ABG Geobacillus thermodenitrificans ABDG 

Salinispora arenicola CNS 205 ABG Staphylococcus aureus sub. sp. aureus JH. 9  ABDG 

Mycobacterium bovis ABDG Staphylococcus aureus ABDG 

Mycobacterium tuberculosis ABD Staphylococcus aureus sub. sp. aureus. JH-1 ABDG 

Nocardioides sp. ABD Bacillus subtillus ABDG 

Mycobacterium vanbaalenii ABDG Bacillus weihenstephanensis KBAB4 ABDG 

Mycobacterium sp. ABDG Staphylococcus aureus ABDG 

Janibacter sp. HTCC 2649 ABDG Staphylococcus aureus ABDG 

Saccharopolyspora erythraea ABDG Staphylococcus aureus ABDG 

Mycobacterium gilvum PYR-GCK ABDG Staphylococcus haemolyticus ABD 

Salinispora tropica CNB-440 ABDG Bacillus cereus G9241 ABDG 

Mycobacterium tuberculosis ABD Staphylococcus aureus ABDG 

Actinomyces odontolyticus ABDG Bacillus clausii ABDG 

Streptomyces coelicoler ABDG Bacillus cereus ABDG 

Rubrobacter xylanophilus ABDG Bacillus licheniformis ABDG 

Mycobacterium sp. KMS ABDG Staphylococcus aureus ABDG 

Nocardia farcinica ABD Staphylococcus aureus ABDG 

corynebacterium diphtheriae ABD Staphylococcus aureus (N315) ABDG 

Mycobacterium paratuberculosis ABD Bacillus cereus ABG 

Mycobacterium bovis ABD Bacillus anthracis ABDG 

Corynebacterium efficiens ABD Staphylococcus epidermidis ABDG 
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The frequent distribution of chlorite dismutase genes and presence of many environmentally 

relevant oxygenases inside the genome of (per)chlorate-reducing bacteria indicate the 

unexploited power and the unexplored potential of chlorate reducers for bioremediation 

processes. 

Outline of the thesis 

There are only two major studies where the potential of (per)chlorate reducing bacteria in 

bioremediation of pollutants has been described (Coates et al. 2001; Weelink et al. 2008). Both 

studies describe the degradation of aromatics with (per)chlorate as electron acceptor. There is no 

knowledge about the degradation of saturated compounds like alkanes. Moreover none of these 

two bacteria were able to degrade a wide spectrum of aromatic and aliphatics together. Little is 

known about the genomics of (per)chlorate-reducing bacteria.  

The aim of this thesis was to gain more insight in the bio-remediation potential of (per)chlorate-

reducing bacteria. Keeping in view the unique ability of (per)chlorate reducers to yield the 

oxygen which might be used in the activation of recalcitrant compounds in anoxic zones, several 

possibilities were explored. The known (per)chlorate reducers were screened for their 

biodegradation potential and the physiology, biochemistry, genomics and proteomics of 

biodegradation pathways were studied. 

The 2nd chapter of the thesis focuses on attempts to enrich for organochlorine-degrading chlorate 

oxidizing bacteria. Factors are described that may have led to the failing of enrichment for such 

bacteria. A strategy to enrich bacteria with these properties is proposed. 

Chapter 3 describes the growth of Pseudomonas chloritidismutans AW-1T on n-alkanes (from 

C7-C12) with chlorate as electron acceptor. The bacterium also grows on intermediates of the 

aerobic pathway. i.e. on decanol and decanoate. The activities of the key enzymes in the pathway 

were measured. Growth with chlorate and oxygen, but not with nitrate, suggests an oxygenase 

mediated pathway.  

In chapter 4 the isolation and characterization of a chlorite dismutase enzyme from P. 

chloritidismutans AW-1T are described. The chlorite dismutase from this strain has been 

compared with other isolated chlorite dismutases. An 18O labeled water experiment was 

conducted to show that both atoms of oxygen originate from chlorite. 

Chapter 5 reports growth of Pseudomonas chloritidismutans AW-1T on benzoate. Catechol was 

detected as intermediate. Growth on catechol was also observed. The activities of the enzymes 

involved were measured. The presence of benzoate 1,2-dioxygenase and catechol 1,2-

dioxygenase and other proteins involved in the benzoate degradation pathway were exclusively 

detected in the benzoate grown cells by MS/MS analysis.  
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In chapter 6, a proteogenomics approach was used to annotate the 454 sequenced genome of 

Pseudomonas chloritidismutans AW-1T. A comparison was made with other closely related 

genomes. A whole proteome comparison with 5 different growth conditions was made to see the 

differential expression of the key proteins involved in various pathways. 

Finally, in chapter 7 the main results of this thesis are concluded and discussed in a broader 

context. The key areas where research is needed are identified. 
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Abstract 

Five different inoculum sources were tested for their ability to degrade chlorinated ethanes, 

chlorinated ethenes and chlorobenzene with different electron acceptors. Except for 1,1-

dichloroethane all the compounds were degraded under at least one of the tested conditions. 

Chlorinated ethanes and trichloroethene (TCE) were degraded through reductive dechlorination, 

while chlorinated ethenes were degraded both aerobically and through reductive dechlorination. 

None of the compounds was degraded with chlorate as electron acceptor. Monochlorobenzene 

seemed to be degraded under all the tested conditions with activated sludge and Danube 

sediment, but conversion could only be sustained under aerobic conditions. Ebro sediment was 

the most efficient one in degrading the chlorinated ethanes, TCE and trans-1,2- dichloroethene 

(DCE). Eerbeek sludge was able to aerobically oxidize cis- and trans-1,2-DCE. The Rhine 

sediment was unable to degrade any of the tested chlorinated compounds.  
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Introduction 

Chlorinated ethanes and chlorinated ethenes are widely used as solvents, degreasers, dry cleaning 

agents and precursors. Monochlorobenzene is used as solvent and grease remover, swelling agent 

and intermediate for the production of polymers, plastics, pharmaceuticals and some insecticides 

(Kaschl et al. 2005; Fung et al. 2009). The widespread use of organochlorine compounds has led 

to contamination of soil and groundwater ( Bradley 2000; De Wildeman et al. 2003; Dinglassan-

Panlilio et al. 2006; Nijenhuis et al. 2007). 

The EPA list of priority pollutants includes 1,1–dichloroethane (1,1-DCA), 1,2-dichloroethane 

(1,2-DCA), trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), trans1,2-dichloroethene 

(trans-1,2–DCE) and monochlorobenzene (MCB) 

(http://www.epa.gov/waterscience/methods/pollutants.htm). Bioremediation is one of the 

cheapest and most cost effective ways to remove these pollutants from soil and water.  

In anoxic environments a nucleophilic mechanism of attack is most common (Field et al. 1995). 

The compounds with a large number of chlorinated substituents undergo reduction and are 

converted to low chlorinated compounds (Bouwer 1994; Field et al. 1995). These low 

chlorinated compounds are quite persistent under anaerobic conditions. Though anaerobic 

oxidation may occur in anoxic zones, the conversion rates are generally low (Bouwer, 1994). So 

quite often degradation of highly chlorinated compounds yields anaerobically recalcitrant low 

chlorinated compounds (Coleman et al. 2002a; Coleman et al. 2002b; Fennel et al. 2001; van 

Doesburg et al. 2005). Chlorinated aliphatics with a low number of chlorine atoms are often 

found accumulated in the anaerobic zone, but are degraded in the aerobic zone (Davis & 

carpenter 1990; Coleman et al. 2002a; Coleman et al 2002b; Chapelle & Bradley 2003). Aerobic 

microorganisms utilize oxygenases to initiate an electrophilic attack (Field et al. 1995). 

 Introduction of oxygen in anoxic zones is costly and inefficient due to low solubility of oxygen. 

Introduction of oxygen in the form of hydrogen peroxide (H2O2) is a widely used technique, but 

H2O2 is toxic to many organisms and may instead inhibit the degradation of hydrocarbons 

(Morgen et al. 1993).  

Microbial (per)chlorate reduction has recently been described as a novel way of bioremediation 

in anoxic environments, and bacteria have been isolated, which can degrade anaerobically 

persistent compounds (Tan et al. 2006; Weelink et al. 2008). Microbial (per)chlorate reduction is 

a unique way to introduce molecular oxygen in anoxic environments. The microbial reduction of 

perchlorate proceeds according to the following pathway; perchlorate (ClO4
-) is reduced to 

chlorate (ClO3
-) by a perchlorate reductase and then chlorate (ClO3

-) is reduced to chlorite (ClO2
-

) by a chlorate reductase. Chlorite is converted to Cl- and O2 by a chlorite dismutase (Rikken et 
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al. 1996). The oxygen formed during the dismutation of chlorite can be used by the oxygenases 

to initiate the electrophilic attack. Moreover, energetically (per)chlorate is comparable to the 

electron acceptors like oxygen and nitrate. The possibility to degrade organic chlorinated 

compounds coupled to the reduction of (per)chlorate has been suggested (Stams et al. 2004). The 

aim of the present study is to enrich bacteria which can couple oxidation of low chlorinated 

compounds to chlorate reduction. 

Materials and methods  

Chemicals 

All chemicals used were of analytical grade. TCE was obtained from Merck, Darmstadt, 

Germany while 1,1-DCA, 1,2-DCA, 1,1-Dichloroethene (1,1-DCE), cis-1,2-DCE, and trans-1,2-

DCE were obtained from Aldrich Chemie N.V., Brussels, Belgium.  

Inoculum 

Inocula from five different sources were used in this study. Three of them were sediments, one 

from river Rhine (Wageningen, The Netherlands), one from river Ebro (Flix, Spain) and one 

from river Danube (Budapest, Hungary), while two were sludges, Eerbeek Sludge (industrial 

water, Eerbeek, The Netherlands) and activated sludge from the wastewater treatment plant, in 

Bennekom (The Netherlands). 

Anaerobic media 

The medium used was based on the medium described by Dorn et al. (1974). The composition of 

the medium (in grams per liter of anaerobic demineralized water) was as follows: 

Na2HPO4.2H2O, 3.48; KH2PO4 1; resazurin, 0.005; CaCl2, 0.009; ammonium iron (III) citrate, 

0.01; NH4SO4, 1; MgSO4.7H2O, 0.04. Vitamins and trace elements were added as described by 

Holliger et al. (1993) supplemented with Na2SeO3, 0.06; NaWO4.2H2O 0.0184. The final pH of 

the medium was 7.3.  

Enrichment procedure 

One gram of one type of sediment/sludge was added in 120-ml flasks containing 40 ml of media 

in an anaerobic glove box. The flasks were closed with viton stoppers (Maag Technik, 

Dübendorf, Switzerland) and aluminium crimp caps, and the head space was replaced with N2 

gas (140 kPa). Chlorinated compounds were added from anoxic stock solutions to give an end 

concentration of 50 µM. Chlorate was added in excess i.e. 10 mM in duplicate flasks (A & B). 

One flask was used as control without chlorate. One separate flask contained only the inoculum 

to see if there is any release of chloride from sediment or sludge. In addition, two flasks of one 

type of inoculum were kept without the chlorinated compounds, but with chlorate to estimate the 
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chlorate adsorbed on the sediment/sludge or utilized by the microorganisms in the absence of 

chlorinated compounds. More chlorate was added when it was about finished in these two flasks. 

Since enrichment appeared quite slow, 5 ml of oxygen was added in one of the duplicate flasks 

(B) on the 42nd day to determine the aerobic degradation potential of the inoculum.  

Analytical methods 

Chloride determination 

Estimation of chlorate utilization was done by measuring the release of chloride. Chloride ion 

concentrations were determined with a Micro-chlor-o-counter (Marius, Utrecht, The 

Netherlands) with an NaCl solution as the standard as described by Schraa et al. (1986).  

Analysis of chlorinated compounds 

Chlorinated compounds were analyzed by injecting 0.4 ml of head space onto a Chrompack 436 

gas chromatograph (Chrompack Bergen op Zoom, the Netherlands) equipped with a flame 

ionization detector and having a Sil 5 CB capillary column (25 m × 0.32 mm × 1.2 µm film) and 

a split injection (ratio 1:50). The temperature of the oven was kept at 70oC. The temperature of 

the injector was 250oC, while the detector temperature was 300oC. A five point calibration was 

made by fortifying a known amount of the compound to 120-ml serum bottles containing 40 ml 

of medium to give the same liquid-to-headspace ratio as that for the cultures. 

For equilibration, the time zero reading was taken after overnight incubation. The second reading 

was taken after 14 days and then every week for 2 months. Afterwards this interval was 

increased to 1 month.  

Oxygen determination 

Oxygen was analyzed by gas chromatography with a GC-14B apparatus (Shimadzu, Kyoto, 

Japan) equipped with a packed column (Molsieve 13x 60/80 mesh, 2 m length, 2.4 mm internal 

diameter; Varian, Middelburg, The Netherlands) and a thermal conductivity detector. The oven 

temperature was 100°C and the injector and detector temperature was 90 and 150°C, 

respectively. Argon was used as carrier gas at a flow rate of 30 ml min–1. 

Results and Discussion 

Degradation potential of the inocula 

The Ebro sediment and Eerbeek sludge were found to have the highest degradation potential for 

chlorinated compounds. Ebro sediments and Eerbeek sludge were able to degrade all the tested 

chlorinated aliphatics except 1,1-DCE. Ebro sediment was able to degrade 1,1-DCA, TCE and 

trans 1,2-DCE through reductive dechlorination (Fig. 1, Table 1). This was expected as these 

sediments have a known history of organochlorine contamination (Lacorte et al. 2006). No 
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aerobic degradation was observed with Ebro sediment. The reason could be that the samples 

were taken from the anoxic zone and that the required aerobic bacteria were lacking. 

 

Table 1: Degradation of compounds (50 µM) with different inocula 

 Compounds Tested 

Source of inoculum MCB 1,1-DCA 1,2-DCA TCE 1,1-DCE cis-1,2-DCE trans-1,2-DCE 

Activated sludge + - - - - - - 

Danube sediment + - - - - - - 

Ebro mixed sediment - + - + - - + 

Eerbeek sludge - - +  - + + 

Rhine sediment - - - - - - - 

+ Degradation; - No degradation 
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Fig. 1: Anaerobic degradation of chlorinated ethanes and chlorinated ethenes. Vertical line in the graph 
represents the time of re-addition of TCE. Curves with full lines represent chlorinated ethanes degradation i.e. ● 
represents 1,1-DCA degradation by Ebro sediment and ■ shows 1,2-DCA by Eerbeek sludge while curves with 
dashed line represents chlorinated ethenes degradation by Ebro sediment i.e. ▲ for TCE degradation and × for 
trans1,2-DCE degradation. 
 

 

Eerbeek sludge was able to degrade 1,2-DCA from 50 µM to 20 µM (Fig. 1), with no external 

electron acceptor present. The chlorinated compound could have acted as electron acceptor for 

the oxidation of organic carbon. Eerbeek sludge was also able to oxidize both isomers of 1,2-

DCE aerobically (Fig. 2).   
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Fig. 2: Aerobic degradation of chlorinated ethenes in Eerbeek sludge sample. Arrow in the graph shows the 
time of oxygen introduction. ● represents cis-1,2-DCE and ■ represents trans-1,2-DCE. 
 
Eerbeek sludge was the only inoculum that degraded the chlorinated aliphatics in the presence of 

oxygen. This suggests that except for the Eerbeek sludge none of the inocula has the aerobic 

degradation potential for chlorinated aliphatics. Eerbeek sludge is used for the treatment of 

industrial wastewater which may also contain chlorinated compounds. In the Ebro sediment with 

a known history of organochlorine contamination and Eerbeek sludge, bacteria may have 

evolved that degrade the chlorinated contaminants. 

Danube sediment and activated sludge from the Bennekom wastewater treatment plant were able 

to degrade MCB (Fig. 3). However these samples lacked the ability to degrade any of the 

chlorinated aliphatics. The degradation of MCB by activated sludge suggests that the MCB is 

easily degraded in oxic environments while it is recalcitrant in the absence of molecular oxygen.  
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Fig. 3: Degradation of MCB by Danube sediment and activated sludge sediments under various redox 
conditions. Arrow in the graph shows the time of oxygen introduction. Continuous lines with ■ represents 
degradation by Danube sediment containing chlorate, ▲ represents aerobic degradation by Danube sediment and ○ 
represents the degradation in Danube sediment without any external electron acceptor added. The single 
discontinuous line with crosses (×) represents the aerobic degradation by activated sludge. 



Chapter 2 

 

 40 

 
 
Rhine sediment was unable to degrade any of the compounds under the three different 

experimental conditions tested, which suggests that Rhine sediment is slightly polluted (Table 1). 

The microbes may not have developed biochemical mechanisms to deal with such compounds. 

However, the absence of reductive dechlorination may also be due to the low organic carbon 

content in Rhine sediment and in activated sludge samples.  

Overall, none of the inocula was able to degrade the tested chlorinated compounds in the 

presence of chlorate (Table 2). 

 

Table 2: Degradation of compounds (50 µM) with different electron acceptors 
 Electron acceptor 

Compounds ClO3
- O2

1 No electron acceptor2 

MCB - + - 

1,1-DCA - - + 

1,2-DCA - - + 

TCE - - + 

1,1-DCE - - - 

cis-1,2-DCE - + - 

trans-1,2-DCE - + + 

1 These flasks also contain chlorate; 2 Natural organic carbon is the only electron donor present; + Degradation; - No degradation 

 

 Persistence of the chlorinated compounds under chlorate-reducing conditions could be explained 

as most of the inocula have no aerobic degradation potential. Moreover, except for the Eerbeek 

sludge all other samples had a very low chlorate-reducing potential (Fig. 4). The Eerbeek sludge 

had reduced 19 mM of chlorate during the experiment (183 days). All other samples showed 

only a small amount of chlorate reduced, the highest one was a total of 3.5 mM with activated 

sludge (Fig. 4). Although chlorate reducing bacteria have been  reported to vary from 2 × 103 to 

2 × 106 cells /g in various soil and sediment samples (Coates et al. 1999; Kesterson et al. 2005), 

little chlorate reduction took place in our samples. One obvious reason is the toxicity and 

recalcitrance of substrates and the other possible reason could be the highly reduced nature of 

samples. They were obtained from strict anoxic zones and had a low potential to degrade 

chlorinated compounds with oxygen. Moreover the synergistic toxicity of chlorate/chlorite and 

chlorinated compounds may have led to the decreased chlorate reducing ability of bacteria. 
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Fig. 4: Chloride formation as an indication of chlorate reduction by different inocula: Rhine sediment ▲, 
Eerbeek sludge ■, Danube sediment х, Ebro sediment ◊, Activated sludge ●. Vertical bars represent the standard 
deviation between two flasks. 
 

Degradation of chlorinated ethanes  

Both chlorinated ethanes i.e. 1,1-DCA and 1,2–DCA were degraded under anoxic conditions 

(Table 2, Fig. 1). However, this only occurred in the anoxic controls where no electron acceptor 

was present. The most probable mechanism of degradation in this case is through reductive 

dechlorination. Natural organic carbon may have acted as electron donor in this case. Although 

1,2-DCA is reported to be degradable both by aerobic (Hage & Hartmans 1999; Janssen et al. 

1985; van den Wijngaard et al. 1993) and anaerobic microorganisms (De Wildeman et al. 2003; 

Dingslaan-Panlilio et al. 2006), in our study 1,2-DCA was only degraded under anoxic 

conditions and was persistent with all types of inocula in the presence of molecular oxygen. The 

degradation of 1,2-DCA with  Eerbeek sludge under anoxic conditions started after 123 days 

(Fig. 1). It might be that bacteria took a long time to adjust to the conditions. Degradation of 

chlorinated ethanes under chlorate-reducing or oxic conditions was not observed in any of the 

tested inocula.  

Degradation of chlorinated ethenes 

Except for 1,1-DCE, the other chlorinated ethenes were degraded under any one of the tested 

conditions (Table 2). 1,1-DCE was recalcitrant under all the tested conditions (Table 2), although 

monooxygenase mediated 1,1-DCE oxidation has been reported (Chauhan et al. 1998; Doughty 

et al. 2005). 

TCE was rapidly degraded in the Ebro sediment without chlorate as electron acceptor. It started 

to disappear after 49 days and was gone within 44 days.  Upon re-addition of the TCE, it again 
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disappeared within approximately 60 days. This may point to an enrichment of TCE degrading 

bacteria (Fig. 1). No aerobic degradation of TCE was observed in any of the sediments (Table 2).  

