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Preface

Global Optimization Workshops are organized periodically and rather spontaneously by
members of the Global Optimization scientific community. Although there is no proper steer-
ing committee to speak of, the tradition continues unabated ever since Szeged (Hungary 1995)
and Florence (Italy, 1999) and going on to Hanmer Springs (New Zealand, 2001), Santorini
(Greece, 2003), San José (Spain, 2005), Mykonos (Greece, 2007), Skukuza (South Africa, 2008).
The TOulouse Global Optimization workshop (TOGO 2010) adds a new opportunity to meet
on this interesting subject.

In 2009 a new, larger scale format was introduced with the first World Congress of Global
Optimization. Although Global Optimization is certainly mature enough to draw enough
people for a congress, some of us still relish the small-scale, single-track meetings where ev-
eryone gets to meet everyone else. As is customary, a special issue of the Journal of Global
Optimization will be dedicated to this workshop.

This year’s workshop is special in that it celebrates Pierre Hansen’s 70th birthday. Pierre
has been an exceptionally important contributor to the development of Global Optimization.
His works on symbolic methods for global optimization, nonlinear clustering problems, and
extremal polygons all became classics in the field. He also contributed to found the related
field of reformulations in mathematical programming, with a seminal paper co-signed with
another one of our plenary speakers, Charles Audet. People have lost count of the number
of papers written by Pierre; we are sure it must be several hundreds. His H-index, according
to GoogleScholar, is over 30: after reading his publications list we once heard a colleague
from another field say, “not only does this guy publish like crazy: but people actually read
his papers, too!”. The breadth of his interests could easily be termed infinite, at least on the
human scale. We invite our attendees to seize this opportunity to play the “ask Pierre” game:
mention a topic and bet on how many papers he has on the subject. Among other awards,
Pierre has been the recipient of the prestigious EURO gold medal. Pierre is fond of saying
that he owes his success to the fantastic quality of his co-authors. We – at least those of us
who have had the chance of being Pierre’s co-authors – think this sentence should be turned
around: much of our highest quality work is due to Pierre’s encouragement and seemingly
inexhaustible reserve of excellent ideas. Happy birthday Pierre, and keep up the good work!

Eligius Hendrix (Málaga, Spain)
Leo Liberti (Paris, France)
Frédéric Messine (Toulouse, France)
TOGO 2010 Co-chairs
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Proceedings of TOGO 2010, pp. 3 – 6.

Optimization problems in planar geometry∗

Charles Audet

GERAD and Département de mathématiques et de génie industriel, École Polytechnique de Montréal, C.P. 6079, Succ.
Centre-ville, Montréal (Québec), H3C 3A7 Canada, Charles Audet@gerad.ca

Abstract Attributes such as perimeter, area, diameter, sum of distances between vertices and width can be
evaluated for every planar convex polygon. Fixing one of these attributes while minimizing of max-
imizing another defines families of optimization problems. Some of these problems have a trivial
solution, and several others have been solved, some since the Greeks, by geometrical reasoning.
During the last four decades, this geometrical approach has been complemented by global opti-
mization methods. This combination allowed solution of instances than could be solved by any one
of these two approaches alone. This talk surveys research on that topic, and proposes directions for
further work.

Keywords: Extremal problems, global optimization, convex polygon, perimeter, diameter, area, sum of dis-
tances, width

1. Introduction

Consider a n-sided convex polygon Vn in the Euclidean plane. Let An denote its area, Pn its
perimeter, Dn its diameter, Sn the sum of distances between all pairs of its vertices and Wn

its width. Maximizing or minimizing any of these quantities while setting another to a fixed
value defines ten pairs of extremal problems.

These problems were first surveyed in [5], and then some solutions were later updated
in [6]. Usually, one problem from each pair has a trivial solution or no solution at all. For
example, Zenodorus (200-140 b.c.) showed that the regular polygons have maximal area for a
given value of the perimeter, but the question of minimizing the area given a fixed perimeter
is trivial, as the area can be made arbitrarily close to zero.

Simple formulations of extremal problems for convex polygons are easily obtained by de-
noting the consecutive vertices of the n-sided polygon Vn by vi = (xi, yi). Then

. An =
1

2

∣∣∣∣∣

n∑

i=1

(yi+1 − yi)(xi+1 + xi)

∣∣∣∣∣,

. Pn =
n∑

i=1

‖vi+1 − vi‖,

. Dn = max
i<j
‖vi − vj‖,

. Sn =
∑

i<j

‖vi − vj‖,

∗This work is supported by Nserc grant 239436-05,
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. Wn = min
i

max
j 6=i,i+1

|(yj+1 − yj)xi + (xj − xj+1)yi + xj+1yj − xjyj+1|
‖vj+1 − vj‖

,

where the indices i + 1 and j + 1 are taken modulo n, |.| denotes absolute value and ‖.‖ the
Euclidean norm. Expressions of the objective function and constraints easily follow.

2. Currently known solutions

Minimizing a first attribute while fixing a second one is equivalent to maximizing the second
one while fixing the first one. Therefore, the present work only considers the maximization
questions. Table 1 summarizes the current known solutions to these 20 extremal problems
for convex polygons, and provides references to where the solutions may be found. Each line
of the table corresponds to a fixed attribute, while each column indicates which attribute is
maximized.

maxPn maxAn maxDn maxSn maxWn

Pn=1 — Regular Trivial: Segment Reuleaux for n
∼ 180 BC Segment 2008 Larcher & with odd factor
Zenodorus Pillichshammer and n=4. 2009 [4]

2008 [16]
An=1 Trivial: — Trivial: Trivial: open

flat flat flat
Dn=1 Reuleaux for n Regular for odd n — n = 3, 4, 5, 6, 7 Reuleaux for n

with odd factor Reinhardt 1922 [19] 2008 [1] with odd factor
and n = 4, 8 and n ≤ 10. and n = 4.

Tamvakis 1987 [21] Graham 1975 [13] Bezdek &
Datta 1997 [11] 2002 [8], Foster & Fodor [10]

2007 [3] Szabo 2007 [12]
Mossinghoff 2006
[18], Henrion &
Messine 2010 [15]

Sn=1 Segment open Trivial: — open
Larcher & flat

Pillichshammer
2008 [16]

Wn=1 Trivial: Trivial: Trivial: Trivial: —
slice slice slice slice

Table 1. Convex polygons with maximal attribute

Several of these problems have a trivial solution, and only a few of the non-trivial ones are
solved for every value of n. Most of the non-trivial ones have known solutions in the cases
where n is very small, or when n is an odd number, or when it has an odd factor. Some of these
solutions were obtained numerically, using recent global optimization algorithms. In particu-
lar QP [2], a branch and cut algorithm for nonconvex quadratically constrained optimization,
IBBA [17], an interval analysis branch and bound algorithm for nonlinear programming, and
very recently, GloptiPoly [14], a semidefinite programming approach for polynomial opti-
mization.

Adding the additional constraint that the polygons are equilateral leads to different opti-
mization problems. The cases where the solutions are the regular or clipped-Reuleaux [20]
polygons have the equilateral property, and therefore remain optimal. Table 2 details the cur-
rently know solutions to these problems. The most recent results are for the maximization of
the perimeter, the area and the diameter of unit width equilateral polygon. In the non trivial
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case (when the number of sides is odd), it is shown that the optimal polygon are arbitrarily
close to symmetrical trapezoids.

maxPn maxAn maxDn maxSn maxWn

Pn=1 — Regular Trivial: open Reuleaux for n
Zenodorus Segment with odd factor.
∼ 180 BC 2009 [4]

An=1 Trivial: — Trivial: open open
flat flat

Dn=1 Reuleaux for n Regular for odd n — n = 3, 5 Reuleaux for n
with odd factor Reinhardt 1922 [19] 2008 [1] with odd factor
Vincze 1950 [22] and n = 4. and n = 4.
and n = 4, 8 2000 Bezdek &
2004 [7] Fodor [10]

Sn=1 open open Trivial: — open
flat

Wn=1 Trivial for even n Trivial for even n Trivial for even n open —
Trapezoid for Trapezoid for Trapezoid for for odd n

odd n 2010 [9] odd n 2010 [9] odd n 2010 [9]

Table 2. Equilateral convex polygons with maximal attribute

The presentation will discuss recent progress on some of these problems, and will propose
potential research directions.

References

[1] C. Audet, A. Guillou, P. Hansen, F. Messine, S. Perron The Small Hexagon and Heptagon with Maximum Sum of
Distances between Vertices, Les Cahiers du GERAD G-2008-20, 2008.

[2] C. Audet, P. Hansen, B. Jaumard, and G. Savard. A branch and cut algorithm for nonconvex quadratically con-
strained quadratic programming. Mathematical Programming, 87(1, Ser. A):131–152, 2000.

[3] C. Audet, P. Hansen, F. Messine, The small octagon with longest perimeter, Journal of Combinatorial Theory,
Series A, Vol. 114, pp. 135–150, 2007.

[4] C. Audet, P. Hansen, F. Messine, Isoperimetric Polygons of Maximal Width, Discrete & Computational Geometry,
41(1): 45-60, 2009.

[5] C. Audet, P. Hansen, F. Messine, Extremal problems for convex polygons, Journal of Global Optimization, Vol. 38,
pp. 163–179, 2007.

[6] C. Audet, P. Hansen, and F. Messine. Extremal problems for convex polygons - an update. In P.M. Parda-
los and T.F. Coleman, editors, Lectures on Global Optimization, volume 55 of Fields Institute Communications.
American Mathematical Society, 2009.

[7] C. Audet, P. Hansen, F. Messine, S. Perron, The minimum diameter octagon with unit-length sides: Vincze’s wife’s
octagon is suboptimal, Journal of Combinatorial Theory, Series A, Vol. 108, pp. 63–75, 2004.

[8] C. Audet, P. Hansen, F. Messine, and J. Xiong, The largest small octagon, Journal of Combinatorial Theory, Series
A, Vol. 98, No. 1, pp. 46–59, 2002.

[9] C. Audet, J. Ninin, The Maximal perimeter, diameter and area of equilateral unit-width convex polygons, Les Cahiers
du GERAD G-2010, in preparation, 2010.

[10] A. Bezdek and F. Fodor,On convex polygons of maximal width, Archiv derMathematik, Vol. 74, No. 1, pp. 75–80,
2000.

[11] B. Datta, A discrete isoperimetric problem, Geometriae Dedicata, Vol. 64, pp. 55–68, 1997.

[12] J. Foster, T. Szabo, Diameter graphs of polygons and the proof of a conjecture of Graham, Journal of Combinatorial
Theory, Series A, Vol. 114, No. 8, pp. 1515–1525, 2007.

[13] R. L. Graham, The largest small hexagon, Journal of Combinatorial Theory, Series A, Vol. 18, pp. 165–170, 1975.

[14] D. Henrion, J. B. Lasserre, J. Löfberg. GloptiPoly 3: moments, optimization and semideÞnite programming, Opti-
mization Methods and Software, Vol. 24(4-5), pp. 761–779, 2009.



6 Charles Audet

[15] D. Henrion, F. Messine. Finding largest small polygons with GloptiPoly, Proceedings of TOGO 2010.

[16] G. Larcher, F. Pillichshammer, The sum of distances between vertices of a convex polygon with unit perimeter, Amer-
ican Mathematical Monthly, Vol. 115, pp. 350–355, 2008.

[17] F. MessineDeterministic Global Optimization using Interval Contraint Propagation Techniques, RAIRO Oper. Res.,
Vol. 38, No. 4, pp. 277–294, 2004.

[18] M.J. Mossinghoff, Isodiametric Problems for Polygons, Discrete and Computational Geometry, Vol. 36, pp. 363–
379, 2006.

[19] K. Reinhardt, Extremale polygone gegebenen durchmessers, Jahresber. Deutsch.Math. Verein, Vol. 31, pp. 251–270,
1922.

[20] F. Reuleaux, The Kinematics of Machinery, translation of german original, New York: Dover, 1963.

[21] N.K. Tamvakis, On the perimeter and the area of the convex polygon of a given diameter, Bull. Greek Math. Soc.,
Vol. 28, pp. 115–132, 1987.

[22] S. Vincze, On a geometrical extremum problem, Acta Sci. Math. Szeged, Vol. 12, pp. 136–142, 1950.



Proceedings of TOGO 2010, pp. 7 – 7.

Valid inequalities for sets defined bymultilinear functions

Pietro Belotti1, Andrew J. Miller2, and Mahdi Namazifar3

1Lehigh University, 200 W. Packer Ave, Bethlehem PA 18018. belotti@lehigh.edu

2 Institut de Mathématiques de Bordeaux (IMB), 351 cours de la Libération, 33405 Talence, France. Andrew.Miller@math.u-
bordeaux1.fr

3University of Wisconsin, 3239 Mechanical Engineering Building, 1513 University Avenue, Madison WI 53706, USA.
namazifar@wisc.edu

We are interested in finding the convex hull of the multilinear set

Mn = {x ∈ Rn+1 : xn+1 =
n∏

i=1

xi, ℓi ≤ xi ≤ ui ∀i = 1, 2 . . . , n+ 1},

with ℓi and ui constants. Computing the convex hull ofMn is of great theoretical and practical
importance in Global Optimization. An important special case is the one in which xn+1 is not
explicitly bounded, i,e., ℓn+1 =

∏n
i=1 ℓi and un+1 =

∏n
i=1 ui, which we denote asM⋆

n.
We review some of the literature about this important problem, and highlight some recent

results that help understand the structure ofMn and ofM⋆
n and their impact on state-of-the-art

global optimization solvers.
We describe a family of inequalities for M2, i.e., when ℓ3 > ℓ1ℓ2 and u3 < u1u2. Together

with the well known inequalities introduced by McCormick, these inequalities are valid for
the convex hull ofM2. There are infinitely many such inequalities, given that the convex hull
ofM2 is not, in general, a polyhedron. The generalization toMn for n > 2 is straightforward,
and allows us to define strengthened relaxations for these higher dimensional sets as well.
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(Globally) minimizing the distance

to a geometrical property of points

Emilio Carrizosa

Universidad de Sevilla, Sevilla, Spain, ecarrizosa@us.es

Keywords: D.C. optimization, distances minimization

Let Fk,n be a non-empty subset of ℜn× (k). . . ×ℜn. We are interested in sets Fk,n defining
a geometrical property. Examples of such geometrical property are r-coincidence (the set
{x1, . . . , xk} has cardinality r), collinearity (the set {x1, . . . , xk} is contained in a line in ℜn),
cocircularity, cohyperplanarity (the set is contained in a spherical surface or a hyperplane),
linear separability (the sets {x1, . . . , xr} and {xr+1, . . . , xk} are linearly separable), etc.

Given x = (x1, . . . , xk) in ℜn× (k). . . ×ℜn, we seek a perturbation vector ε = (ε1, . . . , εk) ∈
ℜn× (k). . . ×ℜn of x such that x+ ε ∈ Fk,n and the intensity of the perturbation ε is minimized.
The intensity of the perturbation is measured by a nondecreasing function φ of the vector of
norms ‖εj‖.

Different sets Fk,n as well as different choices of φ and ‖ · ‖ yield optimization problems
with rather different properties. In particular, in many cases we face multimodal optimization
problems which can be written as optimizing a d.c. function on a simple region.

Since the way a d.c. function is expressed as a difference of two convex functions is never
unique, there is room for choosing a d.c. function which also quickly yields sharp bounds,
allowing one to solve problems by a branch-and-bound in reasonable time. A particularly
promising concept is the concept of d.c.m. decomposition, which assumes the function is
written as a sum of d.c. monotonic functions of norms. Monotonicity can be exploited to yield
sharper bounds.

Applications of these ideas to particular instances will be presented.

References

[1] Blanquero, R., and E. Carrizosa. (2009). “Continuous Location Problems and Big Triangle Small Triangle:
Constructing Better Bounds," Journal of Global Optimization 45 389-402.

[2] Blanquero, R., E. Carrizosa and P. Hansen. (2009). “Locating Objects in the Plane Using Global Optimization
Techniques," Mathematics of Operations Research 34 837-858.

[3] Carrizosa, E., and F. Plastria. (2008). “Optimal Expected-Distance Separating Halfspace," Mathematics of Op-
erations Research 33 662-677.

[4] Plastria, F., and E. Carrizosa. “Minmax-distance approximation and separation problems: geometrical prop-
erties," Mathematical Programming.





Proceedings of TOGO 2010, pp. 11 – 11.

Celebration of the Octagon

Pierre Hansen

GERAD and HEC Montreal,
3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada, H3T 2A7,
pierre.hansen@gerad.ca

LIX, École Polytechnique, F-91128 Palaiseau, France

The octagon already appears in the oldest mathematical manuscripts of the Egyptians in rela-
tion to the squaring of the circle. Since then, it appears in numerous inspiring and delightful
guises in various disciplines. We follow the octagon through almost forty centuries of trans-
formations in mathematics and less transcendental fields such as architecture, engineering,
philosophy, poetry and numismatics.
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Strong formulations for the pooling problem∗

Mohammed Alfaki and Dag Haugland

Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway, {mohammeda,dag}@ii.uib.no

Abstract The pooling problem is a well-studied global optimization problem with applications in oil refining
and petrochemical industry. Despite the NP-hardness of the problem, which is proved formally in
this paper, most instances from the literature have recently been solved efficiently by use of strong
formulations. The main contribution from this paper is a new formulation that proves to be stronger
than the most successful formulations known to date. We also provide computational experiments
confirming the strength of the new formulation.

Keywords: global optimization, pooling problem, convex and concave envelopes, linear relaxation

1. Introduction

The pooling problem can be considered as an extension of the minimum cost flow problem
on networks with three layers of nodes. Raw materials of unequal quality are supplied at
the sources, and are first mixed in intermediate nodes (pools). At the terminals, sellable end
products are formed by blending the output from the pools. The resulting qualities of the
end products thus depend on what sources they originate from, and in what proportions.
Restrictions, which may vary between the terminals, apply to these qualities. This problem is
typically modeled as a bilinear, nonconvex optimization problem.

There are two main categories of formulations for the pooling problem: The P-formulation
[1] consists of flow and quality variables, whereas the Q-formulation [2] uses flow proportions
instead of quality variables. This formulation has later been shown to perform betterwhen fed
into generic branch-and-cut algorithms. Applying the reformulation linearization technique
(RLT) [3] to the Q-formulation gives a stronger formulation called the PQ-formulation [4].

In this paper, we prove formally that the pooling problem is NP-hard. Hence, no compact
linear program formulation exists unless P = NP . Moreover, we extend the idea in [2] and
[4], and give an even stronger formulation based on proportion variables.

1.1 The pooling problem

Consider a directed acyclic graph G = (N,A), where the node setN consists of the sources S,
the pools Q, and the terminals T , and where the arc set is A ⊆ (S ×Q) ∪ (S × T ) ∪ (Q× T ).

We define a finite set of quality attributesK . With each i ∈ S∪T , we associate a real constant
qki for each k ∈ K . If i ∈ S, qki is referred to as the quality parameter of attribute k at source i,
and if i ∈ T , qki is referred to as the quality bound of attribute k at terminal i. For each i ∈ N ,
we define the constant flow capacity ui, and for each arc (i, j) ∈ A, we define the constant unit
cost cij . Typically, cij > 0 if (i, j) ∈ A ∩ (S ×Q) and cij < 0 if (i, j) ∈ A ∩ (Q× T ).

∗This research was sponsored by the Norwegian Research Council, Gassco, and Statoil under contract 175967/S30
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Define the flow polytope F(G,S, T, u) as the set of v ∈ R
A
+ satisfying

∑
j:(s,j)∈A vsj ≤ us

(s ∈ S),
∑

j:(j,i)∈A vji ≤ ui (i ∈ N \ S), ∑j:(i,j)∈A vij −
∑

j:(j,i)∈A vji = 0 (i ∈ Q). For any
v ∈ F(G,S, T, u), we associate a unique quality matrix w ∈ R

N×K . The elements of w are for
all k ∈ K defined as wk

i = qki if i ∈ S and wk
i =

∑
j:(j,i)∈Aw

k
j vji/

∑
j:(j,i)∈A vji if i ∈ N \ S. We

then have the formal definition:

Problem 1 (The pooling problem). Find v ∈ F(G,S, T, u) with associated quality matrix w ∈
R
N×K satisfying wk

t ≤ qkt ∀t ∈ T, k ∈ K such that cT v is minimized.

Proposition 1. The pooling problem is NP-hard

Proof. The full version of this paper gives a detailed proof based on a polynomial reduction
from the maximum three-dimensional matching problem.

2. The PQ-formulation

Define ysi = vsi/
∑

t:(i,t)∈A vit as the proportion of the flow through pool i ∈ Q that comes
from the source s ∈ S (let ysi = 0 if (s, i) 6∈ A). Also, define xsit as the flow along the path
(s, i, t) in G if (s, i), (i, t) ∈ A, and let xsit = 0 otherwise. We also let vij = 0 if i, j ∈ N
and (i, j) 6∈ A. Combining these variables with the flow variables introduced in the previous
section, we arrive at the PQ-formulation written as:

[PQ] min
∑

(i,j)∈A
cijvij (1)

∑

j∈Q∪T
vsj ≤ us,

∑

j∈S∪Q
vji ≤ ui s ∈ S, i ∈ N \ S (2)

∑

i∈Q

∑

s∈S

(
qks − qkt

)
xsit +

∑

s∈S

(
qks − qkt

)
vst ≤ 0 t ∈ T, k ∈ K (3)

∑

s∈S
ysi = 1 i ∈ Q (4)

∑

t∈T
xsit = vsi s ∈ S, i ∈ Q (5)

xsit − ysi vit = 0 s ∈ S, i ∈ Q, t ∈ T (6)
∑

s∈S
xsit = vit i ∈ Q, t ∈ T (7)

∑

t∈T
xsit ≤ uiysi s ∈ S, i ∈ Q (8)

0 ≤ vij ≤ min{ui, uj} (i, j) ∈ A (9)
0 ≤ ysi ≤ 1 i ∈ Q, s ∈ S (10)

Without altering the model, we have rewritten the formulation from [4] using our notation.
Note that the variable vsi and the constraint (5) are not present in the PQ-formulation written
in [4]. However, this is only a notational difference, and will not alter the strength of the
formulation. Constraints (7) and (8) are redundant, but as shown in [4], these cuts strengthen
the formulation significantly.

A linear relaxation of (1)-(10) is constructed by bounding xsit between the convex and con-
cave envelopes of ysi vit for all (s, i, t) defining a path in G. For all (i, j) ∈ A, let vij and vij be
some lower an upper bound on the variable vij . A corresponding notation will be applied for
all other variables. It can be shown [5] that the convex and concave envelopes of yv (for conve-
nience, we drop sub- and superscripts here) on the rectangle C = [y, y]× [v, v], are vexC(yv) =
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max
{
yv + vy − vy, yv + vy − vy

}
and cavC(yv) = min

{
yv + vy − vy, yv + vy − vy

}
, respec-

tively. For any rectangle C = [y, y]× [v, v] ⊂ R
2, define the polyhedron

H[C] =
{
(y, v, x) ∈ R

3 : vexC(yv) ≤ x ≤ cavC(yv), (y, v) ∈ C
}
.

Note that it is straightforward to find a rectangle Cs
it enclosing all feasible (ysi , vit). The

linear relaxation of the PQ-formulation is thus obtained by replacing the bilinear constraint
(6) by the linear inequalities that impose (ysi , vit, xsit) ∈ H [Cs

it] for all i ∈ Q, s ∈ S, t ∈ T .

3. Strong formulations with terminal proportions

Analogous to the proportion variables ysi (s ∈ S), define for all pools i ∈ Q, yti as the proportion
of the flow at i destined for terminal t ∈ T . That is, we let yti = vit/

∑
s:(s,i)∈A vsi. A newmodel

resembling the PQ-formulation is established by replacing constraints (4), (6), (8) and (10) by

∑

t∈T
yti = 1 i ∈ Q, (11)

xsit − ytivsi = 0 s ∈ S, i ∈ Q, t ∈ T, (12)∑

s∈S
xsit ≤ uiyti i ∈ Q, t ∈ T, (13)

0 ≤ yti ≤ 1 i ∈ Q, t ∈ T, (14)

respectively. In other words, this formulation uses terminal instead of source proportions, and
is henceforth referred to as the TP-formulation. A comparison to the PQ-formulation shows
that the formulations do not in general have equal strength, but none dominates the other (see
Table 1 for a comparison on instances from the literature).

The full benefit of the new proportion variables is achieved when they are combined with
source proportions in the same model. It follows from the definition of ysi and yti that y

s
i vit

and ytivsi both can be interpreted as the flow along the path (s, i, t). Given this observation, a
formulation based on source and terminal proportions (denoted the STP-formulation) can be
derived by adding the constraints (11)-(14) to the PQ-formulation.

Clearly, the STP-formulation is at least as strong as the PQ- and TP-formulations. Table
1 shows that there are standard instances from the literature in which the STP-formulation is
stronger. It follows that relying solely on either source (see instances Bental4 and Rt2) or termi-
nal (see instances Adhya1, Adhya4 and Haverly3) proportions, may give weaker relaxations
than including both.

Table 1. Strength of all three relaxations. The best relaxations are given in bold unless all are equal.

problem
Objective function value

Global Solution
PQ TP STP

Adhya1 −840.27 −856.25 −840.27 −549.80
Adhya2 −574.78 −574.78 −574.78 −549.80
Adhya3 −574.78 −574.78 −574.78 −561.05
Adhya4 −961.93 −967.43 −961.93 −877.65
Bental4 −550.00 −541.67 −541.67 −450.00
Bental5 −3500.00 −3500.00 −3500.00 −3500.27
Foulds3 −8.00 −8.00 −8.00 −8.00
Foulds4 −8.00 −8.00 −8.00 −8.00
Foulds5 −8.00 −8.00 −8.00 −8.00
Haverly1 −500.00 −500.00 −500.00 −400.00
Haverly2 −1000.00 −1000.00 −1000.00 −600.00
Haverly3 −800.00 −875.00 −800.00 −750.00
Rt2 −6034.87 −5528.00 −5528.25 −4391.83
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4. Computational results

To investigate the value of the improved strength, we submitted the STP-formulation and its
two competing formulations to the global optimization solver BARON v.1.8.5 [4]. Standard
test problems reported in [4] are used for the computational experiments.

Table 2 shows the results using a Dell OPTIPLEX 755 computer with 2GB memory and
a 2.4Gz processor. Following [4], we apply the RELAXATION ONLY EQUATIONS option to the
redundant constraints ((7)-(8) for PQ, (5) and (13) for TP, (7)-(8) and (11)-(13) for STP). This
forces BARON to neglect these constraints in the local search procedure used in order to pro-
duce feasible solutions.

For each formulation, the table contains the total number of nodes in the search tree (Ntot),
the node where the optimal solution was found (Nsol), and the total CPU-time in seconds
(Tcpu(sec)). We observe that the STP-formulation performs significantly better than the PQ-
and TP-formulations, as it solves 12 out of 14 problems in the root node.

Table 2. Computational results from all three formulations solved by BARON.

Problem
PQ-formulation TP-formulation STP-formulation

Ntot Nsol Tcpu(sec) Ntot Nsol Tcpu(sec) Ntot Nsol Tcpu(sec)

Adhya1 21 20 0.20 39 27 0.59 7 7 0.33
Adhya2 33 12 0.18 15 12 0.29 1 1 0.27
Adhya3 31 31 0.38 37 16 0.60 19 1 0.82
Adhya4 1 −1 0.17 17 17 0.24 1 1 0.29
Bental4 1 −1 0.01 1 −1 0.02 1 −1 0.02
Bental5 −1 −1 0.03 −1 −1 0.10 −1 −1 0.17
Foulds3∗ −1 −1 0.85 −1 −1 0.42 −1 −1 7.46
Foulds4∗ −1 −1 1.15 −1 −1 0.55 −1 −1 1.71
Foulds5∗ −1 −1 0.52 −1 −1 0.83 −1 −1 1.79
Haverly1 1 −1 0.01 1 −1 0.01 1 −1 0.02
Haverly2 5 5 0.02 1 1 0.02 1 1 0.03
Haverly3 1 −1 0.02 1 −1 0.01 1 −1 0.01
Rt2 13 6 0.14 1 1 0.10 1 1 0.18
∗ means that we used MINOS as LP-solver instead of CPLEX in BARON in these problems.
-1 means that the problem was solved during the preprocessing.

5. Conclusion

We have shown that the pooling problem is NP-hard, and that strong LP-relaxations are ob-
tained by combining variables representing source proportions and terminal proportions in
the same model.
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1. Introduction

The minisum single facility problem is one of the most fondamental problems in location
theory. The objective is to locate a single facility on the plane so that the sum of distances from
the facility to a set of demand points is minimized. The problem is often referred to in the
literature as the 1-center problem [6].

Drezner, Mehrez and Wesolowsky investigated in [3] the 1-center problem for the case in
which the distance functions are constant after given threshold values, which they call the
facility location problem with limited distances. This problem has applications in situations where
the service provided by the facility is insensitive after a given threshold distance. For instance,
consider the problem of locating a firestation. In this context, each property has a distance
limit after which the service provided by the firemen is useless, and the property is completely
destroyed.

In this work, we study the situation on which there are lower and upper bounds in the
number of demand points that must be served within the distance limits. Lower bounds in
the number of served points may be used to justify the installation of a facility, while upper
bounds may express the capacity limitations of the service provided.

2. Problem definition

Let us denote ‖p1 − p2‖p as the lq-distance between points p1 and p2 in the plane. Given
n service points in the plane p1, p2, . . . , pn with threshold distances λi for i = 1, . . . , n, the
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Limited Distance Minisum Problem with Side Constraints (LDMPSC) can be expressed by:

min
y∈R2,v∈{0,1}n

n∑

i

[λi(1− vi) + ‖pi − y‖qvi]

subject to
‖pi − y‖qvi ≤ λi for i = 1, . . . , n (1)

L ≤
n∑

i=1

vi ≤ U

where L and U define side constraints in the number of variables vi which can be equal to 1.
The objective function determines if the effective distance from the facility y ∈ R

2 to service
point pi is equal to ‖pi − y‖q or λi depending on the value attributed to variable vi. The first
set of constraints assures that vi can be equal to 1 only if the distance between pi and the
facility y is smaller than the distance limit λi. This avoids the attribution vi = 1 only to satisfy∑n

i=1 vi ≥ L. This problem cannot be approched directly by MINLP solvers since the feasible
set is nonconvex.

3. Optimization algorithm

From the formulation above, we have that for a given location y, vi is equal to 1 only if ‖pi −
y‖q ≤ λi, and to 0 otherwise. If q = 2, this is geometrically equivalent in the plane to the
condition that vi = 1 if y belongs to a disc with radius λi centered at pi, and 0 otherwise.
Analogously, if q = 1, this is equivalent to the condition that vi = 1 if y belongs to a 45

◦

rotated square with diagonal 2λi centered at pi, and 0 otherwise.
A branch-and-bound algorithm based on the vector v would consider implicitly all 2n sub-

problems generated by branching on binary variables vi for i = 1, . . . , n, while adding con-
straints ‖pi−y‖q ≤ λi and ‖pi−y‖q ≥ λi to the resulting subproblems. However, the resulting
subproblems are difficult to solve. Another possibility is to focus on components vi of v which
might be equal to 1 at the same time. When q = 2 for instance, these components are directly
associated to convex regions generated by intersections of discs (see Figure 1). For instance,
for the region indicated by the bullet in Figure 1, only the components v1, v2 and v3 can be
equal to 1.

Hence, we can solve (1) by solving subproblems of the following type:

min
y∈R2,v∈{0,1}|S|

∑

i∈S
(‖pi − y‖q − λi)vi

subject to
‖pi − y‖q ≤ λi ∀i ∈ S, (2)

L ≤
∑

i∈S
vi ≤ U

where S ⊆ {1, 2, . . . , n} is a non-empty set. Each one of the subproblems of type (2) is associ-
ated to a distinct region in the plane. For instance, we have a subproblem with S = {1, 2, 3}
for the region indicated by the bullet in Figure 1. The number of these regions was proved to
be polynomially bounded in [1, 3].

In order to better tackle subproblems (2), they are reformulated exactly (in the sense of [5])
by introducing parameters:

Mi ≥ λi ∀i ∈ S,
decision variables:

ωi ∈ [−Mi, 0] ∀i ∈ S,
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Figure 1. Intersection of discs.

and constraints:

ωi + (1− vi)Mi ≥ ‖pi − y‖q − λi ∀i ∈ S

ωi + viMi ≥ 0 ∀i ∈ S

to (2). We then replace the terms ‖pi − y‖p − λi for i ∈ S in the objective function by ωi. We
thus obtain the reformulated problem:

min
∑

i∈S
ωi

subject to
ωi + (1− vi)Mi ≥ ‖pi − y‖q − λi ∀i ∈ S
ωi + viMi ≥ 0 ∀i ∈ S
‖pi − y‖q ≤ λi ∀i ∈ S
L ≤

∑

i∈S
vi ≤ U (3)

vi ∈ {0, 1} ∀i ∈ S
ωi ∈ [−Mi, 0] ∀i ∈ S
y ∈ R

2

For q = 1, (3) is a MIP program, while for q = 2 it is still not differentiable due to the l2-
distance. Particularly, if squared Euclidean distances are used (i.e., ‖ · ‖22), then (3) is a convex
MINLP for which there exist practically efficient algorithms (e.g. [2, 4]).

Algorithm 1 below enumerates the sets S corresponding to regions delimited by convex
figures (i.e., rotated squares when q = 1, discs when q = 2). This algorithm executes in O(n2τ)
time where τ is the time required for solving each subproblem in steps 4 and 7. We have MIP
subproblems for q = 1 and 1-center subproblems with side constraints for q = 2.
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Algorithm 1

1. Enumerate all intersection points of convex figures in the plane as well as all convex
figures whose boundary does not intersect any other one. Let L1 and L2 be the corre-
sponding lists.

2. For each intersection point p ∈ L1 defined by convex figures centered at points pi and
pj , find the set S of all k such that k 6= i, j and ‖pk − p‖q ≤ λk.

3. Consider the four sets: S, S ∪ {i}, S ∪ {j}, and S ∪ {i, j}.
4. For each one of these sets, solve the associated subproblem of type (3) if the size of that

set is larger than L.

5. Update the best solution if an improving one is found.

6. For each convex figure in L2 find the set S′ composed of its own index and the indices
of all convex figures containing it.

7. Solve subproblems of type (3) defined by each S′.

8. Update the best solution if an improving one is found.

4. Conclusions

The introduction of side constraints while locating a facility in the plane with limited dis-
tances may serve to justify its installation or to describe service limitations. Our work extends
that of Drezner, Mehrez and Wesolowsky [3], adapting it to the presence of side constraints.
This approach leads to subproblems having products of the continuous location variable with
assignment binary variables. The subproblem model is then reformulated in order to ease
its resolution. To the best of our knowledge, this paper presents the first exact algorithm for
locating a facility in the plane with limited distances and side constraints. The presented algo-
rithm takes more time to execute as the complexity of the subproblems increases and as more
intersections of convex figures exist. Finally, it is important to remark that the algorithms and
formulations presented in this work are converted without loss of generality to the case of
weighted distances.
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Abstract Interval Branch-and-Bound algorithms are powerfulmethods which aim for guaranteed solutions of
Global Optimization problems. The computational effort to reach this aim increases exponentially
with the problem dimension in the worst case. For separable functions this effort can be less as
lower dimensional subproblems can be solved individually. We investigate possibilities to design
specific methods for cases where the objective function can be considered separable, but common
variables occur in the subproblems. As initial research we tackle the case where the problem can be
decomposed in two additively separable functions with just one variable in common.
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1. Introduction

Interval Branch-and-Bound methods are powerful methods which aim for guaranteed solu-
tions of Global Optimization problems. Although these methods have the ability to handle
constraints, we focus here on the generic box constrained global optimization problem, which
is to find

f∗ = min
x∈S

f(x) (1)

where S ∈ R
n. With increasing dimension n the computational effort of B&B interval methods

increases drastically. In design problems, it is not unusual that the objective function f is
composed of several functions. If this is the case in an additive way and the variables can be
split into subgroups that do not overlap, we call the function completely additively separable
(CASF). CASF can be solved by finding solutions of subfunctions independently and adding
the obtained results. On the other hand, if subfunctions share variables we call the function
additively shared separable (ASF). Here we study ASF with two subfunctions that share one
variable. In general, solving (1) for ASF seems to be easier when separable character is taken
into account. Here we study the adaption of an interval B&B algorithm to ASF. Section 2
describes the standard B&B algorithmwe compare with. Section 3 describes themodifications
in previous B&B algorithm to solve ASF problems. Results of experiments are presented in
Section 4 and conclusion are shown in Section 5.

∗This work has been funded by grants from the SpanishMinistry of Science and Innovation (TIN2008-01117), Junta de Andalucía
(P08-TIC-3518), in part financed by the European Regional Development Fund (ERDF). Eligius Hendrix is a fellow of the Spanish
"Ramon y Cajal" contract program, co-financed by the European Social Fund.
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2. Interval B&B Algorithm

B&B algorithms can be determined by several rules, as it is shown in the following algorithm:

B&B (f ,S):
Set the working list L = {S} and the final list Q = ∅
While ( L 6= ∅ )

Select an intervalX from L Selection rule
if X cannot be eliminated Elimination rule

Divide X into Xk, k = 1, . . . , d, subintervals Division rule
foreach Xk

Compute a lower bound of f(Xk) Bounding rule
if Xk satisfies the termination criterion Termination rule
StoreXk in Q

else
StoreXk in L

To solve (1) we use the following rules:

Bounding. An interval extension F of f is an inclusion function, i.e, f(X) ⊆ F (X).
Selection. IntervalX ∈ Lwith smallest lower bound (F (X)) is selected.
Division. The widest component ofX is bisected. Two subintervals are generated.
Termination. If the length of the widest component of X is smaller or equal than ǫ, i.e.

w(X) ≤ ǫ, interval X is stored in the final list Q.
Elimination. Two elimination tests are used:

RangeUp test. Given f∗ an upper bound of the global minimum f∗, an interval X
does not contain a minimizer point if the lower bound of f(X), F (X) > f∗. f∗ is
updated with the smallest value of f evaluated at the middle point of the selected
intervals (m(X)).
Monotonicity test. If 0 /∈ F ′

i (X) and X does not intersect the boundary of S, X can
be rejected.

More elaborated rules can be found in literature but we use this simple algorithm as a basis
to compare with [1–3].

3. Interval B&B Algorithm for ASF (ASF-B&B)

The instances of ASF problem that we want to solve here can be formulated from (1) as:

f∗ = min
x∈S

f(x) = min
x[1]∈S[1],x[2]∈S[2]

f [1](x[1]) + f [2](x[2]), (2)

with S[1] ∪ S[2] = S, x[1] ∈ R
n[1]

, x[2] ∈ R
n[2]

, n[1] + n[2] = n + 1 and without loss of generality
we take as common variable x[1]

n[1] = x
[2]

n[2] . To solve (2) using a B&B algorithm, we define
two working lists L[1], L[2] and two final lists Q[1], Q[2] for the corresponding subfunctions.
Following, the rules that define ASF-B&B algorithm are described:

Bounding. Given an interval X [i], we store two lower bounds, one for f [i] and another for f .
They are calculated as follows:

F [i](X [i]) is a lower bound of f [i](X [i]) due to interval arithmetic.
We define EX [i] = {E ⊆ S,E[i] = X [i]}. Without loss of generality, let us focus on
X [1]. Then,

F (EX [1]) = F [1](X [1]) + F [2](Z [2]), where (3)
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Z [2] = arg min
X[2]∈L[2]∪Q[2]

F [2](X [2]), with X [1]

n[1] ∩X [2]

n[2] 6= ∅. (4)

The proof of F (EX [1]) as a correct lower bound of f(EX [1]) will be given in the
final article.

Selection. ListL[1] andL[2] are visited using round robin. IntervalX [i] with the smallest lower
bound F (EX [i]) is selected (see eq. (3) ).

Division. The widest component of X [i] is bisected. Two subintervals are generated.
Termination. If the length of the widest component of X [i] is smaller or equal than ǫ, i.e.

w(X [i]) ≤ ǫ, interval X [i] is stored in final list Q[i].
Elimination. Wlog, let us focus onX [1]. Elimination tests are the following:

Unshared value of common variable. X [1] can be removed if
∀X [2] ∈ L[2] ∪Q[2], X [1]

n[1] ∩X [2]

n[2] = ∅.
Non common variables monotonicity. X [1] can be removed if
0 /∈ F ′

i (X
[1]), i 6= n[1] and X [1] does not intersect the boundary of S[1].

RangeUp. Given f∗ an upper bound of the global minimum f∗, an interval X [1]

does not contain a minimizer point if F (EX [1]) > f∗ (see eq. (3) ). f∗ is up-
dated with the smallest value of f [1]+ f [2] evaluated at the middle point of selected
intervals X [1], Z [2] (see eq. (4) ), but using as common variable X [1]

n[1] = Z
[2]

n[2] =

X
[1]

n[1] ∩ Z [2]

n[2] .
Subfunction RangeUp. An interval X [1] does not contain a minimizer point if
F [1](X [1]) > g[1](X

[1]

n[1]), where g[1](X [1]

n[1]) is the lowest value for f [1](m(Y [1])) found

so far withm(Y [1])n[1] ∈ X [1]

n[1] .

4. Results

We designed several instances to measure the performance of the ASF-B&B algorithm com-
paredwith B&B algorithm. The design of these test functions has been done usingwell-known
functions in Global Optimization. The process is the following: we select two functions, for ex-
ample Levy-5 (2 dimensions) and Price (2 dimensions), and create the new separable function
L5P sharing the last variable of both functions. Table 1 shows the list of separable functions
with their search domain and the subfunctions used to create them.

Table 1. Separable Test Functions.

