
Realistic quantification of input, parameter 

and structural errors of soil process 

models 
 

Gerard Heuvelink 

 

Wageningen University and Research Centre, Wageningen, The Netherlands 

http://www.alterra.wur.nl/NR/rdonlyres/84972780-3882-43AF-893A-A69EB07518E8/28842/Thema4veengebiedenPicture023_s.jpg
http://www.alterra.wur.nl/NR/rdonlyres/C0D091B4-628A-4327-B519-3078402754EE/28626/7_soil_erosion_3.jpg
http://www.alterra.wur.nl/NR/rdonlyres/804A18D3-0497-43ED-BFDE-F0F9C0070FA5/31213/bodemgeografie1.jpg


Soil process models are not perfect 
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Uncertainty propagation analysis easy once uncertainty 

sources are quantified by probability distributions 

 Monte Carlo method: 
 repeat many times (N>100) 

• generate a realization of the uncertainty sources by sampling from 
their probability distribution with a random number generator 

• run model and store result for this realization 

 compute and report summary statistics of the N results 
(e.g. mean, standard deviation, proportion above critical 
threshold) 

 Computationally demanding but flexible, easily 
implemented and approximation errors can be made 
arbitrary small 



Example: Uncertainty propagation with soil acidification model (Kros 

et al., JEQ 28, 366-377) 



Main problem is quantification of uncertainty sources 

 Single measure of uncertainty (e.g. X = 10  2) is not enough, a 
full probability distribution function (pdf) is needed: 

 shape of pdf (e.g. normal, lognormal, uniform) 

 parameters of pdf (e.g. mean, standard deviation, skewness) 

 cross-correlations between uncertain inputs or parameters (e.g. 
uncertainties in clay and sand content are correlated) 

 spatial correlation for uncertain inputs or parameters that vary in 
space (e.g. by a semivariogram) 

 temporal correlation for variables that vary in time (e.g. correlogram) 

 Note that pdf is support-dependent (e.g. uncertainty about OM of 1 
cm3 volume different from that of a 1 dm3 volume) 

 pdf for categorical variables more complex (e.g. soil type) 

 pdf required for 1) model inputs; 2) model parameters and 3) 
model structure 



Uncertainty quantification of model inputs 

 Many options: 
 measurement error from instrument and lab specifications or by taking 

replicates 

 sampling error using sampling theory from statistics (e.g. standard error 
of the mean, confidence intervals) 

 use of ground truth verification data (e.g. soils data base, independent 
data) 

 interpolation error using geostatistics (kriging variance) 

 errors in transfer functions such as regression: R-square, residual 
variance, variance of regression coefficients (e.g. pedo-transfer functions) 

 classification error using multivariate statistics (e.g. maximum likelihood 
classification of remote sensing imagery) 

 input that is output of another model in a model chain: use Monte Carlo 
sample of output from the other model 

 expert judgement  (last resort?) 



Uncertainty quantification of model inputs 

 In spite of the many options, expert judgement is often used 

 Expert judgement of uncertainties often done in an improvised 
and ad hoc way 

 Experts may disagree: 

 Let us test how well you can quantify your uncertainty 



Predicting soil organic matter (mass percentage) of 

topsoil (0-30 cm) for the Dutch province of Drenthe* 

*Data provided by Bas Kempen, thanks! 



P = thick peat soils with peaty topsoil; mP = thick peat soils with mineral topsoil; PY = thin peat soils 
with peaty topsoil; mPY = thin peat soils with mineral topsoil; BF = brown forest soils; PZ = podzols; 
E = dark hydromorphic earth soils; PS = plaggen soils; T = glacial till soils; S = raw sand soils  

Soil map of Drenthe shows that the province has peat 

and mineral (sandy) soils 



Quantify uncertainty with lower and upper limits of the symmetric 

50% credibility interval: 50% chance that true value lies in interval 

 SOM 

P25 P75 

50% 





Location 1 0 - 30 cm 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 21.4 % 



Location 2 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 5.0 % 

0 - 30 cm 



Location 3 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 62.6 % 

0 - 30 cm 



Location 4 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 8.1 % 

0 - 30 cm 



Location 5 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 2.3 % 

0 - 30 cm 



Location 6 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 6.8 % 

0 - 30 cm 



If there had been 64 people in this room.... 

