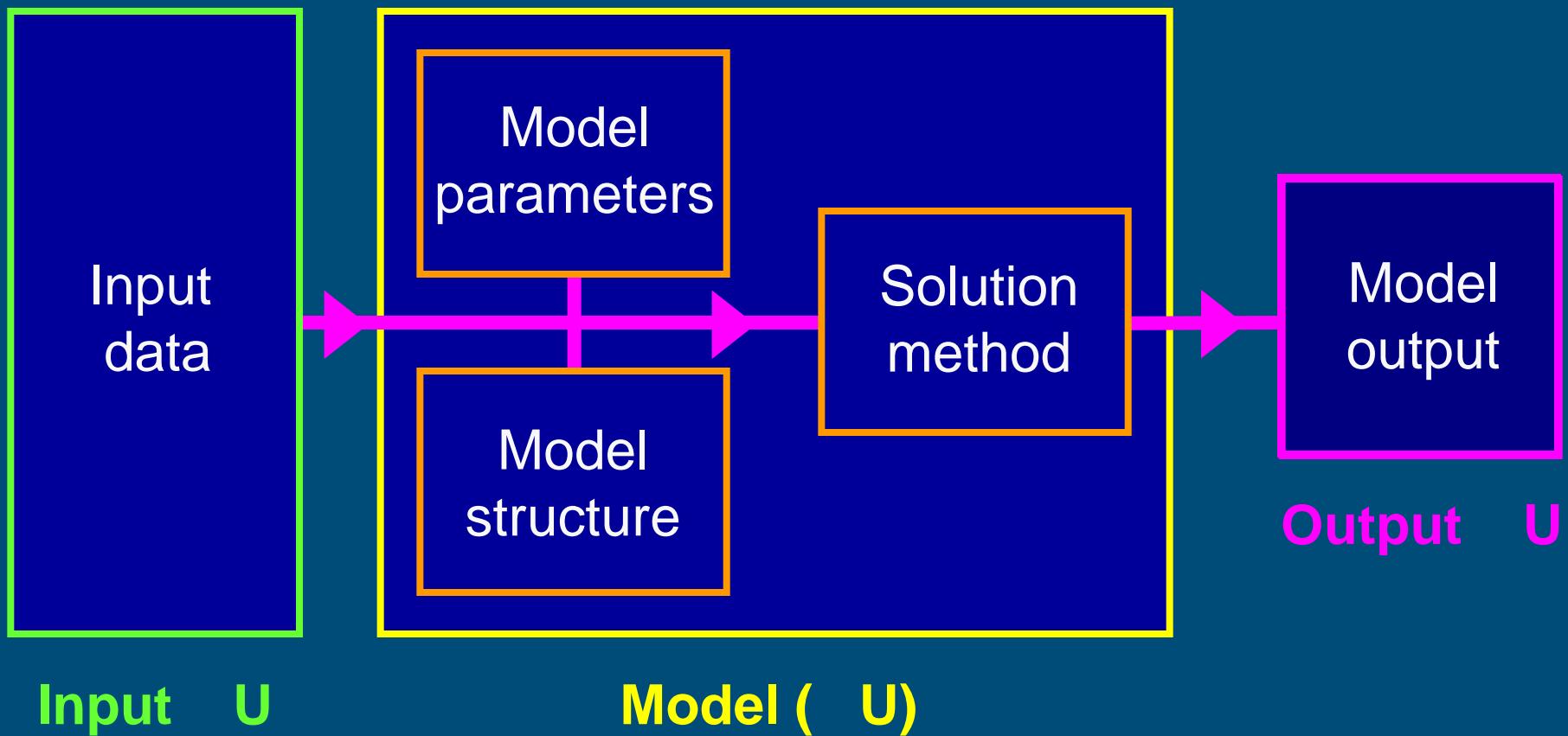


Realistic quantification of input, parameter and structural errors of soil process models

Gerard Heuvelink

Wageningen University and Research Centre, Wageningen, The Netherlands

Soil process models are not perfect



Uncertainty propagation analysis easy once uncertainty sources are quantified by probability distributions

■ Monte Carlo method:

- repeat many times ($N > 100$)
 - generate a realization of the uncertainty sources by sampling from their probability distribution with a random number generator
 - run model and store result for this realization
- compute and report summary statistics of the N results (e.g. mean, standard deviation, proportion above critical threshold)

■ Computationally demanding but flexible, easily implemented and approximation errors can be made arbitrary small

Example: Uncertainty propagation with soil acidification model (Kros et al., JEQ 28, 366-377)

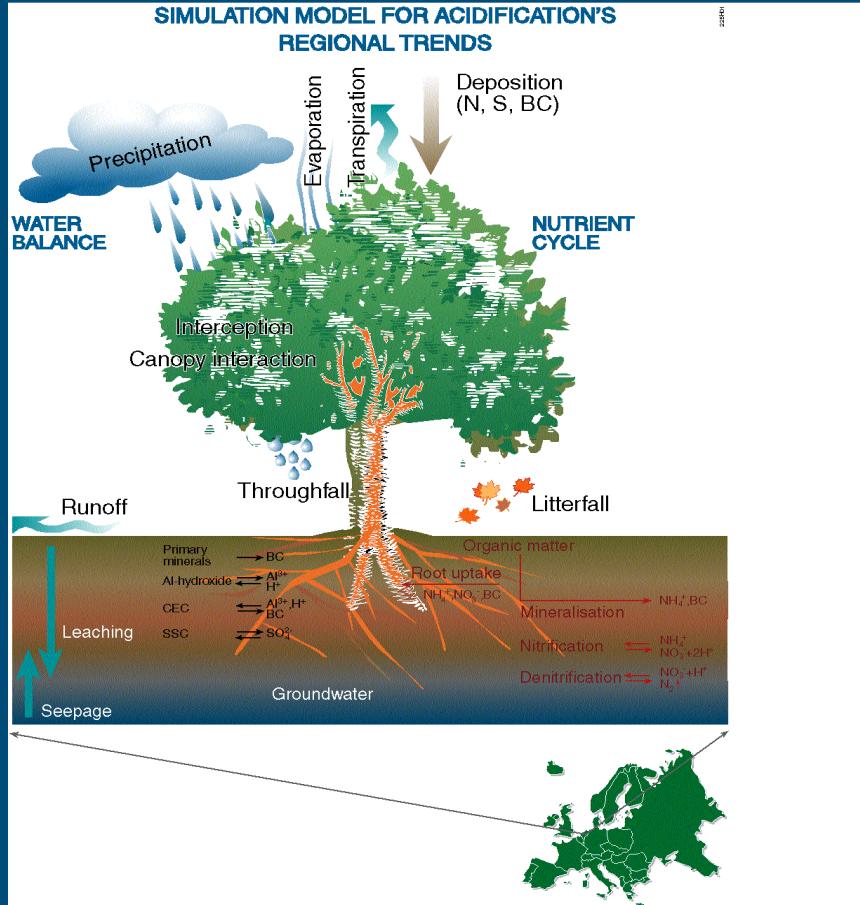
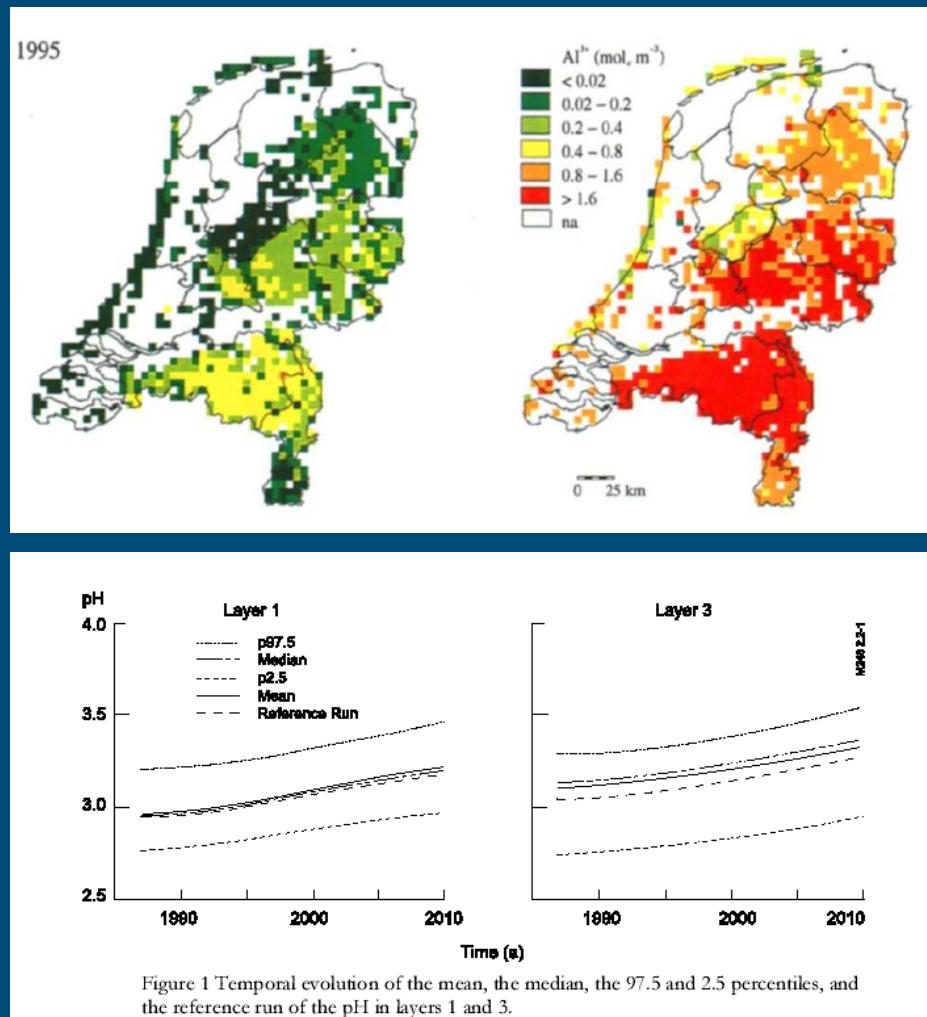


