
Development of anaerobic soil disinfestation

Heteren 2010, April 8

Willemien Runia, Leendert Molendijk; PPO-AGV

Presentation anaerobic soil disinfestation (ASD)

Introduction ASD
Method
Process
Efficacy
Profitability
Research topics

Intensive cropping increases soilborne diseasesSoil disinfestation

ASD non-chemical method

 Purpose: killing of soil pathogens and pests by anaerobic decomposition of green (rapidly decomposible) organic material in soil

 depletion of oxygen caused by rapidly decomposing organic material under gastight film.
 toxic compounds are formed; gases, fatty acids

these compounds and anaerobic conditions eliminate pathogenic fungi, bacteria and nematodes

Anaerobic soil disinfestation in general

- Acquisition or growth of 40 tons of green manure (e.g. grass tops) per ha
- Incorporation of organic material into furrow of 30-40 cm
- Light compaction of the top soil
- Irrigation of the soil
- Covering the soil with an oxygen impermeable plastic
- At least six weeks of disinfestation under warm conditions

ASD 1 Freshly cut green manure

ASD 2 Incorporation of green manure

ASD 3 Compacting soil with roller

ASD 4 Irrigation 25-50 mm

ASD 5 Laying and bonding plastic film with glue

Oxygen depletion to < 1% within one day</p>

- Redox potential decreases:+ 800 to 400 mV.
- Reduction of oxygen, nitrate, manganese, iron, sulfate

Fermentation compounds are produced

- Greenhouse gases: methane, carbon dioxide, nitrous oxide and ammonia
- Hydrogen sulfide
- Fatty acids
- Other (unknown) compounds

Pathogenic fungi

Fusarium oxysporum; moderate to high
Higher asparagus yield up to six years after ASD
Verticillium dahliae; good to high
Efficacy remained for four years in trees
Rhizoctonia spp.; AG dependent
Sclerotinia spp.; species dependent

Efficacy ASD

Parasitic nematodes

- Pratylenchus penetrans ; high
- Meloidogyne spp.; high
- Globodera pallida ; moderate to good
- Ditylenchus spp. ; good
- Trichodorus spp. ; high
 - surviving nematodes may transmit tobacco rattle virus; potato damage

Pathogenic bacteria

• Ralstonia solanacearum; good

Weeds

- Seed weeds: irregular efficacy
 - Seeds in incorporated green manure; negative efficacy
- Root stock weeds: high

Profitability ASD in the Netherlands

Costs ± €4000/ha

Profitable only in high cash crops:

- asparagus production fields
- strawberry runners production fields
- tree nurseries

Fundamental information needed for wide scale application

- Which compounds are responsible for efficacy
- At what concentrations
- For what period anaerobic conditions are necessary
- Influence of soil temperature, pH, soil humidity
- Influence of soil micro flora
- Influence of fertilizer status
- Most suitable type of organic matter; C:N ratio

Research 2009 – 2011 'Development of ASD'

Funded by Dutch Ministry of Agriculture, Nature and Food Quality

Project group

- Willemien Runia, Leendert Molendijk
- Corrie Schomaker
- Herman Feil, Henk Meints
- Consultant
 - Gera van Os
- Partners
 - Pim Paternotte, Daniël Ludeking

PPO-AGV PRI Thatchtec (TDI)

PPO-BBF

WUR Horticulture

Research 2009 – 2011 'Development of ASD'

Aim: establishing mode of action of ASD

 Approach: ASD with defined fermentation products under controlled conditions

• Varying in C:N ratio

Assessments on: Oxygen consumption and production of greenhouse gases and fatty acids in relation to

- Efficacy against soilborne pathogens and pests
- Effect on fertilizer status and plant growth
- Effect on soil microbial status