Name S f [1] f [2]

Eligius [−10, 10]3 x2
1 + x1x3 +

1
2
x2
3 + x3 x2

2 − 2x2x3

L5P [−10, 10]3 Levy5 Price
GP3 [−2, 2]3 Goldstein-Price Goldstein-Price
SHCBL3 [−10, 10]3 Six-Hump-Camel-Back Levy3

Table 2 shows the execution results of the functions in Table 1 using B&B and ASF-B&B
algorithms. From left to right, the columns of the table are the name of the function; the
precision of the final boxes; the interval containing the minimum value; if FE is the number
of functions evaluations and GE is the number of gradient evaluations, the effort is measured
as: Effort = FE + n · GE; the execution time; the number of final boxes for B&B; and the
number of final boxes for ASF-B&B.

Values in column Q for ASF-B&B algorithm shows the number of boxes after post-process-
ing boxes in Q[1] and Q[2]. This post-processing is based on applying the B&B elimination
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tests on combining separable final boxes in non-separable ones. The execution time for ASF-
B&B is the algorithm running time plus the post-processing time. These results show that
monotonicity test in common variable, which is not used in ASF-B&B, has importance when
the precision increases.

The current ASF-B&B algorithm running time is in general worse than in B&B due to cod-
ing details of the data structures that needs more than one sorting index. The version in the
final paper will be improved and then the execution times shoould be reduced. Focusing on
Effort, ASF-B&B outperform B&B for low precisions. For higher precisions, ASF-B&B outper-
form B&B in two, out of four cases, and it is similar in one. The difference in dimension for
separable and non separable functions in the experimentation is just one. This shows that it is
interesting to investigate the improvements of the ASF-B&B algorithm to solve larger dimen-
sional problems.

Table 2. Execution Results.

Name ǫ Minimum Effort Time Q Q[1] Q[2]

Eligius-B&B 10−2 [−85.234328,−84.843821] 2,227 0.01 4 - -
Eligius-ASF-B&B [−85.244046,−84.921886] 1,921 0.04 + 0 4 6 8

Eligius-B&B 10−4 [−85.001832,−84.998779] 3,424 0.02 4 - -
Eligius-ASF-B&B [−85.001908,−84.999389] 2,929 0.05 + 0.01 4 6 8

L5P-B&B 10−2 [−174.6145,−172.2646] 3,742 0.07 3 - -
L5P-ASF-B&B [−174.6145,−172.2646] 3,568 0.09 + 0 3 7 22

L5P-B&B 10−4 [−172.2961,−172.2769] 4,363 0.08 3 - -
L5P-ASF-B&B [−172.2961,−172.2769] 14,894 0.52 + 0.06 3 77 239

GP3-B&B 10−1 [−66, 498.05, 65.118653] 239,683 3.21 8,893 - -
GP3-ASF-B&B [−66, 169.43, 65.118653] 26,978 2.09 + 1.18 6,103 665 514

GP3-B&B 10−2 [−4, 280.754, 65.000372] 2,681,671 35.45 68,017 - -
GP3-ASF-B&B [−4, 280.412, 65.000372] 287,367 161.44 + 51.92 52,838 5,013 4,073

SHCBL3-B&B 10−2 [−171.4726,−168.6490] 40,846 0.73 48 - -
SHCBL3-ASF-B&B [−171.4702,−168.6490] 9,723 0.41 + 0.02 30 62 21

SHCBL3-B&B 10−4 [−168.6792,−168.6566] 46,372 0.82 24 - -
SHCBL3-ASF-B&B [−168.6792,−168.6566] 46,767 3.78 + 0.5 24 635 246

5. Conclusions

A new B&B algorithm to solve additively separable functions has been presented. Numerical
results show that the current version of the algorithm outperforms the classic one for low
precision results. The causes of poor results for higher precisions are known and deserve
additional research. Results of an improved ASF-B&B algorithm will be shown in the final
article.
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Abstract A mixed-integer nonlinear optimization model is presented for the resolution of aircraft conflict.
Aircraft conflicts occur when aircraft sharing the same airspace are “too close” to each other and
represent a crucial problem in Air Traffic Management. We describe the model and show some
numerical experiments.

Keywords: aircraft conflict aivoidance, modeling, global optimization, MINLP

1. Introduction

The problem of detecting and solving aircraft conflicts, that occur when the distance between
two aircraft sharing the same airspace is less than a given safety distance, is crucial in Air
Traffic Management to guarantee air traffic safety. Currently, the resolution of conflicts is still
largely performed manually by air traffic controllers watching the movement of traffic on a
radar screen. Therefore, a great interest is devoted to the development of automatic tools.

One aims at solving a conflict while deviating as little as possible from the original flight
plan. An optimization problem can thus be naturally defined. Notwithstanding the impor-
tance of the problem and the urgent need of automatic tools able to integrate human work
to face the growing air traffic security requirements, there is still a need for suitable models.
Different models have been proposed based on allowing both heading angle deviation and
speed changemaneuvers, either in a centralized [5][6][7] or in an autonomous [4][3] approach.
The advantages of subliminal control using only small speed adjustments were shown in the
ERASMUS [2] project. In this paper, we propose a newmodel for air conflict avoidance based
on velocity changes. It is mixed-integer because it requires the use of continuous and discrete
variables, in particular 0-1 variables to represent logic choices, and involves nonlinear terms.
The model is then in the area of Mixed-Integer Nonlinear Programming. In the following
sections we describe the model and we show some computational results obtained using a
general-purpose global optimization solver.

2. Modelization

Aircraft are assumed to be flying on a horizontal plane and are identified by points in the
plane. We propose a model based on instantaneous velocity changes, while the trajectory is
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kept unchanged. The main idea is to deal with the different time windows where aircraft fly
with their original (known) speed v or with a changed speed v + q, q representing a possible
positive or negative speed change. Time windows are defined by instant times such that each
aircraft changes its original velocity, i.e., it starts or ends flying with speed v + q. Because
of the assumption of instantaneous velocity changes, we can consider uniform motion laws
in each time window, where the velocity to be considered for each aircraft k is vk or vk +
qk depending on the time configuration. There are 6 possible time configurations, obtained
considering permutations of instant times when aircraft change their speed, and, for each
time configuration, 5 time intervals have to be taken into account. Given a pair of aircraft i
and j, let t1i, t1j and t2i, t2j be the instant times when i and j start and respectively end flying
with changed speed. An order for t1i, t2i, t1j , t2j is not a priori known. By permutations of
these instant times, excluding some cases giving rise to inconsistency (i.e., taking into account
that ∀k t1k ≤ t2k and so a time sequence always starts with a t1 instant and ends with a t2
one), we obtain the following time configurations, where T represents the upper bound on
time instants:

0 ≤ t1i ≤ t1j ≤ t2i ≤ t2j ≤ T (1)
0 ≤ t1j ≤ t1i ≤ t2i ≤ t2j ≤ T (2)
0 ≤ t1i ≤ t2i ≤ t1j ≤ t2j ≤ T (3)
0 ≤ t1j ≤ t2j ≤ t1i ≤ t2i ≤ T (4)
0 ≤ t1i ≤ t1j ≤ t2j ≤ t2i ≤ T (5)
0 ≤ t1j ≤ t1i ≤ t2j ≤ t2i ≤ T. (6)

Each of these configurations defines 5 time intervals.

We use as decision variables:

∀k ∈ A qk, where A is the set of aircraft, expressing the speed change of aircraft. Note
that qk can be positive (acceleration), negative (deceleration) and null (if there is no speed
change). We impose, as it is done in practice, that the speed change for aircraft k cannot
be greater than +3% and smaller than −6% of its original speed.

∀k ∈ A t1k, t2k, representing the instant times such that aircraft k starts and respec-
tively ends flying with changed speed. Instant time are always ≥ 0 and have an upper
bound T . They are such that t1k ≤ t2k.

We also employ auxiliary variables to model the problem, both continuous and integer (and
in particular binary). Suitable integer variables are in particular used to describe all possible
time configurations.

We aim at obtaining conflict avoidance with the minimum speed change for aircraft that
should fly with changed speed during a time interval which also has to be minimized. We
then use as objective function:

min
∑

k∈A
q2k(t2k − t1k)2. (7)

We impose a number of constraints that are used to handle time configurations and to ex-
press aircraft separation conditions in each time interval.

Firstly, the interval time for speed change must be at least equal a certain amount tmin:

∀k ∈ A t2k − t1k ≥ tmin. (8)

Modeling all possible time configurations needs the introduction of binary variables zℓ, ℓ ∈
{1, . . . , 6} stating, for each time configuration, what is the order of instant times for that con-
figuration. So, for example, the binary variable z1 is such that:

t1i ≤ t1j and t1j ≤ t2i and t2i ≤ t2j. (9)
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The following constraint imposes that only one configuration must hold:
∑

ℓ∈{1,...,6}
zℓ = 1. (10)

Aircraft separation is expressed by the following condition:

||−→x r(t)|| ≥ d, (11)

where d is the minimum required separation distance and −→x r(t) is given by

−→x r(t) = −→x rd
ij +−→v r

ijt, (12)

where −→x rd
ij is the relative initial position of aircraft i and j and −→v r

ij their relative speed.
Squaring (11) and deriving with respect to t, one can see that the minimum is attained for

tm = −
−→v r

ij
−→x rd

ij

(vr
ij
)2 . We are only interested in the minimum in each interval [ts, ts′ ] Substituting,

the following separation condition is obtained:

(xrdij )
2 −

(−→v r
ij
−→x rd

ij )
2

(vrij)
2
− d2 ≥ 0. (13)

Initial position in each time interval, relative distances and speeds between aircraft are then
exploited, and new variables introduced accordingly. Distances covered by aircraft during
each time interval are computed exploiting laws of uniform motion because of the aircraft’s
constant speed in each of such intervals. In the h-th time interval [ts, ts′ ], h ∈ {1, . . . , 5}, for all
aircraft k ∈ A the initial position xkh is given by

xkh = xk(h−1) + (ts′ − ts)v̄k, (14)

where v̄k is the original speed vk or the changed speed vk + qk, depending on the time config-
uration holding. So, (continuous) variables xkh ∀k ∈ A ∀h ∈ {1, . . . , 5}, are introduced and
corresponding constraints added to the formulation, expressing for each aircraft the 5 initial
positions in the 5 time intervals. Each aircraft k has speed v̄k equal to its original speed or to
the changed speed depending on the time configuration, so that variables zℓ are used to iden-
tify the configuration holding. Relative distances xrdij and relative speeds vrij between aircraft
are also defined, for each time configuration and each time interval, and constraints adjoined
accordingly using variables xkh and again zℓ.

Further constraints are then adjoined to the model to impose the condition (13) in each of
the 5 time intervals, when tm ∈ [ts, ts′ ], where [ts, ts′ ] is the h-th time interval. In order to
check if tm ∈ [ts, ts′ ], binary variables are used. For all h ∈ {1, . . . , 5} a binary variable ylh is
introduced such that ylh = 1 if tsh ≤ tmh and 0 otherwise, yrh is such that tmh ≤ ts′h and 0
otherwise. The following constraints are then imposed:

∀h ∈ {1, . . . , 5} tsh ≤ tmh +M(1 − ylh), tmh ≤ tsh +Mylh (15)
tmh ≤ ts′h +M(1− yrh), ts′h ≤ tmh +Myrh (16)

with M sufficiently large. Condition (13) is then imposed for each time configuration ℓ ∈
{1, . . . , 6}, ∀h ∈ {1, . . . , 5} and i, j ∈ A, as follows:

(
ylhyrh

(
(xrdijh)

2 −
(vrijhx

rd
ijh)

2

(vrijh)
2
− d2

))
≥ 0 (17)

Finally, for each time interval, the following separation condition is also imposed:

∀h ∈ {1, . . . , 5},∀i, j ∈ A (xrdijh)
2 ≥ d2. (18)
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3. Computational experience

We carried out preliminary computational experiments considering a pair of aircraft. The
two aircraft are supposed to move from an initial position given, in 2-dimensional space, by
(−100, 0) and (0,−100) respectively and with a velocity v = 400Nm/h. Separation distance
d is equal to 5Nm. Aircraft k is assumed to change its speed on an instant t1k and keep the
new speed. We solved the problem using the Couenne [1] software for MINLP, obtaining the
following optimal solution:

q1 = −0.05636 × v, q2 = 0.02492 × v, t11 = 0.00611072, t12 = 0.0115235, (19)

corresponding to the objective function value 0.00086678. This solution required 1.99 seconds
of CPU time on a 2.4 GHz CPU.

2

1

Figure 1. Example of conflict resolution, as described in Sect.3. The conflict in (0,0) is solved by decelerating the
first aircraft and accelerating the second one in an optimal way.

4. Summary

Wepresented amixed-integer nonlinear model for the problem of aircraft conflict resolution, a
challenging problem in Air Traffic Management. In this model, conflicts are avoided allowing
aircraft to only accelerate or decelerate in a time window, and speed changes are minimized
together with time windows when they occur. Preliminary computational experiments show
that the model is promising in air conflict resolution. We plan to extend the proposed model
to the case of n > 2 aircraft.

Acknowledgments. The authors wish to thank Pietro Belotti for helpful discussions about
the use of Couenne.
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Abstract One of the aspects of Branch-and-Bound (B&B) algorithms is the use of an effective rejection (also
called pruning) tests. Blending problems have the unit simplex as search space. The aim of this
article is to study division schemes that generate new B&B sub-problems. The division scheme
aims to increase the success of rejection tests and to decrease the number of vertex and simplex
evaluations. In this way a division scheme improves the performance of the algorithm. [3] show
that a simplex can be rejected if it is covered by infeasibility spheres centered at its vertices. In
general, a regular simplex has more chance to be covered than an irregular one due to the equal
distance between its vertices. Unfortunately, regular division without overlapping is not known
for d-simplices, with d > 2. This work shows empirically the advantages of a regular partition
in blending problems. Therefore, it is important to solve issues associated to overlap in regular
division. Some strategies are described.

Keywords: Branch-and-Bound, blending, simplex partition, covering.

1. Introduction

Consider the following formulation of a mixture design problem which actually consists of
identifying mixture products, each represented by a vector x ∈ R

n, which meet certain re-
quirements [3, 8]. The set of possible mixtures is mathematically defined by the unit simplex

S =



x ∈ R

n |
n∑

j=1

xj = 1.0; 0 ≤ xj ≤ 1



 , (1)

where the variables xj represent the fraction of the components in a product x. In mixture
design (blending) problems, the objective is to minimize the cost of the material,

f(x) = eTx, (2)

where vector e gives the costs of the rawmaterials. In themodel under study, linear inequality
constraints and bounds define the design space X ⊂ S. The requirements are defined as

∗This work has been funded by grants from the SpanishMinistry of Science and Innovation (TIN2008-01117), Junta de Andalucía
(P08-TIC-3518), in part financed by the European Regional Development Fund (ERDF). Eligius Hendrix is a fellow of the Spanish
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fellowship of the Hungarian Academy of Sciences.
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quadratic inequalities.

gi(x) = xTAix+ bTi x+ ci ≤ 0; i = 1, . . . ,m, (3)

in which Ai is a symmetric n by n matrix, bi is an n-vector and ci is a scalar. In this way we
formulate the problem to be solved as finding elements of the set of “satisfactory” (feasible)
products

D = {x ∈ S | gi(x) ≤ 0; i = 1, . . . ,m}. (4)

Finding a point x ∈ X ∩D defines the quadratic mixture design problem (QMDP), as studied
in [7]. From practical considerations, this problem was extended towards robust solutions.
One can define robustnessR(x) of a design x ∈ D with respect toD as

R(x) = max{R ∈ R
+ | (x+ h) ∈ D, ∀h ∈ R

n, ‖h‖ ≤ R} (5)

Notice that for mixture problems x + h is projected on the unit simplex. Additionally, vari-
ables has semi-continuity property related to aminimum acceptable dosemd that the practical
problems reveal. Therefore, we are merely interested in methods for finding an ǫ-robust solu-
tion with minimum cost, i.e.

min f(x) (Cost (2))
s.t. x ∈ X ∩D (Feasibility (4))

R(x) ≥ ǫ (Robustness (5))
xj = 0 or xj ≥ md (Minimal dose)

(6)

Independently of the application, we are dealing with a B&B algorithm where the search
region defined as a simplex is decomposed iteratively [8]. The left hand side graph of Figure
1 shows the initial search space for n = 2, which is composed of two 0-simplices (one raw
material) and one 1-simplex (two raw materials). The right hand side graph of Figure 1 shows
the initial search space for n = 3, which consists of three 0-simplices, three 1-simplices and
one 2-simplex.

x2

1.0

1.0 One raw material

Two raw materials

md

md
0.0

x1
x1x2

x3

Figure 1. n=2 and n=3 initial simplices by removing the minimum dose region

B&B methods can be characterized by four rules: Branching, Selection, Bounding, and Elim-
ination [10, 11]. For continuous problems, like the mixture design problem, a termination
criterion has to be incorporated; i.e, one has to establish a minimum sampling precision α. A
detailed description of these rules can be found in [8]. Here we focus on Division rule because
it affects the effectiveness of the elimination tests. The use of simplicial sets in B&B and sev-
eral ways of splitting them has been studied extensively in [4–6, 9]. Bisection of the longest
edge (BLE), as shown in Figure 2a, is most used because it is simple and for all the generated
simplices the length of the longest edge is at most twice the size of the shortest edge.
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Figure 2a. BLE.
Bisect the Longest Edge.

Figure 3b. BAE.
Bisect All Edges.

Figure 4c. ROD.
Regular Overlapping Division.

In general, regular shaped simplices give better bounding results than nonregular ones as
can be found among others in [2]. A regular partition of a simplex similar to bisecting all
edges (BAE), as in Figure 3b, has not been found for dimension higher than 3. Therefore we
develop and investigate the potential of a simplicial subdivision which is regular, but is not a
partition. Figure 4c shows an example of a regular overlapping division (ROD) for n = 3. The
number of simplices generated is n and the length of its edges is (n − 1)/n, as shown by [4].
Dashed lines in Figures 2a to 4c are possible future divisions.

2. Experimental results for blending problems

Results for B&B algorithm using bisection of the largest edge are shown in [8]. Among several
rejection tests, we want to highlight here those based on covering the simplex by infeasibility
spheres centered at its vertices. A summary of them is:

SCTest (Single Cover Test): One sphere covers all the simplex.
MCTest (Multiple Cover Test): A simplex S can be rejected if a point p ∈ S is covered
by all spheres. The correctness of the test was proved in [3]. The proposed p in [8] is
heuristic and can be calculated at low computational cost.
θ-Test: The point θ to be covered is determined by a system of equations in [2]. If one
sphere covers θ all spheres cover it, even if θ /∈ S. Even if θ is not covered, there exist
cases where the covering of S can be determined from θ with additional computational
cost, but we will not consider them in this experimentation.

Table 1 shows the efficiency of different division schema for problems defined in [8]. The ef-
ficiency is measured in terms of number of simplex (NSimplex) and vertex evaluations (NVer-
tex). The rejection tests: SCTest, MCTest and θ-test, with others shown in [8], are checked in
order.

BLE, BAE and ROD has been evaluated for 3-dimensional problems Case2 and RumCoke.
BAE outperform BLE in efficiency. If the rejection test is not very successful it is better to do
multisection, as it is shown for boxes in [1]. Additionally, the SCTest rejects more simplices
at earlier stages of the algorithm because they are regular. BAE reduces the need of MCTest
and only one expensive θ-Test is needed for Case2 and none for RumCoke. On the other
hand, ROD is the worst of all divisions due to the fact that one simplex is overlapped by
several simplices. So, unnecessary redundant computation is done. Additionally, it lacks
vertex reusability.

Table 1 shows the necessary development of a regular division for larger dimensional prob-
lems. The number of congruent classes of simplices generated by BLE is n!/2 [6]. This hinders
the success of SCTest. We research how to avoid redundant computation in ROD division, in-
creasing the vertex reusability at the same time. Some strategies are designed but they deserve
a complete article.
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Table 1. Experimental results for different division schema. α = ǫ =
√

(2)/100, md = 0.03.

Problem n Division NSimplex NVertex SCTest NCTest θ-Test

Case2 3 BLE 393 136 58 18 3
BAE 291 153 66 6 1
ROD 5,946 11,878 745 37 16

RumCoke 3 BLE 569 179 70 31 6
BAE 341 172 86 13 0
ROD 9,038 18,059 1,141 100 23

UniSpec1 7 BLE 72,419 7,561 11,146 5,442 780

UniSpec5b 7 BLE 94,422,861 1,962,173 15,135,582 9,546,656 1,108,185

3. Conclusions

Regular partition seems to outperform bisection and increases the performance of simple re-
jection tests. Unfortunately, regular division for dimension greater than 3 is only known with
overlapping divisions. New methods to avoid redundant computation and to increase the
vertex reusability in regular division are investigated. They will be shown in the final paper.
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Abstract The aim of Information Retrieval (IR) is to find the documents that are more relevant for a query,
usually given by a user. This problem is very difficult, and in the last four decades a lot of different
models were proposed, the most famous being the logical models, the vector space models, and
the probabilistic models. In this paper is proposed a greedy algorithm for maximizing the efficacy
of an Information Retrieval model based on Discrete Fourier Transform (DFT), which has shown a
good efficacy level in the first tests. Even if the mathematical programming model used to increase
the efficacy is a Mixed-Integer Nonlinear Program (MINLP), with nonlinear objective function and
binary variables, its structure is very simple and a greedy algorithm can find the optimal solution.
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1. Introduction

Information Retrieval (IR) tries to solve this problem: given a query and a set of documents
(collection), which are the relevant documents for the query?

The efficacy of an IRmodel depends on the number of relevant and non-relevant documents
retrieved: the “perfect” IR model (that is the model with the maximum efficacy) should be
able to retrieve all and only the relevant documents. Each time a non-relevant document is
retrieved, or a relevant document is not retrieved, the efficacy decreases.

Several models were proposed in the last four decades, such as the logical models, the vec-
tor space models and the probabilistic models. The different techniques proposed by these
models produced a significant increase of retrieval efficteveness in the last fifteen years, as ex-
perimentally observed within the Text REtrieval Conference (TREC) [8]. However, the current
technology is far from being optimal, and the quest for new theoretical frameworks has been
intense [3–5, 7].

Recently, a new IR model based on Discrete Fourier Transform (DFT) called Least Spectral
Power Ranking (LSPR) was proposed, and it has shown good efficacy level in the first tests
[2]. In this model the input is a collection of a document and a query, while the output is
the ranking list, that is the list of the retrieved documents ordered from the most to the least
relevant. The important thing to remark is that each document is associated with a score
(called power in the LSPR model), such that if a document has a low power, it is considered
highly relevant by the system, hence, the documents are ordered by increasing power. This is
why the model is called Least Spectral Power Ranking.

In this paper an algorithm is proposed, which tries to increase the efficacy of LSPR: start-
ing from the ranking list, this algorithm removes the documents that are not relevant with
high probability. Basically, the problem of choosing the documents that maximize the efficacy
can be described as a Mixed-Integer Nonlinear Program (MINLP), with a quadratic objective
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function and binary variables. However, due to the structure of the problem, a simple greedy
algorithm can find the optimal solution.

The remainder of the paper is organized as follows. In section 2 there is a more formally
explanation of the concept of efficacy. After that, in section 3 is presented the algoritm. Finally
in section 4 there are the conclusions.

2. Evaluation of an IR system

The most important parameters for evaluating an IR system are:

efficiency, that refers to the time complexity and the memory occupation;

efficacy, that refers to the quality of the results.

In order to evaluate the efficacy, the so called “experimental collections” were introduced.
An experimental collection is composed of a collection of documents, a set of queries and the
relevance judgements; the latter is the list of the relevant documents for each query. In this
way, comparing the documents retrieved by the system with the relevance judgements, it is
possible to have an indication about the efficacy.

Among the most used parameters there are:

precision: ratio between the number of relevant documents retrieved and the number of
retrieved documents; is a measure of accuracy of search,

recall: ratio between the number of relevant documents retrieved and the number of
relevant documents; is a measure of completeness of search.

It is easy to see that if the number of document retrieved increases, the precison decreases and
the recall increases.

In recent years, other measures have become more common, such as theMean Average Pre-
cision (MAP), that is the average of the precision value obtained for the top k documents, each
time a relevant document is retrieved, or graphically it is roughly the average area under the
precision-recall curve for a set of queries. The MAP varies from 0 to 1; in the tests performed
in [2], using the CACM experimental collection,1 the MAP of the vector-space model was
0.242, while the MAP of DFR was 0.329. The MAP of LSPR was 0.348, thus indicating a good
performance comparable to the state-of-the-art.

3. Greedy algorithm

In this section an algorithm for increasing the MAP of the LSPR model is described.
Suppose there are a queryQ and a collection C as input for LSPR, and the output is ranked

list R, whose each document i is associated with a power Pwi: the less the power, the more
the relevance.

The first step is to compute, for each document i in the ranking list, a probability pi to be
relevant. The informations given by LSPR can be very useful for this scope. Let Pwm and
PwM be respectively the power associated with the first and the last document in the ranking
list R; a simple way to compute pi can be the following:

pi =
Pwi − PwM

Pwm − PwM
. (1)

It is easy to see that the probability is from 0 to 1: 0 if the power of the document is PwM

(that is the last document retrieved), 1 if the power of the document is Pwm (that is the first
document retrieved.

1The collection can be found on http://www.search-engines-book.com/collections.
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In order to maximize the MAP, we should maximize both precision and recall, leading to a
multiobjective model. Furthermore, the recall depends on the number of relevant documents
for a query, but usually this information is not available, so we have to semplify the problem.

Let xi ∈ {0, 1} be a variable that is 1 if the document i is selected, 0 otherwise. Precision
and recall are rounded respectively as:

precision=
∑|R|

i=1 pixi
∑|R|

i=1 xi

recall=
∑|R|

i=1 pixi

N(Q)

whereN(Q) is the unknown number of relevant documents for the query, and the sums at the
numerators play the role of the number of relevant documents retrieved.

At this point it is possible to semplify both the problem of the multiobjective function and
the unknown value of N(Q) by maximizing the product of recall and precision. Thus, the
objective function to maximize is the following:

f(x) =

(∑|R|
i=1 pixi

)2

N(Q) ·∑|R|
i=1 xi

. (2)

Since N(Q) is a constant number, even if unknown, we can remove it from the objective func-
tion. The final MINLP model is

max

(∑|R|
i=1 pixi

)2

∑|R|
i=1 xi

s.t. xi ∈ {0, 1} ∀i ∈ {1, 2, . . . , |R|}

The greedy algorithm that solves this problem is very simple: first, the documents are or-
dered by decreasing probability to be relevant (i.e. pi ≥ pi+1, ∀i ∈ {1, 2, . . . , |R| − 1}). After
that, we try to add the documents, from the first to the last in the ordered list, until the objec-
tive function increases. As soon as the objective function decreases, the algorithm stops; this
is summarized in the following pseudo-code.

greedy select {
⋆ call LSPR, to get the ranking list R of the documents and the powers ⋆
⋆ starting from the powers, compute the probability, for example using Eq. (1) ⋆
⋆ order the documents by decreasing probability to be relevant ⋆
f ← 0
xi ← 0, ∀i ∈ {1, 2, . . . , |R|}
for d← 1 to |R| do
{
xd ← 1

fd ← (
∑d

i=1 pixi)
2

∑d
i=1 xi

if (fd < f )
xd ← 0
break

else
f ← fd

}
⋆ return the documents i for which xi = 1, ordered by increasing pi ⋆

}
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4. Conclusion and future work

This paper presents a possible way to increase the efficacy of an IR model. Actually, this
technique could also be the base of a stand-alone IR model.

The important thing is, for each document, the computation of the probabilities to be rele-
vant. In this paper a simple idea is proposed (see Eq. (1)), but more sophisticated techniques,
which take account of the distribution of the powers, should led to better results.

Removing the documents from the ranking list has other advantages: the user has less
document to check, and also the efficiency increases, because the memory occupation for the
list of documents decreases.

Future work has 2 main objectives: First, this idea needs to be tested with some experimen-
tal collections. Second, a more precise mathematical description of the precision and the recall,
and consequentely of theMAP, should be found. In this way the efficacy should increase, even
if the model probably will be solved by some Nonlinear Global Optimization solver, such as
BARON [6] or Couenne [1], instead of a simple greedy algorithm.
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Abstract Testing is a crucial part of software development in general, and hence also in mathematical pro-
gramming. Unfortunately, it is often a time consuming and little exciting activity. This naturally
motivated us to increase the efficiency in testing solvers for optimization problems and to automa-
tize as much of the procedure as possible.
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The testing procedure typically consists of three basic tasks: a) organize test problem sets, also
called test libraries; b) solve selected test problems with selected solvers; c) analyze, check and
compare the results. The Test Environment is a graphical user interface (GUI) that enables
to manage the tasks a) and b) interactively, and task c) automatically.

The Test Environment is particularly designed for users who seek to

1. adjust solver parameters, or

2. compare solvers on single problems, or

3. evaluate solvers on suitable test sets.

The first point considers a situation in which the user wants to improve parameters of a par-
ticular solver manually, see, e.g., [5]. The second point is interesting in many real-life appli-
cations in which a good solution algorithm for a particular problem is sought, e.g., in [10] (all
for black box problems). The third point targets general benchmarks of solver software. It
often requires a selection of subsets of large test problem sets (based on common characteris-
tics, like similar problem size), and afterwards running all available solvers on these subsets
with problem class specific default parameters, e.g., timeout. Finally all tested solvers are
compared with respect to some performance measure.

In the literature, such comparisons typically exist for black box problems only, see, e.g., [17]
for global optimization, or the large online collection [16], mainly for local optimization. Since
in many real-life applications models are given as black box functions (e.g., the three exam-
ples we mentioned in the last paragraph) it is popular to focus comparisons on this problem
class. However, the popularity of modeling languages like AMPL and GAMS, cf. [1], [9],
that formulate objectives and constraints algebraically, is increasing. Thus first steps are made
towards comparisons of global solvers using modeling languages, e.g., on the Gamsworld
website [11], which offers test sets and tools for comparing solvers with interface to GAMS.

One main difficulty of solver comparison is to determine a reasonable criterion tomeasure
the performance of a solver. For our comparisons we will count for each solver the number
of global solutions found, and the number of wrong and correct claims for the solutions. Here
we consider the term global solution as the best solution found among all solvers.
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A severe showstopper of many current test environments is that it is uncomfortable to use
them, i.e., the library and solver management are not very user-friendly, and features like au-
tomated LATEX table creation are missing. Test environments like CUTEr [13] provide a test
library, some kind of modeling language (in this case SIF) with associated interfaces to the
solvers to be tested. The unpleasant rest is up to the user. However, our interpretation of the
term test environment also requests to analyze and summarize the results automatically in a
way that it can be used easily as a basis for numerical experiments in scientific publications.
A similar approach is used in Libopt [12], available for Unix/Linux, but not tailored to opti-
mization problems. It provides test library management, library subset selection, solve tasks,
all as (more or less user-friendly) console commands only. Also it is able to produce perfor-
mance profiles from the results automatically. The main drawback is the limited amount of
supported solvers, restricted to black box optimization.

Our approach to developing the Test Environment is inspired by the experience made
during the comparisons reported in [19], in which the Coconut Environment benchmark
[22] is run on several different solvers. The goal is to create an easy-to-use library and solver
management tool, with an intuitive GUI, and an easy, multi-platform installation. Hence the
core part of the Test Environment is interactive. We have dedicated particular effort to
the interactive library subset selection, determined by criteria such as a minimum number of
constraints, or a maximum number of integer variables or similar. Also the solver selection is
done interactively.

The modular part of theTest Environment is mainly designed as scriptswithout having
fixed a scripting language, so it is possible to use Perl, Python, etc. according to the preference
of the user. The scripts are interfaces from the Test Environment to solvers. They have
a simple structure as their task is simply to call a solve command for selected solvers, or
simplify the solver output to a unified format for the Test Environment. A collection of
already existing scripts for several solvers is available on the Test Environment website
[4]. We explicitly encourage people who have implemented a solve script or analyze script for
theTest Environment to send it to the authors who will add it to the website. By the use of
scripts the modular part becomes very flexible. For many users default scripts are convenient,
but just a few modifications in a script allow for non-default adjustment of solver parameters
without the need to manipulate code of the Test Environment. This may significantly
improve the performance of a solver.

As problem representation we use Directed Acyclic Graphs (DAGs) from the Coconut

Environment [14]. We have decided to choose this format as there already exist automatic
conversion tools inside the Coconut Environment from many modeling languages to DAGs
and vice versa. The Test Environment is thus designed to be independent from any choice
of a modeling language. Nevertheless benchmark problem collections, e.g., given in AMPL
such as COPS [3], can be easily converted to DAGs.

The summarizing part of the Test Environment is managing automated tasks which
have to be performed manually in many former test environments. These tasks include an
automatic check of solutions, and the generation of LATEX tables that can be copied and pasted
easily in numerical result sections of scientific publications. As mentioned we test especially
whether global solutions are obtained and correctly claimed.

Using the Test Environment we have performed a benchmark of eight solvers on con-
strained global optimization and constraint satisfaction problems using three libraries with
more than 1000 problems in up to about 20000 variables, arising from the Coconut Environ-
ment benchmark [22]. We have removed some test problems from the 2003 benchmark that
had incompatible DAG formats. Thus we have ended up with in total 1286 test problems.
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Benchmark test results

The tested solvers in alphabetical order are: BARON 8.1.5 [20] (global solver), Cocos [14]
(global), COIN with Ipopt 3.6/Bonmin 1.0 [15] (local solver), CONOPT 3 [7] (local), KNITRO
5.1.2 [2] (local), Lindoglobal 6.0 [21] (global), MINOS 5.51 [18] (local), Pathnlp 4.7 [8] (local).
Cocos and KNITRO accepted (almost) all test problems. Also the other solvers accepted the
majority of the problems. Minos accepted the smallest number of problems, i.e., 81% of the
problems. A typical reason why some solvers reject a problem is that the constraints of the
objective function could not be evaluated at the starting point x = 0 because of the occurrence
of expressions like 1/x or log(x). Some solvers like Baron also reject problems in which sin or
cos occur in any expression.

Lindoglobal has the best score (79%) in the number of correctly claimed global solutions
among the global solutions found. Cocos is second with 76%, and Baron is third with 69%.
But it should be remarked that Lindoglobal made 15% wrong solution claims as opposed to
Baron with 8%. Not surprisingly, the local solvers had only very bad scores in claiming global
solutions, since they are not global solvers. On the other hand, they had a low percentage of
wrong solutions, between 3% and 8% (except for KNITRO). The local solvers did not have zero
score in claiming global solutions since for some LP problems they are able to claim globality
of the solution.

Baron has found the most global solutions among all accepted problems (71%). The local
solver Coin also performed very well in this respect (65%), at the same level as the global
solver Lindoglobal. The other solvers are not far behind (except for KNITROwith 47%– how-
ever, it should be noted that for license reasons we used the quite old KNITRO version 5.1.2).
New results with updated versions are continuously uploaded to the Test Environment

website [4]. For more details the interested reader is referred to [6].

Acknowledgments

Partial funding of the project is gratefully appreciated: Ferenc Domes was supported through
the research grant FS 506/003 of the University of Vienna. Hermann Schichl was supported
through the research grant P18704-N13 of the Austrian Science Foundation (FWF).

Furthermore, we would like to acknowledge the help of Oleg Shcherbina in several solver
and test library issues. We thank Nick Sahinidis, Alexander Meeraus, and Michael Bussieck
for the support with several solver licenses. Thanks to Mihaly Markot who has resolved sev-
eral issues with Cocos. We also highly appreciate Arnold Neumaier’s ideas for improving
the Test Environment, and the comments by Yahia Lebbah.

References

[1] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific Press, 1988.

[2] R.H. Byrd, J. Nocedal, and R.A. Waltz. Large-Scale Nonlinear Optimization, chapter KNITRO: An Integrated
Package for Nonlinear Optimization, pages 35–59. Springer, 2006.

[3] E.D. Dolan, J.J. Moré, and T.S. Munson. Benchmarking optimization software with COPS 3.0. Technical
Report ANL/MCS-273, Mathematics and Computer Science Division, Argonne National Laboratory, 2004.

[4] F. Domes. Test Environmentwebsite, http://www.mat.univie.ac.at/~dferi/testenv.html, 2009.

[5] F. Domes. GloptLab - A configurable framework for the rigorous global solution of quadratic constraint
satisfaction problems. Optimization Methods and Software, 24(4-5):727–747, 2009.

[6] F. Domes, M. Fuchs, and H. Schichl. The optimization test environment. Submitted, 2010. Preprint available
on-line at: http://www.mat.univie.ac.at/~dferi/testenv.html.

[7] A.S. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems. Mathematical
Programming, 31(2):153–191, 1985.



42 Ferenc Domes, Martin Fuchs, and Hermann Schichl

[8] M.C. Ferris and T.S. Munson. Interfaces to PATH 3.0: Design, implementation and usage. Computational
Optimization and Applications, 12(1):207–227, 1999.

[9] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathematical Programming.
Duxbury Press/Brooks/Cole Publishing Company, 2002.

[10] K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis, C.T. Kelley, C.T. Miller, C. Audet, A.J. Booker, G. Couture, R.W.
Darwin, M.W. Farthing, D.E. Finkel, J.M. Gablonsky, G. Gray, and T.G. Kolda. Comparison of derivative-
free optimization methods for groundwater supply and hydraulic capture community problems. Advances
in Water Resources, 31(5):743–757, 2008.

[11] Gamsworld. Performance tools, http://gamsworld.org/performance/tools.htm, 2009.

[12] J.C. Gilbert and X. Jonsson. LIBOPT - An environment for testing solvers on heterogeneous collections of
problems - The manual, version 2.1. Technical Report RT-331 revised, INRIA, 2009.

[13] N.I.M. Gould, D. Orban, and P.L. Toint. CUTEr and SifDec: A constrained and unconstrained testing envi-
ronment, revisited. ACM Transactions on Mathematical Software, 29(4):373–394, 2003.

[14] H. Schichl et al. The COCONUT Environment, 2000–2010. Software.

[15] R. Lougee-Heimer. The Common Optimization INterface for Operations Research. IBM Journal of Research
and Development, 47(1):57–66, 2003.

[16] H. Mittelmann. Benchmarks, http://plato.asu.edu/sub/benchm.html, 2009.

[17] M. Mongeau, H. Karsenty, V. Rouze, and J.B. Hiriart-Urruty. Comparison of public-domain software for
black box global optimization. Optimization Methods and Software, 13(3):203–226, 2000.

[18] B.A. Murtagh and M.A. Saunders. MINOS 5.5 user’s guide. Technical Report SOL 83-20R, Systems Opti-
mization Laboratory, Department of Operations Research, Stanford University, Stanford, California, 1983.
Available on-line at: http://www.sbsi-sol-optimize.com/manuals/Minos%20Manual.pdf.

[19] A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinko. A comparison of complete global optimization solvers.
Mathematical programming, 103(2):335–356, 2005.

[20] N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global optimization of mixed-integer nonlinear pro-
grams. User’s Manual, 2005. Available on-line at: http://www.gams.com/dd/docs/solvers/baron.pdf.

[21] L. Schrage. Optimization Modeling with LINGO. LINDO Systems, 2008.

[22] O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.H. Vu, and T.V. Nguyen. Global Optimization and Constraint
Satisfaction, chapter Benchmarking global optimization and constraint satisfaction codes, pages 211–222.
Springer, 2003.



Proceedings of TOGO 2010, pp. 43 – 46.

Air traffic conflict resolution

via light propagation modeling∗

Nour Dougui,1,2 Daniel Delahaye,1 Marcel Mongeau2,3 and Stephane Puechmorel1

1Applied Mathematics Laboratory, ENAC, 7, Avenue Edouard Belin, 31055 Toulouse, France,
{nour,delahaye,puechmor}@recerche.enac.fr

2Université de Toulouse; UPS, INSA, UT1, UTM; Institut de Mathématiques de Toulouse; F-31062 Toulouse, France,
mongeau@math.univ-toulouse.fr

3CNRS; Institut de Mathématiques de Toulouse UMR 5219; F-31062 Toulouse, France

Keywords: Branch and Bound, Geodesic

1. Introduction

The analysis of air traffic growth expects a doubling in the flights number over the next 20
years. The Air TrafficManagement (ATM)will therefore have to absorb this additional burden
and to increase the airspace capacity, while ensuring at least equivalent standards of safety.

The European project SESAR was initiated to propose solutions to this problem. It relies
on a new concept of air traffic control, known as 4D (3D + time) trajectory planning, which
consists in exploiting the new Flight Management System (FMS) abilities that ensure that the
aircraft is at a given position at a given moment. For each flight, a reference trajectory, called
Reference Business Trajectory (RBT), is requested by the operating airline. During the flight,
conflict situations may nevertheless occur, in which two or several aircraft can dangerously
approach each other. In this case, it is necessary to modify one or more trajectories to en-
sure that minimum separation standards (currently 5 Nm horizontally and 1000 ft vertically)
are still satisfied. Moreover, it is desirable that proposed new trajectories deviate as little as
possible from RBTs.

Several methods have been tested to find an optimal solution to adress this problem includ-
ing genetic algorithm[1] and navigation function based approach[2]. The first approach can
not gurantee a feasible (conflict-free) solution for a given time computing. The second one
does not take into account the constraints imposed by ATM, such as bounded velocity.

2. Light Modeling Algorithm

We propose a newmethodology, based on an optical analogy, which seeks to ensure sufficient
separation between aircraft while producing flyable trajectories.

∗Acknowledgement: This work has been supported by French National Research Agency (ANR) through COSINUS program
(project ID4CS n ANR-09-COSI-005)
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2.1 Problem

The objective of our approach is to find for each aircraft a feasible (relevant to ATM con-
straints) optimal 4D trajectory, avoiding conflicts and wich minimizes a criterion based on a
local metric. We consider here the following simplified problem: we want to determine the
trajectory of one aircraft given that we know about the surrounding aircraft trajectories. In
order to exploit future FMS capabilities,we represent an aircraft trajectory by a sequence of 4D
points connected by line segments and by velocity 3D vectors (one such vector for each 4D
point).

