
Proceedings of TOGO 2010, pp. 23 – 26.

On interval Branch-and-Bound algorithm for additively

separable functions with one common variable∗

José L. Berenguel1, L.G. Casado1, E.M.T. Hendrix2, Frédéric Messine3 and I. García2

1Department of Computer Architecture and Electronics, University of Almería, 04120, Spain. jlberenguel@gmail.com,

leo@ual.es

2Department of Computer Architecture, University of Málaga, 29017, Spain. Eligius.Hendrix@wur.nl, igarcia@uma.es

3ENSEEIHT-IRIT, UMR-CNRS 5505, 2 rue Camichel BP 7122, 31071 Toulouse Cedex 7, France Frederic.Messine@n7.fr

Abstract Interval Branch-and-Bound algorithms are powerfulmethods which aim for guaranteed solutions of
Global Optimization problems. The computational effort to reach this aim increases exponentially
with the problem dimension in the worst case. For separable functions this effort can be less as
lower dimensional subproblems can be solved individually. We investigate possibilities to design
specific methods for cases where the objective function can be considered separable, but common
variables occur in the subproblems. As initial research we tackle the case where the problem can be
decomposed in two additively separable functions with just one variable in common.

Keywords: Branch-and-Bound, Interval Arithmetic, Separable functions.

1. Introduction

Interval Branch-and-Bound methods are powerful methods which aim for guaranteed solu-
tions of Global Optimization problems. Although these methods have the ability to handle
constraints, we focus here on the generic box constrained global optimization problem, which
is to find

f∗ = min
x∈S

f(x) (1)

where S ∈ R
n. With increasing dimension n the computational effort of B&B interval methods

increases drastically. In design problems, it is not unusual that the objective function f is
composed of several functions. If this is the case in an additive way and the variables can be
split into subgroups that do not overlap, we call the function completely additively separable
(CASF). CASF can be solved by finding solutions of subfunctions independently and adding
the obtained results. On the other hand, if subfunctions share variables we call the function
additively shared separable (ASF). Here we study ASF with two subfunctions that share one
variable. In general, solving (1) for ASF seems to be easier when separable character is taken
into account. Here we study the adaption of an interval B&B algorithm to ASF. Section 2
describes the standard B&B algorithmwe compare with. Section 3 describes themodifications
in previous B&B algorithm to solve ASF problems. Results of experiments are presented in
Section 4 and conclusion are shown in Section 5.

∗This work has been funded by grants from the SpanishMinistry of Science and Innovation (TIN2008-01117), Junta de Andalucía
(P08-TIC-3518), in part financed by the European Regional Development Fund (ERDF). Eligius Hendrix is a fellow of the Spanish
"Ramon y Cajal" contract program, co-financed by the European Social Fund.

24 José L. Berenguel, L.G. Casado, E.M.T. Hendrix, Frédéric Messine and I. García

2. Interval B&B Algorithm

B&B algorithms can be determined by several rules, as it is shown in the following algorithm:

B&B (f ,S):
Set the working list L = {S} and the final list Q = ∅
While (L 6= ∅)

Select an intervalX from L Selection rule
if X cannot be eliminated Elimination rule

Divide X into Xk, k = 1, . . . , d, subintervals Division rule
foreach Xk

Compute a lower bound of f(Xk) Bounding rule
if Xk satisfies the termination criterion Termination rule
StoreXk in Q

else
StoreXk in L

To solve (1) we use the following rules:

Bounding. An interval extension F of f is an inclusion function, i.e, f(X) ⊆ F (X).
Selection. IntervalX ∈ Lwith smallest lower bound (F (X)) is selected.
Division. The widest component ofX is bisected. Two subintervals are generated.
Termination. If the length of the widest component of X is smaller or equal than ǫ, i.e.

w(X) ≤ ǫ, interval X is stored in the final list Q.
Elimination. Two elimination tests are used:

RangeUp test. Given f∗ an upper bound of the global minimum f∗, an interval X
does not contain a minimizer point if the lower bound of f(X), F (X) > f∗. f∗ is
updated with the smallest value of f evaluated at the middle point of the selected
intervals (m(X)).
Monotonicity test. If 0 /∈ F ′

i (X) and X does not intersect the boundary of S, X can
be rejected.

