




NuswaLite

Manual version 3.0

NuswaLite

Manual version 3.0

M.H.J.L. Jeuken L.P.A. van Gerven

Alterra Report 1226.4

Alterra, Wageningen, 2008

ABSTRACT

Jeuken, M.H.J.L., L.P.A. van Gerven, 2008. NUSWALITE; Manual version 3.0. Alterra Report 1226.4, Wageningen, Alterra, 63 blz.; 4 figs.; 21 tables.; 6 refs.

This report describes the input, execution and output of the NUSWALITE model, which simulates nutrient concentrations in surface waters. Example files are included of the application of the NUSWALITE model to the Vansjø-Hobøl catchment (Norway). A detailed description of the concepts behind the model is provided by the process description (Siderius et al., 2008).

Keywords: simulation model, user manual, NuswaLite, surface water quality, retention, nitrogen, phosphorus

ISSN 1566-7197

The pdf file is free of charge and can be downloaded via the website <u>www.alterra.wur.nl</u> (go to Alterra reports). Alterra does not deliver printed versions of the Alterra reports. Printed versions can be ordered via the external distributor. For ordering have a look at <u>www.boomblad.nl/rapportenservice</u>.

© 2008 Alterra

P.O. Box 47; 6700 AA Wageningen; The Netherlands Phone: + 31 317 480700; fax: +31 317 419000; e-mail: info.alterra@wur.nl

No part of this publication may be reproduced or published in any form or by any means, or stored in a database or retrieval system without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report.

# Contents

| Pre            | eface                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Sur            | mmary                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                              |
| 1              | Introduction                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                             |
| 2              | <ul> <li>Input</li> <li>2.1 Input filenames</li> <li>2.2 Network definition and water balance</li> <li>2.3 Parameterization and environmental conditions</li> <li>2.4 Boundary and initial conditions</li> <li>2.5 User options <ul> <li>2.5.1 Runtime options</li> <li>2.5.2 Clustering of results</li> <li>2.5.3 Alternative file names</li> <li>2.5.4 Biomass management</li> </ul> </li> </ul> | 13<br>13<br>13<br>15<br>18<br>19<br>19<br>24<br>24<br>24<br>25 |
| 3              | <ul> <li>Execution and output</li> <li>3.1 Program execution</li> <li>3.2 Output filenames</li> <li>3.3 Concentrations and loads</li> <li>3.4 Nutrient mass balances</li> <li>3.5 Retention</li> <li>3.6 Other output files</li> </ul>                                                                                                                                                             | 27<br>27<br>28<br>28<br>29<br>30<br>31                         |
| Lite           | erature                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                             |
| Ap<br>Ap<br>Ap | pendix 1 Data structure<br>pendix 2 Input files<br>pendix 3 Output files<br>pendix 4 Example: Vansjø-Hobøl catchment (Norway)<br>pendix 5 Error messages in alphabetic order                                                                                                                                                                                                                       | 35<br>37<br>43<br>51<br>61                                     |

# Preface

This report describes the input, execution and output of the NUSWALITE model, which simulates nutrient concentrations in surface waters. Example files are included of the application of the NUSWALITE model to the Vansjø-Hobøl catchment (Norway). A detailed description of the concepts behind the model is provided by the process description (Siderius et al., 2008)

For questions about the contents of this report the reader is referred to the co-author mr. L. van Gerven (luuk.vangerven@wur.nl).

Wageningen, December 2008

# Summary

This report describes the input, execution and output of the surface water quality model NUSWALITE (version 3.0) in detail. Example files are included of the application of the NUSWALITE model to the Vansjø-Hobøl catchment (Norway).

# 1 Introduction

Mathematical models predicting nitrogen and phosphorus concentrations in surface water can be useful tools to evaluate measures combating eutrophication. NUSWALITE is a water quality model to predict the nutrient concentration in catchments and 'polder areas'. Alterra Report 1226.2 (Siderius et al., 2008) describes the theoretical concepts behind the model. This report describes the input, execution and output of the current version of the model.

Chapter 2 gives an overview of the input for the model. The input comprises the network definition (schematization), the forcing of the network by water, nutrients and the environment (water temperature and cloudiness), the settings of the model parameters and some options regarding the IO, the model calculation settings and the management of the water courses. Instructions for the parameterization of the model processes can be found in the NUSWALITE process description (Siderius et al., 2008). There are however directions for the model settings (runtime options).

In chapter 3 the output of the model will be described in detail. The appendices include a description of the data model, an overview of the input and output files, an application to the Vansjø-Hobøl catchment (Norway) and a list of all error messages.

Alterra Report 1226.4

# 2 Input

This chapter gives an overview of the input data needed to run NUSWALITE, and the required format of the corresponding input files. The input files will be discussed thematically. A data model visualizing the structure of the data is presented in Appendix 1.

# 2.1 Input filenames

The NUSWALITE input is divided over different files (Table 1). These are the default filenames that NUSWALITE will be looking for. It is possible to use alternative file names (see paragraph 2.5.3).

Table 1 Overview of default input filenames

| File                                       | Description                                  |
|--------------------------------------------|----------------------------------------------|
| NuswaLite_Waterbalance.bin                 | Water balance and network definition         |
| NuswaLite_Param.ini                        | Parameters of the model                      |
| NuswaLite_LocalParam.csv*                  | Local parameters of the model                |
| NuswaLite_Environment.csv                  | Environmental conditions for biomass growth  |
| NuswaLite_DiffuseSource.csv*               | Loads by nutrient leaching (e.g. ANIMO)      |
| NuswaLite_Erosion.csv*                     | Loads by erosion (e.g. PUSLE)                |
| NuswaLite_PointSource.csv*                 | Loads by point sources                       |
| NuswaLite_DischargeConcentrations.csv*     | Concentrations for discharge boundary inflow |
| NuswaLite_LevelConcentrations.csv*         | Concentrations for level boundary inflow     |
| NuswaLite_LinkConcentrations.csv*          | Concentrations for linked boundary inflow    |
| NuswaLite_PrecipitationConcentrations.csv* | Concentrations for precipitation             |
| NuswaLite_Initial.csv                      | Initial conditions                           |
| NuswaLite_NodeClusters.csv*                | Clusters of nodes for aggregated output      |
| NuswaLite.ini*                             | Alternative file names for input/output      |
| NuswaLite_Management.csv*                  | Removal of biomass (e.g. mowing)             |
| *optional                                  |                                              |

\*optional

# 2.2 Network definition and water balance

The network definition and the water balance provide the basis for the water quality calculations. The network is defined by the water course sections (nodes), their geometry and the way the nodes are connected. A single node can be connected to maximal ten other nodes. The water balance comprises for each time step the external water fluxes on the nodes (five different kinds), the internal water flow between the nodes and the water volume at the node.

The data on the network and the water balance, as well as the calculation period, have to be stored in the binary file NUSWALITE\_WATERBALANCE.BIN, that consists of four sections. The file can also be supplied to NUSWALITE in ASCII format. The user decides which hydrological model is used to define the network and produce the water balance, as long as this information is given to NUSWALITE in the right format.

The hydrological model SWQN (Smit et al., 2009) contains an option to produce the NUSWALITE\_WATERBALANCE.BIN file right away.

The first section of NUSWALITE\_WATERBALANCE.BIN contains some calculation details (Table 2). This section contains only one record. In the first two fields the version ID and calculation ID can be defined. The following three columns comprise the start date of the calculation and the sixth column contains the number of days the calculation covers. In the last column the number of time steps per day have to be defined.

The total number of nodes is given in section 2 of NUSWALITE\_WATERBALANCE.BIN (Table 3). This section contains only one record.

In section 3 of NUSWALITE\_WATERBALANCE.BIN (Table 4) the network is defined. This section contains one record for every node. The first column contains the node ID. The node ID's do not have to be sorted or continuous. After that the bottom area and initial water volume of the node are given. The next column contains the number of nodes this node is connected to, followed by the ID's of the connected nodes. The number of connected nodes is limited to ten.

| Col | Name            | Description                        | Unit  | Туре |
|-----|-----------------|------------------------------------|-------|------|
| 1   | VersionID       | Version id for water balance file  | -     | C40  |
| 2   | CalcID          | Calculation identification message | -     | C60  |
| 3   | StartYear       | Day for start of calculation       | day   | I4   |
| 4   | StartMonth      | Month for start of calculation     | month | I4   |
| 5   | StartDay        | Year for start of calculation      | year  | I4   |
| 6   | NrDays          | Number of calculation days         | day   | I4   |
| 7   | TimestepsPerDay | Time steps per day at which water  | 1/day | I4   |
|     |                 | balance is given                   |       |      |

Table 2 Calculation details: section 1 of NUSWALITE\_WATERBALANCE.BIN

Table 3 Number of nodes: section 2 of NUSWALITE\_WATERBALANCE.BIN

| Col | Name     | Description     | Unit | Туре |
|-----|----------|-----------------|------|------|
| 1   | NOfNodes | Number of nodes | -    | I4   |

Table 4 Network layout: section 3 of NUSWALITE\_WATERBALANCE.BIN

| Col  | Name                         | Description                    | Unit           | Туре |
|------|------------------------------|--------------------------------|----------------|------|
| 1    | NodeID                       | Node ID                        | -              | I4   |
| 2    | BottomArea                   | Bottom area                    | m <sup>2</sup> | R8   |
| 3    | InitialVolume ( $V_{w,to}$ ) | Initial water volume           | m <sup>3</sup> | R8   |
| 4    | NOfConNodes                  | Number of connected nodes (CN) | -              | I4   |
| 5-N* | ConNodID                     | Connected node ID              | -              | I4   |

\* NOfConNodes (CN) is limited to ten;  $5 \le N \le 14$ 

In section 4 of NUSWALITE\_WATERBALANCE.BIN (Table 5) the water balance is given. NUSWALITE assumes that for a number of *EndTime* days a set of *NofNodes* records is given in the same order as the network layout is given. First the time averaged nodal water volume has to be defined. The second column contains the volume at the end of the time step, which is assumed to be equal to the volume at the beginning of the next time step. The next column contains five different flow boundary conditions, of which the first four can have different concentrations in case of inflow, defined by the user (see paragraph 2.4). In the last columns the internal flow is defined for each connected node. A positive flow means flow to the node; a negative flow means flow from the node.

NUSWALITE checks the water balance for all nodes, and expects the water balance errors to be below 0.01% of the average volume during the time step. NUSWALITE also checks if the flow from node A to B equals minus the flow from B to A with a tolerance of 0.01%. If these tolerances are exceeded warning messages are generated in the log file (NUSWALITE.LOG).

| Col   | Name                               | Description                           | Unit                           | Туре |
|-------|------------------------------------|---------------------------------------|--------------------------------|------|
| 1     | VolAddAvg $(\overline{V_w})$       | Time averaged nodal volume            | m <sup>3</sup>                 | R8   |
| 2     | VolAddEnd ( $V_{w,to+\Delta t}$ )  | Nodal volume at end of time step      | m <sup>3</sup>                 | R8   |
| 3     | DepthAvg                           | Averaged water depth per time step    | m                              | R8   |
| 4     | Vel                                | Flow velocity averaged over time step | m.d <sup>-1</sup>              | R8   |
| 5     | FlwBndH (Q <sub>external,1</sub> ) | Level boundary flow**                 | m <sup>3</sup> d <sup>-1</sup> | R8   |
| 6     | FlwBndQ (Qexternal,2)              | Discharge boundary flow**             | m <sup>3</sup> d <sup>-1</sup> | R8   |
| 7     | FlwBndL (Q <sub>external,3</sub> ) | Link boundary flow**                  | m <sup>3</sup> d <sup>-1</sup> | R8   |
| 8     | FlwBndP (Qexternal,4)              | Precipitation boundary discharge**    | m <sup>3</sup> d <sup>-1</sup> | R8   |
| 9     | FlwBndE (Q <sub>external,5</sub> ) | Evaporation boundary discharge**      | m <sup>3</sup> d <sup>-1</sup> | R8   |
| 10-N* | FlwNodID1-CN (Qi,1)                | Internal flow discharges**            | m <sup>3</sup> d <sup>-1</sup> | R8   |

Table 5 Water balance: section 4 of NUSWALITE\_WATERBALANCE.BIN

\* NOfConNodes (CN) is limited to ten;  $10 \le N \le 19$ 

\*\* positive value = incoming flow, negative value = outgoing flow

### 2.3 Parameterization and environmental conditions

The parameters for all model processes are defined in NUSWALITE\_PARAM.INI. This file uses the Microsoft Windows INI-file format. The file is divided in the sections [LivBioPar], [Floating Biomass], [Rooting Biomass], [Reed], [Parameters] and [Options]. The parameters are set using the notation:

Name = [Value] or Name = [List]

A value is a real or integer, depending on the variable. List is a list of integers, separated by commas and placed on one line. Lists are only used in the [Options] section that will be discussed in paragraph 2.5.1.

For parameters in the [LivBioPar], [Floating Biomass], [Rooting Biomass], [Reed] and [Parameters] sections no default values are given or presumed by the program. The user has to provide values for all parameters (Tables 6 to 11), except the detailed

mortality parameters (Table 10). These only need to be given when the option *UseDetailedMortality* is used (see section 2.5.1).

Suggestions for parameter values as well as information on the underlying processes can be found in the NUSWALITE Process Description (Siderius et al., 2008).

Table 6 Parameters of the [LivBioPar] section in NUSWALITE\_PARAM.INI

| <b>1</b>                    | Sym                                                | Unit             | Туре |
|-----------------------------|----------------------------------------------------|------------------|------|
| ConcNitrCritUpt Minimum cor | concentration for N uptake (all biomasses) cNupmin | g/m <sup>3</sup> | R8   |
| ConcPhosCritUpt Minimum cor | centration for P uptake (all biomasses) cPupmin    | g/m <sup>3</sup> | R8   |

Table 7 Parameters of the [Floating Biomass] section in NUSWALITE\_PARAM.INI

| Name                | Description                                         | Sym              | Unit             | Туре |
|---------------------|-----------------------------------------------------|------------------|------------------|------|
| NitrogenDMRatio     | Nitrogen/dry matter ratio of floating biomass       | fn,FB            | gN/g             | R8   |
| PhosphorusDMRatio   | Phosphorus/dry matter ratio of floating biomass     | fn,FB            | gP/g             | R8   |
| RespirationRate     | Respiration loss during primary production          | a,FB             | -                | R8   |
| MortalityRate       | Mortality rate at 20°C                              | $k_{mor,FB}$     | d-1              | R8   |
| Q10MortalityRate    | Temperature sensitivity for mortality               | $\beta_{mor,FB}$ | -                | R8   |
| ConcNitrMonod       | 50%-optimum concentration for N uptake              | CNmonod,FB       | g/m <sup>3</sup> | R8   |
| ConcPhosMonod       | 50%-optimum concentration for P uptake              | CPmon,odFB       | g/m <sup>3</sup> | R8   |
| InflowCFB           | 'background' inflow of floating biomass             | -                | g/m <sup>3</sup> | R8   |
| FBAdvectiveFraction | Fraction floating biomass subject to adv. transport | fadv             | -                | R8   |
| LightIntCoef        | Light interception coefficient for floating biomass | $\alpha_{FB}$    | -                | R8   |

Table 8 Parameters of the [Rooting Biomass] section in NUSWALITE\_PARAM.INI

| Name              | Description                                         | Sym              | Unit             | Туре |
|-------------------|-----------------------------------------------------|------------------|------------------|------|
| NitrogenDMRatio   | Nitrogen/dry matter ratio of rooting biomass        | fn,rв            | gN/g             | R8   |
| PhosphorusDMRatio | Phosphorus/dry matter ratio of rooting biomass      | fn,rb            | gP/g             | R8   |
| RespirationRate   | Respiration loss during primary production          | a,rb             | -                | R8   |
| MortalityRate     | Mortality rate at 20°C                              | $k_{mor,RB}$     | d-1              | R8   |
| Q10MortalityRate  | Temperature sensitivity for mortality               | $\beta_{mor,RB}$ | -                | R8   |
| ConcNitrMonod     | 50%-optimum concentration for N uptake              | CNmonod, RB      | g/m <sup>3</sup> | R8   |
| ConcPhosMonod     | 50%-optimum concentration for P uptake              | CPmonod,RB       | g/m <sup>3</sup> | R8   |
| LightIntCoef      | Light interception coefficient for floating biomass | $\alpha_{FB}$    | _                | R8   |

