

Gene expression profiles of invertase and sucrose synthase in potato leaves during drought stress in the CxE potato mapping population

Berend-Jan Dobma

Wageningen UR: Laboratory of Plant Breeding
June 2010

Gene expression profiles of invertase and sucrose synthase in potato leaves during drought stress in the CxE potato mapping population

Berend-Jan Dobma

Student number: 851018185030

Wageningen University and Research center at Wageningen

Supervisors: Dr. Gerard van der Linden

Msc. Anitha Kumari

Examiner: Prof. Dr. Richard Visser

Wageningen UR Laboratory of Plant Breeding

Adres : Droevedaalsesteeg 1, Wageningen
Postbus 16, 6700 AA Wageningen

Tel : 0317 482836

Email : secretariaat-plantbreeding.psg@wur.nl

Internet : <http://www.plantbreeding.wur.nl>

Preface

The report that you are reading at this moment is a report that concerns my MSc-thesis. With this thesis I will accomplish a big and important part of my MSc study Plant Sciences at the Wageningen University and Research center. I have chosen to come to Wageningen to study after finishing my Bachelors degree at Hogeschool Van Hall Larenstein in Leeuwarden. There I did the study Horti- and agriculture. During the time in Leeuwarden there was one aspect that attracted me. This was plant breeding. Therefore I wanted to go more into depth and I chose to go to Wageningen and study Plant Sciences with the specialization Plant Breeding and Genetic Resources.

I also have a big interest in the potato crop. The most important indication for this is that I grow my own potatoes as a hobby. So I tried to find a thesis which included doing research on potatoes. A research group that had potato as a crop of interest was the group that focused on abiotic stress. After having talked to mister Gerard van der Linden I decided to work on the project of Anitha Kumari. She already did research to drought tolerance in the CxE potato mapping population. Gerard van der Linden got me soon enthusiastic about the fact that Anitha found an interesting thing that directed in the way to invertases.

This resulted in the subject of my thesis. Gene expression profiles of invertases and sucrose synthases in the CxE potato mapping population during drought stress. In first instance I did not feel comfortable about it, because the focus of the work was a lot on molecular techniques.

Something I was not familiar with until then. But I like practical work and I wanted to learn something about working in the lab, because my opinion is that molecular techniques are getting more important within breeding companies, I got to feel comfortable about working in a lab. However this was not possible by the support of several people, which I would like to thank. These are Hanneke van der Schoot, Johan Bucher, Linda Kodde and Doret Wouters for their technical support in the lab. I also would like to thank Gerard van der Linden and Anitha Kumari for their supervision and giving me the possibility to do my thesis within their research. I also would like to thank the rest of lab the personnel for the good atmosphere in the lab and the people in the student room, also known as the breeders' hole. Last but not least I would like to thank my girlfriend Noortje for her support and patience.

Berend-Jan Dobma
Wageningen, June, 2010

Summary

Potato is the fourth largest staple food crop and is therefore for a big part of the world population an important resource of energy and fibers. Potato produces also the most calories per liter water, compared to crops like wheat, maize and rice. However potato is also a drought sensitive crop. Abiotic stresses like drought cause more reduction in yield than pests and diseases.

Drought can cause stress to plants. This is expressed in several responses like inhibition of leaf expansion, loss of turgor, root extension, and stomatal closure. Stomatal closure causes a decrease in photosynthetic activity in the leaves. This results in a reduction of carbon assimilation and less sugars are produced. A plant that faces drought stress has to adjust its carbon partitioning. Two important enzymes that play role in carbon partitioning are invertase and sucrose synthase. There are apoplastic, cytosolic and vacuolar invertases. Sucrose synthase is located in the cytosol. In this report the expression of the apoplastic invertase and sucrose synthase are studied in the CxE potato mapping population by means of a qRT-PCR experiment. In potato there are four apoplastic invertases, these are *InvCD141*, *InvCD111*, *InvGE* and *InvGF*. These have high similarities with *lin6*, *lin8*, *lin5* and *lin7* in tomato. There are 2 sucrose synthase genes, *sus3* and *sus4*, which are published. Searches in public nucleotide and protein databases resulted also in a third potato sucrose synthase gene, called *Susy2*. Unfortunately nothing was published about this gene. Further literature research indicated that *Susy2* is probably expressed in a later maturation stage of tissues.

Unfortunately the primers of *InvGE* and *InvGF* were not able to give amplification on cDNA template and *Susy2* gave several bands of different lengths. Because of time considerations it was decided to continue with *InvCD141*, *InvCD111*, *sus3* and *sus4*.

The qRT-PCR experiment was executed on two group of the same genotypes. One group was well watered and the other group with the same genotypes was induced with drought stress. The qRT-PCR experiment revealed that *InvCD141* and *InvCD111* were downregulated under drought stress and expression of sucrose synthase was upregulated under drought stress, but this was not significant. The decrease in apoplastic invertase expression in response to drought in our experiments may indicate that in the examined leaves the demand for energy-rich sugars decreases. This is in agreement with observations of stunted/decreased growth in conditions with low water supply. Sucrose synthase expression is negatively correlated under drought with invertase expression under drought. So it might be that sucrose synthase is taking over the function of apoplastic invertase. A down regulation of invertase and a trend of up regulation of sucrose synthase is seen. This means that hexoses are not entering the cell anymore through the apoplast, but that the sucrose in the cytosol is split in hexoses by the sucrose synthase. This might be done because of the initiation of starch synthesis.

In this experiment only the gene expression is measured. To have a better view on the effect of this expression it is recommended to measure the activity of the enzymes and the levels of hexoses and sucrose.

Mapping the data of gene expression experiments resulted in several eQTLs. Sometimes the positions were not the same as described in other gene studies. This means that other factors are regulating the expression of some of the genes studied in this report. These factors are interesting to study in further research.

The samples used in the qRT-PCR experiment of this report were taken from plants that were grown in a greenhouse pot experiment. The next step would be to do an experiment in the field.

Table of content

1. Introduction	6	Gerard van der Linden 12-1-11 11:18
1.1 Potato.....	6	Verwijderd: 7
1.2 Drought stress in potato.....	6	Gerard van der Linden 12-1-11 11:18
1.3 Drought response mechanisms.....	6	Verwijderd: 7
1.4 Invertase and sucrose synthase.....	7	Gerard van der Linden 12-1-11 11:18
1.5 Evaluation of drought tolerance in potato	9	Verwijderd: 8
1.6 Aims of this research.....	9	Gerard van der Linden 12-1-11 11:18
2. Material and methods	10	Verwijderd: 9
2.1 Plant material.....	10	Gerard van der Linden 12-1-11 11:18
2.2 Search for sequences and primer design	10	Verwijderd: 10
2.3 Primer testing	11	Gerard van der Linden 12-1-11 11:18
2.4 RNA isolation cDNA synthesis.....	11	Verwijderd: 10
2.5 qRT-PCR	12	Gerard van der Linden 12-1-11 11:18
2.6 Data analysis	13	Verwijderd: 11
3. Results	14	Gerard van der Linden 12-1-11 11:18
3.1 Invertase and sucrose synthase sequences in NCBI and EST databases and alignments	14	Verwijderd: 11
3.1.1 Invertases.....	14	Gerard van der Linden 12-1-11 11:18
3.1.2 Sucrose synthase	14	Verwijderd: 12
3.2 Primer test	16	Gerard van der Linden 12-1-11 11:18
3.3 Gene expression	19	Verwijderd: 12
3.4 Mapping of eQTLs.....	22	Gerard van der Linden 12-1-11 11:18
4. Discussion	23	Verwijderd: 13
4.1 Invertases.....	23	Gerard van der Linden 12-1-11 11:18
4.2 Sucrose synthase	23	Verwijderd: 14
4.3 Conclusions from the qRT-PCR experiment	25	Gerard van der Linden 12-1-11 11:18
4.4 Expression profiles of the screened genes.....	25	Verwijderd: 15
4.5 Mapping the results of the expression profiles.....	26	Gerard van der Linden 12-1-11 11:18
4.6 Change names of potato apoplastic invertase genes	26	Verwijderd: 15
4.7 Recommendations for further research	26	Gerard van der Linden 12-1-11 11:18
References	28	Verwijderd: 15

Appendices

Gene expression profiles of invertase and sucrose synthase in potato leaves during drought stress in the CxE potato mapping population MSc-thesis Berend-Jan Dobma June 2010

Introduction

1.1 Potato

For many people the potato tuber (*Solanum tuberosum* L.) is a big resource of energy. The tubers are produced by an annual herbaceous plant that can grow 100 cm tall and belongs to the Solanaceae. Potato is highly heterozygous and cross pollinating. It is tetraploid and has 48 chromosomes. The tubers are rich in starch and potato has the fourth position on the list of the world's largest staple food crops.

Originally the potato comes from the Andes region and nowadays it has spread and is grown on every continent. The Andes region is the centre of origin and wild potato species grow there, which can function as potential genetic resource.

Potatoes are mainly grown in Northern Europe and Northern America, former Soviet Union countries, China and India (www.potato2008.org, 2008). From the beginning of the 1990's developing countries have been increasing their potato production. Nowadays there are more potatoes produced in developing countries than in the developed countries. China and India are producing one third of the total. The total potato production in 2008 was 314,140,107 tonnes (FAOSTAT, 2009).

Because of the importance of this crop, the FAO declared 2008 as the year of the potato. On a potato fact sheet it is stated that potato produces the most calories per liter water used for growing compared to wheat, rice and maize (Lutaladio *et. al.*, 2009). All this above shows that potatoes have a good future, when it comes to becoming a more important staple food crop and the associated increase of growing area.

1.2 Drought stress in potato

Just like in every other crop, there are constraints during the cultivation of potatoes. These constraints exists of biotic stresses, such as *Phytophthora infestans*, bacteria, viruses, insects and nematodes, on one hand; on the other hand abiotic stresses such as drought and temperature are reducing tuber yield (Veerman, 2003).

In other words; despite the fact that potato has a good efficiency in the use of water and production of calories, it is a drought sensitive crop compared to other crops (Harris, 1978 in Van Loon, 1981).

According to Boyer, (1982) abiotic stress causes more crop loss than biotic stress, (see table 1.1.1)

Drought and salinity are the most severe abiotic stress factors accounting for yield loss worldwide.

Crop	Yield		Loss resulting from	
	highest	mean	Parasites and weeds	other
Maize	19.3	4.6	2.0	12.7
Wheat	14.5	1.9	0.7	11.9
Soy	7.4	1.6	0.7	5.1
Potato	94.1	28.3	14.9	50.9
Sugarbeet	121.0	42.6	17.1	61.3
average % of highest yield		24.8	10.9	64.3

Table 1.1.1: Crop loss over a number of years in the USA (based on Boyer et al,1982)

1.3 Drought response mechanisms

Drought can cause stress to plants. This is expressed in several responses like inhibition of leaf expansion, loss of turgor, root extension, and stomatal closure (Taiz and Zeiger, 2002).

Photosynthesis itself is not directly affected by a lower water supply but indirectly by the closure of the stomata (Boyer 1970).

For example roots are extended into deeper soil layers where water is still available. If the water supply is lowered, cells may stay turgid and leaves start to wilt. During the closure of the stomata less water is transpired, but also less carbon can be taken up. In the latter case the efficiency of photosynthesis is decreased, so indirectly by the closing of the stomata as a reaction on the lower water supply. A decrease in the efficiency of photosynthesis or the carbon assimilation itself has also consequences for the energy supply and metabolism in the plant. Enzymes like invertase and sucrose synthase play an important role in energy metabolism.

Gerard van der Linden 12-1-11 11:15

Met opmaak: Niet Markerden

1.4 Invertase and sucrose synthase

In most plants sucrose is the form in which assimilated carbon is present and transported. Sucrose is a disaccharide of glucose and fructose. Sucrose can be cleaved into these two monosaccharides by two types of enzymes. These are invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13), which initiate sucrose utilization.