More elaborated rules can be found in literature but we use this simple algorithm as a basis
to compare with [1–3].

3. Interval B&B Algorithm for ASF (ASF-B&B)

The instances of ASF problem that we want to solve here can be formulated from (1) as:

f∗ = min
x∈S

f(x) = min
x[1]∈S[1],x[2]∈S[2]

f [1](x[1]) + f [2](x[2]), (2)

with S[1] ∪ S[2] = S, x[1] ∈ R
n[1]

, x[2] ∈ R
n[2]

, n[1] + n[2] = n + 1 and without loss of generality

we take as common variable x
[1]

n[1] = x
[2]

n[2] . To solve (2) using a B&B algorithm, we define

two working lists L[1], L[2] and two final lists Q[1], Q[2] for the corresponding subfunctions.
Following, the rules that define ASF-B&B algorithm are described:

Bounding. Given an interval X [i], we store two lower bounds, one for f [i] and another for f .
They are calculated as follows:

F [i](X [i]) is a lower bound of f [i](X [i]) due to interval arithmetic.
We define EX [i] = {E ⊆ S,E[i] = X [i]}. Without loss of generality, let us focus on

X [1]. Then,
F (EX [1]) = F [1](X [1]) + F [2](Z [2]), where (3)

Additively separable functions B&B 25

Z [2] = arg min
X[2]∈L[2]∪Q[2]

F [2](X [2]), with X
[1]

n[1] ∩X
[2]

n[2] 6= ∅. (4)

The proof of F (EX [1]) as a correct lower bound of f(EX [1]) will be given in the
final article.

Selection. ListL[1] andL[2] are visited using round robin. IntervalX [i] with the smallest lower

bound F (EX [i]) is selected (see eq. (3)).

Division. The widest component of X [i] is bisected. Two subintervals are generated.

Termination. If the length of the widest component of X [i] is smaller or equal than ǫ, i.e.

w(X [i]) ≤ ǫ, interval X [i] is stored in final list Q[i].
Elimination. Wlog, let us focus onX [1]. Elimination tests are the following:

Unshared value of common variable. X [1] can be removed if
∀X [2] ∈ L[2] ∪Q[2], X

[1]

n[1] ∩X
[2]

n[2] = ∅.

Non common variables monotonicity. X [1] can be removed if

0 /∈ F ′

i (X
[1]), i 6= n[1] and X [1] does not intersect the boundary of S[1].

RangeUp. Given f∗ an upper bound of the global minimum f∗, an interval X [1]

does not contain a minimizer point if F (EX [1]) > f∗ (see eq. (3)). f∗ is up-

dated with the smallest value of f [1]+ f [2] evaluated at the middle point of selected

intervals X [1], Z [2] (see eq. (4)), but using as common variable X
[1]

n[1] = Z
[2]

n[2] =

X
[1]

n[1] ∩ Z
[2]

n[2] .

Subfunction RangeUp. An interval X [1] does not contain a minimizer point if

F [1](X [1]) > g[1](X
[1]

n[1]), where g[1](X
[1]

n[1]) is the lowest value for f [1](m(Y [1])) found

so far withm(Y [1])n[1] ∈ X
[1]

n[1] .

4. Results

We designed several instances to measure the performance of the ASF-B&B algorithm com-
paredwith B&B algorithm. The design of these test functions has been done usingwell-known
functions in Global Optimization. The process is the following: we select two functions, for ex-
ample Levy-5 (2 dimensions) and Price (2 dimensions), and create the new separable function
L5P sharing the last variable of both functions. Table 1 shows the list of separable functions
with their search domain and the subfunctions used to create them.

Table 1. Separable Test Functions.