Table 9 Parameters of the [Reed] section in NUSWALITE\_PARAM.INI

| Name              | Description                                | Sym                | Unit             | Type |
|-------------------|--------------------------------------------|--------------------|------------------|------|
| NitrogenDMRatio   | Nitrogen/dry matter ratio of reed          | fN,Reed            | gN/g             | R8   |
| PhosphorusDMRatio | Phosphorus/dry matter ratio of reed        | fN,Reed            | gP/g             | R8   |
| RespirationRate   | Respiration loss during primary production | a, Reed            | -                | R8   |
| MortalityRate     | Mortality rate at 20°C                     | kmor,Reed          | d-1              | R8   |
| Q10MortalityRate  | Temperature sensitivity for mortality      | $\beta_{mor,Reed}$ | -                | R8   |
| ConcNitrMonod     | 50%-optimum concentration for N uptake     | CNmon,Reed         | g/m <sup>3</sup> | R8   |
| ConcPhosMonod     | 50%-optimum concentration for P uptake     | CPmon, Reed        | g/m <sup>3</sup> | R8   |
| LightEffCoef      | Light interception coefficient for reed    | $a_{int}$          | -                | R8   |

Table 10 Optional detailed mortality parameters which can be implemented in the [Floating Biomass], [Rooting Biomass] and [Reed] section in NUSWALITE\_PARAM.INI

| Name                | Description                            | Sym    | Unit | Туре |
|---------------------|----------------------------------------|--------|------|------|
| StartSeason         | Day number in year for start of season | -      | d    | R8   |
| EndSeason           | Day number in year for end of season   | -      | d    | R8   |
| MortalityRateSeason | Season mortality rate at 20°C          | kmor,s | d-1  | R8   |
| MortalityRateWinter | Winter mortality rate at 20°C          | kmor,w | d-1  | R8   |

| Name                     | Description                                  | Sym                        | Unit                                  | Type |
|--------------------------|----------------------------------------------|----------------------------|---------------------------------------|------|
| Latitude                 | Latitude to determine maximum incoming       | $\phi$                     | 0                                     | R8   |
|                          | radiation for primary production             | ,                          |                                       |      |
| MineralizationRate       | Mineralization rate of organic material      | $k_{mi}$                   | d-1                                   | R8   |
| Q10Mineralization        | Temperature sensitivity for mineralization   | $\beta_{mi}$               | -                                     | R8   |
| DenitrificationRate      | Removal rate of mineral N                    | k <sub>den</sub>           | d-1                                   | R8   |
| Q10Denitrification       | Temperature sensitivity for N removal        | $\beta_{den}$              | -                                     | R8   |
| BulkDensity              | Dry bulk density of sediment                 | $\varrho_s$                | g.m <sub>s</sub> -3                   | R8   |
| LinSorptionNMin          | Minimum mineral N adsorption capacity        | $k_{aNmin}$                | mpores <sup>3</sup> .gs <sup>-1</sup> | R8   |
| LinSorptionNMax          | Maximum mineral N adsorption capacity        | $k_{aNmax}$                | mpores3.gs-1                          | R8   |
| LinSorptionNDayMax       | Day in year with highest N sorption capicity | t <sub>kaNmax</sub>        | day                                   | R8   |
| LinSorptionPMin          | Minimum mineral P adsorption capacity        | $k_{aPmin}$                | mpores <sup>3</sup> .gs <sup>-1</sup> | R8   |
| LinSorptionPMax          | Maximum mineral P adsorption capacity        | $k_{aP\max}$               | mpores <sup>3</sup> .gs <sup>-1</sup> | R8   |
| LinSorptionPDayMax       | Day in year with highest N sorption capicity | <i>t<sub>ka</sub>P</i> max | day                                   | R8   |
| SedimentSinkSpeedMineral | Loss rate for mineral P                      | $w_{s(min)}$               | m.d <sup>-1</sup>                     | R8   |
| SedimentSinkSpeedOrganic | Loss rate for organic N/P                    | $w_{s(org)}$               | m.d <sup>-1</sup>                     | R8   |
| SedimentThickness        | Virtual thickness of sediment layer          | $H_{sed}$                  | m                                     | R8   |

Table 11 Parameters of the [Parameters] section in NUSWALITE\_PARAM.INI

It is possible to overrule some of the parameters with local values. These can be specified in the file NUSWALITE\_LOCALPARAM.CSV. Only parameters greater than or equal to zero will be modified for the specified nodes (e.g. the line '203, -1, 0.1, -1,-1' will only set the denitrification rate of node 203 to 0.1, but will keep the default values for the sediment thickness and sediment sink speed).

Important factors for the amount of primary production are water temperature and global radiation. The daily water temperature, which applies to all nodes, can be set in the NUSWALITE\_ENVIRONMENT.CSV file. Global radiation is calculated with a function based on the latitude from the parameter file (Table 11) and a daily CloudinessFactor, which also applies to all nodes and is given in the NUSWALITE\_ENVIRONMENT.CSV file. The cloudiness factor equals one minus the fraction of sunshine hours during daylight hours.

| Col | Name                     | Description                         | Sym              | Unit              | Туре |
|-----|--------------------------|-------------------------------------|------------------|-------------------|------|
| 1   | Node                     | Node ID                             |                  | -                 | I4   |
| 2   | SedimentThickness        | Virtual thickness of sediment layer | $H_{sed}$        | m                 | R8   |
| 3   | DenitrificationRate      | Removal rate of mineral N           | k <sub>den</sub> | d-1               | R8   |
| 4   | SedimentSinkSpeedMineral | Loss rate for mineral P             | $w_{s(min)}$     | m.d <sup>-1</sup> | R8   |
| 5   | SedimentSinkSpeedOrganic | Loss rate for organic N/P           | $w_{s(org)}$     | m.d <sup>-1</sup> | R8   |

Table 12 NUSWALITE\_LOCALPARAM.CSV

Table 13 NUSWALITE ENVIRONMENT.CSV

| Col | Name             | Description                                        | Unit | Туре |
|-----|------------------|----------------------------------------------------|------|------|
| 1   | Date*            | Date                                               | -    | C10  |
| 2   | Temp             | Water temperature                                  | оC   | R8   |
| 3   | CloudinessFactor | Clouded fraction of day (= 1–fraction of sunshine) | -    | R8   |

\* Date formats 'yyyy-m-d' and 'd-m-yyyy' are both accepted.

## 2.4 Boundary and initial conditions

External nutrient loads can be provided to the model in two ways: directly as a load or indirectly as a concentration. Direct external loads are submitted to NUSWALITE through three files which represent three different nutrient sources. It concerns nutrient leaching by the soil system (for example derived by the ANIMO model Groenendijk et al., 2005), nutrients coming from point sources en nutrients associated with the erosion of the soil surface by run-off.

The three files with the direct external input loads have the same format (Table 14). The first two columns define the time and location at which the loads (column three to six) are applied. Values at a node are sustained in time until a new value is given for the same node. Values for the same date and node within a file are summed up. For each time step the external loads defined by these files are added to the indirect loads to determine the total external loads to the nodal water volumes.

Indirect external loads in the form of concentrations can be provided through four different files. Each file is coupled to a specific discharge from the water balance (Table 5). The actual load is calculated by multiplying the actual inflow with the given concentration. In case of boundary outflow the outgoing load is calculated by multiplying the outflow with the concentration of the nodal water volumes.

These files also share the same format (Table 15). The first column contains the date, followed by the node ID to set the time and place a concentration applies to. The third till sixth column contain the concentrations of organic and mineral nitrogen and phosphorus. Values at a node are sustained in time until a new value is given for the same node. Values for the same date and node within a file are replaced by the latter. For each time step the resulting indirect external loads are added to the direct external loads to determine the total external loads to the nodal water volumes.

| Col | Name     | Description                | Unit              | Type |
|-----|----------|----------------------------|-------------------|------|
| 1   | Date*    | Date for change of setting | Date              | C10  |
| 2   | Node     | ID used in node definition | -                 | I4   |
| 3   | LoadOrgN | Load of organic nitrogen   | g.d <sup>-1</sup> | R8   |
| 4   | LoadMinN | Load of mineral nitrogen   | g.d <sup>-1</sup> | R8   |
| 5   | LoadOrgP | Load of organic phosphorus | g.d <sup>-1</sup> | R8   |
| 6   | LoadMinP | Load of mineral phosphorus | g.d-1             | R8   |

 Table 14 NUSWALITE\_DIFFUSESOURCE/POINTSOURCE/EROSION.CSV

\* Date formats 'yyyy-m-d' and 'd-m-yyyy' are both accepted

| Table 15 NUSWALITE_DISCHARGE/LEVEL/LINK/PR | PRECIPITATIONCONCENTRATIONS.CSV |
|--------------------------------------------|---------------------------------|
|--------------------------------------------|---------------------------------|

| Col | Name    | Description                         | Sym         | Unit              | Туре |
|-----|---------|-------------------------------------|-------------|-------------------|------|
| 1   | Date*   | Date for change of setting          |             | Date              | C10  |
| 2   | Node    | ID used in node definition          |             | -                 | I4   |
| 3   | ConOrgN | Concentration of organic nitrogen   | CoN,in      | g.m <sup>-3</sup> | R8   |
| 4   | ConMinN | Concentration of mineral nitrogen   | $c_{mN,in}$ | g.m <sup>-3</sup> | R8   |
| 5   | ConOrgP | Concentration of organic phosphorus | CoP,in      | g.m <sup>-3</sup> | R8   |
| 6   | ConMinP | Concentration of mineral phosphorus | $C_{mP,in}$ | g.m <sup>-3</sup> | R8   |

\* Date formats 'yyyy-m-d' and 'd-m-yyyy' are both accepted

The initial condition of the system is determined on basis of the initial nutrient and biomass concentrations which have to be specified for every node (Table 16). The biomass 'concentrations' have to be entered as a density per bottom area (g/m2). Initial nutrient loads can be calculated by using the initial nodal volume (Table 4).

It is important to make realistic estimates of the initial concentrations to prevent that the water system is unrealistically overloaded or depleted with nutrients. To reduce the influence of wrongly chosen initial conditions it is recommended to make one model run in advance (over a considerable number of time steps) of which the output concentrations can be used as initial concentrations (paragraph 3.6).

| Col | Name         | Description                                 | Unit              | Туре |
|-----|--------------|---------------------------------------------|-------------------|------|
| 1   | Node         | Node ID                                     | -                 | I4   |
| 2   | BiomassRoot  | Initial rooting biomass                     | g.m <sup>-2</sup> | R8   |
| 3   | BiomassReed  | Initial reed biomass                        | g.m <sup>-2</sup> | R8   |
| 4   | BiomassFloat | Initial floating biomass                    | g.m <sup>-2</sup> | R8   |
| 5   | ConOrgN      | Initial concentration of organic nitrogen   | g.m <sup>-3</sup> | R8   |
| 6   | ConMinN      | Initial concentration of mineral nitrogen   | g.m <sup>-3</sup> | R8   |
| 7   | ConOrgP      | Initial concentration of organic phosphorus | g.m <sup>-3</sup> | R8   |
| 8   | ConMinP      | Initial concentration of mineral phosphorus | g.m <sup>-3</sup> | R8   |

Table 16 NUSWALITE\_INITIAL.CSV

# 2.5 User options

NUSWALITE offers several options for the user:

- Runtime options considering input, output and model processes can be set by the user (NUSWALITE\_PARAM.INI)
- Clusters of nodes can be defined for which aggregated output is produced (NUSWALITE\_NODECLUSTERS.CSV). In this way nutrient balances are given on subcatchment scale
- Alternative names for the input and output files can be defined (NUSWALITE.INI)
- The amount, time and location of biomass removal (e.g. mowing, dredging) can be specified by the user (NUSWALITE\_MANAGEMENT.CSV)

These options will be successively discussed in the next paragraphs.

### 2.5.1 Runtime options

The runtime options must be set in the [Options] section of nuswalite\_param.ini. An overview of all options is given by Table 17. If an option is not set, NUSWALITE uses the default value as specified in the table.

| Name                       | Description                                                                | Def    | Unit  | Туре   |
|----------------------------|----------------------------------------------------------------------------|--------|-------|--------|
| StartTimeNuswaLite         | Day number after first day in NUSWALITE                                    | -      | day   | I4     |
|                            | _WATERBALANCE.BIN to start calculation                                     |        |       |        |
| StartDayNuswaLite          |                                                                            | -      | day   | I4     |
| StartMonthNuswaLite        | Alternative date to start the calculation                                  | -      | month | I4     |
| StartYearNuswaLite         |                                                                            | -      | year  | I4     |
| EndTimeNuswaLite           | Day number after first day in NUSWALITE                                    | -      | day   | I4     |
|                            | _WATERBALANCE.BIN to end calculation                                       |        |       |        |
| EndDayNuswaLite            |                                                                            | -      | day   | I4     |
| EndMonthNuswaLite          | Alternative date to end the calculation                                    | -      | month | I4     |
| EndYearNuswaLite           |                                                                            | -      | year  | I4     |
| HBotAdd                    | Work-around parameter for negative or near zero volumes and water depths.  | 0.0    | m     | R8     |
| DiffuseSourceFactorN       | Correction factor for diffuse N loads                                      | 1.0    | -     | R8     |
| DiffuseSourceFactorP       | Correction factor for diffuse P loads                                      | 1.0    | -     | R8     |
| PointSourceFactor          | Correction factor for point source loads                                   | 1.0    | -     | R8     |
| ErosionFactor              | Correction factor for erosion loads                                        | 1.0    | -     | R8     |
| MergeNodes                 | List* of nodes that will be merged                                         |        |       | C9999  |
| UseDetailedMortalityRoot   | Option to give detailed mortality parameters for submerged rooting biomass | 0      | 1/0^  | I4     |
| UseDetailedMortalityReed   | Option to give detailed reed mortality parameters                          | 0      | 1/0^  | I4     |
| UseDetailedMortalityFloat  | Option to give detailed mortality parameters for                           | 0      | 1/0^  | I4     |
| e sel cuncultor unity rout | floating biomass                                                           | 0      | 1,0   | 11     |
| UseSedimentation           | Use sedimentation rate only at listed nodes                                | 0      | 1/0^  | I4     |
| SedimentationNodes         | List* of nodes where sedimentation occurs ( $A = all$ )                    | Ă      | -     | C9999  |
| FloatingBiomassOutflowN    | List* of nodes where floating biomass can leave the                        | None   | _     | C9999  |
| odes                       | system with boundary flow                                                  | i tone |       | 0,,,,, |
| EchoLoads                  | Write all external loads (per node per time) to                            | 0      | 1/0^  | I4     |
|                            | NUSWALITE_OUTECHOLOADS.CSV and to a yearly                                 | Ť      | -/ ~  |        |
|                            | sum (NUSWALITE_OUTECHOLOADSYEARLY.CSV)                                     |        |       |        |
| WriteLoad                  | Write daily loads per node associated with incoming                        | 0      | 1/0^  | I4     |
|                            | internal flows to NUSWALITE _OUTLOADS.CSV                                  |        | -/ -  |        |
| WriteCon                   | Write daily nodal biomass and nutrient                                     | 0      | 1/0^  | I4     |
|                            | concentrations to NUSWALITE_OUTCON.CSV                                     |        | , -   |        |
| WriteBiomass               | Write daily nodal biomass characteristics to                               | 0      | 1/0^  | I4     |
|                            | NUSWALITE_OUTBIOMASS.CSV                                                   |        | , -   |        |
| WriteBalN                  | Write daily nodal mass balance for nitrogen to                             | 0      | 1/0^  | I4     |
|                            | NUSWALITE_OUTBALN.CSV and yearly aggregates to                             |        | ,     |        |
|                            | NUSWALITE_OUTBALYEARLYN.CSV                                                |        |       |        |
| WriteBalP                  | Write daily nodal mass balance for phosphorus to                           | 0      | 1/0^  | I4     |
|                            | NUSWALITE_OUTBALP.CSV and yearly aggregates to                             |        |       |        |
|                            | NUSWALITE_OUTBALYEARLYP.CSV                                                |        |       |        |
| WriteBalBin                | Write to daily nodal binary balance file for N and P                       | 0      | 1/0^  | I4     |
| OutBalanceAll              | Write daily balances for all (selected) nodes (=1) or                      | 0      | 1/0^  | I4     |
|                            | write balances only for days when (selected) nodes                         |        |       |        |
|                            | have significant balance errors (=0)                                       |        |       |        |
| OutputNode                 | List* of nodes for output of detailed results ( $A = all$ ;                | А      | -     | C9999  |
|                            | yearly totals are always for all nodes)                                    |        |       |        |
| RetentionSubbasinNode1,    | Up to nine lists* of nodes for which retention results                     | -      | -     | C9999  |
| RetentionSubbasinNode2,    | are written to NUSWALITE_                                                  |        |       |        |
| ·····                      | OUTRETENTIONSYEARLYSUBCATCHMENT1-9.CSV                                     |        |       |        |
| RetentionSubbasinNode9     |                                                                            |        |       |        |
| RetentionScientific        | If set to 1 the N and P loads carried by floating bio-                     | 0      | 1/0^  | I4     |
| RetentionScientific        | ii bet to i the i t and i foudo cuffica by flouding bio                    | 0      | -/ 0  |        |

Table 17 Runtime options from NUSWALITE\_PARAM.INI

All variables are optional, \* Lists are comma separated,  $^1=Yes; 0=No$ 

## StartTimeNuswaLite or StartDayNuswaLite, StartMonthNuswaLite and StartYearNuswaLite EndTimeNuswaLite or EndDayNuswaLite, EndMonthNuswaLite and EndYearNuswaLite By default the calculation period of NUSWALITE is set in NUSWALITE\_ WATERBALANCE.BIN. By setting an alternate start time and/or end time the calculation period can be shortened. When a -Time- (= day number after the first day of the water balance) is given the -Day-, -Month- and -Year- values are ignored.