Gerard van der Linden 12-1-11 11:15

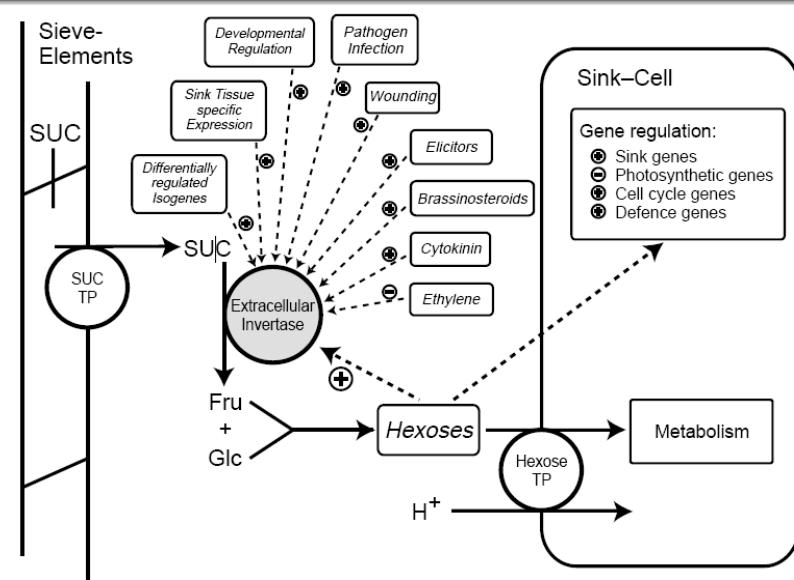
Met opmaak: Niet Markerden

Invertase is a hydrolase and cleaves sucrose into glucose and fructose in an irreversible way. This is done within the source to sink relationship and the unloading of the phloem, (Sturm and Tang, 1999). So when sucrose is transported from the source tissue through the phloem to the sink tissue, the sucrose needs to be unloaded from the phloem. Once sucrose is unloaded into the sink tissue it can be hydrolyzed by invertase. By means of hexose transporters, glucose and fructose can enter the sink cell, for metabolic use. Besides that the hexoses can function as regulators of gene expression (Roitsch and González, 2004). See also picture 1.2.1.

Gerard van der Linden 12-1-11 11:15

Met opmaak: Niet Markerden

There are 3 kinds of invertases, these are vacuolar, neutral and cell wall bound invertases. Vacuolar and cell wall bound invertases have high similarities with respect to enzymatic and biochemical properties. They have both an acidic pH-optimum (Roitsch and González, 2004). Sucrose synthase catalyzes the reversible conversion of sucrose and uracil-diphosphate (UDP) into UDP-glucose and fructose. It is the predominant sucrose cleavage enzyme in cereal endosperm and potato tubers and provides substrates for starch synthesis in these and other storage organs. Sucrose synthase is also involved in meeting the increased glycolytic demand during anaerobic and cold stress as well as in supplying UDP-glucose for cell wall biosynthesis.


Gerard van der Linden 12-1-11 11:15

Met opmaak: Niet Markerden

In addition, sucrose synthase appears to play a key role in supplying energy for loading and unloading in phloem by providing substrate for respiration (Fu and Park, 1995). Loading of sucrose into the phloem is done against the concentration gradient. This costs energy, but H^+ -ATPase provides a proton gradient. The form of energy that is needed for H^+ -ATPase is ATP. Sucrose synthase is therefore involved in the first step in metabolizing sucrose for respiration by supplying hexoses (Martin et. al., 1993).

Sucrose synthase is a cytosolic enzyme (Baroja-Fernández et. al., 2009).

Invertases and sucrose synthase enzymes are able to influence the expression of other genes and plant development in an indirect way, by means of changing the sugar concentrations as a result of their activity. E.g. when there is an abundance of sugars, genes that are active in the storage, utilization, sink activity and growth are upregulated. With a shortage of sugars, genes that are active in e.g. photosynthesis, source activity, export and remobilization are upregulated, where genes that are responsible for storage, sink activity and growth are downregulated (Koch, 1996). Also the glycolytic enzymes are affected by all kinds of factors. For example picture 1.2.1 shows the factors that influence the expression of apoplastic invertases. The picture is based on studies that focused on the regulation of cell wall invertase and its function in carbon partitioning, defence reactions and signalling of sugars in tomato, *Chenopodium rubrum*, and tobacco, (Roitsch, 2000).

Picture 1.2.1: Apoplastic phloem unloading and regulation of extracellular invertase. Sucrose is unloaded from the sieve elements of the phloem into the apoplasm by a sucrose transporter, the disaccharide is cleaved by an extracellular invertase and the hexose monomers are taken up in the sink cell by monosaccharide transporters. Extracellular invertase expression is regulated by a range of signals and mechanisms including glucose, phytohormones and stress-related stimuli. Sugars are substrate for heterotrophic growth and function as signals for gene regulation. Solid lines indicate sugar and proton fluxes, dashed lines indicate signal transduction pathways. SUC, sucrose; Fru, fructose; Glc, glucose; H^+ , protons, TP transporter. (Picture taken from: Roitsch et. al., 2000)

1.5 Evaluation of drought tolerance in potato

Drought tolerance in potato was evaluated in a greenhouse experiment by growing potatoes in pots by Anitha Kumari. Details are described in section 2.1.

In this experiment the potato CxE mapping population was grown and at stolon initiation water supply was stopped. In order to measure Water Use Efficiency, $\Delta^{13}\text{C}$ was measured. These data were mapped, which made it possible to identify QTLs for this trait. On chromosome 10 a QTL for $\Delta^{13}\text{C}$ was mapped. On the location of this QTL a CAPS marker for an apoplastic invertase was present.

From literature it is known that the apoplastic invertase gene *InvCD141* is located on chromosome 10 in potato (Chen et al., 2001).

1.6 Aims of this research

From what is known in literature invertase and sucrose synthase are important enzymes with regard to sucrose metabolism, source to sink relationships, energy supply to developing tissues and the regulation of sugar signaling. The results from the greenhouse experiment, indicate the relevance of studying invertase and sucrose synthase expression in drought stressed potato. Therefore the aims of the study were:

- Identify invertase and sucrose synthase genes in potato
- Study expression profiles of invertase and sucrose synthase under drought

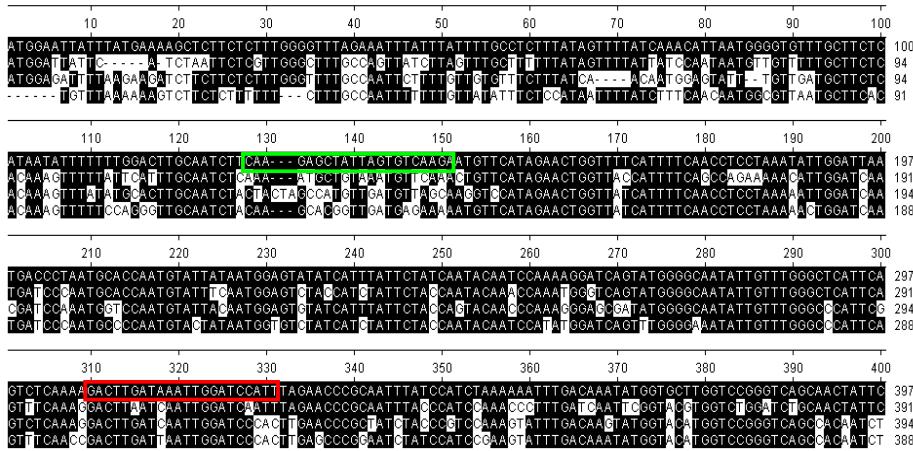
2. Material and methods

2.1 Plant material

Plants of the CxE potato population were grown in pots in a greenhouse. An overview of the used CxE genotypes is showed in Appendix A. During the experiment 94 progeny of CxE was grown together with the C and E parents, SH and RH parents and 10 tetraploid cultivars.

The CxE potato population is the result of a cross between parent C and parent E. Parent C is a crossing of *Solanum phureja* and *Solanum tuberosum*. Parent E is a crossing between parent C and a backcross clone of *Solanum vernei* and *Solanum tuberosum* (Jacobs *et. al.*, 1995).

The experiment was done in two randomized blocks that were well watered throughout the growing period and six randomized blocks with drought stressed plants. In every block the 94 progeny were grown.


Stress was induced at the time of stolon initiation, by means of stopping the water supply. Leaf samples were taken from one replication of control and one replication of drought-stressed plants after four days of drought stress, when the first wilting symptoms were seen. The youngest fully expanded leaves were picked. By doing that it was assumed that these were source leaves (personal communication with A. Kumari, March 2010).

Leaf samples were picked, packed in tinfoil and frozen in liquid nitrogen. Until further use the samples were stored at -80 °C.

2.2 Search for sequences and primer design

The NCBI (nucleotide) database (<http://www.ncbi.nlm.nih.gov/>) and a potato EST database (<http://compbio.dfci.harvard.edu/tgi/>) were searched for sequences of invertase and sucrose synthase were performed by mean of keywords and BLAST searches. In the software program MegAlign of DNASTar, Lasergene, alignments of a shortlist with sequences were made with the ClustalW function.

PCR primers were designed manually, using the alignments in regions where discrimination between the different genes was possible, with the goal to have a primer with a high specificity. Some criteria were set for primer design. These were: a primer length of about 20 nucleotides, a melting temperature around 60 °C ($4*(G+C) + 2*(A+T) = T_m$, was the formula used), a GC content between the 40% and 60% ($((G+C)/(total\ nt))*100\% = GC\%$, was the formula used to calculate the GC content. Finally the PCR amplification product length had to be 150 till 250 nucleotides long. An example is depicted in picture 2.2.6.

Picture 2.2.6: Example of the alignment output and primer selection. The green square is the forward primer and the red square is the reverse primer. Also note that the 3'-ends are discriminating and therefore enhancing specificity.

2.3 Primer testing

Primers were tested to see whether they amplify the right product or not. This was done with a regular Polymerase Chain Reaction (PCR) on potato genomic DNA and at a later stage on cDNA samples.

2.4 RNA isolation cDNA synthesis

The total RNA isolation was done with a KingFisher Flex system and the MagMAX™ -96 Total RNA Isolation Kit from Ambion cat#AM1830. To make it possible to isolate RNA from plant material a Plant Isolation Aid cat#AM9690 from Ambion was also used.

The protocol was executed according to the manufacturers' protocol except for filling plate A. Table 2.1.2 shows which reagent was pipetted in each plate.

For the homogenization the samples with the lysis/binding solution were spun down at 10000 G.

Plate	Volume per well in μ l	Reagent(s)
A	100	Tissue homogenate in Lysis/binding Solution
	70	Isopropanol
	20	Bead mix
B	150	Wash solution 1
C	150	Wash solution 2
D	50	Diluted TURBO DNase
E	150	Wash solution 2
F	150	Wash solution 2
G	50	Elution buffer

Table 2.1.2: Filling of the different plates with the associated reagents

Gene expression profiles of invertase and sucrose synthase in potato leaves during drought stress in the CxE potato mapping population MSc-thesis Berend-Jan Dobma June 2010

For convenience plates B,C,E,F and G were prepared first and covered with a seal and put aside until further use.

The RNA concentration and purity was measured with the Nanodrop ND1000 of Thermo Scientific. In appendix C the concentrations of each sample are given.

After RNA isolation it was needed to treat the RNA samples with an extra DNase treatment. This was done with the DNase I, Amplification Grade of Invitrogen, category number 18068-015. cDNA was synthesized with iScript cDNA synthesis Kit made by Bio-Rad Laboratories inc, with the category number 170-8891.

Both treatments were executed according to the manufacturer's protocol.

2.5 qRT-PCR

To see how the genes of interest were expressed, qRT-PCR was used. EF 1 α was used as a control RNA to compensate for the differences in the input of cDNA samples. Nicot et al., 2005 described that Elongation Factor 1 α has a constant expression level under biotic and a-biotic stress conditions. With use of EF 1 α as a reference the expression of the target gene could be normalized.

Table 2.1.3 shows the plate set-up used in the qRT-PCR experiment. Each cDNA sample was tested with primers of the target gene and primers of EF 1 α . This was done in duplicate.

Each plate contained 12 samples of the control plants and 12 from the drought-stressed plants. During the greenhouse experiment 112 genotypes were in the control block and 112 in the drought stressed block. So 224 genotypes in total needed 9.33 plates per gene. 4 genes were screened so in total 37 plates were used in this experiment.

Gene	Gene	EF 1 α	EF 1 α	Gene	Gene	EF 1 α	EF 1 α	Gene	Gene	EF 1 α	EF 1 α
1 c	1 c	1 c	1 c	5 c	5 c	5 c	5 c	9 c	9 c	9 c	9 c
2 c	2 c	2 c	2 c	6 c	6 c	6 c	6 c	10 c	10 c	10 c	10 c
3 c	3 c	3 c	3 c	7 c	7 c	7 c	7 c	10 c	11 c	11 c	11 c
4 c	4 c	4 c	4 c	8 c	8 c	8 c	8 c	11 c	12 c	12 c	12 c
1 d	1 d	1 d	1 d	5 d	5 d	5 d	5 d	9 d	9 d	9 d	9 d
2 d	2 d	2 d	2 d	6 d	6 d	6 d	6 d	10 d	10 d	10 d	10 d
3 d	3 d	3 d	3 d	7 d	7 d	7 d	7 d	10 d	11 d	11 d	11 d
4 d	4 d	4 d	4 d	8 d	8 d	8 d	8 d	11 d	12 d	12 d	12 d

Table 2.1.3: Example of a plate set up during the qRT-PCR experiment. Numbers represent the way the duplo was positioned in the plate. C means control (well watered) and d means drought (no water). So the same genotypes from the control block as from the drought induced block were taken up in the same plate. The duplo's are technical repeats.