Aerobic degradation of cis-1,2-DCE and trans-1,2-DCE was observed with the Eerbeek sludge 

sample. Cis-1,2-DCE degradation started at the 42nd day,  but it was slow and even at the 183rd 

day still 14 mM of it was left in the flask. Trans-1,2-DCE degradation started at the 93rd day and 

the compound was completely degraded within the next 60 days (Fig. 2). trans-1,2-DCE was the 

only compound that was degraded both aerobically and anaerobically. Anaerobic degradation of 

trans-1,2-DCE was observed in Ebro sediment (Fig. 1). Reductive dechlorination seems to be the 

possible mechanism of degradation in this case. Unfortunately, the samples were not anlyzed for 

intermediates and products.  

Degradation of Monochlorobenzene (MCB) 

MCB was degraded with the Danube sediment under chlorate-reducing conditions within 56 

days (Fig. 3). This was quite surprising since MCB was considered to be persistent in the 

absence of molecular oxygen. However, on day 123 of the experiment we also found MCB 

degradation in the aerobic flask (Fig. 3). Rapid degradation in the bottle with chlorate compared 

with the aerobic one suggests the micro-aerophilic nature of MCB degrading bacteria. On 

subsequent transfer, MCB degradation was no longer observed in the bottle containing chlorate.  

MCB degradation in the bottle without any added electron acceptor was also observed (Fig. 3). 

By adding a small amount of a reducing agent (cysteine), the MCB degradation stopped 

completely. Hence, we concluded that the degradation of MCB observed under all the conditions 

was micro-aerophilic. Our results strongly support the conclusion that fully oxic environments 

are not essential to degrade monochlorbenzene and a very small amount of oxygen supplied 

continuously can still be effective to degrade MCB (Blacke et al. 2008). This microaerophilic 

degradation has been attributed to the extremely low affinity of chlorocatechol 1,2-dioxygenase 

for oxygen (Km = 0.3 uM), which is comparable to lowest reported oxygen affinities of terminal 

oxidases (Blacke et al. 2008). Aerobic degradation of MCB was also observed in the activated 

sludge samples, where it completely disappeared within 153 days (Fig. 3). 

In conclusion, the low aerobic degradation potential of the inocula, the low chlorate reducing 

ability, the long term storage of samples, the reduced nature of the samples, the synergistic 

toxicity of chlorate and the chlorinated compound may have contributed to the unsuccessful 

enrichment of chlorate-reducing, organochlorine-oxidizing bacteria. All the chlorinated 

aliphatics in this study have at least two substituted chlorine atoms. It is possible that these 

compounds cannot undergo microbial oxidation. For such compounds a mechanism of either 

reductive dechlorination or oxygenation which may occur at high oxygen concentration may 
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have developed in nature. In that case, the target compounds for such a study should be mono 

chloro-compounds. Moreover, the presumed synergistic toxicity of both chlorate/chlorite and 

chlorinated organic compound suggests a change in the enrichment strategy. We recommend to 

enrich for chlorate-reducing bacteria first. Then the bacteria should be enriched further to 

degrade the oraganochlorine compounds or vice versa. In that case, a stable community capable 

of degrading the chlorinated aliphatics coupled to chlorate reduction might be obtained. Our 

results also support the conclusion that completely oxic environments are not essential to 

degrade monochlorbenzene and tiny amounts of continuously supplied oxygen can still be 

effective to degrade monochlorobenzene (Blacke et al. 2008). 
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Abstract 

Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed 

during the dismutation of chlorite. The oxygen thus formed may be used to degrade 

hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no 

bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we 

report that Pseudomonas chloritidismutans AW-1T grows on n-alkanes (ranging from C7 until 

C12) with chlorate as electron acceptor. Strain AW-1T also grows on the intermediates of the 

presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and 

n-decane and oxygen were 0.5 + 0.1 and 0.4 + 0.02 day-1, respectively. The key enzymes 

chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen 

dependent alkane oxidation was demonstrated in whole cell suspensions. The strain degrades n-

alkanes with oxygen and chlorate, but not with nitrate, thus suggesting that the strain employs 

oxygenase-dependent pathways for the breakdown of n-alkanes 

 

 

 

 

 

 

 

 

 

 

 

 



Growth of P. chloritidismutans on n-alkanes and chlorate 

 

 49

Introduction 

Petroleum, a complex mixture of aromatic and aliphatic hydrocarbons, is one of the most 

common environmental contaminants. On average, saturated and aromatic hydrocarbons together 

make 80% of the oil constituents (Widdel & Rabus 2001).  Since the saturated hydrocarbon 

fraction is the most abundant in crude oil, its biodegradation is quantitatively most important in 

oil bioremediation (Head et al. 2006). n-Alkanes are relatively stable due to lack of functional 

groups, presence of only sigma bonds, non-polar nature and low solubility in water.  

Aerobic microbial degradation of n-alkanes is known since almost a century (Söhngen 1913), 

and the mechanisms of degradation, with the enzymes and genes involved, are rather well 

understood (Berthe-Corti & Fetzner 2002; Head et al. 2006; van Beilen & Funhoff 2007; 

Wentzel et al. 2007). During aerobic degradation, molecular oxygen acts as a co-substrate and as 

a terminal electron acceptor (Berthe-Corti & Fetzner 2002; Chayabutra & Ju 2000). Oxygenases 

incorporate molecular oxygen into the n-alkanes to form the corresponding alcohols, which are 

further degraded by beta oxidation (Wentzel et al. 2007). Since intermediates do not accumulate, 

the initial step of oxygen incorporation seems to be the rate limiting step (Chayabutra & Ju 

2000).  

Insight into anaerobic degradation of n-alkanes is limited. The first step of anaerobic degradation 

of n-alkanes is thermodynamically difficult, and has been proposed to occur in the sulfate-

reducing bacterium strain Hxd3 via carboxylation (So et al. 2003). Molecular evidence for a 

mechanism of n-alkane activation through fumarate addition was obtained recently (Callaghan et 

al. 2008; Grundmann et al. 2008). Anaerobic degradation of n-alkanes is slow compared to 

aerobic degradation (Wentzel et al. 2007), and only a few denitrifying and sulfate-reducing 

bacteria have been isolated (Ehrenreich et al. 2000; So & Young 1999).    

Microbial (per)chlorate reduction is a process that yields molecular oxygen, a property that has 

application possibilities in the bioremediation of polluted anoxic soils (Coates et al. 1998; Tan et 

al. 2006; Weelink et al. 2008). During chlorate reduction, chlorate (ClO3
-) is reduced to chlorite 

(ClO2
-) by the enzyme chlorate reductase. Chlorite is then split into Cl- and O2 by chlorite 

dismutase (Rikken et al. 1996; Wolterink et al. 2002). The oxygen released during chlorate 

reduction might be used to degrade n-alkanes by oxygenases. 

Here we report the finding that Pseudomonas chloritidismutans AW-1T, a chlorate reducing 

bacterium, that was previously isolated in our laboratory with acetate as carbon and energy 

source is able to grow on n-decane with oxygen or chlorate as electron acceptor. This finding 

suggests that an additional function of chlorite dismutation is to generate molecular oxygen to 

perform oxygenase-dependent reactions to support growth on n-alkane. 
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Materials and methods 

Inoculum, media, cultivation and counting 

P. chloritidismutans strain AW-1T (DSM 13592T) was isolated in our laboratory (Wolterink et al. 

2002) and was kindly provided by Servé Kengen. For experiments with nitrate, it was adapted to 

nitrate by repeated sub-culturing on acetate and nitrate, while gradually decreasing the oxygen 

concentration according to Cladera et al. (2006).  

The medium for P. chloritidismutans strain AW-1T  was based on the medium described by Dorn 

et al. (1974). The composition of the medium (in grams per liter of anaerobic demineralized 

water) was as follows: Na2HPO4.2H2O, 3.48; KH2PO4 1; resazurin, 0.005; CaCl2, 0.009; 

Ammonium Iron (III) citrate, 0.01; NH4SO4, 1; MgSO4.7H2O, 0.04. Vitamins and trace elements 

were added as described by Holliger et al. (1993) supplemented with Na2SeO3, 0.06; 

NaWO4.2H2O 0.0184. The pH of the medium was 7.3.  

P. chloritidismutans strain AW-1T was cultivated in 120-ml flasks containing 40 ml of medium 

at 30oC. The medium was made in anaerobic water and dispensed in the flasks under continuous 

flushing with nitrogen. The bottles were closed with viton stoppers (Maag Technik, Dübendorf, 

Switzerland) and aluminum crimp caps, and the head space was replaced by N2 gas (140 kPa). 

All solutions that were added to the medium were made anaerobic and autoclaved at 121oC for 

20 minutes. The CaCl2 was autoclaved separately to avoid precipitation and added aseptically to 

the already autoclaved salt solution. Vitamins and trace elements were filter sterilized. Chlorate 

and nitrate were supplied from a 0.4-M stock solution to get a final concentration of 10 mM. 

Pure oxygen was added from a sterilized gas stock. To prepare a stock solution of n-decane, a 

flask was made anaerobic by flushing with N2 and then autoclaved. 99 % pure n-decane (Merck) 

was added to this flask through a 0.2-µm membrane filter. For mass balance analyses 1 mM of n-

decane was added from a 50 mM stock solution of n-decane in acetone. The inoculum size for 

cultivation was 10% (v/v). Other n-alkanes tested were n-propane, n-butane, n-pentane, n-

hexane, n-heptane, n-octane, n-nonane, n-undecane, n-dodecane, n-tetradecane and n-

hexadecane. 1-decanol was added from an anaerobic filter sterilized solution, while sodium 

decanoate was added from an anaerobic, autoclaved 0.4-M stock solution. 

Cell numbers were enumerated by phase contrast microscopy using a Bϋrker-Tϋrk counting 

chamber at 1,000X magnification. 

Three aerobic alkane utilizing bacteria, Alcanivorax borkumensis SK2 (DSM 11573), 

Acinetobacter sp. strain (DSM 17874) and Acinetobacter baylyi (DSM 14961), and the non-

alkane degrading Pseudomonas putida KT2440 (DSM 6125) were obtained from the DSMZ, 

Braunschweig, Germany.  
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Preparation of cell free extracts   

Cell free extracts of strain AW-1T, grown in anaerobic medium with n-decane as sole carbon and 

energy source and chlorate as electron acceptor, were prepared anaerobically as previously 

described by Wolterink et al. (2002). The only modification was the centrifugation of whole cells 

at 13,000 rpm for 10 minutes at 4 °C. Cell free extracts were stored under a N2 gas phase at 4 °C 

in 12 ml serum vials. 

The protein content of the cell free extract fraction was determined according to the method of 

Bradford (1976) with bovine serum albumin as standard. 

Enzyme activity measurements 

Chlorate reductase and chlorite dismutase activities were determined with cell free extracts. 

Chlorate reductase activity was determined spectrophotometrically as described by Kengen et al. 

(1999), by monitoring the oxidation of reduced methyl viologen at 578 nm and 30 °C. One unit 

(U) of enzyme activity is defined as the amount of enzyme required to convert 1 µmol of 

chlorate per minute.  

Chlorite dismutase activity was determined by measuring oxygen production with a Clark-type 

oxygen electrode (Yellow Spring Instruments, Yellow Springs, OH, USA) as described by 

Wolterink et al. (2002). One unit of activity is defined as the amount of enzyme required to 

convert 1 µmol of chlorite per minute.  

Alkane oxidation activity was determined by measuring the decrease in n-decane concentration 

in time by gas chromatography with whole cell suspensions. Cells were harvested by 

centrifugation at 13,000 rpm for 10 min. at 4 °C. Cells were washed and suspended in the buffer 

and then starved for 2 days to decrease the endogenous activity. After starvation, cells were 

suspended in a 15-mM phosphate buffer containing 2.5-mM n-decane added from a 50-mM 

stock solution in acetone. The reaction mixture was placed in a shaker set at 180 rpm at 30 °C.  

Two-milliter samples were taken in duplicate periodically after 0, 5, 10, 15, and 30 minutes. The 

n-decane was extracted as described by Staijen et al. (2000). Cells treated for 10 minutes at 100 

°C were used as controls. One unit of activity is defined as the amount of enzyme required to 

convert 1 µmol of n-decane per minute. Starved cells resuspended in the anoxic buffer, flushed 

with the nitrogen, and reduced with 3 mM cystein, were used as anaerobic control.  

Alcohol dehydrogenase activity was determined spectrophotometrically in the reductive 

direction at 30 °C using a spectrophotometer (U-2010, Hitachi). The activities were assayed in 1-

ml reaction mixtures containing 15-mM sodium phosphate buffer with 0.3 mM NADH, and 0.5 

mM aldehyde. The decrease in A340 was monitored to assess the activity. One unit of enzyme 

activity is defined as the amount enzyme required to oxidize 1 µmol of NADH. We also tried to 
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determine the alcohol oxygenase activity by the above mentioned spectrophotometric method 

using NADH and air flushed reaction mixtures. 

Analytical techniques 

Chlorate, chloride, nitrate, nitrite were measured, as described by Scholten & Stams (1995) after 

separation on a Dionex column (Ionpac AS9-SC) (Breda, The Netherlands), with a conductivity 

detector. Potassium fluoride (2 mM) was used as internal standard. 

Oxygen was analyzed by gas chromatography with a GC-14B apparatus (Shimadzu, Kyoto, 

Japan) equipped with a packed column (Molsieve 13x 60/80 mesh, 2-m length, 2.4-mm internal 

diameter; Varian, Middelburg, The Netherlands) and a thermal conductivity detector. The oven 

temperature used was 100 °C and the injector and detector temperatures were 90 and 150 °C 

respectively. Argon was used as the carrier gas at a flow rate of 30 ml min–1. 

CO2 was analyzed by gas chromatography on a Chrompack CP9001 gas chromatograph fitted 

with a thermal conductivity detector (Henstra & Stams 2004). pH was measured by a glass 

microelectrode connected to a pH meter (Radiometer, Copenhagen). Total amount of bicarbonate 

present inside the flask was calculated by using the Henderson-Hesselbach equation. At 30 °C, 

the α and pK’ are 0.665 and 6.348, respectively (Breznak & Costilow 1994).  

n-Decane was extracted from 40-ml culture with 20 ml of n-hexane by shaking for 3 h and then 

separating the two phases through a separating funnel. n-Decane was analyzed in the hexane 

phase after adding octane as internal standard. One microliter was injected with a CP9010 

autosampler in a CP9001 gas chromatograph (Chrompack), equipped with flam ionization 

detector and having a Chrompack Sil 5 CB capillary column (length, 25 m; diameter, 0.32 mm; 

df, 1.2 um) with nitrogen, 50- kPa inlet pressure, as carrier gas. The temperature of the injector, 

column and the detector was 250 °C, 100 °C and 300 °C, respectively. 

Detection of alkane oxygenase genes 

For the detection of putative genes encoding alkane oxygenase, the genomic DNA was extracted 

from cultures of strain AW-1T grown on n-decane and chlorate using a FastDNA SPIN kit for 

Soil (Qbiogene). The extracted DNA was precipitated with isopropanol and vacuum dried. The 

primers developed by Whyte et al. (2002), Heiss-Blanquet et al. (2005), Kloos et al. (2006) and 

van Beilen et al. (2006) were used for the detection of the alkane oxygenases alkB, alkM, almA, 

P450. In addition, we developed some degenerated primers targeting alkB, almA and Acyl CoA 

dehydrogenase. Polymerase chain reaction (PCR) was carried out under the following 

conditions: final volume of 50 µl of 1X PCR Buffer (Promega) supplemented with MgCl2, (2.5 

mM),  200 µM dNTP´s, 0.5 µM of each primer and 0.3 U/µl Taq DNA Polymerase (Promega). 

The amplification conditions used were as follows: an initial denaturation step at 94 °C for 3 
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min, 35 times of a three steps cycle of 94 °C for 45 s, 55 °C for 45 s, and 72 °C for 1 minute, a 

final elongation step of 72 °C for 8 min. Polymerization reactions were stopped by cooling the 

samples at 4 °C. In addition, a gradient PCR using a temperature gradient of 40-65 °C was done 

with the alkB and Cyt P450 primers used above and also with the primers designed by Smits et 

al. (1999, 2002), Kohno et al. (2002), and the degenerate primers used by Kubota et al. (2005). 

Sequences of the primers used in this study are given in Table 1. The positive controls of 

amplification were obtained in reactions with primers targeting alkB, and CYP153 genes using 

genomic DNA extracted from Alcanivorax borkumensis SK2, in reactions with primers targeting 

almA, with Acinetobacter sp. strain DSM 17874 genomic DNA and with  Acinetobacter baylyi 

DSM 14961 in reactions targeting alkM. 

Nucleotide sequence accession numbers 

The DNA sequence of a putative acyl-CoA dehydrogenase gene of P. chloritidismutans AW-1T 

was deposited in the GenBank/EMBL/DDBJ under accession number FJ477383.  
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Table 1: Different primers sets used in this study targeting conserved regions of alkB, almA, Cytochrome P450 
Subfamily CYP153, and Acyl CoA dehydrogenase genes. 

Primer Name Sequence (5’→ 3’) Reference 

alkB 
TS2Sf 
TS2Smodf 
TS2Smod2f 

AAYAGAGCTCAYGARYTRGGTCAYAAG  
AAYAGAGCTCAYGARITIGGICAYAAR 
AAYAGAGCTCAYGARITITCICAYAAR 

DEG1RE 
DEG1RE2 

GTRAGICTRGTRGTRCGCTTAAGGTG 
GTRTCRCTRGTRGTRCGCTTAAGGTG 

Smits et al., 
1999 

alkMUp 
alkMDn 

CGGGGTAAGCATGAATAGCT 
CGTACAGCTACTTGGTGGAC 

Tani et al., 2001 

Alk-1F 
Alk -1R 

CATAATAAAGGGCATCACCGT 
GATTTCATTCTCGAAACTCCAAAC 

Alk-3F 
Alk-3R   

CCGTAGTGCTCGACGTAGTT 
CAGGCGTTCTTCGGGTTGCGCTGCTCGA 

Kohno et al., 
2002 
 

AlkBpaFwd 
AlkBpaRv2 

 AACTGGAATTCACGATGTTTGA 
CTGCCCGAAGCTTGAGCTAT 

AlkBpaBfw 
AlkBpaBrv 

GGAGAATTCTCAGACAATCT 
GAGGCGAATCTAGAAAAAACTG 

B5 –Eco 
B3-Hind 

 GGAGAATTCCAAATGCTTGAG 
TTTGTGAAAGCTTTCAACGCC 

Smits et al., 
2002 

Pp alkB-F  
Pp alkB-R 

TGGCCGGCTACTCCGATGATCGGAATCTGG 
CGCGTGGTGATCCGAGTGCCGCTGAAGGTG 

Whyte et al., 
2002 

Rhose 
Rhoas 

ACGGSCAYTTCTACRTCG 
CCGTARTGYTCGAGRTAG 

Pseuse1  
Pseuas1 

GARCATAATAARGGBCATC 
AGCARWCCGTARTGYTCA 

Pseuse2 
Pseuas2 

AYGTSCGYGGCCACCATGT 
CGACGTAGTTGAYGAYYTCC 

Acinse  
Acinas 

ACWCCTGAAGATCCRGCWTC 
TRTTCCATCTAGCTCWGGC 

Heiss-Blanquit 
et al., 2005 

alkB-1f  
alkB-1r  

AAYACNGCNCAYGARCTNGGNCAYAA 
GCRTGRTGRTCNGARTGNCGYTG 

Kloos et al., 
2006 

alkBF 
alkBR 

GSNCAYGARYTSRKBCAYAA 
GCRTGRTGRTCNSWRTGNCGYTG 

This study 

Cytochrome P450 Subfamily CYP153 
CF 
CR 

ATGTTYATHGCNATGGAYCCNC 
NARNCKRTTNCCCATRCANCKRTG 

Kubota et al.,  
2005 

P450fw1 
P450rv3 

GTSGGCGGCAACGACACSAC 
GCASCGGTGGATGCCGAAGCCRAA 

Van Beilen et 
al., 2006 

almA 
almA-F1 
almA-R1 
almA-R2 

CCBGGBATYCGBTCNGAYTCNGAYATGT 
GGHGADCGYTGYARCATVGTNACGTNACBATGYTRCARCGH
TCDCC 
CANAVVCGYTSRTCCCANGGVTTRTATAYAABCCNTGGGAYS
ARCGBBTNTG 

This study 

Acyl-Co A dehydrogenase 
Acyl-F1 
Acyl-R1 
Acyl-R2 

GGYTCNATYGARCABAARATGGG 
CCCCAYTCRCGRATRWARCCRTGVCCRCCRAA 
TGRAYRCCRTTRGTRCCTTCRTARAT       

This study 
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Results 

n-Alkane degradation 

P. chloritidismutans AW-1T uses n-decane as a sole source of carbon and energy. Growth on n-

decane and chlorate was indicated by the increase in optical density (Fig. 1a). An OD of 0.34 

corresponds to a bacterial count of 1.31х109. Growth followed n-decane degradation as indicated 

by CO2 formation, chlorate reduction and chloride production (Fig. 1a). No growth was observed 

in controls without inoculum or without n-decane or controls without chlorate (results not 

shown). The specific growth rate on n-decane and chlorate was 0.5 + 0.1 per day (doubling time 

1.4 + 0.2 day). After 7 days, 87% of the 1 mM of the added n-decane was oxidized. The 

oxidation of 1 mM of n-decane led to a reduction of 9.2 + 0.7 mM of chlorate and yielded 7.7 + 

0.6 mM of bicarbonate and 8.3 + 0.8 mM of chloride. The balance fits relatively well with the 

theoretical stoichiometry of complete oxidation of n-decane coupled to chlorate reduction:   

C10 H22 + 10.33 ClO3
- → 10 HCO3

- + 10.33 Cl- + H2O+ 10 H+   (1) 

The bacterium also grows aerobically on n-decane (Fig. 1b). The specific growth rate on n-

decane and molecular oxygen was 0.4 + 0.02 per day (doubling time 1.7 + 0.1). Growth and CO2 

production were not observed in the presence of n-decane and nitrate, using P. chloritidismutans 

adapted to growth on nitrate and acetate (results not shown).  