### HBotAdd

*HBotAdd* is a workaround parameter to deal with negative (and zero) water volumes in the water balance supplied to NUSWALITE. Although physically not correct, some hydrological models produce negative water volumes in their water balance. This is mainly due to inaccurate dealing with dry fall situations, instability or the chosen numerical solution. Though these problems should be resolved in the hydrological model, it is possible to use a work-around implemented in NUSWALITE.

The easiest way to correct a water balance with negative volumes is to add a constant extra volume per node during the whole calculation period that is big enough to make the lowest volume positive. With this method the volume changes per time step are not affected, and no correction of water flows is needed. A drawback of this method is that it can influence the results because the residence time goes up, which leads to less dynamic results and possibly increased retention.

There are two ways to define how much extra volume is added. Both methods are expressed in terms of extra depth added to the node (Figure 1). Extra depth is a relative factor, and the extra volume added to a node is determined as extra depth multiplied with the bottom area. The two methods are:

- A constant value for the whole system (given as *HBotAdd*>0)
- A value per node based on the actual water balance (given as *HBotAdd*<0)

The extra depth is also added to the water depth taken from the water balance.

The first method is chosen by giving a positive value for *HBotAdd*. This leads to a constant extra depth for al nodes. The advantage of this method is that it is independent of the scenario that is simulated. A disadvantage is the correction factor needs to be set to the 'worst-case' in the model to work. It is not recommended to set this parameter to >0.10m.

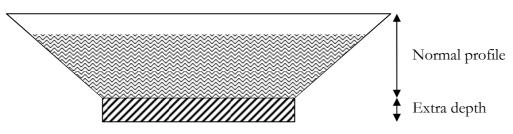



Figure 1 Scheme showing how extra volume is created using HBotAdd

The second method is chosen by giving a negative value for *HBotAdd*. In this situation the extra depth is appointed per node and is constant during the calculation period. This is done by determining the lowest water volume per node, and thus the extra depth needed for this node to get positive water volumes. The extra depth is then raised with (the absolute value of) *HBotAdd* to prevent zero water volumes. The advantage of this method is that it will always work. The disadvantages are that automatic extra depth could become very high, and could also change significantly when the water balance is recalculated (extreme negative volumes tend to change more rapidly than the over all water balance). So when simulating scenarios and presenting results relative to other scenarios this option should not be used. The actual depth corrections are written to the NUSWALITE\_OUTHBOTADD.CSV file, and the user should take notice of these values. It is not recommended to set this parameter to < -0.02m.

In all cases the user should be aware of the fact that the use of *HBotAdd* can have great effects on the results.

### DiffuseSourceFactorN, DiffuseSourceFactorP, PointSourceFactor, ErosionFactor

These factors can be used to manipulate the boundary conditions. All values of a specific boundary file can be multiplied with a given factor. For the NUSWALITE\_DIFFUSESOURCE file there can be differentiated between nitrogen and phosphorus. There are various reasons to use this factor:

- Unit conversions
- Sensitivity analysis
- Scenario calculations
- Anticipate on expected changes in the results of a supplying model

Especially in the latter case one must not forget to set back this parameter when new results from the model are used. Always look at the warnings in the NUSWALITE.LOG file.

#### MergeNodes

This option makes it possible to merge the listed nodes to one node. Make sure that the listed nodes are connected to each other.

#### UseDetailedMortalityRoot, UseDetailedMortalityReed, UseDetailedMortalityFloat

These options make it possible to differentiate between seasonal and winter biomass mortality, for the selected biomass. When set to 1, the user must provide all detailed mortality parameters (Table 10) in respectively the [Rooting Biomass], [Reed] and [Floating Biomass] section. These parameters include the duration of the 'seasonal' period.

#### UseSedimention, SedimentationNodes

With the *UseSedimention* option sedimentation only occurs in the nodes that are listed in *SedimentationNodes*.

### *FloatingBiomassOutflowNodes*

Normally biomass flows out of the system with every negative boundary flow (discharge boundary, link boundary and level boundary flow). This is however an unwanted situation for negative flow boundaries due to infiltration. Because NUSWALITE can not distinguish between infiltration outflow and catchment outflow, we made it possible to limit the outflow of biomass to the nodes selected with *FloatingBiomassOutflowNode*. It is recommended to define only the node(s) at the outlet(s) as a floating biomass outflow node, since its outgoing flux is defined as a negative flow boundary. Make sure there is no infiltration flux at such an outlet node.

## EchoLoads, WriteLoad, WriteCon, WriteBiomass, WriteBalN, WriteBalP, WriteBalBin

These switches can be used to produce extra output files (see Table 17). When using the *EchoLoads* switch all external incoming and outgoings loads are registered, which can be a useful check on the input delivered by external models. The *WriteLoad* switch can be useful when comparing loads associated with flow-proportional water samples (field measurements) to model results. The generated output file gives the daily loads per node associated with internal inflow.

More info about the extra output files is given in Chapter 3. To improve performance it is recommended only to produce the extra output if needed. Especially the production of the detailed balance files (by setting *WriteBalN* and *WriteBalP* to 1) and the file with the incoming and outgoing loads (by setting *EchoLoads* to 1) can be time consuming.

## OutBalanceAll, OutputNode

The detailed balance files do not only slow down the calculation itself. They can also be time consuming during post processing. When *OutBalanceAll* is set to 0, results are only written to the detailed mass balance files NUSWALITE\_OUTBALP.CSV and NUSWALITE\_OUTBALN.CSV when the overall mass balance error for a certain node on a certain day is greater than 10<sup>-3</sup> g.

If a list is provided for *OutputNode*, results of only the selected nodes will be written to:

- NUSWALITE\_OUTBALN.CSV
- NUSWALITE\_OUTBALP.CSV
- NUSWALITE\_OUTCON.CSV
- NUSWALITE\_OUTBIOMASS.CSV
- NUSWALITE\_OUTECHOLOADS.CSV
- NUSWALITE\_OUTLOADS.CSV

Yearly balances will still be written for all nodes (NUSWALITE\_OUTBALYEARLYN.CSV, NUSWALITE\_OUTBALYEARLYP.CSV and NUSWALITE\_OUTECHOLOADSYEARLY.CSV. When combining *OutputNode* with *OutBalanceAll* set to 0, only mass balance errors in the selected nodes will be written to the detailed balance files.

RetentionSubbasinNode1 - RetentionSubbasinNode9, RetentionScientific

By default the calculation of the retention (= the amount of nutrients that are stored or removed in the water system) is made for the whole network. It is also possible to make retention calculations for parts of the modeled network. Therefore up to 9 different subbasins can be specified by providing a list of nodes to *RetentionSubbasinNode1* to *RetentionSubbasinNode9*. It is important that these nodes form a complete basin with preferably one outlet point; otherwise the retention calculation will give false results.

By default the incoming and outgoing N and P loads of floating biomass flow are not included in the calculation of retention. When *RetentionScientific* is set to 1 there will be accounted for floating biomass outflow. More details on how the retention is calculated can be found in paragraph 3.5.

# 2.5.2 Clustering of results

Initially it was thought that NUSWALITE should only produce plain results per node per day, and that it was up to the user to process these detailed results. This practice however becomes awkward in calculations with longer periods and bigger networks because it results in big unmanageable files that makes processing the results very slow. Besides the option to produce results for a selection of nodes, and files with the total results per year for every node, and per day for all nodes, the need emerged to have results for groups of nodes. In this way results can be produced for subcatchments (subbasins), provided that the clustered nodes are connected to each other and have one common outlet point. Clustering only takes place when the NUSWALITE\_NODECLUSTERS.CSV file is provided. The file has a very simple layout with the node ID in the first column, and the cluster ID in the second. When a node is not included, or is given a cluster ID less or equal to zero, then this node is excluded in the clustered results.

Table 18 NUSWALITE\_NODECLUSTERS.CSV

| Col | Name      | Description           | Unit | Туре |
|-----|-----------|-----------------------|------|------|
| 1   | Node      | Node ID               | -    | I4   |
| 2   | ClusterID | ID to cluster node by | -    | I4   |

### 2.5.3 Alternative file names

It is possible to use alternative file names for (almost) all input and output files of NUSWALITE. They can be specified in the NUSWALITE.INI file using the same INI-file format as used for the parameter file. The file contains the sections [Input] and [Output]. To change the name of a file from this document, just put filename (with an underscore ('\_') instead of the dot) = new filename (with dot). For example: NuswaLite\_Param\_ini = MyPar.txt. Omission leads to the use of default names. An alternative name for the nuswalite.ini file can be specified at program execution (see paragraph 3.1).

### 2.5.4 Biomass management

In NUSWALITE it is possible to define management strategies (e.g. mowing) by entering the biomass fraction (between zero and one) that will be removed for a certain node and date in the NUSWALITE\_MANAGEMENT.CSV file. For mowing of reed it is recommended not to use removal fractions greater than 0.75, since at least 25 % of the biomass cannot be removed by mowing (roots and reed parts under water). Applying a removal fraction of 1 means that the rooting biomass in that section is removed for ever. Unlike the date interpretation in the load and concentration files, values for a certain date will only be applied on that specific date, and will not be sustained after the date. When a Node ID of -99 is used, the management settings will be applied to all nodes.

Table 19 NUSWALITE\_MANAGEMENT.CSV

| Col      | Name        | Description                       | Unit | Туре |
|----------|-------------|-----------------------------------|------|------|
| 1        | Date*       | Date                              | -    | C10  |
| 2        | NodeID      | Node ID                           | -    | I4   |
| 3        | RootRemove  | Rooting biomass removal fraction  | -    | R8   |
| 4        | ReedRemove  | Reed removal fraction             | -    | R8   |
| 5        | FloatRemove | Floating biomass removal fraction | -    | R8   |
| <u> </u> |             | 0                                 | -    |      |

\* Date formats 'yyyy-m-d' and 'd-m-yyyy' are both accepted.

# 3 Execution and output

# 3.1 Program execution

NUSWALITE is a Win32 Fortran Console Application with no direct interaction with the user. It can be run from a file browser, but also from a command prompt, command file or batch file. In the latter situations it is possible to pass on an argument. The argument can contain an alternative working directory and an alternative name for nuswalite.ini. If only an alternative working directory is given it should end with a backslash (\).

| looks for NuswaLite.ini in exe-work dir |
|-----------------------------------------|
| looks for MyIni.txt in exe-work dir     |
| looks for MyIni.txt in 'D:\MyDir'       |
| looks for NuswaLite.ini in 'D:\MyDir'   |
| looks for MyDir (as a file!) in 'D:\'   |
|                                         |

When no alternative name for NUSWALITE.INI is given, and NUSWALITE.INI is not found, it will use default filenames.

During execution NUSWALITE writes warnings, errors and messages to the screen, and to the NUSWALITE.LOG file, one of the file names that can not be changed. It is advised to check the log-file after each run, because it can contain important information.

#### 3.2 **Output filenames**

Table 20 gives an overview of all output files. The majority of these files is optional. In the next paragraphs the output files will be successively discussed. The format of the output files is given in Appendix 3.

| Table 20 Overview of output filenames               |                                                                    |
|-----------------------------------------------------|--------------------------------------------------------------------|
| File                                                | Description                                                        |
| NuswaLite_OutCon.csv*                               | Daily concentrations per (selected) nodes                          |
| NuswaLite_OutLoads.csv*                             | Daily incoming N and P loads associated with internal              |
|                                                     | flow per selected node                                             |
| NuswaLite_OutEchoLoads.csv*                         | Daily external loads of N and P per selected node                  |
| NuswaLite_OutEchoLoadsYearly.csv*                   | Yearly external input loads of N and P for all nodes               |
| NuswaLite_OutBalN.csv/bin*                          | Daily N balance per (selected) nodes                               |
| NuswaLite_OutBalP.csv/bin*                          | Daily P balance per (selected) nodes                               |
| NuswaLite_OutBalTotN.csv                            | Daily total N balance                                              |
| NuswaLite_OutBalTotP.csv                            | Daily total P balance                                              |
| NuswaLite_OutBalClusterN.csv**                      | Daily N balance per cluster of nodes (subcatchment)                |
| NuswaLite_OutBalClusterP.csv**                      | Daily P balance per cluster of nodes (subcatchment)                |
| NuswaLite_OutBalYearlyN.csv*                        | Yearly N balance per (selected) nodes                              |
| NuswaLite_OutBalYearlyP.csv*                        | Yearly P balance per (selected) nodes                              |
| NuswaLite_OutBalTotYearlyN.csv                      | Yearly N balance for whole system (catchment)                      |
| NuswaLite_OutBalTotYearlyP.csv                      | Yearly P balance for whole system (catchment)                      |
| NuswaLite_OutBalClusterYearlyN.csv**                | Yearly N balance per cluster of nodes (subcatchment)               |
| NuswaLite_OutBalClusterYearlyP.csv**                | Yearly P balance per cluster of nodes (subcatchment)               |
| NuswaLite_OutRetentionsYearly.csv                   | Yearly retention of N and P for whole catchment                    |
| NuswaLite_OutRetentionsYearly                       | Yearly retention of N and P in defined subcatchments               |
| Subcatchment1-9.csv*                                |                                                                    |
| NuswaLite_OutHBotAdd.csv***                         | Added water depth per node to prevent negative                     |
|                                                     | volumes                                                            |
| NuswaLite_OutBiomass.csv*                           | Daily biomass densities (g/m <sup>2</sup> ) per (selected) nodes + |
|                                                     | specification of reduction factors on growth                       |
| NuswaLite_OutInitial.csv                            | Concentrations at the end of the calculation period                |
| * optional: generated by setting switches to 1 (see | e Table 17)                                                        |

Table 20 Overview of output filenames

optional: generated by setting switches to 1 (see Table 17)

\*\* optional: generated by defining NUSWALITE\_NODECLUSTERS.CSV

\*\*\* optional: generated when HBotAdd (see Table 17) has a negative value

#### 3.3 Concentrations and loads

#### NUSWALITE\_OUTCON.CSV

Concentrations are the most direct output of the model to compare with measured data. To limit the size of the file, it is possible to select the nodes for which output is generated. After a date and a node ID the concentrations of the 9 state variables are given (Appendix 3).

#### NUSWALITE\_OUTLOADS.CSV

This output file can be useful when comparing loads associated with flowproportional water samples (field measurements) to model results. It contains the daily loads per node associated with internal inflow.

### ${\tt NUSWALITE\_OUTECHOLOADS.CSV}, {\tt NUSWALITE\_OUTECHOLOADSYEARLY.CSV}$

These files contain the loads of mineral and organic nitrogen and phosphorus entering or leaving the model via the different flow boundaries, respectively per selected node per day and for all nodes per year. These files can be used to check if the external input has entered the model correctly.

# 3.4 Nutrient mass balances

The most accurate overview of what happens in the system can be derived from the nutrient mass balances. NUSWALITE provides detailed daily and yearly balances on nodal, subcatchment and catchment scale (Table 21).

The balance files give information on:

- Water balance (daily/yearly)
- Situation of the state variables at the begin and at the end of the day/year (in grams)
- Incoming and outgoing nutrient loads (both external and internal) per day/year
- Daily/yearly loads associated with internal processes (e.g. sedimentation, denitrification and sorption)
- Mass balance errors for the nutrients

A detailed description is given in Appendix 3.

|        | per (selected / clustered) node    | for total system               |
|--------|------------------------------------|--------------------------------|
| daily  | NuswaLite_OutBalN.csv              | NuswaLite_OutBalTotN.csv       |
|        | NuswaLite_OutBalP.csv              | NuswaLite_OutBalTotP.csv       |
|        | NuswaLite_OutBalClusterN.csv       |                                |
|        | NuswaLite_OutBalClusterP.csv       |                                |
| yearly | NuswaLite_OutBalYearlyN.csv        | NuswaLite_OutBalTotYearlyN.csv |
|        | NuswaLite_OutBalYearlyP.csv        | NuswaLite_OutBalTotYearlyP.csv |
|        | NuswaLite_OutBalClusterYearlyN.csv |                                |
|        | NuswaLite_OutBalClusterYearlyP.csv |                                |

Table 21 Overview of the balance files produced by NuswaLite

### NUSWALITE\_OUTBALN.BIN, NUSWALITE\_OUTBALP.BIN

Detailed nutrient balances per node for every time step are also available in binary format when the switch *WriteBalBin* is set to 1. Compared to the csv files these files do not contain the water balance and mass balance errors. Contrarily, the network definition is given. The binary files are indifferent to *OutBalanceAll* and *OutputNode* settings. A detailed description is given in Appendix 3.