Figure 1 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and the reference run of the pH in layers 1 and 3.

Main problem is quantification of uncertainty sources

- Single measure of uncertainty (e.g. $X = 10 \pm 2$) is not enough, a full **probability distribution function (pdf)** is needed:
 - shape of pdf (e.g. normal, lognormal, uniform)
 - parameters of pdf (e.g. mean, standard deviation, skewness)
 - cross-correlations between uncertain inputs or parameters (e.g. uncertainties in clay and sand content are correlated)
 - spatial correlation for uncertain inputs or parameters that vary in space (e.g. by a semivariogram)
 - temporal correlation for variables that vary in time (e.g. correlogram)
- Note that pdf is support-dependent (e.g. uncertainty about OM of 1 cm^3 volume different from that of a 1 dm^3 volume)
- pdf for categorical variables more complex (e.g. soil type)
- pdf required for 1) model inputs; 2) model parameters and 3) model structure

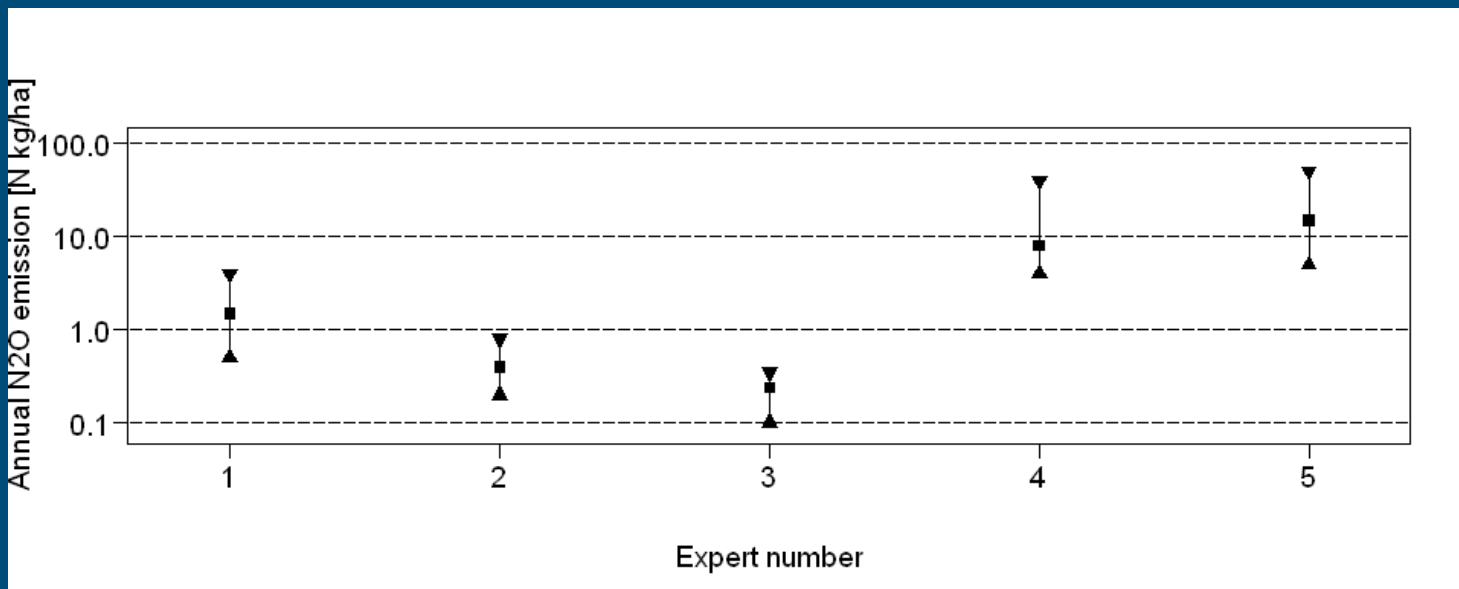
Uncertainty quantification of model inputs

■ Many options:

- measurement error from instrument and lab specifications or by taking replicates
- sampling error using sampling theory from statistics (e.g. standard error of the mean, confidence intervals)
- use of ground truth verification data (e.g. soils data base, independent data)
- interpolation error using geostatistics (kriging variance)
- errors in transfer functions such as regression: R-square, residual variance, variance of regression coefficients (e.g. pedo-transfer functions)
- classification error using multivariate statistics (e.g. maximum likelihood classification of remote sensing imagery)
- input that is output of another model in a model chain: use Monte Carlo sample of output from the other model
- expert judgement (last resort?)

Uncertainty quantification of model inputs

- In spite of the many options, expert judgement is often used
- Expert judgement of uncertainties often done in an improvised and ad hoc way
- Experts may disagree:

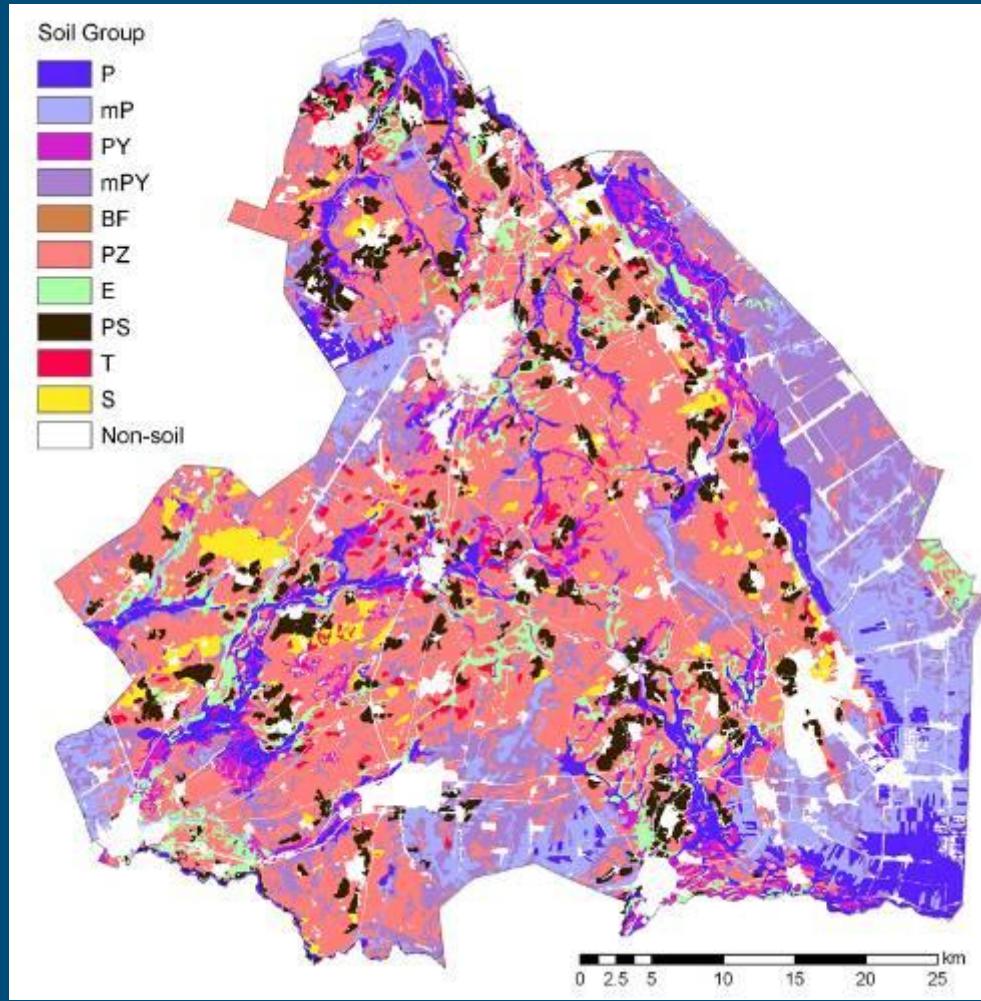


- Let us test how well you can quantify **your uncertainty**

Predicting soil organic matter (mass