Other substrates utilized 

Apart from n-decane, other n-alkanes were also screened as possible substrates with chlorate as 

electron acceptor. Strain AW-1T grew with C7 to C12 n-alkanes, but not with smaller n-alkanes. 

It grew equally well on odd and even chain n-alkanes. Strain AW-1T grew equally well on C8 till 

C11, while growth on C7 and C12 was slower. 

Strain AW-1T also grew on the possible intermediates of the aerobic n-alkane degradation 

pathway, namely, 1-decanol and decanoate. Table 2 shows the amount of bicarbonate formed 

with various substrates using different electron acceptors. With n-decane and 1-decanol as 

substrates, bicarbonate was formed with chlorate and oxygen, but not with nitrate as electron 

acceptor. With decanoate and nitrate, bicarbonate was also formed. 
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Fig.1b: 
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Fig. 1: Growth of strain AW-1T (a) with decane and chlorate and  (b) with decane and oxygen. Values are 
means of three replicates. The bars represent standard deviation. Dotted line with open circles (O) represents the OD 
at 600nm. The continuous lines represent ♦ chlorate utilized; х O2 utilization; ■ chloride produced and ▲ 
bicarbonate formed. 
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 Table 2: Formation of bicarbonate (in mM) by strain AW-1T during growth on different substrates.  
 Electron acceptor 

Substrate O2 ClO3
- NO3

- 

n-Decane 10.6 + 1.1 7.9 + 0.3 0.7 + 0.2 

1-Decanol 9.8 +1.3 9.8 + 0.3 0.2 + 0.1 

n-Decanoate 8.3 + 0.4 8.6 + 0.4 8.0 + 0.9 

Values for decane are after 9 days, while for decanol and decanoate the samples were analyzed after 7 days  

 

Enzyme assays 

Extracts of cells grown on n-decane and chlorate and on acetate and chlorate showed chlorate 

reductase and chlorite dismutase activity (Table 3). The specific chlorite dismutase activity is 

dependent on the amount of cell extract and the chlorite concentration (Mehboob et al. 2009). 

The chlorite dismutase presented in Table 3 is the activity under optimal conditions. 

Alkane oxidation activity could be measured with starved cells grown on n-decane and chlorate. 

A relatively small amount of activity was also observed with starved whole cells grown on 

acetate and chlorate (Table 3).  

 
Table 3: Activities of chlorate reductase, chlorite dismutase and alkane oxygenase of strain AW-1T grown on 
acetate and chlorate or on n-decane and chlorate. 

Specific enzyme activity (U/mg of protein)  

Acetate + ClO3
- n-Decane + ClO3

- 

Chlorate reductase 11.4 + 0.3 26.6 + 1 

Chlorite dismutase 7.7 + 1.4 2.8 + 0.7 

Alkane oxygenase* 26 + 9 93 + 31 

The alkane oxidation activity was measured with whole cells and is average of the activities at four different time points i.e. after 
5, 10, 15 & 30 min. 

 

No alkane oxidation was observed with the anoxic control. Cell free extract of alkane grown 

cells did not show alcohol oxygenase activity, but we found an activity of 0.06 U/mg of protein 

of NAD+-dependent decanol dehydrogenase. This was quite surprising as during the growth 

experiment strain AW-1T was unable to grow with decanol and nitrate. Our strain is known to 

grow with ethanol and chlorate (Wolterink et al. 2002). We checked and found that strain AW-1T 

is able to grow with ethanol using oxygen, chlorate and nitrate as electron acceptors. Even 

ethanol and nitrate adapted cells could not grow on the decanol and nitrate. Cell free extract of 

decane grown culture showed twofold higher activity of 0.15 U/mg of protein with acetaldehyde.  

Detection of alkane oxygenase genes 

Various primers at different annealing temperatures were used to detect the following alkane 

oxygenase genes: alkB, alkM, almA, and cytochrome P450 subfamily CYP153. Though we got 
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the expected results in positive controls, with the available specific primers sets we were not able 

to detect any kind of known alkane oxygenase genes in our strains. We were able to amplify a 

sequence which was 51% and 57% similar to two acyl-CoA dehydrogenases involved in the 

degradation of n-alkane in Acinetobacter strain M-1 (Tani et al. 2002).   

Discussion 

Pseudomonas chloritidismutans AW-1T is a gram-negative, facultative, anaerobic and chlorate 

reducing bacterium, which has been isolated on acetate and chlorate in our laboratory (Wolterink 

et al. 2002). We tested its ability to grow on n-alkanes and found that strain AW-1T grows on n-

alkanes with oxygen and chlorate as electron acceptor. Many pseudomonades have the ability to 

grow aerobically on n-alkanes (Söhngen 1913; Wentzel et al. 2007), but strain AW-1T is the only 

known bacterium that grows on n-alkanes by supplying molecular oxygen formed by chlorite 

dismutation. The doubling time with n-decane and chlorate is 1.4 + 0.2 days. Except for strain 

HxN1, which has a doubling time of 11 hours (Ehrenreich et al. 2000), all other anaerobic n-

alkane degraders grow slower, e.g., strains Hxd3 and Pnd3 have doubling times of 9 days 

(Aeckersberg et al. 1998) and strain AK-01 has a doubling time of 3 days (So & Young 1999). In 

contrast, doubling times of aerobic alkane degrading bacteria are approximately 1 h for 

Pseudomonas  aeruginosa (Ertola et al. 1965) and 5 hours for Rhodococcus species (Bredholt et 

al. 1998).  

Strain AW-1T grows on n-decane with chlorate and oxygen, but not with nitrate, suggesting the 

involvement of oxygenases. Oxygen is incorporated in n-decane through an oxygenase to form 

decanol. When chlorate is used as electron acceptor, oxygen is formed by dismutation of 

chlorite. This is supported by the similar specific growth rates on n-decane with oxygen (0.4 + 

0.02 day-1) or chlorate (0.5 + 0.1 day-1) as electron acceptor. Strain AW-1T also grows on 

possible aerobic intermediates, like 1-decanol and decanoate with oxygen and chlorate as 

electron acceptor. It was unable to utilize 1-decanol when nitrate was used as electron acceptor. 

This also suggests that, in the conversion of decanol, an oxygenase as found by Buhler et al. 

(2000) and Katopodis et al. (1984) is involved. Growth on decanoate with nitrate suggests that 

no oxygenases are required for decanoate degradation. Growth of strain AW-1T with oxygen or 

chlorate was observed to be the fastest on decanoate followed by decanol and then n-decane.  

We faced a problem in detecting alkane oxygenase activity with cell free extracts. This has also 

been observed by others (Katopodis et al. 1984; Tani et al. 2001) and was attributed to the poor 

solubility of the substrate (Smits et al. 2002; Tani et al. 2001), the instable nature of the alkane 

oxygenase complex (Katopodis et al. 1984; McKenna & Coon 1970; Ruettinger et al. 1974) and 

the involvement of unknown factors (Tani et al. 2001), like some unique electron transfer 
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proteins (van Beilen et al. 2006). However, alkane oxidation activity could be demonstrated with 

whole cells grown on n-decane and chlorate. Almost 3.5-fold more activity was observed with 

the cells grown on decane and chlorate as compared with the cells grown on acetate and chlorate 

showing the induction of alkane oxygenase when grown on n-decane.  

We were unable to detect an alcohol oxygenase in decane-grown cell-free extracts. However, we 

found an alcohol dehydrogenase that has a more than twofold higher activity for acetaldehyde 

than for decanal. Since the strain AW-1T grows with ethanol with oxygen, chlorate and nitrate 

but is unable to grow with decanol and nitrate, it is unlikely that this alcohol dehydrogenase is 

involved in long-chain alcohol oxidation. Instead the detected alcohol dehydrogenase only seems 

to be involved in growth with short-chain alcohols.  

We were unable to amplify an alkane oxygenase gene from our strain with new and known 

primers designed to detect different classes of alkane oxygenases. However, we amplified a 

sequence, similar to an acyl CoA dehydrogenase from strain AW-1T. This acyl-CoA 

dehydrogenase enzyme has been reported to be involved in n-alkane degradation in 

Acinetobacter strain M-1 (Tani et al. 2002). The same group proposed that a dioxygenase is 

involved in the initial oxidation (Finnerty pathway) of n-alkanes (Maeng et al. 1996). However, 

we have observed that the N-terminal sequence of this dioxygenase and the above mentioned 

acyl-CoA dehydrogenase is similar. This sequence seems highly conserved in all Pseudomonas 

genomes. Therefore, we also did a growth test on n-alkanes as carbon and energy source with 

Pseudomonas sp. KT2440, for which the genome sequence is available. The genome contains 

acyl-CoA dehydrogenase genes, but evidence for the presence of a conventional alkane 

hydroxylase system is lacking. No obvious aerobic growth of this strain on n-alkanes was found. 

Hence, we assume that the acyl-CoA dehydrogenase is not involved in the first step of activation 

of n-alkane, as reported by Maeng et al. (1996), but is important in a later reaction step of n-

alkane degradation.  

A reason why we were not able to detect alkane oxygenase genes could be that the alkane 

oxygenases have a very high sequence diversity (i.e. the protein sequence similarity between 

reported alkB types can be as low as 35%), especially among the Pseudomonas group. The 

Pseudomonas alkane oxygenases are as distantly related to each other as to the alkane 

oxygenases from phylogenetically unrelated bacteria (Smits et al. 2002). This may have led to 

similar false negative results as reported by others (Chandler & Brockman 1996; Heiss-Blanquet 

et al. 2005; van Beilen et al. 2006). It may also be that a novel type of alkane oxygenase is 

involved in this process, of which the genes are not known yet and which may be specific for n-

alkane degradation at low oxygen concentrations, as is evidently the case for growth under 



Chapter 3 

 

 60 

chlorate-reducing conditions. The extent of diversity of alkane oxygenases became apparent in 

recent research by Kuhn et al. (2009). They found that only one out of the 76 clones of the 

putative alk genes had a significant sequence similarity with previously known alk genes.       

Based on all the physiological features, enzyme measurements and the amplification of an acyl-

coA dehydrogenase gene, we propose a hypothetical n-alkanes (C7-C12) degradation pathway as 

depicted for n-decane in Fig. 2. We suggest that oxygen formed in the dismutation of chlorite is 

used to convert n-decane to decanol and decanol to decanal by means of oxygenases. Decanal is 

further oxidized to decanoate, which upon activation is degraded by β-oxidation. 

 

 
Fig. 2: Hypothetical pathway of degradation of n-decane coupled to chlorate reduction. Oxygen released from 
chlorite dismutation is used by a presumed oxygenase to incorporate in the n-alkane molecule to form an alcohol 
and later on an aldehyde. Further degradation may occur in the absence of oxygen. 

 

This is the first report of the degradation of aliphatic hydrocarbons with chlorate, both as electron 

acceptor and as source of oxygen needed for the oxygenase activity. The degradation of aromatic 

hydrocarbons with chlorate has recently been described (Tan et al. 2006; Weelink et al. 2008). 

This study adds to the possibility to apply microorganisms with oxygenase-dependent pathways 

for the bioremediation of anoxic soils polluted with compounds that are difficult to degrade in 

the absence of molecular oxygen.  
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Abstract 

The chlorite dismutase (Cld) of Pseudomonas chloritidismutans was purified from the 

periplasmic fraction in one step by hydroxyapatite chromatography. The enzyme has a molecular 

mass of 110 kDa and consists of four 31-kDa subunits. Enzyme catalysis followed Michaelis 

Menten kinetics, with Vmax and Km values of 443 U/mg and 84 µM, respectively. A pyridine-

NaOH-dithionite-reduced Cld revealed a Soret peak at 418 nm, indicative for protoheme IX. The 

spectral data indicates the presence of 1.5 mol of protoheme IX per mol of tetrameric enzyme 

while metal analysis revealed 2.2 moles of iron per mole of tetrameric enzyme. High 

concentrations of chlorite resulted in disappearance of the Soret peak which coincided with loss 

in activity. Electron paramagnetic resonance analyses showed an axial high-spin ferric iron 

signal. Cld was inhibited by cyanide, azide, but not by hydroxylamine or 3-amino-1,2,3-triazole. 

Remarkably, the activity was drastically enhanced by kosmotropic salts, and chaotropic salts 

decreased the activity, in accordance with the Hofmeister series. Chlorite conversion in the 

presence of 18O-labeled water, did not result in the formation of oxygen with a mass of 34 (16O - 
18O) or a mass of 36 (18O - 18O), indicating that water is not a substrate in the reaction and that 

both oxygen atoms originate from chlorite. 
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Introduction 

Chlorite dismutase (Cld) (EC 1.13.11.49) catalyzes the splitting of chlorite (ClO2
-) into chloride 

and molecular oxygen (ClO2
- → Cl- + O2), which is one of the central reactions in the 

dissimilatory reduction of (per)chlorate. The name ‘chlorite dismutase’ is in fact not correct, 

because the reaction is not a dismutation but an intramolecular redox reaction. The systematic 

name for this enzyme should be chloride:oxygen oxidoreductase or chlorite O2-lyase (EC 

1.13.11.49) as suggested by Hagedoorn et al. (2002).  

During dissimilatory perchlorate reduction, perchlorate (ClO4
-) is reduced to chlorate (ClO3

-) and 

chlorate is subsequently reduced to chlorite (ClO2
-), through the action of a (per)chlorate 

reductase. Next, the ‘chlorite dismutase’ converts the toxic chlorite to chloride and molecular 

oxygen. Because of this production of oxygen, microbial (per)chlorate reduction has been 

suggested as a novel strategy for bioremediation of hydrocarbons in anoxic zones (Coates et al. 

1998; Tan et al. 2006; Weelink et al. 2007).  

 So far, Cld has been purified from only four chlorate-reducing strains, i.e. Azospira oryzae GR-1 

(van Ginkel et al. 1996), Dechloromonas agitata (Coates et al. 1999), Ideonella dechloratans 

(Stenklo et al. 2001) and Dechloromonas aromatica RCB (Streit & DuBois 2008). The Cld from 

D. agitata has not been described in detail and the one from D. aromatica RCB has been purified 

after cloning and heterologous expression in Escherichia coli. Cld from I. dechloratans has also 

been heterologously expressed and compared with the native enzyme (Danielsson-Thorell et al. 

2004). All dismutases described thus far have a periplasmic location, a homotetrameric 

composition and absorption spectra characteristic for protoheme IX. 

Apart from the known (per)chlorate reducers, Cld-like proteins from non-(per)chlorate-reducing 

microorganisms have been studied, like Thermus thermophilus HB8 (Ebihara et al. 2005), 

Haloferax volcanii (Bab-Dinitz et al. 2006) and Candidatus Nitrospira defluvii (Maixner et al. 

2008). The Cld from N. defluvii is so far the only Cld-like protein with high catalytic activity 

from a bacterium that is not known for (per)chlorate reduction ability (Maixner et al. 2008). 

Recently Cld from A. oryzae GR-1 has been cloned, expressed, crystallized and subjected to X-

ray diffraction analysis (de Geus et al. 2008). The mechanism of chlorite “dismutation” has been 

proposed to occur via the formation of high valent oxo intermediates compound I and compound 

II (Hagedoorn et al. 2002; Lee et al. 2008). 

An immuno probe specific to Cld was shown to bind only (per)chlorate-reducing bacteria 

indicating  that the gene is highly conserved (O’ Connor & Coates 2002). Based on the primers 

developed by Bender et al. (2004) the Cld gene from Pseudomonas chloritidismutans has been 
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amplified, and its sequence analysis suggests a horizontal transfer from gamma-proteobacteria 

(Cladera et al. 2006). 

In the present study, the purification and characterization of the Cld from P. chloritidismutans is 

described. The chlorate reductase of P. chloritidismutans has already been purified, and 

characterized and found to be quite different from the (per)chlorate reductase of strain GR-1 

(Kengen et al. 1999). The present report describes a simple one-step purification procedure for 

Cld from the periplasmic fraction, the effect of various salts on the Cld activity and a comparison 

with the previously described Cld’s 

Materials and Methods 

Bacterial strain  

Pseudomonas chloritidismutans strain AW-1T (DSMZ 13952; ATCC BAA-443) was isolated 

from sludge of an anaerobic bioreactor treating a chlorate and bromate polluted waste stream. 

The bacterium was grown in strictly anoxic medium with acetate and chlorate, as described 

before (Wolterink et al. 2002).  

Enzyme purification  

For purification of the Cld from the periplasmic fraction, the cell pellet (2 to 3 g wet weight) was 

suspended in 10 ml 0.05 M Tris-HCl buffer (pH 9.5) and 0.05 M EDTA, and incubated for 30 

min at room temperature (Sebban et al. 1995). The suspension was centrifuged for 10 min at 

13,000 g at 4°C. The cell pellet was checked for the presence of whole cells by light microscopy. 

The supernatant was subjected to ultracentrifugation at 110,000 g for 1 h at 4ºC and the red 

supernatant (periplasmic fraction) was removed from the pellet (membrane debris). The 

supernatant was diluted with an equal volume of 10 mM Tris-HCl buffer (pH 7.2). Purification 

of the enzyme was carried out using an ÄKTAfplc (GE Healthcare). Four milliliters of the 

diluted supernatant was loaded on a hydroxyapatite column (CHT5-I; 10 x 64 mm, Bio-Rad Lab. 

Inc.) equilibrated with 10 mM Tris-HCl, pH 7.2. The Cld eluted from the column at the start of a 

linear gradient of 10 mM Tris-HCl, pH 7.2 to 450 mM potassium phosphate, pH 7.2. Fractions of 

Cld were kept at 4ºC for further analysis or stored at -20ºC 

Determination of the molecular mass  

Protein fractions were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) according to the method of Laemmli (1970). The 12% acrylamide gels were 

stained with Coomassie Brilliant blue R250. For calculation of the molecular mass of the 

subunit(s), a marker was applied with the following standard proteins (size in kDa): myosin 

(200), β-galactosidase (116), phosphorylase b (97), serum albumin (66), ovalbumin (45), and 
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carbonic anhydrase (31). Estimation of the size of the native enzyme was done by loading a 400 

µl aliquot of Cld on a Superdex 200 column (16 x 705 mm, GE Healthcare) equilibrated in 50 

mM potassium phosphate buffer, pH 7.0, containing 100 mM NaCl. The Superdex 200 column 

was calibrated with the following molecular weight markers (size in kDa): ferritin (440), catalase 

(232), bovine serum albumin (67), ovalbumin (43), chymotrypsinogen (25), and RNAse (14). 

