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Soil process models are not perfect 
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Uncertainty propagation analysis easy once uncertainty 

sources are quantified by probability distributions 

 Monte Carlo method: 
 repeat many times (N>100) 

• generate a realization of the uncertainty sources by sampling from 
their probability distribution with a random number generator 

• run model and store result for this realization 

 compute and report summary statistics of the N results 
(e.g. mean, standard deviation, proportion above critical 
threshold) 

 Computationally demanding but flexible, easily 
implemented and approximation errors can be made 
arbitrary small 



Example: Uncertainty propagation with soil acidification model (Kros 

et al., JEQ 28, 366-377) 



Main problem is quantification of uncertainty sources 

 Single measure of uncertainty (e.g. X = 10  2) is not enough, a 
full probability distribution function (pdf) is needed: 

 shape of pdf (e.g. normal, lognormal, uniform) 

 parameters of pdf (e.g. mean, standard deviation, skewness) 

 cross-correlations between uncertain inputs or parameters (e.g. 
uncertainties in clay and sand content are correlated) 

 spatial correlation for uncertain inputs or parameters that vary in 
space (e.g. by a semivariogram) 

 temporal correlation for variables that vary in time (e.g. correlogram) 

 Note that pdf is support-dependent (e.g. uncertainty about OM of 1 
cm3 volume different from that of a 1 dm3 volume) 

 pdf for categorical variables more complex (e.g. soil type) 

 pdf required for 1) model inputs; 2) model parameters and 3) 
model structure 



Uncertainty quantification of model inputs 

 Many options: 
 measurement error from instrument and lab specifications or by taking 

replicates 

 sampling error using sampling theory from statistics (e.g. standard error 
of the mean, confidence intervals) 

 use of ground truth verification data (e.g. soils data base, independent 
data) 

 interpolation error using geostatistics (kriging variance) 

 errors in transfer functions such as regression: R-square, residual 
variance, variance of regression coefficients (e.g. pedo-transfer functions) 

 classification error using multivariate statistics (e.g. maximum likelihood 
classification of remote sensing imagery) 

 input that is output of another model in a model chain: use Monte Carlo 
sample of output from the other model 

 expert judgement  (last resort?) 



Uncertainty quantification of model inputs 

 In spite of the many options, expert judgement is often used 

 Expert judgement of uncertainties often done in an improvised 
and ad hoc way 

 Experts may disagree: 

 Let us test how well you can quantify your uncertainty 



Predicting soil organic matter (mass percentage) of 

topsoil (0-30 cm) for the Dutch province of Drenthe* 

*Data provided by Bas Kempen, thanks! 



P = thick peat soils with peaty topsoil; mP = thick peat soils with mineral topsoil; PY = thin peat soils 
with peaty topsoil; mPY = thin peat soils with mineral topsoil; BF = brown forest soils; PZ = podzols; 
E = dark hydromorphic earth soils; PS = plaggen soils; T = glacial till soils; S = raw sand soils  

Soil map of Drenthe shows that the province has peat 

and mineral (sandy) soils 



Quantify uncertainty with lower and upper limits of the symmetric 

50% credibility interval: 50% chance that true value lies in interval 

 SOM 

P25 P75 

50% 





Location 1 0 - 30 cm 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 21.4 % 



Location 2 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 5.0 % 

0 - 30 cm 



Location 3 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 62.6 % 

0 - 30 cm 



Location 4 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 8.1 % 

0 - 30 cm 



Location 5 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 2.3 % 

0 - 30 cm 



Location 6 

Lower limit P25: X % 

Upper limit P75: Y % 
True value: 6.8 % 

0 - 30 cm 



If there had been 64 people in this room.... 

 Then after location 1 about 32 people still standing 

 2  16, 3  8, 4 4, 5  2, 6  1 

 People that had to sit down immediately tend to be 
overconfident (type MACHO) 

 People that kept standing until the end are too insecure (type 
SISSY) 

 It turns out to be difficult to quantify your own uncertainty 

 Need for valid and sound approach: expert elicitation 



Expert elicitation 

 Aims to construct a probability distribution that properly 
represents the expert’s knowledge 

 Scientific field in its own right, many text books, 
conferences and journals 

 Involves contributions from statistics and psychology 
(understanding human judgement) 

 Experts must first be calibrated (corrected for over- and 
underconfidence) 

 Elicitation typically proceeds by moving from 
probabilities to distributions 

 If there are multiple experts then distributions must be 
combined, either by mathematical aggregation or by 
behavioural aggregation 

 Uses formal procedures, also implemented in software 
tools (e.g. Elicitator from QUT Brisbane!) 

 Extension from univariate to multivariate distributions 
exists, but spatial and temporal extensions are rare 



Uncertainty in model parameters 

 Parameters different from inputs because parameters are inseparable 
from the model (e.g. a regression coefficient) 

 Implies that model parameters and their uncertainties can only be 
assessed using calibration procedures (i.e. inverse modelling) 

 Common approaches (e.g. PEST as often used in hydrological modelling) 
recently surpassed by Bayesian calibration: 

 define a prior pdf p( ) for parameter (vector)  

 compute posterior p( |data) by applying Bayes’ rule: 

)|data(p)(p)data|(p

 in practice this is done numerically using Markov chain Monte Carlo simulation 

 Bayesian calibration – MCMC is computationally demanding but easily 
implemented, flexible and yields the full joint distribution of all parameters 



Model structural uncertainty 
 Arguably the most difficult uncertainty source, because it is difficult to 

define a pdf for structural errors 

 One possible approach is (Bayesian) model averaging: define multiple 
competing models, each with a certain probability of being correct: 
 requires multiple models: not easy in soil process modelling 

 risk that models have too much overlap and do not cover the full space of 
possible models because modellers have the same background and copy from 
each other 

 Alternative approach: good-old stochastic models that represent model 
structural error by additive (or multiplicative) system noise: 

t)(x,)t,x(Mt)Z(x,

 System noise can be modelled using common (geo)statistical approaches 
and optimal prediction of Z(x,t) with uncertainty quantification can be 
achieved with kriging, (space-time) Kalman filtering or stochastic simulation 

 Parameters of system noise can also be estimated using Bayesian 
calibration: take look at integrated approach 



Outline of integrated approach to uncertainty propagation 

analysis that includes all three sources of uncertainty 

),,I(fO

)data,I|,(p)I(p)data|,,I(p

=model structural error parameters  

p(O|data) derived from p(I, , |data) because f known 

),,I|data(p),(p)data,I|,(p

take measurement error into account when specifying p(data|I, , ) 

=model parameters  
f=model  

I=input  

O=output  



Conclusions 

 Uncertainty propagation analysis of soil process models important 
because: 
 users must know how accurate the results of models are if these results are 

to be used in decision making 
 information about uncertainty can be used to take better decisions (e.g. risk 

analysis) 
 it provides insight into how best to improve the accuracy of model output 

 Monte Carlo simulation very suitable for uncertainty propagation analysis 
provided the source uncertainties are quantified with pdfs 

 Must use expert elicitation when relying on expert judgement for 
quantification of input uncertainties 

 Bayesian calibration recommended for quantification of uncertainties in 
model parameters 

 Uncertainty about model structure may be described with additive system 
noise: easy (but perhaps unrealistic and refinement necessary) 

 Integrated approach that takes all uncertainty sources into account must 
be worked out and tested 

 Can learn much from related fields such as hydrology and meteorology 



Thank you 
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