The qRT-PCR was run on a iCycler MyiQ™ Single Color Real Time PCR Detection system from Bio-Rad Laboratories. SYBR-green supermix of Bio-Rad Laboratories was used according to manufacturers protocol. The profile used for the qRT-PCR is explained in table 2.1.4.

Cycle nr.	Step nr.	Temperature in °C	Time
1	1	95	30 seconds
2	1	95	3 minutes
3	1	95	15 seconds
40x	2	60	1 minute
4	1	95	1 minute
5	1	65	1 minute
6	1	65	10 seconds
61x			

Table 2.1.4: Profile used during qRT-PCR

After running data files were stored on the personal computer for further processing and analysis.

2.6 Data analysis

Bio-Rad MyIQ software

Data of the qRT-PCR has been analyzed with the Bio-Rad iQ5 2.0 Standard Edition Optical System Software V2.0.148.060623.

In the Excel file a separation was made between the C and E parents, CxE progeny and the tetraploid cultivars.

Statistical analysis

Statistical analysis on the expression data of the CxE progeny was done with the GenStat 11th edition software.

3. Results

3.1 Invertase and sucrose synthase sequences in NCBI and EST databases and alignments

3.1.1 Invertases

Public nucleotide and protein databases were searched for invertases. The search was focused on sequences from Solanaceous species.

This resulted in mainly apoplastic invertases, but also vacuolar invertases. Sequences of the different genes were copied from the database and used for making alignments. A result of that is shown in table 3.1.1. The record of the sequence in the nucleotide database contained most of the times a link to the publication of the belonging gene.

Literature research based on these publications revealed that tomato apoplastic invertase genes *Lin5* and *Lin7* (tomato chromosome 9) are tandemly arranged; this is also true for tomato invertases *Lin6* and *Lin8* (tomato chromosome 10). Potato *InvGE* and *InvGF* are orthologues of *Lin5* and *Lin7* respectively. *InvCD111* and *InvCD141* are orthologues of *Lin8* and *Lin6* respectively, (Fridman and Zamir, 2003). In table 3.1.1 a similarity index is given for the homologues of potato and tomato. Similarities are at nucleotide level.

Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markerken

gene	accession nr potato	putative function	Orthologue with	accession nr tomato	Similarity index
invGE	AJ133765	apoplastic invertase	lin5 tomato	AJ272306	90.80%
invGF	AJ133765	apoplastic invertase	lin7 tomato	AF506006	90.80%
InvCD141	Z22645	apoplastic invertase	lin6 tomato	AF506004	93.70%
InvCD111	Z21486	apoplastic invertase	lin8 tomato	AF506004	90.80%

Table 3.1.1: Similarity indices for the orthologues of potato and tomato apoplastic invertases

3.1.2 Sucrose synthase

Fu and Park published in 1995 that they found two differentially regulated classes of sucrose synthase genes, *Sus3* and *Sus4*, which were identified in potato. These genes were also found in nucleotide and protein databases. But on top of that a third potato sucrose synthase was found.

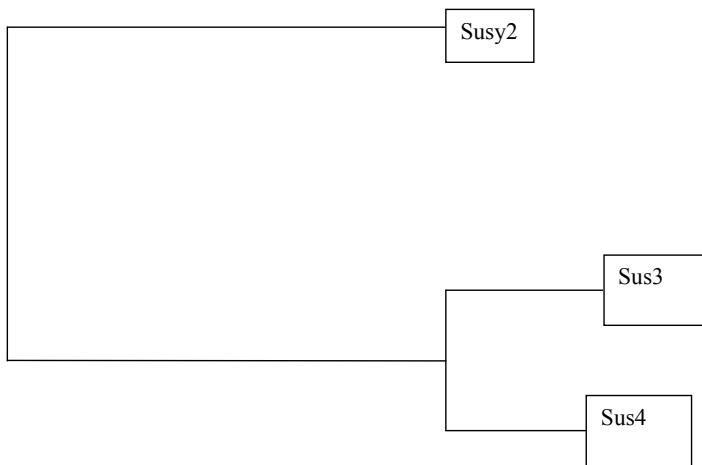
GenBank accession numbers: *Sus3* U24088

Sus4 U24087

Susy2 AY205302

Researchers that submitted the sequence did not publish about this gene. In the discussion, more is explained and reasoned about the putative function of *Susy2*.

Alignments resulted in similarity indices between the three sucrose synthase genes in potato.


Those results show that there is a high similarity between *Sus3* and *Sus4*, but a lower similarity of these two genes when they are aligned with *Susy2* (see table 3.1.2 and picture 3.2.1).

Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markerken

gene	accession nr potato	putative function	Similarity index	Similarity index
Susy2	AY205302	sucrose synthase		69,1%
Sus3	U24088	sucrose synthase	91,8%	
Sus4	U24087	sucrose synthase		

Table 3.1.2: Similarity indices between Sus3, Sus4 and Susy 2.



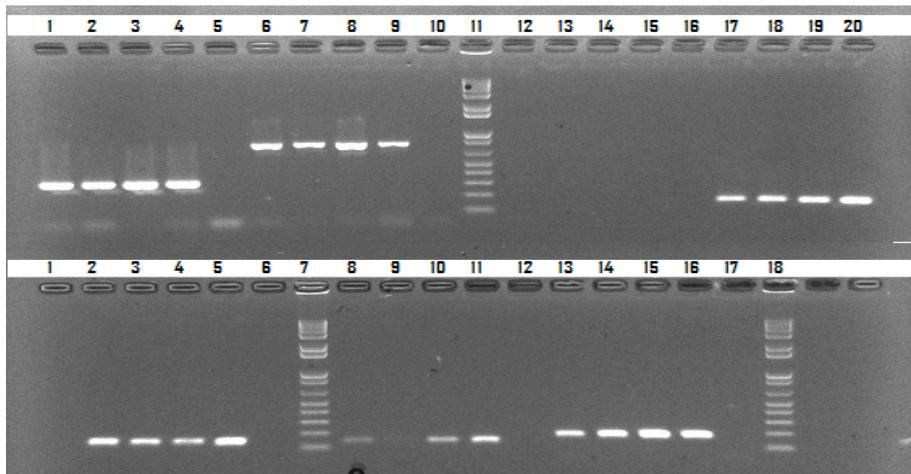
Picture 3.2.1.: Phylogenetic tree of the three sucrose synthase genes. *Sus3* and *Sus4* have a high similarity when compared to each other. *Susy2* is a potato sucrose synthase gene, but has less similarity compared to *Sus3* and *Sus4*.

3.2 Primer test

After making alignments, primers were designed (see materials and methods). An overview is given in appendix D.

The primers were tested on genomic DNA and later on cDNA. Pictures 3.2.2 and 3.2.3 show the amplification products on genomic DNA for invertase and sucrose synthase primers respectively. The primer pairs *InvGE*-F2/R2, *InvGF*-F1/R1, *InvGF*-F2/R2, *InvCD141*-F2/R2, *InvCD111*-F2/R2, *SuSy2*-F1/R1, *Sus3*-F1/R1 and *Sus4*-F1/R1 gave amplification on genomic DNA. Therefore it was decided to test these primers on cDNA in a regular PCR reaction.

Picture 3.2.2: Gel picture of invertase primers on genomic DNA. Primers are tested on parent C (lanes 1 till 8 in the upper row) and parent E (in the upper row, lanes 10, 11, 13, 14, 15, 16) and two randomly selected progeny, which are loaded in the lower row.


Upper row: 1: *InvGE-F1/R1*, 2: *InvGE-F2/R2*, 3: *InvCD141-F1/R1*, 4: *InvCD141-F2/R2*, 5: *InvGF-F1/R1*, 6: *InvGF-F2/R2*, 7: *InvCD111-F1/R1*, 8: *InvCD111-F2/R2*, 9: size marker, 10: *InvGE-F1/R1*, 11: *InvGE-F2/R2*, 12: *InvCD141-F1/R1*,

Lower row: 1: *InvGE-F1/R1*, 2: *InvGE-F2/R2*, 3: *InvCD141-F1/R2*, 4: *InvGE-F1/R1*, 5: *InvGE-F2/R2*, 6: *InvCD111-F1/R1*, 7: *InvCD141-F2/R2*, 8: *InvGE-F1/R1*, 9: *InvGE-F2/R2*, 10: *InvCD141-F1/R1*, 11: *InvGE-F2/R2*, 12: *InvCD141-F2/R2*

7: *InvCD111-F2/R2*, 8: size marker, 9: *InvGE-F1/R1*, 10: *InvGE-F2/R2*, 11: *InvCD141-F1/R1*, 12: *InvCD141-F2/R2*, 13: *InvGF-F1/R1*, 14: *InvGF-F2/R2*, 15: *InvCD111-F1/R1*, 16: *InvCD111-F2/R2*.

Gene expression profiles of invertase and sucrose synthase in potato leaves during drought stress in the CxE potato mapping population MSc-thesis Berend-Jan Dobma June 2010

16

Picture 3.2.3: Gel picture of sucrose synthase primers on genomic DNA. Primers that were tested on parent C can be seen in lanes: 1, 6, 12, 17 of the upper row, and lanes 2, 8 and 13 of the lower row. Results of the primer test on parent E can be seen in lanes: 2, 7, 13, 18 of the upper row, and lanes 3, 9 and 14 of the lower row. In the upper row lanes 3, 4, 8, 9, 14, 15, 19, 20 and lower row lanes 4, 5, 10, 11, 15, 16, two randomly picked samples of the CxE progeny is used.

Upper row: 1, 2, 3, 4: *SuSy2-F1/R1*. 6, 7, 8, 9: *SuSy2-F2/R2*. 11: ladder. 12, 13, 14, 15: *Su3-F1/R1*. 17, 18, 19, 20: *Su3-F2/R2*.

Lanes 5, 10 and 16 have no template

Lower row: 1 (No template): *Su3-F2/R2*. 2, 3, 4, 5: *Su4-F1/R1*. 7: ladder. 8, 9, 10, 11: *Su4-F2/R2*.

13, 14, 15, 16: *InvGE-F2/R2*. 18: ladder. Lanes 6, 12, 17 have no template.

Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markeren

Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markeren

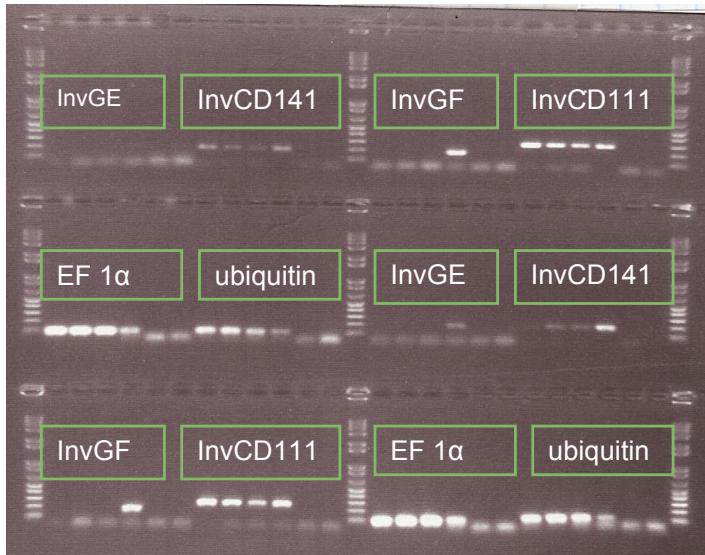
Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markeren

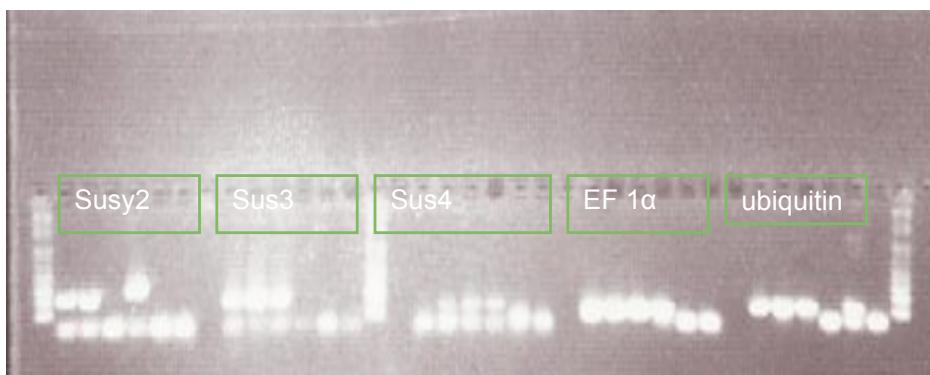
Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markeren

Gerard van der Linden 12-1-11 11:16


Met opmaak: Niet Markeren

Gerard van der Linden 12-1-11 11:16


Met opmaak: Niet Markeren

Gerard van der Linden 12-1-11 11:16

Met opmaak: Niet Markeren

Picture 3.2.4: Check on cDNA for invertase primers. The green squares indicate the used primer set loaded per 6 lanes. Each 4th lane of a primer set has a template of parent C. Lanes 5 and 6 of each primer set are negative controls. The first 3 lanes of each primer set have template of randomly picked cDNA samples of the CxE progeny.
 InvCD111-F2/R2 and InvCD141-F2/R2 gave good results. *EF 1α* was used as reference gene during qRT-PCR.

