Integrated analysis of the effects of agricultural management on environmental

quality at landscape scale

Hans Kros, Wim de Vries (Alterra) Arnoud Frumau, Arjan Hensen (ECN)

Outline

- Introduction
- Current emission and deposition status
- Validation of ammonia deposition calculations
- Quantification of the effect of measures
- Conclusions

One of the six NEU Landscapes

Noordelijke Friese Wouden (NFW)

- Farmers joined in an environmental cooperative
- Agreement with government to achieve environmental targets at landscape level
- Targets to be reached in 5 -10 years
- Freedom regarding measures as long as the environmental targets are attained

Environmental ambitions NFW related to

N

Ground- and surface water

- NO₃ ground water < 50 mg I⁻¹
- N in surface water < 2.2 mg l⁻¹

Nature

- Emission ceiling of 2 kton NH₃-N derived from the NEC of NH₃ and the present ratio of NFW versus national emissions (2010)
- Only 10% exceedance of critical N loads per nature target type; 90% protection of nature (2030)

Aim study

- A model (INITIATOR2) based integrated assessment of the
 - Environmental status of the NFW area for the year 2004/7
 - Impacts of alternative management measures on the environmental status
- NitroEurope-IP task
 - Deliver detailed agricultural input data for NITROSCAPE
 - Model comparison (INITIATOR2-INTEGRATOR-NITROSCAPE)

Modelling approach: flowchart of INITIATOR2

N application by manure and fertilizer 2004

N in Animal manure

N in Fertilizer

Emission of ammonia and nitrous oxide 2004

NH₃ emission (kg NH₃-N ha⁻¹)

N₂O emission (kg N₂O-N ha⁻¹)

Deposition of ammonia and total N 2004

NH₃ deposition (kg NH₃-N ha⁻¹)

Total N deposition (kg N ha⁻¹)

Origin of N deposition in the NFW in 2004

Sources	N deposition		
	(kg N ha ⁻¹ jr ⁻¹)	(%)	
NO _x + NH ₃ import (background)	17.5		69
NH ₃ Housing NFW	2,7	11	
NH ₃ Application NFW	4,2	20	
NH ₃ Total NFW	7,9		31
Total	24.4		100

Exceedance critical N loads

39%

N concentrations in groundwater

NH₃ measurements

- Passive samplers (Monthly)
 - 10 x Sand area & above ground appl. (D)
 - 10 x Sand area with injection (R)
 - 10 x Clay area & above ground applicatio
 - 30 × NFW total region (3MG)
 - Nitro Europe Landscape scale area (R)

- In time: continuous 1/2 hour at 2 locations
- In space: 1 day campaigns mobile measurements

Measurements; Monthly average NH₃ concentration

Comparison with observations

Average NH₃ deposition (kg NH₃-N ha⁻¹)

Area	Observed 2006	Observed 2007	Modelled 2004
Referenc			
е	24.9	25.0	25.4
Discharg			
е	27.1	26.6	26.6
		0.5.0	
All	26.0	25.8	26.0

Evaluated measures

0	Reference (2004/2007)
1	Emission reduction from poultry and pig housing system by using air washers (incl IPPC en AmvB)
2	Low protein feeding
3	Reducing fertilizer/Manure amount
4	Emission reduction from dairy housing systems

Effects of measures on NH₃

NH₃ emission in kton NH₃-N

Effects of measures on N₂O and N_{le}

Effects on the exceedance of critical N loads

	Deposition N Mol N /ha	Exceedance %
Present situation	1687	39.1
Low housing emission pigs/poultry	1677	39.1
Low protein feeding	1618	38.9
Low manure/fertilizer application	1567	38.1
Low housing emission cattle	1542	37.2
NH ₃ emission NFW = 0	1340	15.4

Effects on NH₃ and N₂O emissions and NO₃ leaching

Aspect	Present (=2004)	All measures
NH ₃ emission (kton N)	2.1	0.8
N ₂ O emission (kton N)	0.46	0.27
Exceedance NO ₃ limit (%)	5.7	0.27

Conclusions

- Present situation:
 - NH₃ emissions exceed NFW target for 2010: 7%
 - Area exceeding NO₃ concentration: 6%
- Measured and estimated NH₃ deposition in same range; averages nearly equal.
- Low emission from housing systems largely reduces NH₃ emissions but slightly increase N₂O emissions and N leaching (pollution swapping)
- Low protein feeding and reduced fertilizer and manure application leads to a reduction in NH₃ and N₂O emissions and N leaching/runoff to ground and surface water

Thank you

© Wageningen UR