2.2 Light Modeling

We use light propagation analogy. Light propagates in space under Descartes law [5]: the tra-
jectory of a light ray is the shortest path in time. The distance and travel time are correlated by
a local metric called index. The analogy we use is to replace the index by a cost function for
the aircraft trajectory: we consider the refractive index as a measure of congestion or so-called
traffic complexity. We select a barrier index value in the prohibited areas, such as military areas,
and in the protection volumes surrounding each aircraft. We compute the environment index
associated to a given congested area (detail can be found in [3]). The optimal trajectory will
be computed using a technique of ray tracing. The light will be slowed down in congested
areas, but despite this, it can pass through. However, it will be completely blocked by air-
craft protection volumes, which ensures conflict free-situations.The idea of our methodology
consists in launching several light rays in various directions from the departure point of the
aircraft, then the path of the first ray that reaches the arrival point corresponds to a geodesic
approximation, hence a good flyable trajectory for the controlled aircraft.

2.3 Branch and Bound Algorithm

In order to compute this trajectory, we use a wavefront propagation algorithm in 3D with
a time discretization (the wave propagation is done with a time step dt) from the departure
point.

We implement the propagationwith a branch-and-bound algorithm(B&B) [4], a classical frame-
work for solving discrete optimization problems. The initial step of a B&B is to consider the set
of all possible solutions, represented by the root of an enumeration tree. Procedures to obtain
lower and upper bounds for the optimal value of our obective function (trajectory time travel)
are applied to the root. If these two bounds are equals, then the optimal solution is found, and
the algorithm stops. Otherwise, the solution set is partitioned into several sub-problems (new
nodes). The method is then applied recursively on these sub-problems, generating a tree. If
an optimal solution is found for a sub-problem, it is feasible but not necessarily optimal for
the original problem. But, as a feasible solution, it can be used to eliminate partial solutions.
The search goes on until all the nodes are explored or eliminated.

For the implementation of our light propagation case, a lower approximate bound for a
given node is obtained as follows: we first compute a duration, "TimeToDest", for the remaining

Figure 1. The lower bound computing.
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time to reach the destination. This duration is a weighted sum of two terms (Formula 1 with α
a weighting parameter). The first one, "integTime", is the time to reach destination considering
the refractive index along the direct route. The second one, "maxSpeedTime", is the time needed
to reach destination in direct route with the maximum speed.

T imeToDest := α ∗ integT ime+ (1− α) ∗maxSpeedT ime. (1)

The lower approximate bound is then the summation of TimeToDest and the time needed to
reach the node from the origin (TimeToNode). It is given by (see Figure 1):

lowerBound := T imeToNode+ T imeToDest.

Branching, in our context, involves launching rays as straight lines in a spatial cone of given
radius dt, given steps dθ horizantally and dϕ vertically oriented towards the arrival point.

Browsing the search tree can be done in different ways. We choose a strategywhose priority
is to find quickly a feasible solution (depth-first search or DFS). Here a node for which children
have not yet been generated, with deepest level in the search tree, is chosen for exploration.
DFS is then combined with a selection strategy. This consists in selecting the node that has the
best lower bound among the nodes at the same level in the search tree (combination of DFS as
the overall principle and best first search as a secondary selection criterion).

1. Set TrajSolution := null. Set upperBound :=∞
2. Discretize the cone towards the destination, whose center is Departure point and the radius

is dt, with an angle steps dθ horizontally and an angle steps dϕ vertically.

3. While there is still unexplored nodes in the tree do:

Choose a node N. If distance (N, destination point)≤ ǫ then TrajSolution := Set of
points that leads to N and upperBound:= value of node N.
Relaunch rays from node N in the cone towards the destination: For any light ray,
if the light beam goes from a region with index n1 into a region with index n2 with
an angle i1, let it continue with a new angle i2 such that n1 sin(i1) = n2 sin(i2) and
with a velocity of v = c

n2
where c is the light speed.

Remove node N from the tree. Calculate node N’s son values. Add them to the
tree.

3. Numerical Results

Let us test our approach on a simplified instance of the problem, first in 2D then in 2D+time.
We use a coordinate system that is scaled with separation standards. Thus, we use an (x, y)

grid with a standard horizontal separation (5 Nm) unit. We set the radius dt of the cone to the
required time to travel a half standard separation distance. The cone maximum angle is set to
Π
3 . And the sampling angle dθ is set to Π

10 . The weighting coefficients in the formula (1), is set
to α := 0.9.

3.1 Results in 2D

We first test our methodology on a 2D space instance to show it does find geodesics in simple
cases.

Several refractive index functions were tested. For instance, index function used in Fig-
ures 2 is

∑4
i=0 e

−((x−ai)
2+(y−bi)

2)/k. It is a continuous function. High values (congested areas)
are represented in red and low values (involving little traffic) in blue.

As can be seen in grey on Figure 2, the trajectory generated by our B&B algorithm avoids
high index area and passes through "valleys", as one would expects. Thus, the aircraft avoids
automatically congested areas.
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Figure 2. Resulting trajectory in 2D space. Figure 3. Conflict resolution with 8 aircraft

3.2 Results in 2D + time

Let us now consider a a 2D + time instance involving P aircraft which are initially positioned
along a circle of radius 100 Nm, converging at identical speed (450 knots velocity) towards the
circle center. At any time, each of the P aircraft has a position (

−→
Xi). For any space point

−→
Y , let

us denate α := ||−→Xi −
−→
Y ||.

The used refractive index function we shall define must take into account avoidance of
other aircraft protection zones. In order to ensure that the aircraft controlled by the algorithm
avoids the other aircraft, we represent them by disks (whose radius is the standard distance
separation),and we set the index function, n, to a very high constant value N inside these
disks and we make it decrease rapidly outside the disk. The index function n is given by the
following formula at any point

−→
Y ∈ R3:

n(
−→
Y ) =

{
N if α ≤ R
1 + N−1

1+(α−R)q otherwise.

with R the standard distance separation and q is a parameter that determines the speed with
which the index decreases outside the separation zone. Our algorithm is sequentially applied
to each aircraft until there is no conflict any more with P:= 8, N:= 2 and q:= 2.

We obtained a conflict free situation with the last aircraft that does not deviate from its
direct route as displayed on Figure 3.

4. Conclusion

Our overall original light modelling methodology seems viable as it managed to resolve an
academic conflict situation in (2D + time). Future work will concentrate on real-world in-
stances and implementing a (3D + time) version of the algorithm.
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Abstract Interval Branch and Bound Algorithms have shown their intrinsic interest to solve exactly some
difficult mixed non-convex and non-linear programs. A code named IBBA was developed to solve
some design problems for electromechanical actuators. The idea of this paper is to extend the exact
global optimization algorithm by inserting the direct use of an automatic numerical tool (based on
a finite element method). This new methodology permit to solve more rationally design problems.
Some numerical examples validate the interest of this new approach.
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1. Introduction

IBBA is a code that we developed in order to solve some particular design problems of elec-
tromechanical actuators (such as electrical machines), [4]. Because IBBA is based on interval
arithmetic, it needs all the expressions of the equations of the optimization problem. That
was exploited by using analytical models of actuators developed by researchers in electri-
cal engineering since the 80th. Associating analytical models and IBBA code yields to an
efficient and rational approach to solve these design problems which can be formulated as
non-homogeneous mixed constrained global optimization ones:





min
(x,y)∈(X,Y )⊆IRn×INm

f(x, y)

u.c. gi(x, y) ≤ 0, ∀i ∈ P = {1, ..., p}
hj(x, y) = 0, ∀j ∈ Q = {1, ..., q}

(1)

where f is a real function, IR and IN are respectively the real and the positive integer sets.
Normally the discrete variables can also be boolean or categorical ones [4]. However, it is
sufficiently general for this paper to use only these classical mixed formulation.

A large part of these kind of design problems were solved efficiently by using IBBA code
with analytical models [1]. Nevertheless, before making the prototype of the optimized actu-
ator it is preferable to validate the optimal solution by using a finite element code (because
for developing analytical models some assumptions have to be done and it is less the case for
a numerical model). Thus, some differences generally occur between some important char-
acteristical values yielding the designer to correct some parameters of the solution. In [2],
we developed an extension of IBBA, named IBBA+NUMT to solve a problem of type (1) but
where one constraint has to be satisfied via a finite element code NUMT. This was extended
recently when more than one constraint have to be taken into account.

In this paper, we will present in a more general case this extension of IBBA, that we name
IBBA BBC for IBBA with Black-Box Constraints (constraints which do not have an explicit
form but which has to be computed via an algorithm).
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2. Formulations of the problem

The problem that we are interested with is the following:




min
(x,y)∈(X,Y )⊆IRn×INm

f(x, y)

u.c. gi(x, y) ≤ 0, ∀i ∈ I ⊆ P
hj(x, y) = 0, ∀j ∈ J ⊆ Q
gAi (x, y) ≤ 0, ∀i ∈ P \ I
hAj (x, y) = 0, ∀j ∈ Q \ J

(2)

where A on the constraints indicates that they are computed using an algorithm.
Unfortunately, this problem is actually impossible to be solved by a code based on IBBA; be-

cause for the black-box constraints, it is not possible to compute bounds. Hence, we introduce
a new more constrained program but related to Program (2):





min
(x,y)∈(X,Y )⊆IRn×INm

f(x, y)

u.c. gi(x, y) ≤ 0, ∀i ∈ I ⊆ P
hj(x, y) = 0, ∀j ∈ J ⊆ Q
gAi (x, y) ≤ 0, ∀i ∈ P \ I
hAj (x, y) = 0, ∀j ∈ Q \ J
gi(x, y) ≤ si, ∀i ∈ P \ I
rj ≤ hj(x, y) ≤ rj, ∀j ∈ Q \ J

(3)

where si, rj and rj associated with the analytical equations define a zone where the global
solution has to be searched. Of course, analytical constraints gi,∀i ∈ P \ I and hj ,∀j ∈ Q \ J
as to be related to the numerical ones, respectively gAi ,∀i ∈ P \ I and hAj ,∀j ∈ Q \ J .

3. IBBA BBC Algorithm

The following corresponds to the iterations of IBBA BBC Algorithm:
1. Set (X,Y ) := the initial hypercube.

2. Set f̃ := +∞ and set L := (+∞, (X,Y )).

3. Extract from L the lowest lower bound.

4. Bisect the considered box chosen by its midpoint: V1, V2.

5. For j:=1 to 2 do

(a) Vj :=Propagation of the analytical constraints on Vj, [3].

(b) if Vj 6= ∅ then

i. Compute vj := lb(f, Vj).

ii. Compute all the lower and upper bounds of all the analytical constraints on Vj.

iii. if f̃ ≥ vj and no analytical constraint is unsatisfied then

insert (vj , Vj) in L.

set m the midpoint of Vj

if m satisfies all the analytical constraints and then if the black-box

constraints are also satisfied then f̃ := min(f̃, f(m)).

if f̃ is changed then remove from L all (z, Z) where z > f̃ and set ỹ := m.

6. If f̃− min
(z,Z)∈L

z < ǫ (where z = lb(f, Z)) then STOP.

Else GoTo Step 4.

In this algorithm, one has: -f̃ which represents the current best known solution of pro-
gram (3); -L is the list which contain all the boxes which can possibly have the global solution
at each stage of the iterations; -lb represents a technique using interval arithmetic which allows
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to compute lower bounds of a function (explicitly known) over a box; -the constraint propaga-
tion code which is used is detailed in [3] and it is based on the calculus trees of the constraints
(it is only for constraints which are explicitly known). Remark that there a few differences
between IBBA and IBBA BBC; the differences are underlined in the above algorithm.

Now, we want to prove that this algorithm IBBA BBC find the global solution of Pro-
gram (3). In order to prove that point, we introduce the following relaxed program:





min
(x,y)∈(X,Y )⊆IRn×INm

f(x, y)

u.c. gi(x, y) ≤ 0, ∀i ∈ I ⊆ P
hj(x, y) = 0, ∀j ∈ J ⊆ Q
gi(x, y) ≤ si, ∀i ∈ P \ I
rj ≤ hj(x, y) ≤ rj, ∀j ∈ Q \ J

(4)

where the black-box constraints are eliminated from Program (3). In fact, the main principle
of IBBA BCC is to solve the relaxed program (4) and just to consider the Program (3) for im-
proving the current solutions f̃. Such a Branch and Bound algorithm proceeds by exclusions of
boxes when it is proven that the global solution cannot be inside it. Thus, suppose that a box
Z which contains the global minimum of Program (3) is discarded by IBBA BBC. Z has only
3 distinct possibilities to be eliminated: (i) Z = ∅ after the propagation step. This implies that
at least one constraint of the relaxed problem (4) is unsatisfiable, see [3]. Hence, no point in Z
can satisfy all the constraints of problem (4) and therefore of problem (3). Thus, this possibility
cannot occur; (ii) using interval arithmetic, an analytical constraint is proved to be unsatisfi-
able for all points in Z . It is also an impossible case such as in (i); (iii) f̃ ≥ z := lb(f, Z). This
implies that no point in Z can have a value lower than f̃, therefore Z does not contain a global
minimum. Therefore, we show that these 3 possibilities cannot occur and then that such a box
Z cannot exist. Hence, IBBA BBC provides a global minimum of Program (3).

4. Numerical experiments

To illustrate our methodology, we consider the design of an electromechanical machine with
permanent magnets. See [1] for details about its mixed non-convex analytical formulation.
For the computations of the electromagnetic torque of the machine, we use NUMT which is
an efficient finite element numerical algorithm that we developed, [2]. Thus, here we have
just one black-box constraint.

In Table 1, parameters of the machine are: -D its bore diameter, -L its length, -la the thick-
ness of the magnets, -E the winding thickness, -C the thickness of yoke, -β the polar arc
factor,-kd the filling factor, -p the number of poles pairs, -m the number of slots per pole and
phase, -br the rotoric configuration, -bf the kind of electromotive force waveform, -σm the type
of permanent magnet, -σmt the type of magnetic conductor. On this example, we minimize
the mass (see [2] for complementary results), the main constraint is about the torque of the
machine which must be equal to 10 N·m (with a tolerance about ±0.2 N·m). In the column
named IBBA, we solve program (1) with only the analytical model and just using IBBA. Re-
mark that the numerical value for the torque (computed using NUMT) is equal to 9.12 which
is quite far from imposed value 10. In column IBBA BBC, we solve Program (3) with a zone
of 10% around 10 for the torque and using NUMT. Then, we obtain 9.83 N·m for the numer-
ical torque; notice that the analytical value is 10.21. We emphasize in bold all the parameters
which have changed between these two resolutions (nine parameters have changed including
the integer ones).

In Table 2, we represent the solutions found when the zone is progressively increased:
2%, 5% and so on. We note that a zone about 5% is sufficient to solve efficiently this design
problem.
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Table 1. Results for the minimization of the Mass.

Parameter Bounds Unit IBBA IBBA BBC

D [0.01, 0.3] m 0.1430 0.1320
L [0.01, 0.3] m 0.0491 0.0519
la [0.003, 0.01] m 0.0034 0.0047
E [0.005, 0.03] m 0.0075 0.0082
C [0.003, 0.02] m 0.0040 0.0039
β [0.7, 0.9] 0.73 0.79
kd [0.4, 0.6] 0.5020 0.5024
p [[3, 10]] 8 9

m {1, 2} 1 1
br {0, 1} 0 1

bf {0, 1} 1 1
σm {1, 2} 2 2
σmt {1, 2} 2 2

Mass kg 2.92 3.35

Analytical Torque N·m 9.81 10.21
Numerical Torque N·m 9.12 9.83

CPU - Time min 0’51 34’44
Iterations 152,126 216,623

Iterations of NUMT - 2,898

Table 2. Results when the zone varies.

zone: pc = Mass Γem NUMT Time Its Its of NUMT

IBBA 2.92 9.81 9.12 0’51 152,126 –
2% 3.44 10.18 9.92 7’59 223,769 585
5% 3.35 10.21 9.83 17’08 213,094 1,404
10% = = = 34’44 216,623 2,898
20% = = = 79’29 223,118 7,162
30% = = = 159’25 228,324 14,751
40% = = = 281’09 231,513 25,004

5. Conclusion

We show in this paper that it is possible to extend IBBA code in order to take into account
global optimization problems with black-box constraints. We prove that our new algorithm
provides the global minimum of such a problem. Our new method is validated by solving a
problem of design of an electromechanical machine with permanent magnets.
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1. Introduction

We study the pooling problem, a nonconvex network flow problem. For example, consider
the flow problem instance shown in Figure 1, which models the flow of oil contaminated by
sulfur from the source nodes (squares) to the sinks/customers (triangles), with the objective
to maximize the profit. As one can see from the figure, there are bounds on the relative sulfur

3% S
Cost: 6

1% S,
Cost: 16

2% S,
Cost: 10

Max 2.5% S,
Price: 9,
Demand: 100

Max 1.5% S,
Price: 15,
Demand: 200

1

2

3

4 5

6

Figure 1. The Haverly1 pooling problem instance [2]. The direction of flow is from left to right.

content at the sinks (nodes 5 and 6) which are such that the source node 1 cannot alone service
any of the sinks, and the source node 3 cannot alone service sink 6. In addition, there is a node
in the network (number 4) where two incoming flows meet, and then split up again. Such a
node is called a pool, and is what gives rise to the name pooling problem. The quality of the
flow leaving the pool is a weighted average of the qualities entering the pool, where the flow
quantities constitute the weights.

Although there may be several quality components of interest (e.g. water in addition to
sulfur), we will focus on the situation where there is only one component. Note also that the
graph can be said to have three layers of nodes. First, there is a layer of sources, then a layer
containing pools, and finally a layer of sinks. If we wish to maximize profit/minimize cost,

∗This work was supported by the Norwegian Research Council, Gassco and StatoilHydro under contract 175967/S30.
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then the problem instance in the figure can be written as:

max 9(x45 + x35) + 15(x36 + x46)− 6x14 − 16x24 − 10(x35 + x36),

such that

x14 + x24 − x45 − x46 = 0, (1)
3x14 + x24 − q4(x45 + x46) = 0, (2)

q4x45 + 2x35 ≤ 2.5(x45 + x35),

q4x46 + 2x36 ≤ 1.5(x46 + x36),

x46 + x36 ≤ 100,

x45 + x35 ≤ 200,

all variables ≥ 0.

Here q4 denotes the relative sulfur content of the oil exiting node 4, and xij denotes the flow
from node i to node j. This is not the only possible objective function, for example if we want
to maximize the flow to the sinks, the objective will be

maxx35 + x36 + x45 + x46, (3)

Wewill call this a max flow formulation. For both formulations there are bilinear terms, which
are caused by the presence of the pool.

2. Solving the pooling problem

Existing algorithms for this problem (see e.g. [7] and the references therein) employ branch-
and-bound techniques, and therefore have to solve an unknown, in the worst case exponen-
tial, number of subproblems. The reason for this is that there are exponentially many nodes
in the branch-and-bound tree. We now present a methodology that does not make use of
branching and bounding.

First, we need some background regarding a technique which can be used to solve con-
strained optimization problems which are polynomial. Since a pooling problem instance is
a bilinear program and therefore is also polynomial (in fact, quadratic), we can use convex
linear matrix inequality (LMI) relaxations [4, 5] to try to solve them. Let us write a general
quadratic, quadratically constrained optimization problem as

min
x
f(x)

subject to gj(x) ≥ 0, j = 1, . . . ,m. (4)

LetK denote the feasible domain. Solving (4) is equivalent to solving

min
µ∈P(K)

∫
f(x) µ(dx). (5)

Here we minimize of over all possible Borel signedmeasures µwith support onK , which can
be thought of as probability measures. Assuming, for simplicity, that f has a unique global
minimum x∗ onK , then the solution to (5), say, µ∗ is the probability measure with its support
only on x∗, and x∗ can be identified from the first-order moments of µ∗. Finding a probability
distribution with support onK can be done by determining its moments. However, this is an
infinite-dimensional optimization problem. It can be truncated by determining only moments
up to a certain (finite) order. Finding such moments is precisely the (primal) LMI relaxation of
(4), and the higher the order of the moments, the better the relaxation. See [4, 5] for a detailed
description.
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Instead of discussing the primal LMI relaxation, we focus on its dual. The dual can be
viewed as finding polynomial weights so that one can write the expression f(x) − f∗ (the
objective function minus its globally optimal value on the feasible domain) as a weighted sum
of the constraints, where the weights are squared polynomials. That is, finding polynomials
qj(x), j = 1, . . . , r0 and qkj(x), j = 1, . . . , rkj, if they exist, such that

f(x)− f∗ =
r0∑

j=1

[qj(x)]
2 +

m∑

k=1

gk(x)




rk∑

j=1

[qkj(x)]
2


 . (6)

Since squared polynomials are always nonnegative and the constraint polynomials, as well as
the expression f(x) − f∗ are always nonnegative on the feasible domain, finding the coeffi-
cients of the q-polynomials such that (6) holds for all x on the feasible domain is equivalent to
finding the global optimum f∗. The allowed degree of these polynomials is called the order
of the relaxation, and is linked to how many moments are present in the primal problem. For
quadratic objective functions and quadratic constraints (our case) and relaxation order i, qj
may have at most degree i, and qkj at most degree i− 1, for all k and j.

If the feasible set of (4) is compact and has a nonempty interior, then there exists a finite
order for which (6) holds. Having found the q-polynomials and f∗, the corresponding optimal
variables x∗ for the original problem (4) can be determined using the procedure decribed in
[3], in most cases.

Proposed Solution framework. This enables us to solve the pooling problem with one
quality in the following way:

1. Eliminate equalities from the formulation by variable substitution, without introducing
rational expressions. Specifically, for each pool there will be a flow balance equation (1)
and a similar equation regarding the flow of the quality component (2). Use these to
eliminate two of the incoming edge flow variables.

2. If needed, remove obvious causes of empty interiors (e.g. sinkswith unsatisfiable quality
requirements).

3. Solve the reduced problem with LMI relaxations.
4. Assign values to eliminated variables.

Not all pooling problem instances can have their equalities removed while remaining poly-
nomial. In particular, this is true for the case of multiple quality components, and for this
reason we make no claim about the solvability of such instances. In addition, single-quality
instances which cannot be made to have a nonempty interior cannot provably be solved for
a finite LMI relaxation order. However, we note that the class where step 1 and 2 produce a
useable formulation encompassesmany instances, including the single-quality instances most
commonly discussed in the literature.

After step 1 has been performed, min cost instances will have bilinear terms in the objec-
tive function, whereas the objective function of max flow instances will be unchanged. Since
solving the problem amounts to constructing the expression f(x) − f∗, an expression which
is linear for the max flow case, we suspect that solving max flow problems is actually easier
than solving min cost problems.

Computational Complexity. Step 1, 2 and 4 have polynomial complexity. As for step 3,
there are O(n2i) decision variables in the LMI relaxation of order i, which can be cast as a
semidefinite programming (SDP) problem. SDP problems can be solved in polynomial time
using interior point methods. In other words, if there, for some subclass of the pooling prob-
lem, exists an imax such that all instances in the class can be solved by an LMI relaxtion of
order no larger than imax, then this class of problems is solvable in polynomial time. In ad-
dition we note that, being a network flow problem, the pooling problem should be suited to
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the sparsity-exploiting variant of LMI relaxations presented in e.g. [6], which allows for faster
solution times.

3. Numerical experience

We test our solution framework on concrete instances to see if there is a trend regarding which
relaxation order is needed to find the global optimum. First we solve the standard sinqle-
quality test cases from the literature, all of which were solvable with a second-order LMI
relaxation. The results are given in Table 1. All of these instances are defined in e.g. [1]. We

Name Min cost Max flow
Order 1 Order 2 Order 1 Order 2

Haverly 1 600 400 300 300
Haverly 2 1200 600 800 800
Haverly 3 875 750 300 300
Ben-Tal 4 600 450 300 300
Foulds 2 1200 1100 600 600

Table 1. Results on standard test problem instances from the literature. The values are the objective function
values corresponding to relaxation orders one and two, for both minimum cost and max flow variants of the test
cases.

have also solved randomly generated problem instances with nonempty interiors. In these
experiments no min cost instance tested required a relaxation order larger than 3, and no
max flow instance required a relaxation order larger than 2. Interestingly, the lower bound
provided by relaxation order 1 was equal to the globally optimal objective function value for
all maximum flow problem instances tested, but not all minimum cost problem instances.

4. Summary

We use LMI relaxations for solving the single-quality pooling problem. Based on our experi-
ments we suspect that most instances of this problem are solvable with a low LMI relaxation
order, provided that they can be formulated in such a way that they have a nonempty interior.
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Abstract This work describes the minimum volume enclosing simplex problem, which is known to be a mul-
timodal Global Optimization problem. The problem has been used as a basis to estimate so-called
endmember and abundance data in unmixing spectral data of hyperspectral sensors. This estimation
problem is a big challenge. We explore the possibility of a new estimation algorithm using the min-
imum volume enclosing simplex problem. We investigate its behaviour numerically on designed
instances comparing its outcomes with a maximum volume enclosed simplex approach which is
used frequently in spectral unmixing.

Keywords: spectral unmixing, endmembers, principal components, optimization. minimum volume

1. Introduction

A challenging problem in having data from multispectral imaging sensors is to unfold them
into components. We study here the possibility to do so using a minimum volume enclosing
simplex approach. Hyperspectral sensors record scenes in which various disparate material
substances contribute to the spectrum measured from a single pixel.

Spectral unmixing ([5]) is a term to denote a procedure to decompose a measured spec-
trum of a mixed pixel into a collection of constituent spectra (endmembers) and a set of cor-
responding fractions (abundances) that indicate the proportion of each endmember present
in the pixel. Endmembers normally correspond to familiar macroscopic objects in the scene,
such as water, soil, metal, or any natural or man-made material.

Many methods have been developed and tested to perform endmember extraction and un-
mixing, see [3] for an overview. We will focus on what is called linear unmixing and ask the
question how one can recover the endmember and abundance data via unbiased estimators.
One typically sees least squares approaches with the additional complication that the abun-
dance estimate should lay on the unit simplex (nonnegativity). [4] takes an approach where
two conflicting objectives, that of least squares and minimizing the volume of an enclosing
simplex are combined in an objective function. Recently, [1] develop an approach where they
apply sequential Linear programming to solve the minimum volume enclosing simplex prob-
lem. In this paper we use standard available nonlinear optimization algorithms to solve the
problem.

The problem of enclosing a set of points with a minimum volume body leads usually to
a Global Optimization problem; we will illustrate that for the generic simplicial enclosure

∗This work has been supported by the SpanishMinistry of Science and Innovation through grants TIN2008-01117 and AYA2008-
05965-C04-02. Eligius Hendrix is a fellow of the Spanish "Ramon y Cajal" contract program, co-financed by the European Social
Fund.
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this is the same. However, the use in spectral unmixing is far from worst case behaviour;
instances are characterised by low noise and pixel data is well spread. A local search from
a well designed starting body leads to the global optimum soon. We will take a hierarchical
vision: First to minimize least squares using principal component analysis, which is very
common in image data analysis and second, minimize the volume of an enclosing simplex in
the reduced space. The question is how to use such an approach such that for linear mixture
with white noise one obtains unbiased estimates of endmembers and abundance.

A benchmark method is to consider a maximum volume “inscribing” simplex looked for
by the so-called n-findr algorithm [6]. Given the reduced data, in principle one looks for
all combinations within the given pixels as candidate endmembers such that the resulting
volume of the spanning simplex is maximum. If indeed the endmembers are present in the
data and noise is low, the approach is very promising as analysed by [6]. We can use the
results of such an approach to compare methods numerically.

2. Unmixing and minimum enclosing simplex

Let us assume that a hyperspectral scene contains m spectral bands and r pixel vectors. Each
pixel vector in the scene (yk) can be modeled using the following expression:

yk = Xak + ǫ (1)

where yk ism×1 observation bands,X ism×n, bands of endmembers, ak is 1×n abundance
and ǫ is m × 1 white noise with a standard deviation of σ. Our goal is to design a method
for recovering “real" matrix X and abundance ak of observed pixels yk. To do so, usually
two objectives are minimized: noise in a least squares way and the volume of the simplex
spanned by the columns of matrix X. Moreover, the abundance should be positive for each
pixel. The question is how to deal with least squares and minimum volume in such a way that
the estimation is unbiased, i.e. the expected value of the estimator is the real value.

One should keep in mind that instances of the problem consisting of real images are char-
acterized by pixels being mixtures of less than 4 constituents, i.e. vectors ak have only a few
positive values. The idea of least squares in the estimation procedure is, that often it is not
know exactly how many endmembers, constituents, are involved in the data. Therefore ap-
plication of principal component analysis is popular. Having n endmembers gives that one
should discover an n− 1 dimensional subspace that is responsible for the main variation and
the rest of them dimensional space is considered noise.

First of all the data are centralized by the mean y, such that the columns of Y consist of cen-
tralized observations yk−y. The observed variation in the spectral data Y TY is approximated
by (CZ)TCZ where C is an m × (n − 1) matrix of principal components and Z is (n − 1) × r
a so-called score matrix. In direction c1 we have the biggest variation, in direction c2 the sec-
ond biggest etc. Essentially we have reduced model (1) to z = V a + ξ, where we expect the
endmembers X to lay in the space < C > +y spanned by the columns of C . C represents an
estimate of the space in which the endmember spectraX are located,X = CV +y. To say it in
another way, with absence of noise the estimate ofC represents the space spanned byX−y1T ,
where 1 is the all-ones vector of appropriate dimension. With noise, ξ is now the projection of
ǫ on < C > and therefore its components also form white noise. To be consistent, we should
theoretically notice that y = Cz + y + ζ where ζ is the part of ǫ projected on the orthoplement
of < C >; ǫ = ξ + ζ . We will use the idea that the noise of z is componentwise independent.

We follow a two step approach often found in literature. First we estimate the space in
which the n endmembers are lying. Secondly, in that space, we minimize the volume of the
resulting simplex such that it encloses the projections of the observed bands of the pixels. The
n-findr algorithm follows an approach where on the projected plane the volume of a simplex
is maximized.
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3. Minimum volume versus maximum volume simplices

The estimate of the matrix of endmembersX = CV + y appears from an estimate of V based
on the projected bands (scores) Z . The problem of finding the minimum enclosing simplex of
a set of points zk, k = 1, . . . , r in (n− 1)-dimensional space is

min
V
{f(V ) := det

(
V
1T

)
} subject to ak =

(
V
1T

)−1(
zk
1

)
≥ 0, k = 1, . . . , r (2)

Enclosing with shapes may lead to GO problems. [2] give several examples for enclosing
with spheres (the Chebychev problem) and with hyper-rectangles. The use of the minimum
volume problem for endmember identification is illustrated next.

In general, we will call V the real values of endmembers defining simplex S = conv(V )

and use for the outer enclosing estimate V̂ o and corresponding simplex Ŝo. In case all pixels
would be convex combinations of (few) endmemberswithout any noise, the enclosing simplex
Ŝo obtains the endmembers V as vertices despite they do not appear in the pixels. Literature
on spectral unmixing also uses a maximum volume simplex perspective. The idea is that pure
pixels representing the endmembers are present in the data set Z . Consider the pixel data
as a set Z. One wants to find a subset V with |V| = n such that the corresponding simplex
has maximum volume; i.e. maxV⊂Z f(V ), where V is a matrix with the columns of V. This
defines a combinatorial optimization problem. The n-findr algorithm is a so-called local
search heuristic in combinatorial optimisation context. We used a matlab implementation of
n-findr as reference method to compare to minvest described in Section 4.

4. Minimum volume estimation procedure: minvest

The minimum volume simplex Ŝo gives an accurate estimate of the endmembers if noise is
absent. That is, sufficiently many pixels should lay on the boundary of S. Mathematically,
this means that abundance values aj,k = 0; i.e. pixel k does not contain any constituent j. In
the hyperspectral image area, it is known that a pixel spectrum consists of a mix of at most
4 constituents. As soon as noise is added, one can approximate with probability theory the
chance that a pixel lays outside S. Let ρ be an estimation of the fraction of pixels we expect to
be interior with respect to S. An initial matrix V that does not include all pixels is generated.
Iteratively the endmembers V̂ are estimated from the minimum volume problem by solving
(2) and the active pixels at its boundary are removed up to a ρ fraction is left over.

To recover the abundance values from the estimated endmembers V the term linear spec-
tral unmixing (LSU) is used when nonnegativeness of estimated abundance is not taken into
account. For the fraction of pixels located within simplex Ŝ we have automatically positive
abundance values. For pixels zk outside Ŝ, we have at least one corresponding ajk < 0. The
term fully constrained linear spectral unmixing (FCLSU) is used if we want to force abundance
values to be nonnegative. To do so we consider that the noise of zk is componentwise inde-
pendent we choose to project zk on the facet of Ŝ closest to zk and determine the abundance
for the endmembers in the plane of that facet.

5. Computer simulated data experiments and conclusions

Computer simulations have been carried out in order to evaluate the accuracy of minvest in
comparison with n-findr in highly controlled analysis scenarios. The quality of estimation V̂
(Â) of V (A) is measured as the standard deviation estimate assuming V̂ (Â) is unbiased, also
called root mean squared error (RMSE). To distinguish, we will use σA if Â is generated by
LSU and σAp if Â is generated by FCLSUWe show the results obtained from a case with n = 5



58 Inmaculada García, Eligius M.T. Hendrix, Javier Plaza, and Antonio Plaza

endmembers and r = 500 pixels. To mimic the idea of combinations of a few constituents, a
ground truth abundance matrix A is generated consisting for 50% of mixtures of 2 endmem-
bers and for 50% of mixtures of 3 endmembers. They are generated uniformly over the unit
simplex. The score matrix Z as input for the estimation is taken as Z = V A + σ · ξ, where
ξ is standard white noise. The choice of the parameter value for ρ is determined by the data
ρ = 18.25%. Given that performance indicators depend on pseudo-randomly drawn white
noise, for each ground-truth matrix A we replicated white noise 100 times.

Table 1. (RMSE) of endmembers V and abundance A obtained by n-findr and minvest given noise σ.

n-findr minvest

σ 0.01 0.1 0.2 0.5 0.7 0.01 0.1 0.2 0.5 0.7
σV .030 .118 .233 .857 1.359 .013 .111 .194 .486 .922
σA .011 .063 .114 .259 .323 .007 .058 .105 .204 .266
σAp .008 .048 .092 .224 .281 .005 .048 .086 .174 .234

The measured performance for n-findr and minvest is given in Table 1. It shows standard
deviation estimates σV of endmembers and σA of fractional abundances calculated via LSU
and via fully constrained spectral unmixing (FCLSU). One can observe that the standard de-
viation of the estimates is in the same order of magnitude as that of noise. This means that
the procedures give results as accurate as the input data. Deviation of endmembers and abun-
dances estimations provided by n-findr are higher than those obtained with minvest. Other
scenarios with and without pure pixels have been generated and evaluated.

The following can be concluded: (1) The problem of unmixing hyperspectral data may be
a hard to solve problem. (2) The minimum volume simplicial enclosure problem is a Global
Optimization problem where the number of optima depends in worst case on the number of
points in the convex hull of the instance. (3) The resulting simplex of the (combinatorial) max-
imum volume simplex problem is enclosed in the result of the minimum volume enclosing
simplex problem. (4) Local search from a good starting simplex leads in general to the global
optimum for the case of spectral unmixing due to well spread data in the originating simplex
and low noise in practice. (5) The new minvest algorithm does not require pure pixels to be
present in the scene of the instance unlike the n-findr algorithm. (6) In the case of having
no noise and well spread data over the boundary of the spectral simplex, minvest recovers
the original endmembers and ground truth abundance. (7) The RMSE performance indica-
tor is sensitive to scaling in its use for measuring abundance discrepancies. (8) The results of
minvest seems more correlated to ground truth abundance data than the ones of n-findr.
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Abstract This report is focused on computational solution approach for the MaximumWeighted Clique Prob-
lem (MWCP). The problem is formulated as continuous optimization problem with the nonconvex
quadratic constraint given by difference of two convex functions (d.c. function). The approach is
based on Global Optimality Conditions. The key ingredients of the approach are: local search al-
gorithm, linearization at points of finite approximation of level surface of convex function. The
effectiveness of the proposed algorith is illustrated by the computational results.
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1. Introduction

Let G = (V,E,w) be a simple undirected weighted graph with the nodes set V and the set of
edgesE. The node weights are given by the vector w ∈ ℜ|V |. LetG = (V,E,w) be the comple-
mentary graph ofG. We assume that the graph and its complement have no isolated nodes. A
clique C is a subset of V such that the subgraph G(C) is complete. The Weighted Maximum
Clique Problem (MWCP) consists in a finding a clique of maximum weight. The particular
case of MWCP is the Maximum Clique Problem (MCP), where wi = 1, i = 1, . . . , |V |, i.e. the
clique of maximum cardinality have to be found.

In this report we propose to consider the continuous formulation of MWCP as an optimiza-
tion problem with d.c. constraint over the canonical simplex. For this formulation a Global
Search Strategy (GSS) [1, 2] can be adopted. We show how the efficient implementation of GSS
can be done taking into account the structure of WMCP. The efficiency of this application of
GSS to the MWCP is demonstrated by a numerical experiment on DIMACS benchmarks and
a comparison with algorithms from [3].

2. Continuous formulation of MWCP

Let C ⊂ V be a clique,W (C) =
∑
i∈C

wi be the total weight of a clique C and |V | = n.

The characteristic vector z(C,w) of a clique C is given by

z(C,w)i =

{ wi

W (C)
, if i ∈ C,
0, otherwise.

(1)

We construct the matrix B = ||bij ||(n×n) by following rule [4]:

bij =





1

2wi
+

1

2wj
, if i 6= j, (i, j) /∈ E;

0, otherwise.
(2)
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If wi = 1, for all i = 1, . . . , n then matrix B turns out to be the adjacency matrix of the comple-
mentary graph G.

We propose a new formualtion of MWCP as a continuous nonconvex problem, as follows:

φ(x)
△
=

n∑

i=1

1

wi
x2i ↓ min, x ∈ S, Φ0(x)

△
=
〈
x,Bx

〉
≤ 0, (P0)

where S
△
= {x ∈ IRn | x ≥ 0,

n∑
i=1

xi = 1}.
Denote supp(x) = {i ∈ {1, . . . , n} | xi > 0}. It is not so difficult to prove

Lemma 1. [5] Suppose x ∈ S. Then
〈
x,Bx

〉
= 0 iff supp(x) is a clique in the graph G.

Consider now the following function of parameters α and γ:

Φ(x)
△
=
〈
x, [αB + γ(B +D)]x

〉
− γ 〈d, x〉 , (3)

where d ∈ IRn, di =
1

wi
, i = 1, . . . , n, D = diag{d1, . . . , dn} and the matrix B = ||bij ||(n×n) is

defined by the rule:

bij =





1

2wi
+

1

2wj
, if (i, j) ∈ E;

0, otherwise.
(4)

Lemma 2. [5] Suppose x ∈ S, α 6= γ. Then the set supp(x) is a clique of graph G iff Φ(x) = 0.

Then we turn our attention to the question on the inequality with the function Φ(x). If〈
x,Ax

〉
≤ 0, then it can be readely seen, that Φ(x) ≤ 0, when α > γ, and Φ(x) ≥ 0 when

α < γ. So, sign(α− γ)Φ(x) ≤ 0when α 6= γ.
Let us consider the generalization of (P0) with parameters α 6= γ:

φ(x) ↓ min, x ∈ S, sign(α− γ)Φ(x) ≤ 0. (P)

Note that Problem (P0) is a particular case of Problem (P) when γ ≡ 0. If α ≡ 0, we have
the continuous formulation of MWCP with matrix B, corresponding to graph G, as follows

n∑
i=1

1

wi
x2i ↓ min, x ∈ S, 〈x, (B +D)x〉 − 〈d, x〉 ≥ 0. (P1)

Theorem 3. Let Problem (P) corresponds to graph G(V,E,w) and α 6= γ. Then the following
statements hold:

i) C is a maximal weighted clique of G and z(C,w) is its characteristic vector;
ii) z is a strict local minimizer of (P);
iii) z is a local minimizer of (P), z ∈ Arglocmin(P).

3. Local search

In this section we present a Local Search Algorithm (LSA) to find a maximal clique C , which
we call C-procedure. Here we are concerned the idea of C-procedure from [6].

For the sake of clarity suppose, that α > γ ≥ 0. C-procedure consists of two parts.
1) The first one begins at some point x0 ∈ S and generates the sequence {xm} of infeasible

points xm: Φ(xm+1) < Φ(xm), m = 0, 1, 2, . . . The work of the first part is terminated when
the set supp(xm) is a clique, i.e. Φ(xm) = 0.

2) In the second part one constructs a maximal clique C containing supp(x), where x is the
final point of the first part.
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C-procedure

Step 0. Putm := 0, choose x0 ∈ S.
Step 1. Construct supp(xm).

Step 2. If supp(xm) is a clique then x := xm and go to step 5.

Step 3. Find vertex q and p from supp(xm) such that (q, p) /∈ E, Φ(x(q, p)) < Φ(xm),
where x(q, p) = xm + xmp (eq − ep).

Step 4. Put xm+1 := x(q, p), m := m+ 1 and go to step 1.

Step 5. Find a maximal weighted clique C ⊃ supp(xm). PutK := |C|.
Step 6. Construct z(C,w) and Stop.

The choice of pair (q, p) and constructing of maximal clique C may be implement by dif-
ferent methods, for example by methods from [6]. So we could obtain different variants of
C-procedure.

4. Global search

It can be easily seen that problems (P0), (P) and (P1) are not convex optimization problems
since matrices B and B are not nonnegative definite. But it is well-known that an indefinite
matrix can be represented as a difference of two nonnegative definite matrices.