Picture 3.2.5: Check on cDNA of sucrose synthase primers. The green boxes indicate the tested primer set. Per box the first 3 lanes were used to test the primers on randomly picked cDNA samples of the CxE progeny. The fourth lane under each box has parent C as template. The last 2 lanes per box are negative controls.
Susy2-F1/R1 gave two different products, considering the product lengths. *Sus3*-F1/R1 and *Sus4*-F1/R1 gave good results, so those were accepted to use for qRT-PCR.

On cDNA of parent C and randomly picked CxE progeny only *InvCD141*-F2/R2, *InvCD111*-F2/R2, *Sus3*-F1/R1 and *Sus4*-F1/R1 gave a positive result (see pictures 3.2.4 for invertase and 3.2.5 for sucrose synthase). Because of time limits it was decided not to improve the primers of *InvGE*, *InvGF* and *Susy2*. *InvGE*-F2/R2 and *InvGF*-F2/R2 did not result in an amplification on the cDNA samples used. *Susy2*-F1/R1 gave amplifications with different product lengths. So hence with this it was decided to execute qRT-PCR only with these primer sets.

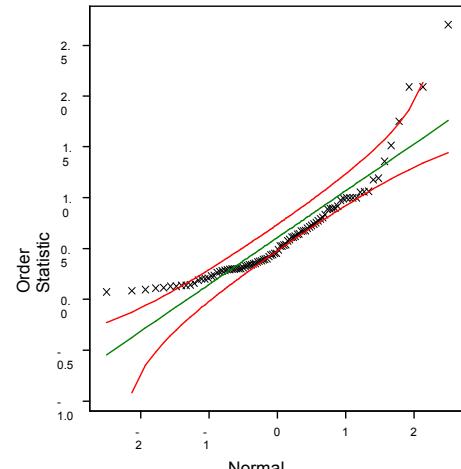
3.3 Gene expression

Performing qRT-PCR resulted in a dataset that contained the expression levels of each genotype within every treatment. The expression levels are calculated by the software that uses the $\Delta\Delta Ct$ method. With this method a normalized expression of each sample is calculated.

As described in materials and methods the samples in the qRT-PCR plate had a technical duplicate. Good Ct values were values that differed less than 0.5 between the duplicates. This criterion was met throughout in the experiments with primers for *InvCD141*, *InvCD111* and *Sus3*. *Sus4* had more variation between the duplicates, sometimes 0.8 till 1.6. After running all the samples 56 samples were repeated, because these samples did not have amplification or a too big range between the duplicates. After repeating the 56 samples, still 27 samples did not result in data. Overall it can be said that in the control group 1 or 2 samples were missing for each primer pair. Each primer pair of all the four genes tested, were not able to amplify around 5 samples in the drought stressed group.

qRT-PCR measures fluorescence of a dye that is fixed between a double-stranded product. The qRT-PCR machine runs cycles, just as in a regular PCR machine. However in this case the fluorescence is measured. After every cycle the amplification of a region of interest increases quadratic. If the intensity of the fluorescence exceeds a threshold the number of cycles is counted.

The cycle where it passes the threshold is numbered as the Ct-value. If there is a lot of template the amount of amplicon increases faster than when there is less input of template. So when a gene is less expressed, less mRNA synthesized to cDNA is present, more cycles are needed to exceed the threshold. A reference gene is used to correct for the input of cDNA and to calculate the expression of the target gene. In this experiment *EF 1 α* was the used reference gene, which is normally a housekeeping gene in the plant.


Table 3.1.3 shows an impression of the Ct-values of the different primer pairs that were measured during the qRT-PCR experiment.

Gerard van der Linden 12-1-11 11:16
Met opmaak: Niet Markerken

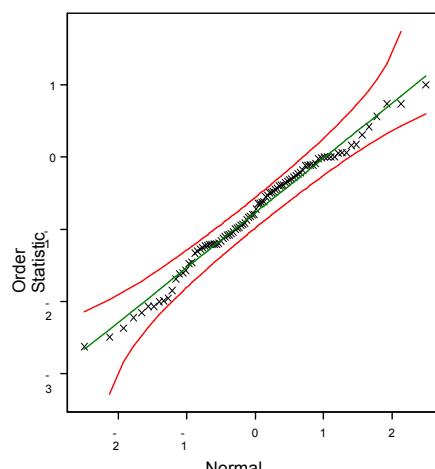

Gene (condition)	Average Ct-value of 8 mean Ct-values	Gene (condition)	Average Ct-value of 8 mean Ct-values
<i>InvCD141</i> (control)	28	<i>EF 1α</i>	18
<i>InvCD141</i> (drought)	32	<i>EF 1α</i>	21
<i>InvCD111</i> (control)	24	<i>EF 1α</i>	19
<i>InvCD111</i> (drought)	26	<i>EF 1α</i>	19
<i>Sus3</i> (control)	25	<i>EF 1α</i>	18
<i>Sus3</i> (drought)	26	<i>EF 1α</i>	19
<i>Sus4</i> (control)	29	<i>EF 1α</i>	18
<i>Sus4</i> (drought)	31	<i>EF 1α</i>	19

Table 3.1.3: General overview that resembles the Ct-values during the qRT-PCR. The higher the Ct-values, the lower the expression. Ct-values increase under drought *InvCD141* and *InvCD111*. Ct-values of the sucrose synthase do not change to much. Most important for a reference gene is that it has a stable level of expression under the different conditions. In this experiment the levels of *EF 1 α* stayed fairly equal.

During the execution of statistical analysis it turned out that the raw expression values, directly received from the qRT-PCR software were not normally distributed. Therefore the raw data were transformed with a natural logarithm. This had a positive effect on the data being normally distributed. A graphical example is given in graphs 3.3.1 and 3.3.2.

Graph 3.3.1: Normal probability plot of expression values of non transformed data.

Graph 3.3.2: Normal probability plot of expression values of transformed data with a natural logarithm.

With the transformed data a two sample t-test and a correlation analysis were done. The results of these two forms of analyses are shown in tables 3.1.9, 3.1.10.

Gene	Treatment	Mean (in expression)	Regulation (control vs drought)	Significance
<i>InvCD141</i>	Control	0.6067	Down	P=< 0.001
	Drought	0.3128		
<i>InvCD111</i>	Control	0.7572	Down	P=< 0.001
	Drought	0.2956		
<i>Sus3</i>	Control	0.7906	Up	P= 0.636
	Drought	1.1030		
<i>Sus4</i>	Control	0.6429	Up	P= 0.266
	Drought	0.9240		

Table 3.1.9: Means of expression values and significances based on a two sample t-test with an alpha-level of 0.05.

It can be concluded that *InvCD141* and *InvCD111* are both less expressed under drought conditions than under control conditions, see also table 3.1.9. Expression of *Sus3* and *Sus4* shows a trend of up-regulation during drought. This is not significant though.

Correlations							
InvCD141							
control							
InvCD141							
drought	0.4131***						
InvCD111							
control	0.0614	-0.0245					
InvCD111							
drought	0.0885	0.2800*	0.3503**				
<i>Sus3</i>							
control	0.1021	-0.0661	0.1943	0.0255			
<i>Sus3</i>							
drought	-0.0286	-0.3448**	0.0880	0.0616	0.1936		
<i>Sus4</i>							
control	0.0468	-0.0977	0.1398	0.1816	-0.0157	0.2473*	
<i>Sus4</i>							
drought	0.0894	-0.1084	0.0221	0.1030	-0.1034	0.3487**	0.7713****
InvCD141	InvCD141	InvCD111	InvCD111	Sus3	Sus3	Sus4	Sus4
Control	drought	control	drought	control	drought	control	drought

Number of observations: 82

*=P<0.05; **=P<0.01; ***=P<0.001; ****=P<0.0001

Table 3.1.10: Correlations between different genes and treatments

Table 3.1.10 shows that there are significant correlations between *InvCD141* drought and *InvCD141* control, *InvCD111* drought and *InvCD111* control, *Sus3* drought and *InvCD141* drought, *InvCD111* drought and *InvCD111* control, *Sus4* control and *Sus3* drought, *Sus4* drought and *Sus3* drought, *Sus4* drought and *Sus4* control.

All the correlations are positive except for the correlation between *Sus3* drought and *InvCD141* drought. *Sus3* drought and *InvCD141* drought are negatively correlated.

3.4 Mapping of eQTLs

With the data from the 94 CxE progeny it was possible to do a QTL analysis, which in this case is done and kindly provided by Anitha Kumari.

Table 3.1.11 shows the outcome of the QTL analysis with the expression data. From the table it can be seen that the invertases locate on linkage group 10. *Sus3* control has a QTL on linkage group 2, where *Sus4* control and drought have an eQTL on linkage group 12.

QTL analysis: LOD threshold 4.0			
	Linkage group	LOD	% variation explained
InvCD111 control	10	7.61	31.4
InvCD141 stress	10	3.5	14.9
Sus3 control	2	4.21	19
Sus4 control	12	19.8	63
Sus4 stress	12	8.64	36

Table 3.1.11: Outcome of QTL analysis with the expression data derived from the qRT-PCR described in this report.

4. Discussion

Searching in the NCBI nucleotide and protein databases resulted in the invertase genes *InvGE*, *InvCD141*, *InvGF* and *InvCD111* of potato and respectively *lin5*, *lin6*, *lin7* and *lin8* as their orthologues in tomato. *Susy2*, *Sus3* and *Sus4* are the sucrose synthase genes in potato.

4.1 Invertases

Literature research revealed that the *InvGF* protein was only detected in mature flowers and flower buds and not in the source and sink leaves. This is different in comparison with *InvGE*, which was not only expressed floral tissue, but also in leaf tissue, (Maddison et. al., 1999). The tomato orthologs of these genes, *lin5* is primarily expressed in the ovary, developing fruits, stamen and pollen, *lin7* is expressed in the stamen and pollen (Fridman, et. al., 2003), (Godt and Roitsch, 1997).

Hedley et. al., reported in 1994 that *InvCD141* was expressed in source leaf, stem, and a little bit in tubers. *InvCD111* was expressed in the sink leaf and at a minor level in source leaf and stem. According to Hedley et. al., 1994, the potato genes for these apoplastic invertases may be developmental and tissue specific control with a switch in their expression during leaf maturation. In our experiment we do not see this switch during drought stress. Both genes are downregulated during drought stress and have positive correlations under control and as well under drought conditions.

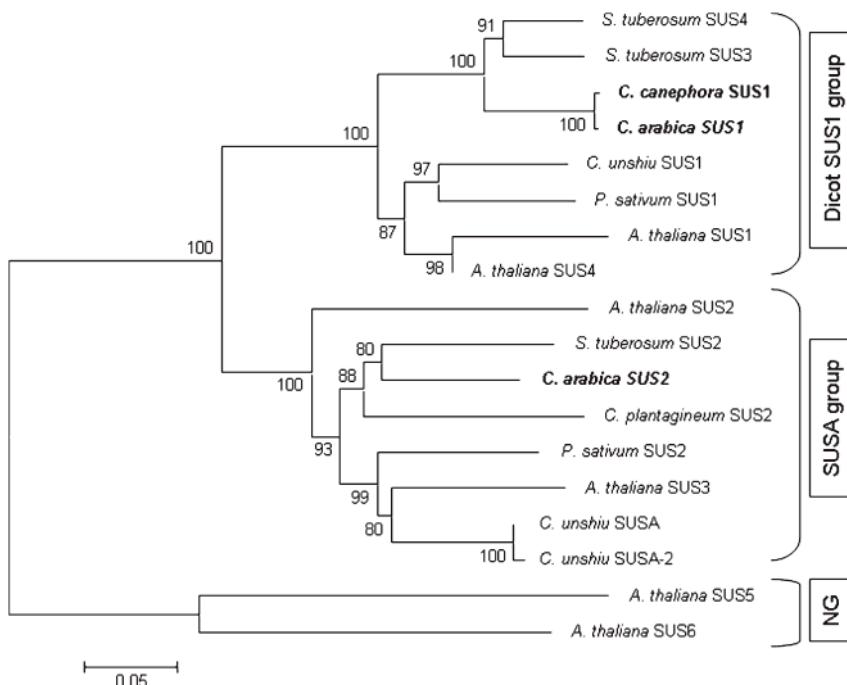
In tomato, *lin6* is expressed in sink tissues, like seedling roots, flower buds and tumors. Especially in situations that need a high carbohydrate supply. The function of *lin8* was not so clear, because no amplification was found. However in the experiments described in this report, a product of the potato homologue was found. For tomato it was proven that apoplastic invertases play a very important role in the source-to-sink regulation within plants, (Godt and Roitsch, 1997).