Activity assay 

Cld activity was measured with a Clark-type Electrode (YSI, Yellow Springs, OH) as done by 

van Ginkel et al. (1996). Under a standard condition, 2.8 ml of buffer (100 mM sodium 

phosphate buffer, pH 6) was added to the sample chamber together with 10 µl of a stock solution 

of sodium chlorite, to yield a final concentration of 0.2 mM. The reaction was run for 5 min and 

the initial linear part was used to calculate the rate. One unit is defined as the amount of enzyme 

required to convert 1 µmol of chlorite per minute. The enzyme activity was measured at different 

temperatures between 15 and 40ºC (in 100 mM sodium phosphate buffer, pH 7.2).  

At the optimal temperature of 25ºC, the activity was measured at different pH values, ranging 

from 5 to 8.5 using sodium phosphate buffers. Kinetic parameters (Km and Vmax) were determined 

at different sodium phosphate concentrations (100 mM and 1 M) at pH 6 and 25ºC. The chlorite 

concentration was varied between 1 and 500 µM. The protein content was determined according 

to Bradford (1976) with bovine serum albumin as standard. 

Spectroscopy and metal analysis 

UV-visible spectra were recorded on a Hitachi U-2010 (Hitachi Science Systems, Hitachinaka, 

Japan) at 30ºC. The pyridine hemochrome absorbance spectrum was measured in 20% (w/v) 

pyridine, and 0.1 M NaOH in 50 mM potassium phosphate (pH 7.0). Sodium dithionite (2 mM 

final concentration) was added before the measurement in a stoppered cuvette, flushed with N2 

gas. The heme content was calculated using the molar extinction coefficient ε418 = 191,500 M-1 

cm-1 (Falk 1964). X-band electron paramagnetic resonance (EPR) spectra were recorded on a 

Bruker ER-200D spectrometer with peripheral equipment and data handling as described before 

(Pierik & Hagen 1991). EPR spectra were recorded of 0.91 mM Cld in 10 and 500 mM 

potassium phosphate buffer (pH 6). The iron content was determined by inductively coupled 

plasma (ICP)-MS (Elan 6000, Perkin-Elmer) (Jarvis et al. 1992). 

Inhibition and stabilization of chlorite dismutase 

The effect of cyanide, azide, hydroxylamine, EDTA, H2O2 or 3-amino-1,2,4-triazole as inhibitors 

was tested by adding a final concentration of 70 or 700 µM. Substrate inhibition of Cld was 

analyzed by adding 56 mM chlorite (final concentration) to the enzyme solution. After 1 min, the 
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activity was measured and a UV-visible spectrum of the protoheme was generated. After 10 min, 

again 56 mM chlorite (final concentration) was added and the measurements were repeated.  

The amount of enzyme present in the assay mixture was found to influence the total amount of 

oxygen produced (µM), therefore, undiluted and a 10-fold diluted solution (0.64 and 0.064 mg 

protein, respectively) of Cld was added to the assay.  

The effect of Hofmeister salts on the activity of Cld was determined. The following salts were 

added to the assay mixture at concentrations between 0 to 2 M: sodium phosphate; potassium 

phosphate; NaClO3, NaNO3, NaCl, NH4Cl, (NH4)2SO4, Na2SO4, NaHCO3.  The pH of the 

solutions was adjusted to 6 with 1 M HCl or 1 M NaOH. 

Incubation with H 2
18O 

To determine whether oxygen originates from chlorite or water, an experiment was set up using 

isotopically labeled water. Labeled water (water-18O, 98 at. % 18O) was purchased from ISOTEC 

(Sigma-Aldrich). Serum flasks (10 ml) were closed with butyl rubber stoppers, and the gas phase 

was exchanged for 100% helium. To these flasks, the following compounds were added; 100 µl 

H2
18O or 100 µl H2

16O (44.5% v/v), 10 µl ClO2
- (final concentration 45 mM), and 100 µl enzyme 

solution (final concentration = 0.09 mg/ml); 100 µl H2
18O (81.7% v/v), 10 µl ClO2

- (final 

concentration 125 mM), and 10 µl enzyme solution (final concentration 0.02 mg/ml). Oxygen 

production was clearly visible as small bubbles, which appeared when the three compounds were 

combined. The produced oxygen was analyzed for 16O2, 
17O2 and 18O2 using a GC/MS equipped 

with a capillary column (Innowax 30 m x 0.25 mm, split ratio 25:1, Hewlett-Packard). Helium 

gas was used as carrier gas, the inlet pressure was 1 kPa and the column temperature was 40ºC.  

Results and Discussion 

Enzyme purification  

Localization experiments performed previously, had shown that the Cld has a periplasmic 

orientation (Wolterink et al. 2003). A periplasmic location was also suggested for the Cld of 

strain GR-1 and I. dechloratans. Therefore, the first purification step concerned the isolation of 

the periplasmic fraction (after Sebban et al. 1995). After removing the protoplasts by 

centrifugation and membrane debris by ultracentrifugation, a red supernatant was obtained (lane 

2, Fig. 1). 
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Fig. 1:  SDS-PAGE of chlorite dismutase from P. chloritidismutans. Lane 1, marker proteins with 
indicated molecular masses; lane 2, periplasmic fraction; lane 3, hydroxyapatite fraction. 
 
 

This periplasmic fraction was diluted (1:1) with 10 mM Tris-HCl buffer (pH 7.2) and 

subsequently loaded on a hydroxyapatite column. The Cld, which eluted from the column at the 

start of the gradient, was separated from another red-colored fraction which did not bind to the 

column and did not show dismutase activity. According to the visible spectrum (not shown) this 

fraction is most likely another periplasmic heme protein. The Cld preparation was > 95% pure as 

assessed by SDS-PAGE (Fig. 1). The hydroxyapatite step resulted in an increase of the specific 

activity from 21 to 208 U/mg, with an overall yield of 69%, which is higher than that reported 

(43%) for strain A. oryzae GR-1 (van Ginkel et al. 1996). The purification by a factor 10 

indicates that the Cld is an abundant protein in the periplasm. A similar yield (63%) and an eight-

fold purification was found for Cld from I. dechloratans (Stenklo et al. 2001). 

Gel electrophoresis and determination of the molecular mass 

The purified Cld was loaded on a SDS-PAGE. This resulted in a single band at 31 kDa (Fig. 1, 

lane 3). On a calibrated Superdex 200 column the molecular weight of the native enzyme was 

determined as 110 kDa. This suggests a homotetrameric structure. Similar results were found for 

the Cld from A. oryzae GR-1, I. dechloratans, D. agitata and D. aromatica RCB. Table 1 shows 

a comparison of all known Cld’s. Except for the Cld-like protein from T. thermophilus, which 

has a very low catalytic activity (Ebihara et al. 2005), all are tetramers. Their molecular mass 

varies from 110-140 kDa and subunits size ranges from 25 to 32 kDa.  
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Spectral characteristics 

The pyridine-NaOH-dithionite-reduced Cld showed peaks indicative of protoheme IX (Soret, 

418 nm; β max, 526; α max, 557) (Falk 1964). The native Cld showed a Soret peak at 411 nm, 

which shifted to 433 nm on addition of dithionite. In the presence of cyanide, the Soret peak 

shifted to 420 nm. Similar characteristic Soret peaks have been observed in all other Cld’s (Table 

1). The formation of a cyanide complex, indicative of ferric heme in the protein, was also 

observed for the Cld of A. oryzae GR-1. 

The heme content was determined to be 1.5 mol of heme per mol of tetrameric Cld, based on a 

molar extinction coefficient of 191,500 M-1 cm-1. Similarly, A. oryzae GR-1 Cld contains 1.7 mol 

heme/mol Cld (van Ginkel et al. 1996) while the one from I. dechloratans has 2.4 mol of 

protoheme IX (Stenklo et al. 2001). The slightly higher heme content in I. dechloratans could be 

a result of the use of a different extinction coefficient (24,000 M-1 cm-1 at 558 nm) compared 

with the one used for A. oryzae GR-1 and P. chloritidismutans (191,000 M-1 cm-1 at 418 nm).  

On the other hand, differences in growth condition may also affect the heme content. 

Supplementation of the medium with hemin resulted in near-stoichiometric heme incorporation 

in heterologously produced Cld from D. aromatica RCB (Streit & DuBois 2008). Nevertheless, 

often the heme content of the enzyme is lower than expected for a homotetrameric enzyme.  

The exposure to chlorite also causes a bleaching of the heme and simultaneous loss of activity 

(Stenklo et al. 2001). This was also observed by van Ginkel et al. (1996), where the decrease of 

Cld activity at high chlorite concentrations was attributed to the oxidation of the heme. The Soret 

peak disappeared upon addition of 500 mM of chlorite in strain GR-1. These findings were 

confirmed here by adding 56 mM (final concentration) chlorite to the Cld of P. chloritidismutans 

two times. The Soret peak disappeared, which coincided with an activity loss of 80% after the 

first addition and 90% (of the starting activity) after the second addition of chlorite. Thus, the 

Cld is bleached and inactivated by high concentrations of substrate.  

Metal analysis by ICP-MS revealed the presence of 2.2 mol Fe per mol of tetrameric enzyme. 

This is slightly higher compared to the calculated heme content (1.5 mol/ mol of tetrameric 

enzyme). The cld of strain GR-1 contained 2.8 atoms of iron per tetramer. For the hemin 

supplemented enzyme of D. aromatica RCB a 1:1 ratio was found for the Fe and heme content 

(Streit & DuBois 2008). 
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Table 1: Characteristics of chlorite dismutases 
 P. chloritidismutans 

AW-1Ta 
 Strain 
GR-1b        

I. dechloratans c    D. aromatica 
RCB d 

Candidatus Nitrospira 
defluviie 

Thermus  thermophilus 
HB8f 

Subunit size  (kDa) 31 32 25 27 30 26 

Relative molecular mass (kDa) 110 140 115 116 ND 130 

T- optimum (ºC) 25 30 ND ND 25 ND 

pH optimum 6 6 ND ND 6 ND 

Vmax (U/mg) 0.44 × 103 2.2 ×103 4.3 × 103 4.7 × 103 1.9 ×103 1.6e 

Km (mM) 0.08  0.17 0.26 0.22 15.8 0.01 

kcat (s
-1) 0.23 × 103 1.2 × 103 1.8 ×103 1.88 × 103 0.96 × 103 0.77 

kcat/Km (M-1sec-1) 2.7 ×106 7.1 × 106 6.9 × 106 35.4 × 106 6.1 × 104 59 

Heme content  1.5 1.7 2.4 3.7 ND 0.6 

Soret band (Fe3+) 411 394g 392  388  415  403 

Soret band ( Fe2+) 433  432g 434  434  433 429 

a :Present study;  b : van Ginkel et al., 1996; c: Stenklo et al., 2001;  d : Streit & DuBois, 2008; e : Maixner et al., 2008;  f : Ebihara et al., 2005; g : Hagedoorn et al., 2002; ND: not described 
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EPR measurements 

For the isolated Cld of P. chloritidismutans an EPR-signal with g⊥ = 6.0 and g// = 2.0 was found, 

which can be attributed to axial high-spin ferric iron (Fig. 2).  

 
 

Fig. 2: Electron paramagnetic resonance spectra of P. chloritidismutans chlorite dismutase as isolated (in 10 
mM sodium phosphate). EPR conditions: microwave frequency, 9.432 GHz; Microwave power, 50 mW; 
modulation frequency, 100 kHz; modulation amplitude, 0.63 mT; temperature, 10.2 K. 
 

This result is similar to previous observations of the ferric ion in Cld from A. oryzae GR-1 

(Hagedoorn et al., 2002), which showed a mixture of two high-spin signals with close to axial 

rhombicity (E/D values of 0.01-0.02 and 0.03-0.04). Pseudomonas chloritidismutans Cld 

exhibits only a single axial high-spin ferric species, which indicates a slightly different micro-

environment around the active site. No low-spin ferric species was observed at pH 6, which is 

consistent with the fact that the low-spin ferric species observed in isolated Cld from other 

organisms originates from the hydroxide adduct with a pKa of 8.2 (Hagedoorn et al. 2002). 

Kinetic characterization 

The total amount of oxygen produced by Cld in the assay was affected by the amount of enzyme 

present. In Table 2, the results are shown of enzyme assays using undiluted and 10 times diluted 

purified cld. In the presence of the same concentration of chlorite, but with less enzyme, the total 

amount of oxygen produced was less. These results suggest that the enzyme is inactivated by 

chlorite at low enzyme concentrations before all chlorite is converted. These results are also 

supported by the disappearance of the Soret peak upon addition of excess chlorite as mentioned 
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before. Therefore, in all kinetic analyses care was taken to ensure that sufficient enzyme was 

present in the assay mixture. 

 

Table 2 Effect of enzyme concentration on oxygen production 
Amount of ClO2

- added 
(µM) 

O2 produced by undiluted chlorite 
dismutase (0.64 mg/l) 

(µM) 

O2 produced by 10 times diluted 
chlorite dismutase (0.064 mg/l) 

(µM) 
100 98 34 

200 205 69 

300 300 96 

O2 Production measured in 1M phosphate buffer at 25ºC. All values are average of duplicates and standard deviation is less than 
10%. 

 

The enzyme was active between pH 5 and pH 8.5, with an optimum at pH 6, and between 15 and 

45ºC, with an optimum at 25 ºC. The Vmax and Km values at 100 mM sodium phosphate, pH 6 and 

at 25ºC were 443 U/mg and 84 µM, respectively (Table 1). The Vmax value is slightly lower than 

other reported values, while its Km value indicates a higher affinity for chlorite. As a result, the 

catalytic efficiency kcat/Km (M-1 sec-1) of 2.7×106 is in the same range as that found for all other 

Cld’s (Table 1).  

Effect of salts 

The activity of Cld was strongly influenced by the type and concentration of salts present in the 

assay mixture. The results are shown in Fig. 3a and Fig. 3b. When phosphate or sulfate was used, 

activity increased at higher salt concentrations up to 1M and then decreased again. When 

chlorate or nitrate was used, the activity decreased with increasing salt concentration (Fig. 3a). 

Activity was not influenced by the bicarbonate salt and similarly chloride salts up to a 

concentration of 1.5 M showed no significant effect (Fig. 3b).  

These results are in line with the Hofmeister series which describes the effects of salts on protein 

structure (Jensen et al. 1995). The stabilizing effects of kosmotropic salts (SO4
2- and PO4

3-) on 

enzymes are caused by the promotion of intermolecular and intramolecular hydrophobic 

interactions of the protein which are due to the water structuring effects of the ions. This water 

structuring effectiveness is ranked for anions according to the Hofmeister series following the 

order PO4
3- > F- > SO4

2- > Cl- > NO3
- > Br- > ClO3

- > I- > BrO3
- > ClO4

-. Increase of chaotropic 

salts like nitrate and chlorate reduced the activity. The increase of the concentration of 

kosmotropic salts resulted in higher Vmax as well as higher Km values (for 1 M phosphate, the 

Vmax and Km values were 4650 U/mg and 833 µM, respectively). 
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Fig. 3a: 

 

 

Fig. 3b: 

 

 
Fig. 3 (a& b): Effect of different salts on activity of chlorite dismutase isolated from P. chloritidismutans. 
Experiments were done at 25ºC and pH 6. The conversion of chlorite into chloride and oxygen did not alter the 
pH of the buffer solution. In Fig. 3A ■ represents specific activity with K2HPO4/ KH2PO4, ● is specific activity with 
Na2HPO4/ NaH2PO4, ▲ is specific activity with NaClO3 while х is specific activity with NaNO3. While in Fig. 3B, ♦ 
represent specific activity with NaCl, ■ is specific activity with NH4Cl, ▲ is specific activity with (NH4)2SO4, × is 
specific activity with Na2SO4 and ● represent the specific activity with NaHCO3. All points are average of two and 
standard deviation at all the points is less than 10%. 
 

To rule out the possibility that the activity increase by a kosmotropic salt (PO4
3-) is due to 

interaction of this salt with the active center (protoheme), EPR measurements were performed 

with Cld in 10 mM and 0.5 M phosphate solution (both at pH 6). Both samples exhibited 
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identical axial high-spin ferric EPR signals, and no evidence of a low-spin ferric species was 

observed (not shown). Activity increase by phosphate therefore seems to be due to water 

structuring effects on the protein. Whether this effect of kosmotropic salts also holds for 

previously characterized Cld’s is not known, but it may very well explain observed differences in 

Vmax and Km values. 

No significant inhibition was observed in the presence of 1.5 M concentrations of sodium and 

ammonium salts of chloride (Fig. 3b), which is in contrast to the results for the cld of D. 

aromatica RCB where chloride has been found to be a mixed inhibitor (Streit & Dubois  2008).  

Inhibition studies 

Inhibition studies showed that cyanide and azide were effective inhibitors (Table 3). The Cld of 

A. oryzae GR-1 was, however, not inhibited by even 20 mM of azide (van Ginkel et al. 1996). In 

contrast, the Cld of P. chloritidismutans was not inhibited by hydroxylamine, while the Cld of 

strain GR-1 was. These differences cannot yet be explained. With respect to 3-amino-1,2,4-

triazole, the Cld of strain GR-1 and P. chloritidismutans behaved similarly; both were not 

inhibited, whereas it is an effective inhibitor of catalases (Diaz & Wayne 1974; Jouve et al. 

1983).  

Involvement of water  

In order to elucidate the mechanism of chlorite dismutation, the involvement of water in the 

dismutation reaction was investigated. 18O labeled water was used and the evolution of oxygen 

with a mass of 32 (16O - 16O), or a mass of 34 (16O - 18O) or a mass of 36 (18O - 18O) was 

monitored using GC-MS. During all conditions tested, only a mass peak of m/z = 32 (16O - 16O) 

was measured, indicating that despite the presence of different concentrations of H2
18O, water 

did not take part in the reaction. Hence, both oxygen atoms in molecular oxygen originate only 

from chlorite. These data correspond with the recent mechanistic analysis described by Lee et al. 

(2008). 

In conclusion, P. chloritidismutans contains a heme-containing Cld, which is similar to other 

characterized Clds with respect to oligomeric structure, cell localization, and kinetic data. 

However, differences exist concerning the deviant inhibition pattern by cyanide, azide and 

chloride. For the first time we described the strong effect of kosmotropic and chaotropic salts on 

Cld kinetics. The data contribute to the understanding of this remarkable enzyme, being one of 

the few oxygen-generating enzymes in nature and the only one to form an O-O double bond next 

to photosystem II. The number of Cld-like sequences in various databases is increasing rapidly. 

Further purification and characterization of the corresponding enzymes is necessary to define the 
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boundary between catalytically active and substantially less-active ‘pseudo’-Clds from non-

chlorate-reducing bacteria.   
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Abstract 

Microbial chlorate reduction is a unique process, which releases molecular oxygen during the 

dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means 

of oxygenases. Pseudomonas chloritidismutans AW-1T was found to grow on benzoate with 

chlorate or oxygen, but not with nitrate. The specific growth rates on benzoate and chlorate, and 

benzoate and oxygen were 0.2 + 0.01 and 1.1 + 0.04 day-1, respectively. Catechol was detected 

as intermediate of benzoate degradation and the bacterium also grows with catechol. The key 

enzymes chlorate reductase, chlorite dismutase, benzoate 1,2-dioxygenase and catechol 1,2-

dioxygenase were detected. Benzoate1,2-dioxygenase, catechol 1,2-dioxygenase and other 

enzymes involved in benzoate degradation were exclusively detected in benzoate grown cells in 

comparison with acetate grown cells by LC-MS/MS analysis. The degradation of benzoate with 

oxygen and chlorate, but not with nitrate, detection of catechol as intermediate, biochemical 

activities of enzymes involved and confirmation of oxygenases in the benzoate grown cells 

proteome show that the strain employs oxygenase-dependent pathways for the breakdown of 

benzoate. 
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Introduction  

A large variety of natural and anthropogenic compounds are aromatic (Fuchs 2008). The aerobic 

degradation of aromatic compounds is well understood (Harwood & Parales 1996; Vaillancourt 

et al. 2006). During aerobic degradation of aromatic compounds the aromatic ring is first 

modified by mono or dioxygenases. The dihydroxylated benzene ring containing compounds 

formed are central intermediates in the aromatics degradation pathway. The next step, the 

cleavage of the aromatic ring, is mediated by dioxygenases. The ring is either cleaved between 

the two hydroxyl groups, called ortho-cleavage (or intradiol cleavage), or cleaved adjacent to one 

of the hydroxyl groups, called meta-cleavage or extradiol cleavage (Harwood & Parales 1996; 

Vaillancourt et al. 2006). The breaking of the aromatic ring is energetically quite difficult in 

anoxic environments (Fuchs 2008). A common way of activation of the aromatic ring in an 

anoxic environment is often done through fumarate addition by a glycyl radical enzyme (Selmer 

et al. 2005; Fogt 2008). There are a few other mechanisms of anaerobic degradation, but they 

have been poorly characterized (Fuchs 2008).  