As a consequence, problems (P0), (P) and (P1) turns out to be a particular cases of problem
with d.c. constraint [1, 2]:

f(x) ↓ min, x ∈ S, h(x)− g(x) ≤ 0, (5)

where f(·), g(·), h(·) are convex functions and S is a convex set.
There are many ways to represent a matrix as a difference of two nonnegative definite ma-

trices. For example, whenα > γ > 0 the following representation ofmatrixA = αB+γ(B+D)
in problem (P)may be used: A = A1−A2, A1 = αΛ+γ(Λ+D), A2 = α(Λ−B)+γ(Λ−B),

where Λ = diag{λ1, . . . , λn}, λi =
n∑

j=1
bij ; Λ = diag{λ1, . . . , λn}, λi =

n∑
j=1

bij .

It is obvious, that λi, λi > 0, i = 1, . . . , n, since graph G and its complement G have no
isolated nodes. Hence, the matrix A1 is positive definite and matrix A2 has the dominant
diagonal. Then functions h(x) = 〈x,A1x〉 − γ〈d, x〉, g(x) = 〈x,A2x〉 are convex functions. So
we obtained the d.c. decomposition of function Φ(·) in problem (P).

Now let us describe a Global Search Algorithm for solving MWCP. Let a point x0 ∈ S be
given.

ℜ-strategy
Step 0. Put k := 0. Starting from x0 obtain byC-procedure a point z0 of local minimum to (P).
Step 1. Put βk := h(zk), ζk := φ(zk). Construct an approximation

Rk = {yi = λie
i | g(yi) = βk, i = 1, . . . , n}.

Step 2. For every i = 1, . . . , n solve the Linearized Problem

h(x)− 〈∇g(yi), x〉 ↓ min, x ∈ S, φ(x) ≤ ζk. (PLi)

Let ui be a solution of the Linearized Problem.

Step 3. Starting from ui ∈ S (i = 1, . . . n) obtain by C-procedure a point vi ∈ Arglocmin(P).
Step 4. From all points vi, i = 1, . . . n, choose a point vj : φ(vj) = min

1≤i≤n
φ(vi).
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Step 5. If φ(vj) < φ(zk), then put zk+1 := vj , k := k + 1 and go to step 1. Otherwise put
z := zk, STOP: supp(z) is a maximal clique.

To illustrate the efficiency of the proposed algorithm, computational experiments were car-
ried out on DIMACS benchmark graphs ("C"-graph data, for instance, see in Table 1). The
weights of the nodes are all in the range [1, 10] and are generated following way [3]. The
nodes i of graph G(V,E,w) are numbered from 1 to n and wi = i mod 10, i = 1, . . . , n. In
Table 1 ”W” is the weight of the solutions for each algorithm, ”T”(sec.) is the computation
time and ”W∗” is the maximum weight (optimal) of the clique computed by Xpress-MP. It can
be readily seen from Table 1 that R−algorithm has reached better solutions on the instances,
where n ≥ 1000.

Table 1. Testing on DIMACS benchmark "C" graphs

graph W∗ MS−alg R−alg
W T W T

C125.9 215 215 5 215 3
C250.9 304 304 13 292 7
C500.9 ≥385 385 3364 379 48
C1000.9 ≥483 470 554 483 375
C2000.9 ≥561 531 2431 561 1007
C2000.5 ≥126 113 324 126 605

5. Conclusion

In the paper we considered the well-known combinatorial problem of finding a maximum
weighted clique (MWCP) as the continuous problem with nonconvex quadratic constraint
given by difference of two convex functions.

For solving MWCP we applied an approach based on Global Optimality Conditions for
problems with d.c. constraint. Developing the proposed Global Search Strategy for problems
with d.c. constraint, we obtainedR−algorithm.

The extensive computational experiments were carried out on the DIMACS benchmark
graphs. The obtained computational results stimulate the future investigations.

Acknowledgments. The author wish to thank Prof. Alexander Strekalovsky for their en-
couragement and support.
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Abstract A small polygon is a convex polygon of unit diameter. We are interested in small polygons which
have the largest area for a given number of vertices n. Many instances are already solved in the liter-
ature, namely for all odd n, and for n = 4, 6 and 8. Thus, for even n ≥ 10, instances of this problem
remain open. Finding those largest small polygons can be formulated as nonconvex quadratic pro-
gramming problems which can challenge state-of-the-art global optimization algorithms. We show
that a recently developed technique for global polynomial optimization, based on a semidefinite
programming approach to the generalized problem of moments and implemented in the public-
domain Matlab package GloptiPoly, can successfully find largest small polygons for n = 10 and
n = 12. Therefore this significantly improves existing results in the domain. When coupled with
accurate convex conic solvers, GloptiPoly can provide numerical guarantees of global optimality, as
well as rigorous guarantees relying on interval arithmetic.

Keywords: extremal convex polygons, global optimization, nonconvex quadratic programming, semidefinite
programming

1. Introduction

The problem of finding the largest small polygons was first studied by Reinhardt in 1922
[13]. Reinhardt solved the problem by proving that the solution corresponds to the regular
polygons but only when the number of vertices n is odd. He also solved the case n = 4 by
proving that a square with diagonal length equal to 1 is a solution. However, it exists an
infinity of other different solutions (it is just necessary that the two diagonals intersect with a
right angle). The hexagonal case n = 6was solved numerically by Graham in 1975 [6]. Indeed,
Graham studied possible structures that the optimal solution must have. He introduced the
diameter graph of a polygonwhich is defined by the vertices of the polygon and by edgeswith
length one (if and only if the corresponding two vertices of the edge are at distance one). Using
a result due to Woodall [14], he proved that the diameter graph of the largest small polygons
must be connected, yielding 10 distinct possible configurations for n = 6. Discarding 9 of these
10 possibilities by using standard geometrical reasonings plus the fact that all the candidates
must have an area greater than the regular small hexagon, he determined the only possible
diameter graph configuration which can provide a better solution. He solved this last case
numerically, yielding the largest small hexagon. Following the same principle, Audet et al.
in 2002 found the largest small octagon [4]. The case n = 8 is much more complicated than
the case n = 6 because it generates 31 possible configurations and just a few of them can be
easily discarded by geometrical reasonings. Furthermore, for the remaining cases, Audet et al.
had to solve difficult global optimization problems with 10 variables and about 20 constraints.
These problems are formulated as quadratic programs with quadratic constraints [4]. Audet
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et al. used for that a global solver named QP [1]. Notice that optimal solutions for n = 6
and n = 8 are not the regular polygons [4, 6]. In 1975, Graham proposed a conjecture which
is the following: when n is even and n ≥ 4, the largest small polygon must have a diameter
graph with a cycle with n− 1 vertices and with an additional edge attached to a vertex of the
cycle; this is true for n = 4, 6 and also n = 8, see Figure 1. Therefore, this yields only one
possible diameter graph configuration that must have the optimal solution. In 2007, Foster
and Szabo proved Graham’s conjecture [5]. Thus to solve the following open cases n ≥ 10, it
is just necessary to solve one global optimization problem defined by the configuration of the
diameter graph with a cycle with n − 1 vertices and an additional pending edge. In order to
have an overview of these subjects, refer to [2, 3].

2. Nonconvex quadratic programming

As mentioned above, for an even n ≥ 4, finding the largest small polygon with n vertices
amounts to solving only one global optimization problem. All these problems depending
on n can be formulated as nonconvex quadratic programs under quadratic constraints [4].
For illustration, here is the problem corresponding to the case n = 8 (the definitions of the
variables are given in Figure 1):

•

• ••

••

••

v8 = (0, 0)

v1 = (x1 − x2, y1 − y2)

v2 = (−x1 + x3 − x5,
y1 − y3 + y5)

v3 = (−x1, y1)

v4 = (0, 1)

v5 = (x1, y1)

v6 = (x1 − x2 + x4,
y1 − y2 + y4)

v7 = (x3 − x1, y1 − y3)

Figure 1. Case of n = 8 vertices. Definition of variables following Graham’s conjecture.





max
x,y

1
2
{(x2 + x3 − 4x1)y1 + (3x1 − 2x3 + x5)y2 + (3x1 − 2x2 + x4)y3

+(x3 − 2x1)y4 + (x2 − 2x1)y5}+ x1

s.t. ‖vi − vj‖ ≤ 1, ∀(i, j) ∈ {1, · · · , 8}, i 6= j
‖v2 − v6‖ = 1
x2
i + y2

i = 1 i = 1, 2, 3, 4, 5
x2 − x3 ≥ 0 y ≥ 0
0 ≤ x1 ≤ 0.5 0 ≤ xi ≤ 1, i = 2, 3, 4, 5.

(1)

Without loss of generality we can insert the additional constraint x2 ≥ x3 which eliminates
a symmetry axis. In program (1), all the constraints are quadratic. The quadratic objective
function corresponds to the computation of the area of the octagon following Graham’s di-
ameter graph configuration. This formulation is easy to extend to the cases n ≥ 10 with n
even.

3. GloptiPoly

In 2000, Lasserre proposed to reformulate nonconvex polynomial optimization problems
(POPs) as linear moment problems, in turn formulated as linear semidefinite programming
(SDP) problems [10]. Using results on flat extensions of moment matrices and representations
of polynomials positive on semialgebraic sets, it was shown that under some relatively mild
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assumptions, solving nonconvex POPs amounts to solving a sufficiently large linear hence
convex SDP problem. In practice, a hierarchy of embedded SDP relaxations of increasing size
are solved gradually. Convergence and hence global optimality can be guaranteed by exam-
ining a certain rank pattern in the moment matrix, a simple task of numerical linear algebra.
A user-friendly Matlab interface called GloptiPoly was designed in 2002 to transform a given
POP into an SDP relaxation of given size in the hierarchy, and then to call SeDuMi, a general-
purpose conic solver [7]. A new version 3was released in 2007 to address generalized problem
of moments, including POPs but also many other decision problems. The interface was also
extended to other public-domain conic solvers [8]. Almost a decade after the initial spark [10],
Lasserre summarized the theoretical and practical sides of the approach in a monograph [11].

4. Numerical experiments

We applied GloptiPoly 3 and SeDuMi 1.1R3 to solve the quadratic problem in the cases n = 8
and 10. In order to obtain accurate solutions, we let SeDuMi minimize the duality gap as
much as possible. We also tightened the tolerance parameters used by GloptiPoly to detect
global optimality and extract globally optimal solutions. We used a 32 bit desktop personal
computer with a standard configuration.

For the case n = 8 we obtain the solution (with 8 significant digits) x1 = 0.26214172, x2 =
0.67123417, x3 = 0.67123381, x4 = 0.90909242, x5 = 0.90909213 whose global optimality is
guaranteed numerically (the moment matrix has approximately rank one) at the second SDP
relaxation in the hierarchy. This SDP problem is solved by SeDuMi in less than 5 seconds. The
objective function of the SDP relaxation is equal to 0.72686849, and this is an upper bound on
the exact global optimum. The quadratic objective function evaluated at the above solution is
the same to 11 significant digits. Symmetry considerations indicate that x2 = x3 and x4 = x5
at the optimum, and we see that the above solution achieves this to 5 digits for x2 and to 6
digits for x4.

These results can be rigorously guaranteed by using Jansson’s VSDP package which uses
SDP jointly with interval arithmetic [9]. The solution of an SDP problem can be guaran-
teed at the price of solving a certain number of SDP problems of the same size. In our case,
VSDP solved 8 instances of the second SDP relaxation to provide the guaranteed lower bound
0.72686845 and guaranteed upper bound 0.72686849 on the objective function, namely the
area of the octagon.

In the case n = 10, we obtain the solution x1 = 0.21101191, x2 = 0.54864468, x3 =
0.54864311, x4 = 0.78292524, x5 = 0.78292347, x6 = 0.94529290, x7 = 0.94529183 whose
global optimality is guaranteed numerically at the second SDP relaxation. This SDP problem
is solved by SeDuMi in less than 5 minutes. The objective function of the SDP relaxation, an
upper bound on the exact global optimum, is equal to 0.74913736. The quadratic objective
function evaluated at the above solution is the same to 10 significant digits.

For n = 12, we obtain the following solution without using the rigorous method of SDP:
x1 = 0.17616131, x2 = 0.46150224, x3 = 0.46150519, x4 = 0.67623091, x5 = 0.67623301,
x6 = 0.85320300, x7 = 0.85320328, x8 = 0.96231370, x9 = 0.96231344. This SDP problem is
solved within 1h06. The objective function of the SDP relaxation, an upper bound on the exact
global optimum, is equal to 0.76072988. The solutions for the optimal decagon and dodecagon
are drawn in Figure 2.

5. Conclusion

GloptiPoly can be efficiently used to find some largest small polygons with an even number
of vertices. The case n = 8 is most efficiently solved than in [4]: (i) the accuracy on the value
of the area is now 10−10 in place of 10−5 and (ii) the required CPU time is about 5 seconds in



66 Didier Henrion and Frédéric Messine

•

•

•

• • •

•

•

•
•

•

•

•

•
• • •

•

•

•

•

•
Figure 2. Largest Small Decagon and Dodecagon.

place of 100 hours. Furthermore, the next open instance for n = 10 is solved using GloptiPoly
in only 5 minutes with always an accuracy of 10−10. These two results are obtained with a
certified guarantee on 10 digits. For the case n = 12, GloptiPoly found the global solution,
but for the moment without a certified guarantee. In future works, we have to certified and
guarantee the solution obtained for the case n = 12. It seems to be also possible to solve the
next open case n = 14. Note that all the found largest small polygons with an even number n
of vertices (from n = 4 to 12) own a symmetry axis on the pending edge of their corresponding
optimal diameter graph configurations.
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Abstract Real global optimization problems, such as the design of electromechanical actuators, often imply to
take into account different kinds of variables: discrete and continuous. In this paper, we studymixed
problems which combine real and categorical variables (discrete variables without ordering). Four
methods are presented and discussed in order to compute bounds for the categorical variables. This
yields some properties and permits some extensions of classical interval branch-and-bound global
optimization algorithms. Numerical tests will validate our approaches on two examples.
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1. Introduction

Interval analysis introduced by Moore has already been successfully used in many branch-
and-bound algorithms for global optimization of univariate or multivariate non-linear and
non-convex analytical functions, possibly subject to constraints [1, 3–6]. These methods pro-
vide precise enclosures for the optimal value and for one or all optimal solutions with an
absolute guarantee, i.e. the errors can be bounded by an arbitrary degree specified by the
user.

In this paper, constrained global optimization problems with mixed (real and categorical)
variables are addressed. Let us name x the vector of real variables where x ∈ X ⊂ IRn, and k
the vector of categorical variables where k ∈ Πm

j=1IKj . IKj are enumerated sets which permit
to list some possibilities, for example the kind of magnet for electrical machines [5]. These
sets are discrete but without any ordering. Obviously, the choice of a category changes some
physical parameters which are taken into account in the associated model. A real function c is
then introduced in order to manipulate these categorical variables; c :

∏m
j=1 IKj −→ IRt.

The optimization problems studied in this paper, are formulated as follows:




min
x∈X⊂IRn,k∈Πm

j=1IKj

f(x, c(k))

u.c. gi(x, c(k)) ≤ 0,∀i ∈ {1, . . . , p},
hj(x, c(k)) = 0,∀j ∈ {1, . . . , q},

(1)

where f, gi and hj are real functions.

In all the real examples that we had to solve [5], all the models of design always use func-
tions ci depending on only one categorical variable. This is the reason why, for simplifying
this paper, only t univariate functions are considered: ci : IKj −→ IR, where the category
index j belongs to {1, · · · ,m} and i belongs to {1, · · · , t}. Nevertheless, into the general case,
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the functions ci depend on some different categorical variables and it is possible and relatively
easy to extend our results.

2. Extension of Interval Branch-and-Bound Algorithm

The exact method developed for solving problems (1) is an extension of Interval Branch-and-
Bound algorithms, [1, 3, 5, 6], named IBBA. All these algorithms are based on interval analysis,
which is the tool for computing the bounds of a continuous function over a box; a box is in
fact an interval vector. Generally, these algorithms work with homogeneous real variables
according to an exclusion principle: when a constraint cannot be satisfied in a considered box
or when it is proved that the global optimum cannot occur in. In this work, it is necessary to
extend these interval Branch-and-Bound algorithms in order to deal withmixed real and categorical
variables.

Representation of the variables: (i) for real variables: one considers the interval compact
set where the global solution is searched and (ii) for categorical variables: categories are rep-
resented by enumerate sets. Therefore, a distinction must be introduced between continuous
and discrete variables.

IBBA works according to the four following phases: (i) Bisection Rules: we bisect a real
or a categorical set into two parts following a simple heuristic principle based on a weight
factor depending on the sizes of the intervals or of the enumerated sets ; (ii) Computation of
the Bounds: this represents one of the fundamental parts of a Branch-and-Bound algorithm,
because all the techniques of exclusion and of propagation are depending on it. In the case of
the formulation (1), functions f(x, c(k)), gi(x, c(k)), hj (x, c(k)) must be considered, in place of
continuous functionswhich always appear in such techniques. In Section 3, we discus the way
to compute bounds for the intermediate univariate function c(k) over a vector of enumerate
sets K ⊂ ∏m

j=1 IKj . Assuming that these bounds can be calculated and therefore, they can be
considered as continuous interval vectors; they are denoted byC(K). Thus interval arithmetic
can be applied directly and that yields the bounds; (iii) Exclusion principle: these techniques
of exclusion are based on the fact that it is proved that the global optimum cannot occur in a
box. By computing bounds, this leads to twomain possibilities: (a) a constraint is proved to be
unsatisfiable; (b) the lower bound of f is greater than a current solution previously computed
(the midpoint test is used, refer to [6]); (iv) Constraint Propagation Techniques: it is based on
interval analysis and makes it possible to reduce the size of a considered hypercube (interval
vector) by using the implicit relations of some variables in the expressions of the constraints,
see [1, 4].

3. Methods for bounding categorical functions

Now, it is necessary to develop methods for the computation of real bounds CL
i and CU

i for
each categorical function ci in order to obtain inclusion functions Ci (Kj) = [CL

i , C
U
i ], ∀Kj ⊆

IKj. The bounds calculated in this section must satisfy the only following constraint: ∀k ∈
Kj, ci(k) ∈ Ci(Kj) =

[
CL
i , C

U
i

]
.

Fourmethods are developed as follows: (i) MethodM1: the exact range of each real function
ci, i ∈ {1, · · · , t} over a subsetKj ⊆ IKj is:

Ci(Kj) :=

[
min
k∈Kj

ci(k),max
k∈Kj

ci(k)

]
. (2)

This is the definition that would allow the inclusion functions to be computed with accu-
rate bounds. But it requires an ascending sort algorithm that penalizes each computation of
the Branch-and-Bound method. We propose the following method that avoids this systematic
enumeration. Only one enumeration is performed during the initialization phase, providing
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Ci(IKj). Hence, for any subsetKj ⊆ IKj , we associate the following inclusion function:

Ci(Kj) :=





[ci(1), ci(1)] if Kj = {1},
...
[ci (|IKj |) , ci (|IKj |)] ifKj = {|IKj|} ,
Ci (IKj) in any other case.

(3)

(ii) MethodM2 : the accurate bounds are computed at each iterations following equation (2);
(iii) MethodM3 : in the very particular case when the categorical function is independent (is
not dependent on the same variables ki) and only depend on a single categorical variable,
one can initially sort all the values ci (kj), i ∈ {1, · · · , t}, kj ∈ {1, · · · , |IKj |} , by changing
the numbering of the corresponding categorical variables. But it is not a general method;
(iv) Method M4 : searching for the optimum of the function f(x, c(k)), what really matters
are the values taken by the categorical function c. Thus, it is more judicious to bisect each
one of the inclusion functions Ci (Kj) into two intervals (interval of lower ci (kj) values and
interval of higher values) so that optimization algorithm may explore with more efficiency,
values taken by f on each of the disjoint sub-intervals. But as categorical functions don’t
take values on a continuum, we must not forget that they are enforced, through the choice of
discrete categorical variables, to take only established values. Those ideas allow us to give the
following equivalent formulation of the optimization problem.





min
x∈X⊂IRn,k∈Πm

j=1IKj ,y∈Y⊂IRt
f(x, y)

gi(x, y) ≤ 0, ∀i ∈ {1, . . . , p},
hj(x, y) = 0, ∀j ∈ {1, . . . , q},
yi = ci(kj), ∀i ∈ {1, . . . , t}, j ∈ {1, . . . ,m}.

(4)

Initially without constraint the so-reformulated problem involves new real variables yi
which depend on new equality constraints yi = ci (kj). In fact method M4 can be derived

as three distinct possibilities: (a) MethodM4v1 where bounds Ci

(
K l

j

)
, l = 1, 2 are computed

using method M1, (3); (b) Method M4v2 where bounds Ci

(
K l

j

)
, l = 1, 2 are computed us-

ing methodM2, (2); (c) MethodM4v3 where a complete constraint propagation technique for
Yi = Ci(Kj) is used, [2, 4]. This fourth methodM4 yields to the two following properties:

Proposition 1. LetKj be a categorical set in which a potential solution is evaluated. Let by definition
be Yi = Ci(Kj) the inclusion function associated toKj and the categorical function ci. It does not exist
a favorable bisection of the categorical set Kj into K1

j and K2
j for which the two inclusion functions

Ci

(
K1

j

)
and Ci

(
K2

j

)
should be more narrow (concerning a bounds point of view) than intervals

computed after a bisection of interval Yi into Y 1
i and Y 2

i .

Proposition 2. When the categorical functions values ci(kj), with kj ∈ Kj are independently and
uniformly distributed, the average percentage of intervals Y l

i , l = 1, 2 (resulting from bisection of
interval Yi := Ci(Kj)) included in the inclusion functions Ci(K

l
j), l = 1, 2 (resulting themselves

from a bisection of categorical setKj) is:

IE = 1− |Kj |
(|Kj | − 1)

√
2
|Kj| .

IE tends quickly towards 100% when the number of categorical values increases; |Kj | =
6 ⇒ IE = 17

20 ≃ 0.85% and |Kj | = 8 ⇒ IE = 13
14 ≃ 0.92%. In average, it is more interesting to

bisect intervals Yi rather than sets Kj . This result allows to state the following remark: when
the categorical functions values ci(kj) are independently and uniformly distributed, it is more efficient
to solve the problem (4) rather than problem (1) in spite of adding new variables yi and new constraints
yi = ci(kj). For details on these properties and their proofs refer to [2].
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4. Numerical tests

Consider the two following functions:

f1(x1, x2, c(k1)) = 20c1(k1)x
2
1 + 2c2(k1)x1x2 and f2(x1, x2, c(k1)) = 20

y21
(1−c1(k1))2

+2c2(k1)x1x2,
where k1 ∈ IK1 with |IK1| = 6, and x1 ∈ [−15, 25], x2 ∈ [3, 10]. Following k1, the two univariate
functions c1 and c2 take the values described in the following table:

k1 1 2 3 4 5 6
c1 0.5 0.3 0.8 0.1 0.9 0.12
c2 −0.5 0.6 0.1 1.5 −1 0.8

The global minimum for f1 is 112.5 corresponding to the solution k∗1 = 4, x∗1 = −7.5 and
x∗2 = 10 for the corresponding solution. In the two following tables of result,the number of
iterations and the CPU-time are presented for all the method fromM0 (we enumerate all the
continuous global optimization problems by enumerating the categorical sets and we solve
them iteratively) toM4v3.

Method M0 M1 M2 M4v1 M4v2 M4v3

Number of iterations 45799 9914 8378 4210 3271 3148
CPU-time (PC 2GHz (s)) 42.24 3.2 3.31 0.71 0.45 0.27

The result for f2 is 9.1 for the minimum value and (4,−0.6, 10) for its corresponding solu-
tion.

Method M0 M1 M2 M4v1 M4v2 M4v3

Number of iterations 77928 35019 29107 15230 10794 6466
CPU-time (PC 2GHz (s)) 169 43.01 35.35 2.57 1.46 0.86

In the two above tables, we remark that MethodM4 inserted in IBBA yields clearly themost
efficient computational results. This is due to the fact that introducing new real variables, we
impose a kind of order to the categorical sets.

5. Conclusion

In this paper, we extend IBBA code to solve mixed categorical-real global optimization prob-
lems. Four methods were proposed and the fourth one (introducing additional real variables
and constraints) is proved to be the most efficient theoretically and numerically.
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Abstract Let us consider the general quadratic optimization problem. This multiextreme problem is broken
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tion problems. In order to solve the concave optimization problem let us use the method of positive
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1. Introduction

The general quadratic problems include one of the most important domains of nonlinear op-
timization. Many problems referring to economy, finance, project optimization, planning,
computer graphics, management of difficult systems can be transformed to quadratic opti-
mization problems in finite-dimensional space when the objective function and constraints
contain the general quadratic functions. Such problems contain the set of local minima and
belong to NP-difficult class. The feasible set of such problems can be inconsistent and even
discrete.

One of the general approaches to solving the problems referring to this class is semidefi-
nite relaxation [1, 3]. In this case quadratic function xTAx is represented in the form of AxxT

or A • X where is positively semidefined matrix of unit rank. Such transformation allows
reducing the general quadratic problem to the linear semidefinite optimization problem, in
which the semidefined matrix is unknown quantity. The semidefinite optimization problem
can be effectively solved. However, the semidefinite relaxation is the ap-proximate transfor-
mation without the requirement that the rank of required matrix is equal to unit. The set of all
semidefined matrixes forms the convex cone. Its extreme beams are semidefined matrixes of
unit rank. However, not every boundary beam of the semidefinite cone is extreme. Therefore,
if the solution of the transformed semidefinite optimization problem is reached on an extreme
beam of semidefined matrix cone, the semidefinite relaxation will be exact.

Other general approaches to solving the general quadratic optimization problem use the
schemes of branch and bound methods which provide for construction of a subtask tree by
means of splitting the feasible domain into the set of subareas and comparing solutions in
each of these subareas. Process of splitting of a subarea is finished if the global minimum
point is found on it. It is obvious that such approach can be effective only for problems of
small dimension which do not have any practical importance. There are also other approaches
using duality [4] or decomposition [2]. However, in these cases only approximate estimations
can be received for sure. Therefore, the problem of solving the general quadratic problems
effectively is still actual.
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2. Two complexity classes of general quadratic

optimization problems

Let us consider the general quadratic optimization problem

min{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, x ∈ En}, (1)

where all functions fi(x) = xTAix+ bTi x+ ci are quadratic, bi, x are vectors of n-dimensional
Euclidean space, ci are constants, and all matrixesAi are symmetric. Let us transform problem
(1) to the following

min{xn+1|f0(x) + s ≤ xn+1, fi(x) ≤ 0, i = 1, . . . ,m, x ∈ En}, (2)

where value s is chosen so that f0(x)+s > 0. Further, using replacement x = Az where matrix
A of order (n+ 1× n+ 1) looks like

A =




1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
z1 z2 . . . zn+1




problem (2) is transformed to the following one

min{||z||2|f0(Az) + s ≤ ||z||2, fi(Az) ≤ 0, i = 1, . . . ,m}. (3)

There is the minimum value r > 0 so that all functions f0(Az) + s+ (r − 1)||z||2 and fi(Az) +
r||z||2 would be convex. It follows from the fact that Hessians of these functions are posi-
tively defined matrixes (matrixes with dominant main diagonal) at the corresponding choice
of parameter r > 0. Let us use quadratic regularization for transforming problem (3) to the
following

min{||x||2|gi(x) ≤ d, i = 0, . . . ,m, r||x||2 = d}, (4)

where all gi(x) are convex functions (g0(x) = f0(Ax)+s+(r−1)||x||2, gi(x) = fi(Ax)+r||x||2).
It is obvious that Karush-Kuhn-Tucker (KKT) optimality points of problem (1) are also KKT
points of problem (4).

Let us designate feasible sets of problem (4) through S1(d) = {x|gi(x) ≤ d, i = 0, . . . ,m}
and S2(d) = {x|r||x||2 ≤ d}. It is obvious that set S2(0) consists of one point x = 0, and
set S1(0) can be either empty, or contain point = 0 or not contain it. It is easy to determine
value d0 so that S1(d0) also consisted of one point (generally it can be a convex set). It will
be the minimum value d so that S1(d) 6= ⊘. In order to find d0, let us consider the following
algorithm. Let us define the centre of convex set S1(d), and let it be point x0. Let us set
d = S1(x0) + 1 and find the centre of convex set S1(d) once more. Let d = S1(x

k) + 1/(k + 1)
on k-th iteration. Value d0 is the limiting point of sequence S1(xk) as S1(xk) decreases and is
limited from below if the feasible set of problem (4) is limited. Further let us determine the
minimum feasible value d according to formula dm = max{0, d0}.

Studying the properties of sets S1(d) and S2(d) allows breaking problem (4) into two com-
plexity classes. If S1(dm)∩S2(dm) = ⊘ or 0 ∈ S1(dm) problem (4) is equivalent to the following
convex quadratic problem

min{||x||2|gi(x) ≤ dmin, i = 0, . . . ,m}. (5)

In this case it is necessary to find the tangency point of two convex sets S1(d) and S2(d) at the
minimum value d. It is not difficult to check condition S1(dm) ∩ S2(dm) = ⊘ as one of these
sets is a point. If S1(dm) ∩ S2(dm) 6= ⊘, problem (4) is equivalent to the following concave
optimization problem

max{||x||2|gi(x) ≤ dmin, i = 0, . . . ,m}, (6)
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where it is necessary to find the minimum value d so that set S1(d) touched set S2(d) from
within. Let us consider the algorithm of solving problem (6) which has shown practical effi-
ciency at solving many test problems.

3. The method of positive orthant displacement for solving

concave quadratic optimization problem

To restrict the search domain of the global minimum point in problem (6), let us transform
problem (1) so that the variables possessed only positive values. For this purpose it is enough
to present the variables of problem (6) as the difference of two positive variables. Therefore,
let us consider the following problem

max{||x||2|gi(x) ≤ d, i = 0, . . . ,m, x ≥ 0}, (7)

at the fixed value of parameter d then S1(d) = {x|gi(x) ≤ d, i = 1, . . . ,m, x ≥ 0}. Let us solve
the auxiliary problem

max{eTx|x ∈ S1(d)},
where e = (1, . . . , 1). If condition r||x0||2 ≥ d in is satisfied solution point x0, value d is to be
reduced (dmax = d). If eTx0 ≤

√
d/r, value d is to be increased (dmin = d). In other cases it is

necessary to check whether set S1(d) crosses the border of set S2(d).
Let us divide a spherical segment {x|eTx ≥ d/r, x ∈ S2(d)} into n spherical subsegments

Wk = {x|
∑

i 6=k

xi + (
√
n− n+ 1)xk ≥

√
d/r, x ∈ S2(d)}, k = 1, . . . , n.

Let us solve n convex optimization problems

max{
∑

i 6=k

xi + (
√
n− n+ 1)xk|x ∈ S1(d)}, k = 1, . . . , n.

It is obvious that if ∃k, xk /∈ S2(d) it is necessary to reduce value d and if ∀k, xk /∈ Wk, it is
necessary to increase it. Otherwise, in order to continue searching of maximum it is enough
to consider only such values k for which xk ∈Wk.

Let us narrow domain of searching the maximum point in k-th segment by displacing the
coordinate hyperplanes until they touch domainWk ∩ S1(d). For this purpose it is necessary
to solve n convex optimization problems. In the received positive orthant let us continue the
procedure of searching the maximum point considered above.

Searching the maximum point in problem (6) is finished when point xk /∈ S2(d) or ∀k, xk /∈
Wk is found. It leads to changing of parameter d. Let us find the optimum value of this
parameter by the dichotomy method.

The considered procedure of dividing a spherical segment can be considerably reduced if
the following method of displacing a positive orthant is used for the problem solution:

min{Tx|x ∈ S1(d), eT x ≥
√
d/r, r||x||2 = d}, (8)

where all ci > 0. The method can be used for searching the maximum point of problem (7) in
each subsegment.

1. Designate the coordinate origin through x0. Find the intersection points of coordinate
axes with the border of set S2(d). Designate the segment lengths on coordinate axes
(the distance from point x0 to the intersection point) through qi. If the feasible point of
problem (8) corresponds to the minimum value qi, the global minimum point is found.
It is equal to (x01, . . . , x

0
i + qi, . . . , x

0
n). Otherwise, solve convex programming problem

min{cTx|x ∈ S1(d), eTx ≥
√
d/r, x ∈ S2(d)}.
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If its solution lies on the border of set S2(d), it is the solution of problem (8).

2. Solve the sequence of convex optimization problems

min{xi|x ∈ S1(d), eTx ≥
√
d/r,

n∑

i=1

xi/qi ≥ 1}, i = 1, . . . , n. (9)

Define the coordinates of new coordinate origin: x0i = x0i + x∗i where x∗i is the solution
of the i-th problem (9). Pass to step 1.

The algorithm finds the global minimum point on the border of sphere S2(d). For check-
ing the feasible points out of the sphere it is enough to solve problem (8) once again having
replaced condition r||x||2 = d by r||x||2 = d + ε. If the feasible set of transformed problem
(8) is empty, the method of displacing a positive orthant finds the global minimum point of
problem (1).

While realizing the numerical algorithm it was found that the algorithmmight not converge
if the displacement of coordinate planes is not performed on any of the iterations. It means
that it is necessary to search for the solution on one of coordinate hyperplanes. But it leads to
the branch and bound method. It is proposed to perform space stretching in the direction of
vector c (see below). It often allows continuing the displacement of the coordinate origin. It is
equivalent to the following linear coordinate transformation y = [(α − 1)ccT /n + I]x, where
α > 1 is the factor of space stretching, c is the objective function vector and I is the unit matrix.
The polyhedron points on coordinate hyperplanes will be displaced into the positive orthant
in the result of stretching. Only in case the method of displacing a positive orthant does not
allow finding the global minimum point, the procedure of dividing a spherical segment on n
subsegments considered above is used.

4. Summary

The new approach to solving the general quadratic problems which is alternative to semidef-
inite relaxation is considered. Semidefinite relaxation methods can be used for getting the
initial approximation in the considered algorithms and estimation of solution accuracy. The
semidefinite relaxation can be used for checking of the found solution optimality. If the solu-
tion of semidefinite optimization problem has unit rank in the given point, the exact solution
is found.

Let’s notice, that the considered method is easily generalised for the solution of the general
problems of nonlinear optimization.

Computational experiments with the proposed algorithms on problemsfrom the literature
and also randomly generated instances suggest that our algorithms are efficient for solving
general quadratic programs.
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We present a new algorithm for solving a polynomial program P based on the recent "joint
+ marginal" approach proposed by the author for parametric polynomial optimization. The
idea is to first consider the variable x1 as a parameter and solve the associated (n-1)-variable
(x2, . . . , xn) problem P (x1) where the parameter x1 is fixed and takes values in some inter-
val Y1 ⊂ IR, with some probability ϕ1 uniformly distributed on Y1. Then one considers the
hierarchy of what we call "joint+marginal" semidefinite relaxations, whose duals provide a
sequence of univariate polynomial approximations x1 7→ pk(x1) that converges to the optimal
value function x1 7→ J(x1) of problem P (x1), as k increases. Then with k fixed a priori, one
computes x∗1 ∈ Y1 which minimizes the univariate polynomial pk(x1) on the interval Y1, a con-
vex optimization problem that can be solved via a single semidefinite program. The quality
of the approximation depends on how large k can be chosen (in general for significant size
problems k = 1 is the only choice). One iterates the procedure with now an (n-2)-variable
problem P (x2) with parameter x2 in some new interval Y2 ⊂ IR, etc. so as to finally obtain a
vector x̃ ∈ Rn. Preliminary numerical results are provided.
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Abstract A quadratic-linear bilevel optimization problem in its pessimistic statement is considered. It is re-
duced to a series of bilevel optimization problems in its optimistic statement and then to nonconvex
optimization problems. Global and local search algorithms for the latter problems are developed.
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1. Introduction

At the present hierarchical optimization problems seem to be one of the most attractive fields
for many experts [1]–[3]. In particular, bilevel optimization problems represent extremum
problems, which – side by side with ordinary constraints such as equalities and inequalities
– include a constraint described as an optimization subproblem [2], [3], called the lower-level
problem.

In course of investigation of bilevel optimization problems the difficulty arises already at
the stage of defining the concept of solution. The optimistic and pessimistic (guaranteed) def-
initions of a solution are known to be the most popular [1]–[3]. During the three decades of
intensive investigation of bilevel optimization problems there were proposed various meth-
ods for finding an optimistic solution by different authors (see the survey [4]). But there was
a few for finding pessimistic solutions [5], [6].

This paper is concerned with a new approach for finding a pessimistic solution to bilevel
problems, where the upper-level goal function is a convex quadratic function of upper-level
variables and concave quadratic w.r.t. lower-level variables, besides the lower-level goal func-
tion is linear.

Here, the techniques from [5] are developed to reduce such bilevel optimization problems
to a series of bilevel optimization problems in its optimistic setting. Latter bilevel problems
may be reduced to a series of single-level problems via the KKT-rule (see, for example, [2]) and
penalty method. For the purpose of solving the single-level problems obtained, which turn
out to be nonconvex, we construct an algorithm based on the Global Search Theory developed
in [7]–[10].

The paper is organized as follows. In section 2 we present the statement of the bilevel
problem and its reduction. Next, in the section 3 algorithms of local and global search for
reduced problems are considered.
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2. Problem statement and its reduction

Consider the bilevel optimization problem in its pessimistic statement, as follows:

sup
y
{F (x, y) | y ∈ Y∗(x)} ↓ min

x
,

x ∈ X, Y∗(x) △
= Argmin

y
{G(y) | y ∈ Y (x)},





(BP)

where F (x, y)
△
=

1

2
〈x,Cx〉+〈c, x〉− 1

2
〈y,C1y〉+〈c1, y〉, G(y)

△
= 〈d, y〉, X △

= {x ∈ IRm | Ax ≤ a,

x ≥ 0}, Y (x)
△
= {y ∈ IRn | A1x+B1y ≤ b, y ≥ 0}, A ∈ IRp×m, A1 ∈ IRq×m, B1 ∈ IRq×n, C ≥ 0,

C1 ≥ 0, a, b, c, c1, d— the vectors of corresponding dimensions.
Also consider the following auxiliary bilevel optimization problem in its optimistic state-

ment:
F (x, y) ↓ min

x,y
, x ∈ X,

y ∈ Argmin{G(y)− νF (x, y) | y ∈ Y (x)},

}
(BPo(ν))

where ν > 0 is a penalty parameter.
Suppose, feasible sets of upper level and lower level are bounded so that

(H) : X is a bounded set, and ∃Y : Y ⊇ Y (x) ∀x ∈ X, Y is a compact set. (1)

The following theorem develops corresponding result from [5].

Theorem 1. Suppose the condition (H)–(1) takes place and number sequences {νk}, {τk} tend to zero:
νk ↓ 0, τk ↓ 0. Then any limit point of the sequence {xk, yk} of approximate τk-solutions of problems
(BPo(νk)) is a pessimistic solution to problem (BP).

So, in order to solve bilevel problem in pessimistic statement (BP) it’s proposed in theorem
1 to solve the series of bilevel problems in optimistic statement (BPo(νk)) corresponding to
the sequence {νk} : νk ↓ 0.

Further more, replacing the lower-level problem with its Karush–Kuhn-Tukker (KKT) con-
ditions and using penalty method, problem (BPo(ν)) with a fixed value ν can be reduced to a
series of the problems (see, for example, [2], [3], [11]), as follows:

Φ(x, y, v)
△
= F (x, y) + µh(x, y, v) ↓ min

x,y,v
,

(x, y, v) ∈ D △
= {(x, y, v) | Ax ≤ a, x ≥ 0, A1x+B1y ≤ b, y ≥ 0,

d− νc1 + νC1y + vB1 ≥ 0, v ≥ 0},





(P(µ, ν))

where h(x, y, v)
△
= ν〈y,C1y〉 + 〈d − νc1, y〉 + 〈b − A1x, v〉, v ∈ IRq is a vector of Lagrange

multipliers for the lower-level problem, µ > 0 is a penalty parameter. In what follows, we

assume that µν ≥ 1

2
.

It can be readily seen that problem (P(µ, ν)) is a nonconvex quadratic optimization prob-
lem. Its objective function Φ(·) is a d.c. function, i.e. it can be represented as difference of two
convex functions, for example, as follows:

Φ(x, y, v) = g(x, y, v) − f(x, y, v), (2)

where g(x, y, v) =
1

2
〈Cx, x〉 + 〈c, x〉 +

(
µν − 1

2

)
〈C1y, y〉 + µ

(
〈a1, v〉 +

1

4
‖v − A1x‖2

)
and

f(x, y, v) = 〈(µν − 1)c1 − µd, y〉+
1

4
µ‖v +A1x‖2 are convex functions.

We propose to apply the Global Search Strategy for d.c. optimization problems developed
in [7]–[10] for solving problem (P(µ, ν)) with fixed values ν > 0, µ > 0. A global search
algorithm based on this strategy and one of its key elements – local search – are described in
the next section.
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3. Local and global search

The idea of local search for problem (P(µ, ν)) consists in consecutive solving of the problem
with respect to different groups of variables (see [8], [11]) in the case of joined variables. For
a fixed value of variable v problem (P(µ, ν)) becomes a convex quadratic optimization prob-
lem (QP), and for a fixed pair (x, y) we obtain a problem of linear programming (LP). These
auxiliary problems can be solved by means of standard software packages. So, we obtain the
following special local search method.

Let (x0, y0, v0) ∈ D be a starting point.
Step 0. Put s := 0, vs := v0.

Step 1. Apply a method of quadratic optimization which yields a
ρs
2
-solution (xs+1, ys+1) to

the problem:

Φ(x, y, vs) ↓ min
x,y

, (x, y, vs) ∈ D.