4.2 Sucrose synthase

Fu and Park (1995) found two differentially regulated sucrose synthase genes, *Sus3* and *Sus4*, in potato.

The potato *Sus3* gene is expressed at the highest levels in stems and roots and appears to provide a vascular function of sucrose synthase. *Sus4* genes are expressed primarily in the storage and vascular tissue of tubers and appear to facilitate sink function.

With BLAST analysis a third sucrose synthase (AY205302) was identified, submitted by Loureiro, et. al., 2002. No other literature reference was found related this gene.


A BLAST-search with this sequence resulted in hits with other sucrose synthases, indicating that *Susy2* is very likely a sucrose synthase.

Sus3 and *Sus4* are highly similar but *Susy2* was clearly different. It has 69,1% similarity index with *Sus3* and *Sus4* at the protein level, where the latter two have a 91,8% similarity.

To have a look at the putative similarities and differences between *Susy2* and *Sus3/Sus4*, another round of BLAST-searches was executed. Separate BLAST-searches with *Susy2*, *Sus3* and *Sus4* resulted in a few common hits that were listed after each search. These common hits were *Coffea canephora* sucrose synthase (SS2) (DQ834312), *Coffea arabica* sucrose synthase (*sus1* gene) (AM087674).

Gerard van der Linden 12-1-11 11:16
Met opmaak: Niet Markeren
Gerard van der Linden 12-1-11 11:16
Met opmaak: Niet Markeren
Gerard van der Linden 12-1-11 11:16
Met opmaak: Niet Markeren

Geromel et. al., 2006 compared *sus1* and *sus2* genes in *Coffea arabica*, with other sucrose synthase genes in other crops. Baud et. al., 2004 stated that there are 6 sucrose synthase genes in Arabidopsis. It is also concluded that the isoforms are arranged in 3 pairs. These are *Sus1/Sus4*, *Sus2/Sus3* and *Sus5/Sus6*. Geromel, 2006 constructed a phylogenetic tree of the sucrose synthases. (picture 3.2.1). In this tree *Susy 2* is called *Sus2*. The potato sucrose synthase gene (*Susy2*, AY205302) belongs to the *SUSA* group with the *Sus2* gene in *C. arabica* and *Sus2/Sus3* in *A. thaliana*.

Picture 3.2.1: Comparison of deduced amino acid sequences of plant sucrose synthase. The phylogenetic dendrogram was generated by multi alignment using CLUSTALW based on identity and the Neighbor-Joining method with Poisson correction. Bootstrap values are shown as percentages. EMBL database accession numbers of SUS proteins are as follows: *Arabidopsis thaliana SUS1* (NP197583), *SUS2* (NP199730), *SUS3* (NP192137), *SUS4* (AAK59464), *SUS5* (NP198534), *SUS6* (NP177480); *Citrus unshiu SUS4* (BAA88904), *SUSA-2* (BAA88981), *SUS1* (BAA88905); *Coffea arabica SUS1* (CAJ32596), *SUS2* (CAJ32597); *Coffea canephora SUS1* (CAI56037); *Craterostigma plantagineum SUS2* (CAB38022); *Pisum sativum SUS1* (CAA09910), *SUS2* (CAA04512); *Solanum tuberosum SUS2* (AAO67719), *SUS3* (U24088), *SUS4* (U24087). (Picture taken from Geromel, et. al., 2006)

Komatsu et al., 2002 identified different groups of sucrose synthase. There is a group of monocot *Sus* genes. Another group are the *Sus* genes that are present in dicot plants. For example *Sus3* and *Sus4* in potato and *Arabidopsis thaliana* *Sus1* and *Sus4* belong to this group. The *SUSA* group contains the *Coffea arabica* *Sus2*, *Citrus unshiu* *Sus1* and *Sus2*, *Arabidopsis thaliana* *Sus2* and

Sus3, and the potato *Susy2* gene. The SUSA group is similar to the monocot Sus genes, when the exon structure is analyzed, (Komatsu et al., 2002).

So far nothing is published about the function and expression of *Susy2*. *Susy2* may be expressed at a later developmental stage of a sink organ. In *A. thaliana*, *Citrus unshiu* and *Coffea arabica* the sucrose synthase genes of the SUSA group are expressed at high levels during the later stages of seed and fruit development (Baud et. al., 2004, Komatsu et. al., 2002, Geromel et al., 2006). According to Komatsu et. al., 2002, *CitSUSA* had higher levels of mRNA transcripts in the mature source leaves and lower in the young sink leaves. In *A. thaliana* the *Atsus3* gene had a high expression during water stress (Baud et. al., 2004). As stated before *Susy2* of potato belongs to the same group as *CitSUSA* and *Atsus3*. This indicates the putative function and importance of the potato *Susy2* gene during plant development and response to drought stress.

4.3 Conclusions from the qRT-PCR experiment

Conclusions of the qRT-PCR results are that invertase genes *InvCD141* and *InvCD111* are down-regulated during drought in young leaves after 4 days (initial drought stage). *Sus3* and *Sus4* were not significantly changed in their expression by drought stress. However there is a trend of up-regulation of the latter two genes.

Invertases under control and drought conditions are positively correlated.

Sucrose synthase under control and drought are positively correlated.

But, *Sus3* is negatively correlated with *InvCD141* under drought.

4.4 Expression profiles of the screened genes

The qRT-PCR experiment revealed that over the whole population invertase genes *InvCD141* and *InvCD111* are down regulated during drought in young fully expanded leaves. In literature it is described that invertases are often upregulated due to biotic stress, increased sink strength and plant development (Sturm and Tang, 1999, Roitsch, 1999). It appears that when tissues are in high demand of energy, apoplastic invertase activity increases.

The decrease in apoplastic invertase expression in response to drought in our experiments may indicate that in the examined leaves the demand for energy-rich sugars decreases. This is in agreement with observations of stunted/decreased growth in conditions with low water supply. A reason for the results in this experiment could be that apoplastic invertases are down regulated to prevent negative feedback inhibition of the photosynthetic system. More hexoses in the cell means that photosynthesis is decreasing (Koch, 1996). On the other hand this is the opposite with what is seen with the expression of sucrose synthase. Sucrose synthase expression is negatively correlated under drought with invertase expression under drought. So it might be that sucrose synthase is taking over the function of apoplastic invertase. A down regulation of invertase and a trend of up regulation of sucrose synthase is seen. This means that hexoses are not entering the cell anymore through the apoplast, but that the sucrose in the cytosol is split in hexoses by the sucrose synthase. This might be done because of the initiation of starch synthesis.

In this experiment only the gene expression is measured. To have a better view on the effect of this expression it is recommended to measure the activity of the enzymes and the levels of hexoses and sucrose.

Sus3 and *Sus4* are not expressed in leaves according to Fu and Park, 1995. In this experiment expression of both genes is detected in leaves and therefore opposite to earlier publications. Different between the two experiments is that Fu and Park used just one cultivar. As explained in

Gerard van der Linden 12-1-11 11:17
Met opmaak: Niet Markerken

the material and methods chapter the CxE population, used in this gene expression study, had a size of 94 genotypes added with the C and E parents and 12 tetraploid cultivars. Among the 94 progeny of CxE the expression levels of *Sus3* differed from 0.0220 to 2.789 under control conditions. *Sus4* expression levels differed from 0.001 to 3.116 under control conditions. Maybe the fact that the cultivar used by Fu and Park did not have any expression of the sucrose synthase in tissues they tested was a genotype-specific observation that should not be generalized.

4.5 Mapping the results of the expression profiles

The expression profiles of the genes does not always map to the same position as the actual genes in other gene studies. The expression profile of invertase genes map on linkage group 10, a location where the invertase genes are also mapped in other studies (Chen et. al., 2001) and (Li et. al., 2008). The expression profiles of *Sus3* mapped on linkage group 2 and *Sus4* on group 12. The *Sus4* gene was mapped on linkage group 12, colocalizing with the expression profiles. *Sus3* maps on linkage group 7 (Chen et. al., 2001) and (Li et. al., 2008), which is a different position than the eQTL calculated in this experiment.

This may indicate that a factor that regulates expression of *Sus3* is positioned on linkage group 2 and that it is interesting to study that factor in further research.

4.6 Change names of potato apoplastic invertase genes

Searches in the nucleotide and protein databases produced sequences of four apoplastic invertase genes and their tomato orthologues. The tomato genes are named *lin5*, *lin6*, *lin7* and *lin8*. The tomato genes are orthologues with *InvGE*, *InvCD141*, *InvGF* and *InvCD111* respectively. Because it concerns one group of genes it would be much clearer to use the same names as in tomato. In table 4.4.1 the current names of the potato and tomato genes are shown. The third column gives the proposed name for the potato apoplastic invertase genes. The name is chosen for several reasons. “St” codes for *Solanum tuberosum* and “in” codes for invertase, the numbers indicate the orthologous relation with the tomato apoplastic invertase.

Gene name potato	Gene name tomato	Proposed gene name potato
InvGE	Lin5	Stin5
InvGF	Lin7	Stin7
InvCD141	Lin6	Stin6
InvCD111	Lin8	Stin8

Table 4.4.1: Proposed names of the potato apoplastic invertase genes.

4.7 Recommendations for further research

PCR reactions on genomic DNA resulted in amplification of all the genes discussed in this report. Only primers of *InvCD141*, *InvCD111*, *Sus3* and *Sus4* were able to amplify on cDNA and were subsequently used for qRT-PCR. This means that there are no expression profiles of *InvGE*, *InvGF* and *Susy2*.

During this experiment young source leaves were used. Literature studies indicate that *InvGF* may only be expressed in floral tissues. *InvGE* is primarily expressed in floral tissue, but also in leaves (Maddison et. al., 1999). Maybe *InvGE* was not expressed in the young source leaves used

in this study. This indicates that the choice of tissues, which are used in expression profile studies like this, is very important. Not only during primer testing, but also from a physiological point of view.

In the greenhouse experiment also samples of other tissues are taken, like shoots, roots, tubers and on different time points. It is recommended to do qRT-PCR experiments on the different tissues and samples picked at different time points. Expression of genes which are not detected in this experiment might be expressed in other tissues or at other stages of plant development.

Doing a qRT-PCR experiment on for example tubers, may also give a better idea of the expression of invertase and sucrose synthase in sink tissues. Studying the samples of other time points might be especially interesting to see if there are any changes in expression. Samples used in this experiment were picked after 4 days of stress induction and samples at a more severe level of stress need to be studied.

Also primer design is an important factor in not getting an expression profile. Especially *Susy2* was not examined, because in the primer check on cDNA this primer set gave different product lengths, see also picture 3.2.5. This resulted in skipping *Susy2* in the qRT-PCR experiment. So in future research special attention has to go to primer design of *Susy2*.

From this experiment it is concluded that invertase was down regulated under drought stress and sucrose synthase had a trend of up regulation. This is only the expression of the genes that code for the enzymes invertase and sucrose synthase. It is also interesting to measure the activity of these enzymes, because this gives insight in the actual effect of the up or down regulation of the gene.

Leaf samples used in this experiment were picked from plants that were grown under greenhouse conditions. Obviously in a greenhouse the environmental conditions are more constant and controllable compared to open field situations. Potatoes are mostly grown in the open field and therefore it is good to evaluate the gene expression profiles under these conditions.