## 3.5 Retention

#### NUSWALITE\_OUTRETENTIONSYEARLY.CSV

In this file the nutrient retention in the whole system or catchment is calculated. It is important to know how these retentions are calculated, because different methods or definitions of retention exist.

Retention is determined on a yearly basis. First the sum of all incoming mineral and organic nutrients is determined. This is the combined load from all boundary conditions. Then the sum of all outgoing mineral and organic nutrients is determined. These fluxes are the result of all negative flow boundaries and all level boundaries resulting in negative boundary flow. The difference between the incoming and outgoing nutrient loads is called retention. A certain part of the incoming nutrients will not leave the water system. This can be explained by removal processes (e.g. denitrification and sedimentation) or the seasonal variation in storage over the different state variables. When computing the retention on an annual basis these seasonal effects level out to a large extent.

The outgoing loads used to calculate retention do not include the outflow of floating biomass, which leads to an overestimation of the retention. This is done because usually measured outflow of nutrients is based on total nitrogen and phosphorus in filtered samples that do not include biomass. As discussed in section 2.5.1 the loads associated with floating biomass can be taken into account when the *RetentionScientific* switch is set to 1.

The absolute retention is calculated as incoming nutrients minus outgoing nutrients. The relative retention is calculated as absolute retention divided by incoming nutrients. Retention can be negative. This happens when the storage change in the surface water is negative (for example during high flow conditions when sedimentated nutrients are partly released to the water), and bigger than the loss of nutrients within the surface water.

Loads associated with for example infiltration and drink water inlet are also regarded as retention since NUSWALITE can not distinguish between these kind of boundary outflows and boundary outflow at the outlets.

#### NUSWALITE\_OUTRETENTIONSYEARLYSUBCATCHMENT1-9.CSV

Optionally the nutrient retention in parts of the system or subcatchments can be calculated based on the subcatchments defined in the NUSWALITE\_PARAM.INI file (Table 17). For subcatchments it is important that the selected nodes form a closed unit.

# 3.6 Other output files

#### NUSWALITE\_OUTHBOTADD.CSV

The actual depth corrections per node associated with a negative *HBotAdd* workaround (paragraph 2.5.1) are written to the NUSWALITE\_OUTHBOTADD.CSV file. The user should take notice of these values keeping in mind that large depth corrections imply large extra nodal volumes. This leads to increased residence times resulting in less dynamic results and possibly increased retention.

#### NUSWALITE\_OUTBIOMASS.CSV

This file contains detailed information on biomass development. The biomass densities (in  $g/m^2$ ) are given for each day on every selected node. In addition the factors reducing the growth are stored for each biomass separately: the nutrient reduction, growth reduction by light and the temperature influence on the growth.

#### NUSWALITE\_OUTINITIAL.CSV

The NUSWALITE\_OUTINITIAL.CSV file contains the biomass and nutrient concentrations at the end of the calculated period, in the same format as the initial input file (NUSWALITE\_INITIAL.CSV). It can be used as a new initial input file for a succeeding period or for the same period again. In the latter situation the first calculation period serves as an initial calculation to the second calculation. This can be done to reduce the influence of wrongly chosen initial conditions.

# Literature

- Dik, P.E., M.H.J.L. Jeuken & L.P.A. van Gerven, 2009. SWQN, Manual version 3.0. Alterra Report 1226.3, Alterra, Wageningen.
- Groenendijk, P., L.V. Renaud & J. Roelsma, 2005. Prediction of nitrogen and phosphorus leaching to groundwater and surface waters; process descriptions of the ANIMO 4.0 model. Alterra Report 983, Alterra, Wageningen.
- Schoumans O.F., C. Siderius & P. Groenendijk, 2008. NL-CAT application to six European catchments. Alterra Report 1205, Alterra, Wageningen.
- Siderius C., P. Groenendijk, L.P.A. van Gerven, M.H.J.L. Jeuken, A.A.M.F.R Smit, 2008. Process description of NUSWALITE; a simplified model for the fate of nutrients in surface waters. Alterra Report 1226.2, Alterra, Wageningen.
- Smit A.A.M.F.R, C. Siderius, L.P.A. van Gerven, 2009. Process description of SWQN; A simplified hydraulic model. Alterra Report 1226.1, Alterra, Wageningen.
- Walvoort, D.J.J., 2008. Implementation of USLE in NL-CAT. In: Schoumans *et al.* (Ed.). NL-CAT aplication to six European catchments. Pag 294, Alterra Report 1205, Alterra, Wageningen

### Appendix 1 Data structure

As can be seen in Figure 2, the data model for NUSWALITE is very simple. All data shown is coupled to the schematization in WATERBALANCE\_BIN\_TABLE3 (see Table 4) by NodeID. Not shown in this data model are environmental data, process parameters and runtime options that apply to the model as a whole. There is also a relationship in time, coupled by dates, but this could not be visualized.

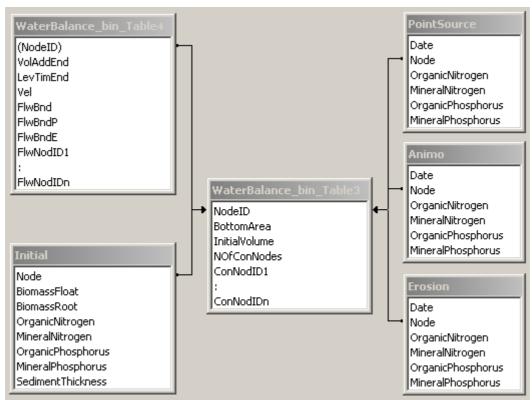



Figure 2 Data model of NUSWALITE

Alterra Report 1226.4

# Appendix 2 Input files

### NuswaLite.ini

# [Input]

| File                                      | Default name                              |
|-------------------------------------------|-------------------------------------------|
| NuswaLite_Param_ini                       | NuswaLite_Param.ini                       |
| NuswaLite_LocalParam_csv                  | NuswaLite_LocalParam.csv                  |
| NuswaLite_Waterbalance_bin                | NuswaLite_Waterbalance.bin                |
| NuswaLite_Initial_csv                     | NuswaLite_Initial.csv                     |
| NuswaLite_Environment_csv                 | NuswaLite_Environment.csv                 |
| NuswaLite_DischargeConcentrations_csv     | NuswaLite_DischargeConcentrations.csv     |
| NuswaLite_LevelConcentrations_csv         | NuswaLite_LevelConcentrations.csv         |
| NuswaLite_LinkConcentrations_csv          | NuswaLite_LinkConcentrations.csv          |
| NuswaLite_PrecipitationConcentrations_csv | NuswaLite_PrecipitationConcentrations.csv |
| NuswaLite_DiffuseSource_csv               | NuswaLite_DiffuseSource.csv               |
| NuswaLite_Erosion_csv                     | NuswaLite_Erosion.csv                     |
| NuswaLite_PointSource_csv                 | NuswaLite_PointSource.csv                 |
| NuswaLite_NodeClusters_csv                | NuswaLite_NodeClusters.csv                |
| NuswaLite_Management_csv                  | NuswaLite_Management.csv                  |

## [Output]

| File                              | Default name                      |
|-----------------------------------|-----------------------------------|
| NuswaLite_OutCon_csv              | NuswaLite_OutCon.csv              |
| NuswaLite_OutLoads_csv            | NuswaLite_OutLoads.csv            |
| NuswaLite_OutEchoLoads_csv        | NuswaLite_OutEchoLoads.csv        |
| NuswaLite_OutBiomass_csv          | NuswaLite_OutBiomass.csv          |
| NuswaLite_OutBalN_csv             | NuswaLite_OutBalN.csv             |
| NuswaLite_OutBalP_csv             | NuswaLite_OutBalP.csv             |
| NuswaLite_OutBalTotN_csv          | NuswaLite_OutBalTotN.csv          |
| NuswaLite_OutBalTotP_csv          | NuswaLite_OutBalTotP.csv          |
| NuswaLite_OutBalYearlyN_csv       | NuswaLite_OutBalYearlyN.csv       |
| NuswaLite_OutBalYearlyP_csv       | NuswaLite_OutBalYearlyP.csv       |
| NuswaLite_OutBalTotYearlyN_csv    | NuswaLite_OutBalTotYearlyN.csv    |
| NuswaLite_OutBalTotYearlyP_csv    | NuswaLite_OutBalTotYearlyP.csv    |
| NuswaLite_OutRetentionsYearly_csv | NuswaLite_OutRetentionsYearly.csv |
| NuswaLite_OutInitial_csv          | NuswaLite_OutInitial.csv          |
| NuswaLite_HBotAdd_csv             | NuswaLite_HBotAdd.csv             |

### NuswaLite\_Param.ini

| Name                                            | Description                                                           | Sym                     | Unit               | Туре     |
|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------|--------------------|----------|
| ConcNitrCritUpt                                 | Minimum concentration for N uptake for all biomasses                  | cNupmin                 | g/m <sup>3</sup>   | R8       |
| ConcPhosCritUpt                                 | Minimum concentration for P uptake for all biomasses                  | cPupmin                 | g/m <sup>3</sup>   | R8       |
| [Floating Biomass]                              |                                                                       |                         |                    |          |
| Name                                            | Description                                                           | Sym                     | Unit               | Туре     |
| NitrogenDMRatio                                 | Nitrogen/dry matter ratio of floating biomass                         | fn,FB                   | gN.g <sup>-1</sup> | R8       |
| PhosphorusDMRatic                               | Phosphorus/dry matter ratio of floating biomass                       | fn,fb                   | gP.g <sup>-1</sup> | R8       |
| RespirationRate                                 | Respiration loss during primary production                            | a,FB                    | -                  | R8       |
| MortalityRate                                   | Mortality rate at 20°C                                                | $k_{mor,FB}$            | d-1                | R8       |
| Q10MortalityRate                                | Temperature sensitivity for mortality                                 | $\beta_{mor,FB}$        | -                  | R8       |
| ConcNitrMonod                                   | 50%-optimum concentration for N uptake                                | CNmonod,FB              | g/m <sup>3</sup>   | R8       |
| ConcPhosMonod                                   | 50%-optimum concentration for P uptake                                | CPmon, odFB             | $g/m^3$            | R8       |
| InflowCFB                                       | 'background' inflow of floating biomass                               | -                       | $g/m^3$            | R8       |
| FBAdvectiveFraction                             | 0                                                                     | fadv                    | -                  | R8       |
| LightIntCoef                                    | Light interception coefficient for floating biomass                   | $\alpha_{FB}$           | -                  | R8       |
| [Rooting Biomass]                               |                                                                       |                         |                    |          |
| Name                                            | Description                                                           | Sym                     | Unit               | Тур      |
| NitrogenDMRatio                                 | Nitrogen/dry matter ratio of rooting biomass                          | fN,RB                   | gN.g <sup>-1</sup> | R8       |
| PhosphorusDMRatic                               | Phosphorus/dry matter ratio of rooting biomass                        | fN,RB                   | gP.g <sup>-1</sup> | R8       |
| RespirationRate                                 | Respiration loss during primary production                            | a,RB                    | -                  | R8       |
| MortalityRate                                   | Mortality rate at 20°C                                                | kmor, RB                | d-1                | R8       |
| Q10MortalityRate                                | Temperature sensitivity for mortality                                 | $\beta_{mor,RB}$        | -                  | R8       |
| ConcNitrMonod                                   | 50%-optimum concentration for N uptake                                | CNmonod, RB             | g/m <sup>3</sup>   | R8       |
| ConcPhosMonod                                   | 50%-optimum concentration for P uptake                                | CPmonod, RB             | g/m <sup>3</sup>   | R8       |
| LightIntCoef                                    | Light interception coefficient for floating biomass                   | $\alpha_{FB}$           | -                  | R8       |
| [Reed]                                          |                                                                       |                         |                    |          |
| Name                                            | Description                                                           | Sym                     | Unit               | Тур      |
| NitrogenDMRatio                                 | Nitrogen/dry matter ratio of reed                                     | fN,Reed                 | gN.g <sup>-1</sup> | R8       |
| PhosphorusDMRatic                               | Phosphorus/dry matter ratio of reed                                   | fN,Reed                 | gP.g <sup>-1</sup> | R8       |
| RespirationRate                                 | Respiration loss during primary production                            | a,Reed                  | -                  | R8       |
| MortalityRate                                   | Mortality rate at 20°C                                                | kmor,Reed               | d-1                | R8       |
| Q10MortalityRate                                | Temperature sensitivity for mortality                                 | $\beta_{mor, Reed}$     | -                  | R8       |
| ConcNitrMonod                                   | 50%-optimum concentration for N uptake                                | CNmon,Reed              | g/m <sup>3</sup>   | R8       |
| ConcPhosMonod                                   | 50%-optimum concentration for P uptake                                | CPmon,Reed              | g/m <sup>3</sup>   | R8       |
| LightEffCoef                                    | Light interception coefficient for reed                               | <i>a<sub>int</sub></i>  | -                  | R8       |
| [Optional detailed 1                            | nortality parameters]                                                 |                         |                    |          |
| Name                                            | Description                                                           | Sym                     | Unit               | Туре     |
|                                                 | Day number in year for start of season                                | -                       | d                  | R8       |
|                                                 | Day number in year for start of season                                |                         |                    |          |
| StartSeason                                     |                                                                       | -                       | d                  | R8       |
| StartSeason<br>EndSeason<br>MortalityRateSeason | Day number in year for end of season<br>Season mortality rate at 20°C | -<br>k <sub>mor,s</sub> | d<br>d-1           | R8<br>R8 |

[Parameters]

| Name                     | Description                                | Sym                       | Unit                                  | Type |
|--------------------------|--------------------------------------------|---------------------------|---------------------------------------|------|
| Latitude                 | Latitude to determine maximum incoming     | φ                         | 0                                     | R8   |
|                          | radiation for primary production           | ,                         |                                       |      |
| MineralizationRate       | Mineralization rate of organic material    | $k_{mi}$                  | d-1                                   | R8   |
| Q10Mineralization        | Temperature sensitivity for mineralization | $\beta_{mi}$              | -                                     | R8   |
| DenitrificationRate      | Removal rate of mineral N                  | kden                      | d-1                                   | R8   |
| Q10Denitrification       | Temperature sensitivity for N removal      | $\beta_{den}$             | -                                     | R8   |
| BulkDensity              | Dry bulk density of sediment               | $\varrho_s$               | g.ms <sup>-3</sup>                    | R8   |
| LinSorptionNMin          | Minimum mineral N adsorption capacity      | $k_{aNmin}$               | mpores3.gs-1                          | R8   |
| LinSorptionNMax          | Maximum mineral N adsorption capacity      | $k_{aNmax}$               | mpores <sup>3</sup> .gs <sup>-1</sup> | R8   |
| LinSorptionNDayMax       | Day in year of maximum N sorption capacity | t <sub>kaNmax</sub>       | day                                   | R8   |
| LinSorptionPMin          | Minimum mineral P adsorption capacity      | $k_{aPmin}$               | mpores3.gs-1                          | R8   |
| LinSorptionPMax          | Maximum mineral P adsorption capacity      | $k_{aP\max}$              | mpores3.gs-1                          | R8   |
| LinSorptionPDayMax       | Day in year of maximum P sorption capacity | <i>t<sub>kaPmax</sub></i> | day                                   | R8   |
| SedimentSinkSpeedMineral | Loss rate for mineral P                    | $\mathcal{W}_{s(min)}$    | m.d <sup>-1</sup>                     | R8   |
| SedimentSinkSpeedOrganic | Loss rate for organic N/P                  | Ws(org)                   | m.d <sup>-1</sup>                     | R8   |
| SedimentThickness        | Virtual thickness of sediment layer        | $H_{sed}$                 | m                                     | R8   |

