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 2 

Abstract 1 

 2 

The major objective of this study was to investigate the prevalence of Shiga toxin (Stx)-3 

producing Escherichia coli (STEC) in different types of food samples and to compare their 4 

genetic relatedness with STEC strains isolated previously from animal sources in Bangladesh. 5 

We investigated a total of 213 food samples, including 90 raw meat samples collected from 6 

retail butcher shops, 20 raw milk samples from domestic cattle, and 103 fresh juice samples 7 

from street vendors in Dhaka city. We found that more than 68% (n = 62) of the raw meat 8 

samples were positive for the stx gene(s); 34% (n = 21) of buffalo meats and 66% (n = 41) of 9 

beef. Approximately 10% (n = 2) of the raw milk and 8% (n = 8) of the fresh juice samples 10 

were positive for stx. We isolated STEC O157 from seven meat samples (7.8%) of which two 11 

were from buffalo meats and five from beef, and no other STEC serotypes could be isolated. 12 

We could not isolate STEC from any of the stx-positive raw milk and juice samples. The 13 

STEC O157 isolates from raw meats were positive for the stx2, eae, katP, etpD and 14 

enterohemorrhagic E. coli hly (hlyEHEC) virulence genes, and belonged to three different 15 

phage types: 8 (14.3%), 31 (42.8%), and 32 (42.8%). Pulsed-field gel electrophoresis (PFGE) 16 

typing revealed six distinct patterns among seven isolates of STEC O157 suggesting a 17 

heterogeneous clonal diversity. Of the six PFGE patterns, one was identical and other two 18 

were ≥90% related to PFGE patterns of STEC O157 strains isolated previously from animal 19 

feces indicating that raw meats are readily contaminated with fecal materials. This study 20 

represents the first survey of STEC in the food chain in Bangladesh. 21 

 22 
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Introduction 1 

 2 

 Shiga toxin-producing Escherichia coli (STEC) organisms, also called verocytotoxin 3 

(VT)-producing E. coli (VTEC), are one of the most important groups of foodborne 4 

pathogens (Karmali, 1989; Paton and Paton, 1998). They are a major cause of gastroenteritis 5 

that may be complicated by hemorrhagic colitis (HC) or the hemolytic-uremic syndrome 6 

(HUS), which is the main cause of acute renal failure in children. STEC are a serologically 7 

diverse group of zoonotic pathogens. Serotype O157:H7 has been reported as the 8 

predominant type worldwide (Tarr et al., 2005). Since its identification as a pathogen in 1982, 9 

STEC O157:H7 has been the cause of a series of outbreaks in Canada, Japan, the United 10 

Kingdom, the United States and other countries (Karmali, 1989; Paton and Paton, 1998; 11 

Willshaw et al., 2001). However, more than 200 STEC serotypes have been reported and 12 

more than 100 have been linked with human infection (Eklund et al., 2001).  13 

 The pathogenicity of STEC strains is associated with various virulence factors. The main 14 

factor is the capacity to form two potent phage-encoded cytotoxins called Shiga toxins (Stx1, 15 

Stx2 and their variants) or verocytotoxins (VT1 and VT2) (Paton and Paton, 1998). Another 16 

virulence factor associated with clinical STEC isolates is the protein intimin, encoded by the 17 

eae gene and responsible for the intimate attachment of STEC strains to the intestinal 18 

epithelial cells and causing the formation of attaching and effacing (A/E) lesions in the 19 

intestinal mucosa (Kaper et al., 1998). Enterohemolysin, also called enterohemorrhagic E. 20 

coli (EHEC) hemolysin has also been identified as a possible STEC virulence factor (Beutin 21 

et al., 1989).  22 

 STEC represent the only pathogenic group of E. coli that has a definite zoonotic origin, 23 

although not all the STEC strains have been demonstrated to cause disease in humans. STEC 24 

strains rarely cause disease in animals, and ruminants are recognized as their main natural 25 



 

 4 

reservoir. Cattle are considered to be the major animal source of STEC that are virulent to 1 

humans, in particular STEC O157 (Caprioli et al., 2005). STEC O157 and other serotypes 2 

associated with human infections have also frequently been isolated from the intestinal 3 

content of other ruminant species, including sheep, goat, water buffalo, and wild ruminants. 4 

Contamination of carcasses with STEC usually occurs during slaughter and subsequent 5 

processing through fecal material originating directly or indirectly from the rectal-cecal area 6 

