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Soll process models are not perfect
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Uncertainty propagation analysis easy once uncertainty
sources are quantified by probability distributions

= Monte Carlo method:

e repeat many times (N>100)

e generate a realization of the uncertainty sources by sampling from
their probability distribution with a random number generator

e run model and store result for this realization
e compute and report summary statistics of the N results
(e.g. mean, standard deviation, proportion above critical
threshold)
= Computationally demanding but flexible, easily
Implemented and approximation errors can be made
arbitrary small
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Example: Uncertainty propagation with soll acidification model (Kros
et al., JEQ 28, 366-377)
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Figure 1 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and
the reference run of the pH i layers 1 and 3.
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Main problem is quantification of uncertainty sources

= Single measure of uncertainty (e.g. X = 10 £ 2) is not enough, a
full probability distribution function (pdf) is needed:

e shape of pdf (e.g. normal, lognormal, uniform)
e parameters of pdf (e.g. mean, standard deviation, skewness)

e cross-correlations between uncertain inputs or parameters (e.g.
uncertainties in clay and sand content are correlated)

e spatial correlation for uncertain inputs or parameters that vary in
space (e.g. by a semivariogram)

e temporal correlation for variables that vary in time (e.g. correlogram)

= Note that pdf is support-dependent (e.g. uncertainty about OM of 1
cm3 volume different from that of a 1 dms3 volume)

= pdf for categorical variables more complex (e.g. soil type)

= pdf required for 1) model inputs; 2) model parameters and 3)
model structure
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Uncertainty quantification of model inputs

= Many options:

measurement error from instrument and lab specifications or by taking
replicates

sampling error using sampling theory from statistics (e.g. standard error
of the mean, confidence intervals)

use of ground truth verification data (e.g. soils data base, independent
data)

interpolation error using geostatistics (kriging variance)

errors in transfer functions such as regression: R-square, residual
variance, variance of regression coefficients (e.g. pedo-transfer functions)

classification error using multivariate statistics (e.g. maximum likelihood
classification of remote sensing imagery)

input that is output of another model in a model chain: use Monte Carlo
sample of output from the other model

expert judgement (last resort?)
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Uncertainty quantification of model inputs

= [n spite of the many options, expert judgement is often used

m Expert judgement of uncertainties often done in an improvised
and ad hoc way

= Experts may disagree:

Expert number

m Let us test how well you can quantify your uncertainty
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Predicting soil organic matter (mass percentage) of
topsoil (0-30 cm) for the Dutch province of Drenthe*

oy WAGENING EN [N *Data provided by Bas Kempen, thanks!




Soll map of Drenthe shows that the province has peat
and mineral (sandy) soils

Soil Group
I »
mpP
B rY
B mPY
B BF
B Pz
=

i Ps

P = thick peat soils with peaty topsoil; mP = thick peat soils with mineral topsoil; PY = thin peat soils
with peaty topsoil; mPY = thin peat soils with mineral topsoil; BF = brown forest soils; PZ = podzols;
E = dark hydromorphic earth soils; PS = plaggen soils; 7= glacial till soils; § = raw sand soils




Quantify uncertainty with lower and upper limits of the symmetric
50% credibility interval: 50% chance that true value lies in interval
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. ocation 1 0-30cm

Lower limit P25: X %
Upper limit P75: Y %

True value: 21.4 %
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Location 2

Lower limit P25: X %
Upper limit P75: Y %
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True value: 5.0 %



Location 3

O 30 cm

Lower limit P25: X %
Upper limit P75: Y %

True value: 62.6 %
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Location 4

Lower limit P25: X %
Upper limit P75: Y %

True value: 8.1 %
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Location 6

Lower limit P25: X %
Upper limit P75: Y %

True value: 6.8 %
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If there had been 64 people in this room....