References

<http://www.potato2008.org/en/index.html>, visited in January 2010
<http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor>
Lutaladio, NeBambi, Oscar Ortiz, Anton Haverkort, Daniel Caldiz, Sustainable potato production: guidelines for developing countries, 2009, FAO, Italy
Veerman, A. 2003, Teelhandleiding consumptieaardappelen, PPO, Lelystad
Van Loon C.D., 1981, The Effect of Water Stress on Potato Growth, Development and Yield., American Journal of Potato Research, vol. 58 page 51-69, Springer New York
Boyer J.S., 1982, Plant Productivity and Environment, Science vol. 218 page 443-448, AAAS Washington
Taiz, L., and E. Zeiger, Plant Physiology 3rd edition, 2002, Sinauer Associates, Sunderland Massachusetts
Boyer, J.S., Leaf Enlargement and Metabolic Rates in Corn, Soybean, and Sunflower at Various Leaf Water Potentials, Plant Physiol. (1970) 46, 233-235
Chen, X., F. Salamini, C. Gebhardt, A potato molecular-function map for carbohydrate metabolism and transport, Theor Appl Genet (2001) 102:284-295
Sturm, Arnd and Guo-Qing Tang, The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning, Trends in Plant Science, October 1999, Vol. 4, No. 10 pp 401-406
Roitsch, Thomas, and Mari-Cruz González, Function and regulation of plant invertases: sweet sensations, TRENDS in Plant Science Vol.9 No.12 December 2004
Martin, Thomas, Wolf B. Frommer, Marcel Salanoubat and Lothar Willmitzer, Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolism of sucrose both during phloem loading and in sink organs, The Plant Journal (1993) 4(2), 367-377
Baroja-Fernández, Edurne, Francisco José Muñoz, Manuel Montero, Ed Etxeberria, María Teresa Sesma, Miroslav Ovecka, Abdellatif Bahaji, Ignacio Ezquer, Jun Li, Salomé Prat and Javier Pozueta-Romero, Enhancing Sucrose Synthase Activity in Transgenic Potato (Solanum tuberosum L.) Tubers Results in Increased Levels of Starch, ADPglucose and UDPglucose and Total Yield, Plant Cell Physiol. 50(9): 1651-1662 (2009)
Koch, K.E., Carbohydrate-modulated gene expression in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996. 47:509-40
Hedley P.A., Machray G.C., Davies H.V., Burch L., Waugh R., Potato (*Solanum tuberosum*) invertase-encoding cDNAs and their differential expression, Gene, Vol 145, pp 211-214, 1994
Li Li, Josef Strahwald, Hans-Reinhard Hofferbert, Jens Lübeck, Eckart Tacke, Holger Junghans, Jörg Wunder and Christiane Gebhardt, DNA Variation at the Invertase Locus invGE/GF Is Associated With Tuber Quality Traits in Populations of Potato Breeding Clones, Genetics 170: 813-821, June 2005
Fu H., Park. W.D., Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato, The plant cell 7, 1369-1385
<http://www.ncbi.nlm.nih.gov/>
Roitsch, Thomas, Rainer Ehneß, Marc Goetz, Bettina Hause, Markus Hofmann and Alok Krishna Sinha, Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling, Aust. J. Plant Physiol., 2000, 27, 815-825

Jacobs, J.M.E., H. J. van Eck, P. Arens, B. Verkerk-Bakker, B. te Lintel Hekkert, H. J. M. Bastiaanssen, A. El-Kharbotly, A. Pereira, E. Jacobsen and W. J. Stiekema., 1995, A genetic map of potato (*Solanum tuberosum*) integrating molecular markers, including transposons, and classical markers., Theor Appl Genet 91:289-300, Springer-Verlag, Berlin

Nicot, N, Jean-François Hausman, Lucien Hoffmann and Danièle Evers.,2005, Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress, Journal of Experimental Botany, Vol. 56, No. 421, pp. 2907–2914, Oxford University Press, Oxford.

<http://www.ncbi.nlm.nih.gov/>
<http://compbio.dfci.harvard.edu/tgi/>

Fridman, Eyal and Dani Zamir, Functional Divergence of a Syntenic Invertase Gene Family in Tomato, Potato, and Arabidopsis, Plant Physiology, February 2003, Vol. 131, pp. 603–609

Maddison, Anne L., Peter E. Hedley, Rhonda C. Meyer, Naveed Aziz, Diane Davidson and Gordon C. Machray, Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato, Plant Molecular Biology 41: 741–751, 1999

Roitsch, T., M. E. Balibrea, M. Hofmann, R. Proels and A. K. Sinha, Extracellular invertase: key metabolic enzyme and PR Protein, Journal of Experimental Botany, Vol. 54, No. 382, Regulation of Carbon Metabolism Special Issue, pp. 513-524, January 2003

Godt, Dietmut E. and Thomas Roitsch, Regulation and Tissue-Specific Distribution of mRNAs for Three Extracellular Invertase Isoenzymes of Tomato Suggests an Important Function in Establishing and Maintaining Sink Metabolism, Plant Physiol. (1997) 115: 273-282

Hedley, Peter E., Gordon C. Machray, Howard V. Davies, Lindsay Burch and Robbie Waugh, Potato (*Solanum tuberosum*) invertase-encoding cDNAs and their differential expression, Gene, 145 (1994) 211-214

Geromel, Clara., Lúcia Pires Ferreira, Sandra Maria Carmelo Guerreiro, Aline Andréia Cavalari, David Pot, Luiz Filipe Protásio Pereira, Thierry Leroy, Luiz Gonzaga Esteves Vieira, Paulo Mazzafera and Pierre Marraccini, Biochemical and genomic analysis of sucrose metabolism during coffee (*Coffea arabica*) fruit development, Journal of Experimental Botany, Vol. 57, No. 12, pp. 3243–3258, 2006

Baud, Sébastien, Marie-Noëlle Vaultier and Christine Rochat, Structure and expression profile of the sucrose synthase multigene family in Arabidopsis, Journal of Experimental Botany, Vol. 55, No. 396, pp. 397-409, February 2004

Komatsu Akira, Takaya Moriguchi, Kazuhiko Koyama, Mitsuo Omura and Tomoya Akihama, Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships, Journal of Experimental Botany, Vol. 53, No. 366, pp. 61-71, January 2002

Roitsch, Thomas, Source-sink regulation by sugar and stress, Current Opinion in Plant Biology, 1999, 2: 198-206

Appendices

Appendix A: list of used CxE genotypes

Appendix B: position of the isolated RNA in the different plates

Appendix C: concentrations of the isolated RNA

Appendix D: overview of designed primers

Appendix A: list of used (CxE) genotypes

017	632		
069	633	712	RH-parent
072	635	714	Bildstar
084	636	715	Monalisa
110	639	717	Desiree
141	642	718	Biogold
145	648	721	Première
155	651	722	Bintje
164	653	723	
165	656	724	SH- parent
171	658	726	Mondial
195	659	732	Nicola
196	660	733	R. Burbank
202	663	736	Mozart
218	664	738	
222	666	740	E-parent
232	667	746	E-parent
233	668	747	E-parent
276	669	752	C-parent
277	673	755	C-parent
350	674	756	C-parent
447	675	761	
602	680	765	
603	681	769	
604	685	778	
605	688	782	
607	689	785	
608	694		
609	696		
615	697		
624	698		
628	701		
630	702		
631	709		

Appendix B: position of the isolated RNA in the different plates

4A control	1	2	3	4	5	6	7	8	9	10	11	12
A	680	697	664	RH- parent	E-parent	Bildstar	171	702	714	084	155	746
B	632	722	718	756	607	Monalisa	715	Desiree	164	769	659	642
C	277	E- parent	782	724	624	648	785	673	447	738	604	663
D	110	608	195	635	688	202	Biogold	723	681	732	726	658
E	696	602	668	736	069	017	651	674	653	733	740	701
F	072	709	Première	628	Bintje	712	SH- parent	145	694	609	765	232
G	Mondial	Nicola	165	218	Russet Burbank	603	667	747	689	778	Mozart	639
H	605	717	E-parent	633	615	685	675	698	C- parent	721	C- parent	656

3A Drought	1	2	3	4	5	6	7	8	9	10	11	12
A	726	164	736	SH- parent	667	E-parent	712	Mozart	630	651	628	Binjje
B		Biogold	694	688	Première	609	709	155	675	698	724	642
C	084	738	712	656	Nicola	165	660	632	653	669	233	702
D	636	E- parent	232	714	778	765	732	069	721	718	Desiree	624
E	781	605	747	604	202	722	631	E- parent	723	701	145	195
F	746	C- parent	659	072	017	785	674	752	648	447	639	740
G	663	218	RH- parent	350	666	Bildstar	635	608	733	C- parent	171	697
H	633	141	717	755	Monalisa	681	664	222	696	602	769	607

Left over samples

4A control										3A stress		
	1	2	3	4	5	6	7	8	9	10	11	12
4A control												
A	669	276	726	3A drought						680	680	C- parent
B	752	636								658	689	
C	666	350								196	615	
D	233	141								276	668	
E	196	222								756	685	
F	631	C- parent								110	Mondial	
G	755	761								673	603	
H	630	660								761	277	

Appendix C: concentrations of the isolated RNA

4 A control Gemeten concentratie RNA (ng/ μ l)

	1	2	3	4	5	6	7	8	9	10	11	12
A	620,09	364,59	493,53	827,29	654,02	818,28	526,18	434,95	777,46	519,15	844,2	864,78
B	390,44	269,42	1018,23	396,67	336,28	540,03	505,05	608,51	252,91	641,23	625,84	543,344
C	487,13	299,43	436,8	336,14	577,65	565,99	371,98	241,91	658,82	534,94	538,69	332,09
D	383,31	925,2	386,21	861,59	640,23	361,35	325,56	455,61	285,83	365,95	373,72	606,86
E	323,63	373,76	568,16	296,63	241,62	461,91	463,37	427,72	364,95	439,06	351,03	393,01
F	702,48	499,52	474,44	410,3	416,54	463,23	559,15	755,84	354,36	272,01	800,15	427,03
G	315,45	364,31	413,24	579,36	399,33	315,74	318,73	412,66	368,77	437,74	335,12	211,44
H	375,86	231,64	438,97	265,05	380,39	241,53	439,92	402,83	319,63	508,18	391,68	455,23

	1	2	3	4	5	6	7	8	9	10	11	12
A	1,613	2,743	2,026	1,209	1,529	1,222	1,901	2,299	1,286	1,926	1,185	1,156
B	2,561	3,712	0,982	2,521	2,974	1,852	1,980	1,643	3,954	1,560	1,598	1,840
C	2,053	3,340	2,289	2,975	1,731	1,767	2,688	4,134	1,518	1,869	1,856	3,011
D	2,609	1,081	2,589	1,161	1,562	2,767	3,072	2,195	3,499	2,733	2,676	1,648
E	3,090	2,676	1,760	3,371	4,139	2,165	2,158	2,338	2,740	2,278	2,849	2,544
F	1,424	2,002	2,108	2,437	2,401	2,159	1,788	1,323	2,822	3,676	1,250	2,342
G	3,170	2,745	2,420	1,726	2,504	3,167	3,137	2,423	2,712	2,284	2,984	4,730
H	2,661	4,317	2,278	3,773	2,629	4,140	2,273	2,482	3,129	1,968	2,553	2,197

Toe te voegen 10x Dnase 1 reaction buffer (μ l))

Toe te voegen DNase 1 (μ l)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
B	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
C	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
D	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
E	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
F	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
G	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
H	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Toe te voegen Elution buffer (μ l)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	6,387	5,257	5,974	6,791	6,471	6,778	6,099	5,701	6,714	6,074	6,815	6,844
B	5,439	4,288	7,018	5,479	5,026	6,148	6,020	6,357	4,046	6,440	6,402	6,160
C	5,947	4,660	5,711	5,025	6,269	6,233	5,312	3,866	6,482	6,131	6,144	4,989
D	5,391	6,919	5,411	6,839	6,438	5,233	4,928	5,805	4,501	5,267	5,324	6,352
E	4,910	5,324	6,240	4,629	3,861	5,835	5,842	5,662	5,260	5,722	5,151	5,456
F	6,576	5,998	5,892	5,563	5,599	5,841	6,212	6,677	5,178	4,324	6,750	5,658
G	4,830	5,255	5,580	6,274	5,496	4,833	4,863	5,577	5,288	5,716	5,016	3,270
H	5,339	3,683	5,722	4,227	5,371	3,860	5,727	5,518	4,871	6,032	5,447	5,803

Toe te voegen DNase 1 (μ l)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
B	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
C	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
D	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
E	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
F	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
G	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
H	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Toe te voegen Elution buffer (μ l)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	5,007	3,839	5,730	5,191	5,318	6,514	4,387	5,775	-0,674	5,860	4,690	5,719
B	5,281	2,042	4,322	5,193	3,472	4,698	4,873	4,564	3,393	5,573	1,488	4,077
C	3,424	5,390	3,563	5,888	4,085	4,509	5,765	3,561	3,711	5,274	3,631	5,255
D	3,010	3,299	1,542	3,406	3,504	3,740	4,342	5,891	2,435	5,892	6,203	3,728
E	4,187	3,707	5,327	4,099	2,995	-0,024	2,342	3,698	2,910	4,433	5,490	5,138
F	5,180	4,528	5,035	3,097	5,302	3,441	0,714	1,908	3,618	2,485	2,721	3,917
G	3,279	4,798	5,622	6,068	5,463	5,656	3,634	5,103	3,492	5,207	3,155	2,586
H	5,112	6,227	5,276	4,808	3,322	2,369	4,940	2,671	2,855	4,633	3,373	3,763

Toe te voegen DNase 1 (μ l)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
B	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
C	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
D	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
E	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
F	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
G	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
H	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Toe te voegen Elution buffer (μ l)												
	1	2	3	4	5	6	7	8	9	10	11	12
A	6,298	5,627	5,007	5,954					2,122	6,387	2,966	-0,367
B	5,243	6,648								5,839	-0,162	
C	6,169	5,560								5,100	6,096	
D	5,208	4,953								5,388	4,623	
E										6,089	4,518	
F										3,024	2,122	
G										6,261	6,239	
H	6,141	5,625								4,596	4,667	

Appendix D: overview of designed primers

Primers for invertases in potato.