| Name                      | Description                                                 | Def     | Unit  | Туре |
|---------------------------|-------------------------------------------------------------|---------|-------|------|
| StartTimeNuswaLite        | Day number after first day in                               | -       | day   | I4   |
|                           | NUSWALITE_WATERBALANCE.BIN to start calculation             |         |       |      |
| StartDayNuswaLite         |                                                             | -       | day   | I4   |
| StartMonthNuswaLite       | Alternative date to start the calculation                   | -       | month | I4   |
| StartYearNuswaLite        |                                                             | -       | year  | I4   |
| EndTimeNuswaLite          | Day number after first day in                               | -       | day   | I4   |
|                           | NUSWALITE_WATERBALANCE.BIN to end calculation               |         | ,     |      |
| EndDayNuswaLite           |                                                             | -       | day   | I4   |
| EndMonthNuswaLite         | Alternative date to end the calculation                     | -       | month | I4   |
| EndYearNuswaLite          |                                                             | -       | year  | I4   |
| HBotAdd                   | Work-around parameter for negative or near zero             | 0.0     | m     | R8   |
|                           | volumes and water depths.                                   |         |       |      |
| DiffuseSourceFactorN      | Correction factor for diffuse N loads                       | 1.0     | -     | R8   |
| DiffuseSourceFactorP      | Correction factor for diffuse P loads                       | 1.0     | -     | R8   |
| PointSourceFactor         | Correction factor for point source loads                    | 1.0     | -     | R8   |
| ErosionFactor             | Correction factor for erosion loads                         | 1.0     | -     | R8   |
| MergeNodes                | List* of nodes that will be merged                          |         |       | C999 |
| 0                         | 0                                                           |         |       | 9    |
| UseDetailedMortalityRoot  | Option to give detailed mortality parameters for            | 0       | 1/0^  | I4   |
|                           | submerged rooting biomass                                   |         | 7 -   |      |
| UseDetailedMortalityReed  | Option to give detailed reed mortality parameters           | 0       | 1/0^  | I4   |
| UseDetailedMortalityFloat | Option to give detailed mortality parameters for            | Õ       | 1/0^  | I4   |
|                           | floating biomass                                            | Ť       | -/ -  |      |
| UseSedimentation          | Use sedimentation rate only at listed nodes                 | 0       | 1/0^  | I4   |
| SedimentationNodes        | List* of nodes where sedimentation is applied ( $A = all$ ) | Ă       | -     | C999 |
|                           |                                                             |         |       | 9    |
| FloatingBiomassOutflowN   | List* of nodes where floating biomass can leave the         | None    | _     | C999 |
| odes                      | system with boundary flow                                   | 1 10110 |       | 9    |
| EchoLoads                 | Write all external loads (per node per time) to             | 0       | 1/0^  | I4   |
|                           | NUSWALITE_OUTECHOLOADS.CSV and to a yearly                  | 0       | 1/0   | 11   |
|                           | aggregated file                                             |         |       |      |
|                           | (NUSWALITE_OUTECHOLOADSYEARLY.CSV)                          |         |       |      |

| WriteLoad                                          | Write daily loads per node associated with incoming                                                                                        | 0 | 1/0^ | I4        |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---|------|-----------|
| WriteCon                                           | internal flows to NUSWALITE_OUTLOADS.CSV<br>Write daily nodal biomass and nutrient concentrations                                          | 0 | 1/0^ | I4        |
| WriteBiomass                                       | to NUSWALITE_OUTCON.CSV<br>Write daily nodal biomass characteristics to<br>NUSWALITE_OUTBIOMASS.CSV                                        | 0 | 1/0^ | I4        |
| WriteBalN                                          | Write daily nodal mass balance for nitrogen to NUSWALITE_OUTBALN.CSV and yearly aggregates to                                              | 0 | 1/0^ | I4        |
| WriteBalP                                          | NUSWALITE_OUTBALYEARLYN.CSV<br>Write daily nodal mass balance for phosphorus to<br>NUSWALITE_OUTBALP.CSV and yearly aggregates to          | 0 | 1/0^ | I4        |
| WriteBalBin                                        | NUSWALITE_OUTBALYEARLYP.CSV<br>Write to daily nodal binary balance file for N and P                                                        | 0 | 1/0^ | I4        |
| OutBalanceAll                                      | Write daily balances for all (selected) nodes (=1) or<br>write balances only for days when (selected) nodes                                | 0 | 1/0^ | I4        |
| OutputNode                                         | have significant balance errors (=0)<br>List* of nodes for output of detailed results (A = all;<br>yearly totals are always for all nodes) | А | -    | C999<br>9 |
| RetentionSubbasinNode1,<br>RetentionSubbasinNode2, | Up to nine lists* of nodes for which retention results are written to                                                                      | - | -    | C999<br>9 |
| <br>RetentionSubbasinNode9                         | NUSWALITE_OUTRETENTIONSYEARLYSUBCATCHMEN<br>T1-9.CSV                                                                                       |   |      |           |
| RetentionScientific                                | If set to 1 the N and P loads carried by floating<br>biomass are taken into account for calculating<br>retention                           | 0 | 1/0^ | I4        |

All variables are optional , \* Lists are comma separated , ^1=Yes; 0=No

### NuswaLite\_LocalParam.csv

| Col | Name                     | Description                         | Sym                    | Unit              | Туре |
|-----|--------------------------|-------------------------------------|------------------------|-------------------|------|
| 1   | Node                     | Node ID                             |                        | -                 | I4   |
| 2   | SedimentThickness        | Virtual thickness of sediment layer | $H_{sed}$              | m                 | R8   |
| 3   | DenitrificationRate      | Removal rate of mineral N           | kden                   | d-1               | R8   |
| 4   | SedimentSinkSpeedMineral | Loss rate for mineral P             | $\mathcal{W}_{s(min)}$ | m.d <sup>-1</sup> | R8   |
| 5   | SedimentSinkSpeedOrganic | Loss rate for organic N/P           | $\mathcal{W}_{s(org)}$ | m.d <sup>-1</sup> | R8   |

### NuswaLite\_DiffuseSource.csv NuswaLite\_PointSource.csv NuswaLite\_Erosion.csv

| Col | Name     | Description                | Unit              | Туре |
|-----|----------|----------------------------|-------------------|------|
| 1   | Date*    | Date for change of setting | Date              | C10  |
| 2   | Node     | ID used in node definition | -                 | I4   |
| 3   | LoadOrgN | Load of organic nitrogen   | g.d-1             | R8   |
| 4   | LoadMinN | Load of mineral nitrogen   | g.d-1             | R8   |
| 5   | LoadOrgP | Load of organic phosphorus | g.d-1             | R8   |
| 6   | LoadMinP | Load of mineral phosphorus | g.d <sup>-1</sup> | R8   |

\* Date formats 'yyyy-m-d' and 'd-m-yyyy' are both accepted; values are sustained until a new value is given in the same file at the same node.

| Table | Col   | Name                               | Description                                        | Unit                           | Туре |
|-------|-------|------------------------------------|----------------------------------------------------|--------------------------------|------|
| 1     | 1     | VersionID                          | Version ID for water balance file                  | -                              | C40  |
|       | 2     | CalcID                             | Calculation identification message                 | -                              | C60  |
|       | 3     | StartYear                          | Day for start of calculation                       | day                            | I4   |
|       | 4     | StartMonth                         | Month for start of calculation                     | month                          | I4   |
|       | 5     | StartDay                           | Year for start of calculation                      | year                           | I4   |
|       | 6     | NrDays                             | Number of calculation days                         | day                            | I4   |
|       | 7     | TimestepsPerDay                    | Time steps per day at which water balance is given | 1/day                          | I4   |
| 2     | 1     | NOfNodes                           | Number of nodes                                    | -                              | I4   |
| 3*    | 1     | NodeID                             | Node ID                                            | -                              | I4   |
|       | 2     | BottomArea                         | Bottom area                                        | $m^2$                          | R8   |
|       | 3     | InitialVolume                      | Initial water volume                               | m <sup>3</sup>                 | R8   |
|       | 4     | NOfConNodes                        | Number of connected nodes (CN)                     | -                              | I4   |
|       | 5-CN  | ConNodID1-CN                       | Connected node ID                                  | -                              | I4   |
| 4**   | 1     | VolAddAvg $(\overline{V_w})$       | Average water volume per time step                 | m <sup>3</sup>                 | R8   |
|       | 2     | VolAddEnd ( $V_{w,to+\Delta t}$ )  | Volume at end of time step                         | m <sup>3</sup>                 | R8   |
|       | 3     | DepthAvg                           | Averaged water depth per time step                 | m                              | R8   |
|       | 4     | Vel                                | Flow velocity averaged over time step              | m d-1                          | R8   |
|       | 5     | FlwBndH (Q <sub>external,1</sub> ) | Level boundary discharge***                        | m <sup>3</sup> d <sup>-1</sup> | R8   |
|       | 6     | FlwBndQ (Q <sub>external,2</sub> ) | Flow boundary discharge***                         | m <sup>3</sup> d <sup>-1</sup> | R8   |
|       | 7     | FlwBndL (Q <sub>external,3</sub> ) | Link boundary discharge***                         | m <sup>3</sup> d <sup>-1</sup> | R8   |
|       | 8     | FlwBndP (Qexternal,4)              | Precipitation boundary discharge***                | m <sup>3</sup> d <sup>-1</sup> | R8   |
|       | 9     | FlwBndE (Q <sub>external,5</sub> ) | Evaporation boundary discharge***                  | m <sup>3</sup> d <sup>-1</sup> | R8   |
|       | 10-CN | FlwNodID1-CN (Q <sub>i,1</sub> )   | Internal flow discharges***                        | m <sup>3</sup> d <sup>-1</sup> | R8   |

### NuswaLite\_Waterbalance.bin

\* One record for every node

\*\* One record for every node and then repeated for every time step

\*\*\* positive value = incoming flow, negative value = outgoing flow

#### NuswaLite\_Initial.csv

| Col | Name         | Description                                 | Unit              | Туре |
|-----|--------------|---------------------------------------------|-------------------|------|
| 1   | Node         | Node ID                                     | -                 | I4   |
| 2   | BiomassRoot  | Initial rooting biomass                     | g.m <sup>-2</sup> | R8   |
| 3   | BiomassReed  | Initial reed biomass                        | g.m <sup>-2</sup> | R8   |
| 4   | BiomassFloat | Initial floating biomass                    | g.m <sup>-2</sup> | R8   |
| 5   | ConOrgN      | Initial concentration of organic nitrogen   | g.m <sup>-3</sup> | R8   |
| 6   | ConMinN      | Initial concentration of mineral nitrogen   | g.m <sup>-3</sup> | R8   |
| 7   | ConOrgP      | Initial concentration of organic phosphorus | g.m <sup>-3</sup> | R8   |
| 8   | ConMinP      | Initial concentration of mineral phosphorus | g.m <sup>-3</sup> | R8   |

### NuswaLite\_Environment.csv

| Col | Name             | Description                                        | Unit | Туре |
|-----|------------------|----------------------------------------------------|------|------|
| 1   | Date*            | Date                                               | -    | C10  |
| 2   | Temp             | Water temperature                                  | °C   | R8   |
| 3   | CloudinessFactor | Clouded fraction of day (= 1-fraction of sunshine) | -    | R8   |

\* Date formats 'yyyy-m-d' and 'd-m-yyyy' are both accepted.

Alterra Report 1226.4

# Appendix 3 Output files

| Col | Name       | Description                                     | Unit              | Туре  |
|-----|------------|-------------------------------------------------|-------------------|-------|
| 1   | Date       | Date                                            | date              | Y-m-d |
| 2   | Node       | Node ID                                         | -                 | I4    |
| 3   | Rooting    | Density of submerged rooting biomass            | g.m <sup>-2</sup> | R8    |
| 4   | Reed       | Reed density                                    | g.m <sup>-2</sup> | R8    |
| 5   | Floating   | Density of floating biomass                     | g.m <sup>-2</sup> | R8    |
| 6   | N Floating | Concentration of nitrogen in floating biomass   | g.m <sup>-3</sup> | R8    |
| 7   | N Organic  | Concentration of organic nitrogen               | g.m <sup>-3</sup> | R8    |
| 8   | N Mineral  | Concentration of mineral nitrogen               | g.m <sup>-3</sup> | R8    |
| 9   | P Floating | Concentration of phosphorus in floating biomass | g.m <sup>-3</sup> | R8    |
| 10  | P Organic  | Concentration of organic phosphorus             | g.m <sup>-3</sup> | R8    |
| 11  | P Mineral  | Concentration of mineral phosphorus             | g.m <sup>-3</sup> | R8    |

### NuswaLite\_OutCon.csv

## $NuswaLite\_OutBiomass.csv$

| Col | Name            | Description                                                | Unit              | Туре  |
|-----|-----------------|------------------------------------------------------------|-------------------|-------|
| 1   | Date            | Date                                                       | date              | Y-m-d |
| 2   | Node            | Node ID                                                    | -                 | I4    |
| 3   | Production      | Standard biomass production $(P_{st})$                     | g.m <sup>-2</sup> | R8    |
| 4   | fΤ              | Influence of temperature on biomass growth $(F_T)$         | -                 | R8    |
| 5   | Rooting         | Submerged rooting biomass density                          | g.m <sup>-2</sup> | R8    |
|     |                 | Growth reduction on rooting biomass by light extinction    | -                 | R8    |
| 6   | Lightint Root.  | (flight interception)                                      |                   |       |
| 7   | NutRed Root.    | Nutrient reduction on rooting biomass growth (freduction)  | -                 | R8    |
| 8   | Reed            | Reed biomass density                                       | g.m <sup>-2</sup> | R8    |
| 9   | Lightint Reed   | Growth reduction on reed biomass by light extinction       | -                 | R8    |
| 10  | NutRed Reed     | Nutrient reduction on reed biomass growth (freduction)     | -                 | R8    |
| 11  | Floating        | Floating biomass density                                   | g.m <sup>-2</sup> | R8    |
| 12  | Lightint Float. | Growth reduction on floating biomass by light extinction   | -                 | R8    |
| 13  | NutRed Float.   | Nutrient reduction on floating biomass growth (freduction) | -                 | R8    |

### NuswaLite\_OutInitial.csv

| Col | Name         | Description                                       | Unit              | Туре |
|-----|--------------|---------------------------------------------------|-------------------|------|
| 1   | Node         | Node ID                                           | -                 | I4   |
| 2   | BiomassRoot  | Rooting biomass at the end of calculation period  | g.m <sup>-2</sup> | R8   |
| 3   | BiomassReed  | Reed biomass at the end of calculation period     | g.m <sup>-2</sup> | R8   |
| 4   | BiomassFloat | Floating biomass at the end of calculation period | g.m <sup>-2</sup> | R8   |
| 5   | ConOrgN      | Concentration of organic nitrogen at the end      | g.m <sup>-3</sup> | R8   |
| 6   | ConMinN      | Concentration of mineral nitrogen at the end      | g.m <sup>-3</sup> | R8   |
| 7   | ConOrgP      | Concentration of organic phosphorus at the end    | g.m <sup>-3</sup> | R8   |
| 8   | ConMinP      | Concentration of mineral phosphorus at the end    | g.m <sup>-3</sup> | R8   |

### NuswaLite\_OutBalN.csv, NuswaLite\_OutBalP.csv NuswaLite\_OutBalClusterN.csv, NuswaLite\_OutBalClusterP.csv NuswaLite\_OutBalTotN.csv, NuswaLite\_OutBalTotP.csv NuswaLite\_OutBalYearlyN.csv, NuswaLite\_OutBalYearlyP.csv NuswaLite\_OutBalClusterYearlyN.csv, NuswaLite\_OutBalClusterYearlyP.csv NuswaLite\_OutBalTotYearlyN.csv, NuswaLite\_OutBalTotYearlyP.csv

All files contain the same balance terms, only with N replaced by P when applicable, the yearly balances contain a year instead of a date (all outcomes are per year) and the total balance files do not contain the node column. The flow velocity and water height (column 15 and 16) are only displayed in the NUSWALITE\_OUTBALN.CSV and NUSWALITE\_OUTBALP.CSV files. The daily and yearly totals are summed over all nodes and thus do not contain Node ID's.