= Then after location 1 about 32 people still standing
m2>163>84>45>2 6->1

= People that had to sit down immediately tend to be
overconfident (type MACHO)

= People that kept standing until the end are too insecure (type
SISSY)

= [t turns out to be difficult to quantify your own uncertainty
= Need for valid and sound approach: expert elicitation
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Expert elicitation

Uncertain

= Aims to construct a probability distribution that properly Judgements
I’epresents the expert’s knOW|edge Eliciting Experts’ Probabilities

> L

= Scientific field in its own right, many text books,
conferences and journals

= Involves contributions from statistics and psychology
(understanding human judgement)

= Experts must first be calibrated (corrected for over- and
underconfidence)

= Elicitation typically proceeds by moving from
probabilities to distributions

= |[f there are multiple experts then distributions must be
combined, either by mathematical aggregation or by
behavioural aggregation

= Uses formal procedures, also implemented in software
tools (e.g. Elicitator from QUT Brisbane!)

= Extension from univariate to multivariate distributions
exists, but spatial and temporal extensions are rare
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Uncertainty in model parameters

Parameters different from inputs because parameters are inseparable
from the model (e.g. a regression coefficient)

Implies that model parameters and their uncertainties can only be
assessed using calibration procedures (i.e. inverse modelling)

Common approaches (e.g. PEST as often used in hydrological modelling)
recently surpassed by Bayesian calibration:

e define a prior pdf p(0) for parameter (vector) 0
e compute posterior p(6ldata) by applying Bayes’ rule:

p(0 | data) o« p(0) - p(data | 0)

e in practice this is done numerically using Markov chain Monte Carlo simulation

Bayesian calibration — MCMC is computationally demanding but easily
iImplemented, flexible and yields the full joint distribution of all parameters
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Model structural uncertainty

= Arguably the most difficult uncertainty source, because it is difficult to
define a pdf for structural errors
= One possible approach is (Bayesian) model averaging: define multiple
competing models, each with a certain probability of being correct:
e requires multiple models: not easy in soil process modelling

e risk that models have too much overlap and do not cover the full space of
possible models because modellers have the same background and copy from
each other

= Alternative approach: good-old stochastic models that represent model
structural error by additive (or multiplicative) system noise:

Z(X,1) = M(x,t) + e(x,1)

= System noise can be modelled using common (geo)statistical approaches
and optimal prediction of Z(x,t) with uncertainty quantification can be
achieved with kriging, (space-time) Kalman filtering or stochastic simulation

m Parameters of system noise can also be estimated using Bayesian
calibration: take look at integrated approach
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Outline of integrated approach to uncertainty propagation
analysis that includes all three sources of uncertainty

O=model parameters
O=output
O =1(1,0,7)
T=model structural error parameters

p(O|data) derived from p(l,0,t|data) because f known
p(l,6,7| data) = p(l) - p(6, t | |, data)

P(0,t |l,data) « p(6,1)-p(data|l,0,1)

take measurement error into account when specifying p(datall,0,7)
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Conclusions

Uncertainty propagation analysis of soil process models important
because:

e users must know how accurate the results of models are if these results are
to be used in decision making

o infolrm_at)ion about uncertainty can be used to take better decisions (e.g. risk
analysis

e it provides insight into how best to improve the accuracy of model output

Monte Carlo simulation very suitable for uncertainty propagation analysis
provided the source uncertainties are quantified with pdfs

Must use expert elicitation when relying on expert judgement for
quantification of input uncertainties

Bayesian calibration recommended for quantification of uncertainties in
model parameters

Uncertainty about model structure may be described with additive system
noise: easy (but perhaps unrealistic and refinement necessary)

Integrated approach that takes all uncertainty sources into account must
be worked out and tested

Can learn much from related fields such as hydrology and meteorology
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Thank you

z
L
0
z
z
I
0
<
3



http://www.alterra.wur.nl/NR/rdonlyres/84972780-3882-43AF-893A-A69EB07518E8/28842/Thema4veengebiedenPicture023_s.jpg
http://www.alterra.wur.nl/NR/rdonlyres/C0D091B4-628A-4327-B519-3078402754EE/28626/7_soil_erosion_3.jpg
http://www.alterra.wur.nl/NR/rdonlyres/804A18D3-0497-43ED-BFDE-F0F9C0070FA5/31213/bodemgeografie1.jpg