Step 2. Obtain a
ρs
2
-solution vs+1 of the linear problem

Φ(xs+1, ys+1, v) ↓ min
v
, (xs+1, ys+1, v) ∈ D,

Step 3. Put s := s+ 1, and go to Step 1. #

The following theorem provides us the convergence of this method, which is called
V-procedure.

Theorem 2. i) If ρs > 0, s = 0, 1, 2...,
∞∑
s=0

ρs < +∞ then the sequence {Φs},Φs
△
= Φ(xs, ys, vs), of

values of function Φ(·), which is generated by the V-procedure, converges.
ii) If (xs, ys, vs)→ (x̂, ŷ, v̂), then the limit point (x̂, ŷ, v̂) satisfies the following inequalities:

Φ(x̂, ŷ, v̂) ≤ Φ(x, y, v̂) ∀(x, y) ∈ Z, (3)
Φ(x̂, ŷ, v̂) ≤ Φ(x̂, ŷ, v) ∀v ∈ V. (4)

The triple (x̂, ŷ, v̂) satisfying inequalities (3) and (4) shall henceforth be called a critical point
of problem (P(µ, ν)). If the inequalities (3) and (4) are satisfied with certain accuracy for some
point, we call this point approximately critical.

Stopping criteria for V-procedure have been substantiated in order to detect an approxi-
mately critical point with given accuracy.

To obtain the local search procedure for problem (P(µ, ν)), according to the logic from [8],
[11], it is possible to consider another variant of its implementation, in which auxiliary prob-
lems are solved in a different order (initially – with respect to v, and after that – with respect
to (x, y)). This version of the local search method is called XY-procedure.

Since local search methods do not, generally speaking, yield a global solution even for
a small-dimensional problem, we developed a global search algorithm (GSA) for problem
(P(µ, ν)) based on Global Search Strategy for d.c. optimization problems [7]–[11]. GSA con-
sists of two principal stages: a) finding a critical point by means of a local search method and
b) escaping from a current critical point with the help of procedures based on global optimality
conditions [7], [9].

The local and global search algorithms described above have been programmed in C++.
For constructing test problems we developed the approach proposed in [12] in the case of pes-
simistic solution. The approach implies constructing bilevel problems of various complexities
and dimensions from so-called kernel bilevel problems of small dimension with known local



80 Anton V. Malyshev and Alexander S. Strekalovsky

and global solutions. We used the following kernel problems solved analytically:

sup
y
{x2 − 8x+ py1 − 2y22 | y ∈ Y∗(x)} ↓ min

x
,

x ∈ [0; 6], Y∗(x)
△
= Argmin

y
{−y1 | y1 + y2 ≤ x, y1 ≤ 3, y1 ≥ 0, y2 ≥ 0},





(KP)

where p is a real-valued parameter which determines the complexity of the problem.
Preliminary testing of the global search program demonstrated its rather competitive effec-

tiveness. For example, wewere successful to solve all problems generated up to the dimension
m = 20, n = 40 in a reasonable time.

4. Summary

A quadratic-linear bilevel optimization problem in its pessimistic statement was considered.
Using its reduction to a series of nonconvex optimization problems, global search algorithm
for the problem was proposed. Preliminary computational testing of global search algorithm
demonstrated its efficiency on generated problems.
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Abstract We consider a particular global optimization problem whose special structure permits the use of
a decomposition algorithm optimizing globally only in search spaces of lower dimension. Roughly
speaking, this problem involves the optimization of a weighted average of objective function values,
subject to the same weighted average of constraints, where the weights are to be determined. We
present theoretical results and an algorithmic approach to solve problems of this class.
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1. Definition of the problem

We consider in this talk a particular global optimization problem which, first, has various
applications (for instance, in chemical engineering and in resource allocation), and, secondly,
whose special structure permits the use of a decomposition algorithm optimizing globally
only in search spaces of lower dimension. We call this problem the averaged problem. It has the
following form:

min
K,x,y

F (K,x, y) :=

K∑

k=1

ykf(xk)

subject to
K∑

k=1

ykg(xk) = b,

y ∈ SK ,
x ∈ XK ,
K ∈ IN+,

(P)

where

SK := {y :
K∑

k=1

yk = 1, yk ≥ 0, k = 1, 2, . . . ,K};

X ⊆ IRn; f and g are given functions f : X → IR, g : X → IRm; m is a given positive
integer; and b is a given vector of IRm. The optimization variables are: K , a positive integer,
y ∈ IRK , where yk denotes the kth component of vector y, and xk ∈ X, x being the vector

∗Acknowledgement: This work has been supported by French National Research Agency (ANR) through COSINUS program
(project ID4CS nřANR-09-COSI-005)
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(x1, x2, . . . , xK) ∈ XK := X × · · · × X. We note that the dimension, K , of the optimization
variables is itself an optimization variable.

Roughly speaking, this problem involves the optimization of a weighted average of objec-
tive function values, subject to the same weighted average of constraints, where the weights,
yk’s, are to be determined. By analogy with the specific chemical engineering instances of the
averaged problem, we shall say that K is the number of phases and we shall call yk, and xk
respectively the weight, and the composition of the kth phase.

2. Motivation

This problem was introduced by Whittle [5] four decades ago in order to take into account
Lagrangian duality when convexity is lacking. To our knowledge, no one worked on the
practical resolution of the averaged problem.

Various applications motivate our study. Special instances of the averaged problem are:

PEP The phase equilibrium problem.

Case where f(x) := min{fLiquid(x), fVapour(x)}, X is an open simplex, g(x) := x,
and fLiquid (respectively fVapour) is some given coercive smooth function whose spe-
cific form depends on the thermodynamic model chosen to describe a liquid phase (re-
spectively a vapour phase). One must determine the number, types, proportions and
compositions of each phase. See for instance [4] and references therein;

CEP The chemical equilibrium problem.

The same case except for the fact that g has rather the form g(x) := Ax, where A is an
m × n real matrix of rank m related to the amount of each chemical element per unit
amount of each substance involved in the chemical reaction (see again for instance [4]
and references therein);

RA Resource allocation.

A very simple example involves choosing among many processes for producing a ma-
terial. Given the production costs, fi(x) of producing at a rate x per hour with process
i, i ∈ τ (where τ is some finite index set), find the least-cost way of producing at a given
rate b, assuming that only one process can operate at the time, assuming that adequate
storage is available, and that the costs of storage, changing production process or pro-
duction rate are negligible. In such a case, we consider f(x) := min

i∈τ
{fi(x)}.

Another example is the allocation of discharge of water among generating units of a
hydro-electric generating station so as to maximize power output within operating con-
straints. To each type of unit corresponds a particular power-output function of the
discharge. Here b is the average discharge through the station inm3/s.

LP Classical linear programming is itself a special case of the averaged problem. Indeed,
in the case where a positive integer K , some scalars ck, and some vectors ak are given,
and where X := {1, 2, . . . ,K} (discrete index set), f(x) = ck if x = k and g(x) = ak
if x = k (k = 1, 2, . . . ,K), then the averaged problem (P) simply reduces to the linear
programming problem.

Incidentally, we shall see in this talk that the chemical and phase equilibrium global opti-
mization algorithm GILO, introduced in [4] and described in the next section, can be viewed
as an extension of the simplex method for linear programming. This is obvious when substi-
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tuting here y for x in order to respect the notational conventions of linear programming:

min
x

K∑

k=1

xkck := z,

subject to Ax = b,
K∑

k=1

xk = 1,

x ≥ 0,

(LP)

where A is an m × n matrix having ak as kth column. From Dantzig’s fundamental book [1],
when evoking the simplex interpretation of the simplex method:

It was in this geometry that the simplex method was first seriously proposed after it had been
earlier set aside as unpromising. The variables xk were interpreted as non-negative weights to be
assigned to a system of points Ak = (ak, ck) in the space (u, v), u ∈ IRm and v ∈ IR, so that their
weighted average (center of gravity) is a point (b,Min z). That is to say the xk ≥ 0 are chosen so that
the center of gravity lies on the “requirement line” u = b (constant), and such that the v-coordinate
is minimum.

3. Algorithm GILO and its extension to the averaged problem

The algorithm GILO (Global Improvement Local Optimization) was introduced as an alterna-
tive to solving the phase or chemical equilibrium problem as a single optimization problem.
GILO rather iterates between a local minimization problem and a global search in a lower
dimensional space, taking advantage of the special structure of the problem. Under mild as-
sumptions, the GILO algorithm is guaranteed to find a global minimizer [3, 4]. The proofs of
convergence are based on results in [2] which derives the global optimality conditions for the
problem.

The global optimization algorithm we shall present is a further generalization. The proofs
behind GILO relied on the fact that X be an open set, and that f tend towards infinity as its
argument approaches the frontier of X. It is hence not readily extendable to the more general
case of the averaged problem, where no such assumptions are made.

4. Summary

The phase and chemical equilibrium problem involving multiple phase classes is a difficult
global optimization problem. Necessary and sufficient conditions for global optimality based
on the tangent-plane criterion has been derived as well as an algorithmic approach, called
GILO, that reduces this global optimization problem to a finite sequence of local optimization
(LO) steps and global optimization (GI) steps in a smaller search space. This algorithmic ap-
proach can be extended to the more general averaged problem which has further applications
such as resource allocation.
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Abstract In this paper we discuss about the way to approximate the global solution of an optimal control
problem of Bang-Bang type via a discretization technique associated with a Branch and Bound al-
gorithm. The problem that we focuss on is the minimization of the consumption of energy of an
electrical car during some imposed displacements.
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1. Introduction

In this paper we discuss about the way to solve efficiently the problem of the minimization of
the energy which is consummated by an electrical car during an imposed displacement, see
[1] for an overview on this type of problems.

The problem that we are interested with can be formulated as follows:





minim(t),Ω(t),pos(t),u(t) E(im, u) =
∫ tf
0 u(t)im(t)Valim +Rbatu

2(t)i2m(t)dt
u.c.

˙im(t) = u(t)Valim−Rmim(t)−KmΩ(t)
Lm

Ω̇(t) = 1
J

(
Kmim(t)− r

Kr

(
MgKf + 1

2ρSCx

(
Ω(t)r
Kr

)2))

˙pos(t) = Ω(t)r
Kr

|im(t)| ≤ 150
u(t) ∈ {−1, 1}
(im(0),Ω(0), pos(0)) = (i0m,Ω

0, pos0) ∈ IR3

(im(tf ),Ω
(tf ), pos(tf )) ∈ T ⊆ IR3

(1)

where E represents the electrical energy consummated during the displacement. The state
variables are: (i) im the current inside the motor; (ii) Ω the angular speed, with V (t) = 3.6×r

Kr
×

Ω(t) which represents the speed of the car in km/h (r is the radius of the wheel); (iii) pos is
the position of the car. The control u is in {−1, 1} (a Bang-Bang control); the physical system
can switch in 10−9s. In this problem, we have a constraint on a state variable to limit the
current inside the motor in order to discard the possibility to destroy it. The other terms are
fixed parameters and represent some physical things: -Kr = 10, the coefficient of reduction;
-ρ = 1.293kg/m3, the air density; -Cx = 0.4, the aerodynamic coefficient; -S = 2m2, the area in
the front of the car; -r = 0.33m, the radius of the wheel; -Kf = 0.03, the constant representing
the friction of the wheels on the road; -Km = 0.27, the coefficient of the motor torque; -
Rm = 0.03Ω, the inductor resistance; -Lm = 0.05, inductance of the rotor; -M = 250kg, the
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mass; -g = 9.81, the gravity constant; -J = M × r2/K2
r ; -Valim = 150, the battery voltage;

-Rbat = 0.05Ω, the resistance of the battery. The initial conditions are given but the target set
T is free and depends on the instances of the problem; it could be a point of IR3 but one or
two variables could not be fixed: for example just the final position equal to 100m is required
(see the numerical section).

This problem is hard to solve directly by using classical optimal control techniques. We try
to solve it by using the Pontriaguine method based on shooting techniques and also by using
a direct shooting algorithm, [3]. For the moment, the fact that we have a constraint on the
state associated with the fact that it is a Bang-Bang control involves a lot of difficulties which
does not permit to obtain solutions (even local ones) to this optimization problem using those
two well-known methods. The dynamic programming of Bellman is also difficult to apply to
this problem, [2].

Thus, in this paperwe propose another original methodology to solve this problem yielding
to some discretized problems which are solved using an exact Branch and Bound algorithm.
This new method provide exact results for the discretized formulations which correspond to
approximations of the global solutions of Problem (1).

2. Approximation of Problem (1)

First we remark that if we discretize all the interval of time [0, tf ] by fixing the value of the
control u, it is necessary to have very small steps about 10−3 else the value of the current will
change too roughly. That will generate a very huge mixed integer non-linear global optimiza-
tion problem which is, for the moment, impossible to solve using direct methods of optimal
control.

Another idea, which directly comes from the numerical simulation of the behavior of the
car, is to impose during some short laps of time the value of the current inside the electrical
motor of the vehicle. This is possible using the control parameter u(t). Thus, if we impose a
reference current iref, if im(t) > iref+ ∆

2 then u(t) := −1 and if im(t) < iref− ∆
2 then u(t) := 1.

This technique is just a way to construct a regulator of current which is a first step before
making a speed regulator for an electrical car. Hence, using this, the following differential
system of equations can be solved:

VS(iref, t0, tf ) :=





Ė(t) = u(t)im(t)Valim +Rbatu
2(t)i2m(t)

˙im(t) = u(t)Valim−Rmim(t)−KmΩ(t)
Lm

Ω̇(t) = 1
J

(
Kmim(t)− r

Kr

(
MgKf + 1

2ρSCx

(
Ω(t)r
Kr

)2))

˙pos(t) = Ω(t)r
Kr

u(t) :=




−1 if im(t) > iref+ ∆

2
+1 if im(t) < iref− ∆

2
u(t) else.

(E(t0), im(t0),Ω
(t0), pos(t0)) = (Et0 , it0m,Ω

t0 , post0) ∈ IR4

u(t0) := 1;

(2)

where t0 is the initial time which is not necessary equal to 0. This system of differentiable
equations can be efficiently solved using a classical differentiable integrator such as for ex-
ample Euler, RK2, RK4 with a step of time less than 10−3. The function VS(iref, t0, tf ) will
compute in theory all the values for E(t), im(t),Ω(t), pos(t), for all t ∈ [t0, tf ] but in practice
only values for a discretized time ti ∈ [t0, tf ] is available. Here, we are interested by the final
values of the state variables, hence we define a function:

VSF(iref, t0, tf ) := (E(tf ), im(tf ),Ω(tf ), pos(tf )) ∈ IR4,

all the computations are performed using function VS which solves the system of differential
equations (2).
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The main idea of this work is to subdivide the cycle of time [0, tf ] into P subintervals. In
each step of time [tp−1, tp] with p ∈ {1, · · · , P} (tp = p× tf

P ), we apply a reference current irefp
which takes values in [−150, 150] in order to directly satisfy the constraint on the state variable
of Problem (1).

Thus, we focuss on the resolution of the following global optimization problem:




miniref∈[−150,150]P
∑P

k=1Ek

u.c.

(Ek, ik,Ωk, posk) := VSF(irefk, tk−1, tk)
(E0, i0,Ω0, pos0) = (E0, i0m,Ω

0, pos0) ∈ IR4

(iP ,ΩP , posP ) ∈ T ⊆ IR3

(3)

Problem (3) is a good approximation of the initial problem (1) which generates just a few
number of variables: P . In fact, we use a current regulator system to control the vehicle; this
is also interesting in itself for a future implementation of the system in the car.

3. Dedicated Branch and Bound Algorithm

For the moment, we are not able to solve exactly the global optimization problem (3), thus
we need to discretize also the possible values for the reference current: iref ∈ {−150,−150 +
s,−150 + 2× s, · · · , 150}P ; we will take integer values for s which divide exactly [−150, 150].
Therefore, the set of solution becomes finite and could be enumerated. Nevertheless, if we
want to have a good approximation for the resolution of the global optimization problem (3)
we have to discretize into small steps and the finite set of possible points becomes rapidly too
huge to be entirely enumerated in a reasonable CPU-time.

The idea is then to use a Branch and Bound algorithm in order to not explore all the fi-
nite set of solutions. For using such an algorithm, we have to elaborate a technique to com-
pute bounds for the four main parameters: Ek, ik,Ωk, posk over a box IREF ⊆ {−150,−150 +
s,−150 + 2 × s, · · · , 150}P and for given t0 and tf . In order to be more efficient, in a previ-
ous step, we compute 4 matrices: ME,Mi,MΩ,Mpos where the columns corresponds to values
when iref is fixed with it0m = iref and the lines provides values for the entities when a speed
Ωt0 is given (we discretize also the possible values of the speed). For example mE(i, j) rep-
resents the value of the energy which is consummated during a step of time tp − tp−1 when
iref is equal to the jth components in {−150,−150 + s,−150 + 2 × s, · · · , 150} with it0m = iref
and the ith discretized value for the speed, the other initial values are taken equal to 0: i.e.,
Et0 = post0 = 0.

When a box IREF is considered, we can compute bounds for E, i,Ω and pos by computing
the integer sets I and J of the indices corresponding to the possible values of the speed at the
previous step and the possible values of iref. Then, we have to compute the bounds which
correspond to the minimal and maximal values of mE(i, j),mi(i, j),mΩ(i, j),mpos(i, j) with
(i, j) ∈ I × J . To obtain the final value for E and pos, we have to sum all the lower and upper
bounds. The rest of the Branch and Bound algorithm that we develop is simple and uses the
following classical principle: (i) subdivision into two (distinct) parts of the enumerate set IREF
(which represents the possible values for iref); (ii) the upper bound is updated by taking the
middle of the box IREF if the constraints are satisfied and if its value is better than the previous
one (we start with +∞);(iii) we branch following the heuristic of lowest lower bound of the
energy.

4. Numerical Experiments

To illustrate our method, we simulated it for a displacement of 100meters, and a cycle tf = 10
seconds: (im(0),Ω(0), pos(0)) = (0, 0, 0); (im(tf ),Ω(tf ), pos(tf )) ∈ T = IR× IR× {100}.
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For the resolution of the VSF function, we used the integrator Runge-Kutta at the order 4,
with a step of time equal to 10−3, simulated on MatLab 7 on a standard PC Laptop with 2GB
of RAM. The parameters for our code are fixed to P = 5, s = 5, 0.1km/h for the step of the dis-
cretization of the speed (to compute thematricesM ) and∆ = 1. Thus, we obtain the exact (for
the discretized problem) solution iref∗ = (150, 90, 25,−15,−110) corresponding to the mini-
mal value E∗(10) = 24430.21J . Moreover, we have pos∗(10) = 100.03m. The CPU-time com-
putation is about 966s corresponding to 201830 iterations of the Branch and Bound algorithm.
This long CPU-time strongly depends on the parameter s and also P which is understandable
for a Branch and Bound code (the complexity of such an algorithm depends on

(
2×150

s + 1
)P ).

Thus, if we take s = 10, we obtain the following results: iref∗ = (150, 90, 20,−10,−100) corre-
sponding to the minimal value E∗(10) = 24589.90J with a position of 100.15m in only 17.62s
for 31090 iterations. This solution is represented in the following figure:
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Therefore an idea to obtain much more precise solutions, is simply to run the Branch and
Bound code iteratively by defining more and more precise zones around the previous exact
solutions and by increasing parameter P and decreasing s. We remark that the current im
remains trapped around iref with respect to the tolerance ∆. The values of u switches many
times between −1 and +1; this is due to the fact that the current in the motor increases too
quickly (average of 3A every 10−3s). Note that the final speed is not equal to zero because the
final time is too short. Moreover, we remark that the curve of the energy decreases at the end
of the cycle because this corresponds to the phase of deceleration with a negative period for
the reference current iref.

5. Conclusion

In this paper, we show an original way based on discretization and a Branch and Bound algo-
rithm to solve a hard global optimization problem which is an approximation of an optimal
control problem. In a future work, we want to improve the efficiency of our Branch and
Bound algorithm. Furthermore, we are interested by the resolution of Problem (3) directly by
computing bounds.
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Abstract The pooling problem, an optimization challenge of maximizing profit subject product availability,
storage capacity, demand, and product specification constraints, has applications to petroleum refin-
ing, wastewater treatment, supply-chain operations, and communications. Our recent work studies
two classes of pooling problems: (i) an extended pooling problem that incorporates the Environmen-
tal Protection Agency (EPA) Title 40 Code of Federal Regulations Part 80.45: Complex Emissions Model
into the constraint set and (ii) a generalized pooling problem that treats the network topology as a
decision variable.

Keywords: pooling problem, quadratically-constrained quadratic program, EPA Complex Emissions Model

1. Introduction

Allocating limited resources in process synthesis is a major problem that is best approached
using recent theoretical advances in global optimization. In the past year, we studied pooling
problems to minimize cost while complying with environmental standards in petroleum refin-
ing and wastewater treatment. Specifically, we addressed (i) an extended pooling problem
that incorporates the Environmental Protection Agency (EPA) Title 40 Code of Federal Regula-
tions Part 80.45: Complex Emissions Model into the constraint set and (ii) a generalized pooling
problem that treats the network topology as a decision variable.

The backbone of both these classes is the standard pooling problem, where flow rates on
a predetermined network structure of feed stocks, pooling tanks, and final products are opti-
mized tomaximize profit subject to quality constraints on the final product composition [5, 13,
22, 23]. Nonconvex bilinear terms arise in the pooling problem from tracking the concentra-
tion of key components or qualities when multiple streams mix in intermediate storage nodes
under the assumption of linear blending. The standard pooling problem is a non-convexifiable
Quadratically-Constrained Quadratic Program (QCQP).

2. Extended Pooling Problems with the

EPA Complex Emissions Model

Environmental Protection Agency (EPA) Title 40 Code of Federal Regulations Part 80.45: Complex
Emissions Model codifies a mathematical model of volatile organic, nitrous oxide (NOX), and
airborne toxic emissions gasoline emissions for reformulated gasoline (RFG) using a function
of eleven fuel qualities. The RFG program, which impacts roughly 75 million people, was
developed to reduce smog and airborne toxic pollutants in accordance with the Clean Air Act.
Final products exiting an oil refinery must comply with these standards, or upper bounds,
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on volatile organic, nitrous oxide (NOX), and airborne toxic emissions. The extended pooling
problem appends the EPA Complex Emissions Model and associated constraints to a standard
pooling problem. The goal is to comply with RFG standards while maximizing profitability.

Table 1. Overview of the Three Case Studies

# Variables # Nonlinear Terms
Contin Binary Bilinear Only All

Case 1 214 30 62 108
Case 2 331 45 111 180
Case 3 1104 150 410 640

The extended pooling problem is a mixed-integer nonlinear model (MINLP) [14], and the
nonconvexities consist of bilinear, multilinear, exponential, and power law terms that partic-
ipate in the constraints. The portion of the MINLP representing the EPA Complex Emissions
Model is similar to that of Furman and Androulakis [6] [6]. We also developed a linear relax-
ation of the MINLP using piecewise-linear [4, 7–9, 12, 16, 17, 24] and edge-concave [11, 20, 21]
relaxations. We integrated these relaxations into a branch-and-bound algorithm and solved
the three test cases summarized in Table 1 to global optimality.

3. Large-Scale Generalized Pooling Problems

The generalized pooling problem increases the complexity of the pooling problem by transform-
ing the network topology into a decision variable [2, 12, 15]. Choosing the interconnections
between process units and storage tanks, or pools, is combinatorially complex. Because the
activation or deactivation of each pipe or intermediate node is a discrete decision and the lin-
ear mixing at the intermediate nodes leads to bilinear terms, the generalized pooling problem
is a mixed-integer nonconvex program (nonconvex MINLP) with quadratic equalities and in-
equalities which exhibits multiple locally optimal solutions. The major challenge in this prob-
lem is developing of rigorous global optimization methods that address large scale problems
to global optimality.

The generalized pooling problemwas introduced by Audet at al. [2] [2], who addressed the
problem using the algorithm proposed in [1]. We revisited the generalized pooling problem
test cases of Meyer and Floudas [12] [12, 15]. These test cases posit a set of wastewater sources
containing regulated qualities that must be treated before release into the environment [3].
Representing the challenges that industry faces, we then considered as many as twenty treat-
ment options and allowed the possibility of interconnections between all the treatment plants.
We exploited recent advances in piecewise-linear underestimation of bilinear terms [4, 7–9,
12, 16, 17, 24] within a branch-and-bound algorithm and globally optimized these test cases.
Table 2 summarizes the specific sizes of the four test cases we addressed [15].

To design a good global optimization algorithm for this class of pooling problems, we
explored strategies including McCormick convex/concave envelopes [10], reformulation-lin-
earization technique (RLT) relaxations [18, 19], piecewise-linear underestimators [7], branch-
ing strategies, and bounds tightening. Wemade significant computational improvements over
previous work by using our proposed alternative formulation, piecewise underestimators,
and a good branch-and-bound algorithm [12]. The best previous result reaches a 1.2% op-
timality gap in 1561.6 seconds when run on a modern hardware and software, but the new
results reach a 0.1% optimality gap in as few as 38.2 seconds (a forty-fold time improvement
to get an optimality gap that is more than an order of magnitude tighter).

The four-plant test case, with 150 equations, 63 continuous variables, 55 binary variables,
and 48 bilinear terms, was solved to a 0.1% gap in 38.25 seconds. The ten-plant instance,
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Figure 1. Superstructure of the Mid-Size (10-Plant) Generalized Pooling Test Case

Table 2. Sizes of the Four Test Cases

# Eqs
# Variables # Bilinear

TermsContin. Binary

4-Plant 150 63 55 48
10-Plant 516 207 187 300
15-Plant 986 382 352 675
20-Plant 1663 634 594 1260

with 516 equations, 207 continuous variables, 187 binary variables, and 300 bilinear terms,
was solved in 680.66 seconds. We were also able to globally optimize a fifteen-plant test case
with 986 equations, 382 continuous variables, 352 binary variables and 675 bilinear terms in
2489.76 seconds on a desktop workstation or 784.81 seconds on an eight-threaded parallel
processor. The industrially-sized 15-Plant test case was solved to a 0.1% optimality gap after
some experience with the particular topology by predicting a good partitioning level for the
problem. For other topologies, we suggest that similar experience with small instantiations of
a problem may lead to insight in dealing with industrially-sized cases. Finally, we were able
to address two exceptionally large 20-Plant test instances with 1663 equations, 634 continuous
variables, 594 binary variables, and 1260 bilinear terms within 0.9% and 2.3% of optimality.

4. Summary

We have recently addressed two major classes of pooling problems: extended pooling prob-
lems that incorporate the EPA Complex Emissions Model into the constraint set and general-
ized pooling problems that treat the network topology as a decision variable. These large-scale
problems are best approached using rigorous global optimization methods [14, 15].
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Abstract We consider the distance geometry problem in the particular case in which it can be discretized and
formulated as a combinatorial optimization problem. A Branch & Prune (BP) algorithm is employed
for an efficient solution of this problem when exact values for the known distances are available.
We discuss some strategies for extending the BP algorithm to the case in which inexact distances are
instead provided.

Keywords: distance geometry, discrete formulation, protein conformation, Branch & Prune, inexact distances

1. Introduction

The Distance Geometry Problem (DGP) is the problem of finding the coordinates of a set of
points from some relative distances between such points. This problem arises in many practi-
cal applications. In particular, we are interested in DGPs arising in biology, where the confor-
mation of a molecule must be determined by exploiting some known distances between pairs
of its atoms. In the scientific literature, the DGP related to molecules is usually referred to as
the Molecular DGP (MDGP). MDGPs are rather difficult, because the necessary distances are
obtained through experimental techniques such as the Nuclear Magnetic Resonance (NMR),
which are able to provide only a limited information on the distances.

The MDGP is a constraint satisfaction problem usually reformulated as a global optimiza-
tion problem, where a penalty function, measuring the satisfaction of the constraints on the
distances, needs to be minimized. When some assumptions are satisfied [2], the domain of the
penalty function becomes discrete, and, in particular, it can be seen as a binary tree containing
positions for the atoms of the considered molecule. In this case, we refer to the problem as the
Discretizable MDGP (DMDGP). Both the MDGP and the DMDGP are NP-hard [1, 5].

The DMDGP is a combinatorial optimization problem. To solve instances of this problem,
we employ the Branch & Prune (BP) algorithm [2], which is strongly based on the binary
tree structure of the penalty function domain. At each iteration, two new nodes of the tree
are added, which represent two new positions for the current atom xi. Then, the feasibility
of the two positions is checked, and branches of the tree containing infeasible positions are
pruned. This pruning phase allows for reducing the binary tree very quickly, and for solving
the DMDGP in a reasonable amount of time.

In this short paper, we investigate the possibility of solving DMDGPs in which a lower and
an upper bound on the distances are provided instead of an exact value. This assumption is
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realistic, because the information on the distances are supposed to come from experimental
techniques that are not able to provide very precise information. Preliminary studies in this
direction were presented in [3].

The rest of the paper is organized as follows. In Section 2 we will discuss the main idea
behind the discretization of the DMDGP and the BP algorithm, while in Section 3 we will
provide some possible solutions for extending such an algorithm in the case in which exact
distances are not available. Conclusions are given in Section 4.

2. The DMDGP with exact distances

LetG = (V,E) be an undirected graph, where vertices in V correspond to the atoms of the con-
sidered molecule, and there is an edge between two vertices if and only if the corresponding
distance is known. Weights associated to edges can provide the numerical value of the known
distances. The discretization of the MDGP is possible when the following two assumptions
are satisfied, for a given ordering on V :

Ass. a1 for each atom xi ∈ V with rank i > 3, the distances between xi and the three preced-
ing atoms xi−1, xi−2 and xi−3 must be known; in other words, the set of edges E must
contain (i− 1, i), (i− 2, i) and (i− 3, i);

Ass. a2 for each triplet of consecutive atoms xi, xi−1 and xi−2, the triangular inequality on the
corresponding distances must hold strictly:

di−2,i < di−2,i−1 + di−1,i.

LetH be the set of pairs of atoms whose distances must be known because of Assumption a1.
Other distances that are not required by this assumption could however be available. Let
F = E −H be the subset containing such distances.

The idea behind the discretization is the following. Let us suppose that all the atoms with
rank smaller than xi have been already placed somewhere and that a position for the atom
xi needs to be found. By Assumption a1, the distances di−3,i, di−2,i, di−1,i are known. As a
consequence, three spheres having center in xi−3, xi−2 and xi−1 and radius di−3,i, di−2,i and
di−1,i, respectively, can be defined. By Assumption a2, the intersection of these three spheres
can result in one single point but more likely in two different points: there are at most two
possible atomic positions for the atom xi. If this procedure is applied recursively for all the
atoms of the molecule, a binary tree of atomic positions can be built and explored for finding
solutions to the DMDGP.

The basic idea behind the BP algorithm is to compute, at each iteration, the two possible
positions for the current atom xi. Moreover, the distances associated to the pairs of atoms in
F are exploited for checking the feasibility of the computed positions by verifying that, for all
j < i− 3 for which the edge (j, i) ∈ F , the following inequalities hold:

| ||xj − xi|| − dji | < ε, (1)

where ε is a small positive real number. For more details on the discretization and on the BP
algorithm, the reader is referred to [1, 2].

3. The DMDGP with inexact distances

When inexact distances are available, the BP algorithm, as described in Section 2, cannot be
used. An instance of the DMDGP with inexact distances is basically a list of intervals defined
by the lower and the upper bound on the actual value of the distances.

The assumptions for the discretization can be easily adapted for the inexact DMDGP. Let
G = (V,E) be an undirected graph associated to an instance of the DMDGP with inexact dis-
tances. In this case, not only one weight is associated to each edge in E, but two weights l and
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u representing the lower and the upper bound, respectively, on the corresponding distance.
Assumption a1 can remain unchanged, the only difference being that the distances between
the generic atom xi and the three preceding atoms are intervals. Assumption a2 can be instead
modified as follows. Let us consider a triplet of consecutive atoms xi, xi−1 and xi−2, and the
three intervals [li−2,i, ui−2,i], [li−2,i−1, ui−2,i−1] and [li−1,i, ui−1,i].

Ass. b2 there exists a triplet (ci−2,i, ci−2,i−1, ci−1,i) such that

ci−2,i ∈ [li−2,i, ui−2,i], ci−2,i−1 ∈ [li−2,i−1, ui−2,i−1], ci−1,i ∈ [li−1,i, ui−1,i],

and
ci−2,i < ci−2,i−1 + ci−1,i.

Note that triplets of distances (ci−2,i, ci−2,i−1, ci−1,i) that do not satisfy the triangular inequal-
ity should not be considered because they define local subsets of incompatible distances.
This property can be exploited for refining the available intervals before solving the inex-
act DMDGP. In the following we will suppose that all possible triplets (ci−2,i, ci−2,i−1, ci−1,i)
satisfy the strict triangular inequality.

As previously explained, the distances related to the edges in H and the other distances
related to the edges in F are used for different purposes during the execution of the BP algo-
rithm. The distances associated to the pairs of atoms in F are not exploited for discretizing
the problem, but rather for checking the feasibility of the atomic positions at each iteration of
the algorithm. If intervals are available instead of exact distances [3], the inequalities (1) can
then be substituted by:

lji < ||xj − xi|| < uji. (2)

Note that no tolerances ε are needed in this case.
While the inequalities (1) can be trivially substituted by the inequalities (2), the proce-

dure for generating the binary tree cannot be generalized so easily to the case of the inexact
DMDGP. Exact distances are not known but rather a lower and an upper bound. By Assump-
tion a1, for each i ∈ V with rank i > 3, the edges (i−1, i), (i−2, i), (i−3, i) ∈ E, and therefore
the three intervals [li−1,i, ui−1,i], [li−2,i, ui−2,i], [li−3,i, ui−3,i] are known.

A first approach for building the binary tree from the information on these intervals is
to attempt an approximation of the actual distance values. In this way, exact distances can
substitute the intervals and the same discretization procedure described in Section 2 can be
applied as is. One possibility is to consider the average value defined by each interval:

ci−1,i =
li−1,i + ui−1,i

2
, ci−2,i =

li−2,i + ui−2,i

2
, ci−3,i =

li−3,i + ui−3,i

2
,

and use these three values as radii for the three intersecting spheres. However, we noted that
small errors introduced on the distances in H are able to propagate very quickly along the
branches of the tree and to spoil the experiments. Therefore, even though the average of an
interval is the distance that statistically better represents the interval, we must be aware that
the actual distance could be quite far from this average value, and that the maximum error
that might occur is:

max
k=1,2,3

{ci−k,i − li−k,i, ui−k,i − ci−k,i} .

Naturally, the larger is the length of the intervals, the larger the occurring error can be.
Instead of approximating the intervals related to H with their average value only, other

randomly chosen values can also be selected. This strategy has been already used in other
approaches to distance geometry [4]. It has been applied to all the intervals defining an in-
stance, whereas we need to apply it only to the intervals related to the subset H . By using
this strategy, more than one sequence of exact distances can be associated to the original set of
intervals. Since distances are randomly chosen, a heuristic component is in this way added to
our BP algorithm.
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It is important to note that, when replacing the set of original distances by a sequence of
discrete values, we need to check if the triangular inequality is still satisfied for all the triplets
of atoms. Distances can be modified in order to have all the inequalities satisfied, but, when
they are modified, they should not be allowed to get out of their own interval.

We implemented this strategy and we tested it on a set of artificially generated instances.
The BP algorithm was able to find the solutions related to the generated sequences of exact
distances only in correspondence with the smallest instances. For larger instances, the errors
introduced on the binary tree by picking random representatives for the intervals propagated
along the tree and made it incompatible with the intervals in F , so that the whole tree was
pruned. We noted that the probability of catching a sequence of exact distances for which the
binary tree is compatible to the intervals in F is quite low, and therefore generating a larger
number of such sequences does not solve the problem.

Therefore, other efficient strategies for the DMDGP need to be developed. Approximating
the set of intervals inH with various sequences of randomly selected distances does not seem
to be a good approach in our case, even though it has been widely used in other approaches to
distance geometry. As a consequence, we should probably avoid to introduce approximations
and consider the entire intervals inH . This brings to the formulation of the following problem.
As already remarked, Assumption a1 ensures, in the case of the inexact DMDGP, that all the
intervals [li−1,i, ui−1,i], [li−2,i, ui−2,i], li−3,i, ui−3,i] are known. Therefore, three spherical shells
having center in xi−3, xi−2 and xi−1, inner radius li−3,i, li−2,i and li−1,i and outer radius ui−3,i,
ui−2,i and ui−1,i, respectively, can be defined. If the lengths of the intervals were infinitesimal,
the intersection of the three spherical shells would be at most two points by Assumption b2.
Since, in general, the lengths of the intervals are not infinitesimal, such intersection must be
formed by two three-dimensional geometrical objects, which are probably disjoint, and where
the actual positions for xi are contained. In this case, then, two geometrical objects should be
associated to the two new nodes that are added to the binary tree, and not two single positions.
However, to the best of our knowledge, the shape and the mathematical expressions of these
two objects are unknown.

4. Conclusions

We discussed possible strategies for solving DMDGPs with inexact distances. Unfortunately,
we are not able yet to provide a good solution for this problem: we presented some sub-
problems that, if solved, could help solving DMDGPs in the case in which lower and upper
bounds on the distances are available. Particularly interesting is the following problem: given
three spherical shells, how to represent mathematically the two geometrical objects that their
intersection defines?
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Abstract This paper presents basic features of a new family of algorithms for unconstrained derivative-free
optimization in high dimensions, based on line searches along directions generated from QR fac-
torizations of past direction matrices. Emphasis is on fast descent with a low number of function
values, so that the algorithm can be used for fairly expensive functions. The theoretical total time
overhead needed per function evaluation is of order O(n2), where n is the problem dimension, but
the observed overhead is much smaller.

The particular algorithm tested is typically very fast on smooth problems with not too rugged
graphs, and on problems with a roughly separable structure. It typically performs poorly on prob-
lemswhere the graph alongmany directions is highly multimodal without pronounced overall slope
(e.g., for smooth functions with superimposed oscillations of significant size), where the graphs
along many directions are piecewise constant (e.g., for problems minimizing a maximum norm), or
where the function overflows on the major part of the search region and no starting point with finite
function value is known.

Keywords: Derivative-free optimization, black box optimization, scalability, high-dimensional, global optimiza-
tion, line search, expensive objective function

1. Introduction

In derivative-free optimization (also known as black-box optimization), the goal is to optimise
a function defined on a subset of Rn for which derivative information is neither symbolically
available nor numerically computable, and bounds on Lipschitz constants are not known.
More specifically, we consider the unconstrained optimization problem of minimizing a real-
valued function f defined on a subset of Rn by an oracle that returns for a given x ∈ Rn

the function value f(x) if it is defined, and otherwise one of the surrogate values inf or NaN.
In addition, scaling information is assumed to be available in the form of a search box The
expectation (which may or may not be true) is that the minimizer of interest lies in the interior
of the search box; but the search may lead out of the box. The best point found is therefore not
guaranteed to lie in the box.

VXQR stands for valley exploration based on QR factorizations, emphasizing the linear algebra
tool (QR factorization) that dominates the part of the execution cost of the algorithms that is
independent of the cost of the function evaluation routine.

The VXQR algorithm is designed for the case when a call to the oracle is fairly expensive, so
that onewants to keep the number of function evaluations needed as small as possible, aiming
for a rapid decrease of the objective function rather than for necessarily reaching the global
minimum. Such a fast decrease is achievable only if the dimension of the problem is small, or
if the function to be optimized has an appropriate structure that can be exploited by the algo-
rithms. In particular, our algorithms are based on the expectation that the objective function
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resembles a separable function in so far as the variation of single coordinates is a reasonable
option. Another expectation is that the function is smooth (twice continuously differentiable)
and not strongly oscillating along typical rays. This enables one to make fast progress us-
ing line searches, a basic tool from traditional deterministic optimization algorithms. How-
ever, we also exploit the robustness that can be gained from a stochastic approach, and thus
combine deterministic and stochastic features in a novel way. Thus none of the structural ex-
pectations is essential for the algorithm to work, although the performance of problems not
matching the stated expectations may be erratic or poor.

The VXQR class of algorithms we consider proceed in several phases. After the initial scal-
ing phase 1, scout phase 2 and subspace phase 3 alternate until a stopping criterion is reached.

Phase 1 (scaling phase): Search for a well-scaled initial point x with finite f(x). This is
simply done by a uniform random search in the specified search box, followed by a line search
in the direction of the point in the search region with the absolutely smallest components to
get an initial point with an appropriate order of magnitude.

Phase 2 (scout phase): Search for a direction of good expected progress. This is done by
a sequence of line searches from the best point, either in coordinate directions (to be efficient
for approximately separable problems), or (to be efficient for nonseparable smooth problems)
in a direction chosen from an orthonormal basis that adapts itself during the course of the
algorithm. Line searches are done by function evaluation along a simple 1-dimensional grid,
followed by safeguarded parabolic interpolation steps to approximately locate local minima
along the direction searched. This is the place where the algorithm expects that the objective
function is smooth; performance is degraded if this is not the case. The orthonormal basis is
created at the beginning of each scout phase by taking the columns of the orthogonal factor Q
of a QR factorization of the matrix formed by the differences of the best point from the results
of the scout line searches of the previous scout phase, but chosen randomly before the first
scout phase.

Phase 3 (subspace phase): The direction generated by the scout phase is used to extend a
low-dimensional search subspace until a saturation dimension (in VXQR1, this dimension is
10 when n > 20) is reached; in this case, the scout direction replaces an old subspace direc-
tion. In the new subspace, a local quadratic model is created and minimized, subject to some
safeguards. Then a line search is performed from the best point found so far to the model
minimizer.

Because all line searches start from the best point available at the time, the algorithms have
a greedy tendency. This makes them efficient for a low number of function values, but puts
them at a disadvantage for highly oscillating functions where the greedy strategy often con-
fines progress to a small neighborhood of the best point, with escape to a different valley often
being the result of pure chance rather than strategy.