percentage) of topsoil (0-30 cm) for the Dutch province of Drenthe*

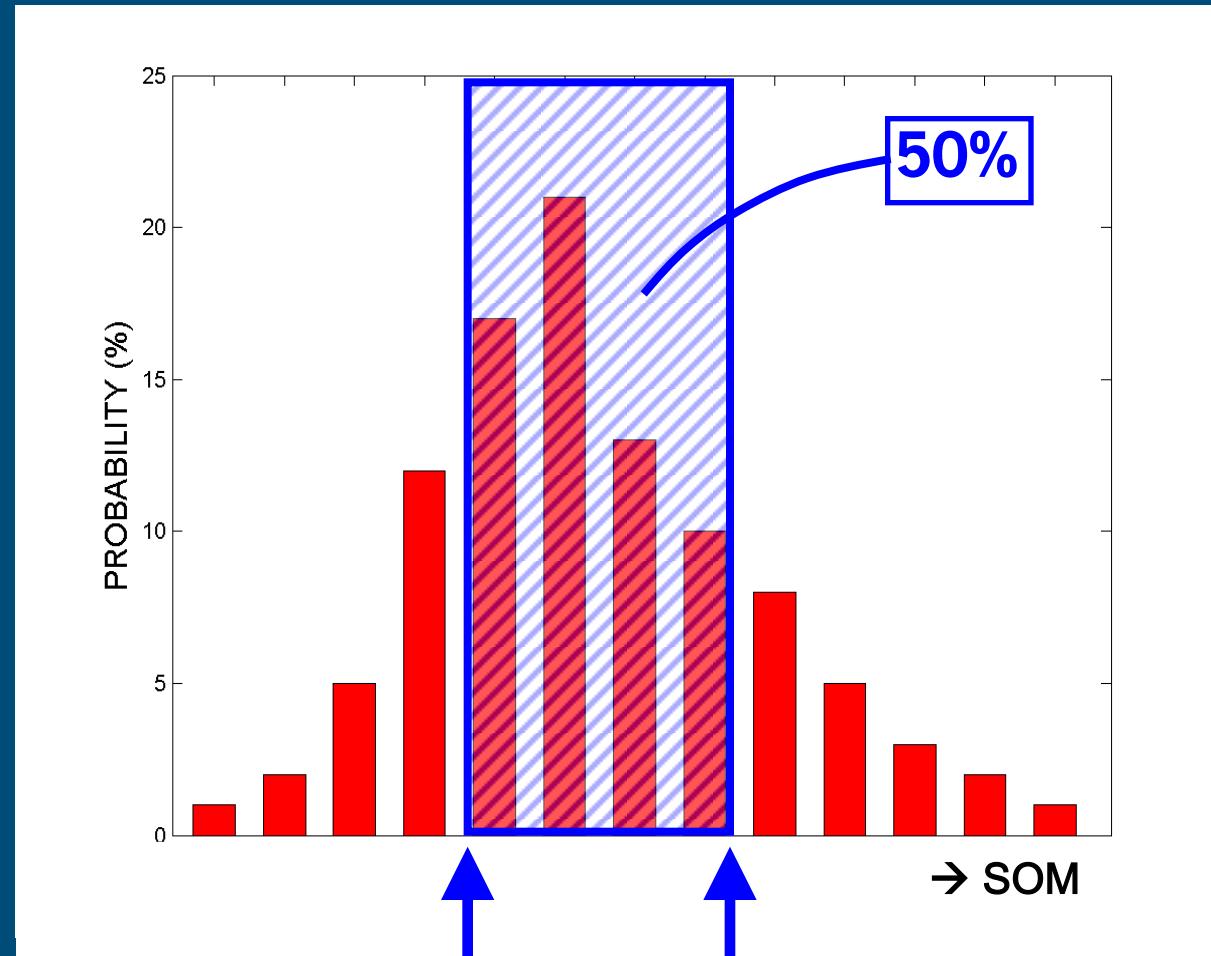
*Data provided by Bas Kempen, thanks!