| Col | Name          | Description                                          | Unit                           | Type       |
|-----|---------------|------------------------------------------------------|--------------------------------|------------|
| 1   | Date/Year     | Date or year                                         | -                              | Y-m-d      |
| 2   | Node/ Cluster | Node ID/ Cluster ID                                  | -                              | I4         |
| 3   | VolumeAt0     | Water volume at start of day                         | m <sup>3</sup>                 | R8         |
| 4   | VolumeAtt     | Water volume at end of day                           | m <sup>3</sup>                 | R8         |
| 5   | QHIn          | Level boundary water inflow                          | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 6   | QQIn          | Discharge boundary water inflow                      | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 7   | QLIn          | Link boundary water inflow                           | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 8   | QPIn          | Precepitation                                        | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 9   | QCIn          | Connected nodes inflow                               | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 10  | QHOut         | Level boundary water outflow                         | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 11  | QQOut         | Discharge boundary water outflow                     | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 12  | QLOut         | Link boundary water outflow                          | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 13  | QEOut         | Evaporation                                          | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 14  | QCOut         | Connected nodes outflow                              | m <sup>3</sup> d <sup>-1</sup> | R8         |
| 15  | QVel          | Flow velocity                                        | m/d                            | R8         |
| 16  | Height        | Water height                                         | m                              | R8         |
| 17  | VCRBNAt0      | N/P in rooting biomass at start of day               | g                              | R8         |
| 18  | VCReedBNAt0   | N/P in reed at start of day                          | g                              | R8         |
| 19  | VCFBNAt0      | N/P in floating biomass at start of day              | g                              | R8         |
| 20  | VCONAt0       | Organic N/P at start of day                          | g                              | R8         |
| 21  | VCMNAt0       | Dissolved mineral N/P at start of day                | g                              | R8         |
| 22  | VCMNAAt0      | Adsorbed mineral N/P at start of day                 | g                              | R8         |
| 23  | VCRBNAtt      | N/P in rooting biomass at end of day                 | g                              | R8         |
| 24  | VCReedBNAtt   | N/P in reed at end of day                            | g                              | R8         |
| 25  | VCFBNAtt      | N/P in floating biomass at end of day                | g                              | R8         |
| 26  | VCONAtt       | Organic N/P at end of day                            | g                              | R8         |
| 27  | VCMNAtt       | Dissolved mineral N/P at end of day                  | g                              | R8         |
| 28  | VCMNAAtt      | Adsorbed mineral N/P at end of day                   | g                              | R8         |
| 29  | LFBNHIn       | External input of floating biomass in N/P            | g.d-1                          | R8         |
| 30  | LONHIn        | Level boundary input of organic N/P                  | g.d-1                          | <b>R</b> 8 |
| 31  | LMNHIn        | Level boundary input of mineral N/P                  | g.d-1                          | R8         |
|     |               | Discharge boundary input of organic N/P + input from |                                |            |
| 32  | LONQIn        | Diffuse Sources, Erosion and Point Sources           | g.d-1                          | R8         |
|     |               | Discharge boundary input of mineral N/P + input from |                                |            |
| 33  | LMNQIn        | Diffuse Sources, Erosion and Point Sources           | g.d <sup>-1</sup>              | R8         |
| 34  | LONLIn        | Link boundary input of organic N/P                   | g.d-1                          | R8         |
| 35  | LMNLIn        | Link boundary input of mineral N/P                   | g.d-1                          | R8         |
| 36  | LONPIn        | Precepitation boundary input of organic N/P          | g.d-1                          | R8         |
| 37  | LMNPIn        | Precepitation boundary input of mineral N/P          | g.d-1                          | R8         |

| 38 | LFBNCIn      | Internal input of floating biomass in N/P         | g.d-1             | R8 |
|----|--------------|---------------------------------------------------|-------------------|----|
| 39 | LONCIn       | Internal input of organic N/P                     | g.d <sup>-1</sup> | R8 |
| 40 | LMNCIn       | Internal input of mineral N/P                     | g.d <sup>-1</sup> | R8 |
| 41 | LFBNHOut     | Level boundary output of floating biomass in N/P  | g.d <sup>-1</sup> | R8 |
| 42 | LONHOut      | Level boundary output of organic N/P              | g.d <sup>-1</sup> | R8 |
| 43 | LMNHOut      | Level boundary output of mineral N/P              | g.d <sup>-1</sup> | R8 |
| 44 | LFBNQOut     | Discharge boundary output of floating biomass N/P | g.d <sup>-1</sup> | R8 |
| 45 | LONQOut      | Discharge boundary output of organic N/P          | g.d <sup>-1</sup> | R8 |
| 46 | LMNQOut      | Discharge boundary output of mineral N/P          | g.d <sup>-1</sup> | R8 |
| 47 | LFBNLOut     | Link boundary output of floating biomass in N/P   | g.d <sup>-1</sup> | R8 |
| 48 | LONLOut      | Link boundary output of organic N/P               | g.d <sup>-1</sup> | R8 |
| 49 | LMNLOut      | Link boundary output of mineral N/P               | g.d <sup>-1</sup> | R8 |
| 50 | LFBNCOut     | Internal output of floating biomass in N/P        | g.d <sup>-1</sup> | R8 |
| 51 | LONCOut      | Internal output of organic N/P                    | g.d-1             | R8 |
| 52 | LMNCOut      | Internal output of mineral N/P                    | g.d <sup>-1</sup> | R8 |
| 53 | GrowthRBN    | Growth of rooting biomass in N/P                  | g.d-1             | R8 |
| 54 | GrowthReedBN | Growth of reed in N/P                             | g.d <sup>-1</sup> | R8 |
| 55 | GrowthFBN    | Growth of floating biomass in N/P                 | g.d-1             | R8 |
| 56 | MortRBN      | Mortality of rooting biomass in N/P               | g.d <sup>-1</sup> | R8 |
| 57 | MortReedBN   | Mortality of reed in N/P                          | g.d <sup>-1</sup> | R8 |
| 58 | MortFBN      | Mortality of floating biomass in N/P              | g.d <sup>-1</sup> | R8 |
| 59 | MinerMN      | Mineralisation of organic N/P                     | g.d <sup>-1</sup> | R8 |
| 60 | DenitrMN     | Denitrification of mineral N                      | g.d <sup>-1</sup> | R8 |
| 61 | SedFBN       | Sedimentation of floating biomass N/P             | g.d <sup>-1</sup> | R8 |
| 62 | SedON        | Sedimentation of organic N/P                      | g.d <sup>-1</sup> | R8 |
| 63 | SedMN        | Sedimentation of mineral N/P                      | g.d <sup>-1</sup> | R8 |
| 64 | ManRBN       | N/P Removal by management of rooting biomass      | g.d <sup>-1</sup> | R8 |
| 65 | ManReedBN    | N/P Removal by reed management                    | g.d <sup>-1</sup> | R8 |
| 66 | ManFBN       | N/P Removal by management of floating biomass     | g.d <sup>-1</sup> | R8 |
| 67 | ErrorRBN     | Mass balance error for rooting biomass N/P        | g.d <sup>-1</sup> | R8 |
| 68 | ErrorReedBN  | Mass balance error for reed N/P                   | g.d-1             | R8 |
| 69 | ErrorFBN     | Mass balance error for floating biomass N/P       | g.d <sup>-1</sup> | R8 |
| 70 | ErrorON      | Mass balance error for organic N/P                | g.d-1             | R8 |
| 71 | ErrorMN      | Mass balance error for mineral N/P                | g.d <sup>-1</sup> | R8 |
| 72 | ErrorTotN    | Total mass balance error                          | g.d-1             | R8 |

| Table | Col              | Name                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit       | Тур |
|-------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
|       | 1                | CalcID              | Calculation identification message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | C60 |
|       | 2                | StartYear           | Day for start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | day        | I4  |
|       | 3                | StartMonth          | Month for start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | month      | I4  |
|       | 4                | StartDay            | Year for start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | year       | I4  |
|       | 5                | EndTime             | Calculation length in days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | day        | I4  |
|       | 1                | NOfNodes (N)        | Number of nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -          | I4  |
| *     | 1                | NodeID              | Node ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -          | I4  |
|       | 2                | NOfConNodes<br>(CN) | Number of connected nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -          | I4  |
|       | 3+CN-1           | ConNodID            | Connected node ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          | I4  |
|       | 3+CN             | IniRooting          | N/P rooting biomass at start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g          | R8  |
|       | 4+CN             | IniReed             | N/P reed at start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g          | R8  |
|       | 5+CN             | IniFloating         | N/P floating biomass at start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g          | R8  |
|       | 6+CN             | IniOrganic          | Organic N/P at start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g          | R8  |
|       | 7+CN             | IniDis.Mineral      | Diss. mineral $N/P$ at start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g          | R8  |
|       | 8+CN             | IniAds.Mineral      | Ads. mineral $N/P$ at start of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g          | R   |
| **    | 1                | Rooting(t)          | N/P in rooting biomass at end of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g          | R   |
|       | 2                | Reed(t)             | N/P in reed at end of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g          | R   |
|       | 3                | Floating(t)         | N/P in floating biomass at end of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g          | R   |
|       | 4                | Organic(t)          | Organic N/P at end of day $\int \frac{1}{2} $ | g          | R   |
|       | 5                | Dis.Mineral(t)      | Dissolved mineral N/P at end of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g          | R   |
|       | 6                | Ads.Mineral(t)      | Adsorbed mineral N/P at end of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g          | R   |
|       | 7                | InExtFloating       | External input of floating biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g/d        | R   |
|       | 8                | InExtOrganic        | External input of organic N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g/d        | R   |
|       | 9                | InExtMineral        | External input of mineral N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g/d        | R   |
|       | 10               | OutExtFloat         | External output of floating biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g/d        | R8  |
|       | 11               | OutExtOrganic       | External output of organic N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/d        | R8  |
|       | 12               | OutExtMineral       | External output of mineral N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/d        | R8  |
|       | 12+Cn            | IntFloat            | Internal output of floating biomass in N/P specified per connected node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/d        | R   |
|       | 12+CN+<br>Cn     | IntOrganic          | Internal output of organic N/P specified per connected node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/d        | R8  |
|       | 12+2CN<br>+Cn    | IntMineral          | Internal output of mineral N/P specified per connected node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/d        | R8  |
|       | 13+3CN           | GrowthRooting       | Growth of rooting biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g/d        | R8  |
|       | 14+3CN           | GrowthReed          | Growth of reed in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g/d        | R   |
|       | 15+3CN           | GrowthFloating      | Growth of floating biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g/d<br>g/d | R   |
|       | 16+3CN           | MortRooting         | Mortality of rooting biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/d<br>g/d | R   |
|       | 17+3CN           | MortReed            | Mortality of rooting biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/d<br>g/d | R   |
|       | 18+3CN           | MortFloating        | Mortality of floating biomass in N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g/d<br>g/d | R   |
|       | 19+3CN           | Mineralisation      | Mineralisation of organic N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g/d<br>g/d | R8  |
|       | 20+3CN           | Denitrification     | Denitrification of mineral N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/d<br>g/d | R8  |
|       | 20+3CN<br>21+3CN | SedFloat            | Sedimentation of floating biomass N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g/d<br>g/d | R8  |
|       | 21+3CN<br>22+3CN | SedOrganic          | Sedimentation of organic N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/d<br>g/d | R8  |
|       | 22+3CN<br>23+3CN | SedMineral          | Sedimentation of mineral N/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/d<br>g/d | R8  |

### NuswaLite\_OutBalN.bin, NuswaLite\_OutBalP.bin

\* One record for every node \*\* One record for every node and then repeated for every calculation day

| Col | Name          | Description                                              | Unit              | Туре |
|-----|---------------|----------------------------------------------------------|-------------------|------|
| 1   | Year          | Year                                                     | -                 | I4   |
| 2   | TotalNLoadIn  | Total nitrogen input from boundary conditions            | g.y <sup>-1</sup> | R8   |
| 3   | TotalNLoadOut | Total nitrogen outflow associated with boundary fluxes   | g.y-1             | R8   |
| 4   | RetentionN    | Nitrogen losses in the entire system (2 minus 3)         | g.y <sup>-1</sup> | R8   |
| 5   | RetentionN    | Nitrogen loss fraction (4 divided by 2)                  | -                 | R8   |
| 6   | TotalPLoadIn  | Total phosphorus input from boundary conditions          | g.y-1             | R8   |
| 7   | TotalPLoadOut | Total phosphorus outflow associated with boundary fluxes | g.y <sup>-1</sup> | R8   |
| 8   | RetentionP    | Phosphorus losses in the network (6 minus 7)             | g.y-1             | R8   |
| 9   | RetentionP    | Phosphorus loss fraction (8 divided by 6)                | -                 | R8   |

### NuswaLite\_OutRetentionsYearly.csv

# $NuswaLite\_OutRetentionsYearlySubcatchment 1-9.csv$

| Col | Name          | Description                                         | Unit              | Туре |
|-----|---------------|-----------------------------------------------------|-------------------|------|
| 1   | Year          | Year                                                | _                 | I4   |
| 2   | TotalNLoadIn  | Total nitrogen input from subcatchment boundaries   | $g \cdot y^{-1}$  | R8   |
| 3   | TotalNLoadOut | Total nitrogen outflow at subcatchment boundaries   | g.y <sup>-1</sup> | R8   |
| 4   | RetentionN    | Nitrogen losses in the subcatchment (2 minus 3)     | $g \cdot y^{-1}$  | R8   |
| 5   | RetentionN    | Nitrogen loss fraction (4 divided by 2)             | -                 | R8   |
| 6   | TotalPLoadIn  | Total phosphorus input from subcatchment boundaries | g.y <sup>-1</sup> | R8   |
| 7   | TotalPLoadOut | Total phosphorus outflow at subcatchment boundaries | g.y <sup>-1</sup> | R8   |
| 8   | RetentionP    | Phosphorus losses in the subcatchment (6 minus 7)   | $g \cdot y^{-1}$  | R8   |
| 9   | RetentionP    | Phosphorus loss fraction (8 divided by 6)           | -                 | R8   |

### NuswaLite\_OutLoads.csv

| Col | Name       | Description                            | Unit  | Туре  |
|-----|------------|----------------------------------------|-------|-------|
| 1   | Date       | Date                                   | date  | Y-m-d |
| 2   | Node       | Node ID                                | -     | Ι     |
| 3   | Floating   | Load of floating biomass               | g.d-1 | R     |
| 4   | N Floating | Load of nitrogen in floating biomass   | g.d-1 | R     |
| 5   | N Organic  | Load of organic nitrogen               | g.d-1 | R     |
| 6   | N Mineral  | Load of mineral nitrogen               | g.d-1 | R     |
| 7   | TotalN     | Total abiotic load of nitrogen         | g.d-1 | R     |
| 8   | P Floating | Load of phosphorus in floating biomass | g.d-1 | R     |
| 9   | P Organic  | Load of organic phosphorus             | g.d-1 | R     |
| 10  | P Mineral  | Load of mineral phosphorus             | g.d-1 | R     |
| 11  | TotalP     | Total abiotic load of phosphorus       | g.d-1 | R     |

| NuswaLite_C | OutEchoLoads.csv |
|-------------|------------------|
|-------------|------------------|

| Col | Name             | Description                                           | Unit              | Туре  |
|-----|------------------|-------------------------------------------------------|-------------------|-------|
| 1   | Date             | Date                                                  | date              | Y-m-d |
| 2   | Node             | Node ID                                               | -                 | I4    |
| 3   | LBndHNorg        | Level boundary input load of organic nitrogen         | g.d-1             | R8    |
| 4   | LBndHNmin        | Level boundary input load of mineral nitrogen         | g.d-1             | R8    |
| 5   | LBndHPorg        | Level boundary input load of organic phosphorus       | g.d <sup>-1</sup> | R8    |
| 6   | LBndHPmin        | Level boundary input load of mineral phosphorus       | g.d-1             | R8    |
| 7   | LBndQAnimoNorg   | Diffuse input load of organic nitrogen                | g.d <sup>-1</sup> | R8    |
| 8   | LBndQAnimoNmin   | Diffuse input load of mineral nitrogen                | g.d-1             | R8    |
| 9   | LBndQAnimoPorg   | Diffuse input load of organic phosphorus              | g.d <sup>-1</sup> | R8    |
| 10  | LBndQAnimoPmin   | Diffuse input load of mineral phosphorus              | g.d-1             | R8    |
| 11  | LBndQPntNorg     | PointSource input load of organic nitrogen            | g.d-1             | R8    |
| 12  | LBndQPntNmin     | PointSource inputload of mineral nitrogen             | g.d <sup>-1</sup> | R8    |
| 13  | LBndQPntPorg     | PointSource input load of organic phosphorus          | g.d <sup>-1</sup> | R8    |
| 14  | LBndQPntPmin     | PointSource input load of mineral phosphorus          | g.d-1             | R8    |
| 15  | LBndQErosionNorg | Erosion input load of organic nitrogen                | g.d-1             | R8    |
| 16  | LBndQErosionNmin | Erosion input load of mineral nitrogen                | g.d <sup>-1</sup> | R8    |
| 17  | LBndQErosionPorg | Erosion input load organic phosphorus                 | g.d-1             | R8    |
| 18  | LBndQErosionPmin | Erosion input load mineral phosphorus                 | g.d-1             | R8    |
| 19  | LBndQLnkNorg     | Link boundary input load of organic nitrogen          | g.d-1             | R8    |
| 20  | LBndQLnkNmin     | Link boundary input load of mineral nitrogen          | g.d-1             | R8    |
| 21  | LBndQLnkPorg     | Link boundary Erosion input load organic phosphorus   | g.d <sup>-1</sup> | R8    |
| 22  | LBndQLnkPmin     | Link boundary Erosion input load mineral phosphorus   | g.d-1             | R8    |
| 23  | LBndPNorg        | Precipitation boundary input load of organic nitrogen | g.d <sup>-1</sup> | R8    |
| 24  | LBndPNmin        | Precipitation boundary input load of mineral nitrogen | g.d-1             | R8    |
| 25  | LBndPPorg        | Precipitation boundary input load organic phosphorus  | g.d <sup>-1</sup> | R8    |
| 26  | LBndPPmin        | Precipitation boundary input load mineral phosphorus  | g.d <sup>-1</sup> | R8    |
| 27  | LBndQDisConcNorg | Flow boundary input load of organic nitrogen          | g.d <sup>-1</sup> | R8    |
| 28  | LBndQDisConcNmin | Flow boundary input load of mineral nitrogen          | g.d-1             | R8    |
| 29  | LBndQDisConcPorg | Flow boundary input load organic phosphorus           | g.d <sup>-1</sup> | R8    |
| 30  | LBndQDisConcPmin | Flow boundary input load mineral phosphorus           | g.d-1             | R8    |