The work outside the function evaluations is dominated by the cost of the QR factoriza-
tions, the only expensive step in the whole procedure. Since a QR factorization needs O(n3)
arithmetic operations, and since after each QR factorization the scout search takes O(n) but
at least 3n function evaluations, the total time overhead needed per function evaluation is of
order O(n2). But the observed overhead is much smaller.

We compared a particular implementation VXQR1 of the VXQR scheme with the differ-
ential evolution algorithm DE of Storn & Price [3] and the covariance matrix adapted
evolutionary strategy G CMA-ES by Auger & Hansen [1, 2] on a number of problems of
dimension 50, 100, 200, 500, and 1000. Our tentative conclusion (as far as the limited testing
discussed here allows one) is that VXQR1 compares well with the reference solvers, though
not uniformly over all problem types. VXQR1 should be used on smooth problems and ap-
proximately separable problems, DE on problems with large oscillations, and G CMA-ES on
problems that minimize the maximum of many functions.
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Abstract An automatic method for constructing mixed integer linear relaxations of mixed integer non-convex
optimization problems is proposed. This method is an extension of the affine reformulation technique
[4] in order to consider mixed integer problems. The so-generated mixed integer linear program has
exactly the same number of variables and of inequality constraints as the given problems. Thus, the
resolution wastes less time. This technique is including in an interval branch and bound algorithm
to improve the computation of lower bounds.
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1. Introduction

Since few years, the global optimization of mixed integer non-linear programming (MINLP)
problems has made some breakthroughs. It is now possible to consider very complicated
large problems. One of these improvements is the growing use of relaxation techniques. The
most famous one is the Reformulation-Linearization-Techniques (RLT) introduced by Sherali
and Adams which provides linear formulation for non-convex equations. This is performed
by introducing a new variable for every non-convex operators [1]. In this paper, the method
is based on a relaxation technique using the affine arithmetic, which does not introduce new
variable [4]. We will present an extension of this new technique to consider integer variables
to reformulate a MINLP problem into a mixed integer linear program (MILP) which keeps the
same size as the original one.

2. Affine Reformulation Technique (ART)

The Affine Reformulation Technique (ART) is a new approach, which generates automatically
linear relaxations of non-linear optimization problems [4]. The originality lies in how the
linear relaxation is performed. This technique is based on the affine arithmetic, which are
not longer considered as a simple way to compute bounds but as a way to generate linear
relaxations of factorable functions, i.e. composed of elementary operators or functions (e.g.
+,−, ∗, /, exp, log,√ ,...).

Affine arithmetic was introduced in 1993 by Comba and Stolfi, developed by De Figuei-redo
and Stolfi in [2] and extended by Messine in 2002 [3]. This arithmetic is based on the same
principle as the interval arithmetic except that each quantity are represented by an affine form.
It was usually used to compute lower and upper bounds of a function over an interval. The
original interval are converted into an affine form; the computation is performed using the
definitions of the usual operators in affine arithmetic; at the end, the final affine form of the
entirely function is converted into an interval to obtain a lower and an upper bounds on
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the values of the function over the original interval. The main advantage is to keep linear
dependency information during the computation, which makes it possible to improve the
quality of the bounds.

Messine in [3] has proposed an extended affine arithmetic, named AF2. In AF2, the number
of variable ǫi of the affine form is fixed to the size of the original domain, and all the rounded
and approximated errors are added in three error terms, separating the positive, negative and
unsigned errors.

The principle of ART is to identify the linear part of the affine form AF2 as a linear relax-
ation. Moreover, using the error terms of the affine form AF2, we compute the maximal error
between the relaxation and the original function. The linear relaxation depends on the con-
sidered box, but it has the advantage to generate only one inequation by inequality constraint
and two inequations by equality constraint, and without adding new variables, regardless the
number of non-linear term in the constraint.

3. Mixed integer Affine Reformulation Technique (MART)

This technique is an extension of ART to consider MINLP problem. This one permits to gen-
erate a mixed integer linear relaxation.

Considering Messine’s affine form AF2, the number of variable ǫi is fixed to the size of the
original domain. Thus, an affine transformation T between the original setX × Y ⊂ R

n × Z
m

and ǫ = [−1, 1]n+m is provided. This affine transformation T is the conversion of an interval
into an affine form. The mixed affine reformulation technique proceeds as follows:
- The ART generates a linear relaxation of the original problem on a domain under study
X × Y . The so-generate linear program is considered on [−1, 1]n+m.
- The transformation T−1 is used to return the integer variables into the original domain. Thus,
the domain of the generated linear program is [−1, 1]n × Y .
- Then, it remains only to consider the integer variable of the original problem as integer
variables in the linear program.

In Proposition 1, we formulate the process to generate the linear relaxation. It is an exten-
sion into the mixed integer case of Proposition 3 of [4]. The transformation T−1 are only used
on the integer variables.

Proposition 1. Consider (f0, . . . , fn+m, f±, f+, f−) the reformulation of f on X × Y ⊂ R
n × Z

m

using AF2, thus, if ∀(x, y) ∈ X × Y, f(x, y) ≤ 0 then ∀(z, y) ∈ [−1, 1]n × Y ,
∑n

i=1 fizi +∑n+m
i=n+1

2fi
wid(Yi)

yi ≤
∑n+m

i=n+1
2fimid(Yi)
wid(Yi)

+ f± + f− − f0 ;
and if ∀(x, y) ∈ X × Y, f(x, y) = 0 then ∀(z, y) ∈ [−1, 1]n × Y ,

∑n
i=1 fizi +

∑n+m
i=n+1

2fi
wid(Yi)

yi ≤
∑n+m

i=n+1
2fimid(Yi)
wid(Yi)

+ f± + f− − f0 and −∑n
i=1 fizi −

∑n+m
i=n+1

2fi
wid(Yi)

yi ≤
∑n+m

i=n+1
−2fimid(Yi)

wid(Yi)
+

f± + f+ + f0.

Proof. Denote by f̂(x, y) the affine form AF2 of f onX × Y ⊂ R
n × Z

m. Here the components
fi in the formulation depend also on X × Y . For i ∈ {1, . . . , n}, the variables ǫi are associated
to the interval Xi ⊂ R and for i ∈ {1, . . . ,m}, ǫn+i are associated to Yi ⊂ Z.

f̂(x, y) = f0 +

n∑

i=1

fiǫi +

n+m∑

i=n+1

fiǫi + f±ǫ± + f+ǫ+ + f−ǫ−,

with ∀i ∈ {0, . . . , n +m}, fi ∈ R , f±, f+, f− ∈ R
+,

∀i ∈ {1, . . . , n+m}, ǫi = [−1, 1] and ǫ± = [−1, 1], ǫ+ = [0, 1], ǫ− = [−1, 0].

By definition, the affine form AF2 is an inclusion function:

∀(x, y) ∈ X × Y , f(x, y) ∈ f0 +
n+m∑

i=1

fiǫi + f±ǫ± + f+ǫ+ + f−ǫ−.
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But ∀z ∈ [−1, 1]n,∃x ∈ X,∀i ∈ {1, . . . , n}, zi = Ti(xi) =
2

wid(Xi)
(xi −mid(Xi)), where wid

represents the witdh of an interval and mid its middle. Similarly, there is an affine transfor-
mation between Y and [−1, 1]m, then, ∀(x, y) ∈ X × Y , we have:

f(x, y) ∈
(∑n

i=1 fiTi(xi) +
∑n+m

i=n+1 fiTi(yi) + f0 + f±[−1, 1] + f+[0, 1] + f−[−1, 0]
)
,

f(x, y)−∑n
i=1 fiTi(xi)−

∑n+m
i=n+1 fiTi(yi) ∈ [f0 − fn+1 − fn+3, f0 + fn+1 + fn+2] ,

f(x, y)−
n∑

i=1

fiTi(xi)−
n+m∑

i=n+1

2fi
wid(Yi)

yi +
n+m∑

i=n+1

2fimid(Yi)

wid(Yi)
∈ [f0 − f± − f−, f0 + f± + f+].

Proposition 1 follows directly from the application of this last equation.

Example 2. Considering the equation ∀(x, y) ∈ [0, 1]× (Z ∩ [0, 4]), x× y = 0. the first step consists
to reformulate [0, 1] and [0, 4] into affine forms AF2. Then, the multiplication between two affine forms
is computed and finally, using Proposition 1, two linear inequalities are generated:

X = [0, 1]→ x̂ = 0.5 + 0.5ǫ1 and Y = [0, 4]→ ŷ = 2 + 2ǫ2,
x̂× ŷ = 1 + ǫ1 + ǫ2 + ǫ±,

⇒ ∀(z, y) ∈ [−1, 1]× {0, 4},
{
z + 0.5y ≤ 1
−z − 0.5y ≤ 1

We can remark that ∀z ∈ [−1, 1], (z, 0) and ∀y ∈ Z ∩ [0, 4], (−1, y) are solutions of the system of
inequations, which implies that ∀x ∈ [0, 1], (x, 0) and ∀y ∈ Z ∩ [0, 4], (0, y) are solutions of the
original system.

Consider the MINLP problem (P1). Using Proposition 1, we can construct a MILP problem
(P2) which is a linear relaxation of (P1):





min
(x,y)∈X×Y ⊂Rn×Zm

f(x, y)

s.t. ∀k ∈ {1, p}, gk(x, y) ≤ 0
∀l ∈ {1, q}, hl(x, y) = 0

(P1)





min
(z,y)∈[−1,1]n×Y

cT z + dT y

s.t. A

(
z
y

)
≤ b

(P2)

Let denote by (F0, . . . , Fn+3) the resulting affine form AF2 of F such as F̂ (x) = F0 +∑n+m
i=1 Fiǫi + F±ǫ± + F+ǫ+ + F−ǫ−, then the linear program (P2) is constructed as follows:

c =(f1, . . . , fn) d =

(
2fn+1

wid(Y1)
, . . . ,

2fn+m

wid(Yn)

)

A =




(gk)1 . . . (gk)n
2(gk)n+1

wid(Y1)
. . . 2(gk)n+m

wid(Yn)
...

...
...

...
(hl)1 . . . (hl)n

2(hl)n+1

wid(Y1)
. . . 2(hl)n+m

wid(Yn)

−(hl)1 . . . −(hl)n −2(hl)n+1

wid(Y1)
. . . −2(hl)n+m

wid(Yn)
...

...
...

...




b =




∑m
i=1

2(gk)n+imid(Yi)
wid(Yi)

+ (gk)± + (gk)− − (gk)0
...∑m

i=1
2(hl)n+imid(Yi)

wid(Yi)
+ (hl)± + (hl)− − (hl)0

−∑m
i=1

2(hl)n+imid(Yi)
wid(Yi)

+ (hl)± + (hl)+ + (hl)0
...
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By solving the MILP problem (P2), we can deduce that if (P2) have no feasible solution, the
problem (P1) has no feasible solution too. If a feasible solution of (P2) exists, a lower bound of
(P1) can be computed using the following proposition.

Proposition 3. If (zsol, ysol) is a solution which minimizes the mixed integer linear program (P2) and
S the set of feasible solutions of the problem (P1), then

∀x ∈ S , f(x) ≥ cT zsol + dT ysol + f0 − f± − f− −
m∑

i=1

2fn+imid(Yi)

wid(Yi)
.

This new relaxation technique generates small mixed integer linear programs. Indeed, the
number of variables of the relaxation is the same as the original problem and the number of
constraints is at most twice. This technique is including inside an interval branch and bound
algorithm. The main idea of this technique is to generate small MILP problems on each sub-
domain, which are quickly solved to improve lower bounds and to eliminate boxes which do
not contain the global minimum. Thus, the technique is used in a context when it is better to
subdivide the domain than to add more linear cutting plans to improve the linear relaxation.

4. Numerical Examples

To compare ART and MART techniques, we include them in an interval branch and bound al-
gorithm. Necessarily, the algorithm using MART should visit less nodes than the ART based
method. This is simply due to to the fact that ART and MART generate the same linear pro-
gram. The only difference is that in MART, we center the integer variable to produce a MILP
problem. But the resolution of a MILP problem could waste much time than the resolution
of the LP problem which relaxes the integer variables. Indeed, most of time the resolution of
a MILP problem include another branch and bound algorithm. Thus, we have now a branch
and bound algorithm at each iteration of our branch and bound algorithm and not simply a
resolution via a simplex or interior point code.

To illustrate, we apply the algorithm on a non-convex problem from the web library 1 CO-
CONUT [5], named ex7 2 1, with 7 variables and 14 constraints. And we modify it by taking
into account the variables x1, x2, x4 and x5 as integer variables. The tests are done on a PC-
Intel-Xeon-3GHz computer with 2GB of RAM and using a 64-bit Linux system. The code are
written in Fortran 90 using the SUN fortran compiler. C-PLEX 11.0 is used to solve the MILP
and the LP problems. The algorithm with MART solves ex7 2 1 in 9,046 iterations with 43
seconds; The algorithm with ART solves it in 45,598 iterations with 49 seconds. Indeed, we
divide that number of iterations by 5 but that takes less than 5 time more time per iterations.

This first result seems to show that for bigger andmore complicated problems, MART could
have a big impact in branch and bound algorithms.
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1. Introduction

Problems, which arise within the framework of research economic, ecological and financial
systems has, as a rule, hierarchical structure [1]–[4]. Such problems can be formulated as
hierarchical games or, for example, as bilevel optimization problems [2]:

F (x, y) ↓ “min
x

”, (x, y) ∈ X, y ∈ Y∗(x),
Y∗(x)

△
= Argmin

y
{ψ(x, y) | (x, y) ∈ S}.



 (BP)

In course of investigation of bilevel optimization problems the difficulty arises already at the
stage of defining a concept of solution. The optimistic and pessimistic (guaranteed) concepts
of solution are the most popular. [1]–[4]. In the first case it is supposed, that the interests
of the upper level can be coordinated with actions of the lower level. In the second case
the upper level is obliged to work independently, that considerably complicates the problem
under scrutiny.

As the elaboration of solution methods of the bilevel oprimization problems in general
statement is represented as hopeless problem at the given stage of science, it is natural to go
on a way of a construction of solution methods for some classes of bilevel problems with use
of their specificity.

During the three decades of intensive investigation of bilevel optimization problems there
were proposed various methods for finding an optimistic solutions by different authors (see
the surveys [3], [4]). Nevertheless, as far as we can conclude on the basis of available literature,
there are only a few published results containing numerical solutions of even test bilevel high-
dimension problems (e.g. problems with the dimension up to 200). So, development of new
numerical methods for bilevel problems, while implying verification of their efficiency by
numerical testing, is one of the most important problems of operations research.

In this work the new approach to elaboration of optimistic solution methods for two classes
of bilevel problems is proposed. The approach is based on a possibility of equivalent rep-
resentation of a bilevel optimization problem as a nonconvex optimization problem [2] with
the help of Karush-Kuhn-Tucker (KKT) condidions [5]. As far as solving of the obtained non-
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convex problem is concerned, we use the Global Search Theory (GST) in d.c. optimization
problems developed in [6] for some classes of nonconvex optimization. The approach allows
to build efficient methods for finding global solutions in d.c. optimization problems.

2. Problem formulation

This work is devoted to elaboration of new techniques for finding optimistic solutions of
bilevel problems, where the upper level goal function is d.c. (represented by difference of
two convex functions), and the lower level goal function is quadratic. So that the problem is
formulated as follows:

F (x, y)
△
= g(x, y) − h(x, y) ↓ min

x,y
,

(x, y) ∈ X △
= {(x, y) ∈ IRm+n | fl(x, y) ≤ 0, l = 1, ..., p},

y ∈ Y∗(x)
△
= Argmin

y
{1
2
〈y,C1y〉+ 〈xQ1 + d1, y〉 | A1x+B1y ≤ b1},





(P)

where the functions g(·), h(·), fl(·), l = 1, ..., p are convex on IRm+n, d1 ∈ IRn, b1 ∈ IRq,
A1, B1, C1, Q1 are matrices of appropriate dimension, and C1 = CT

1 is nonnegatively defined.
Also we investigate a particular case of problem (P) with quadratic goal function on the

upper and lower levels:

F1(x, y)
△
=

1

2
〈x,Cx〉+ 〈c, x〉+ 1

2
〈y,Qy〉+ 〈d, y〉 ↓ min

x,y
,

(x, y) ∈ X1
△
= {(x, y) ∈ IRm+n | Ax+By ≤ b},

y ∈ Y∗(x) △
= Argmin

y
{1
2
〈y,C1y〉+ 〈xQ1 + d1y〉 | A1x+B1y ≤ b1},





(P1)

where c ∈ IRm; d, d1 ∈ IRn; b ∈ IRp; b1 ∈ IRq; A, B, C , Q, A1, B1, C1, Q1 — are matrices of
appropriate dimension, C = CT ≥ 0, Q = QT ≥ 0, C1 = CT

1 ≥ 0.
Such bilevel problems may be reduced to one or several single-level nonconvex (d.c.) prob-

lems via, for instance, the KKT-rule (see, for example, [1], [2]):

Φ(x, y, v)
△
= g(x, y) − h(x, y) + µ〈v, b1 −A1x−B1y〉 ↓ min

x,y,v
,

(x, y, v) ∈ D △
= {(x, y, v) | (x, y) ∈ X, v ≥ 0,

C1y + d1 + xQ1 + vB1 = 0, A1x+B1y ≤ b1};





(DC)

Φ1(x, y, v)
△
=

1

2
〈x,Cx〉+ 〈c, x〉 + 1

2
〈y,Qy〉+ 〈d, y〉+

+µ〈v, b1 −A1x−B1y〉 ↓ min
x,y,v

,

(x, y, v) ∈ D1
△
= {(x, y, v) | Ax+By ≤ b, v ≥ 0,

C1y + d1 + xQ1 + vB1 = 0, A1x+B1y ≤ b1},





(DC1)

where µ > 0 is a penalty parameter,
It is known, that nonconvex problems may have a large number of local solutions, which

are far – even from the viewpoint of the goal function’s value – from a global one [5], [6].

3. Local Search

Direct application of standard convex optimization methods [5] turns out to be inefficient
from the view point of global search. So, there appears the need to construct new global
search methods, allowing to escape from a stationary (critical) point.
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For the purpose of solving the problems formulated above, we intend to construct the al-
gorithms based on the Global Search Theory in d.c. optmization problems elaborated in [6]–
[14]. Global Search Algorithms based on GST consist of two principal stages: 1) a special
local search methods, which takes into account the structure of the problem under scrutiny;
2) the procedures, based on Global Optimality Conditions, which allow to improve the point
provided by the Local Search Method [6]–[14].

In particular, a Local Search in problem (DC) consists in the consecutive (approximate) solv-
ing the convex linearized problems of the form ((xs, ys, vs) ∈ D)

g(x, y) +
µ

4
(4〈v, b1〉+ ‖v −A1x‖2 + ‖v −B1y‖2)−

−〈∇xyh(x
s, ys)(x, y)〉 − µ

2
(〈vs +A1x

s, v〉+
+〈(vs +A1x

s)A1, x〉+ 〈vs +B1y
s, v〉+

+〈(vs +B1y
s)B1, y〉) ↓ min

x,y,v
, (x, y, v) ∈ D.





(PL)

Linearization in the problem (PL) is performed for the basic (generic) nonconvexity of a
problem (DC) [6]–[7], and problem (PL) can be solved by standard software packages.

To the end of a local search for Problem (DC1) we apply the idea of consecutive solving
partial problems with respect to two groups of variables (see [8]–[14]). In order to do it, we
separate the pair (x, y) and the variable v. For a fixed value of variable v problem (DC1)
becomes a convex quadratic optimization problem, and for a fixed pair (x, y) we obtain a
problem of linear programming with respect to v ((xs, ys, vs) ∈ D1):

1

2
〈x,Cx〉+ 〈c, x〉+ 1

2
〈y,Qy〉+ 〈d, y〉−

−µ(〈vsA1, x〉+ 〈vsB1, y〉) ↓ min
x,y

,

Ax+By ≤ b, A1x+B1y ≤ b1,
C1y + d1 + xQ1 + vsB1 = 0,





(QP)

〈b1 −A1x
s −B1y

s, v〉 ↓ min
v
,

v ≥ 0, C1y
s + d1 + xsQ1 + vB1 = 0.

}
(LP)

These auxiliary problems can be solved with the help of standard software packages also.

4. Global Search

The procedures of Global Search for problems (DC) and (DC1) based on the corresponding
strategy of global search for problems of d.c. minimization [6]–[14] because the goal function
in problems of such kind may be represented as a difference of two convex functions. In
combination with directed selection, in the process of increasing the the value of parameters
µ > 0, the procedures of global search forms a methods for solving problems (P) and (P1).

To begin with, one needs a d.c. representation of the goal function of problem under
scrutiny. For the problem (DC) one can do it, for instance, as follows (see also (PL)):

Φ(x, y, v) = G(x, y, v) −H(x, y, v),

where G(x, y, v) = g(x, y) + µ〈b1, v〉+
µ

4
(‖v −A1x‖2 + ‖v−B1y‖2), andH(x, y, v) = h(x, y) +

µ

4
(‖v +A1x‖2 + ‖v +B1y‖2) obviously are convex functions.

For the problem (DC1) the d.c. representation of the goal function can be made as follows:

Φ1(x, y, v) = G1(x, y, v) −H1(x, y, v),
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where

G1(x, y, v) = F1(x, y) + µ〈b1, v〉+
µ

4
(‖v −A1x‖2 + ‖v −B1y‖2),

H1(x, y, v) =
µ

4
(‖v +A1x‖2 + ‖v +B1y‖2).

The crucial moment of Global Search procedures consists in constructing an approximation
of the level surface of the convex function, which generates the basic nonconvexity in the
problem under consideration [6]. For the purpose of constructing such an approximation we
have to take account of the information related to the problems statements.

Computational testing of the elaborated methods has shown the efficiency of the proposed
approach.

5. Summary

In the present work, new procedures of finding optimistic solutions in two classes of nonlinear
bilevel optimization problems have been elaborated. On the one hand, these procedures are
based on the well known idea to replace the extremum constraint in the bilevel problem with
KKT-conditions. On the other hand, for the purpose of solving the obtained nonconvex single-
level problems, novel Global Search Algorithms based on the Global Search Theory from [6]–
[14] for the d.c. programming problems have been applied. Besides, new local search algo-
rithms for these nonconvex problems have been elaborated and tested.

Acknowledgments. The author wish to thank professor A.S. Strekalovsky for their encour-
agement and support.
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Abstract Semi-obnoxious continuous location problems are mostly modeled in literature combining a convex
objective representing minimum cost and a multiextremal objective representing the nondesirable
part of a facility. Deterministic methods have been designed to solve such problems and generic one
or bi-objective heuristic methods have been applied. This paper describes a dedicated method to
solve semi-obnoxious location problems making use of its specific structure.
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1. Introduction

Many models have been introduced in literature to describe the location of a facility in the
plane. Objectives vary from minimum transportation cost in the Weber problem, maximising
market share in competitive Huff-like models, centre problems maximising cover to finally
obnoxious objectives to describe that a facility is nondesirable. Obnoxious means according
to Erkut and Neuman (1989) [3], that the facility generates a disservice to the people nearby
while producing an intended product or service. An intriguing aspect of objective functions
describing the nondesirable effect of the facility is that it leads to multiextremal optimisation
problems that are hard to solve.

Semi-obnoxious models typically combine a convex objective (e.g. Figure 1) to describe the
attraction aspect of the facility with the obnoxious objective (e.g. Figure 2) and thus inherit
its multimodal character leading to new challenges for optimisation methods. One can either
combine both objectives in a multi-objective fashion or try to represent the efficient solutions
that generate the Pareto front. The latter is comprehensible when locating only one facility
for decision makers, as one has one graph representing the trade-off of the objectives and one
graph representing te corresponding efficient locations on a map.

One of the research questions is how to generate the efficient locations given that we are
dealing with a nonconvex objective function. An elaborate overview of literature on the topic
is given by Yapicioglu et al. (2006) who approachs the problem by generic bi-objective Particle
Swarm algorithms. Another way to approach the problem is to use deterministic branch-and-
bound like algorithms that guarantee the quality of found locations, e.g. [6]. The argumenta-
tion for using heuristic stochastic or deterministic GO algorithms is that the objective function

∗This work has been funded by grant TIN2008-01117 from the Spanish Ministry of Science and Innovation and P08-TIC-3518
from the Junta de Andalucía, in part financed by the European Regional Development Fund (ERDF). Eligius Hendrix is a fellow
of the Spanish "Ramón y Cajal" contract program, co-financed by the European Social Fund.
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is nonconvex. However, seen from the bi-objective perspective, one of the objectives is convex
and the other is not. In Section 2 we describe an approach using themodel of [1] as an example
problem.

In Section 2, we describe a specific metaheuristic to generate efficient solutions of the semi-
obnoxious continuous single facility model using the presented method. Illustrations are
showed in Section 3. Finally we conclude in Section 4.

Figure 1. Graph minsum (Weber) function f1 Figure 2. Graph obnoxious function f2

2. A bi-objective approach

To describe the approach, we use as an example problem the semi-obnoxiousmodel described
in Brimberg and Juel [1] where the problem is notated as Bicriterion Semi-obnoxious Location
Problem (BSLP). In this problem a desirable and an obnoxious objective function must be
minimised. The desirable or convex objective is the classic minsum transportation cost.

f1(x) =
∑

i

widi(x), (1)

where wi are weights and di the (Euclidean or rectangular) distance from facility location x to
fixed (demand) point pi, i = 1, . . . ,m. Minimising (1) is called the median problem.

The obnoxious function minimises the overall obnoxiousness when far from a demand-
point, but also it reflects the local effects when close to a demand point [7].

f2(x) =
∑

i

vidi(x)
−b, (2)

where b > 0 takes on a specified value depending on the type of facility being considered and
vi is again a weight like the population size [2].

Figures 1 and 2 give an impression of the two objective functions for 10 randomly gener-
ated fixed points and weights. One can observe that minsum objective f1 is convex whereas
obnoxious objective f2 is multiextremal. Notice that f2 function does not permit getting too
close to an existing facility as di(x) tends to zero.

A decision maker is usually interested in the efficient points over the feasible set X of
such a problem where f1 as well as f2 is minimised. An efficient (nondominated) location
x∗ is defined in multiobjective sense such that there does not exist another location x ∈ X
with f1(x) < f1(x

∗) and f2(x) ≤ f2(x
∗) or alternatively f2(x) < f2(x

∗) and f1(x) ≤ f1(x
∗).

One is usually interested in the set of efficient locations X∗ and the so called Pareto front
{(f1(x), f2(x))|x ∈ X∗} that sketches the trade-off between the two objective values.
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There are several ways to approach the generation of efficient solutions. One can combine
the objectives in one weighted function or alternatively restrict iteratively one objective like
f1(x) ≤ tc and minimise the other. Let

R(tc) = {x ∈ X|f1(x) ≤ tc} (3)

denote a level set of the convex objective f1. Notice that in our case R(tc) is a convex set. One
can follow the last approach by using Algorithm 1.

Algorithm 1 Eff(X, f1, f2, δ)

Determine S := argminx∈X f2(x)
tc := minx∈S f1(x)
while (S 6= ∅)

tc := tc− δ
S := argminx∈R(tc) f2(x)
tc := minx∈S f1(x)

endwhile

First of all, if at a certain iteration S is completely interior with respect to R(tc), we know
that after reduction of the level tc of the second objective we only have to check the boundary
of R(tc) on the appearance of better function values of f2. Secondly, we are interested in this
approach from the perspective of meta-heuristics. Given that we found the solution x ∈ S on
the boundary of R(tx) one can use the information of convexity to restrict new generation of
points only in the direction d with dT∇f1(x) ≤ 0. Moroever, we use developed a method to
generate points uniformly over an ellipsoidal set approximating the current contour of f1 by
fitting a quadratic function through the current population of sample points.

In this work a metaheuristic method is implemented following the different steps described
in Algorithm 1. For optimising the f1 function a gradient based local optimiser is applied
(Weiszfeld-like method) and for optimising f2 a metaheuristic global optimization algorithm
based on subpopulation has been implemented. The method will be specified further in the
full paper.

3. Illustration

Figure 3. Pareto Front Figure 4. Efficient points and contours of f2
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To illustrate the behaviour of the algorithm, the steps of Algorithm 1 have been followed
and hence a Pareto set of efficient points was generated. A case has been used where 10
demand points have been generated randomly together with the weights. Figure 3 shows the
Pareto Front obtained for the two objective functions. In Figure 4, contour lines of f2 have
been drwan to give an impression of the optimum points. It can be see that the areas with low
objective function are typically in the corners, as is usual in obnoxious objective functions, also
called the “mother in law effect”. The green squares in this figure represent the set of Pareto
efficient points. They tend to the low values of f2 as well as to the middle of the figure where
typically the optimum of the minsum objective f1 can be found.

4. Conclusions

In this work the newmetaheuristic algorithm is developed and tested on four different semiob-
noxious problems solved in [8] by using different particle swarm optimisers (PSO). These
problems were previously defined and solved in [1], [2], [4], [5] and [7]. Comparison between
the new method and PSO methods will be provided. We designed and evaluated specific
methods for generating efficient solutions for the semi-obnoxious one facility problems in the
plane making use of the idea that one of the objectives is convex approximating its contour by
an ellipsoidal region.

References

[1] J. Brimberg and H. Juel. A bi-criteria model for locating a semi-desirable facility in the plane. European Journal
of Operational Research, 1:144–151, 1998.

[2] J. Brimberg and H. Juel. A minisum model with forbidden regions for locating a semi-desirable facility in the
plane. Location Science, 6:109–120, 1998.

[3] E. Erkut and S. Newman. Analytical models for locating undesirable facilities. European Journal of Operational
Research, 40:275–291, 1989.

[4] E. Melachrinoudis. Bicriteria location of a semi-obnoxious facility. Computers and Industrial Engineering,
37:581–593, 1999.

[5] E. Melachrinoudis and Z. Xanthopulos. Semi-obnoxious single facility location in euclidean space. Computers
and Operations Research, 30:2191–2209, 2003.

[6] Dolores Romero-Morales, Emilio Carrizosa, and Eduardo Conde. Semi-obnoxious location models: A global
optimization approach. European Journal of Operational Research, 102(2):295–301, 1997.

[7] A.J.V. Skriver and K.A. Andersen. The bicriterion semi-obnoxious location problem (bslp) solved by an ǫ-
approximation. European Journal of Operational Research, 146:517–528, 2003.

[8] Haluk Yapicioglu, Alice E. Smith, and Gerry Dozier. Solving he semi-desirable facility location problem using
bi-objective particle swarm. European Journal of Operational Research, 177:733–749, 2007.



Proceedings of TOGO 2010, pp. 113 – 118.

Branch and Bound for nonconvex SIP

Mohand Ouanes1,2 and Le Thi Hoai An2

1Department of Mathematics, University of Tizi-Ouzou, Algeria, ouanes mohand@yahoo.fr

2LITA, University of Metz, France, lethi@univ-metz.fr

Abstract We propose a new method for solving nonconvex semi-infinite problems by using the techniques of
global optimization. We generate two sequences of points, the first sequence of the interior points
which are feasible, the second sequence of external points. The first sequence gives an upper bound
and the second sequence gives a lower bound. If we decide to stop our algorithm after a finite
number of iterations, we have an exact solution or an approximate solution which is feasible. We
have tested our method on some test problems to show its efficiency.
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1. Introduction

We consider the following problem

(P )





min f(x)
g(x, s) ≤ 0 ∀s ∈ S ∈ R

x ∈ Rn

with f and g of class C2 and nonconvex functions. S is a compact of R. There exist many
method to solve problem (P ): the discretization method, the lagrangian method etc...(see [1],
[5], [6], [8], [11]). The difficulty for this methods is: if we decide to stop the algorithm after a
finite umber of iterations the approximate solution is not feasible which is the drawback when
the feasibility is too important than the optimality for certain problems. With our method at
each iteration we have an approximate solution which is feasible. We solve two problems
at each iteration: a relaxed discretized problem which gives a lower bound of the minimum
of the objective function value of the problem (P ), and another problem by using the upper
bound of the function g with respect to s instead of g with the same objective function to
obtain a upper bound, because the solution given by the second problem is feasible. The paper
is organized as follows: in the section 2, we present a method how to construct a upper bound
function, in the section 3, the algorithm and its convergence are presented. The numerical
examples are treated in section 4.

2. Upper bound function

We consider a function f of class C2 defined on the interval [s0, s1], h = s1 − s0.
We now explain how to construct an upper bound of a function f which is twice contin-

uously differentiable on an interval [a, b]. For m ≥ 2, let {w1, w2, ......, wm} be the pairwise
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functions defined as [2].

wi(s) =





s−si−1

si−si−1
if si−1 ≤ s ≤ si

si+1−s
si+1−si

if si ≤ s ≤ si+1

0 otherwise.

We have
∑i=m

i=1 wi(s) = 1,∀s ∈ [a, b] and wi(sj) = 0 if i 6= j, 1, otherwise. Let Lhf be the
piecewise linear interpolant to f at the points s1, s2, . . . , sm : Lhf(s) =

∑i=m
i=1 f(si)wi(s).

The next result from [2] gives a upper bound and a lower bound of f on the interval [s0, s1],
(h = s1 − s0) .
Theorem 1. [2] For all s ∈ [s0, s1], we have |Lhf(s)− f(s)| ≤ 1

8Kh
2, i.e.,

Lhf(s)−
1

8
Kh2 ≤ f(s) ≤ Lhf(s) +

1

8
Kh2.

In [17] the following quadratic lower bounding function of f is proposed:

Lf(s) := Lhf(s)−
1

2
K(s− s0)(s1 − s) ≤ f(s), ∀s ∈ [s0, s1]

It has been proved (see [17]) that this lower bound is better than the affine minorization given
in [2]:

Lf(s) ≥ Lhf(s)−
1

8
Kh2.

In a similar way, we now introduce a concave quadratic upper bounding function of f :

Theorem 2. For all s ∈ [s0, s1] we have

Lhf(s) +
1

8
Kh2 ≥ Uf(s) := Lhf(s) +

1

2
K(s− s0)(s1 − s) ≥ f(s). (1)

Proof. LetE(s) be the function defined on [s0, s1] by E(s) = Lhf(s)+
1
8Kh

2−Uf(s) = 1
8Kh

2−
1
2K(s − s0)(s1 − s) = K

2

[
s2 − (s0 + s1)s+ s0s1 +

1
4 (s1 − s0)2

]
. E is convex on [s0, s1] , and

its derivative is equal to zero at s∗ = 1
2(s0 + s1). Therefore, for any s ∈ [s0, s1] we have

E(s) ≥ min{E(s) : s ∈ [s0, s1]} = E(s∗) = 0. Then, the first inequality in (1) holds. Consider
now the function φ defined on S by φ(s) := Uf(s)− f(s) = Lh(s)+

1
2K(s− s0)(s1− s)− f(s).

It is clear that φ′′(s) = −K − f ′′(s) ≤ 0 for all s ∈ S. Hence φ is a concave function, and for
all s ∈ [s0, s1] we have φ(s) ≥ min{φ(s) : s ∈ [s0, s1]} = φ(s0) = φ(s1) = 0.

The second inequality in (1) is then proved.

3. Algorithm and its convergence

We now describe our algorithm

3.1 Algorithm

Step 0: Let ε > 0, S = [s0, s1],H hyperrectangle which contains the domain of (P )

Step 1: Solve the relaxed problem (of the discretized problem)

(
PL
0

)




minLHf(x)
LHg(x, si) ≤ 0 i = 0, 1

x ∈ H ⊂ Rn

to get xL0 , else infeasibility. Let LB
R
0 = LHf(x

L
0 )
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Step 2: feasibility if possible. Compute Uhs
g(xL0 , s) and maxs∈SUhs

g(xL0 , s) to obtain s∗(xL0 ).
If Uhs

g(xL0 , s
∗(xL0 ) ≤ ǫ, stop, xL0 is an optimal solution else continue.

Step 3: Solve the problem locally (we use SQP method with warm start)

(
PU
0

)




min f(x)
Uhs

g(x, s∗(x)) ≤ 0, h = s1 − s0
x ∈ Rn

to get a feasible point if possible xU0 and let UB0 = f(xU0 ), else let UB0 =∞.

Step 4: If UB0 − LB0 ≤ ε, stop, xU0 is an ε-optimal solution, else continue.

Step 5: Add s∗(xL0 ) to the discretization s0, s1 and go to iteration k.

Iteration k = 1, 2, 3, .......

k1 Reorder s∗k−1, s0, s1, ......, sk by increasing order s0, s1, ......, sk+1

k2 Solve the two relaxed problems (of the discretized problems)

(
PL
k

)




minLHkj
f(x)

LHkj
g(x, si) ≤ 0 i = 0, 1, . . . , k + 1

x inHkj, j = 1, 2
x ∈ Rn

To get xLkj and let LBR
kj = LHkj

f(xLkj).

k3 Feasibility if possible. If Uhs
g(xLkj , s

∗(xLkj) ≤ ε, deleteHkj , and continue.
k4 Solve the problem locally (we use SQP method with the warm start)

(
PU
k

)




min f(x)
maxs∈[s

j−1 ,sj ]
Uhs

g(x, s) ≤ 0, j = 1, ...., k + 1

x ∈ Rn

to get a feasible point if possible xUk and let UBk = min{UBk−1, f(x
U
k )}, else let

UBk =∞.
k5 Let LBk = min{LBR

kj, LB
rest}, if UBk − LBk ≤ ε, stop, xk such that UBk = f(xk)

is an ε-optimal solution, else add s∗(xLk ) to the actual discretization, delete all Hij

such that LBij ≥ UBk, select Hij with the lowest lower bound and let it Hk+1 and
go to k1.

Remarks

1. Uhs
g(x, s) = g(x, s0)w0(s) + g(x, s1)w1(s) + g(x, s0)w0(s) +

K
2 (s− s0)(s1− s) is an upper

bound function of g(x, .) on the interval S = [s0, s1].

2. maxs∈[s0,s1]Uhs
g(x, s) is computed by s∗(x) = s0+s1

2 + g(x,s1−g(x,s0
Kh .

3. If
(
PU
0

)




min f(x)
Uhs

g(x, s∗(x)) ≤ 0, h = s1 − s0
x ∈ Rn

has a solution then it is clear that it is feasible for the problem (P ) because we have
g(x, s) ≤ Uhs

g(x, s∗(x)).

4. LHkj
f(x) is lower bound function (which is convex) computed by using the vertex of

the main diagonal(for details and convergence see [18]) which is the generalisation of
the method presented in section 2 adapted to the lower bound.

5. LBrest is the set of lower bounds of hyperrectangles which aren’t deleted or subdivided.
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3.2 Convergence

As the problems which give UBk, LBk have the same objective function, it suffices to show
the following theorems.

Theorem 3. limh→0(g(x, s)− Uhs
g(x, s)) = 0, h = s1 − s0.

Proof. 0 ≤ (Uhs
g(x, s) − g(x, s)) ≤ (Uhs

g(x, s) − Lhs
g(x, s)) ≤ K(s − s0)(s1 − s) ≤ Kh2 then

0 ≤ limh→0((Uhs
g(x, s)− g(x, s)) ≤ limh→0Kh

2 = 0 and the theorem is proved.

Theorem 4. LBk ր f(x∗) and UBk ց f(x∗) when k →∞.

Proof. We have the domain of problem (PU
k which tends to the domain of problem (P ) by the

interior,and by construction UBk is not an increasing sequence. The domain of problem (PL
k

which tends to the domain of problem (P ) by the exterior then limk→∞(UBk − LBk) = 0.
LBk is obtained by solving the discretized problems then it is an increasing sequence. By
limk→∞(UBk − LBk) = 0, we conclude that LBk ↑ f(x∗ and UBk ↓ f(x∗ when k →∞.

Remarks

1. To get the upper bound, we have to solve the problem
(
PU
k

)
by any local method, we

use SQP method with the warm start in our method. To get the lower bound, we have
to solve globally the discretized problem at each iteration which is a difficult problem.
We propose in our method to solve a relaxed problem by using the main diagonal of H
which is a convex problem.

2. The lower bound fonction LHkj
g(x, si)→ g(x, si), when the lenght of the main diagonal

of the hyperrectangleHkj → 0.

3. We use the exhaustive w − subdivision which means that Hkj tends to one point when
the number of iterations→ ∞ then LBk − LBR

k → 0, with LBk the exact lower bound
of the discretized problem at iterationk. We have showed (UBk − LBk) → 0 when
k → ∞ which means that: (UBk − LBR

k ) → 0 when k → ∞. Then UBk → f(x∗) and
LBR

k → f(x∗), with x∗ the optimal solution of the (SIP) problem.

4. Numerical examples

Problem 1 [1] 



min 1
3x

2
1 + x22 +

1
2x1 − x2

x21 + 2x1x2s− sin(s) ≤ 0,∀s ∈ [0, 2]
x1, x2 ∈ R

We solve the relaxed discretized problem by using the endpoints of the interval {0, 2}. the
solution found is (0, 0.5) which is feasible then it is optimal.

Problem 2 [1] 



min 1
3x

2
1 + x22 +

1
2x1

(1− x21s2)2 − x1s2 − x22 + x2 ≤ 0,∀s ∈ [0, 1]
x1, x2 ∈ R

We solve the relaxed discretized problem by using the endpoints of the interval {0, 1}. the
solution found is (−0.75,−0.61808) which is feasible then it is optimal.

Problem 3 [8] 



min 2.25 exp(x1 + x2)
s− exp(x1 + x2 ≤ 0,∀s ∈ [0, 1]

x1, x2 ∈ R
We solve the relaxed discretized problem by using the endpoints of the interval {0, 1}. the
solution found is (−0.405,−0.405). We use the upper bound function, as g(x, s) is linear with
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respect to s then its maximum is reached at the endpoints of the interval, in this case it is 1.
We obtain the optimal solution which is the same as in [8].

