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System Under Study 

  Single-item, single stage lot sizing problem 

  Supplier with ample capacity 

  No lead time (Without loss of generality) 

  Periodic review (system state and actions) 

 planning horizon: N periods 

  Stochastic demand of the customer 

  non-stationary demand: Dt ≥ 0, t=1,2,…,N 

  Fixed cost of ordering (A) 

  Variable cost of holding inventory (h) 

  Service level constraints (P1: probability of 
stock outs) 
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Sequence of Events 

At the start of the planning horizon  

   Knowing the demand forecasts, the planner determines timing of the orders, and 
the fixed ordering costs are incurred. 

In each period 

   If it is a replenishment period, the planner decides on the order quantity to 
achieve certain service level after evaluating the current inventory position. 

   The order due to arrive is received, and demand occurs. 

   Holding cost is incurred on the period ending inventory. 
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Non-Stationary (R,S) Policy 

Non-Stationary (R,S) Policy: 

  (R,S) pairs change within the planning horizon 

 m orders  (Ri,Si) for i=1,2,…,m  

…………. 
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Model 

Decision Variables: Replenishment periods, δt є {0,1} 

                           Target inventory levels St ≥ 0 

Objective: Minimize the expected ordering and inventory holding costs within 
the planning horizon while satisfying a service level constraint in each 
period 

Inventory Balance 
Equations 

Service Level 
Constraints 

Objective Function 
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Literature & Model Assumptions 

  Bookbinder and Tan (Management Science, 1988) 

  Fix the replenishment schedule with a heuristic: δt є {0,1} 

  Work with expectations rather than random variables 

  Tarim and Kingsman (IJPE, 2004) 

  Under the same model assumptions of BT(1988), formulate a MIP model that also 
determines the replenishment schedule 
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MIP Formulation of Tarim and Kingsman (2004) 
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Solution of the MIP Model for a Given Replenishment Schedule  
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Equivalent Optimization Problem 

The result of Lemma 1 can be used to formulate an equivalent optimization 
problem for the MIP 
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Relaxed MIP Model  
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Solution of the Relaxed MIP Model for a Given Replenishment Schedule  

Equivalent Optimization 
Problem 
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Overview of Our Results  

MIP 

Relaxed 
MIP Equivalent Shortest 

Path Formulation 

Lemma 1 

Lemma 2 

Feasibility Check 

true false 

Theorem 
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Computational Procedure 

  Solve the shortest path problem  optimal solution for the Relaxed MIP 

  Check the feasibility of the solution 

  Feasible  Terminate 

  Not feasible 
–  Lower Bound (zr

*) 
–  Use δ* to calculate St  Upper bound (z) 
–  Initiate a Branch & Bound search and branch on one δt that is not feasible 

˜ 
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Numerical Study 

   We would like to address 

  the percentage of the non-stationary instances solved to optimality using solely the 
relaxed-MIP approach, without resorting to any search effort 

  the effectiveness of the bounds provided by the relaxed-MIP model if the observed 
solution is infeasible for the original problem 

  the overall solution time performance of the proposed method 

  the scalability of the proposed method 

Test bed   

  N=30,40,50,60 

  Demand Patterns 

  µt: stationary (P1), seasonal (P2), decreasing (P3), increasing (P4), product life-cycle 
(P5) 

  Dt~Normal(rtµt, (0.25rtµt)2) where rt is sampled from U[0.4,1.6] 

  h=1, α=0.95, A is sampled from U[75,2000] 
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Numerical Results: Feasible Cases 

   Generated random instances and solved using the relaxed MIP approach 
(equivalent shortest path formulation) for a given N and a demand pattern (Pi) 

   Infeasible problems 

  Java Implementation, CPLEX 11.2, 2.0 GHz CPU with 32-bit machine 

  Cut-off time of 1 hour 

2,102,950 instances 
160 infeasibility 

99.99% 
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Infeasible Cases: Solution Time 

   Using our method all instances are solved to optimality without any exception 

  longest taking 30.1 secs, most of the time taking less than 5 seconds 

   MIP Model 

  Time limit of 1 hour: a proven optimal solution in only 84 out of 160 

  N = 30: all the instances are solved to optimality, mean solution time is 12.5 secs 

  N = 40: 39/40 instances, mean solution time is 529.4 secs 

  N = 50: 5/40 instances, mean solution time 1631.0 secs 

  N = 60: 0/40 instances 

  Demand pattern-wise, the solution time performance does not vary much, 
although P5 (life-cycle) performs slightly better than the rest 
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Infeasible Cases: Search Effort 

Our search procedure enhanced with tight lower and upper bounds requires to 
visit only a small set of nodes giving an average of 241 

  The average gaps for ΔLB=0.05% and ΔUB=0.02%, with worst case 
performances of 0.28% and 0.19% 

MIP Model 

  The number of nodes visited during search increases with the number of 
periods in the planning horizon 

  N = 30: the average number of search nodes is 20,895 

  N = 40: the average number of search nodes is 636,028 

  N = 50: the average number of search nodes is 1,117,740 

  N = 60: after the search is on for 1 hour, the average optimality gap is 6:94% 
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Conclusions 

This study provides an efficient computational approach to solve the MIP model 
developed by Tarim and Kingsman (2004) for calculating the parameters of an 
(R,S) policy in a finite horizon with non-stationary stochastic demand 

  We have developed a computational procedure with a numerically 
demonstrated better performance compared to a commercially available MIP 
solver 

  the proposed relaxation is computationally efficient and yields an optimal solution 
most of the time (99:99% of the time in our experiments) 

  if the relaxation produces an infeasible solution, this solution can be used as a tight 
lower bound during search 

  this infeasible solution can be modified easily to obtain a feasible solution, which is 
an upper bound for the optimal solution 

  Our method is scalable and makes it possible to solve practically relevant 
instances in trivial time 
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Numerical Results (cont.) 
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Numerical Results (cont.) 