| Col | Name             | Description                                           | Unit              | Туре |
|-----|------------------|-------------------------------------------------------|-------------------|------|
| 1   | Year             | Year                                                  | Year              | Ŷ    |
| 2   | Node             | Node ID                                               | -                 | I4   |
| 3   | LBndHNorg        | Level boundary input load of organic nitrogen         | g.y-1             | R8   |
| 4   | LBndHNmin        | Level boundary input load of mineral nitrogen         | g.y <sup>-1</sup> | R8   |
| 5   | LBndHPorg        | Level boundary input load of organic phosphorus       | g.y <sup>-1</sup> | R8   |
| 6   | LBndHPmin        | Level boundary input load of mineral phosphorus       | g.y <sup>-1</sup> | R8   |
| 7   | LBndQAnimoNorg   | Diffuse input load of organic nitrogen                | g.y <sup>-1</sup> | R8   |
| 8   | LBndQAnimoNmin   | Diffuse input load of mineral nitrogen                | g.y <sup>-1</sup> | R8   |
| 9   | LBndQAnimoPorg   | Diffuse input load of organic phosphorus              | g.y <sup>-1</sup> | R8   |
| 10  | LBndQAnimoPmin   | Diffuse input load of mineral phosphorus              | g.y <sup>-1</sup> | R8   |
| 11  | LBndQPntNorg     | PointSource input load of organic nitrogen            | g.y <sup>-1</sup> | R8   |
| 12  | LBndQPntNmin     | PointSource inputload of mineral nitrogen             | g.y <sup>-1</sup> | R8   |
| 13  | LBndQPntPorg     | PointSource input load of organic phosphorus          | g.y <sup>-1</sup> | R8   |
| 14  | LBndQPntPmin     | PointSource input load of mineral phosphorus          | g.y <sup>-1</sup> | R8   |
| 15  | LBndQErosionNorg | Erosion input load of organic nitrogen                | g.y <sup>-1</sup> | R8   |
| 16  | LBndQErosionNmin | Erosion input load of mineral nitrogen                | g.y <sup>-1</sup> | R8   |
| 17  | LBndQErosionPorg | Erosion input load organic phosphorus                 | g.y <sup>-1</sup> | R8   |
| 18  | LBndQErosionPmin | Erosion input load mineral phosphorus                 | g.y-1             | R8   |
| 19  | LBndQLnkNorg     | Link boundary input load of organic nitrogen          | g.y <sup>-1</sup> | R8   |
| 20  | LBndQLnkNmin     | Link boundary input load of mineral nitrogen          | g.y-1             | R8   |
| 21  | LBndQLnkPorg     | Link boundary Erosion input load organic phosphorus   | g.y <sup>-1</sup> | R8   |
| 22  | LBndQLnkPmin     | Link boundary Erosion input load mineral phosphorus   | g.y-1             | R8   |
| 23  | LBndPNorg        | Precipitation boundary input load of organic nitrogen | g.y <sup>-1</sup> | R8   |
| 24  | LBndPNmin        | Precipitation boundary input load of mineral nitrogen | g.y-1             | R8   |
| 25  | LBndPPorg        | Precipitation boundary input load organic phosphorus  | g.y <sup>-1</sup> | R8   |
| 26  | LBndPPmin        | Precipitation boundary input load mineral phosphorus  | g.y <sup>-1</sup> | R8   |
| 27  | LBndQDisConcNorg | Flow boundary input load of organic nitrogen          | g.y <sup>-1</sup> | R8   |
| 28  | LBndQDisConcNmin | Flow boundary input load of mineral nitrogen          | g.y-1             | R8   |
| 29  | LBndQDisConcPorg | Flow boundary input load organic phosphorus           | g.y <sup>-1</sup> | R8   |
| 30  | LBndQDisConcPmin | Flow boundary input load mineral phosphorus           | g.y-1             | R8   |

## $NuswaLite\_OutEchoLoadsYearly.csv$

### Appendix 4 Example: Vansjø-Hobøl catchment (Norway)

#### Introduction

This example appends to the case in the SWQN-manual (Dik et al., 2009) where a general description can be found.

#### NUSWALITE\_PARAM.INI

The used parameterization of the Norwegian catchment was derived from the original NUSWA parameter settings, combined with expert knowledge and manual calibration. Mainly due to calibration it deviates from the recommended parameter settings in the NUSWALITE process description (Siderius et al., 2008). For the biomass parameters are assumed to be equal for all biomass species. However it is recommended to use the parameterization described in the NUSWALITE process description (Siderius et al., 2008).

| [LivBioPar]         |                                                      |           |                    |
|---------------------|------------------------------------------------------|-----------|--------------------|
| Name                | Description                                          | Value     | Unit               |
| ConcNitrCritUpt     | Minimum concentration for N uptake for all biomasses | 0.00001   | g/m <sup>3</sup>   |
| ConcPhosCritUpt     | Minimum concentration for P uptake for all biomasses | 0.00001   | $g/m^3$            |
| [Floating Biomass]  |                                                      |           |                    |
| Name                | Description                                          | Value     | Unit               |
| NitrogenDMRatio     | Nitrogen/dry matter ratio of floating biomass        | 0.1       | gN.g <sup>-1</sup> |
| PhosphorusDMRatio   | Phosphorus/dry matter ratio of floating biomass      | 0.005     | gP.g <sup>-1</sup> |
| RespirationRate     | Respiration loss during primary production           | 0.15      | -                  |
| MortalityRate       | Mortality rate at 20°C                               | 0.05      | d-1                |
| Q10MortalityRate    | Temperature sensitivity for mortality                | 0.0       | -                  |
| ConcNitrMonod       | 50%-optimum concentration for N uptake               | 1         | g/m <sup>3</sup>   |
| ConcPhosMonod       | 50%-optimum concentration for P uptake               | 0.0000001 | $g/m^3$            |
| InflowCFB           | 'background' inflow of floating biomass              | 0.0       | g/m <sup>3</sup>   |
| FBAdvectiveFraction | Fraction floating biomass subject to adv. transport  | 1.0       | -                  |
| LightIntCoef        | Light interception coefficient for floating biomass  | 0.02      | -                  |
| [Rooting Biomass]   |                                                      |           |                    |
| Name                | Description                                          | Value     | Unit               |
| NitrogenDMRatio     | Nitrogen/dry matter ratio of rooting biomass         | 0.1       | gN.g-1             |
| PhosphorusDMRatio   | Phosphorus/dry matter ratio of rooting biomass       | 0.005     | gP.g <sup>-1</sup> |
| RespirationRate     | Respiration loss during primary production           | 0.15      | -                  |
| MortalityRate       | Mortality rate at 20°C                               | 0.05      | d-1                |
| Q10MortalityRate    | Temperature sensitivity for mortality                | 0.0       | -                  |
| ConcNitrMonod       | 50%-optimum concentration for N uptake               | 1         | g/m <sup>3</sup>   |
| ConcPhosMonod       | 50%-optimum concentration for P uptake               | 0.0000001 | g/m <sup>3</sup>   |
|                     |                                                      |           | -                  |

Light interception coefficient for rooting biomass

LightIntCoef

0.02

| [Reed]            |                                            |           |                    |
|-------------------|--------------------------------------------|-----------|--------------------|
| Name              | Description                                | Value     | Unit               |
| NitrogenDMRatio   | Nitrogen/dry matter ratio of reed          | 0.1       | gN.g <sup>-1</sup> |
| PhosphorusDMRatio | Phosphorus/dry matter ratio of reed        | 0.005     | gP.g <sup>-1</sup> |
| RespirationRate   | Respiration loss during primary production | 0.15      | -                  |
| MortalityRate     | Mortality rate at 20°C                     | 0.05      | d-1                |
| Q10MortalityRate  | Temperature sensitivity for mortality      | 0.0       | -                  |
| ConcNitrMonod     | 50%-optimum concentration for N uptake     | 1         | g/m <sup>3</sup>   |
| ConcPhosMonod     | 50%-optimum concentration for P uptake     | 0.0000001 | $g/m^3$            |
| LightEffCoef      | Light interception coefficient for reed    | 0.02      | -                  |

## [Parameters]

| Name                     | Description                                      | Value   | Unit                            |
|--------------------------|--------------------------------------------------|---------|---------------------------------|
| Latitude                 | Latitude to determine maximum incoming radiation | 53.0    | 0                               |
|                          | and primary production                           |         |                                 |
| MineralizationRate       | Mineralization rate of organic material          | 0.25    | d-1                             |
| Q10Mineralization        | Temperature sensitivity for mineralization       | 0.047   | -                               |
| DenitrificationRate      | Denitrification rate of mineral N                | 0.002   | d-1                             |
| Q10Denitrification       | Temperature sensitivity for denitrification      | 0.045   | -                               |
| SedimentThickness        | Default sediment thickness for all nodes         | 0.01    | m                               |
| BulkDensity              | Dry bulk density of sediment                     | 400000  | g.m <sup>-3</sup>               |
| LinSorptionNMin          | Minimum mineral N adsorption capacity            | 0.0001  | m <sup>3</sup> .g <sup>-1</sup> |
| LinSorptionNMax          | Maximum mineral N adsorption capacity            | 0.0001  | m <sup>3</sup> .g               |
| LinSorptionNDayMax       | Day in year of maximum N sorption capacity       | 240     | day                             |
| LinSorptionPMin          | Minimum mineral P adsorption capacity            | 0.00125 | m <sup>3</sup> .g               |
| LinSorptionPMax          | Maximum mineral P adsorption capacity            | 0.004   | m <sup>3</sup> .g               |
| LinSorptionPDayMax       | Day in year of maximum P sorption capacity       | 330     | day                             |
| SedimentSinkSpeedMineral | Loss rate for mineral P                          | 0.03    | m.d <sup>-1</sup>               |
| SedimentSinkSpeedOrganic | Loss rate for organic N/P                        | 0       | m.d <sup>-1</sup>               |
| SedimentThickness        | Virtual thickness of sediment layer              | 0.1     | m                               |

[Options]

| Name                    | Description                                                | Value | Unit |
|-------------------------|------------------------------------------------------------|-------|------|
| HBotAdd                 | Work-around parameter for negative or near zero            | -0.02 | m    |
|                         | volumes and water depths.                                  |       |      |
| DiffuseSourceFactorN    | Correction factor for diffuse N loads                      | 1.0   | -    |
| DiffuseSourceFactorP    | Correction factor for diffuse P loads                      | 1.0   | -    |
| PointSourceFactor       | Correction factor for point source loads                   | 1.0   | -    |
| ErosionFactor           | Correction factor for erosion loads                        | 0.2   | -    |
| UseSedimention          | Use sedimentation rate only at listed nodes                | 1     | 1/0^ |
| SedimentationNodes      | List* of nodes where sedimentation is applied ( $A =$      | All   | -    |
|                         | all)                                                       |       |      |
| FloatingBiomassOutflowN | List* of nodes where floating biomass can leave the        | All   | -    |
| odes                    | system with boundary flow ( $\overline{A} = all$ )         |       |      |
| WriteCon                | Write to concentrations file                               | 1     | 1/0^ |
| WriteBalN               | Write to detailed balance file for N                       | 1     | 1/0^ |
| WriteBalP               | Write to detailed balance file for P                       | 1     | 1/0^ |
| WriteBalBin             | Write to detailed binary balance file for N and P          | 1     | 1/0^ |
| OutBalanceAll           | No means only write days and nodes with significant        | 1     | 1/0^ |
|                         | balance errors to detailed files                           |       |      |
| OutputNode              | List $*$ of nodes for output of detailed results (A = all; | All   | -    |
| -                       | yearly totals are always for all nodes)                    |       |      |

#### NUSWALITE\_LOCALPARAM.INI

It is assumed that in lakes a more substantial part of the sediment layer influences the water column, so sediment thickness was set higher in the lakes (0.10 m) than in the other parts of the schematization (0.01 m). The other parameters in this input file are not varied locally.

#### NUSWALITE\_WATERBALANCE.BIN

The waterbalance is provided by the SWQN example (Dik et al., 2009).

#### NUSWALITE\_INITIAL.CSV

The initial conditions are based on the average concentrations found in the area. An initial calculation of one year is used to decrease the influence of the chosen values. Results for this first year (1990) are therefore not shown.

| Node | Biomass | Biomass | Biomass | ConOrgN | ConMinN | ConOrgP | ConMinP |
|------|---------|---------|---------|---------|---------|---------|---------|
|      | Root    | Reed    | Float   |         |         |         |         |
| 1    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 2    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 3    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 4    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 5    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 6    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 7    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 8    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 9    | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 10   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 11   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 12   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 13   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 14   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 15   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 16   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 17   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 18   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 19   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 20   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 21   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 22   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 23   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 24   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 25   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 26   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 27   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 28   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 29   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 30   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 31   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 32   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 33   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 34   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 35   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |

| Node | Biomass | Biomass | Biomass | ConOrgN | ConMinN | ConOrgP | ConMinP |
|------|---------|---------|---------|---------|---------|---------|---------|
|      | Root    | Reed    | Float   |         |         |         |         |
| 36   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 37   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 38   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 39   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 40   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 41   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 42   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |
| 43   | 1.0     | 0.0     | 1.0     | 0.1     | 1.2     | 0.005   | 0.015   |

#### NUSWALITE\_ENVIRONMENT.CSV

Water temperatures were not available for the catchment, only daily minimum and maximum air temperature. The average temperature is taken as water temperature. Cloudiness factor was derived from global radiation compared with a theoretical maximum global radiation sine curve.

| Date       | Temperature | <b>Cloudiness Factor</b> |
|------------|-------------|--------------------------|
| 1990-01-01 | -6.25       | 0.597511943              |
| 1990-01-02 | -5.65       | 0.515972076              |
| 1990-01-03 | -5.15       | 0.502029549              |
| 1990-01-04 | -2.10       | 0.487378701              |
| 1990-01-05 | -2.15       | 0.144040788              |
| 1990-01-06 | -2.55       | 0.201078255              |
| 1990-01-07 | 2.20        | 0.308385066              |
| 1990-01-08 | 2.30        | 0.737949594              |
| 1990-01-09 | 3.20        | 0.655391106              |
| 1990-01-10 | 3.00        | 0.269388932              |
| :          | :           | :                        |
| :          | :           | :                        |
| :          | :           | :                        |
| 1992-12-29 | -7.85       | 0.205733259              |
| 1992-12-30 | -6.10       | 0.202231663              |
| 1992-12-31 | -3.25       | 0.198194271              |

#### NUSWALITE\_DIFFUSESOURCE.CSV

The loads in NUSWALITE\_DIFFUSESOURCE.CSV are aggregated from the results of the SWAP/ANIMO-calculations for the different plot in the catchments. For more details on these calculations see the Euroharp report (Schoumans et al., 2008).

| Date       | NodeID | LON      | LMN        | LOP     | LMP      |
|------------|--------|----------|------------|---------|----------|
| 1990-01-01 | 1      | 208.65   | 4558.79    | 29.18   | 484.31   |
| 1990-01-02 | 1      | 209.54   | 5069.78    | 29.44   | 506.36   |
| 1990-01-03 | 1      | 198.91   | 4781.02    | 27.91   | 488.99   |
| 1990-01-04 | 1      | 181.05   | 4247.99    | 25.33   | 453.87   |
| 1990-01-05 | 1      | 177.89   | 4224.54    | 24.92   | 453.29   |
| 1990-01-06 | 1      | 518.70   | 4757.36    | 76.59   | 522.51   |
| 1990-01-07 | 1      | 4143.79  | 810486.68  | 553.62  | 31932.53 |
| 1990-01-08 | 1      | 11837.05 | 1023369.11 | 1500.04 | 46610.45 |
| 1990-01-09 | 1      | 15606.61 | 1416164.82 | 1983.43 | 61367.77 |
| 1990-01-10 | 1      | 16925.40 | 1479775.11 | 2198.90 | 65100.37 |
| :          | :      | :        | :          | :       | :        |
| :          | :      | :        | :          | :       | :        |
| :          | :      | :        | :          | :       | :        |
| 1992-12-29 | 34     | 3.14     | 1838.30    | 0.49    | 36.14    |
| 1992-12-30 | 34     | 1.61     | 1072.19    | 0.25    | 26.22    |
| 1992-12-31 | 34     | 0.82     | 688.28     | 0.13    | 19.28    |

#### NUSWALITE\_POINTSOURCE.CSV

The loads in NUSWALITE\_POINTSOURCE.CSV are estimates based on information about WWTP's and scattered dwellings in the catchment.