Problem 4 [8] 



min 1.21 exp(x1 + x2)
s− exp(x1 + x2 ≤ 0,∀s ∈ [0, 1]

x1, x2 ∈ R
We solve the relaxed discretized problem by using the endpoints of the interval {0, 1}. the
solution found is (−0.0953,−0.0953). We use the upper bound function, as g(x, s) is linear
with respect to s then its maximum is reached at the endpoints of the interval, in this case it is
1. We obtain the optimal solution which is the same as in [8].

5. Conclusion

We have proposed a new method to solve non convex semi-infinite problems by using two
sequences of points, one of the interior points and another of external points which give upper
and lower bound respectively. The techniques of the global optimization are used in our
method. Our method gives an exact solution or an approximate solution which is feasible.
Numerical examples found in the litterature are solved efficiently.
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In this paper, we use robust optimization models to formulate the support vector machines
(SVMs) with polyhedral uncertainties of the input data points. The formulations in our mod-
els are nonlinear and we use Lagrange multipliers and other reformulation methods to solve
these problems. In addition, we have proposed the models for transductive SVMs with input
uncertainties. They are formulated as mixed integer nonlinear programs. We use decompo-
sition methods to solve these problems. The numerical experiments show that our proposed
methods are useful for data with noise in classification.
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In recent years optimization has been widely used in many problems in biomedicine. These
problems are inherently complex and very difficult to solve. In this talk we are going to fo-
cus on global optimization techniques (multi-quadratic 0-1 integer programming) in compu-
tational neuroscience and biclustering (nonlinear fractional 0-1 integer programming) based
data mining approaches in cancer research. In addition, several other applications will be
briefly discussed.
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Abstract A new approach for finding optimistic solutions in linear bilevel problems is considered. First, we
investigate the interrelations between these problems and problems with constraint represented as a
difference of two convex functions (d.c. constraint). Further on the basis of the global search strategy
for d.c. constraint problems a special global method for linear bilevel problems is developed.
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1. Introduction

This paper is devoted to solving linear bilevel problems [3]. Bilevel programming problems
arise when a two-level hierarchical system is modelled. In this system there is a leader who
takes the decision first, and a follower whom decision depends on the leader’s one. This
kind of problems has a wide field of applications [1]: network design, transportation, game
theory, engineering and economics. The bilevel problems are generally difficult to solve due
to the non-convex nature of the search space and nondifferential of the objective function
of the upper level resulting from the complex interaction of the upper and lower problems.
Furthermore, it may have local optima different from a global one even w.r.t. the values of
objective function.

As well known, elaboration of methods for solving nonconvex problems of large dimen-
sions is one of the problems of contemporary importance [5]. Our paper proposes a new way
of solving the linear bilevel problems. As will be shown in the first part of the article, a bilevel
problem can be reduced to optimization problem with d.c. constraint. Therefore we can use
the global search strategy for d.c. constraint problems [7] in this case.

2. Problem statement

Consider the linear bilevel program in the form

f(x, y)
△
= 〈c, x〉+ 〈d, y〉 ↓ min

x,y
,

s.t. Ax+By ≤ b,
y is a solution of

〈d1, y〉 ↓ min
y

s.t. A1x+B1y ≤ b1,

}
(PL(x))





(BP)

where A, B, A1, B1 are given matrices of dimensions (p × m), (p × n), (q × m), (q × n)
respectively and c ∈ IRm, d, d1 ∈ IRn, b ∈ IRp, b1 ∈ IRq are given vectors.
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Let us define the following sets:

X
△
={(x, y) ∈ IRm+n | Ax+By ≤ b}, Y (x)

△
={y ∈ IRn | A1x+B1y ≤ b1},

Y∗(x)
△
=Argmin

y

{〈
d1, y

〉
| A1x+B1y ≤ b1}

}
.

SetsX and Y (x) are called upper and lower level constraints. Y∗(x) is an extremal constraint
of problem (BP). This formulation corresponds to the optimistic formulation and implies that
whenever the optimal solution set Y∗(x) does not reduce itself to a singleton for some x, the
leader selects a solution among these indifferent reactions set that suits him best. Let sets X
and Y∗(x) be compacts for any fixed x ∈ X. Consider lower level problem (PL(x)). It is a
linear programming problem. Suppose x ∈ X is the parameter; then dual problem is

〈A1x− b1, v〉 ↑ max
v

s.t. v ∈ V △
={v ∈ IRq | vB1 = −d1, v ≥ 0}.

}
(DL(x))

Suppose, the functions f(x, y) and 〈d1, y〉 are bounded above on setsX and Y (x) respectively.
In this case

inf
x
inf
y
{〈d1, y〉 | y ∈ Y (x), x ∈ Pr(X)} > −∞. (1)

In accordance with the dual theory of linear programming, the following inequality

〈d1, y〉 − 〈A1x− b1, v〉 ≥ 0 (2)

is truth for all feasible triples (x, y, v). Apart from that, by assumption (1) problems (PL(x))
and (DL(x)) have solutions. This means that there exist vectors ȳ ∈ IRn and v̄ ∈ IRq such that
the triple (x, y, v) = (x, ȳ, v̄) satisfies the following system

〈d1, y〉 = 〈A1x− b1, v〉,
A1x+B1y ≤ b1, vB1 = −d1, v ≥ 0.

}
(3)

If we replace Y∗(x) by system (3) in problem (BP), we obtain the following mathematical
optimization problem:

〈c, x〉 + 〈d, y〉 ↓ min
x,y,v

,

s.t. Ax+By ≤ b,
A1x+B1y ≤ b1,

vB1 = −d1, v ≥ 0,
〈d1, y〉 = 〈A1x− b1, v〉.





(P)

We see that problem (P) is nonconvex since it has the bilinear constraint-equality
〈d1, y〉 = 〈A1x− b1, v〉. The following theorem shows interrelations between (P) and (BP).
Theorem 1. [1, 3] The tuple (x∗, y∗) is the solution of bilevel problem (BP) if and only if there exists
vector v∗ such that (x∗, y∗, v∗) is a solution of (P).

In other words, it means that we can solve problem (P) with nonconvex constraint instead
of bilevel problem (BP).

One of the popular approaches for solving (P) is penalty methods [8]. But here we propose
to solve this problem by means of global search theory for d.c. constrained problems. Taking
into account (2), we can represent bilinear constraint-equality as follows:

F (x, y, v)
△
= 〈A1x− b1, v〉 − 〈d1, y〉 ≥ 0, (4)

since (4) is fulfilled for feasible (x, y, v) only if 〈d1, y〉 = 〈A1x − b1, v〉. Besides F (x, y, v) can
be represented as a difference of two convex functions: F (x, y, v) = g(x, v) − h(x, y, v), where
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g(x, v) =
1

4
‖A1x+ v‖2, h(x, y, v) = 1

4
‖A1x− v‖2 + 〈d1, y〉 + 〈b1, v〉. So, (P) is a d.c. constraint

problem. We can formulate this problem in the following form:

f(z) ↓ min, z ∈ S, F (z) ≤ 0, (DCC),

where z
△
= (x, y, v), S

△
= {Ax + By ≤ b, A1x + B1y ≤ b1, vB1 = −d1, v ≥ 0}. In the next

sections of the article we propose local and global algorithms for solving (DCC).

3. Local and global search

The special local search method to solve d.c. constraint problems, we propose [4], consists of
two procedures. The first procedure constructs a point (x, y, v) with the property Φ(x, y, v) =
0. The second procedure consists in solving the linearized problem

h(x, y, v) − 〈∇g(x̄, v̄), (x, v)〉 ↓ min
x,y,v

,

s.t. (x, y, v) ∈ S, f(x, y) ≤ ρ.
(5)

However, as the following assertion shows, no needs to apply the latter procedure for the
given problem.

Proposition 2. Any feasible point z̄ = (x̄, ȳ, v̄) in the problem (P) is a solution of linearized problem
(5) with ρ := ρ = f(x, y).

In this case, special local search method for d.c. constrained problems becomes a procedure
of seeking a feasible point.

Basic steps of global search algorithm for d.c. constraint problems [7] are local search, con-
struction of a level surface approximation and solving of linearized problems. The level sur-

face approximation of function g(x, v) =
1

4
‖A1x+ v‖2 is constructed with using of basis vec-

tors ei ∈ IRm+q.
Linearized problem is following:

J(x, y, v) ↓ min
x,y,v

,

s.t. Ax+By ≤ b, A1x+B1y ≤ b1,
vB1 = −d1, v ≥ 0, 〈c, x〉 + 〈d, y〉 ≤ ρ,





(PL(x̄, v̄, ρ))

where J(x, y, v)
△
=

1

4
‖A1x− v‖2 + 〈d1, y〉+ 〈b1, v〉 − 〈∇g(x̄, v̄), (x, v)〉.

Problem (PL(x̄, v̄, ρ)) is convex quadratic programming problem. Therefore we can use ap-
plication packages to solve (P), for example, Xpress-MP: http://www.dashoptimization.com.

Taking into account specific structure of problem (P), global search algorithm for d.c. con-

straint problems undergoes a modification. Let β−
△
= inf(g, S), β+

△
= sup(g, S), ∆β be given.

Global search algorithm

Step 0. Put k := 0. Find a feasible point z0 = (x0, y0, v0).
Step 1. Put βk := g(zk), ρk := f(zk). Construct approximation

Ak = {wi =

(
x̄i

v̄i

)
= λie

i | g(x̄i, v̄i) = βk, i = 1, . . . ,m+ q}.

Step 2. For i = 1, . . . , n find solution uik = (xik, yik, vik) of linearized problem (PL(x̄i, v̄i, ρk)).
Step 3. With the help of components vik for i = 1, . . . n to find the new feasible points pik in
problem (P).
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Step 4. Find the point pk : F (pk) = min
1≤i≤n

F (pik)

Step 5. If f(pk) < ρk then zk+1 := pk, k := k + 1 and go to Step 1.
Step 6. If f(pk) ≥ ρk then zk+1 := zk, βk+1 := βk +∆β and go to Step 1.
Step 7. If f(pk) ≥ ρk, ∀β ∈ [β−, β+] then STOP: z := zk is a solution of problem (P).

4. Computational experiments

In this sectionwe report on some computational experimentswith the global search algorithm.
The test problems were obtained with a method developed in [2]. The global algorithm was
implemented in C++ and was run on a Pentium IV, 3.00GHz. Some results are presented in
the table 1, in which we use the abbreviations: m+ n— size of problem; constr— number of
constraints; Seria— number of problems in seria; lsmax — maximal number of local minima
in problems of seria; Solv — number of solved problems in seria; St— number of iterations;
Loc— number of critical points; Tav —Average time (in sec.).

Table 1. Computational results for series of problems.

m+ n constr Seria lsmax Solv St Loc Tav

150 375 10 275 10 57 6177 0:03:26.68
200 500 10 2100 10 51 6861 0:07:59.72
300 750 10 2150 10 103 16418 0:46:24.81
400 1000 10 2200 10 37 8607 0:47:42.74
500 1250 10 2250 10 20 5010 0:53:24.26
600 1500 10 2300 9 21 13018 1:56:33.12
800 2000 10 2400 10 24 17628 11:00:04.94
1000 2500 10 2500 10 24 20029 23:04:45.37

5. Conclusion

As a result, the global search algorithm was able to solve almost all the problems considered.
These results show that the algorithm had a good behavior and can be used for solving linear
bilevel problems.
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ment and support.
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1. Introduction

From the beginning, the most critical point of Air Traffic Control was to ensure safety separa-
tion distance between airplanes. To achieve this goal, a safety standard separation has been
defined : 5 Nm (Nautical miles) horizontally and 1000 feet vertically (separation box). Air traffic
controllers are responsible for ensuring the respect of this separation rules.

However, air traffic has been constantly increasing and has already used all available resso-
urces to increase airspace capacity. In the future, Air Traffic Management (ATM) will have to
deal with a doubling of the air traffic while ensuring at least equivalent standards of safety
[5]. The SESAR european project aims to find solutions to this problematic by automating the
current system or by providing a decision support to the air traffic controllers in order to de-
crease their workload. Many works have been done on full automation, the most promising
ones being Genetic Algorithm (GA) [1] and navigation function [2] methods. However, con-
sidering the technological advances on the airplane Flight Managment System (FMS) we will
explore in this paper the possibility of a full automation generating continuous trajectories
that new FMS can follow. In the first section, we detail the problem modeling (trajectory and
optimization), in the second section we present our results and perspectives.

2. Problem modeling

2.1 Trajectory model

We choose a continuous model for representing trajectories. Considering the new FMS abili-
ties, In order to obtain FMS fliable trajectories, we use B-splines, the approximation tool which
provides interesting properties for our concerns. The primary B-spline objective was to find a
curve interpolating a set of points of R2 called control points. This objective was later extended
to approximation, thereby avoiding the undesirable oscillation inherent to interpolation. In
our study, we shall focus on this use of splines to approximate a set of control points. The
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control polygon, the linear curve linking the control points, completely defines the curve [3].
Indeed, the B-spline is to stay in the convex envelope of the control points.

Figure 1. Control points, control polygon and the resulting B-spline

Basically, B-splines are parametrized curves generalizing the Bezier curve concept. It is an
efficient approximation tool which is constructed from polynomial pieces joined at certain
parameter’s values called knots, stored in a knot vector. In a very simplified way, if we consider
a set of control points (Xi, Yi) = Pi ∈ R2(i = 0 : n), and a parameter u, we can define the
B-spline as follows:

C(u) = (σx(u), σy(u)), u ∈ [a, b]

where σx(u) and σy(u) are the B-splines approximations of the couples (i,Xi)i=0:n and
(i, Yi)i=0:n for u ∈ [a, b].

We choose to rely on B-splines modeling trajectories because it is a very efficient tool for
curve approximation in terms of both approximation quality and computational time. More-
over, B-splines feature interesting properties such as C2-continuity (crucial for modeling
smooth aircraft trajectories, robustness and flexibility and the use flexibility (if one control
point is displaced, only a small part of the curve will be affected).

2.2 Optimization method : Genetic Algorithms (GA)

When several aircraft are involved in a conflict, the conflict resolution problem has been
shown to be NP-hard [1]. Moreover, the optimization variables being the B-splines control-
point location, we shall see that our objective function (1) is not differentible with respect to
these variables. Consequently, we must rely on black box (direct) optimization to address
our problem. In this paper, we choose to use stochastic global optimization method : genetic
algorithms.

To guide the control points location, we use classical genetic algorithms [7]. First, a pop-
ulation of individuals is generated in the state space. For each individual, we calculate the
objective function (the fitness). Then, we select the best individuals according to their fitness
and we randomly apply genetic operators (mutation, crossover). From this operation, a new
population is created and we apply the same process again. Evolution between two genera-
tions is shown in Figure 2.

Fitness evaluation : Conflict detection.

In order to evaluate each individual fitness, we decode it into N trajectory curves (one per
aircraft) and we then evaluate two quantities. First, how many conflicts the situation creates
and secondly what is the total extra distance engendered with respect to the direct routes. To
calculate these quantities, we discretize the airspace into square cells of size half the standard
separation. Our conflict detection is performed in two steps:

First, for each airplane, we store the grid’s cells through which the airplanes fly, the
airplane number (its label), the entry and exit times in and out each of the stored cell
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Figure 2. GA principle

Then, we go through each stored cell and we check whether any other airplane goes
through any of the eight neighbouring cells for other airplanes. If there are such air-
planes, we check the time to see whether there is a conflict between these two airplanes.
If so, we calculate the conflict duration.

Our conflict detection procedure send back the chromosome fitness to the evolutionary
algorithm. Here is the formula we use to calculate the fitness:

f(X) = −(CN + (
NR

DR
−N) (1)

Where CN is the number of conflict, NR the length of the new route calcultated by the algo-
rithm, DR the length of the direct route.and N the number of plane. High fitness correponds
to good individuals. Indeed, the lower are the number of conflict and the route lengthening,
the better is the chromosome.

3. Computational results

In this section, we present results we obtained on a roundabout test proble. This problem
consists in making 16 planes equidistributed on a circle of 100Nm(= 185200m) radius fly to
the diametrically opposed point at a common speed (each point on the circle has an outgoing
and an incoming trajectory).

For this configuration, our method obtains a conflict-free situation displayed in Figure 3.
When the fitness is in ]− 1, 0] the situation is conflict-free (see (1)).

Although one can easily solve intuitively this academic problem due to its symetry, our
implementation does not exploit any symetry here. This result, which we obtain automatically
shows that ourmethodology is promising as the obtained conflict resolution is consistent with
experts’ advice.

4. Conclusion

We have shown in this paper that the combination of B-splines and genetic algorithms can be
a promising methodology for automatic conflict resolution in air traffic control. More results
are to come on different, various and more realistic situations. We also have in mind several
developments to improve our approach like using the sharing (deals with equirepartition of
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Figure 3. The roundabout configuration after resolution and the fitness evolution with respect to the generation
number

the population on the different maximums) in our GA or implementing a self-adaptative GA
(every parameter in the chromosome such as bandwidth, control points’ number, etc will be
considered within the chromosome encoding, as proper optimization variables. Furthermore,
we plan to exploit our B-spline model of trajectory to address the conflict resolution problem
with deterministic derivative-free optimization methods [4]. Indeed, despite the local aspect
of these methods, they can also be adapted to global optimization.
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Abstract A chain (the leader) wants to set up a single new facility in a planar market where similar facilities
of a competitor (the follower), and possibly of its own chain, are already present. The follower will
react by locating another single facility after the leader locates its own facility. Both the location and
the quality (design) of the new leader’s facility are to be found. The aim is to maximize the profit
obtained by the leader following the follower’s entry. The demand is supposed to be concentrated
at n demand points, which split their buying power among the facilities proportionally to the at-
traction they feel for them. The attraction for a facility depends on both the location and the quality
of the facility. In most competitive location literature it is assumed that the demand is determin-
istic, i.e., fixed regardless the conditions of the market. However, demand can vary depending on
prices, distances to the facilities, etc. Taking variable demand into consideration increases the com-
plexity of the problem and, therefore, the computational effort needed to solve it, but it makes some
models more realistic. Two heuristic methods are proposed to cope with this hard-to-solve global
optimization problem, namely, a grid search procedure and a two-level evolutionary algorithm.

Keywords: Nonlinear bi-level programming problem, centroid (or Stackelberg) problem, continuous location,
competition, evolutionary algorithm

1. Introduction

Competitive location deals with the problem of locating facilities to provide a service (or
goods) to the customers (or consumers) of a given geographical area where other compet-
ing facilities offering the same service are already present (or will enter the market in the
near future). The scenario considered in this paper is that of a duopoly. A chain, the leader,
wants to locate a new single facility in a given area of the plane, where there already exist
m facilities offering the same goods or product. The first k of those m facilities belong to the
chain (0 ≤ k < m) and the other m − k to a competitor chain, the follower. The leader knows
that the follower, as a reaction, will subsequently position a new facility too. The demand is
supposed to be concentrated at n demand points, whose locations pi and buying power are
known. The location fj and quality of the existing facilities is also known. The aim is to max-
imize the profit obtained by the leader following the follower’s entry. These types of bilevel
programming problems were introduced by Hakimi, who introduced the terms medianoid for
the follower problem, and centroid for the leader problem [2].

∗This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117, ECO2008-
00667/ECON) and Junta de Andalucía (P06-TIC-01426, P08-TIC-3518), in part financed by the European Regional Development
Fund (ERDF).
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Demand points split their demand probabilistically over all facilities in the market in pro-
portion to their attraction to each facility, determined by the different perceived qualities of
the facilities and the distances to them. In this work it is considered that demand is elastic,
that is, it varies depending on some factors. For instance, as already stated in [1], consumer
expenditures on the products or services offered by the facilities may increase for a variety
of reasons related to location of the new facility: opening new outlets may increase the over-
all utility of the product; the marketing expenditures resulting from the new facilities may
increase the overall ‘marketing presence’ of the product, leading to increased consumer de-
mand; or some consumers who did not patronize any of the facilities (perhaps because none
were close enough to their location) may now be induced to do so. On the other hand, the
quality of the facilities may also affect consumer expenditures since a better service usually
leads to more sales. Taking variable demand into consideration increases even more the com-
plexity of the problem and, therefore, the computational effort needed to solve it, but it makes
the model more realistic.

The medianoid (follower) problem with variable demand (see [4] for an analytical descrip-
tion of the model) has been solved in [4] using the evolutionary algorithm UEGO (see [3]) and
a steepest descent-type method (namely, a Weiszfeld-like algorithm). The resulting algorithm
will be called UEGO med throughout this paper. In this work two procedures for solving the
centroid (leader) problem are studied, namely, a grid search procedure and a evolutionary
algorithm. The results obtained by the evolutionary algorithm (which outperforms the grid
search procedure) are promising.

2. Solving the centroid problem

Next two heuristics devised to cope with the leader problem are presented.

2.1 GS: a grid search procedure

The first method is a simple Grid Search procedure (GS). A grid of points that cover the
leader’s 3-dimensional searching region is generated. For each point of the grid we first check
its feasibility. If it is feasible, thenwe evaluate the objective function. Notice that in order to do
it, we first have to solve the corresponding medianoid problem to obtain an optimal solution
for the follower. To this aim, the algorithm UEGO med is used (see [4]). When all the feasible
points of the grid have been evaluated, a second finer grid is constructed in the vicinity of the
point of the first grid having the best objective value. In our first grid, the length of the step
between two adjacent points was 0.1 units in each coordinate, and in the second grid, 0.02
units.

2.2 TLUEGO: A two-level evolutionary global optimization algorithm

TLUEGO is a evolutionary algorithm designed for solving the leader problem with variable
demand. Although it is based on UEGO algorithm (see [3, 4] for a general description of
UEGO), several modifications and new ideas have been introduced to deal with the problem
at hand. In the following those modifications are briefly described.

Species definition: A species will be represented by a vector in the form (nf1, nf2, r), where
nf1 refers to the leader point, nf2 to the follower point, and r to a radius, which specifies
an attraction area of the species. There exists a relationship between nf1 and nf2: nf2 is
the solution of the medianoid problem when taking the originalm existing facilities and
nf1 into account.

Species creation: A species-list is maintained by the algorithm. Initially, a feasible point nf1
is randomly chosen, and from it, the first species is constructed. Later on, in a given



An evolutionary algorithm for solving the leader-follower problem with variable demand 133

iteration, we do what follows. For every species in the species-list, we randomly gener-
ate feasible points for the leader’s facility within the radius of attraction of the species.
Then, for each pair of those points, we compute the midpoint of the segment connecting
them. If the (approximate) objective value (its fitness value) for the leader problem at the
midpoint is greater than at the extreme points, then the midpoint becomes a candidate
point to generate a new species. Otherwise, if the value of the objective function at both
extreme points is greater than at the midpoint then both extreme points become can-
didate points. The approximate objective values for the leader problem are computed
inheriting the follower’s facility of the species from which they were generated. Thus,
for every species in the species-list we have a sublist of candidate points to generate new
species.

Unfortunately, this process may generate a large number of candidate points. In order
to reduce it, the candidate points are fused as described in the next paragraph. After
that, for each candidate point in this reduced list we compute its corresponding fol-
lower’s facility (applying UEGO med) and then evaluate the correct objective value for
the leader’s facility. The new species (with the corresponding radius according to the
iteration) are inserted in the species-list.

Fuse process: If at iteration i the leader’s facilities of two species from the species-list are
closer to each other than a given radius ri, then the two species are fused. The new
leader’s facility will be the one with the best objective value, and the follower’s facility
will be the corresponding one. Its radius will be the largest of the original species.

Optimization process: For every species in the list a local optimization process is applied.
Notice that a local optimizer usually assumes that the configuration of the problem dur-
ing the optimization process does not change. However, for the centroid problem this
is not true, since every time that the leader’s facility changes, so does the follower’s fa-
cility. Thus, the value of the objective function of the leader’s problem may change if
the new configuration is taken into account. This means that the new follower’s facility
should be computed every time that the leader’s facility changes. However, obtaining
the exact new follower’s facility using UEGO med would make the process very time-
consuming. That is why we have designed a new local optimization procedure. In such
method the leader species is optimized using an hybrid heuristic method called SASS
(Single Agent Stochastic Search [5]). In each iteration of SASS, the corresponding follower
is computed using a steepest descent-type method (a Weiszfeld-like algorithm). After
15 iterations, the follower is computed using UEGO med and the optimized leader is
evaluated considering this new follower as new facility. The optimization procedure is
repeated again considering as original species the optimized one. If the objective func-
tion value of the final optimized species is better than the initial one, then the species
will be replaced.

3. Computational studies

To study the performance of the algorithms, we have generated different problems, varying
the numberm of existing facilities and the number k of those facilities belonging to the leader’s
chain. In the preliminary studies presented here the number n of demand points has been
fixed to 15 or 25. The actual settings (n,m, k) employed are detailed in Tables 1 and 2.

Since TLUEGO is a heuristic, each run may provide a different solution. To study the ro-
bustness of the algorithm, it has been run five times for each problem and average values
have been computed. In the column labelled ‘Av(Time)’, the average time in the five runs
(in seconds) is given, in ‘BestSol’ column the best solution (x1, x2, α) found in the five runs
((x1, x2) is the location of the new facility, and α its quality), in ‘MaxDist’ column the maxi-
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mum Euclidean distance between any pair of solutions provided by the algorithm (this gives
an idea of how far the solutions provided by the algorithm in different runs can be), in the
next three columns the minimum, the average and the maximum objective value in the five
runs are given, and in ‘Dev’ column the standard deviation. GS has been run once, and the
values obtained (CPU time, solution and objective value) are given in Table 2.

Table 1. Average results for all the problems solved by the algorithm TLUEGO.

(n,m, k) Av(Time) BestSol MaxDist Min Av Max Dev
(15,2,1) 1446 (7.860,7.841,0.50) 0.000 38.732 38.732 38.732 0.000
(15,5,2) 1204 (5.713,2.342,0.50) 0.078 39.880 39.947 39.972 0.035
(15,10,4) 4737 (2.273,0.487,0.50) 0.000 38.323 38.323 38.323 0.000
(25,2,1) 3375 (7.066,7.225,4.95) 0.237 60.905 60.995 61.053 0.051
(25,5,2) 3847 (6.152,2.006,2.44) 0.306 46.689 46.715 46.740 0.020
(25,10,4) 3290 (0.486,4.980,3.19) 0.264 62.247 62.378 62.477 0.081

As we can see, TLUEGO provides better results than GS. And although GS also gives good
results, it is rather time-consuming. Moreover, there is no guarantee that GS can find a good
approximation of the global optimum. If the objective function value increases dramatically
in a small neighbourhood around the global optimum and the grid is not dense enough, the
second finer grid can focus around a local optimum. Something similar can happen when
a local optimum exists whose objective value is close to the global optimum value and the
grid is not dense enough. The risk of failure is even higher in the presence of constraints, as
happens in our centroid problem, since it may occur that the global optimum is surrounded
(in part) by infeasible areas, and the grid may not have a feasible point near to the global
optimum. In fact, we have used GS only as a safeguard to check the goodness of TLUEGO,
and also because it allows us to investigate the difficulty of the problem at hand and to draw
the graphs of the objective function projected in both the location and the quality spaces.

On the other hand, TLUEGO is rather robust, in the sense that in all the runs it obtains
the same solution (except for the precision employed in the stopping criterion). This can be
seen looking at the low values of MaxDist and Dev. Since UEGO was designed to scape from
local minima and look over the whole feasible set, we can conclude that TLUEGO is a suitable
algorithm for solving the centroid problem introduced in this paper.

4. Conclusions

In this study we have dealt with the (1|1)-centroid (Stackelberg or Simpson) problem with
variable demand. Two heuristics have been introduced for handling the problem, namely, a
grid search procedure and a evolutionary algorithms. The computational studies have shown
that the evolutionary algorithm TLUEGO provides better results than GS, and using less com-
putational effort.

Table 2. Results for all the problems solved by the algorithm Grid Search

(n,m, k) Time Sol Obj
(15,2,1) 21595 (7.860,7.840,0.50) 38.730
(15,5,2) 20958 (5.720,2.340,0.50) 39.952
(15,10,4) 29985 (2.260,0.480,0.50) 38.304
(25,2,1) 40931 (7.080,7.240,4.75) 59.912
(25,5,2) 40762 (6.140,2.000,2.25) 46.388
(25,10,4) 54347 (0.480,4.980,2.75) 61.836
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Abstract One of the most important policies adopted in inventory control is the replenishment cycle pol-
icy. Such a policy provides an effective means of dampening planning instability and coping with
demand uncertainty. We describe a constraint programming approach for computing optimal re-
plenishment cycle policy parameters under non-stationary stochastic demand, ordering, holding
and shortage costs. Our solution approach exploits the convexity of the cost-function to dynami-
cally compute during search the cost associated with a given decision variable assignment. By using
our model we gauge the quality of an existing approximate mixed integer linear programming ap-
proach that exploits a piecewise linear approximation for the complex cost function. Furthermore,
our computational experience shows that our approach can solve realistic instances in a fraction of
a second.

Keywords: constraint programming, replenishment cycle policy, non-stationary demand, shortage cost, MINLP

1. Introduction

Much of the inventory control literature concerns the computation of optimal replenishment
policies under demand uncertainty. One of the most important policies adopted is the (R,S)
policy (also known as the replenishment cycle policy). A detailed discussion on the character-
istics of (R,S) can be found in de Kok [3]. In this policy a replenishment is placed every R
periods to raise the inventory position to the order-up-to-level S. An important extension for
existing stochastic production/inventory control problems consists of incorporating a non-
stationary demand process. Under this assumption the (R,S) policy takes the non-stationary
form (Rn,Sn) where Rn denotes the length of the nth replenishment cycle and Sn the corre-
sponding order-up-to-level. To compute the near optimal (Rn,Sn) policy values, [5] apply a
mixed integer programming (MIP) formulation using a piecewise linear approximation to a
complex cost function with fixed procurement cost each time a replenishment order is placed.
So far no complete approach exists for computing (Rn,Sn) policy parameters under a short-
age cost scheme. In fact, [5] show that the cost structure is complex in this case and differs
significantly from the one under a service level constraint. In this work, we give an exact
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constraint programming [1] (CP) formulation of the (Rn,Sn) inventory control problem under
shortage cost scheme. Our approach embeds dedicated cost-based filtering methods [4] to im-
prove performances of the search. Our contribution is two-fold: we can now efficiently obtain
provably optimal solutions for the MINLP (Rn,Sn) inventory control problem under shortage
costs and we can gauge the accuracy of the piecewise linear approximation proposed by [5].
Computational results shows the effectiveness of our approach.

2. From a stochastic to a deterministic equivalent model

We consider the single stocking location, single product inventory problem over a finite plan-
ning horizon ofN periods. The demand dt in period t is assumed to be a normally distributed
random variable with known probability density function (PDF) gt(dt). Demand is assumed
to occur instantaneously at the beginning of each period. The mean rate of demand may vary
from period to period. Demands in different time periods are assumed to be independent. De-
mands occurring when the system is out of stock are assumed to be back-ordered and satisfied
as soon as the next replenishment order arrives.

In the general multi-period production/inventory problemwith stochastic demands we are
interested in finding the timing of the stock reviews and the size of non-negative replenish-
ment orders, Xt in period t, which minimize the expected total cost over a finite planning
horizon of N periods:

min E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(
aδt + vXt + hI+t + sI−t

)
g1(d1) . . . gN (dN )d(d1) . . . d(dN )

(1)

subject to, for t = 1 . . . N ,

Xt > 0⇒ δt = 1 (2)

It =

t∑

i=1

(Xi − di) (3)

I+t = max(0, It) (4)

I−t = −min(0, It) (5)

Xt, I
+
t , I

−
t ∈ R

+ ∪ {0}, It ∈ R, δt ∈ {0, 1} (6)

where

dt : the demand in period t, a normal random variable with PDF gt(dt),
a : the fixed ordering cost,
v : the proportional direct item cost,
h : the proportional stock holding cost,
s : the proportional shortage cost,
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise,
It : the inventory level at the end of period t, −∞ < It < +∞, I0 = 0
I+t : the excess inventory at the end of period t carried over to the next period,
I−t : the shortages at the end of period t, or magnitude of negative inventory,
Xt : the replenishment order placed and received in period t, Xt ≥ 0.

Let R(i, j) denote a replenishment cycle that schedules an inventory review at period i to cover
subsequent demand up to period j with cost as a function of the opening inventory level S:

j∑

k=i

(
hzα(i,k)σi,k + (h+ s)σi,k[φ(zα(i,k))− (1− α(i, k))zα(i,k)]

)
, (7)
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where Gi,k(·) and σi,k denote, respectively, the cumulative distribution function and the stan-
dard deviation of di + . . . + dk; α(i, k) = Gi,k(S); and zα(i,k) = Φ−1(α(i, k)). Φ(·) and φ(·)
denote, respectively, the standard normal CDF and PDF. Therefore we have j − i + 1 cost
components: the holding and shortage costs at the end of period i, i + 1, . . . , j. Since we can
prove that the cost function to be convex, for each possible replenishment cycle we can effi-
ciently compute the optimal S∗ that minimizes it by using gradient based methods for convex
optimization.

3. CP approach to solve the deterministic equivalent model

A deterministic equivalent (see [2]) CP formulation of the model is constructed. The expected
total cost for R(i, j) with opening inventory level Si, is iteratively computed by a special-
purpose constraint objConstraint(·) which uses a slightly extended version of Eq. (7). Intu-
itively, within this constraint the expected total cost for a certain replenishment plan will be
computed as the sum of all the expected total costs for replenishment cycles in the solution,
plus the respective ordering costs.

A deterministic equivalent CP formulation is then

min E{TC} = C (8)

subject to objConstraint
(
C, Ĩ1, . . . , ĨN , δ1, . . . , δN , d1, . . . , dN , a, h, s

)
(9)

and for t = 1, . . . , N Ĩt + d̃t − Ĩt−1 ≥ 0 (10)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (11)

Ĩt ∈ R, δt ∈ {0, 1}. (12)

Decision variable Ĩt represents the expected closing inventory level at the end of period t and
d̃t represents the expected value of demand in a given period t.

The objective function (8) gives expected total cost over the planning horizon. The function
objConstraint(·) dynamically computes buffer stocks and assigns to C the expected total
cost related to a given assignment for replenishment decisions, depending on the demand
distribution in each period. In order to propagate objConstraint(·), during the search we
wait for a partial assignment involving some or all δt variables. We look for an assignment
where there exists some i s.t. δi = 1, some j > i s.t. δj+1 = 1 and for every k, i < k ≤ j, δk = 0.
This uniquely identifies a replenishment cycle R(i, j).

There may be more replenishment cycles associated to a partial assignment. If we consider
each R(i, j) identified by the current assignment, it is easy to minimize the convex cost func-
tion already discussed, and to find the optimal expected closing inventory level Ĩj for this
particular replenishment cycle independently of the others.

By independently computing the optimal optimal expected closing inventory level for ev-
ery replenishment cycle identified, two possible situations may arise: (i) the closing inventory
levels obtained satisfies every inventory conservation constraint (Eq. (10)); or (ii) for some
couple of subsequent replenishment cycles this constraint is violated. In other words, we ob-
serve an expected negative order quantity. If the latter situation arises, we can adopt a fast
convex optimization procedure to compute a feasible buffer stock configuration with mini-
mum cost.

The algorithm for computing optimal buffer stock configurations in presence of negative
order quantity scenarios simply exploits the linear dependency between the opening inven-
tory level of the second cycle and the expected closing inventory level of the first cycle. Due
to this dependency the overall cost is still convex; we can apply convex optimization to find
the optimal buffer stock configuration. Note that this reasoning still holds in a recursive pro-
cess. Therefore, we can optimize buffer stock for two subsequent replenishment cycles, then
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we can treat these as a new single replenishment cycle, since their buffer stocks are linearly
dependent, and repeat the process in order to consider the next replenishment cycle if a neg-
ative order quantity scenario arises. A lower bound for the expected total cost associated to
the current partial assignment for δt, t = 1, . . . , N variables is now given by the sum of all the
cost components C(Si, i, j), for each replenishment cycle R(i, j) identified by the assignment.

4. Numerical experience

The described approach was first compared to the one descibed in and the set of instances
presented in [5]. For these instances, a piecewise linear approximation with seven segments
usually provides a solution with a cost reasonably close to optimal (<1% difference); while
using two segments produces a cost difference up to about 7%. The next experiment concerns
a single problem with period demands generated from seasonal data with no trend: d̃t =
50[1 + sin(πt/6)]. In addition to the “no trend” case (P1) we also consider three others: (P2)
positive trend case, d̃t = 50[1+ sin(πt/6)]+ t; (P3) negative trend case, d̃t = 50[1+ sin(πt/6)]+
(52− t); (P4) life-cycle trend case, d̃t = 50[1 + sin(πt/6)] +min(t, 52− t).
In each test we assume an initial null inventory level and a normally distributed demand
for every period with a coefficient of variation σt/d̃t for each t ∈ {1, . . . , N}, where N is the
length of the considered planning horizon. We performed tests using four different ordering
cost values a ∈ {50, 100, 150, 200} and two different σt/d̃t ∈ {1/3, 1/6}. The planning horizon
length takes even values in the range [20, 38]. The holding cost used in these tests is h = 1 per
unit per period. Our tests also consider two different shortage cost values s = 15 and s = 25.
Direct item cost is v = 2 per unit produced.

Our CP approach generally requires only a fraction of a second to produce the optimal
solution. Only in 6 instances the optimal solution was not produced within the given time
limit of 5 seconds. Nevertheless, it should be also noted that the worst case running time for
our approach over the whole test bed was 6, 77 minutes. Therefore even in the few cases in
which an optimal solution is not found in a less than 5 seconds, our CP model provides a
reasonable running time.

5. Conclusions

We developed a constraint programming approach able to compute optimal replenishment
cycle policy parameters under non-stationary stochastic demand, ordering, holding and short-
age costs. In our model we exploited the convexity of the cost-function during the search to
dynamically compute the cost associated with a given decision variable assignment. By us-
ing our approach we assessed the quality of an existing approximate mixed integer linear
programming approach that exploits a piecewise linear approximation for the complex cost
function. Our computational experience show the effectiveness of our approach.
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Abstract The problem of solving parametric linear systems whose input data are functions of interval param-
eters is considered. The goal is to compute a tight enclosure for the solution set of such systems.
Several techniques are employed to reach this goal. Sensitivity analysis is compared with evolution-
ary optimization method and interval global optimization. Evolutionary optimization is used both
to approximate the hull from below and to obtain the starting point for global optimization. Several
acceleration techniques are used to speed up the convergence of the global optimization. Addition-
ally, the parallel computations are involved. Some illustrative examples are solved by the discussed
methods. It is shown that interval global optimization can be successfully used for solving the prob-
lems under consideration. All optimization methods described in this paper are parallelizable and
can be implemented by using MPI Library.
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1. Interval equations

Consider the interval equation
F (u,p) = 0 , (1)

where p = [p
1
, p1] × ... × [p

m
, pm], u = (u1, ..., un), and F = (F1, ..., Fn). Function F can be

very complicated. One can consider a system of algebraic, differential, integral equations, in
general, any type of equations including relational ones.

The solution set of system (1) is defined as

u(p) = {u : F (u, p) = 0, p ∈ p} (2)

Generally, the solution set u(p) has a very complicated shape (it is not necessarily convex).
Therefore, the problem of solving system of equations (1) is usually formulated as a problem
of finding an interval vector (outer solution) that contains the solution set. The tightest interval
solution is called a hull solution [5] or an optimal solution [13]. The problem of computing hull
solution can be defined as a family of 2n global optimization problems:

ui =





minui
F (u, p) = 0
p ∈ p

, ui =





maxui
F (u, p) = 0
p ∈ p

, i = 1, . . . , n, (3)



142 Iwona Skalna and Andrzej Pownuk

and the following theorem holds.

Theorem 1. Let F (u,p) = 0 and let ui and ui denote, respectively, the solution of the i-th minimiza-
tion and maximization problem (3). Then

u = 2u(p) = �{u : F (u, p) = 0, p ∈ p} = [u1, u1]× ...× [um, um]. (4)

2. Monotonicity and uniform monotonicity

Function u = u(p1, p2, ..., pm) is monotonically increasing with the respect to the variable pi if

pi0 > pi1 ⇒ u(..., pi0, ...) > u(..., pi1, ...) (5)

Function u = u(p1, p2, ..., pm) is monotonically decreasing with the respect to the variable pi if

pi0 > pi1 ⇒ u(..., pi0, ...) 6 u(..., pi1, ...) (6)

If the function is monotonically increasing or monotonically decreasing then the function is
monotone.

Theorem 2. If the function is monotone with respect to all variables p1, ..., pm then extreme values of
the function u = u(p1, ..., pm) are attained at vertices of the box p.

In the case of truss structures it is possible to prove that the implicit function u = u(p1, ..., pm),
which is defined by the equation (2) is monotone [6]. Because of that the following theorem is
true.

Theorem 3. In the case of truss structures, extreme values of the displacements u are attained at the
vertices of the box p, where p contains only area of cross-section, Young modulus, and point loads [6].

In order to get extreme values of the displacements u = u(p1, ..., pm) it is possible to apply
endpoint combination method [5]. That is the practical conclusion of the theorem 3. Unfortu-
nately endpoint combination method is very time-consuming, because of that it is not possible
to use that method in practice.

Definition 4. If a function u = u(p) = u(p1, ..., pm) is monotone with respect to all variables
p1, ..., pm for all p ∈ p, then u is uniformly monotone.

Theorem 5. If the function is uniformly monotone, then extreme values can be calculated by using
one iteration of the gradient method (sensitivity analysis [9]).

According to the numerical experiments [12], displacements of some truss structures are
uniformly monotone and some are not.