Trial 2009 under controlled conditions

Sealed containers at 16°C

- 8 fermentation products; a.o. varying in C:N ratio
- Referent grass (anaerobic conditions + organic material)
- Referent inundation (anaerobic conditions organic material)
- Untreated soil (container with lid)
- Untreated soil (container without lid, natural decline)

Objects:

- 3 dosages
- 3 exposure times; 2, 4 and 8 weeks
- 2 soil types; clay and sand

Trial 2009

Target organisms:

- Pratylenchus penetrans
- Globodera pallida
- Verticillium dahliae

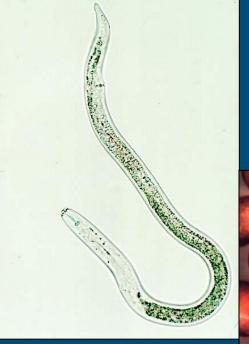
juveniles cysts microsclerotia

Artificially applied to containers (8 liters of soil)

Trial 2009 PPO - Lelystad

Filling containers with soil

Incorporation of soil



Trial 2009 PPO-Lelystad

Verticillium microsclerotia

Pratylenchus juveniles

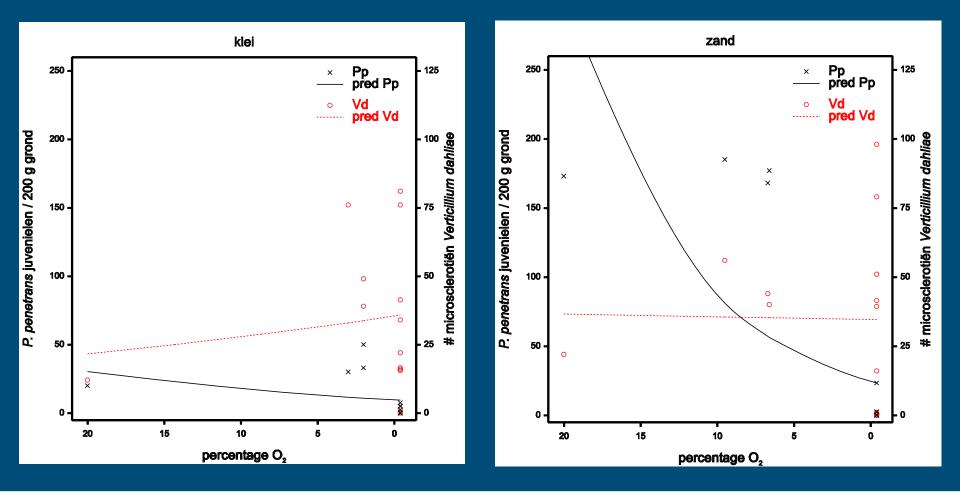
Globodera cysts

Trial 2009 PPO-Lelystad

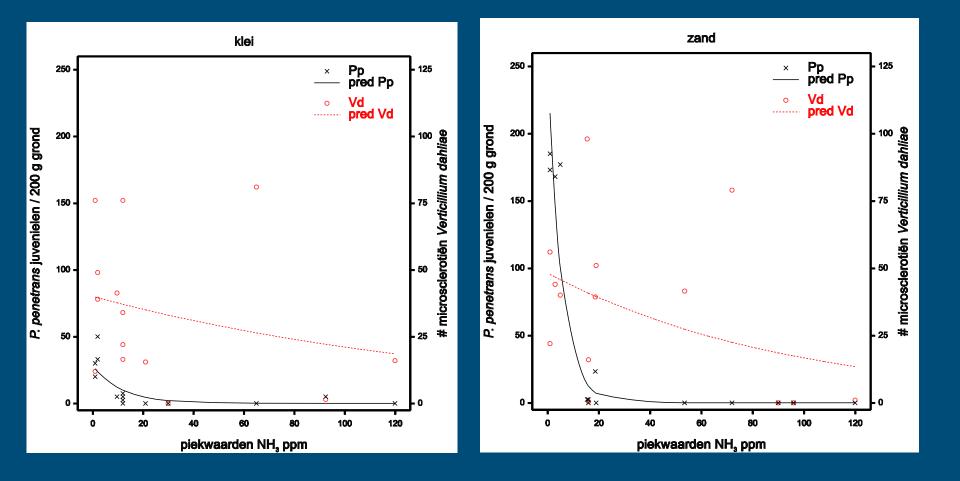
Assessments for 8 weeks

Hand meter O₂, H₂S, CH₄, NH₃

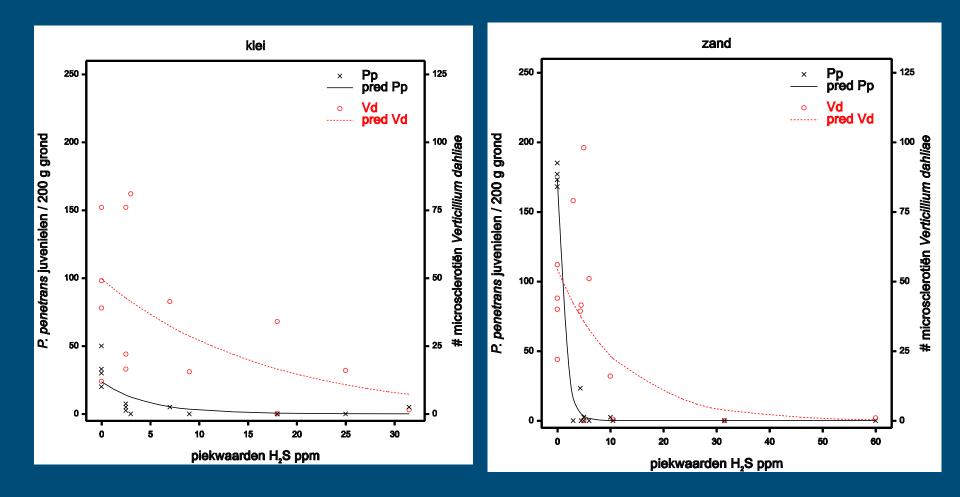
	4381 🔻 🎊											
	А	В	С	D	E	F	G	Н	I.	J	K	^
1	Onderzoeker			waarneming weer								
2	reg.nr.			tijdstip			em	mer grootte	aankruisen			
3	proj.nr			bewolking				10,8 liter				
4	prot.nr			zon				26 liter				
5	datum			windrichting				33 liter				
6	naam			windsnelheid				67 liter				
7				gewas vochtig								