Benzoate is an intermediate in the aerobic degradation of aromatic compounds like mandelate, 

toluene and benzene (Harwood & Parales 1996; Yerushalmi 2001). Benzoate has also been 

detected as intermediate during anaerobic benzene degradation under sulphate-reducing, 

methanogenic and iron-reducing conditions (Caldwell & Suflita 2000; Kunapuli et al. 2008). 

Moreover, benzoate is often used as a model aromatic compound for biodegradation studies (Cao 

et al. 2008). 

Many soils that are polluted with hydrocarbons are anoxic. Introducing oxygen in such zones 

might help to destabilize the stable benzene ring, thus allowing the degradation of resulting 

intermediates anaerobically (Wilson & Bouwer 1997). The introduction of air or pure oxygen is 

not effective due to the low solubility of oxygen. Introduction of hydrogen peroxide (H2O2) 

might be toxic for some microorganisms (Morgen et al. 1993). Solid oxygen releasing 

compounds like oxides of CaO2 and MgO2, are costly and their even distribution is difficult 

(Weelink et al. 2008).  

(Per)chlorate is a unique compound, which upon microbial reduction yields molecular oxygen 

(Rikken et al. 1996; Dudley et al. 2008). (Per)chlorate also has a reduction potential comparable 

with that of nitrate and oxygen (Coates & Achenbach 2004; Stams et al. 2004). It has been 

proposed as an alternative electron acceptor for the oxidation of hydrocarbons (Coates et al. 

1999; Tan et al. 2006; Weelink et al. 2008).  

A catechol 1,2-dioxygenase has been amplified from Pseudomonas chloritidismutans via PCR 

(Cladera et al. 2006). We screened the degradation capacity of this bacterium for various 
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aromatics and found that Pseudomonas chloritidismutans AW-1T, a chlorate reducing bacterium, 

is capable of growth on benzoate with oxygen or chlorate as electron acceptor. This could be 

important for bioremediation applications, since this strain is also capable of alkane oxidation 

with oxygen and chlorate as electron acceptor (Mehboob et al. 2009a). To get insight in the 

degradation pathway(s) of aromatic compounds, we studied the differential expression of 

oxygenases involved in the aromatic degradation pathway in the whole proteome.  

Materials and Methods 

Inoculum, media and cultivation  

Pseudomonas chloritidismutans strain AW-1T (DSM 13592T) was isolated in our laboratory 

(Wolterink et al. 2002). For the degradation experiments with nitrate, it was adapted to nitrate as 

described by Mehboob et al. (2009a).  

The P. chloritidismutans strain AW-1T was grown in the medium described by Mehboob et al. 

(2009a). The composition of the medium (in grams per liter of anaerobic demineralized water) 

was as follows: Na2HPO4.2H2O, 3.48; KH2PO4 1; resazurin, 0.005; CaCl2, 0.009; ammonium 

iron (III) citrate, 0.01; NH4SO4, 1; MgSO4.7H2O, 0.04. Vitamins and trace elements were added 

as described by Holliger et al. (1993) but supplemented with Na2SeO3, 0.06; NaWO4.2H2O 

0.0184. The pH of the medium was 7.3.  

P. chloritidismutans strain AW-1T was cultivated in 120-ml flasks containing 40 ml of medium 

at 30oC. The medium was made in anaerobic water and dispensed in the flasks under continuous 

flushing with nitrogen. The bottles were closed with butyl rubber stoppers and aluminum crimp 

caps, and the head space was replaced by N2 gas (140 kPa). All solutions that were added to the 

medium were anaerobic and autoclaved at 121oC for 20 minutes. Chlorate and nitrate were 

supplied from a 0.4 M stock solution to get a final concentration of 10 mM. The end 

concentration of benzoate and catechol was 2 mM. The aerobic degradation experiments were 

done in aerobic medium and no headspace flushing was done. The bottles with catechol were 

wrapped in aluminum foil to avoid photo-oxidation (Borraccino et al. 2001). For proteome 

analysis the bacteria were grown in 1-liter bottles with 600 ml of medium.  

Preparation of cell free extracts   

Cell free extracts of strain AW-1T, grown in anaerobic medium with benzoate as sole carbon and 

energy source and chlorate as electron acceptor, were prepared anaerobically as previously 

described (Mehboob et al. 2009a). Cell free extracts were freezed in 12-ml serum vials until 

used. 
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The protein content of the cell free extract fraction was determined according to the method of 

Bradford (1976) with bovine serum albumin as standard. 

Enzyme activity measurements 

 Chlorate reductase and chlorite dismutase activities were determined at 30°C with cell free 

extracts. Chlorate reductase activity was determined spectrophotometrically as described by 

Kengen et al. (1999), by monitoring the oxidation of reduced methyl viologen at 578 nm. One 

unit (U) of enzyme activity is defined as the amount of enzyme required to convert 1 µmol of 

chlorate per minute.  

Chlorite dismutase activity was determined by measuring oxygen production with a Clark-type 

oxygen electrode (Yellow Spring Instruments, Yellow Springs, Ohio, USA) as described by 

Wolterink et al. (2002). One unit (U) of activity is defined as the amount of enzyme required to 

convert 1 µmol of chlorite per minute.  

Benzoate 1,2-dioxygenase and catechol 1,2-dioxygenase activity were measured 

spectrophotometrically. Benzoate 1,2-dioxygenase activity was determined as described by 

Yamaguchi & Fujisawa (1980) by measuring the decrease in absorbance of NADH at 340 nm. 

NADH oxidase activity without the benzoate addition was subtracted from the given activity. 

One unit (U) of activity is defined as the amount of enzyme required to convert 1 µmol of 

substrate per minute. Catechol 1,2-dioxygenase activity was determined as described by Cao et 

al. (2008) by measuring the increase in absorbance at 260 nm due to the formation of cis, cis-

muconate. One unit (U) of activity is defined as the amount of enzyme required to form 1 µmol 

of cis,cis-muconate per minute.  

Analytical techniques 

Chlorate, chloride, nitrate and nitrite were measured, as described by Scholten and Stams (1995) 

after separation on a Dionex column (Ionpac AS9-SC) (Breda, The Netherlands), with a 

conductivity detector. Potassium fluoride (2 mM) was used as internal standard. 

Oxygen was analyzed by gas chromatography with a GC-14B apparatus (Shimadzu, Kyoto, 

Japan) as described previously (Mehboob et al. 2009a). 

Total amount of inorganic carbon present inside the flask was calculated by using the 

Henderson-Hesselbach equation as described previously (Mehboob et al. 2009a). CO2 was 

analyzed by gas chromatography on GC2014 gas chromatograph fitted with a TCD detector. The 

injector and detector temperatures were 60 and 130°C, respectively. CO2 was analyzed with a 

Poraplot Q column (Chrompack; 25 m length, 0.53 mm internal diameter; film thickness, 20 

µm). Helium was the carrier gas at a flow rate of 15 ml min-1, and the oven temperature was 

33°C. 
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Benzoate and catechol were analyzed by HPLC as described by Weelink et al. (2008).  

DNA extraction and sequencing 

The DNA of P. chloritidismutans strain AW-1T was extracted by the standard CTAB method of 

JGI. The 454 sequencing was done as described by Droege & Hill (2008). 

Computational and statistical analysis 

A six frame translation was used for analysis of proteomics data. Details of the proteomics 

analysis pipeline are described in chapter 6. Spectral counting was used for comparative 

quantification (Liu et al. 2004). A G-test was applied to see the significant differential expression 

(Sokal & Rohlf 1994). The minimum requirement for the G-test was that at least 5 peptides 

match for one protein under one condition.  

Differential expression of the whole proteome  

Sample preparation for tandem-MS 

Cultures were analyzed for comparative analysis of the whole proteome. The bacterium was 

grown aerobically on acetate and benzoate. Equal amounts of each sample (250 µg) were 

separated on 12% SDS polyacrylamide gels, and gels were stained according to the 

manufacturer’s protocol using Colloidal Blue Staining (Invitrogen, Carlsbad, CA, USA). Each of 

the two gel lanes was cut into five slices, and slices were cut into smaller pieces. After washing 

twice with ultra-pure water, gel samples were treated with 50 mM dithiothreitol (DTT) in 50 mM 

NH4HCO3 (pH 8.0) for 1h at 60°C. DTT solution was decanted and samples were alkylated with 

100 mM iodoacetamide in NH4HCO3 (pH 8.0) for 1h at room temperature in the dark with 

occasional mixing. The iodoacetamide solution was decanted and samples were washed with 

NH4HCO3 (pH 8.0). Gel pieces were rehydrated in 10 ng/µl trypsin (Sequencing grade modified 

trypsin, Promega, Madison, WI, USA) and digested overnight at 37°C. To maximize peptide 

extraction, the solution from trypsin digest was transferred to new tubes, and gel pieces were 

subjected to two rounds of 1 min sonication, the first round with 5% trifluoroacetic acid (TFA) 

and the second round with 15% acetonitrile and 1% TFA. After each of these two rounds 

solutions were removed and added to the original trypsin digests.  

Liquid chromatography tandem mass spectrometric analysis 

Samples were analyzed on LC-MS/MS as described previously (van Esse et al. 2008).  

Mass spectrometry database searching 

The resulting spectra from the MS analysis were submitted to a local implementation of the 

OMSSA search engine (8). MS/MS spectra were searched against a peptide database derived 
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from a six frame translation of Pseudomonas chloritidismutans strain AW-1T and a decoy reverse 

database constructed from the reverse of all the six frame translation output.  

All OMSSA searches used the following parameters: a precursor ion tolerance of 0.2 Da, 

fragment ion tolerance of 0.3 Da, a missed cleavage allowance of up to and including 2, fixed 

carbamide methylation, variable oxidation of methionine and deamination of glutamine and 

asparagine.  

The Expect value threshold was determined iteratively from the false discovery rate (FDR) and 

was set to 0.01. With this setting an FDR of < 5% is expected.  

The FDR calculation was calculated as follows: peptide-spectrum matches (PSM) with each 

individual peptide database were ranked by their E-value for each identified spectrum with a 

threshold E-value < 0.01 and the top hit identified peptide sequence was selected. For FDR 

calculation, top hit spectral matches to peptides in the reversed database were taken and the 

number of false positives was divided by the number of total positives. 

Nucleotide sequence accession numbers 

The protein sequences obtained in this study will be deposited in the GenBank/EMBL/DDBJ. 

Results 

Benzoate degradation 

Pseudomonas chloritidismutans AW-1T used benzoate as a sole source of carbon and energy. 

Growth on benzoate and chlorate was shown by an increase in optical density (Fig. 1a). Benzoate 

degradation coincided with inorganic carbon formation, chlorate reduction and chloride 

formation (Fig. 1a, 1b). No growth was observed in controls without inoculum, without benzoate 

or without chlorate (results not shown). In bottles without an electron acceptor added a little bit 

of benzoate (less than 0.2 mM) was oxidized probably due to residual oxygen. Catechol was 

detected as intermediate in the benzoate degradation. During growth, the medium turned 

brownish. The specific growth rate on benzoate and chlorate was 0.2 + 0.01 per day (doubling 

time 2.9 + 0.2 days). The oxidation of 1.0 + 0.1 mM of benzoate led to a reduction of  4.8 +  0.4 

mM of chlorate, the production of 6.3 + 0.9 mM of bicarbonate and 3.8 +  0.7 mM of chloride. 

The balance fits rather well with the theoretical stoichiometry of a complete oxidation of 

benzoate coupled to chlorate reduction:   

C7 H5 O2 Na + 5 ClO3
-+ 4 H2O → 7 HCO3

- + 5 Cl- + Na+ + 6 H+          (1) 
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Fig. 1a: 
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Fig. 1b: 
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Fig 1: Growth of strain AW-1T with benzoate and chlorate. In (a): □ benzoate, ◊ catechol and ∆ optical density 
at 600 nm. In (b): ♦ chlorate, ■ chloride and ▲ total inorganic carbon. 
 

The bacterium also grew aerobically on benzoate (Fig. 2a). The increase in OD followed 

benzoate degradation. Catechol was also detected as an intermediate (Fig. 2a). Oxygen 

consumption and total inorganic carbon formation are shown in Fig. 2b. An unknown peak was 

seen which elutes before catechol. This highly polar compound could be 

dihydrodihydroxybenzoate or cis,cis-muconate (Reineke, personal communication). Since this 

peak stayed even after the catechol was degraded, it is likely cis,cis-muconate. The specific 

growth rate on benzoate and oxygen was 1.1 + 0.04 per day (doubling time 0.6 + 0.02 days). 



Growth of P. chloritidismutans on benzoate and chlorate 

 

 89

Neither growth nor increase in total inorganic carbon was observed with benzoate and nitrate, 

using P. chloritidismutans inoculum adapted to grow on nitrate and acetate (results not shown).  

 

Fig. 2a: 
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Fig. 2b: 
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Fig. 2: Growth of strain AW-1T with benzoate and oxygen. In (a): □ benzoate, ◊ catechol and ∆ optical density at 
600 nm. In (b): ♦ oxygen consumed and ▲ total inorganic carbon. 
 

Catechol degradation and screening of other aromatics 

Apart from benzoate, Pseudomonas chloritidismutans AW-1T used catechol with chlorate and 

oxygen, but not with nitrate. However, growth on catechol with chlorate was slower than growth 

on benzoate both aerobically and anaerobically. A small amount of CO2 formation was also 

observed in the aerobic controls without inoculum, showing a slight abiotic oxidation of catechol 

as was also observed by Majcher et al. (2000).   
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Other substrates tested were benzene, toluene, aniline, phenol, xylenes, cresols, chloro-phenols, 

chloro-benzoates, aminobenzoates, benzaldehyde and mandelate. Except for benzaldehyde, no 

growth was found with these substrates. Among aromatic amino acids, growth was found with 

tyrosine and phenylalanine, but not with tryptophan.  

Enzyme assays 

Cell free extracts of cells grown on benzoate and chlorate showed chlorate reductase, chlorite 

dismutase, catechol 1,2-dioxygenase and benzoate 1,2-dioxygenase activity. The chlorate 

reductase activity was 11.3 + 1.4 U/mg of protein, while a chlorite dismutase activity of 0.07 + 

0.05 U/mg of protein was obtained. The benzoate grown cell free extract also showed 0.5 + 0.1 

U/mg of protein of benzoate1,2-dioxygenase and 0.01 + 0.0 U/mg of protein of catechol 1,2-

dioxygenase activity. 

The low activity of catechol 1,2-dioxygenase was due to the accumulation of cis, cis-muconate.  

Due to its high absorbance at 260 nm it was not possible to add more cell free extract. 

Differential expression of the whole proteome  

The whole proteome of acetate grown cells was compared with that of benzoate grown cells. 

Overall, 91 proteins were significantly (P<0.05) up-regulated on benzoate while 33 were down-

regulated. The number of peptides for each protein involved in benzoate and catechol 

degradation and which were only expressed during growth on benzoate are listed in Table 1.  

 

Table 1: Number of peptides found for each protein, involved in benzoate catabolism and expressed only 
during growth on benzoate. 

Protein  Number of peptides found 

Benzoate dioxygenase, alpha subunit (BenA) 80 

Benzoate dioxygenase, beta subunit (BenB) 11 

Benzoate dioxygenase ferredoxin  reductase component (BenC) 13 

Benzoate-specific porin (BenF) 27 

Benzoate MFS transporter (BenK) 10 

1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase (BenD) 33 

Catechol 1,2-dioxygenase (CatA) 59 

cis,cis-muconate cycloisomerase (CatB) 34 

3-oxoadipate:succinyl-CoA transferase (CatE) subunit A  26 

3-oxoadipate:succinyl-CoA transferase (CatE)subunit B  16 

beta-ketoadipyl CoA thiolase (CatF) 38 

 

Apart from those proteins some other proteins like two zinc dependent alcohol dehydrogenases, a 

TRAP transporter and a Ton-B dependent receptor were also induced during growth on benzoate. 
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Among the up-regulated proteins the multifunctional fatty acid oxidation complex, two other 

alcohol dehydrogenase, a long chain fatty acid transporter and outer membrane protein might be 

involved in the benzoate degradation. Amino acid metabolism genes also seem to be up-

regulated. The expression of two alkyhydroperoxide reductases, a catalase and nitrous oxide 

reductase suggest a higher level of oxidative stress. 

Discussion 

Pseudomonas chloritidismutans AW-1T is a gram-negative, facultative anaerobic, chlorate-

reducing bacterium, which has been isolated on acetate and chlorate (Wolterink et al. 2002). It 

can also grow on alkanes with oxygen and chlorate (Mehboob et al. 2009a). A catechol 1,2-

dioxygenase has been amplified through  PCR from its genome (Caldera et al. 2006). However, 

the bacterium was never tested for growth on catechol. We tested its ability to grow on aromatics 

and found that, apart from using some aromatic amino acids (phenylalanine and tyrosine), strain 

AW-1T is able to grow with benzoate and catechol with oxygen and chlorate, but not with nitrate 

as electron acceptor. This suggested the involvement of an oxygenase dependent pathway. Strain 

AW-1T has the ability to grow in the absence of external oxygen on simple aromatics and their 

intermediates with chlorate as electron acceptor and source of oxygen. This might be of 

significance for bioremediation purposes.  

The two (per)chlorate reducing strains Dechloromonas aromatica RCB and Alicycliphilus 

denitrificans BC are known to grow on aromatics with chlorate. A. denitrificans BC can grow on 

catechol, but not on benzoate. Though the D. aromatica RCB genome has a benzoate 

dioxygenase (Salinero et al. 2009), the bacterium was only shown to grow on benzoate with 

nitrate (Coates et al. 2001). Chlorate was not tested. Growth on the central intermediate of 

aromatics degradation (catechol) in the absence of external oxygen is important since there are 

only a few pure culture studies about anaerobic catechol degradation (Szewzyk and Pfennig 

1987; Schnell et al. 1989; Kuever et al. 1993, Gorny and Schink 1994; Ding et al 2008). Growth 

on benzoate was slower with chlorate than with oxygen. The doubling time with benzoate and 

chlorate is 2.9 + 0.2 days, which is much slower than the doubling time on benzoate and oxygen 

i.e. 0.6 + 0.02 days. The reason can be the low activity of the chlorite dismutase enzyme. 

During growth on benzoate and chlorate the colour of the medium turned brownish indicating the 

formation of catechol as intermediate. During benzoate degradation, another unknown highly 

polar compound eluted from the HPLC column. Because of the high absorbance of CFE at 260 

nm, it is likely that it is cis,cis-muconate. Cis,cis-muconate accumulation has also been observed 

by other researchers and has been attributed to delayed expression of muconate cycloisomerase 

(Schmidt & Knackmuss 1984). 
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The measured chlorite dismutase activity in benzoate grown cells (0.07 U/mg of protein) is lower 

than measured for acetate grown cells (7.7 U/mg of protein). However, different salts and 

solvents may have an effect on the chlorite dismutase activity, as was found before (Mehboob et 

al. 2009b).  

A comparison of the whole proteome of acetate and benzoate grown cells showed the induction 

of a whole operon containing benzoate and catechol catabolism genes (Table 1, Fig. 3). The 

clustering of benzoate and catechol metabolism genes points towards their functional coherence. 

The operon contains the three subunits of benzoate di-oxygenase (benABC), a benzoate specific 

porin (benF) and two benzoate specific transporters (benE and benK). The operon also 

encompasses a putative transcriptional activator (benR). In the same operon we found the 

dihydrodihydroxybenzoate dehydrogenase (benD) enzyme that forms catechol. The catechol 1,2-

dioxygenase and two enzymes of beta-ketoadapiate pathway i.e. cis,cis-muconate lactonizing 

enzyme (catB) and muconolactone isomerase (catC) were also found in the same operon. With 

the help of mapping of proteins on the genomic contig we found the gene order presented in Fig. 

