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Abstract One of the aspects of Branch-and-Bound (B&B) algorithms is the use of an effective rejection (also
called pruning) tests. Blending problems have the unit simplex as search space. The aim of this
article is to study division schemes that generate new B&B sub-problems. The division scheme
aims to increase the success of rejection tests and to decrease the number of vertex and simplex
evaluations. In this way a division scheme improves the performance of the algorithm. [3] show
that a simplex can be rejected if it is covered by infeasibility spheres centered at its vertices. In
general, a regular simplex has more chance to be covered than an irregular one due to the equal
distance between its vertices. Unfortunately, regular division without overlapping is not known
for d-simplices, with d > 2. This work shows empirically the advantages of a regular partition
in blending problems. Therefore, it is important to solve issues associated to overlap in regular
division. Some strategies are described.
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1. Introduction

Consider the following formulation of a mixture design problem which actually consists of
identifying mixture products, each represented by a vector x ∈ R

n, which meet certain re-
quirements [3, 8]. The set of possible mixtures is mathematically defined by the unit simplex

S =







x ∈ R
n |
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





, (1)

where the variables xj represent the fraction of the components in a product x. In mixture
design (blending) problems, the objective is to minimize the cost of the material,

f(x) = eTx, (2)

where vector e gives the costs of the rawmaterials. In themodel under study, linear inequality
constraints and bounds define the design space X ⊂ S. The requirements are defined as
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quadratic inequalities.

gi(x) = xTAix+ bTi x+ ci ≤ 0; i = 1, . . . ,m, (3)

in which Ai is a symmetric n by n matrix, bi is an n-vector and ci is a scalar. In this way we
formulate the problem to be solved as finding elements of the set of “satisfactory” (feasible)
products

D = {x ∈ S | gi(x) ≤ 0; i = 1, . . . ,m}. (4)

Finding a point x ∈ X ∩D defines the quadratic mixture design problem (QMDP), as studied
in [7]. From practical considerations, this problem was extended towards robust solutions.
One can define robustnessR(x) of a design x ∈ D with respect toD as

R(x) = max{R ∈ R
+ | (x+ h) ∈ D, ∀h ∈ R

n, ‖h‖ ≤ R} (5)

Notice that for mixture problems x + h is projected on the unit simplex. Additionally, vari-
ables has semi-continuity property related to aminimum acceptable dosemd that the practical
problems reveal. Therefore, we are merely interested in methods for finding an ǫ-robust solu-
tion with minimum cost, i.e.

min f(x) (Cost (2))
s.t. x ∈ X ∩D (Feasibility (4))

R(x) ≥ ǫ (Robustness (5))
xj = 0 or xj ≥ md (Minimal dose)

(6)

Independently of the application, we are dealing with a B&B algorithm where the search
region defined as a simplex is decomposed iteratively [8]. The left hand side graph of Figure
1 shows the initial search space for n = 2, which is composed of two 0-simplices (one raw
material) and one 1-simplex (two raw materials). The right hand side graph of Figure 1 shows
the initial search space for n = 3, which consists of three 0-simplices, three 1-simplices and
one 2-simplex.
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Figure 1. n=2 and n=3 initial simplices by removing the minimum dose region

B&B methods can be characterized by four rules: Branching, Selection, Bounding, and Elim-
ination [10, 11]. For continuous problems, like the mixture design problem, a termination
criterion has to be incorporated; i.e, one has to establish a minimum sampling precision α. A
detailed description of these rules can be found in [8]. Here we focus on Division rule because
it affects the effectiveness of the elimination tests. The use of simplicial sets in B&B and sev-
eral ways of splitting them has been studied extensively in [4–6, 9]. Bisection of the longest
edge (BLE), as shown in Figure 2a, is most used because it is simple and for all the generated
simplices the length of the longest edge is at most twice the size of the shortest edge.
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Figure 2a. BLE.
Bisect the Longest Edge.

Figure 3b. BAE.
Bisect All Edges.

Figure 4c. ROD.
Regular Overlapping Division.

In general, regular shaped simplices give better bounding results than nonregular ones as
can be found among others in [2]. A regular partition of a simplex similar to bisecting all
edges (BAE), as in Figure 3b, has not been found for dimension higher than 3. Therefore we
develop and investigate the potential of a simplicial subdivision which is regular, but is not a
partition. Figure 4c shows an example of a regular overlapping division (ROD) for n = 3. The
number of simplices generated is n and the length of its edges is (n − 1)/n, as shown by [4].
Dashed lines in Figures 2a to 4c are possible future divisions.

2. Experimental results for blending problems

Results for B&B algorithm using bisection of the largest edge are shown in [8]. Among several
rejection tests, we want to highlight here those based on covering the simplex by infeasibility
spheres centered at its vertices. A summary of them is:

SCTest (Single Cover Test): One sphere covers all the simplex.
MCTest (Multiple Cover Test): A simplex S can be rejected if a point p ∈ S is covered
by all spheres. The correctness of the test was proved in [3]. The proposed p in [8] is
heuristic and can be calculated at low computational cost.
θ-Test: The point θ to be covered is determined by a system of equations in [2]. If one
sphere covers θ all spheres cover it, even if θ /∈ S. Even if θ is not covered, there exist
cases where the covering of S can be determined from θ with additional computational
cost, but we will not consider them in this experimentation.

Table 1 shows the efficiency of different division schema for problems defined in [8]. The ef-
ficiency is measured in terms of number of simplex (NSimplex) and vertex evaluations (NVer-
tex). The rejection tests: SCTest, MCTest and θ-test, with others shown in [8], are checked in
order.

BLE, BAE and ROD has been evaluated for 3-dimensional problems Case2 and RumCoke.
BAE outperform BLE in efficiency. If the rejection test is not very successful it is better to do
multisection, as it is shown for boxes in [1]. Additionally, the SCTest rejects more simplices
at earlier stages of the algorithm because they are regular. BAE reduces the need of MCTest
and only one expensive θ-Test is needed for Case2 and none for RumCoke. On the other
hand, ROD is the worst of all divisions due to the fact that one simplex is overlapped by
several simplices. So, unnecessary redundant computation is done. Additionally, it lacks
vertex reusability.

Table 1 shows the necessary development of a regular division for larger dimensional prob-
lems. The number of congruent classes of simplices generated by BLE is n!/2 [6]. This hinders
the success of SCTest. We research how to avoid redundant computation in ROD division, in-
creasing the vertex reusability at the same time. Some strategies are designed but they deserve
a complete article.
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Table 1. Experimental results for different division schema. α = ǫ =
√

(2)/100, md = 0.03.

Problem n Division NSimplex NVertex SCTest NCTest θ-Test

Case2 3 BLE 393 136 58 18 3
BAE 291 153 66 6 1
ROD 5,946 11,878 745 37 16

RumCoke 3 BLE 569 179 70 31 6
BAE 341 172 86 13 0
ROD 9,038 18,059 1,141 100 23

UniSpec1 7 BLE 72,419 7,561 11,146 5,442 780

UniSpec5b 7 BLE 94,422,861 1,962,173 15,135,582 9,546,656 1,108,185

3. Conclusions

Regular partition seems to outperform bisection and increases the performance of simple re-
jection tests. Unfortunately, regular division for dimension greater than 3 is only known with
overlapping divisions. New methods to avoid redundant computation and to increase the
vertex reusability in regular division are investigated. They will be shown in the final paper.
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