8				opmerkingen			b	g comm1.SW3				
9												
10			A	В	С	D	E	E				
	Veldnr-emmernr /						-	water damp				
11	datum	tijd	CO2 in ppm	N2O in ppm	NH4 in ppm	CH4 in ppm	ъ	in ppm				
355	Data	Logger:	Measurement	Finished								
356	27											
357	Data	Logger:	Measurement	Started								
358	13		128,000.00000	261.00000	11.40000	370.00000		16.40000				
359	13	18:26:11	128,000.00000	218.00000	11.20000	287.00000		16.20000				
360	Data	Logger:	Measurement	Finished								
361	108											
362	Data	Logger:	Measurement	Started								
363	13	18:28:16	147,000.00000	1,860.00000	38.50000	2,450.00000		16.60000				
364		18:29:25	147,000.00000	1,870.00000	38.70000	2,450.00000		16.60000				
365	Data	Logger:	Measurement	Finished								
366	96											
367	Data	Logger:	Measurement	Started								
368			174,000,00000	111.00000	23.60000	194.00000		15,90000				
369			174,000.00000	98.80000	23.50000	173.00000		15.90000				
370	Data	Logger:	Measurement	Finished								
371	78						1					
	Data	Logger:	Measurement	Started								
373			123,000.00000	31.50000	8.79000	35.60000		16.20000				
374			123,000,00000	30,70000	8.77000	32.30000		15.90000				
	Data	Logger:	Measurement									
376												
	Data	Logger:	Measurement	Started								
378			61,600,00000	4,370.00000	7.05000	11,600.00000		16.00000				~
	Blad1 / Blad2 / Blad		.,	4,010.0000		<					L.	>