Soil map of Drenthe shows that the province has peat and mineral (sandy) soils



P = thick peat soils with peaty topsoil; **mP** = thick peat soils with mineral topsoil; **PY** = thin peat soils with peaty topsoil; **mPY** = thin peat soils with mineral topsoil; **BF** = brown forest soils; **PZ** = podzols; **E** = dark hydromorphic earth soils; **PS** = plaggen soils; **T** = glacial till soils; **S** = raw sand soils

Quantify uncertainty with lower and upper limits of the symmetric 50% credibility interval: 50% chance that true value lies in interval



please stand up

Location 1

Lower limit P25: X %

Upper limit P75: Y %

True value: **21.4** %

Location 2

Lower limit P25: X %

Upper limit P75: Y %

True value: 5.0 %

Location 3

Lower limit P25: X %

Upper limit P75: Y %

True value: **62.6** %

Location 4

Lower limit P25: X %

Upper limit P75: Y %

True value: **8.1** %

Location 5

Lower limit P25: X %

Upper limit P75: Y %

True value: **2.3** %

Location 6

Lower limit P25: X %

Upper limit P75: Y %

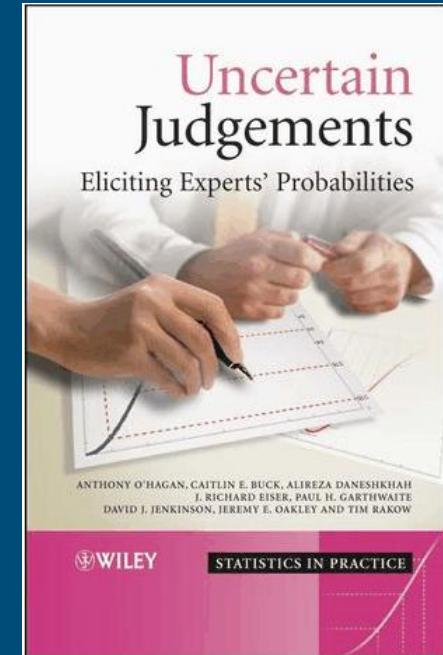
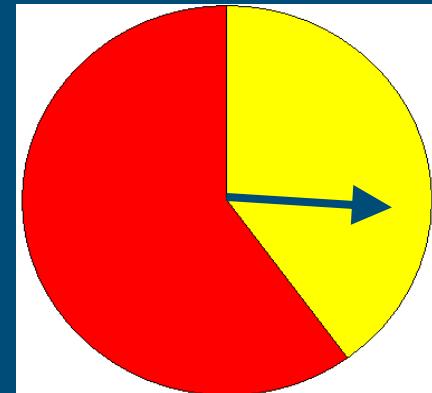
True value: **6.8** %

If there had been 64 people in this room....