(Erickson and Doyle, 2007). Dairy products (milk, cheese, cream) associated with infection 7 

have included those that are unpasteurized, have had a pasteurization failure or have been 8 

contaminated post-pasteurization. Ready-to-eat foods have also been associated with 9 

infection, particularly cooked meats contaminated by raw materials during processing, in 10 

catering establishments, at retail sale, and in the home. In developed countries, STEC O157 11 

outbreaks associated with beef have caused concern among public health workers, clinicians, 12 

and the public, prompting major changes in clinical and laboratory practice, meat production, 13 

and food preparation (Mahon et al., 1997).  14 

 Like many of the developing and underdeveloped countries, the hygienic conditions in 15 

Bangladesh are severely compromised, and living with domestic animals within the same 16 

premises is a common practice among Bangladeshi population. In our previous study we 17 

found that the prevalence of STEC in slaughter animals was 24% and 43% of these STEC 18 

isolates belonged to serogroup O157 (Islam et al., 2008). Although this high prevalence of 19 

STEC in animal reservoirs has little impact on public health considering the lack of STEC 20 

associated infections among Bangladeshi population (Islam et al., 2007), it is important to 21 

know the occurrence and transmission of these organisms in the human food chain.  22 

 Since the incidence of STEC in Bangladeshi foods has remained unknown, the study being 23 

reported here examined the occurrence of STEC in different types of food sample, with the 24 

isolates further characterized according to serotype, phage type, virulence gene profile, and 25 
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pulsed-field gel electrophoresis (PFGE) type.  In addition, we compared the PFGE types of 1 

the food isolates with that of a collection of STEC strains isolated at adjacent period from 2 

animal feces in Bangladesh to find out clonal relatedness.    3 

 4 

Materials and methods 5 

Sampling 6 

  We collected randomly 90 raw meat samples (60 beef and 30 buffalo) from July 2006 to 7 

January 2007  from 15 retail butcher shops located in five different areas (3 from each area) 8 

in Dhaka city. From each butcher shop, we collected 6 meat samples at two different time 9 

points (3 at one time point) during the sampling period. In the same period, we randomly 10 

collected raw milk samples from 20 dairy cows domesticated at 20 different households 11 

located in two suburbs (10 from each area) of Dhaka city. In addition, we collected 103 12 

freshly prepared juice samples, including mixed herbal juice (n = 49), sugar cane juice (n = 13 

40), wood apple juice (n = 7) and some other types of juice (three milk shake, one lemon, two 14 

mix fruit, and one pineapple) from street vendors who operate in the main streets of 10 15 

different locations in the Dhaka city. Only one juice sample was collected at one time point 16 

from each vendor. Each sample (minimum of 25 g or 25 ml) was aseptically transferred to a 17 

sterile plastic bag, placed in an ice box, and transported to the laboratory within 2 h. We 18 

started microbiological investigation of the samples within 4 h of collection. 19 

 20 

Isolation of STEC O157 21 

 For meat samples, a 25-g portion, and for raw milk and juice samples, a 25-ml portion 22 

was added to 225 ml of modified tryptone soy broth (Oxoid Ltd., Basingstoke, United 23 

Kingdom). After homogenization in a stomacher for 1 min, the samples were incubated for 24 

18-20 h at 37°C. STEC O157 strains were isolated as described previously (Islam et al., 25 
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2006), by using the immunomagnetic separation (IMS) technique and presumptive isolates 1 

were confirmed by an agglutination test using E. coli O157 latex agglutination kit (Murex 2 

Biotech Ltd., Dartford, Kent, United Kingdom) and a PCR for the rfb (O-antigen-encoding) 3 

region of E. coli O157 (rfbEO157) (Paton and Paton, 1998). 4 

 5 

Isolation procedure for STEC non-O157 6 

  The overnight enrichment cultures were screened by PCR for the presence of stx1 and stx2 7 

using the primers as described earlier (Islam et al., 2007). DNA was extracted from 1 ml of 8 

broth culture by thermal cell lysis using Chelex-100 resin (Bio-Rad Laboratories Ltd., 9 

Richmond, Calif.) and 5 µl of the DNA extract was used in the PCR (Malorny et al., 2003). 10 

Multiplex PCR for stx1 and stx2 was carried out in a PTC-200 peltier thermal cycler (Bio-11 

Rad) using the program as described previously (Islam et al., 2007). DNA extracted from E. 12 

coli O157:H7 strain NCTC 12079 and E. coli strain ATCC 25922 were used as positive and 13 

negative controls, respectively in each PCR reaction. Broth cultures that yielded positive PCR 14 

results for stx1 and/or stx2 were streaked onto tryptone bile x-glucuronide (TBX) agar (Oxoid) 15 

supplemented with cefixime (20 mg/l), cefsulodin (3 mg/l) and vancomycin (30 mg/l) (CCV-16 

TBX). Single colonies, including different morphological types were transferred from the 17 