Name S f [1] f [2]

Eligius [−10, 10]3 x2
1 + x1x3 +

1
2
x2
3 + x3 x2

2 − 2x2x3

L5P [−10, 10]3 Levy5 Price
GP3 [−2, 2]3 Goldstein-Price Goldstein-Price
SHCBL3 [−10, 10]3 Six-Hump-Camel-Back Levy3

Table 2 shows the execution results of the functions in Table 1 using B&B and ASF-B&B
algorithms. From left to right, the columns of the table are the name of the function; the
precision of the final boxes; the interval containing the minimum value; if FE is the number
of functions evaluations and GE is the number of gradient evaluations, the effort is measured
as: Effort = FE + n · GE; the execution time; the number of final boxes for B&B; and the
number of final boxes for ASF-B&B.

Values in column Q for ASF-B&B algorithm shows the number of boxes after post-process-

ing boxes in Q[1] and Q[2]. This post-processing is based on applying the B&B elimination

26 José L. Berenguel, L.G. Casado, E.M.T. Hendrix, Frédéric Messine and I. García

tests on combining separable final boxes in non-separable ones. The execution time for ASF-
B&B is the algorithm running time plus the post-processing time. These results show that
monotonicity test in common variable, which is not used in ASF-B&B, has importance when
the precision increases.

The current ASF-B&B algorithm running time is in general worse than in B&B due to cod-
ing details of the data structures that needs more than one sorting index. The version in the
final paper will be improved and then the execution times shoould be reduced. Focusing on
Effort, ASF-B&B outperform B&B for low precisions. For higher precisions, ASF-B&B outper-
form B&B in two, out of four cases, and it is similar in one. The difference in dimension for
separable and non separable functions in the experimentation is just one. This shows that it is
interesting to investigate the improvements of the ASF-B&B algorithm to solve larger dimen-
sional problems.

Table 2. Execution Results.

Name ǫ Minimum Effort Time Q Q[1] Q[2]

Eligius-B&B 10−2 [−85.234328,−84.843821] 2,227 0.01 4 - -
Eligius-ASF-B&B [−85.244046,−84.921886] 1,921 0.04 + 0 4 6 8

Eligius-B&B 10−4 [−85.001832,−84.998779] 3,424 0.02 4 - -
Eligius-ASF-B&B [−85.001908,−84.999389] 2,929 0.05 + 0.01 4 6 8

L5P-B&B 10−2 [−174.6145,−172.2646] 3,742 0.07 3 - -
L5P-ASF-B&B [−174.6145,−172.2646] 3,568 0.09 + 0 3 7 22

L5P-B&B 10−4 [−172.2961,−172.2769] 4,363 0.08 3 - -
L5P-ASF-B&B [−172.2961,−172.2769] 14,894 0.52 + 0.06 3 77 239

GP3-B&B 10−1 [−66, 498.05, 65.118653] 239,683 3.21 8,893 - -
GP3-ASF-B&B [−66, 169.43, 65.118653] 26,978 2.09 + 1.18 6,103 665 514

GP3-B&B 10−2 [−4, 280.754, 65.000372] 2,681,671 35.45 68,017 - -
GP3-ASF-B&B [−4, 280.412, 65.000372] 287,367 161.44 + 51.92 52,838 5,013 4,073

SHCBL3-B&B 10−2 [−171.4726,−168.6490] 40,846 0.73 48 - -
SHCBL3-ASF-B&B [−171.4702,−168.6490] 9,723 0.41 + 0.02 30 62 21

SHCBL3-B&B 10−4 [−168.6792,−168.6566] 46,372 0.82 24 - -
SHCBL3-ASF-B&B [−168.6792,−168.6566] 46,767 3.78 + 0.5 24 635 246

5. Conclusions

A new B&B algorithm to solve additively separable functions has been presented. Numerical
results show that the current version of the algorithm outperforms the classic one for low
precision results. The causes of poor results for higher precisions are known and deserve
additional research. Results of an improved ASF-B&B algorithm will be shown in the final
article.

References

[1] E. R. Hansen and G. W. Walster. Global optimization using interval analysis. Marcel Dekker, 2nd edition, 2004.

[2] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht, Holland,
1996.

[3] H. Ratschek and J. Rokne. New Computer Methods for Global Optimization. Ellis Horwood Ltd., Chichester,
England, 1988.