- Then after location 1 about 32 people still standing
- $2 \rightarrow 16, 3 \rightarrow 8, 4 \rightarrow 4, 5 \rightarrow 2, 6 \rightarrow 1$
- People that had to sit down immediately tend to be overconfident (type **MACHO**)
- People that kept standing until the end are too insecure (type **SISSY**)
- It turns out to be difficult to quantify your own uncertainty
- Need for valid and sound approach: **expert elicitation**

Expert elicitation

- Aims to construct a probability distribution that properly represents the expert's knowledge
- Scientific field in its own right, many text books, conferences and journals
- Involves contributions from **statistics** and **psychology** (understanding human judgement)
- Experts must first be **calibrated** (corrected for **over- and underconfidence**)
- Elicitation typically proceeds by moving from probabilities to distributions
- If there are multiple experts then distributions must be combined, either by **mathematical aggregation** or by **behavioural aggregation**
- Uses formal procedures, also implemented in software tools (e.g. Elicitator from QUT Brisbane!)
- Extension from univariate to multivariate distributions exists, but spatial and temporal extensions are rare



Uncertainty in model parameters

- Parameters different from inputs because parameters are inseparable from the model (e.g. a regression coefficient)
- Implies that model parameters and their uncertainties can only be assessed using calibration procedures (i.e. inverse modelling)
- Common approaches (e.g. PEST as often used in hydrological modelling) recently surpassed by **Bayesian calibration**:
 - define a prior pdf $p(\theta)$ for parameter (vector) θ
 - compute posterior $p(\theta|\text{data})$ by applying Bayes' rule:

$$p(\theta | \text{data}) \propto p(\theta) \cdot p(\text{data} | \theta)$$

- in practice this is done numerically using **Markov chain Monte Carlo** simulation
- Bayesian calibration – MCMC is computationally demanding but easily implemented, flexible and yields the full joint distribution of all parameters

Model structural uncertainty

- Arguably the most difficult uncertainty source, because it is difficult to define a pdf for structural errors
- One possible approach is (Bayesian) model averaging: define multiple competing models, each with a certain probability of being correct:
 - requires multiple models: not easy in soil process modelling
 - risk that models have too much overlap and do not cover the full space of possible models because modellers have the same background and copy from each other
- Alternative approach: good-old stochastic models that represent model structural error by additive (or multiplicative) system noise:

$$Z(x,t) = M(x,t) + \varepsilon(x,t)$$

- System noise can be modelled using common (geo)statistical approaches and optimal prediction of $Z(x,t)$ with uncertainty quantification can be achieved with kriging, (space-time) Kalman filtering or stochastic simulation
- Parameters of system noise can also be estimated using Bayesian calibration: take look at integrated approach

Outline of integrated approach to uncertainty propagation analysis that includes all three sources of uncertainty

$$O = f(I, \theta, \tau)$$

O =output

f =model

θ =model parameters

I =input

τ =model structural error parameters

$p(O|data)$ derived from $p(I, \theta, \tau | data)$ because f known

$$p(I, \theta, \tau | data) = p(I) \cdot p(\theta, \tau | I, data)$$

$$p(\theta, \tau | I, data) \propto p(\theta, \tau) \cdot p(data | I, \theta, \tau)$$

take measurement error into account when specifying $p(data | I, \theta, \tau)$

Conclusions

- Uncertainty propagation analysis of soil process models important because:
 - users must know how accurate the results of models are if these results are to be used in decision making
 - information about uncertainty can be used to take better decisions (e.g. risk analysis)
 - it provides insight into how best to improve the accuracy of model output
- Monte Carlo simulation very suitable for uncertainty propagation analysis provided the source uncertainties are quantified with pdfs
- Must use expert elicitation when relying on expert judgement for quantification of input uncertainties
- Bayesian calibration recommended for quantification of uncertainties in model parameters
- Uncertainty about model structure may be described with additive system noise: easy (but perhaps unrealistic and refinement necessary)
- Integrated approach that takes all uncertainty sources into account must be worked out and tested
- Can learn much from related fields such as hydrology and meteorology

Thank you