Greenhouse gas meter CH₄, NH₃, CO₂, N₂O

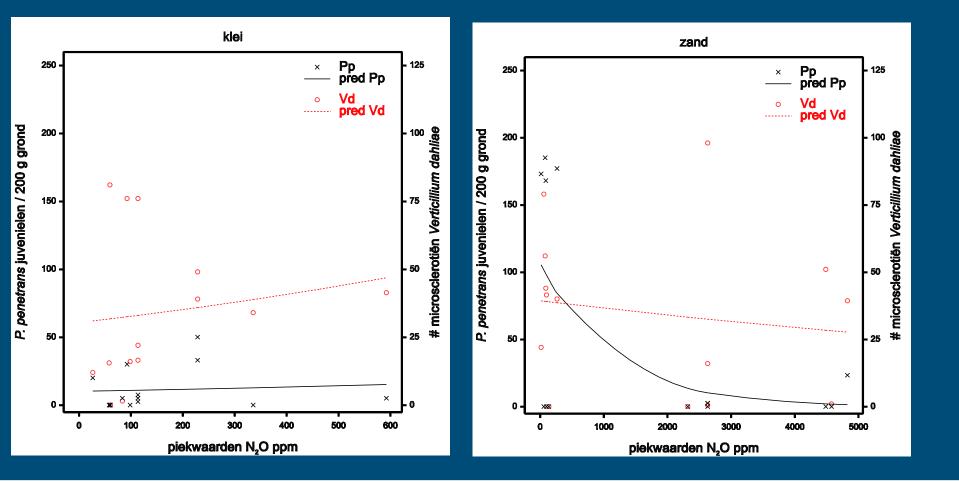
Figures: peak values of all products → efficacy
 One gas/fatty acid per figure; process includes complex of several gases and fatty acids 'simultaneously'
 Indications; no conclusions
 Next step: C/T values → efficacy
 Not all products tested against *V. dahliae*



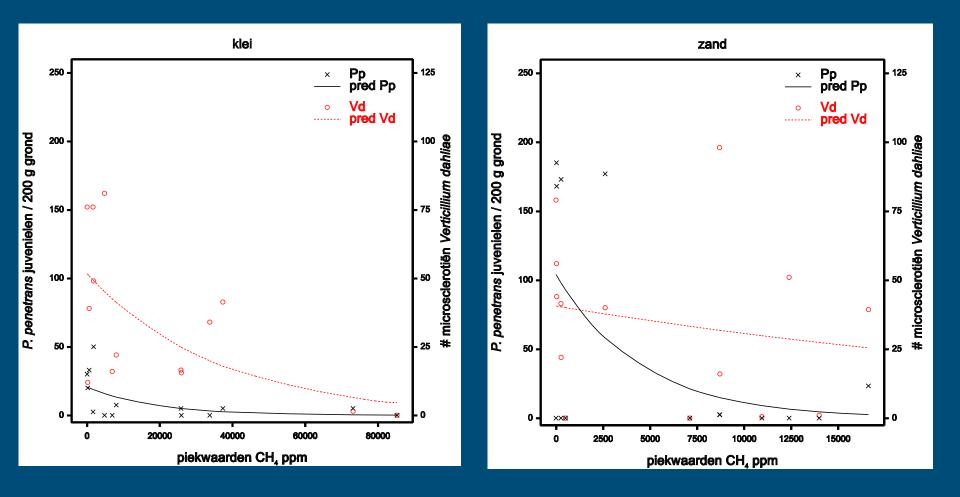
O₂ – efficacy *Pratylenchus* and *Verticillium*