 Then after location 1 about 32 people still standing 

 2  16, 3  8, 4 4, 5  2, 6  1 

 People that had to sit down immediately tend to be 
overconfident (type MACHO) 

 People that kept standing until the end are too insecure (type 
SISSY) 

 It turns out to be difficult to quantify your own uncertainty 

 Need for valid and sound approach: expert elicitation 



Expert elicitation 

 Aims to construct a probability distribution that properly 
represents the expert’s knowledge 

 Scientific field in its own right, many text books, 
conferences and journals 

 Involves contributions from statistics and psychology 
(understanding human judgement) 

 Experts must first be calibrated (corrected for over- and 
underconfidence) 

 Elicitation typically proceeds by moving from 
probabilities to distributions 

 If there are multiple experts then distributions must be 
combined, either by mathematical aggregation or by 
behavioural aggregation 

 Uses formal procedures, also implemented in software 
tools (e.g. Elicitator from QUT Brisbane!) 

 Extension from univariate to multivariate distributions 
exists, but spatial and temporal extensions are rare 



Uncertainty in model parameters 

 Parameters different from inputs because parameters are inseparable 
from the model (e.g. a regression coefficient) 

 Implies that model parameters and their uncertainties can only be 
assessed using calibration procedures (i.e. inverse modelling) 

 Common approaches (e.g. PEST as often used in hydrological modelling) 
recently surpassed by Bayesian calibration: 

 define a prior pdf p( ) for parameter (vector)  

 compute posterior p( |data) by applying Bayes’ rule: 

)|data(p)(p)data|(p

 in practice this is done numerically using Markov chain Monte Carlo simulation 

 Bayesian calibration – MCMC is computationally demanding but easily 
implemented, flexible and yields the full joint distribution of all parameters 



Model structural uncertainty 
 Arguably the most difficult uncertainty source, because it is difficult to 

define a pdf for structural errors 

 One possible approach is (Bayesian) model averaging: define multiple 
competing models, each with a certain probability of being correct: 
 requires multiple models: not easy in soil process modelling 

 risk that models have too much overlap and do not cover the full space of 
possible models because modellers have the same background and copy from 
each other 

 Alternative approach: good-old stochastic models that represent model 
structural error by additive (or multiplicative) system noise: 

t)(x,)t,x(Mt)Z(x,

 System noise can be modelled using common (geo)statistical approaches 
and optimal prediction of Z(x,t) with uncertainty quantification can be 
achieved with kriging, (space-time) Kalman filtering or stochastic simulation 

 Parameters of system noise can also be estimated using Bayesian 
calibration: take look at integrated approach 



Outline of integrated approach to uncertainty propagation 

analysis that includes all three sources of uncertainty 

),,I(fO

)data,I|,(p)I(p)data|,,I(p

=model structural error parameters  

p(O|data) derived from p(I, , |data) because f known 

),,I|data(p),(p)data,I|,(p

take measurement error into account when specifying p(data|I, , ) 

=model parameters  
f=model  

I=input  

O=output  



Conclusions 

 Uncertainty propagation analysis of soil process models important 
because: 
 users must know how accurate the results of models are if these results are 

to be used in decision making 
 information about uncertainty can be used to take better decisions (e.g. risk 

analysis) 
 it provides insight into how best to improve the accuracy of model output 

 Monte Carlo simulation very suitable for uncertainty propagation analysis 
provided the source uncertainties are quantified with pdfs 

 Must use expert elicitation when relying on expert judgement for 
quantification of input uncertainties 

 Bayesian calibration recommended for quantification of uncertainties in 
model parameters 

 Uncertainty about model structure may be described with additive system 
noise: easy (but perhaps unrealistic and refinement necessary) 

 Integrated approach that takes all uncertainty sources into account must 
be worked out and tested 

 Can learn much from related fields such as hydrology and meteorology 



Thank you 
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