Gene name: InvGE

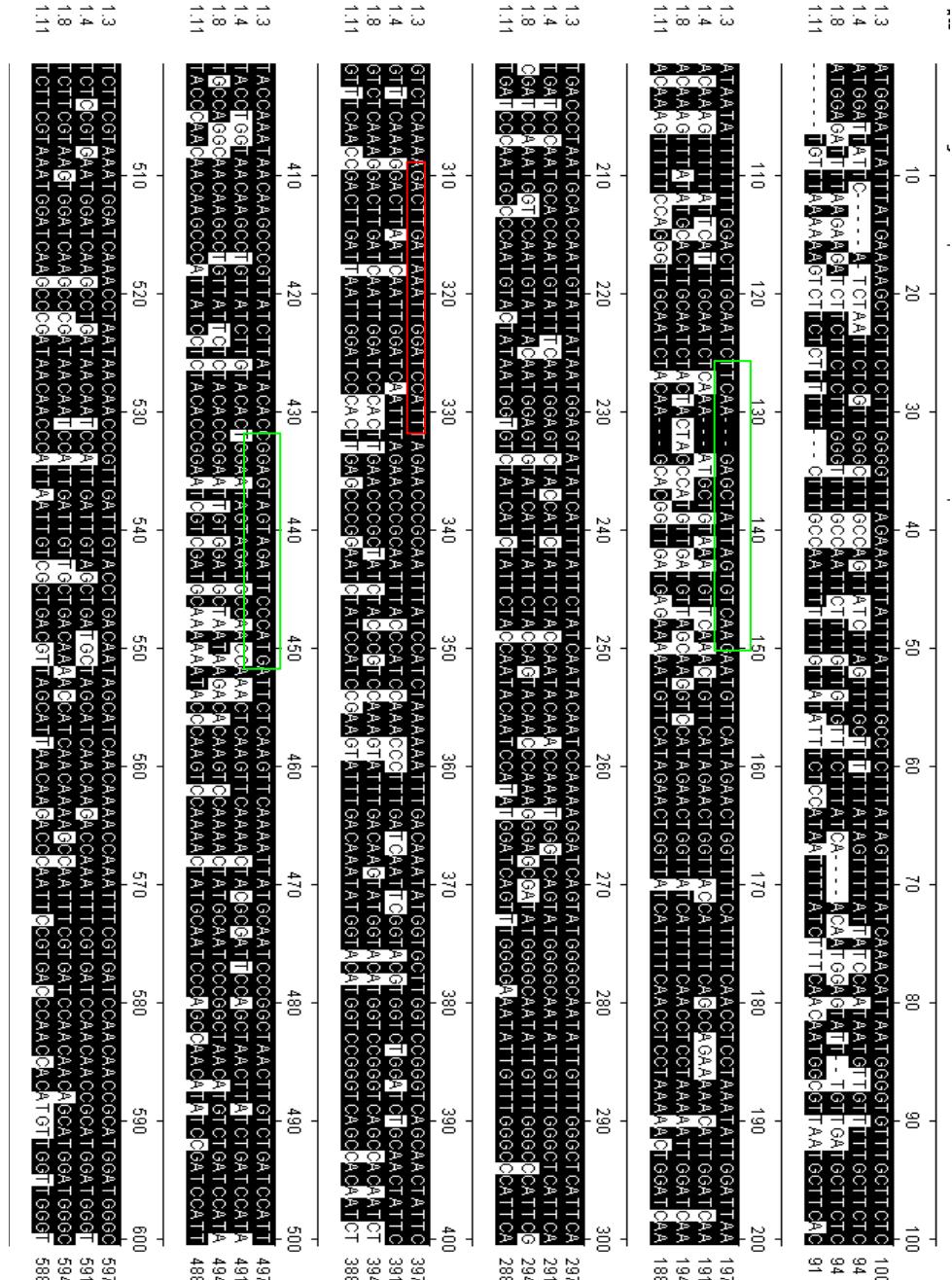
Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C¹)	GC%²	Expected product length (nt)
Stin5-F1	127-150	TCAAGAGCTATTAGTGTCAAG	21	58	38.09	
Stin5-R1	331-312	AATGGATCCAATTATCAAGTCT	23	60	30.43	204
Stin5-F2	430-451	CGGAGTAGTAGATCCATG	20	60	50.00	
Stin5-R2	630-609	TCCTATTACAATTCTCCAAAGC	22	60	36.36	200

Gene name: InvGF

Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C¹)	GC%²	Expected product length (nt)
Stin7-F1	1038-1058	ATTCCTGAGGATGATAATGC	21	60	42.86	
Stin7-R1	1241-1223	TGTGCAGGTGTGATTCTG	19	58	50.00	203
Stin7-F2	531-551	TCCATTGATTGTAGCTGATGC	21	60	42.86	
Stin7-R2	717-697	AAGTGGGTAGCCTAAC	21	60	42.86	186

Gene name: InvCD141

Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C ¹)	GC% ²	Expected product length (nt)
Stin6-F1	129-149	TACTAGCCATGTTGATGTTAG	21	58	38.10	
Stin6-R1	290-270	CAAACAAATATTGCCCATATC	21	58	38.10	161
Stin6-F2	795-814	CACGTCAATACAATGGCAAAG	20	58	45.00	
Stin6-R2	989-969	CTATCAAAGAATGTCCTGGAC	21	58	38.10	174


Gene name: InvCD111

Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C ¹)	GC% ²	Expected product length (nt)
Stin8-F1	95-115	CTTCACACAAAGTTTCCAG	21	58	38.10	
Stin8-R1	328-318	GGATCCAAATTAAATCAAGTCGG	21	60	42.86	233
Stin8-F2	790-810	TGGATGCCCTCATACAAACAAAG	21	60	42.86	
Stin8-R2	1064-1041	CCTTCTTGACATCGTCATTG	21	60	42.86	271

$$^1) 4*(G+C) + 2*(A+T) = Tm$$

$$^2) ((G+C)/(total\ nt))*100\% = GC\%$$

1.3 = InvGE
 1.4 = InvGF
 1.8 = InvCD141
 1.11 = InvCD111

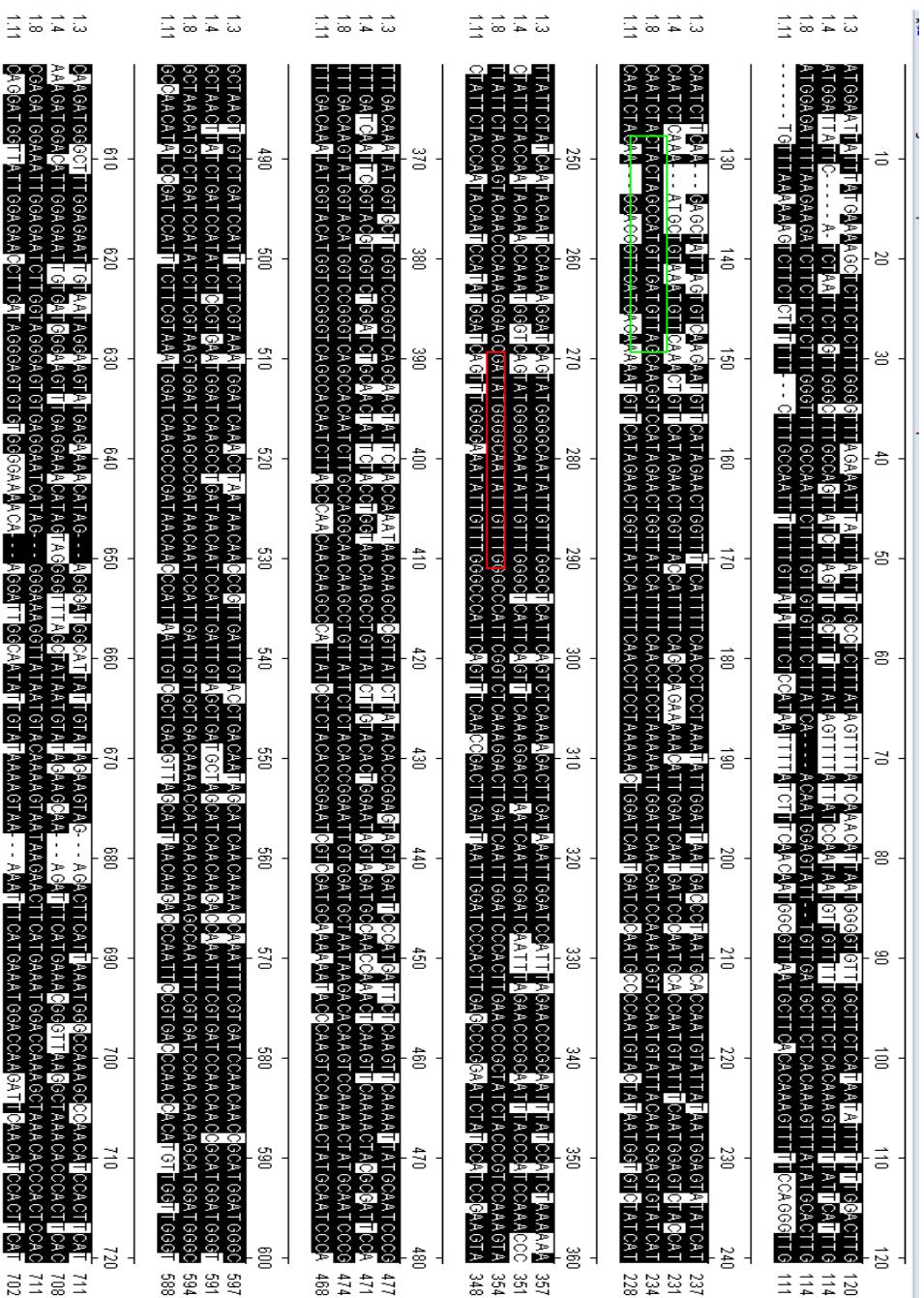


1.3	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
1.4										1758
1.8	CACTCTTGTATAAGTTCCACATTTGTTGGTGCACATATTGATTGCCTAACACATTGATGTTGTTAATGAAATTGCTCGATATATTAT									1746
1.11										1749
	1910	1920	1930	1940	1950	1960	1970			1873