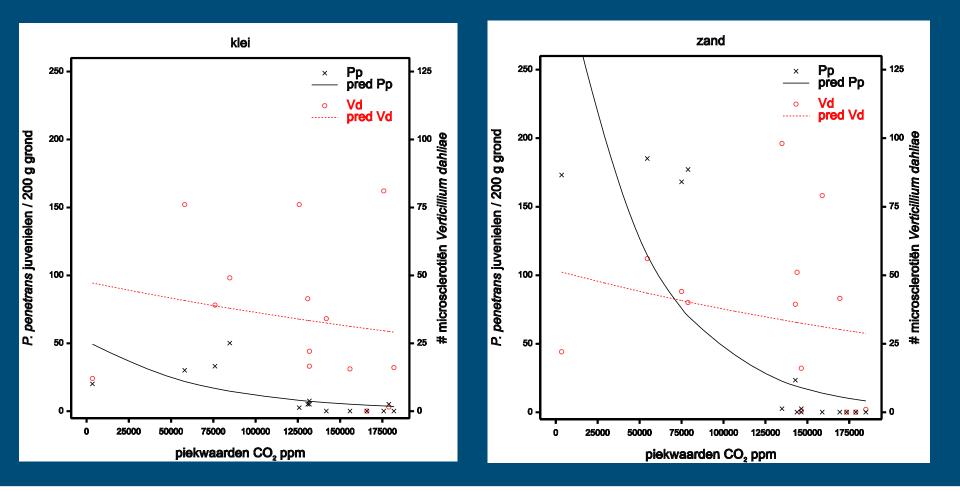
peak values NH₃ – efficacy *Pratylenchus* and *Verticillium*



peak values H₂S – efficacy *Pratylenchus* en *Verticillium*



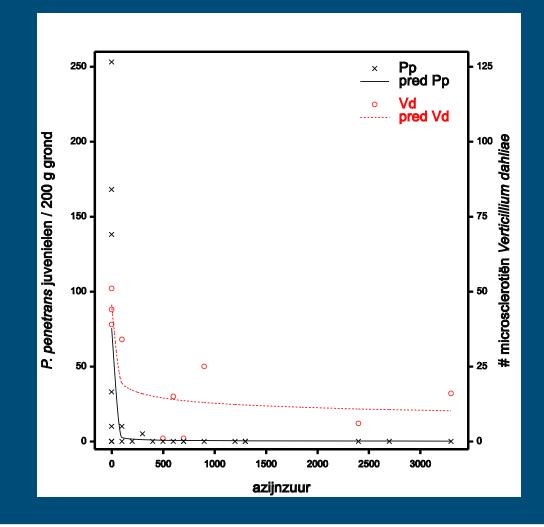
peak values N₂O – efficacy *Pratylenchus* en *Verticillium*



peak values CH₄ – efficacy *Pratylenchus* en *Verticillium*

peak values CO₂ – efficacy *Pratylenchus* en *Verticillium*

Indications role greenhouse gases


Efficacy	P. penetrans	P. penetrans	V. dahliae	V. dahliae	
	clay	sand	clay	sand	
no O ₂	±	±	-	-	
NH ₃	+	+	±	±	
H ₂ S	+	+	+	+	
CH ₄	+	±	+	-	
CO ₂	+	+	-	-	
N ₂ O	±	±	-	-	

- One assessment after 4 weeks exposure timepeak values unknown
- Fatty acid production during 8 weeks exposure time unknown
- Highest values; acetic acid, butyric acid, propionic acid

Acetic acid – efficacy *Pratylenchus* and *Verticillium*

Conclusion

Gases and fatty acids involved in ASD defined
 Role of O₂ defined
 Efficacy fermentation products defined; more effective than grass

 Application of gases and fatty acids separately under controlled conditions can define efficacy of each compound against soilborne pathogens and pests

<u>Future</u>

Tailor made approach based on knowledge of mechanisms