CCV-TBX and plated onto Luria agar (Difco, BD diagnostics, USA) to create a grid pattern 18 

of 96 colonies (12×8). The plates were incubated overnight at 37°C. The isolates were 19 

subjected to PCR for the detection of stx1 and stx2 as described above. The number of PCR 20 

reactions was reduced to 20 by pooling the colonies per row and per column in 500 µl sterile 21 

distilled water. DNA was extracted by boiling the suspensions for 10 min and 5 µl of the 22 

supernatant was used in the PCR. The isolates with positive PCR results were identified as E. 23 

coli by an API 20E test (bioMérieux, Marcy l'Etoile, France). 24 

 25 
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PCR detection of virulence factors 1 

 PCR for detecting both chromosome (e.g., stx1, stx2, and eae)- and plasmid (e.g., hlyEHEC, 2 

katP, and etpD)-encoded virulence genes was performed as described earlier (Islam et al., 3 

2007) in a total volume of 25 µl containing 2.5 µl of 10× Fast Start buffer with 1.5 mM 4 

MgCl2 (Applied Biosystems, Weiterstadt, Germany), 200 µM concentration of each 5 

deoxynucleoside triphosphate, a 0.2 pmol of each primer, and 1 U of Fast start Taq DNA 6 

polymerase (Roche, Mannheim, Germany) using a PTC-200 peltier thermal cycler (Bio-Rad). 7 

 8 

Phage typing 9 

 Isolates confirmed to be STEC O157 were phage typed at the laboratory of Enteric 10 

Pathogens, Central Public Health Laboratory, London, United Kingdom.  11 

 12 

PFGE 13 

 PFGE was performed following the standardized protocol developed by PulseNet for E. 14 

coli O157:H7 (Ribot et al., 2006). Analysis of the TIFF images was carried out by the 15 

BioNumerics software (Applied Maths, Belgium) using the dice coefficient and unweighted-16 

pair group method using average linkages to generate dendrograms with 1.0% tolerance 17 

values. Normalized PFGE patterns (bundle files) of the food isolates were compared with that 18 

of the animal isolates from our previous studies (Islam et al., 2008) in order to find out the 19 

clonal relationships.    20 

 21 

Results and discussion 22 

Occurrence of STEC in food samples 23 

 Of the 90 meat samples tested in this study, we found that 62 (69%) were positive for stx 24 

gene(s); 21 samples of buffalo meats, and 41 samples of beef (Table 1). STEC O157 strains 25 



 

 8 

were isolated from seven samples (7.8%); two samples of buffalo meats, and five samples of 1 

beef (Table 1). No STEC non-O157 strains were isolated. During the processing of carcasses, 2 

meat can easily become contaminated with animal feces if there are unhygienic conditions, 3 

lack of good processing practices and a lack of knowledge of the butchers on basic hygiene. 4 

These features are commonly observed in butcher shops in Bangladesh where the same 5 

premise is being used to slaughter the animal, to process carcasses and as vending point. Our 6 

result correlates with data reported from neighboring countries, including India where STEC 7 

O157 have been identified as one of the predominant serogroups from buffalo meats 8 

(Hazarika et al., 2007). STEC O157 strains isolated from raw minced beef samples (9%; n = 9 

22) (Dutta et al., 2000), beef surface swabs (3.7%; n = 27) and milk samples (2.4%; n = 81) 10 

(Manna et al., 2006) in India. Of the 20 raw milk samples, two (10%) were positive for stx 11 

gene(s) (Table 1). Of the 103 fresh juice samples, eight (8%) were positive stx gene(s); six 12 

samples of mixed herbal juices, and two samples of wood apple juices (Table 1). However, 13 

no STEC could be isolated from stx-positive samples of raw milk and street vended juices. 14 

This might be due to the presence of a very small number of organisms present in the sample 15 

that were insensitive to the culture method used in the study. Another reason might be the 16 

presence of free stx phages in the sample that turned out to be positive by PCR for stx genes.    17 

 18 

Characterization of STEC O157 isolates 19 

 STEC O157 strains that were isolated from raw meat samples were further characterized. 20 

All isolates were positive for the stx2 gene only. There is considerable epidemiological 21 

evidence to indicate that STEC O157 isolates producing Stx2 are more commonly associated 22 

with serious disease than isolates producing Stx1or Stx1and Stx2 (Law, 2000). In addition to 23 

stx2 gene, all isolates in the study were positive for eae, etpD, katP and hlyEHEC genes, which 24 

accentuate their capability to cause human infection.  25 
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 The strains could be grouped into three different phage types (PT): PT 31 (n = 4), PT 32 1 