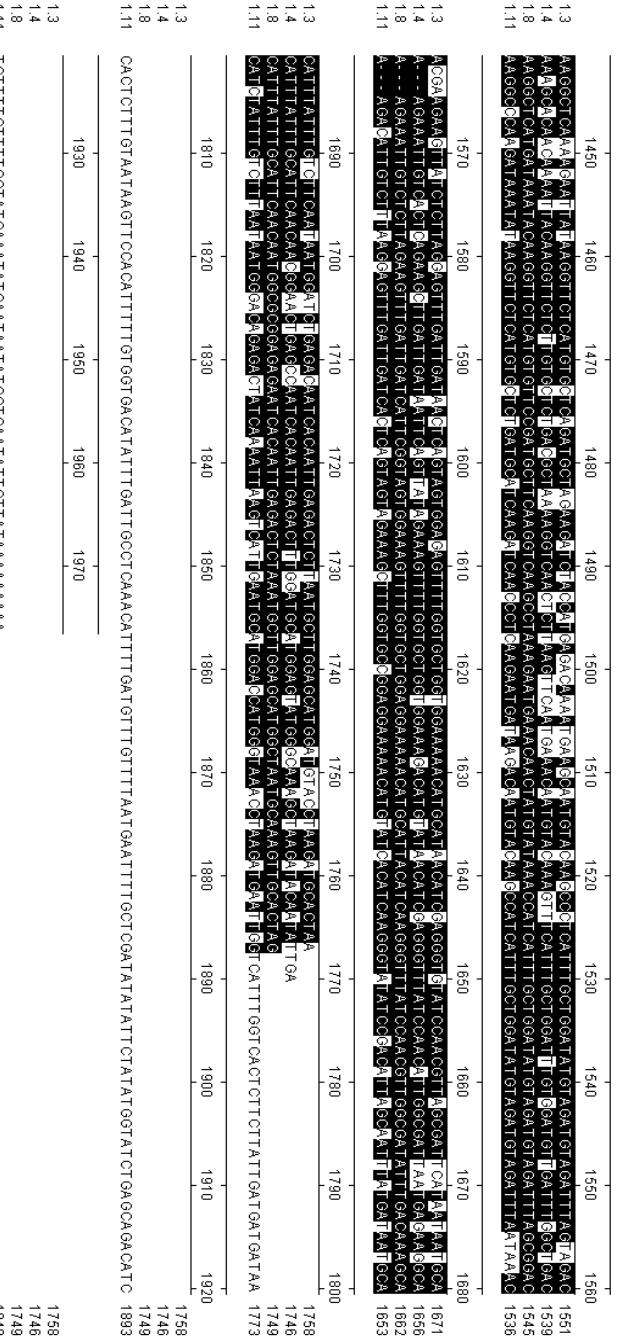
1.3	1758
1.4	1746
1.8	1749
1.11	1949
	ATGGTATCTGAGCAGACATCTGTTCTTCGATACAAATATGAATAATAGTGAATATTGTTAATTTAA

Decoration 'Decoration #1'. Shade (with solid black) residues that match 1.3 exactly.

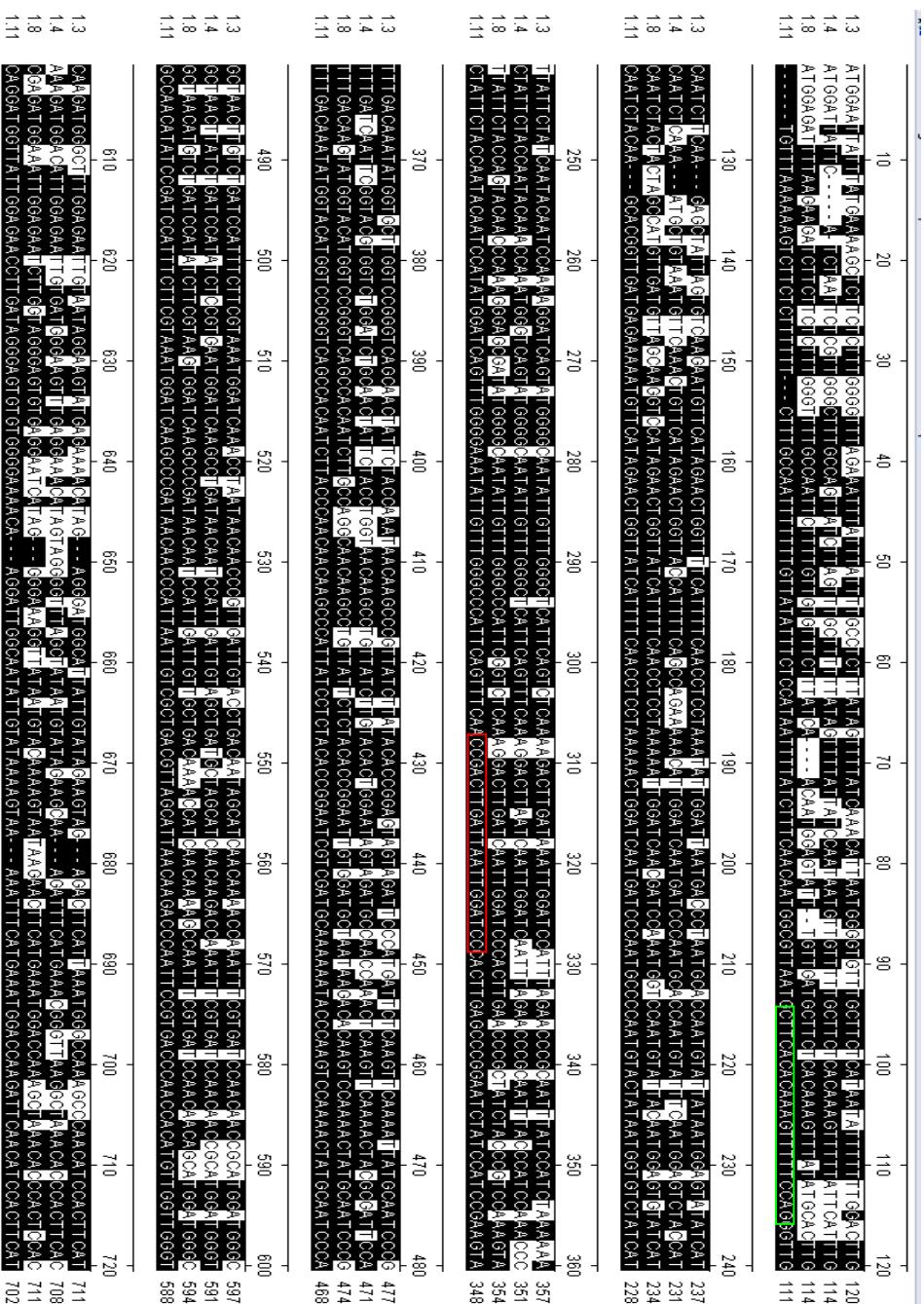
1.3	1758
1.4	1746
1.8	1749
1.11	1873



1.3	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
1.4	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
1.8	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
1.11	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900


CACTCTTGTAATAAGTTCCACATTTGTGGTACATATTGATTGCCAACATTGATGTTGTTAATGATTGCTCGATATATTCAT

1.3	1758
1.4	1746
1.8	1749
1.11	1949


Decoration #1: Shade (with solid black) residues that match 1.4 exactly.

Decoration 'Decoration #1': Shade (with solid black) residues that match 1.8 exactly.

1.3 **AGGC**CAAAAGATAAAGGTTCTATGCTTGATGAGATCACCCTGACAAATGAACTGACAAAGGCTTATTGCTGATGATGTTAGAC 1551
 1.4 **AAG**CAAAAGATAAAGGTTCTATGCTTGATGAGATCACCCTGACAAATGAACTGACAAAGGCTTATTGCTGATGTTAGAC 1539
 1.8 **AGGC**CAAAAGATAAAGGTTCTATGCTTGATGAGATCACCCTGACAAATGAACTGACAAAGGCTTATTGCTGATGTTAGAC 1545
 1.11 **AGGCC**CAAAAGATAAAGGTTCTATGCTTGATGAGATCACCCTGACAAATGAACTGACAAAGGCTTATTGCTGATGTTAGAC 1536

1.3 **AGGAGAAGAT**CTCTCTAGAGTTGATTGAACTCAGTAGGGAGTTGGCTGGAAACATGAAACATCGGGTGTCCACGTTAGGATCAAAATGAA 1671
 1.4 A---AGAANTGCTCAGAA**G**CTTGTGATA**A**CT**T**GAAGATTGTTGATGAT**C**CTGAG**G**AAAGTTGGCTGCTGGAAACATGAA 1656
 1.8 A---AGAATTGCTCAGAA**G**CTTGTGATA**A**CT**T**GAAGATTGTTGATGAT**C**CTGAG**G**AAAGTTGGCTGCTGGAAACATGAA 1662
 1.11 A---AGACATTGCTTAAAGGTTGATTGATCAGCTAGTAGAAGAACTTGGTGCCTGGAGAAACATGATCACATCAAGGTTACCTCCGACATTATGATAATGCA 1653

1.3 **CATT**TATTGCTCTAATGACTGAGCAACATTGAGACTTAATGCTTGA**G**ATG**G**ATACCTGATGCTGAA 1758
 1.4 CATTTATTGCTCTAATGACTGAGCAACATTGAGACTTAATGCTTGA**G**ATG**G**ATACCTGATGCTGAA 1746
 1.8 CATTTATTGCTCTAATGACTGAGCAACATTGAGACTTAATGCTTGA**G**ATG**G**ATACCTGATGCTGAA 1749
 1.11 CATTTATTGCTCTAATGACTGAGCAACATTGAGACTTAATGCTTGA**G**ATG**G**ATACCTGATGCTGAA 1773

1.3 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1758
 1.4 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1746
 1.8 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1749
 1.11 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1749

CACTTCTGATAAAGTCACATTGTTGTTGACATATTGCTCAAACATTGTTGATGTTGTTAATGATTGCTGATAATACTTATGCTATGCTGACAC 1893

1.3 1930 1940 1950 1960 1970 1758
 1.4 1930 1940 1950 1960 1970 1746
 1.8 1930 1940 1950 1960 1970 1749
 1.11 1930 1940 1950 1960 1970 1949

Decoration #11: Shade (with solid black) residues that match 1.11 exactly.

Majority	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	730	740	750	760	770	780	790	800	810	820	830	840
3,3 Sus4-16 Sus3-55	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	850	860	870	880	890	900	910	920	930	940	950	960
Majority	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	850	860	870	880	890	900	910	920	930	940	950	960
3,3 Sus4-16 Sus3-55	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	970	980	990	1000	1010	1020	1030	1040	1050	1060	1070	1080
Majority	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	1190	1200
3,3 Sus4-16 Sus3-55	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300	1310	1320
Majority	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430	1440
3,3 Sus4-16 Sus3-55	GTGTTGGGTGACGCCGAGCGGTGTTGAGAGATGATGCTGATGCTCTGATCCTCGATGCTCTGATCTGACTCTTGAGAGTTCCTTGAGATTCCATGTTTCAAT	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430	1440

Majority
GCTGCTGATCTCTCTGAGCTGATTCCTCTGAGAAATGAAAGXAGAXCCCTACATGGAAACCAATTCTGCGGCTGCGCTXAGGSKATXCAAGAGAAGTACATGCGAATCTACTCCG

33 AAATCTGTCCTACATGAA-TGAAACACATGAA
2410 2420 2430
2435

卷之三

Gene name: *Susy2*

Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C ¹)	GC% ²	Expected product length (nt)
Sus3.3-F1	248-268	CACCATTTGTTGCTATAGCAG	21	60	42,85	
Sus3.3-R1	462-443	GGATGAAGAGCGTGATGGAC	20	62	55	214
Sus3.3-F2	743-763	GTGTTTGGAGACTATGCATC	21	60	42,86	
Sus3.3-R2	982-961	GTCCTTGTGCTTATTCTAAG	22	60	40,91	239

Declaration Declaration #1: Shads (with solid black) residues that match Sus4-16 exactly

```

3.3
Sus4-16
A[T]GTTGCTGAGATGATGAGAGACTGA
GAGGTTGCTGAGGAGGAGGAGA
CAGCTTGTTCCTGCTTGAAGA

```

ictly.

2436
2418
2418

Gene name: *sus4*

Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C°)	GC% ²	Expected product length (nt)
Sus4-16-F1	661-682	CCCCCAGATACTCCATATTG	21	58	42,86	
Sus4-16-R1	812-792	AACTTCTCAAGAGTACATGAG	21	58	38,10	151
Sus4-16-F2	1461-1479	AGGAAGCAGGACACTGTG	19	58	36,00	
Sus4-16-R2	1613-1593	GGAGTACGGAGAAGTAGAGG	19	58	52,00	152

Majority
GCTGCTGATCTXCTGCTGATTTCTTGGAGAATGTAAGXXAGAXCCTTACATTTGGGAAACCTTCTGCGGGTGGCCXXAAGCGXXATXCGAGAAGATAACATGGCAAATCTACTCC

	2410	2420	2430	
3.3	AATCGTTCCCTAAGCAATTGA	TGCAAGCACTGA		2436

Gene name: *sus3*

Primer name	position	Sequence (5' to 3')	Length (nt)	Tm (C ¹)	GC% ²	Expected product length (nt)
Sus3-65-F1	367-388	GAACTTGTTAACGGAACTTCC	21	60	43	
Sus3-65-R1	566-546	TAGTGGTGAACTCGAAAGAAC	21	60	43	199
Sus3-65-F2	2043-2061	TGTGTTGAGGCCATGAGC	19	58	52,60	
Sus3-65-R2	2221-2200	TCCCAATGTGGAAGGGTCTAC	20	60	50,00	178