3a.   

Based on all the physiological features, enzyme measurements and induction of benzoate 

catabolism proteome, we propose a benzoate degradation pathway as shown in Fig. 3b. The 

enzymes, which were found to be induced in benzoate grown cells are shown in bold. We were 

unable to detect the muconolactone isomerase (catC) and beta-ketoadipate succinyl CoA 

transferase (catD) in the proteome but encoded by the genome. The reason might be that they 

have either a very short half life or they are required in relative low abundance.  We suggest that 

oxygen formed in the dismutation of chlorite is used to convert benzoate to catechol and then 

catechol to cis,cis-muconate by the enzyme benzoate 1,2-dioxygenase and catechol 1,2 

dioxygenase, respectively.  

This is the first report about a bacterium that is able to degrade alkanes and aromatics in the 

absence of external oxygen, while generating oxygen via chlorite dismutation. For the 

degradation of each mole of benzoate only two moles of oxygen are needed by the oxygenases 

while the remaining five moles of oxygen can be used in respiration. Further research is needed 

to determine the exact fate of the extra oxygen produced.  
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3a: 

 

3b: 

 

 

Fig. 3: (a) Benzoate and catechol catabolism operon. (b) Degradation pathway of benzoate coupled to chlorate 
reduction. The proteins, which were found to be expressed only in benzoate grown cells are shown in bold. 
benABC/ BenABC: benzoate 1,2- dioxygenase, benD/ BenD : dihydroxybenzoate dehydrogenase, benE and benK: 
benzoate specific transporters, benF: benzoate specific porin, benR: a putative transcriptional activator, catA/ CatA: 
catechol 1,2-dioxygenase, catB/ CatB: cis,cis-muconate lactonizing enzyme, catC/ CatC: muconolactone isomerase, 
catD/ CatD: beta-ketoadipate succinyl CoA transferase, CatE: 3-oxoadipate:succinyl-CoA transferase, CatF: beta-
ketoadipyl CoA thiolase, clrABDC: chlorate reductase, cld: chlorite dismutase. 
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Abstract 

Pseudomonas chloritidismutans AW-1T is a bacterium which is able to oxidize alkanes in the 

absence of externally supplied oxygen by using chlorate as a source of oxygen and as electron 

acceptor. The proteogenomic analysis of Pseudomonas chloritidismutans AW-1T showed the 

versatility of this bacterium to adapt to different growth conditions. The enzymes involved in the 

alkane oxidation pathway were identified. Alkane monooxygenase was exclusively detected in 

alkane-oxygen-grown cells as well as alkane-chlorate-grown cells, indicating that under chlorate-

reducing conditions an oxygenase mediated pathway is employed for degradation of alkanes. 

Up-regulation of cbb3 type cytochrome oxidase in chlorate-grown cells shows the adaptive 

nature of the bacterium to low oxygen concentrations. Proteomic and biochemical data also 

showed that both chlorate reductase and chlorite dismutase are constitutively expressed and are 

up-regulated under chlorate-reducing conditions and down-regulated when grown with oxygen.  
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Introduction 

Pseudomonas chloritidismutans AW-1T, a gram-negative, facultative anaerobe was originally 

isolated from chlorate and bromate polluted wastewater (Wolterink et al. 2002). It is the only 

known microorganism that can degrade medium chain n-alkanes (C7-C12) in the absence of 

externally supplied oxygen by generating its own oxygen via chlorite dismutation. However, 

using primers that target different classes of oxygenases, the alkane oxygenase genes responsible 

for alkane oxidation could not be found (Mehboob et al. 2009). 

 With the advent of next generation sequencing technologies it is quite economical to sequence 

the genomes of microorganisms. Experimental validation of predicted genes via proteomics is 

currently the best option to identify protein coding genes (Ansong et al. 2008). MS-based 

proteomics corrects the genome annotation errors by discovering un-annotated novel genes, 

reversal of reading frames, determining the protein start and termination sites or programmed 

frame shifts, and validating the gene functions, and hypothetical open reading frames (Ansong et 

al. 2008, Armengaud 2009, Kyrpides 2009).  

Insight into the biochemical mechanism of alkane degradation in two alkane degrading bacteria 

was obtained by two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF MS 

analysis (Sabirova et al. 2006, Feng et al. 2007). However, due to the hydrophobic nature of 

membrane proteins from alkane grown cells, a clear 2-DE image was difficult to obtain 

(Sabirova et al. 2006). One dimensional gel electrophoresis combined with nanoLC-MS/MS is 

more suitable for the analysis of membrane proteins (Bindschedler et al. 2009). In addition, it led 

to an increased number of detected proteins (Kim et al. 2009). 

In this study we analyzed the genome and proteome of Pseudomonas chloritidismutans AW-1T. 

The genome is compared with the most closely related P. stutzeri A1501. The bacterium was 

grown under 5 different growth conditions and a comparison of the whole proteome of cells 

grown on n-decane and acetate with different electron acceptors (oxygen, chlorate and nitrate) 

was analyzed. The results from 1 DE combined with nanoLC-MS/MS analysis are compared 

with biochemical data. 

Materials and Methods 

Strain, media and cultivation  

Pseudomonas chloritidismutans strain AW-1T (DSM 13592T) was isolated in our laboratory 

(Wolterink et al. 2002). For experiments with nitrate, it was adapted to nitrate as described 

(Mehboob et al. 2009). Pseudomonas stutzeri strain A1501 (accession number 109869) was 

obtained from the Collection of Institute Pasteur (CIP) in Paris (France). 



Chapter 6 

 

 102

P. chloritidismutans strain AW-1T was grown in the medium described by Mehboob et al. 

(2009). P. chloritidismutans strain AW-1T was cultivated at 30oC in 1-L flasks containing 600 ml 

of medium. The medium was made in anaerobic water and dispensed in the flasks under 

continuous flushing with nitrogen. The bottles were closed with butyl rubber stoppers and 

aluminum caps, and the head space was replaced by N2 gas (140 kPa). All solutions that were 

added to the medium were anaerobic and autoclaved at 121oC for 20 minutes. Sodium salts of 

chlorate and nitrate were supplied from a 0.4-M stock solution to get a final concentration of 10 

mM. The aerobic degradation experiments were done in aerobic medium and no head space 

flushing was done.  

Preparation of cell free extracts   

Cell free extracts of strain AW-1T were prepared anaerobically as previously described by 

Mehboob et al. (2009). Cell free extracts were stored in 12-ml serum vials at -80oC for proteomic 

analysis and anaerobically at -20oC for biochemical analysis. 

The protein content of the cell free extract fraction was determined according to the method of 

Bradford (1976) with bovine serum albumin as standard. 

Enzyme activity measurements 

Chlorate reductase, nitrate reductase and nitrite reductase activities were determined 

spectrophotometrically as described by Kengen et al. (1999). The substrate-dependent oxidation 

of reduced methyl viologen was monitored at 578 nm and 30°C. One unit (U) of enzyme activity 

is defined as the amount of enzyme required to convert 1 µmol of substrate per minute.  

Chlorite dismutase activity was determined by measuring chlorite-dependent oxygen production 

with a Clark-type oxygen electrode (Yellow Spring Instruments, Yellow Springs, Ohio, USA) as 

described by Wolterink et al. (2002). One unit (U) of activity is defined as the amount of enzyme 

required to convert 1 µmol of chlorite per minute.  

DNA extraction and sequencing 

DNA of P. chloritidismutans strain AW-1T was extracted by standard CTAB method of JGI. The 

454 sequencing was done as described by Droege & Hill (2008). 

Computational and statistical analysis 

A six frame translation was used for analysis of the proteomics data. Spectral counting was used 

for comparative quantification (Liu et al. 2004). A G-test was applied to see the differential 

expression (Sokal & Rohlf 1994). The minimum requirement for the G-test was that at least 5 

peptides match for one protein under one condition. Signal peptides were determined by SignalP 

3.0 server (Bendtsen et al. 2004).  



Proteogenomics of P. chloritidismutans 

 

 103

Differential expression of the whole proteome  

The whole proteogenomic analysis flow sheet is summarized in Fig. 1. 

 

Fig. 1: Flow sheet diagram of proteogenomic analysis of P. chloritidismutans. 

Sample preparation for tandem-MS 

A comparative analysis of the proteome of cells grown under the 5 different conditions were 

made. Equal amounts of each sample (250 µg) were separated on 12%-SDS polyacrylamide gels, 

and gels were stained according to the manufacturer’s protocol using Colloidal Blue Staining 

(Invitrogen, Carlsbad, CA, USA). Each of the two gel lanes was cut into five slices, and slices 

were cut into smaller pieces. After washing twice with ultra-pure water, gel samples were treated 
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with 50 mM dithiothreitol (DTT) in 50 mM NH4HCO3 (pH 8.0) for 1h at 60°C. DTT solution 

was decanted and samples were alkylated with 100 mM iodoacetamide in NH4HCO3 (pH 8.0) for 

1h at room temperature in the dark with occasional mixing. The iodoacetamide solution was 

decanted and samples were washed with NH4HCO3 (pH 8.0). Gel pieces were rehydrated in 10 

ng/µl trypsin (sequencing grade modified trypsin, Promega, Madison, WI, USA) and digested 

overnight at 37°C. To maximize peptide extraction, the solution from trypsin digest was 

transferred to new tubes, and gel pieces were subjected to two rounds of 1 min sonication, the 

first round with 5% trifluoroacetic acid (TFA) and the second round with 15% acetonitrile and 

1% TFA. After each of these two rounds, solutions were removed and added to the original 

trypsin digests. 

Liquid chromatography tandem mass spectrometric analysis 

Samples were analyzed on LC-MS/MS as described previously (van Esse et al. 2008).  

Mass spectrometry database searching 

The resulting spectra from the MS analysis were submitted to a local implementation of the 

OMSSA search engine (Geer et al. 2004). MS/MS spectra were searched against a peptide 

database derived from a six frame translation of Pseudomonas chloritidismutans strain AW-1T 

and a decoy reverse database constructed from the reverse of all the six frame translation output.  

All OMSSA searches used the following parameters: a precursor ion tolerance of 0.2 Da, 

fragment ion tolerance of 0.3 Da, a missed cleavage allowance of up to and including 2, fixed 

carbamide methylation, variable oxidation of methionine and deamination of glutamine and 

asparagine.  

The Expect value threshold was determined iteratively from the false discovery rate (FDR) and 

was set at 0.01. With this setting an FDR of < 5% is expected.  

The FDR was calculated as follows: peptide-spectrum matches (PSM) with each individual 

peptide database were ranked by their E-value for each identified spectrum with a threshold E-

value < 0.01 and the top hit identified peptide sequence was selected. For FDR calculation, top 

hit spectral matches to peptides in the reversed database were taken and the number of false 

positives was divided by the number of total positives. 

Nucleotide sequence accession numbers 

The nucleotide and protein sequences obtained in this study will be deposited in the 

GenBank/EMBL/DDBJ. 
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Results  

Whole genome shotgun sequencing of the P. chloritidismutans AW-1T resulted in 6.7 Mbp 

assembled sequence data. Out of this 6.7 Mbp, 4.4 Mbp was assembled in 115 contigs larger 

than 10 kbp.  A six frame naive translation of the sequenced genome of P. chloritidismutans 

AW-1T gave 14142 putative ORFs, which were used for further proteomic analysis. Overall the 

GC contents of the sequenced genome was 63.1%. Genome annotation on GeneMark.hmm 

(Lukashin & Borodovsky 1998) detected 6,762 putative ORFs larger than 100 amino acids, 

which are more than the 4,146 annotated genes of P. stutzeri A1501. This suggests that P. 

chloritidismutans has one of the biggest Pseudomonas genomes characterized so far. A 

comparison with the most closely related fully sequenced genome of P. stutzeri A1501 (Yan et 

al. 2008) shows that in P. chloritidismutans AW-1T the complete operons for nitrogen fixation, 

putative arsenate reduction, cellulose synthesis, type IV fimbrial biogenesis, nitrate dependent 

formate dehydrogenase, chromate resistance and transport genes and CRISPR associated family 

proteins are missing. On the other hand, P. stutzeri A1501 lacks the genes coding for all the 

subunits of chlorate reductase, chlorite dismutase and alkane-1-monooxygenase. We tested and 

found that indeed P. stutzeri A1501 is unable to grow on n-decane and also cannot reduce 

chlorate or perchlorate.  

One dimensional gel electrophoresis of cell free extracts of P. chloritidismutans grown under 5 

different conditions was conducted (Fig. 2). Proteomic analysis revealed the proteins that were 

expressed at each condition. Overall out of 118,802 spectra obtained, 46,581 peptides were 

identified over the 5 conditions with a peptide spetrum match efficiency of 39.2%. The number 

of spectra obtained and the number of peptides identified for each growth condition are listed in 

Table 1. 

 

Table 1: The number of spectra obtained and the number of peptides identified for each growth condition. 
 Acetate + 

Oxygen 
Acetate + 
Chlorate 

Decane + 
Oxygen 

Decane + 
Chlorate 

Acetate + 
Nitrate 

Total 

Spectra 21988 19580 25214 26792 25228 118802 

Number of 
peptides identified 

8650 7796 8973 10760 10353 46533 
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Fig. 2: Crude cell free extract of P. chloritidismutans AW-1T 1-DE under 5 different growth conditions. Gels 
were overloaded to cover the maximum proteome 

 

Differential expression of proteins involved in n-alkane degradation 

A total of 177 proteins were differentially expressed in n-decane and chlorate versus acetate and 

chlorate, grown cells. Out of these 177 proteins, 32 proteins were only expressed in decane-

grown cells while 83 proteins were significantly (P<0.05) up-regulated when grown with decane. 

While comparing alkane and oxygen- and acetate and oxygen-grown cells a total of 259 proteins 

were differentially expressed. 46 proteins were exclusively present in alkane-grown cells and 

another 112 poteins were up-regulated. Table 2 shows the number of peptides found for the 

enzymes involved in the oxidation of alkane. From Table 2 it is clear that an alkane-1- 

monooxygenase, 8 out of 10 alcohol dehydrogenases and 2 out of the 4 aldehyde dehydrogenases 

are exclusively found in decane-grown cells while the remaining proeteins are up-regulated. 

Among the β-oxidation enzymes one out of two acyl CoA dehydrogenase, AMP-dependent 

synthetase and ligase, two out of three enoyl CoA hydratases and L-3 hydroxyacyl 

dehydrogenase were found exclusively in decane-grown cells. The β-ketothiolase was also found 

to be up-regulated.  
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Table 2: Differential expression of proteins involved in initial oxidation of n-alkanes and subsequent β-
oxidation 

Enzymes (gene #) Acetate + 
Oxygen 

Acetate + 
Chlorate 

Decane + 
Oxygen 

Decane + 
Chlorate 

Oxidation of alkane 

Alkane-1-monooxygenase (136900) 0 0 14 17 

Alcohol dehydrogenase (137184) 0 0 31 25 

Short chain alcohol dehydrogenase (125520) 0 0 6 12 

Alcohol dehydrogenase (93630) 0 0 0 9 

Short chain alcohol dehydrogenase (155080) 0 0 0 5 

Alcohol dehydrogenase Zn containing (113655) 0 0 5 0 

Alcohol dehydrogenase (107190) 0 0 6 0 

Alcohol dehydrogenase Zn containing (86361) 0 0 11 0 

Alcohol dehydrogenase quinoprotein  (84317) 2 0 28 0 

Alcohol dehydrogenase Zn containing (88444) 0 5 8 15 

Alcohol dehydrogenase (134297) 3 0 10 0 

Aldehyde dehydrogenase (28668) 0 0 0 7 

Aldehyde dehydrogenase (133138) 0 0 14 0 

Aldehyde dehydrogenase (33979) 1 0 9 0 

Aldehyde dehydrogenase (99095) 4 0 21 0 

β-oxidation 

Acyl CoA synthetase (122243) 2 4 26 17 

Acyl CoA dehydrogenase (17036) 0 0 5 0 

Acyl CoA dehydrogenase like 125344 0 0 25 24 

AMP-dependent synthetase and ligase (125436) 0 0 8 34 

Enoyl CoA hydratase (101528) 0 0 0 5 

Enoyl CoA hydratase (90735) 0 1 0 17 

Enoyl CoA hydratase (2008) 0 0 5 0 

Multifunctional fatty acid oxidation complex 
subunit alpha (95559) 

11 14 110 130 

L-3 hydroxyacyl dehydrogenase (102464) 0 0 0 5 

β-Ketothiolase (95560) 4 6 32 25 

β-Ketothiolase (103700) 1 0 8 0 

 

Apart from these proteins which are directly involved in the degradation of alkanes some other 

proteins were also regulated. Transport proteins i.e. 5 porins and 6 TonB-dependent outer 

membrane receptors were found to be up-regulated in alkane and oxygen grown culture. An 

organic solvent tolerant protein was also found in decane and chlorate grown cells. A sensor 

histidine kinase/ response regulator was also found to be up-regulated. Trehalose phosphate 

synthase, trehalose synthase were up-regulated in alkane-grown cells. Other enzymes like malic 

enzyme, phosphoenolpyruvate carboxylase and glutamate dehydrogenase, glycosyl hydrolase 

and α-amylase were also up-regulated. 
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Differential expression of proteins involved in electron acceptor utilization and enzyme 

activities  

A total of 65 proteins were up-regulated during growth on acetate and chlorate compared with 

acetate and oxygen. Sixteen of these proteins were exclusively expressed in chlorate-grown cells. 

Similarly a total of 56 proteins were up-regulated in cells grown with n-decane and chlorate in 

comparison with n-decane and oxygen and among these 7 were only present when grown with 

chlorate.  All the proteins which were up-regulated are presented in Table 3.  

 

Table 3: Number of peptides detected for each protein and experimentally determined activity of enzymes 
grown under different conditions 
 Protein  Acetate + 

Oxygen 
Acetate + 
Chlorate 

Decane + 
Oxygen 

Decane + 
Chlorate 

Acetate + 
Nitrate 

Chlorate reductase 
(alpha subunit ) 

14 81 47 143 48 

Chlorate reductase 
(beta subunit) 

10 25 18 40 13 

Chlorate reductase 
(gamma subunit) 

4 15 3 11 0 

Number of 
peptides 

Chlorate reductase 
(delta subunit) 

1 10 2 4 2 

Activity 
(U/mg) 

Chlorate reductase 1.7    ±  0.1 21.3  ±  0.1 0.47    ±  0.04 46.3  ±  3.2 10.6  ±  0.9 

Chlorite dismutase 
(134786)  

24 97 5 111 23 Number of 
peptides 

Chlorite dismutase 
(127405)  

8 10 12 27 26 

Activity 
(U/mg) 

Chlorite dismutase  0.15  ±  0.01 6.8  ±  1.2 0.25  ±  0.0 7.4  ±  2.1 7.9  ±  1.5 

Number of 
peptides 

Nitrate reductase 
(catalytic subunit) 

3 16 20 28 28 

Activity 
(U/mg) 

Nitrate Reductase bdl bdl bdl bdl 0.73  ± 0.10 

Number of 
peptides 

Cyt cbb3 oxidase 1 5 0 8 0 

bdl: below detection limit 

 

Apart from the proteins listed in Table 2, an oxygen-independent coproporphyrinogen III 

oxidase, a molybdenum ABC transporter, a filamentation induced by cAMP protein Fic, an 

UDP-N-acetylmuramate-alanine ligase, ClpB protein ATP dependent chaperone were also up-

regulated when grown with decane and chlorate. One ABC transporter, TonB-dependent 

receptor, DNA-binding stress protein, siderophore biosynthesis protein, an ubiquinol-
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cytochrome-c reductase and an iron ABC transporter were found to be up-regulated in acetate 

and chlorate-grown cells. 

Activities of the enzymes i.e. chlorate reductase, chlorite dismutase and nitrate reductase of cells 

grown under different growth conditions are also given in Table 3. Nitrate reductase activity also 

includes the nitrite reductase activity. Nitrite reductase activity was 0.06 + 0.01 U/mg of protein 

with acetate and nitrate grown cells while it was 2.52 + 0.42 in acetate and chlorate grown cells. 