(n = 2), and PT 8 (n = 1). Phage types 31 and 32 have been commonly found among STEC 2 

O157 isolates obtained from both human and non-human sources (food and animal feces) 3 

from different countries suggesting a foodborne transmission of the organism (Khakria et al., 4 

1990, Mannix et al., 2007). In our previous study we found that these two phage types (PT 31 5 

and PT 32) were the predominant PTs among STEC O157 strains isolated from animal feces 6 

(Islam et al., 2008). Phage type 8 has been found frequently among STEC O157 strains from 7 

humans and bovine in many European countries, including Spain, Belgium, Finland, 8 

Germany, Italy, England and Scotland (Khakria et al., 1990). We also found this phage type 9 

in our previous study in a STEC O157 strain isolated from goat feces. Therefore, it is more 10 

likely that raw meat products are often contaminated with animal feces in the butcher shop 11 

environment.  12 

 PFGE analysis of the seven STEC O157 isolates revealed six distinct patterns, suggesting 13 

a genetically heterogeneous group. We compared these patterns with a panel of PFGE pattern 14 

that comprises 44 STEC O157 strains isolated previously from feces of cow, buffalo and 15 

goats from slaughterhouses in Dhaka city (Fig. 1). One strain (CM52) isolated from beef had 16 

an identical PFGE pattern with that of a strain isolated from buffalo feces (M139). 17 

Interestingly, both the beef and fecal strains were isolated from the same slaughterhouse (data 18 

not shown). Another beef isolate (CM2) had a PFGE pattern that was 92% related to that of a 19 

cluster of strains isolated from cow (C8) and goat feces (G72 and G85). Two strains, one 20 

from beef (CM56) and one from buffalo meat (MM28) belonged to the same clonal type (Fig. 21 

1) and this PFGE pattern was 90% related to that of a strain isolated previously from cow 22 

feces (C21). Among the six PFGE patterns obtained from meat isolates, 3 (50%) were 23 

identical/closely (≥90%) related to that of the isolates from animal feces. However, this result 24 

was not concordant with the phage typing results. Overall results of the study indicate that 25 



 

 10 

meats are readily contaminated with fecal materials containing STEC O157 in the butcher 1 

shops due to unhygienic practices of carcass processing.        2 

 3 

Conclusion 4 

 To our knowledge, this is the first survey to establish the prevalence of Shiga toxin-5 

producing E. coli in various food items in Bangladesh. Despite frequent contamination of raw 6 

meat products by potentially virulent E. coli O157, to date, no clinical data about impact on 7 

human health are available in Bangladesh. Improved surveillance and hygienic conditions 8 

along with the development of control measures are therefore highly recommended to 9 

minimize contamination of raw meat products by potentially virulent E. coli O157. 10 
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TABLE 1. PCR DETECTION OF STX GENE(S) IN BROTH CULTURES FROM FOOD 1 

SAMPLES AND ISOLATION OF SHIGA TOXIN-PRODUCING E. COLI O157 AND 2 

NON-O157 BY SUBCULTURING ONTO SELECTIVE AGAR 3 

Sources (n = 213) 

No. of PCR positive (%)  No. of Isolates (%) 

Only stx1 Only stx2 stx1+2 Total 
 E. coli 

O157
a 

Non-

O157 

Total 

Meat (90) 1 (1.1) 9 (10.0) 52 (57.8) 62 (68.9)  7 (7.8) 0 7 (7.8) 

      Buffalo (30) 0 2 (6.7) 19 (63.3) 21 (70)  2 (6.7) 0 2 (6.7) 

      Beef (60) 1 (1.7) 7 (11.7) 33 (55) 41 (68.3)  5 (8.3) 0 5 (8.3) 

Raw milk (20) 1 (5) 1 (5) 0 2 (10)  0 0 0 

Fresh juices (103) 2 (1.9) 4 (3.9) 2 (1.9) 8 (7.8)  0 0 0 

       Mixed herbal (49) 2 (4) 2 (4) 2 (4) 6 (12)  0 0 0 

       Sugarcane (40) 0 0 0 0  0 0 0 

       Wood apple (7) 0  2 (28.6) 0 (0) 2 (28.6)  0 0 0 

       Others (7) 0  0 0 0  0 0 0 
 a 

By using immunomagnetic separation. 4 

 5 
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Legend to figure  1 

FIG. 1. Dendrogram generated by Bionumeric software, showing distance calculated by the 2 

dice similarity index of PFGE XbaI profiles for STEC O157 isolates isolated from raw meats 3 

(n = 7) and animal feces (n = 44). Box with dotted line indicated profiles of raw meat 4 

isolates. The degree of similarity (%) is shown on the scale. 5 

 6 
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