For monotone functions ui = ui(p) the maximum and the minimum can be found by using
the following procedure

If
∂ui
∂pj

> 0 then pmin,i
j = p

j
, pmax,i

j = pj, (7)

If
∂ui
∂pj

< 0 then pmin,i
j = pj , p

max,i
j = p

j
, (8)

ui = ui(p
min,i), ui = ui(p

max,i). (9)

Derivatives ∂ui

∂pj
and different interval solution can be calculated in parallel.
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3. Gradient free method

One of the key aspects of gradient method, described in the previous sections, is calculation of
derivatives. Unfortunately calculation of derivatives may be a very complex task in the com-
plex computational methods. However, it is possible to simplify the process of calculations
derivatives by using finite difference method [7].

∂uj
∂pi
≈ uj(..., pi +∆pi, ...) − uj(..., pi, ...)

∆pi
(10)

It is also possible to apply higher order and multi-point finite difference schemas. Numeri-
cal approximation of the derivatives ∂ui

∂pj
and different interval solution can be calculated in

parallel.

4. Evolutionary algorithm description

Evolutionary optimization is one of the alternatives to the methods described above. Evolu-
tionary computational techniques can deals with complex problems where the monotonicity
assumption is not valid. To solve optimization problems (3), the following evolutionary strat-
egy is applied. Individuals in the population are k-dimensional real vectors, where k is a
number of interval parameters. Elements of the initial population are generated at random
based on the uniform distribution. The 10% of the best individuals pass to the next genera-
tion, and the rest of population is generated using the non-uniform mutation and arithmetic
crossover. The parents are selected using tournament selection of size 2.

Parallel implementations of evolutionary algorithms come in two group. Coarse grained
parallel genetic algorithms assume a population on each of the computer nodes and migra-
tion of individuals among the nodes. Fine grained parallel genetic algorithms assume an
individual on each processor node which acts with neighbouring individuals for selection
and reproduction. Other variants, like genetic algorithms for online optimization problems,
introduce time-dependence or noise in the fitness function.

5. Global optimization method

The strategy described in Section 4 produces very good inner approximation of the actual hull
solution. In order to get reliable solution, an interval global optimization method can be ap-
plied [15]. The main deficiency of the global optimization is its high computational cost. To
cope with this problem various inclusion functions are employed, several acceleration tech-
niques such as monotonicity test, cut-off test based on the result of evolutionary optimization
are used, and the technique which deals with parallel computations is applied. Many acceler-
ation techniques can be applied in parallel.

6. Summary

In this paper different optimization methods are applied for solution of system of equations
with the interval parameters. The objective is to find the best optimization algorithm that can
be applied for each specific problem.

Gradient methods are very fast and they give the exact results if the problem is uniformly
monotone. Unfortunately, very often the problems are not uniformly monotone and in that
case gradient methods give a very good inner estimation of the optimal solution.

Evolutionary algorithms are stochastic optimization methods which can be applied in sit-
uations where the gradient method (based on monotonicity assumption) gives inaccurate
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results. The evolutionary optimization result also approximates the optimal solution from
below. However, usually this approximation is more accurate for non-monotone problems.
Moreover, the evolutionary optimization result can be used to perform an efficient cut-off test
for global optimization.

In order to get reliable solution special global optimization method is proposed [15]. Sug-
gested acceleration techniques significantly reduce the computational time of global optimiza-
tion.

According to numerical results, the gradient (or gradient free) method give very accurate
solution [12] for many problems of structural mechanics. However, there is also a large class
of problems for which monotonicity assumption is not acceptable. In that cases different op-
timization methods such as evolutionary optimization or interval global optimization can be
applied.
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Abstract The Powell singular function was introduced 1962 by M.J.D. Powell as an unconstrained optimiza-
tion problem. The function is also used as nonlinear least squares problem and system of nonlinear
equations. The function is a classic test function included in collections like MINPACK, Hoch and
Schittkowski and CUTE as well as an example problem in text books. In the global optimization
literature the function is stated as a difficult test case. The function is convex and the Hessian has a
double singularity at the solution. In this paper we consider Newton’s method and methods in the
Halley class. While Newton’s method is locally convergent with second order rate of convergence
all methods in the Halley Class have third order rate of convergence. In this talk we will discuss
the relationship between these method and consider the Powell Singular Function. We show that
these methods have global convergence. However, they all have a linear rate of convergence. We
will illustrate these properties with numerical experiments.

Keywords: System of nonlinear equations, global optimization, Powell singular, high order method.

1. Introduction

Consider the system of nonlinear equations F (x) = 0 where the function F : Rn → R
n and

F = (f1, . . . , fn)
T . In the following we assume that the function is at least two times continu-

ously differentiable. The Jacobian matrix or the first derivative F ′(x) ∈ R
n×n is an n×nmatrix

where component (i, j) is ∂fi(x)
∂xj

, and the second derivative F ′′(x) ∈ R
n×n×n is an n × n × n

tensor where component (i, j, k) is ∂2fi(x)
∂xk∂xj

. The classical iterative method to solve F (x) = 0 is

the Newton method. For a given iterate xk the correction is given by

sk(1) = −
(
F ′(xk)

)−1
F (xk), (1)

provided that the Jacobian matrix at xk is nonsingular and the new iterate is xk+1 = xk +
sk(1), k ≥ 0. If x∗ is a solution and F ′(x∗) is nonsingular it is well known that if the starting
point x0 is sufficiently close to the solution, thenNewton’smethod converges with a quadratic
rate of convergence. The Halley class of methods [6] have local and third order rate of conver-
gence. For a given value of α and a given iterate xk, the new iterate of a method in the Halley
class is given by

xk+1 = xk + sk(1) + sk(2), k ≥ 0 (2)

where sk(1) is the Newton step (1) and sk(2) is given by

sk(2) = −
1

2

(
F ′(xk) + αF ′′(xk)sk(1)

)−1

F ′′(xk)sk(1)s
k
(1). (3)
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In 1962 M.J.D. Powell [10] introduced the function to test an unconstrained optimization
algorithm. The function goes under the names Powell Quartic function or Powell Singular
function. Consider the nonlinear system of equations F (x) = 0 where F : R4 → R

4 is defined
by

F (x) =




f1(x)
f2(x)
f3(x)
f4(x)


 ≡




x1 + 10x2√
5(x3 − x4)

(x2 − 2x3)
2

√
10(x1 − x4)2


 , (4)

and the objective function for unconstrained optimization

f(x) = F (x)TF (x) = f1(x)
2 + f2(x)

2 + f3(x)
2 + f4(x)

2

= (x1 + 10x2)
2 + 5(x3 − x4)2 + (x2 − 2x3)

4 + 10(x1 − x4)4. (5)

The objective function is convex and the unique unconstrained minimizer and the unique
solution to the nonlinear system of equations is x∗ = (0, 0, 0, 0)T . The Jacobian matrix of F
at the solution is singular and the Hessian matrix of f at the solution is also singular. In this
extended abstract we only consider the nonlinear systemof equations andwe use the formula-
tion first discussed in [2]. However, the theorems can easily be modified for the unconstrained
optimization case.

The objective function is a standard reference test for derivative free optimization methods
[9, 8], for heuristic methods introduced in [13] as well as global optimization algorithms [15].
The test function is also a standard reference in textbooks [1, 13, 5, 12, 4, 14, 11]. The scalar
function can be extended in many ways [3] for unconstrained problems with n > 4. The
function (4) gives rise a difficult nonlinear system of equations [7].

To simplify the notation we will remove the iteration index and use that x is the current
iterate and x+ is the next iterate.

2. The Newton Method

The first derivative of Powell Singular Function (4) is given by

F ′(x) =




1 10 0 0

0 0
√
5 −

√
5

0 2(x2 − 2x3) −4(x2 − 2x3) 0

2
√
10(x1 − x4) 0 0 −2

√
10(x1 − x4)


 . (6)

The determinant of Jacobian matrix F ′(x) is

det(F ′(x)) = 84
√
50(x1 − x4)(x2 − 2x3).

We immediately have that F ′(x) is nonsingular if and only if f3(x) 6= 0 and f4(x) 6= 0 using
the definition (4). Assuming that F ′(x) is nonsingular, it can be shown that in the Newton
step (1) we have (F ′(x))−1 F (x) = (I −N)x and the new iterate x+ = x+ s(1) is given by

x+ = Nx, (7)

where the matrix N is

N =
1

42




20 −10 20 −20
−2 1 −2 2
−1 −10 20 1
−1 −10 20 1


 . (8)
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The matrix N has full set of eigenvectors and the eigenvalues are 1
2 and 0. The value of F at

the new iterate is

F
(
x+
)
=

1

4




0
0

(x2 − 2x3)
2

√
10(x1 − x4)2


 . (9)

Thus the components f1(x+) and f2(x+) vanish for all x and fi(x+) = 1
4fi(x), i = 3, 4. We

can conclude that det(F ′(x+)) 6= 0 when det(F ′(x)) 6= 0. The following result for Newton’s
method can be derived from the above observations.

Theorem 1. Let x0 be any starting point so that F ′(x0) is nonsingular then Newton’s method is well
defined for all k ≥ 0 and given by (7). Further for any starting point the sequence of iterates {xk}
defined in (7) is globally convergent and converges linearly to the solution x∗ = 0 with quotient factor
1
2 .

3. The Halley Class

For a method in the Halley class the new iterate x+ = x+ s(1) + s(2) where s(1) is the Newton
step (1) and s(2) is defined by equation (3). It follows that

F ′(x)− αF ′′(x)
(
F ′(x)

)−1
F (x) =

(2− α)




1
(2−α)

10
(2−α) 0 0

0 0
√
5

(2−α)
−
√
5

(2−α)

0 (x2 − 2x3) −2(x2 − 2x3) 0√
10(x1 − x4) 0 0 −

√
10(x1 − x4)


 , (10)

where α is a given scalar. The determinant can be shown to be 105
√
2(α−2)2(x1−x4)(x2−2x3)

so if F ′(x) is nonsingular, then F ′(x)− αF ′′(x)
(
F ′(x)

)−1
F (x) is also nonsingular for α 6= 2. It

can be shown that s(2) can be written in terms of the matrix N given by (8)

s(2) =
1

2(α− 2)
Nx. (11)

Since s(1) is Newton step x + s(1) = Nx and x+ = Nx + s(2) substituting for (11) the next
iterate x+ is

x+ =
2α− 3

2(α− 2)
Nx. (12)

For specific values of α in the Halley class we get some well known methods. Chebyshev’s
method, Halley’s method and Super–Halley’s method are obtained when α = 0, 12 and 1 re-
spectively. We can thus summarize the observations in the following convergence theorem.

Theorem 2. Let x0 be any starting point so that F ′(x0) is nonsingular then methods in the Halley
class are well defined for α < 11/6 or α > 5/2 and given by (12). Further for any starting point the
sequence of iterates {xk} defined in (12) is globally convergent and converges linearly to the solution

x∗ = 0 with quotient factor
∣∣∣ 2α−3
4(α−2)

∣∣∣.

4. Numerical Experiment

Consider PSF (4) solved by Newton, Chebyshev, Halley, and Super–Halley methods, and im-
plemented using Matlab. Using the standard starting point x0 = (3,−1, 0, 1)T , with the stop-
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Figure 1. Comparing the number of iterations of Chebyshev’s method, Halley’smethod, Super–Halley’smethod,
and Newton’s method to solve PSF.

ping criteria ||F (x)|| ≤ 10−10. The Figure 1 shows that all methods are linearly convergent
and Super–Halley is the best method.

References

[1] R. P. Brent. Algorithms for Minimization Without Derivatives. Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1973.

[2] R. P. Brent. Some Efficient Algorithms for Solving Systems of Nonlinear Equations. SIAM Journal on Numer-
ical Analysis, 10(2):327–344, 1973.

[3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a Class of Methods for Solving Minimization Problems
with Simple Bounds on the Variables. Mathematics of Computation, 50(182):399–430, 1988.

[4] W. Cheney D. Kincaid. Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole, 3rd edition,
2002.

[5] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.
New Jersey, Prentice-Hall, 1983.

[6] G. Gundersen and T. Steihaug. On Large Scale Unconstrained Optimization Problems and Higher Order
Methods. Optimization Methods and Software, 25:337–358, 2010.

[7] R. B. Kearfott. Some Tests of Generalized Bisection. ACM Transactions on Mathematical Software, 13(3):197–
220, 1987.

[8] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. Computer Journal, 7:308–313, 1965.
[9] R. O’Neill. AlgorithmAS 47: FunctionMinimization Using a Simplex Procedure. Journal of the Royal Statistical

Society. Series C (Applied Statistics), 20(3):338–345, 1971.
[10] M. J. D. Powell. An Iterative Method for Finding Stationary Values of a Function of Several Variables.

Computer Journal, 5:147–151, 1962.
[11] A. Qing. Differential Evolution: Fundamentals and Applications in Electrical Engineering. John Wiley & Sons

(Asia) Pte, Singapore, 2009.
[12] S. S. Rao. Engineering Optimization: Theory and Practice. John Wiley & Sons, Inc., 3rd edition, 1996.
[13] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, Inc., New York, NY, USA,

1981.
[14] J.A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and

New Gradient–Based Algorithms. Springer Verlag, 2005.
[15] G. W. Walster, E. R. Hansen, and S. Sengupta. Test Results for a Global Optimization Algorithm. In Pro-

ceedings of the SIAM Conference on Numerical Optimization, Boulder, Colorado June 12–14,1984, pages 272–287.
SIAM, 1985.



Proceedings of TOGO 2010, pp. 149 – 152.
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Abstract We consider a general optimization problem with functions, represented as a difference of two con-
vex functions. In order to attack that problem we first concentrate on two partial cases: d.c. mini-
mization and d.c. constraint problems— and explain local search methods and global search proce-
dure for these two problems. Finally we give an overview of application problems investigated by
the developed approach.
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1. Introduction

Many optimization problems arising from different application areas turn out to be really
nonconvex [1]-[4], in which, as known, most of local solutions are different from a global one
even with respect to the value of the objective function.

Moreover, often the number of local solutions increases exponentially w.r.t. the dimension
of the space, where the problem is stated.

On the other hand, the contemporary situation in NonconvexOptimization may be viewed,
as dominated by B&B and its ideological sattelites approach [2, 3]. At the same time,
the classical methods of convex optimization [1, 4] have been thrown aside because of its
inefficiency [2, 3, 7]. As known, the conspicuous limitation of convex optimization methods
applied to nonconvex problems is their ability of being trapped at a local solution, or more
often at a critical point depending on a starting point [1, 2, 4, 7].

On the other hand, applying B&B approach often we fall into so-called computational in-
finity, when the procedure is finite, even we are able to prove the finite convergence of the
method, but it is impossible to compute a global solution in a rather reasonable time.

Taking into account the situation, we proposed another way for solving d.c. optimization
problems, the principal step of which can be described on one of the basic d.c. problems: d.c.
minimization (DC)

(P) : f(x) = g(x)− h(x) ↓ min
x
, x ∈ D, (1)

where g and h are convex functions and D is a convex set, say, from IRn.
The solution methods for d.c. problems are based on three principles.
I. Linearization w.r.t. basic nonconvexities of the problems, and, as a consequence, the

consideration of the (partially) linearized problems:

(PL(y)) : g(x)− 〈h′(y), x〉 ↓ min
x
, x ∈ D,

where h′(y) is a subgradient of the convex function h(·) at a point y ∈ IRn.
II. Application ofmost advanced convex optimizationmethods [4] for solving the linearized

problems (PL).
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III. Application new mathematical (optimization) tools, as Global Optimality Conditions
(GOC) and Global Search Strategy, based on GOC.

2. Local Search Methods (LCM)

In contrast to well-known B&B, cuts and similar methods throwing away classical methods of
convex optimization, we insist on a certain, but nondirect, application of these algorithms in
Global Optimization. For example, for solving d.c. minimization problem (P)–(1) the follow-
ing (partially) linearized problem is a basic element (a "brick") of Global Search Method

(PLs) : f(x) = g(x) − 〈h′(xs), x〉 ↓ min
x
, x ∈ D, (2)

where xs is a current iterate and h′(xs) ∈ ∂h(xs) is a subgradient of h at xs. It means that
the choice of a solving method for (PLs) has a considerable impact on Global Search. Local
Search procedure for (P) may consists in consecutive solving the (PLs): knowing xs ∈ D, we
find xs+1 ∈ D as an approximate solution of (PLs)–(2). Unexpectedly, the process tends to a
solution x∗ of the linearized problem

(PL∗) : f(x) = g(x) − 〈h′(x∗), x〉 ↓ min
x
, x ∈ D,

called henceforth a (algorithmicly) critical, x∗ ∈ Sol(PL∗).
In addition to (P) we also consider the d.c. constraint problem (DCC)

(DCC) : φ(x) ↓ min, x ∈ S, S ⊂ IRn,
F (x) = g(x)− h(x) ≤ 0,

}
(3)

for which we proposed specials local search methods (LSM)[11] providing a critical points.
The first one consists in consecutive solution of the convex problem (if φ is convex), as

follows,

(DCLs) : φ(x) ↓ min, x ∈ S,
g(x)− 〈h′(xs), x− xs〉 − h(xs) ≤ 0,

}
(4)

and the other considers the convex problem

(QLs) : g(x) − 〈h′(xs), x〉 ↓ min,
x ∈ S, φ(x) ≤ ρs.

}
(5)

The both methods converge to critical points.

3. Global Search procedures

The general procedure of Global Search consists of two stages:
a) Local Search;
b) Procedures of escaping from a critical point based upon GOC.
Themeaning of this combination consists in the algorithmic (constructive) property of GOC

providing a better feasible point when GOC are broken down. Actually, for (P) GOC are, as
follows, [7]

z ∈ Sol(P)⇒ ∀(y, β) ∈ IRn × IR :

h(y) = β − ξ, ξ := g(z) − h(z) △
= f(z)

g(x)− β ≥ 〈h′(y), x − y〉 ∀x ∈ D.



 (6)

If for some (ŷ, β̂) in (6) and x̂ ∈ D one has g(x̂) < β + 〈∇h(ŷ), x̂− ŷ〉, then due to convexity of
h(·) we immediately obtain

f(x̂) = g(x̂)− h(x̂) < h(ŷ) + ξ − h(ŷ) = f(z)
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so that f(x̂) < f(z), and x̂ is better than z.
By varying the parameter (y, β) ∈ IRn × IR in (6), and by solving the corresponding lin-

earized problems (cf. (6))
g(x)− 〈h′(y), x〉 ↓ min

x
, x ∈ D, (7)

(y is not obligatory feasible!) we get a family of starting points x(y, β) for LSM. Besides, no
needs to consider all (y, β), it is sufficient to violate the inequality in (6) for one pair (ŷ, β̂)
only.

Basing on these all results we developed a general approach for solving globally the general
d.c. optimization problem, as follows,

F0(x) ↓ min, x ∈ S ⊂ IRn,
Fi(x) ≤ 0, i = 1, . . . ,m,

}
(8)

where Fi(x) = gi(x)− hi(x) and gi, hi(x) are convex functions on IRn, i = 1, . . . ,m.
The large field of computational experiments confirmed the effectiveness of the approach

for high dimensional problems even in the case of program implementation performed by
students and post-graduation students [9]–[14].

4. Applications

4.1. Bimatrix games (BMG). A new method for finding the Nash equilibrium in BMG has
been developed [8]. This one is based on reducing BMG to a bilinear maximization
problem and a following application of Global Search Strategy. The testing on widely
generated BMG of high dimension (up to 1000×1000) showed the comparable effective-
ness of the method.

4.2. Bilevel problems can be viewed as extremal problems having a special constraint in the
form of another optimization problem (follower problem). Besides, the constraints of the
leader are depending on the variables of the follower. A special complex of programmes
for solving these problems was developed and successfully tested on a large number
stochastically generated examples of different complexity and dimension (up to 150 ×
150) [15].

4.3. Linear complementarity problem was solved by variational approach stating it as d.c.
minimization problem of dimension up to 400 [14].

4.4. Problems of financial and medical diagnostic can be formulated in the form of nonlinear
(polyhedral) separability [6]. The generalization of Global Search Theory for nonsmooth
case allows to develop a programming complex for solving such problems of rather high
dimension with demonstrated its effectiveness during computational simulations.

4.5. Well-known problems of Discrete programming [9] and nonconvex Optimal control
problems [12, 13] have also been considered.

5. Conclusion

We developed a new approach for solving general d.c. optimization problems, in particular,
d.c. minimization and d.c. constraint’s problem. This approach is based on Global Optimality
Conditions and consists of two stages:

1) Special Local Search Method (LSM);

2) Procedures of escaping from critical points provided by LSM.
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An attractive peculiarity of the approach consists in non-direct application of Classical
Convex Optimization Methods (Interior Point Methods, Newtonean and Trust-Regions Pro-
cedures, SQP etc.) into LSM and Global Search Procedures. Numerical results of high dimen-
sions witnessed (certified) rather competitive effectiveness of the approach.
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Abstract The routing of vehicles represents an important component of many distribution and transportation
systems and has been intensively studied in the operations research literature. In this paper, par-
ticular consideration is given to routing models for the transportation of hazardous materials. This
problem has received a large interest in recent years, this results from the increase in public aware-
ness of the dangers of hazardous materials and the enormous amount of hazardous materials being
transported. We describe here some major differences between routing of hazardous materials and
the classical vehicle routing problems. We review some general models and optimization techniques
and propose several direction for future research.
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1. Introduction

Hazardous Materials Management (HMM) has received a large interest in recent years, this
results from the increase in public awareness of the dangers of hazardous materials and the
enormous amounts of hazardous materials being transported. HMM is concerned with four
main subjects: risk analysis [3], routing and scheduling [8], facility location [6, 8] and treat-
ment and disposal of waste [10]. We focus here on Routing of Hazardous Materials (RHM).
The main target of this problem is to select routes from a given origin ’s’ to a given destination
’t’ such that the risk for the surrounding population and the environment is minimum, with-
out producing excessive economic costs. The risk associated with the hazardous materials
makes these problems more complicated by its assessment, the collection of the related data
and the resolution of the associated formulations.

In analyzing the routing of hazardous materials problem, it is important to include multiple
objectives, this results from the presence of multiple interested parties or stakeholders. In this
case, it is not possible to identify a single “best” route, generally “Pareto optimal” routes
represent the available tradeoffs explicitly. Another important aspect of the transportation of
hazardous materials is uncertainty, this is a result of the difficulty of riskmeasurement and the
lack of data. We present in this paper some characteristics of routing of hazardous materials
problem and describe some models and the most used resolution methods for this problem.

2. Routing for hazardous materials

The difference between RHM and other routing problems is mainly the risk. We present in
this section some methodologies in RHM problem consisting essentially of modeling and res-
olution frameworks.
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3. The risk

Because of the risk, a network related to this problem is generally different from other trans-
portation networks. In RHM, the arcs do not necessarily connect junctions, in the case where
a road between two junctions goes through a set of different density population regions, this
arc is divided into a set of arcs in such a way that these new arcs have the same incident
probability and the same consequences.

Although the fact that the major target of the RHM problem is the minimization of the risk,
there is no universally accepted definition of risk [5]. It is pointed in [8] that the evaluation
of risk in transportation of hazardous materials generally consists of the evaluation of the
probability of an undesirable event, the exposure level of the population and the environment,
and the degree of the consequences (e.g., deaths, injured people, damages). In practice, these
probabilities are difficult to obtain due to the lack of data and generally, the analysis is reduced
to consider the risk as the expected damage or the population exposure.

As the risk is a part of the objective function, it is quantified with a path evaluation function
[5]. Some risk models (the conditional risk model for example, see [12]) lead to non-linear
binary integer formulations which can not optimized using a simple labeling algorithm (the
associated models violate a path selection optimality principle). Generally, these models are
based on approximations which lead to tractable formulations. Three axioms are introduced
in [5] for prescribing properties for path evaluation functions. These axioms allow to check the
monotonicity of the links attribute and to check if the path selection model verifies Bellman’s
optimality principle.

4. Models and optimization

RHM problem is multi-objective in nature, nevertheless, some papers deal with single-ob-
jective problems. These models often fail to handle the conflict between transportation risk
and cost. A number of multi-objective models have been proposed in the literature. With
multiple objectives, all objectives usually cannot be optimized simultaneously. Generally, a
set of alternative (Pareto-optimal) solutions are computed. As the number of Pareto-optimal
solutions can be exponential as a function of the network size, one might wish to compute a
subset of these solutions “approximating well” the set of all Pareto-optimal solutions.

Resolution methods of hazardous materials routing can be classified in two categories. The
“local routing”which consists in selecting routes between only one origin-destination pair and
transporting a single commodity at a time. The “global routing” where different hazardous
materials have to be shipped simultaneously among different origin-destination pairs.

4.1 Local routing of hazardous materials

The one origin-destination routing consists of selecting a route between a given origin-desti-
nation nodes for a given hazardous materials, transport mode and vehicle type.

Weighting methods are widely used due to their simplicity and computational efficiency.
They are based on optimizing a weighted linear combination of the objectives. This can be
done using the classical shortest path algorithm. The drawback of these methods is that they
are able to identify only a subset of Pareto-optimal solutions. Since some solutions of interest
might be ignored, a method which can identify them is desirable. However, in some cases
when the decision maker is able to express additional a priori knowledge and preferences on
the objectives, the problem can be reduced to a single objective optimization problem.

The goal programming formulations offers considerable flexibility to the decision maker,
the purpose is to minimize the deviation between the achievement of objectives (goals) and
their aspiration level (the acceptable achievement level for the objective). This method is able
to compute Pareto-optimal solutions that can not be obtained with the weighting method.
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4.2 Global routing of hazardous materials

A non-negligible work in the literature focuses on the selection of a single commodity route
between only one origin-destination pair. In practice, a more adapted model is global rout-
ing. When many vehicles have to be routed between the same origin-destination nodes, these
vehicles are routed on the same path, so, the risk associated to regions surrounding this path
could be hight. In this case, we sometimes wish to distribute the risk in an equitable way over
the population.

Risk equity. Different techniques was proposed to handle equity on the transportation
network. In [7], the authors guarantee equity by constraining the differences of the risks asso-
ciated to every pair regions, to be less than or equal to a given threshold. The computation of
routes with a fairly distributed risk consists in generating dissimilar origin-destination paths.
The dissimilar path generation problem has been dealt in the literature in many ways, we cite
the Iterative Penalty Method, the Gateway Shortest-Paths method, the Minimax Method and
the p-dispersion Method.

Multi-commodity flow models. The transportation of hazardous materials can be natu-
rally modeled by a multi-commodity flow model [2]. Given an origin-destination pair and
the amount of commodities to be transported between such an origin and a destination, the
multi-commodity minimum cost flow model finds the optimal distribution of such quantities
minimizing the total transportation cost.

5. Uncertainty in routing of hazardous material

It is important to classify the nature of uncertainty in transportation of hazardous materials
problems. In particular, three types of uncertainty concern the amount of population present
near a route, traffic congestion and weather conditions. The effect of the release of hazardous
materials and the travel time can be modeled by means of random variables whose distri-
butions may vary over time [14] over a stochastic and time-dependent network [1]. Optimal
routing on time-dependent networks can be classified into three categories [4]:

A priori optimization: Optimal routes are definitively computed before the travel begins,
the random arc travel time is reduced to its expected value and a standard shortest path
problem is applied.

Adaptive route selection: The optimal route depends on intermediate informations con-
cerning past travel time, road congestion and weather conditions. The adaptive road
specifies the road link to be chosen at each intermediate node, as a function of the ar-
rival time at the node [11]. The multi-objective version of the adaptive route selection
was proposed in [9].

Adaptive route selection with real-time updates: In this case, recent technologies such as au-
tomatic vehicle location and mobile communication systems permits to guide the route
of vehicles based on real-time informations. Estimation of future values of some net-
work attributes such as travel times, incident probabilities and population in the impact
area are updated using the real-time informations.

6. Conclusion

Transportation of hazardous materials is a complex and seemingly intractable problem, prin-
cipally because of the inherent trade-offs between social, environmental, ecological, and eco-
nomic factors. An model for the routing of hazardous materials problem not only needs to be
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accurate but also technically and computationally tractable. There is no common conceptual
model for the RHM problem. Works in this field take generally into account different consid-
erations (economic, environmental and social) and significant simplifications are necessary to
obtain tractable models. Several challenging directions for future research can be stemmed
from this problem:
• A common resolution approach for multi-objective shortest path problems consists of

computing Pareto optimal solutions. As the number of Pareto optimal solutions can grow
exponentially with the size of the network, one can propose to the decision maker a subset of
Pareto optimal solutions representing a good approximation of the Pareto optimal solutions
set or compute preferred solutions by exploiting some preferences of the decision maker.
• An important issue of the RHM is the treatment of the stochastic phenomena, indeed,

some or all attributes of this problem are stochastic.
• Considerable advances are needed to appropriately treat the stochastic phenomena when

some transformation of measures (cost and risk) are nonlinear.
• New technological advances in communication systems and Global Positioning System

(GPS) are challenging researchers to develop routing models and robust optimization proce-
dures that are able to respond quickly to changes in the data.
•Most studies on RHM in the literature deal with road transportation mode [4]. Although

rail transport is a safer transportation mode (automatic control system, cross less populated
zones), and more capacitated, it has received less attention.
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On Local search for nonconvex optimal control problem
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Abstract A nonconvex optimal control problem in which a nonconvexity is generated by an integro-terminal
objective functional is considered. A new local search method, which allows to obtain a control pro-
cess verifying, in particular, Pontryagin principle, is proposed. Some peculiar properties of conver-
gence of the algorithm are investigated. Furthermore, some preliminary computational simulations
have been conducted, the results of which certify a rather competitive efficiency of the algorithm.

Keywords: nonconvex optimal control problems, Pontryagin’s maximumprinciple, locally and globally optimal
processes

1. Introduction

The present paper investigates only one type of nonconvexities generated by the Bolza objec-
tive functional. On the other hand, the objective is also rather simple: to construct a special
local search method allowing to obtain a stationary (in the sense of Pontryagin maximum
principle (PMP) [1–6]) point.

Note, this goal — to create a special local search method for each kind of nonconvex prob-
lems—have not been implemented and fixed until present for the OC problem, while— as far
as finite dimensional problems are concerned,— some results have been obtained for different
kinds of nonconvex problems (d.c. minimization, convex maximization, d.c. constraint prob-
lems etc.) [7–10]. In our opinion, only after creating special Local Search Algorithms (LSA)
for different types of nonconvex OC problems, one can begin with constructing Global Search
Procedures (based, say, on Global Optimality Conditions) allowing to escape from a station-
ary (PMP) process with improving the value of objective functional on various nonconvex OC
problems [9].

2. Problem formulation

Consider the following control system

ẋ(t) = A(t)x(t) + b(u(t), t)
◦∀ t ∈ T = [t0, t1],

x(t0) = x0 ∈ IRn,

}
(1)

where the matrix A(t) has components t 7→ aij(t), i, j = 1, 2, . . . , n, from L∞(T ) and the
mapping (u, t) 7→ b(u, t) : IRr+1 → IRn is continuous w.r.t. every variable u ∈ IRr and t ∈ IR.
Further, the control u(·) verifies the standard assumptions of OC, as follows,

u(·) ∈ U = {u(·) ∈ Lr
∞(T ) | u(t) ∈ U ◦∀ t ∈ T } (2)

where the set U is compact in IRr. Here the sign ◦∀means “for almost all”.
Under these assumptions for each u(·) ∈ U there exists an unique solution x(t) = x(t, u),

t ∈ T , of the initial Cauchy problem (1), x(·) ∈ ACn(T ) (i.e. absolutely continuous) [2, 3].



158 Maxim V. Yanulevich

The goal of this control consists in minimization of the following Bolza functional

(P) : J(u) := ϕ(x(t1)) +

∫

T

[
F (x(t), t) + f(u(t), t)

]
dt ↓ min

u
, u ∈ U , (3)

subject to (1)–(2), i.e. x(t) = x(t, u), t ∈ T , u ∈ U in (3). Here the function x 7→ ϕ(x) : IRn → IR
is differentiable on a rather large open convex set Ω ⊂ IRn and the function (u, t) 7→ f(u, t) :
IRr+1 → IR is a continuous w.r.t. each variable. Besides, let’s function ϕ(·) be d.c. function
(see [3, 7]), i.e. ϕ(·) is represented as the difference of two convex functions:

ϕ(x) = g1(x)− h1(x) ∀x ∈ Ω, (4)

where g1(·) and h1(·) are convex functions on Ω.
Function (x, t) 7→ F (x, t) is also continuous w.r.t. each variable and besides is differentiable

d.c. function w.r.t. the first variable x on Ω ⊂ IRn such as the following d.c. decomposition
holds:

F (x, t) = g(x, t)− h(x, t) ∀x ∈ Ω, t ∈ [t0, t1], (5)

where x 7→ g(x, t) and x 7→ g(x, t) is convex functions w.r.t. variable x.
Under such assumptions Problem (P)–(1)–(3) turns out to be nonconvex so that it may

possess a number of locally optimal and stationary (verifying PMP) processes (x∗(·), u∗(·)),
which are different from a global one (z(·), w(·)), z(t) = x(t, w), t ∈ T, w(·) ∈ U , even w.r.t.
the values of the objective functional. The examples of such problems can be found in [8, 9].

The following sections of the paper present some regular procedures allowing to obtain a
stationary process for the Problem (P)–(1)–(3).

3. Linearized problem

Under the assumptions of the previous section consider the maximization problem as follows

(PL(y)) : Iy(u) := g1(x(t1, u)))− 〈∇h1(y(t1)), x(t1, u)〉+
+

∫

T

[
g(x(t, u), t) − 〈∇h(y(t), t), x(t, u)〉 + f(u(t), t)

]
dt ↓ min

u
, u ∈ U (6)

subject to (1)–(2), where y(t) ∈ IRn, t ∈ [t0, t1], is a given continuous function. It is well-
known, in convex Problem (PL(y))–(6) Pontrygin’s Maximum Principle turns out to be the
necessary and sufficient condition for the process (x∗(t), u∗(t)) being (globally) optimal w.r.t.
(PL(y)). More precisely, if (x∗(t), u∗(t)) is solution to (PL(y))–(6), then the maximum condi-
tion

HL(x∗(t), u∗(t), ψ(t), t) = max
v∈U

HL(x∗(t), v, ψ(t), t)
◦∀ t ∈ T, (7)

holds with the Pontryagin function for the problem (PL(y))–(6)

HL(x, u, ψ, t) = 〈ψ,A(t)x + b(u, t)〉 − g(x, t) + 〈∇h(y(t), t), x〉 − f(u, t). (8)

Here the function ψ(t) = ψy(t), t ∈ [t0, t1] is a unique absolutely continuous solution of the
adjoint system

ψ̇(t) = −A(t)⊤ψ(t) +∇g(x∗(t), t)−∇h(y(t), t), t ∈ T,
ψ(t1) = ∇h1(y(t1))− g1(x∗(t1)).

(9)

On account of the special form (8) of the Pontryagin function, the maximum condition (7)
may be written in the following form:

〈ψ(t), b(u∗(t), t)〉 + f(u∗(t), t) = max
v∈U

[〈ψ(t), b(v, t)〉 + f(v, t)]
◦∀ t ∈ T. (7′)
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Note that for the problem (PL(y)) the adjoint state ψy(t) = ψ(t, y(·), x∗(·)) corresponding
to Pontryagin’s extremal (x∗(·), u∗(·)) is given implicitly. In order to verify that the process
(x∗(·), u∗(·)) satisfy PMP, it’s necessary find adjoint trajectory ψ(·) = ψ(·, y, x∗(·)) depending
on phase state x∗(·) (see [3–6]).

4. Local Search Method

To the end of solving Problem (P)–(1)–(3) the following way has shown itself rather efficient
for finite-dimensional problems. In the case of Optimal Control, this procedure can be de-
scribed as follows.

Once a feasible control us(·) ∈ U is given, the next iteration us+1(·) ∈ U is chosen as an
(approximate) solution of the linearized problem

(PLs) : Is(u) := g1(x(t1, u))− 〈∇h1(xs(t1)), x(t1, u)〉+
+

∫

T

[
g(x(t, u), t) − 〈∇h(xs(t), t), x(t, u)〉 + f(u(t), t)

]
dt ↓ min

u
, u ∈ U , (10)

where x(t, u) and xs(t) = x(t, us), t ∈ [t0, t1], are solutions of the system (1) of ODEs with u(·)
and us(·), respectively.

The issue of convergence of the sequence {xs(·), us(·)} generated by the above procedure
emerges immediately.

On the other hand, it is clear from the previous section that solution (xs+1(·), us+1(·)) of
Problem (PLs)–(10) satisfy the following maximum condition

〈ψs(t), b(us+1(t), t)〉 + f(us+1(t), t) = max
v∈U

[
〈ψs(t), b(v, t)〉 + f(v, t)

] ◦∀ t ∈ T, (11)

where adjoint trajectory satisfy the system

ψ̇s(t) = −A(t)⊤ψs(t) +∇g(xs+1(t), t)−∇h(xs(t), t), t ∈ T,
ψs(t1) = ∇h1(xs(t1))− g1(xs+1(t1)),

(12)

and phase state xs+1(t) provides for the control us+1(·) ∈ U .
After that, the state xs+1(t) is computed as the solution of the control system (1) corre-

sponding to the control us+1(·) ∈ U .
This idea leads us to a more realistic algorithm, the principal steps of which have been

discussed above.
Let there be given a sequence of numbers {δs} such that

δs > 0, s = 0, 1, 2...,

∞∑

s=0

δs < +∞, (13)

and a current process (xs(·), us(·)), us(·) ∈ U , xs(t) = x(t, us), t ∈ [t0, t1].
Having the state xs(·) ∈ ACn(T ) one can solve the corresponding adjoint system (12). After

that we construct the control us+1(·) ∈ U by approximate solving almost everywhere over T
the finite dimensional problem provided by rule (11), so that the following inequality holds:

〈ψs(t), b(us+1(t), t)〉 + f(us+1(t), t) +
δs

t1 − t0
≥

≥ sup
v∈U

[
〈ψs(t), b(v, t)〉 + f(v, t)

] ◦∀ t ∈ T.
(14)

The following theorem proves the convergence of sequence {xs(·), us(·)} generated by the
above procedure.
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Theorem 1. The sequence of controlled processes {xs(·), us(·)} generated by rules (12), (13) and (14)
fulfils PMP in the sense of condition

lim
s→∞

sup
v∈U

[〈ψs(t), b(v, t) − b(us(t), t)〉 + f(v, t)− f(us(t), t)] = 0
◦∀t ∈ T. (15)

Furthermore, numerical sequences J(us) and Is(us) converge.

5. Summary

In the present paper, a nonconvex OC problem has been considered, in which the nonconvex-
ity has been generated by maximizing the objective functional with d.c. terminal part, and
with the integral part having a d.c. integrand (w.r.t. the state).

On the whole, the problem turns out to be nonconvex in the sense that there may be local
solutions, which are rather far from a globally optimal process even w.r.t. the values of the
goal functional.

Further, for this problem we have proposed and substantiated the local search method
based, on one hand, on the classical linearization idea and, on the other, on the method of
solving linearized problems.

In addition, the convergence of the developed algorithm has been investigated. Finally, the
first computational testing of the developed algorithm has shown itself rather efficient and
demonstrated the possibility of applying the algorithm to the global search procedure, which
we intend to describe in our forthcoming papers.
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Covering, 31

Data mining, 121
D.c. constraint, 59
D.c. function, 123, 149
D.C. optimization, 9
Decomposition, 81
Derivative-free optimization, 97
Discrete formulation, 93
Discrete Fourier Transform, 35
Discretization techniques, 85
Distance geometry, 93
Distances minimization, 9

Efficacy, 35
Endmembers, 55
EPA Complex Emissions Model, 89
Evolutionary algorithm, 131
Expensive objective function, 97
Extremal convex polygons, 63

Facility location, 19, 109

Genetic algorithm, 127
Geodesic, 43
Gibbs free energy, 81
Global optimization, 15, 19, 27, 59, 63, 71, 97, 109, 113, 121, 145
Global search, 77, 105, 123, 149
Greedy Algorithm, 35

Heuristic, 109
High-dimensional, 97
High order method, 145

Inexact distances, 93
Information Retrieval, 35
Interval Arithmetic, 23, 47, 67, 101
Interval Global Optimization, 141

Linear relaxation, 15, 101
Line search, 97
LMI relaxations, 51
Locally and globally optimal processes, 157
Local search, 77, 105, 123, 149

Maximum weighted clique problem, 59
Metaheuristic, 109
Minimum volume, 55
MINLP, 19, 27, 137
Mixed variables, 67
Modeling, 27
Multi-objective optimization, 153

Nonconvex optimal control problems, 157
Nonconvex optimization, 123, 149
Nonconvex optimization problems, 77, 105
Nonconvex quadratic programming, 63
Nonlinear bi-level programming problem, 131
Nonlinear programming, 119
Non-stationary demand, 137

Obnoxious, 109
Optimal Control, 85
Optimistic solution, 105, 123
Optimization, 39, 55

Parallel Programming, 141
Parametric Linear Systems, 141
Pareto, 109
Pessimistic solution, 77
Phase equilibrium, 81
Polyhedral uncertainty, 119
Polynomial optimization, 75
Pontryagin’s maximum principle, 157
Pooling problem, 15, 51, 89
Powell singular, 145
Principal components, 55
Problems with nonconvex constraint, 123
Protein conformation, 93

Quadratically-constrained quadratic program, 89
Quadratic optimization, 71
Quadratic regularization, 71

Replenishment cycle policy, 137
Robust optimization, 119
Routing, 153
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Scalability, 97
Semidefinite programming, 51, 63
Semidefinite relaxation, 71, 75
Semi-infinite optimization, 113
Sensitivity Analysis, 141
Separable functions, 23
Shortage cost, 137
Simplex partition, 31
Solver benchmarking, 39

Solver comparison, 39
Spectral unmixing, 55
Support Vector Machines, 119
System of nonlinear equations, 145

Test environment, 39
Transportation of hazardous materials, 153