Discussion 

n-alkane degradation 

P. chloritidismutans AW-1T is known to degrade n-alkanes via an oxygenase mediated pathway, 

but previously we were unable to amplify any alkane oxygenase gene using various primers 

targeting different classes of alkane oxygenases (Mehboob et al. 2009). By looking at Table 1 it 

is evident that an alkane-1-monooxygenase is exclusively expressed when the bacterium is 

grown with n-alkanes.   The sequence of alkane-1-monooxygenase obtained was 76% identical 

with the putative alkane-1-monooxygenase of P. mendocina ymp and 39% identical with the 

alkane-1- monoxygenase of P. aeruginosa PAO1. Only one alkane-1-monooxygenase was found 

irrespective of growth with oxygen or chlorate confirming our previous conclusion that oxygen 

released during chlorite dismutation is used by the alkane oxygenase to form an alcohol 

(Mehboob et al. 2009). We were unable to find rubredoxin encoded by genome, in the proteome 

probably due to its small size. We did not found any other oxygenase or cytochrome P450, which 

may be involved in alkane degradation as found by Sabirova et al. (2006).  

We were unable to find an alcohol oxygenase in the proteome as we postulated before (Mehboob 

et al. 2009). Instead we found 10 different alcohol dehydrogenases to be either exclusively 

expressed or up-regulated during growth on n-alkanes. Two of these alcohol dehydrogenase are 

expressed both during growth on alkanes with either oxygen or chlorate, showing the similarity 

between the second step. But some differences were also found. Two of these alcohol 

deydrogenases are only expressed when cells are grown with alkanes and chlorate, while 3 of 

them are only expressed during growth with alkanes and oxygen. In contrast to the study on 

Alcanivorax borkumensis (Sabirova et al. 2006) and Geobacillus thermodenitrificans NG80-2 

(Feng et al. 2007) we found a variety of isozymes for alcohol dehydrogenase and aldehyde 

dehydrogenase expressed under different conditions showing the adaptability of P. 

chloritidismutans. Similarly, four aldehyde dehydrogenases were also differentially expressed. 

One was alkane and chlorate specific while three others were specific for growth on alkanes and 

oxygen.  
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Fig 3: Degradation pathway of n-decane coupled with chlorate. All the enzymes shown in the pathway were 
either induced or up-regulated during growth on n-decane. 
 

 

 

 

Decane 

 

Decanol 

Decanal 

Decanoate 

Alkane-1-mono-oxygenase 

Alcohol dehydrogenase 

Aldehyde dehydrogenase 

Decanoyl Co-A 

Enoyl Co-A 

L-Hydroxyacyl Co-A 

Ketoacyl 
Co-A 

Acyl Co-A 

Acyl Co-A synthetase 

Acetyl Co-A 

 

Acyl Co-A dehydrogenase 

Enyol Co-A hydratase 

L-3 hydroxyacyl 
dehydrogenase 

 β-ketothiolase 

TCA 

2[H] 

β-Oxidation 

H2O 

2[H] 
H2O 

2[H] 
H2O 

H2O 2H 

Plasma 
membrane 

Periplasmic space Chlorate Decane 

 
unknown 

Chlorate 
reductase 

Chlorite 
dismutase 

Oxygen + Chloride  

Chlorite  

Cytoplasm 



Proteogenomics of P. chloritidismutans 

 

 111

Apart form these proteins which are involved in direct alkane degradation some other proteins 

involved in alkane degradation are also up-regulated. Like Sabirova et al. (2006), we found some 

transport proteins, like large porin proteins which allow the passive diffusion of specific proteins 

are up-regulated. Similarly, TonB-dependent outer membrane proteins which can take up poorly 

soluble compounds with high affinity via energy-dependent process into the periplasmic space 

are also up-regulated. An up-regulation of some stress related proteins was also found. An 

organic solvent tolerant protein was also found in decane and chlorate grown cells, which is 

apparently helping the bacterium to cope with the harmful effect of n-alkanes. Due to the stress 

faced due to alkanes another sensor histidine kinase/ response regulator which enables bacteria to 

sense and adapt to a stress or growth condition was also found to be up-regulated during growth 

on alkanes. Instead of polyhydroxyalkanoate production (Sabirova et al. 2006) we found up-

regulation of enzymes involved in trehalose synthesis. Trehalose is not only a storage molecule 

but also a stress response factor for environmental stimuli and helps to retain cellular integrity by 

presumably preventing the denaturation of protein (Jain & Roy 2008). An up-regulation of the 

glyoxylate pathway is suggested by up-regulation of malate synthase. This has also been 

observed by the (Sabirova et al. 2006; Feng et al. 2007). Due to unknown reasons enzymes 

involved in carbohydrate metabolism like glycosyl hydrolase and α-amylase were also up-

regulated. This was not observed by others. Like Sabirova et al. (2006) we also observed an up-

regulation of pilus assembly protein. However, unlike Sabirova et al. (2006) we did not find any 

up-regulation of fatty acid and phospholipid synthesis.  

Electron acceptor utilization 

The sequences of all the subunits of chlorate reductase were matching the N-terminal sequences 

found before (Wolterink et al. 2003). The arrangement of the chlorate reductase genes was found 

to be similar to Ideonella dechloratans, i.e. clrABDC (Danielsson et al. 2003). A transposase was 

found downstream of the chlorate reductase genes, which points towards the lateral transfer of 

the gene. A NCBI blast analysis (Altschul 1990) shows that molybdopterin containing alpha 

subunit of chlorate reductase (ClrA) is 70% identical to the alpha subunit of dimethylsulfide 

dehydrogenase (DMSO) of Citreicella sp. SE45 and 44% identical with the ClrA of Ideonella 

dechloratans. Similarly, the Fe-S cluster containing the beta subunit of chlorate reductase (ClrB) 

of P. chloritidismutans is 82% identical with the beta subunit of nitrate reductase of Sagittula 

stellata E-37 and 59% identical to ClrB of Ideonella dechloratans. The gamma subunit of 

chlorate reductase (Clrc) has 54% identity with the hypothetical protein of Sagittula stellata E-

37 and only 34% identity with the Clrc of Ideonella dechloratans. The delta subunit of chlorate 

reductase (ClrD) has 46% identity with protein DdhD of Citreicella sp. SE45 and 40% with 
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ClrD Ideonella dechloratans. The ClrD is not part of the mature enzyme, but is a chaperone 

required for the assembly of the enzyme (ClrABD) (Danielsson et al. 2003; Bender et al. 2005).  

A signal peptide was detected in the ClrA and ClrC, but not in the ClrB and ClrD. An alignment 

of the alpha subunit of chlorate reductase of P. chloritidismutans with the other related enzymes 

shows a twin-arginine motif with a consensus (S/T)-R-R-x-F-L-K motif (Fig. 4) which is 

involved in export of the assembled enzyme across the cell membrane via Tat pathway (Berks 

1996, Danielsson 2003). This is in contrast to the findings of Wolterink et al. (2003) where based 

on the maximum activity the cytoplasmic localization of chlorate reductase of P. 

chloritidismutans was proposed. We also found an 8.6 kDa periplasmic cytochrome in the 

genome which has the motif (KLVGPxxKDVAAK) found in the 6 kDa c cytochrome. This 

cytochrome is able to donate electron for chlorate reduction (Backlund et al. 2009). Due to the 

presence of a conserved twin arginine motif for Tat pathway, presence of signal peptide in alpha, 

gamma and cytochrome we suggest that the chlorate reductase of P. chloritidismutans is 

periplasmic. Based upon the these findings about localization of chlorate reductase, differential 

expression of subunits of chlorate reductase, chlorite dismutase, ubiquinol-cytochrome-c-

reductase, cytochrome cbb3 oxidase and presence of an 8.6 kDa cytochrome in genome, we 

propose the respiratory pathway as presented in Fig. 5. 

Table 3 shows that the enzymes involved in chlorate reduction i.e. chlorate reductase and chlorite 

dismutase are constitutive in nature and a basal level of protein and their activity is always 

present. An up-regulation of the all the subunits of chlorate reductase and chlorite dismutase, and 

increase in activity was observed during growth with chlorate. A down-regulation of all the 

subunits of chlorate reductase and chlorite dismutase and hence a decrease in activity was 

observed during growth with oxygen.  

Though transcriptional analysis has already shown that chlorite dismutase is constitutively 

expressed at a basal level and is negatively regulated by oxygen (Bender et al. 2002), the 

(per)chlorate reductase was found to be transcribed only in the anaerobic conditions with 

(per)chlorate (Bender et al. 2005). Our results are in marked contrast to the findings of Bender et 

al. (2005), but are in agreement with the previous findings that although the chlorate reductase of 

P. chloritidismutans is oxygen sensitive (Wolterink et al. 2003), the bacterium can 

simultaneously reduce chlorate and oxygen when oxygen is added to a chlorate-reducing culture 

(Wolterink et al. 2002). Similarly, the chlorate reductase of Pseudomonas sp. PDA is reported to 

be constitutive in nature (Steinberg et al. 2005). An up-regulation of proteins and higher activity 

were observed when grown with decane and chlorate as compared with acetate and chlorate.   
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Only the catalytic subunit of nitrate reductase was found in all conditions within proteome data. 

However, nitrate reductase activity was only observed during growth on nitrate. The nitrite 

reductase activity was present in both nitrate-grown and chlorate-grown cells. The nitrite 

reductase activity was even higher in chlorate-grown cells than on nitrate-grown cells. Detection 

of catalytic subunit of periplasmic nitrate reductase and activity shows that it is not a fortuitous 

activity of chlorate reductase, but that there are two separate systems for chlorate and nitrate 

reduction.  

                             ** *** 
ClrA_Ps: ---MGMWKLK----------RRDFLK--GLSVT--GAGVMLSGNVWGLNRLEPVGETLAS 

ClrA_Id: -------MNSPDEHNG----RRRFLQ--FSAAA--LASAAASPSLWAFSKIQPIEDPL-K 

SerA_Th: ---MRKVMNSPDDGNG----RRRFLQ--FSMAA--LASAAAPSSVWAFSKIQPIEDPL-K 

DdhA_Rh: -----MLRTT----------RRTLMQ--GASLV--GAGLFAAGRGWALNRLEPIGDTLAE 

Nar1_Ha: ---MSRNDLTDDEGDSAGISRRDFVR--GLGAASLLGATGLSFADDGMDGLEAVDDPI-G 

EdbA_Az: MTRDEMISVEPEAAELQDQDRRDFLKRSGAAVLSLSLSSLATGVVPGFLKDAQAGTKAPG 

 

 

                                  

ClrA_Ps: EYPYRDWEDLYRNEWTWDSVGHAAHCINC--MGNCAWNVYVKDGIVVREEQIAKYPQVHE 

ClrA_Id: DYPYRDWEDLYRKEWTWDSVGVMTHSNGC--VAGCAWNVFVKNGIPMREEQISKYPQL-P 

SerA_Th: SYPYRDWEDLYRKEWTWDSTGFITHSNGC--VAGCAWRVFVKNGVPMREEQVSEYPQL-P 

DdhA_Rh: EYPYRDWEDLYRNEFTWDYVGKAAHCINC--LGNCAFDIYVKDGIVIREEQLAKYPQISP 

Nar1_Ha: SYPYRDWEDLYRDEWDWDSVARSTHSVNC--TGSCSWNVYVKDGQVWREEQAGDYPTFDE 

EdbA_Az: ---YASWEDIYRKEWKWDKVNWGSHLNICWPQGSCKFYVYVRNGIVWREEQAAQTPACNV 

 

 

 

ClrA_Ps: NIPDANPRGCQKGAIHSTSMYEADRLRYPLKRAGERGEGKWQRISWDQATEEVADKIIDI 

ClrA_Id: GIPDMNPRGCQKGAVYCSWSKQPDHIKWPLKRVGERGERKWKRISWDEALTEIADKIIDT 

SerA_Th: GVPDMNPRGCQKGAVYCSWSKQPDFLKYPLKRVGERGERKWKRISWDEAFTEIADKIIDT 

DdhA_Rh: DIPDANPRGCQKGAIHSTSMYEADRLRYPMKRVGARGEGKWQRISWDQATEEIADKIIDI 

Nar1_Ha: SLPDPNPRGCQKGACYTDYVNADQRVLHPLRRTGERGEGQWERISWDEALTEIADHVIDE 

EdbA_Az: DYVDYNPLGCQKGSAFNNNLYGDERVKYPLKRVGKRGEGKWKRVSWDEAAGDIADSIIDS 

 

 

Fig 4: Alignment of alpha subunit of chlorate reductase (ClrA) of Pseudomonas chloritidismutans, ClrA of 
Ideonella dechloratans (AJ566363), selenate reductase (SerA) of Thauera selenatis (AJ007744), dimethylsulfide 
dehydrogenase (DdhA) of Rhodovulum sulfidophilum (AF453479), nitrate reductase (Nar1) of Haloarcula 
Marismortui (AJ277440) and ethylbenzene dehydrogenase (EbdA) of Azoarcus sp. EB1 (AF337952). Asteriks 
and shaded residues represent the twin arginine motif and other conserved residues of twin-arginine motif. 
The characteristic conserved N-terminal motif of type II DMSO reductases are also highlidhted. 
Corresponding gene names and accession numbers are shown in parenthesis. Only first 180 amino acids are 
shown. 
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Fig. 5: Proposed respiratory pathway in Pseudomonas chloritidismutans illustrated with the help of 
proteogenomics data. The dotted lines show the electron transfers. 
 

 

We found two different chlorite dismutase like sequences inside the proteome. The sequence of 

one chlorite dismutase (134786) was 100% identical to the previously known sequence found by 

Cladera et al. (2006), while the second protein (127405) has highest similarity (34% identical) 

with chlorite dismutase of Dechloromonas aromatica RCB and is only 30% identical with the 

already know one. The peptide count shows that the first chlorite dismutase (134786) is up-

regulated when growth with chlorate, but the other one has a constitutive expression under 

anaerobic conditions.  

Apart from these enzymes a very interesting finding was the up-regulation of cytochrome cbb3 

oxidase. The cbb3- type oxidases are unique heme copper oxidases, which have 6-8 fold lower 

Km value for oxygen than aa3-type cytochrome c oxidases (Preisig et al. 1996). Their high 

affinity for oxygen allows the bacteria to colonize oxygen limited environments (Pitcher & 

Watmough 2004). The up-regulation of cytochrome cbb3 type oxidase during chlorate grown 

condition shows the adaptation of chlorate reducing bacteria to low oxygen concentration. 

Though oxygen is formed during chlorate reduction, an accumulation of oxygen is never 

observed. Oxygen formation is observed only when chlorite is added to cell. 
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Other proteins related with these functions were also up-regulated. Since chlorite dismutase is a 

heme-containing enzyme an increase in the formation of heme is essential. This is accompanied 

by an up-regulation of oxygen-independent coproporphyrinogen III oxidase which is involved in 

heme formation. Similarly since the catalytic unit of chlorate reductase contains molybdenum 

and iron, a molybdenum ABC transporter is up-regulated to compensate the increased demand of 

molybdenum. Similarly, a siderophore biosynthesis protein, and an iron ABC transporter were 

up-regulated. An ABC transporter and a TonB-dependent receptor were also up-regulated on 

growth with acetate and chlorate. The function of these in P. chloritidismutans is not clear. 

Some stress related proteins like a DNA stress binding protein were also up-regulated when 

grown on chlorate. An UDP-N-acetylmuramate-alanine ligase protein involved in cell wall 

synthesis is also up-regulated during growth on decane and chlorate, likely to strengthen the cell. 

Another stress protein i.e. ClpB protein, which is an ATP dependent chaperone is also up-

regulated when grown on decane and chlorate. Clp stress proteins are expressed in reponse to 

high temperature, oxidative stress, high salt or ethanol concentration and iron limitation (Ekaza 

et al. 2001). In our case, it could be oxidative stress or iron limitation or decanol concentration.  

A cAMP protein Fic is also up-regulated. It is involved in the post translational regulation of 

protein functions.  

This is the first report about the proteogenomics of a bacterium which is able to degrade n-

alkanes in the absence of external oxygen, while generating oxygen via chlorite dismutation. It is 

also the first report of the proteome of a chlorate reducing bacterium. The study confirms the 

conclusion of previous findings that an oxygenase mediated pathway is employed by the P. 

chloritidismutans during growth on n-alkanes and chlorate. It further shows that there are two 

separate pathways for growth on chlorate and nitrate. Further it is demonstrated that the chlorate 

reductase and chlorite dismutase are up-regulated when grown with chlorate and down-

regulation when grown with oxygen. The finding of the presence of two different chlorite 

dismutases inside the genome is remarkable. 
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Industrialization of the world has led to the pollution. Pollutants are of concern due to their 

persistence and toxicity. Pollutants show a varying degree of persistence in oxic and anoxic 

environments. Most of the pollutants like aliphatic and aromatic hydrocarbons are quite easily 

degraded in the oxic environment. Aerobic degradation pathways are known since long time and 

are generally well characterized (Söhngen 1913, Berthe-Corti & Fetzner 2002, Head et al. 2006, 

Vaillancourt et al. 2006, Fuchs 2008). In anoxic environments only the compounds which are 

substituted with strong electron withdrawing groups, like highly chlorinated compounds are 

easily degraded (Field et al. 1995). The degradation products of these compounds are often found 

accumulated in the anoxic environments (Fennel et al. 2001, Coleman et al. 2002, van Doesburg 

et al. 2005). In anoxic environments the degradation is generally slow and incomplete and the 

mechanism of degradation is not completely understood (Wentzel et al. 2007, Fuchs 2008). 

Introduction of oxygen in pure form or in the form of hydrogen peroxide or some oxygen 

releasing compounds have been suggested as alternatives but each of them has its own limitation 

with respect to solubility, toxicity or dispersal. (Per)chlorate reduction has been suggested as an 

alternative (Coates et al. 1999, Tan et al. 2006, Weelink et al. 2008). Though (per)chlorate 

reduction has been studied in detail (Xu et al. 2003, Coates & Achenbach 2004) the bio-

remediation potential of (per)chlorate-reducing bacteria is not fully explored. In this thesis we 

tried to explore and highlight the tremendous hidden unexplored potential of (per)chlorate-

reducing bacteria for the remediation of organic pollutants.  

In the first chapter a brief comparison of aerobic and anaerobic degradation and limitations of 

anaerobic degradation were discussed. Then, the role that (per)chlorate-reducing bacteria can 

play to overcome the limitation of anaerobic degradation in anoxic zones was identified. The 

(per)chlorate reduction was reviewed with a particular emphasis on the bio-remediation 

potential. Using the bioinformatics tools some putative (per)chlorate reducers were also 

identified.  

The second chapter of this thesis was an effort to combine the oxidation of organic chlorinated 

compounds with low number of substituted chlorines (TCE, DCEs, DCAs), with the reduction of 

an inorganic chlorinated compound (chlorate). Unfortunately, we were not successful in 

enriching such kind of microorganism. The reasons of failure include the nature of the samples, 

their long term storage and low aerobic degradation potential. However, it is suggested that for 

such a study fresh samples should be taken from a suboxic zone having already an exposure of 

organic chlorinated compounds so that the target organisms that possess oxygenases with high 

affinity for oxygen are present. Moreover, a change in enrichment strategy is suggested i.e. to 
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first enrich the chlorate reducer and afterwards further enrichment of chlorinated compound-

oxidizing bacteria should be done or vice versa. 

The third chapter deals with the degradation of n-alkanes with chlorate as electron acceptor by 

Pseudomonas chloritidismutans AW-1T. It was known that chlorate-reducing bacteria can 

degrade aromatics like BTEX compounds. Here for the very first time we show that chlorate-

reducing bacteria have the ability to degrade aliphatic compounds like alkanes too. The rates of 

degradation of alkanes were similar on chlorate and on oxygen showing the similarity of the 

biochemical mechanism and the high efficiency of degradation with chlorate. This bacterium 

also grew with aerobic intermediates of the presumed pathway, like decanol and decanoate. The 

activity of the enzymes chlorate reductase and chlorite dismutase was demonstrated in decane- 

and chlorate-grown cells free extract. An alkane oxygenase activity could be only demonstrated 

with decane and chlorate grown whole cells. However, with the custom designed and available 

primers we were unable to amplify any alkane oxygenase genes. Since the bacterium was able to 

grow on alkanes with oxygen and chlorate but not with nitrate so we suggested an oxygenase 

dependent pathway for alkane degradation. This study opened the way for the possibility of 

application of chlorate as oxygen source for remediation of alkane polluted soils. 