| Date       | Node | LON  | LMN      | LOP  | LMP     |
|------------|------|------|----------|------|---------|
| 1990-01-01 | 1    | 0.00 | 51526.52 | 0.00 | 1967.59 |
| 1990-01-01 | 7    | 0.00 | 12355.07 | 0.00 | 718.52  |
| 1990-01-01 | 11   | 0.00 | 23335.22 | 0.00 | 1874.23 |
| 1990-01-01 | 15   | 0.00 | 2465.00  | 0.00 | 334.00  |
| 1990-01-01 | 18   | 0.00 | 2481.21  | 0.00 | 322.21  |
| 1990-01-01 | 22   | 0.00 | 9041.34  | 0.00 | 632.66  |
| 1990-01-01 | 29   | 0.00 | 329.00   | 0.00 | 49.00   |
| 1990-01-01 | 32   | 0.00 | 5878.66  | 0.00 | 821.92  |
| 1990-01-01 | 34   | 0.00 | 335.00   | 0.00 | 59.00   |
| 1990-01-01 | 3    | 0.00 | 115.00   | 0.00 | 16.00   |
| 1990-01-01 | 17   | 0.00 | 88.00    | 0.00 | 23.00   |

### NUSWALITE\_EROSION.CSV

| The loads in NUSWALITE_EROSION.CSV are    | the results of a simplified application of |
|-------------------------------------------|--------------------------------------------|
| the PUSLE (Walvoort, 2008). For more      | e details on these calculations see the    |
| Euroharp report (Schoumans et al., 2008). |                                            |

| Date       | Node | LON  | LMN        | LOP  | LMP       |
|------------|------|------|------------|------|-----------|
| 1990-01-01 | 1    | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 7    | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 11   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 15   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 18   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 22   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 29   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 32   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1990-01-01 | 34   | 0.00 | 0.00       | 0.00 | 0.00      |
| :          | :    | :    | :          | :    | :         |
| :          | :    | :    | :          | :    | :         |
| :          | :    | :    | :          | :    | :         |
| 1990-01-23 | 1    | 0.00 | 135087.53  | 0.00 | 44343.77  |
| 1990-01-23 | 7    | 0.00 | 2120113.55 | 0.00 | 864602.18 |
| 1990-01-23 | 11   | 0.00 | 1666821.06 | 0.00 | 707983.84 |
| 1990-01-23 | 15   | 0.00 | 49205.41   | 0.00 | 14156.41  |
| 1990-01-23 | 18   | 0.00 | 139885.66  | 0.00 | 49314.08  |
| 1990-01-23 | 22   | 0.00 | 97805.19   | 0.00 | 29492.72  |
| 1990-01-23 | 29   | 0.00 | 10189.07   | 0.00 | 2955.48   |
| 1990-01-23 | 32   | 0.00 | 167822.15  | 0.00 | 58918.83  |
| 1990-01-23 | 34   | 0.00 | 7732.23    | 0.00 | 2950.82   |
| :          | :    | :    | :          | :    | :         |
| :          | :    | :    | :          | :    | :         |
| :          | :    | :    | :          | :    | :         |
| 1992-12-31 | 1    | 0.00 | 0.00       | 0.00 | 0.00      |
| 1992-12-31 | 7    | 0.00 | 0.00       | 0.00 | 0.00      |
| 1992-12-31 | 11   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1992-12-31 | 15   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1992-12-31 | 18   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1992-12-31 | 22   | 0.00 | 0.00       | 0.00 | 0.00      |
| 1992-12-31 | 29   | 0.00 | 0.00       | 0.00 | 0.00      |

### Results

The results of NUSWALITE are presented here in graphs of the concentration and loads of N and P, and as a yearly mass balance.




Figure 3: modeled nitrogen concentrations and loads at the outflow point of the catchment

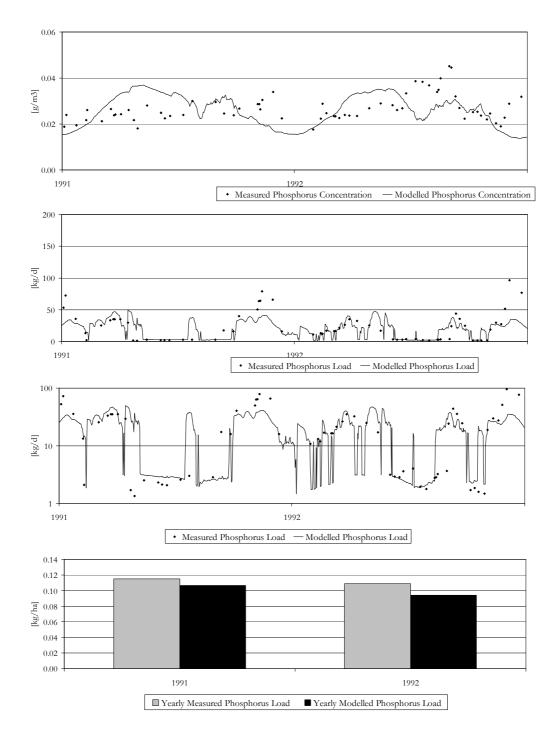



Figure 4: modeled phosphorus concentrations and loads at the outflow point of the catchment

#### Surface water balance for 1991

Water balance

#### Surface water balance for 1992

| Input          |       | Output      |       |
|----------------|-------|-------------|-------|
| Runoff         | 285.2 | Outflow     | 323.7 |
| Precipitation  | 63.5  | Evaporation | 31.1  |
| Storage change | 6.2   |             |       |
|                | 354.8 |             | 354.8 |

| 10 <sup>6</sup> m <sup>3</sup> | Water balance |                  | 10 <sup>6</sup><br>m <sup>3</sup> |
|--------------------------------|---------------|------------------|-----------------------------------|
|                                | Input         | Output           |                                   |
| 323.7                          | Runoff        | 267.8 Outflow    | 281.2                             |
| 31.1                           | Precipitation | 68.0 Evaporation | 31.0                              |
|                                |               | Storage change   | 23.7                              |
| 354.8                          |               | 335.8            | 335.8                             |

| Nitrogen balance |       |                 | ton   |
|------------------|-------|-----------------|-------|
| Input            |       | Output          |       |
| Runoff           | 674.8 | Outflow         | 344.9 |
| Pointsources     | 39.4  | Biomass loss    | 56.0  |
| Erosion          | 38.9  | Denitrification | 268.0 |
|                  |       | loss            |       |
|                  |       | Storage Change  | 84.2  |
| Total            | 753.2 | Total           | 753.2 |

| Nitrogen balance |       |                 | ton   |
|------------------|-------|-----------------|-------|
| Input            |       | Output          |       |
| Runoff           | 696.7 | Outflow         | 308.8 |
| Pointsources     | 39.5  | Biomass loss    | 59.2  |
| Erosion          | 29.2  | Denitrification | 278.0 |
|                  |       | loss            |       |
|                  |       | Storage Change  | 119.4 |
| Total            | 765.4 | Total           | 765.4 |

| Phosporus balance |      |                       | ton  |
|-------------------|------|-----------------------|------|
| Input             |      | Output                |      |
| Runoff            | 19.3 | Outflow               | 7.5  |
| Pointsources      | 2.5  | Biomass loss          | 2.8  |
| Erosion           | 13.8 | Sedimentation<br>loss | 30.6 |
| Storage Change    |      |                       |      |
| Total             | 41.0 | Total                 | 41.0 |

| Phosporus balance |      |               | ton  |
|-------------------|------|---------------|------|
| Input             |      | Output        |      |
| Runoff            | 19.2 | Outflow       | 6.4  |
| Pointsources      | 2.5  | Biomass loss  | 3.0  |
| Erosion           | 10.9 | Sedimentation | 28.1 |
|                   |      | loss          |      |
| Storage Change    | 4.8  |               |      |
| Total             | 37.5 | Total         | 37.5 |
|                   |      |               |      |

# Appendix 5 Error messages in alphabetic order

| Message                                       | Туре | Explanation                                                                                     |
|-----------------------------------------------|------|-------------------------------------------------------------------------------------------------|
| A fatal error occurred                        | Е    | The problem mentioned before this message is fatal,                                             |
|                                               |      | and the calculation could not be finished!                                                      |
| Calculation ended without errors              | Μ    | The calculation was ended successfully!                                                         |
| Deviation in water balance <value></value>    | Е    | The relative water balance deviation found at the                                               |
| m3 ( <value> %) in node <id> at</id></value>  |      | specified node and time was higher than 0.1% of the                                             |
| time = $\langle Day \rangle$                  |      | averaged volume that day.                                                                       |
| Didn't find <parameter> in</parameter>        | Е    | The specified parameter was not found in the                                                    |
| <section></section>                           |      | parameter file. Because there is no default value for                                           |
| A fatal error occurred                        |      | this parameter, the calculation stops.                                                          |
| Didn't find <parameter> in</parameter>        | М    | The specified parameter was not found in the                                                    |
| <section></section>                           |      | parameter file. Because there is a default value for                                            |
| Using default option <value></value>          |      | this parameter, the calculation could continue.                                                 |
| Error reading line <linenr> in file:</linenr> | Е    | There was a problem reading the specified line.                                                 |
| <file></file>                                 | Ц    | Header lines are not included in the line number                                                |
|                                               |      | count.                                                                                          |
| Error reading list < Parameter>               | Е    | The list specified for the mentioned parameter could                                            |
| Error reading list <1 arameter>               | Г    | not be read. A list a row of comma separated                                                    |
|                                               |      | integers.                                                                                       |
| Unable to repair circular flow!               | Е    | A problem with circular flow could not be solved,                                               |
| -                                             | Ц    | and the calculation could not finish. The IMSL                                                  |
| (IMSL: <message>)</message>                   |      |                                                                                                 |
|                                               | Б    | message is for debug purposes.                                                                  |
| Inconsistency of internal flows for           | Е    | The flow from A to B should be equal to minus the                                               |
| node <id> connected to <id></id></id>         |      | flow from B to A. However, NUSWALITE                                                            |
| greater than <value>%</value>                 |      | discovered a difference of more than 0.1% between                                               |
| discharge node <id>: <value> m3</value></id>  |      | the flows.                                                                                      |
| discharge node <id>: <value> m3</value></id>  | Б    | 751 .1 1 .1 1                                                                                   |
| Lowest depth in Waterbalance:                 | Ε    | There are negative volumes in the water balance, see                                            |
| <value> m</value>                             |      | section 2.5.1 about this problem and the use of                                                 |
| Negative or near zero waterdepths             |      | HBotAdd.                                                                                        |
| and volumes in waterbalance. Set              |      |                                                                                                 |
| HBotAdd or recalculate                        |      |                                                                                                 |
| waterbalance!                                 | Г    |                                                                                                 |
| Lowest depth in Waterbalance:                 | Е    | There are negative volumes in the water balance, see                                            |
| <value> m</value>                             |      | section 2.5.1 about this problem and the use of                                                 |
| HBotAdd is not high enough to                 |      | HBotAdd.                                                                                        |
| prevent negative or near zero                 |      |                                                                                                 |
| waterdepths and volumes in                    |      |                                                                                                 |
| waterbalance. Increase HBotAdd or             |      |                                                                                                 |
| recalculate waterbalance!                     |      |                                                                                                 |
| Maximum N balance error <value></value>       | М    | Summarizes the maximum balance deviations during                                                |
| g                                             |      | the calculation. Not zero because even double                                                   |
| Maximum P balance error <value></value>       |      | precision calculations have limitations, but it should                                          |
| g                                             | ·    | usually be lower than 10 <sup>-5</sup> .                                                        |
| Missing file: <file></file>                   | W    | The mentioned file was not found. For required files                                            |
|                                               | /    | this is a fatal error. For optional files this is only a                                        |
|                                               | Е    | warning. If NUSWALITE should read the mentioned                                                 |
|                                               |      | file, please check if it has the correct (default) file                                         |
|                                               |      |                                                                                                 |
|                                               |      | name on the disk, are the correct alternative filename was specified in the NUSWALITE.INI file. |

| Mono then 100 data maningal                        | W   | Detailed date mannings along down the model             |
|----------------------------------------------------|-----|---------------------------------------------------------|
| More than 100 date warnings!                       | W   | Detailed date warnings slow down the model              |
| Logging stopped                                    |     | performance. Therefore the number of warnings           |
| More than 20 linked circuits                       | Е   | was limited to 100.                                     |
|                                                    | Е   | A problem with circular flow could not be solved,       |
| detected! Unable to sort the nodes!                | Б   | and the calculation could not finish.                   |
| No <type> value for <parameter></parameter></type> | Е   | NUSWALITE could not find a value of the correct         |
| in <section></section>                             |     | type for the specified parameter                        |
| No floating biomass outflow nodes                  | Μ   | When FloatingBiomassOutflowNodes is not set,            |
| defined!                                           |     | floating biomass will be transported over the           |
| Using default option All.                          |     | systems boundaries with every outflow                   |
| No sedimentation nodes defined!                    | W   | UseSedimentation was set to 1, but node selection       |
|                                                    |     | of nodes was made at SedimentationNodes                 |
| Node <id> in <file> is not</file></id>             | Е   | Non-existing ID used, the information can not be        |
| defined!                                           |     | used.                                                   |
| Node <value> does not exist</value>                | W   | Non-existing ID used, the information can not be        |
|                                                    |     | used.                                                   |
| Number of nodes is bigger than                     | Е   | Unfortunately the number of allowed nodes in the        |
| maximum allowed: <value></value>                   |     | calculation is not flexible yet. If you want to include |
|                                                    |     | more nodes than allowed, you need a recompiled          |
|                                                    |     | version of the program                                  |
| Read invalid date: <date></date>                   | W   | Unable to read the date, use either yyyy-mm-dd or       |
|                                                    |     | dd-mm-yyyy.                                             |
| Reading file: <file></file>                        | Μ   | Currently the mentioned file is read.                   |
| Replacing <file> with <file></file></file>         | М   | In the NuswaLite.ini file an alternative filename was   |
| 1 0                                                |     | specified for the mentioned file.                       |
| Specified EndTimeNuswaLite is                      | W   | The calculation period for NUSWALITE will be            |
| lower than in water balance.                       |     | shorter than the spam of the water balance because      |
| New calculation end time will be                   |     | EndTimeNuswaLite was set.                               |
| used!                                              |     |                                                         |
| Using default end time from                        | М   | No EndTimeNuswaLite was found in the parameter          |
| waterbalance file                                  |     | file, NUSWALITE calculate for the whole period of       |
|                                                    |     | the waterbalance.                                       |
| Using default filenames                            | М   | Since no NuswaLite.ini file was found in the            |
|                                                    |     | working directory and no alternative name for this      |
|                                                    |     | file was specified, NUSWALITE will use the default      |
|                                                    |     | filenames.                                              |
| Warning: <date> in this file is not</date>         | W   | The values connected with this date will be ignored.    |
| in calculation range, and will not be              | ••  | Note that values before the start of the calculation    |
| used!                                              |     | are not interpolated to the start itself!               |
| WARNING: <factor> is not equal</factor>            | W   | This factor usually set intentionally, but because it   |
| to one! A factor of <value> will be</value>        | **  | has a great effect on the results it was thought that a |
| applied on all <load type=""></load>               |     | warning should be in place.                             |
| WARNING: Circular flow circuit(s)                  | W   | NUSWALITE is not able to deal with circular flow        |
| detected! Unable to sort the nodes                 | ••  | directly. Circular flow occurs between three or more    |
| Work-around by correcting lowest                   |     | nodes when water flows from node A to B, from B         |
| flow in the circuit                                |     | to C, and back from C to A during the same day.         |
| At year/day number:                                |     | NUSWALITE tries to find a solution by correcting the    |
| <year>/<daynr></daynr></year>                      |     | flows with the lowest flow in the circuit. In more      |
| etc                                                |     | complex situations however, a solution can not          |
|                                                    |     | always be found.                                        |
| Waterbalance file not complete, end                | Е   | The water balance file was not complete. Probably       |
| at day <daynr></daynr>                             | 1   | the water balance calculation finished with errors.     |
| WaterbalanceID: <text></text>                      | М   | Optional informative text derived from the water        |
|                                                    | TAT | opuonai mormauve text derived nom me water              |

|                                             |   | balance file.                    |  |
|---------------------------------------------|---|----------------------------------|--|
| Work-around with negative                   | W | See section 2.5.1 about HBotAdd. |  |
| HBotAdd used!                               |   |                                  |  |
| $HBotAdd = \langle Value \rangle m$         |   |                                  |  |
|                                             |   |                                  |  |
| NodeID Area HBotAdd                         |   |                                  |  |
| <id> <value>m <value>m</value></value></id> |   |                                  |  |
| Work-around with positive                   | W | See section 2.5.1 about HBotAdd. |  |
| HBotAdd used!                               |   |                                  |  |
| $HBotAdd = \langle Value \rangle m$         |   |                                  |  |