The fourth chapter is about the purification and characterization of chlorite dismutase from 

Pseudomonas chloritidismutans. Chlorite dismutase is the key enzyme in the chlorate reduction 

pathway as this is the enzyme which produces oxygen. In fact it is the only enzyme beside 

photosystem II which forms oxygen-oxygen double bond. By using 18O labelled water, we 

excluded water as the oxygen source showing that both oxygen atoms in dioxygen are derived 

form the chlorite molecule. The purification of chlorite dismutase was done by one step 

hydroxyapatite chromatography. The heme-containing tetrameric enzyme showed most of the 

typical features of other purified chlorite dismutases. High concentrations of chlorite resulted in 

the disappearance of the Soret peak and loss of activity, showing the toxic effect of chlorite for 

the enzyme. In the chlorite dismutase assays, an optimum amount of enzyme was assured. 

Unlike the chlorite dismutase of Dechloromonas aromatica RCB the chlorite dismutase of P. 

chloritidismutans was not inhibited by upto 1.5 M chloride. One remarkable finding was the 

drastic effect of salts on the activity of the enzyme. The activity was increased by kosmotropic 

salts and decreased by chaotropic salts. This could have a practical consequence as the enzyme 

might not work optimally if a high concentration of a chaotropic salt is in the surrounding 

environment. 

Chapter 5 describes the degradation of benzoate and catechol coupled with chlorate reduction 

by P. chloritidismutans. The degradation of benzoate and catechol with chlorate, but not with 
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nitrate, suggests an oxygenase-mediated mechanism of degradation. Catechol was detected as 

intermediate of benzoate degradation. Cell free extracts of bacteria grown on benzoate and 

chlorate showed chlorate reductase, chlorite dismutase, benzoate 1,2-dioxygenase and catechol 

1,2-dioxygenase activity. A proteogenomics approach was applied to determine the presence 

and regulation of oxygenases. The bacterium was sequenced via 454 life science technology 

and a whole proteome analysis was done with acetate-grown and benzoate-grown cells. 

Proteins involved in benzoate degradation i.e.  three subunits of benzoate 1,2-dioxygenase, 

dihydrodihydroxybenzoate dehydrogenase, benzoate specific porin and benzoate MFS 

transporter were exclusively present in benzoate grown cells. Similarly, proteins involved in the 

catechol degradation i.e. catechol 1,2-dioxygenase, cis,cis-muconate cycloisomerase, 3-

oxoadipate: 2 subunits of succinyl-CoA transferse and β-ketoadipyl CoA thiolse were also only 

present in benzoate grown cells. The presence of the benzoate operon in the genome and up-

regulation of most of its protein during growth on benzoate and oxygen is an indication that 

that this bacterium utilizes the oxygen produced by chlorate reduction to degrade benzoate and 

catechol via an oxygenase dependent pathway when oxygen is replaced by chlorate. P. 

chloritidismutans, which was found to grow with alkanes, is also able to grow with simple 

aromatics and their intermediates. This makes this bacterium attractive to be used for bio-

remediation purposes.  

Chapter 6 describes the proteogenomics P. chloritidismutans. The bacterium was grown at 5 

different conditions i.e. with acetate and decane as electron donors and chlorate, oxygen and 

nitrate as electron acceptors. A six frame translation was used for analysis of proteomics data. 

The differential expression of the proteome was analyzed.  By comparing the alkane-grown 

cells (both with oxygen and with chlorate) with the acetate-grown cells (with oxygen and with 

chlorate) we were able to identify an alkane-1-monoxygenase responsible for growth with 

alkanes. The exclusive presence of alkane-1-monoxygenase and the up-regulation of chlorate 

reductase and chlorite dismutase show that oxygen released during chlorate reduction is used 

by the alkane oxygenase, resulting in a hydroxylation of the alkane to an alcohol. We also 

found a variety of alcohol dehydrogenases and aldehyde dehydrogenases either induced or up-

regulated when grown on alkanes with oxygen or chlorate as electron acceptors. There was one 

alkane-1-monoxygenase present during growth on alkanes with either oxygen or chlorate, but 

differences were found in the expression of alcohol and aldehyde dehydrogenases, some of 

which were expressed only at one of the growth conditions.  

By comparing the differential expression of proteins of cells grown with oxygen (both with 

alkanes and with acetate) with chlorate-grown cells (with alkanes and with acetate) and also 
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with nitrate-grown cells (with acetate) we were able to see the regulation of enzymes involved 

in chlorate reduction and nitrate reduction. The results of the proteogenomics analysis were 

compared and verified by the enzyme activity measurements. The analysis show that a basal 

level of chlorate reductase and chlorite dismutase is always expressed, which is up-regulated 

when grown with chlorate and down-regulated when grown with oxygen. There is a separate 

nitrate reductase in P. chloritidismutans which is induced when grown with nitrate. However, 

nitrite reductase showed a constitutive activity. We also found up-regulation of cytochrome 

cbb3 oxidase during growth on chlorate as compared with oxygen or nitrate. Cytochrome cbb3 

oxidase has a very high affinity for oxygen. This shows an adaptation of the bacterium to low 

oxygen concentrations created during chlorate reduction. A bioinformatics analysis of chlorate 

reductase showed the similarity of all of its subunits with the subunits of chlorate reductase of 

Ideonella dechloratans (Danielsson et al. 2003). A transposon sequence was found downstream 

the chlorate reductase genes indicating its possible horizontal transfer. A twin arginine motif 

which may be involved  in the transport the folded protein through Tat pathway (Berks 1996) 

was identified. A signal peptide was detected in the alpha and gamma subunit.  Moreover, a 

periplasmic cytochrome c containing the conserved motif of a cytochrome c of Ideonella which 

is able to donate electrons to chlorate reductase was found. These findings suggest a 

periplasmic nature of chlorate reductase of P. chloritidismutans as against the previously 

suggested cytoplasmic localization (Wolterink et al. 2003). Based upon the proteomics data we 

suggest a respiratory pathway for the bacterium. Overall all the proteogenomics data indicate 

the high flexibility and high versatility of the bacterium to thrive in different environments. It is 

also concluded that 454 sequencing followed by differential proteomic analysis is the quickest 

method to identify the unknown genes involved in a certain metabolic function and to explore 

the overall pollutant degradation potential of the bacteria. 

(Per)chlorate reduction and chlorite dismutation in a broader context 

Apart from providing oxygen for degradation of persistent pollutants other physiological 

functions of chlorite dismutatase might be possible. The weak activity of chlorite dismutase 

enzyme for chlorite but higher activity for hydrogen peroxide in Thermus thermophilus HB8 

led to the conclusion that the enzyme might be involved in the detoxification of hydrogen 

peroxide produced within the cell (Ebihara et al. 2005). However, based on the conserved 

residues in the active site de Geus et al. (2009) showed that this protein is functionally 

unrelated with other chlorite dismutases. 

A functional interaction of the chlorite dismutase and antibiotic biosynthesis monooxygenase in 

Haloferax volcanii Pit A has been proposed. Since fusion of these two domains only occurs in 
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halophilic archaea it may play a role in an adaptation to live in hypersaline environments where 

the bacterium is growing in oxygen limited conditions (Bab-Dinitz et al. 2006).  

Of the organisms listed in Table 6 of the introduction we can deduce that putative 

(per)chlorate-reducing bacteria are wide spread. Presently, most of the known (per)chlorate 

reducers can be placed in the phylum proteobacteria, but most of the bacteria listed in Table 6 

of the introduction belong to Actinobacteria or Firmicutes. Many pathogenic strains seem to 

contain the chlorite dismutase genes. So it might help the pathogens to survive at oxygen 

limited environments. The gene neighbourhood of chlorite dismutase genes shows that often 

genes coding for enzymes involved in heme formation (protoporphyrinogen oxidase and 

uroporphyrinogen decarboxylase) are in close vicinity of the chlorite dismutase gene. It is not 

clear whether these enzymes are involved in the formation of heme of the chlorite dismutase or 

that the chlorite dismutase activity has a function in heme formation in the absence of external 

oxygen.  

From an environmental point of view Mycobacterium KMS, which is a known aerobic pyrene 

degrading organism (Miller et al. 2004) and  Geobacillus thermodenitrificans strain NG80-2, a 

known aerobic long chain alkane degrader, are interesting bacteria. One unlisted bacterium is 

P. aeruginosa which also contains a putative chlorite dismutase and has nitrate reductase, while 

it is a known alkane degrader.  

Keeping in view the diversity and ubiquity of (per)chlorate reducers, their functions in nature, 

their ability to adopt to the niches with oxygen limitation and with the recent discovery of 

perchlorate on Mars (Hecht et al. 2009) it might be worth to speculate about the possibility of 

life on Mars. 

Research needs 

A solution for the biological remediation of hydrocarbons-contaminated soils where oxygen is 

the main limiting factor is the introduction of oxygen in a highly soluble form. (Per)chlorate, 

which acts both as electron acceptor and as oxygen source, is an appealing compound. It has a 

high solubility, a redox potential comparable to oxygen, and there are numerous (per)chlorate-

reducing bacteria in nature.  

We are at the beginning of deciphering and understanding the diversity, relevance and 

application of per(chlorate)-reducing bacteria that can degrade hydrocarbons and other 

compounds that are rather recalcitrant under anoxic conditions. Thus, in this respect studying 

the ecology of biodegradation deserves continued investigation efforts. 

Only a few hydrocarbon-degrading chlorate-reducing bacteria have been enriched and isolated 

up to now. Considering the enormous potential of (per)chlorate-reducing bacteria, there is a 
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need to enrich and isolate (per)chlorate-reducing bacteria over a broader range of hydrocarbons 

and a wider range of environmental conditions (pH, temperature, salt concentration). In 

addition, most of the known (per)chlorate reducers have been isolated on simple substrates like 

fatty acids. So further screening of these bacteria for hydrocarbon degradation is suggested. 

The bacteria listed in Table 6 of the introduction which have putative chlorite dismutase and 

putative nitrate reductase genes should be screened for their (per)chlorate-reducing ability. 

Similarly metagenome analysis may shed light on the occurrence and distribution of genes 

linked to the oxygenase-dependent breakdown of recalcitrant compounds and to (per)chlorate 

reduction. This may also provide insight into the biodegradation potential of polluted soils. 
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Summary 
 
Aliphatic and aromatic hydrocarbons are two groups of compounds that are widespread 

pollutants. The aerobic microbial degradation of aliphatic and aromatic hydrocarbons 

proceeds in general fast and has been widely studied, while the biodegradation in anoxic 

environments is often incomplete, proceeds at lower rates and is less characterized. The 

different techniques for the introduction of oxygen in anoxic zones are economically not 

attractive and have severe limitations. A promising solution for this could be to make use of 

the reduction of chlorate. Chlorate reduction is a unique process which yields molecular 

oxygen upon microbial reduction. This can be of practical significance, since the oxygen 

released can be incorporated inside the anaerobically recalcitrant compounds by oxygenases 

to form hydroxylated derivatives which can be further degraded easily either aerobically or 

anaerobically.  

We have found that Pseudomonas chloritidismutans AW-1T, which is a known chlorate-

reducing bacterium, can combine the oxidation of n-alkanes and the reduction of chlorate. The 

bacterium was able to grow on n-alkanes with oxygen and chlorate, but not with nitrate. The 

bacterium was able to grow with the intermediates of the aerobic pathway. The specific 

growth rates were almost equal on chlorate and oxygen. Hence we suggest that oxygen 

released during chlorate reduction is used via an alkane oxygenase to degrade n-alkanes. 

Chlorite dismutase is the key enzyme which splits chlorite into chloride and oxygen. We have 

isolated the chlorite dismutase for Pseudomonas chloritidismutans AW-1T. By using 18O 

labelled water, we demonstrated that both oxygen atoms in dioxygen are derived form the 

chlorite molecule and not from the water. High concentrations of chlorite resulted in the 

disappearance of the Soret peak and loss of activity, showing the toxic effect of chlorite for 

the enzyme. The activity of the enzyme was drastically increased by kosmotropic salts and 

decreased by chaotropic salts.  

Pseudomonas chloritidismutans AW-1T was also able to grow on benzoate with oxygen and 

chlorate but not with nitrate, demonstrating the use of the oxygenase mediated pathway. 

Catechol has been detected as an intermediate, further confirming this hypothesis. Cell free 

extracts of bacteria grown on benzoate and chlorate showed chlorate reductase, chlorite 

dismutase, benzoate-1,2-dioxygenase and catechol-1,2 dioxygenase activity. By differential 

proteomic analysis we found that the proteins involved in benzoate degradation were 

exclusively present in benzoate grown cells. Similarly, proteins involved in the catechol 

degradation were also only present in benzoate grown cells.  
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Pseudomonas chloritidismutans AW-1T was sequenced via 454 life science technology and a 

whole proteome analysis was done under 5 different growth conditions i.e. with acetate and 

decane as electron donors and chlorate, oxygen and nitrate as electron acceptors. By 

comparing the alkane-grown cells (both with oxygen and with chlorate) with the acetate-

grown cells (with oxygen and with chlorate), we were able to identify an alkane-1-

monoxygenase responsible for growth with alkanes. The exclusive presence of alkane-1-

monoxygenase and the up-regulation of chlorate reductase and chlorite dismutase show that 

oxygen released during chlorate reduction is used by the alkane oxygenase, resulting in a 

hydroxylation of the alkane to an alcohol. We also found other enzymes involved in the 

pathway i.e. alcohol dehydrogenases, aldehyde dehydrogenases and enzymes of the beta-

oxidation either induced or up-regulated when grown on alkanes.  

By comparing the enzyme activities with the differential expression of proteins of cells grown 

with oxygen, chlorate and nitrate we found that a basal level of chlorate reductase and chlorite 

dismutase is always expressed, but these enzymes are up-regulated when grown with chlorate 

and down-regulated when grown with oxygen. Apart from a chlorate reductase there is a 

separate nitrate reductase in P. chloritidismutans. We also found up-regulation of cytochrome 

cbb3 oxidase during growth on chlorate as compared with oxygen or nitrate. This shows an 

adaptation of the bacterium to low oxygen concentrations created during chlorate reduction. A 

bioinformatics analysis of chlorate reductase showed the similarity of all of its subunits with 

the subunits of chlorate reductase of Ideonella dechloratans. Due to the presence of a twin 

arginine motif, the presence of a signal peptide on a gamma subunit and the detection of a 

periplasmic cytochrome c responsible for donating electrons to chlorate reductase, we suggest 

a periplasmic localization of the chlorate reductase. Our findings suggest that oxygen released 

during chlorate reduction can be used to degrade the anaerobically recalcitrant compounds 

and chlorate reduction has a very high potential for bioremediation of anoxic soils. 
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Samenvatting 

 

Alifatische en aromatische koolwaterstoffen komen wijdverspreid als verontreinigingen voor. De 

aërobe microbiële afbraak van alifatische en aromatische koolwaterstoffen verloopt in algemeen 

snel, terwijl de biologische afbraak in anaërobe milieus vaak langzaam en onvolledig is. Van de 

anaërobe afbraak is minder bekend dan van de aërobe afbraak. Er bestaan verschillende 

technieken om zuurstof in anaërobe bodems in te brengen teneinde microbiële afbraak te 

stimuleren. Deze technieken zijn echter economisch niet aantrekkelijk en hebben veelal ook 

technische beperkingen. Een veelbelovende oplossing voor dit probleem is het gebruik van 

chloraat. De microbiële omzetting van chloraat is een uniek proces omdat er moleculaire zuurstof 

vrij gemaakt wordt. Dit kan de afbraak van koolwaterstoffen versnellen, aangezien de 

vrijgekomen zuurstof via oxygenases ingebouwd kan worden in organische moleculen. De 

gevormde gehydroxyleerde verbindingen zijn dan verder makkelijk afbreekbaar, zowel aëroob 

als anaëroob. Wij hebben ontdekt dat Pseudomonas chloritidismutans stam AW-1, een chloraat-

reducerende bacterie die in ons laboratorium geïsoleerd is, de oxidatie van n-alkanen kan 

koppelen aan de reductie van chloraat. De bacterie kan op n-alkanen met zuurstof en chloraat, 

maar niet met nitraat, groeien en blijkt dit met de intermediairen van de bekende aërobe 

afbraakroute van n-alkanen te kunnen.  De gemeten specifieke groeisnelheden met chloraat en 

zuurstof waren ongeveer gelijk. Op grond daarvan concluderen wij dat zuurstof die tijdens 

chloraatreductie vrijkomt via een alkaan oxygenase wordt gebruikt om n-alkanen af te breken. 

Chorietdismutase is het enzym dat chloriet omzet in chloride en zuurstof. Wij hebben het 

chlorietdismutase van P. chloritidismutans stam AW-1 geïsoleerd en gekarakteriseerd. Door 18O 

water te gebruiken konden we aantonen dat beide zuurstofatomen van het chloriet molecuul 

omgezet worden naar zuurstof en dat niet één van de zuurstofatomen uit water afkomstig is, 

zoals eerder aangenomen werd. Hoge concentraties chloriet resulteerden in de verdwijning van 

de Soret piek en het verlies van activiteit van het chlorietdismutase. De activiteit van het enzym 

werd aanzienlijk verhoogd met kosmotropische zouten en werd verlaagd met chaotropische 

zouten. P. chloritidismutans stam AW-1 bleek ook op benzoaat met zuurstof en chloraat te 

kunnen groeien, maar niet met nitraat. Dit doet vermoeden dat ook benzoaat middels oxygenases 

wordt afgebroken. De detectie van catechol als intermediair bevestigt deze hypothese. In celvrije 

extracten van bacteriën die op benzoaat en chloraat gekweekt waren kon een activiteit van 

chloraatreductase, chlorietdismutase, benzoaat-1,2-dioxygenase en catechol-1,2-dioxygenase 

gemeten worden. Door gebruik te maken van differentiële proteoomanalyse kon aangetoond 

worden dat enzymen die voor benzoaat- en catecholafbraak nodig zijn, alleen in benzoaat-
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gekweekte cellen aanwezig waren en niet in acetaatgekweekte cellen Op dezelfde manier werd 

het alkaanmetabolisme van P. chloritidismutans stam AW-1 nader onderzocht. Cellen werden 

onder vijf verschillende condities gekweekt, namelijk met acetaat en decaan als elektronendonor 

en met chloraat, zuurstof en nitraat als elektronenacceptor. Door alkaangekweekte cellen (zowel 

met zuurstof als met chloraat) met acetaatgekweekte cellen (met zuurstof en met chloraat) te 

vergelijken, konden wij een alkaan-1-monoxygenase identificeren als enzym dat betrokken is bij 

groei met alkanen. De aanwezigheid van alkaan-1-monoxygenase en van chloraatreductase en 

chlorietdismutase tonen aan dat de zuurstof die tijdens chloraatreductie vrijkomt, door alkaan-1-

oxygenase wordt gebruikt. Andere enzymen die betrokken zijn bij de afbraak van alkanen, zoals 

alcoholdehydrogenases, aldehydedehydrogenases en enzymen die verantwoordelijk zijn voor  

bèta-oxidatie zijn eveneens gevonden De bevindingen van de differentiële proteoomanalyse 

konden bevestigd worden middels enzymactiviteitsmetingen. We vonden tevens dat behalve 

chloraatreductase er ook een apart nitraatreductase in P. chloritidismutans aanwezig is, en dat het 

cytochroom cbb3 oxydase belangrijk is bij groei met chloraat. Dit cytochroom cbb3 oxidase is 

karakteristiek voor groei bij lage zuurstofspanning. Dit duidt erop dat de bacterie tijdens 

chloraatreductie onder condities van lage zuurstofconcentraties groeit. Uit bioinformatica-

analyse bleek dat de oriëntatie van genen, die betrokken zijn bij chloraatreductie, gelijkenis 

vertoont met die van Ideonella dechloratans. De aanwezigheid van een twin-arginine motief in 

de gamma-subeenheid van chloraatreductase en de detectie van een periplasmatisch cytochroom 

c duidt op een periplasmatische lokalisatie van chloraatreductase. De bevindingen in dit 

proefschrift tonen aan dat zuurstof die tijdens chloraatreductie vrijkomt bij bioremediatie, 

gebruikt kan worden om verbindingen die onder anaërobe condities recalcitrant zijn versneld af 

te breken zijn door chloraat toe te dienen. 
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