Calculating CO₂ footprint of the organic greenhouse horticulture

Peter Vermeulen, Wageningen UR Greenhouse Horticulture

Ministry of Agriculture. Nature and

Introduction

Worldwide interest in GHG emissions of product
 Wholesalers, supermarkets, consumer organization

Calculation protocol CO₂ footprint: PAS 2050
 Carbon Trust, DEFRA, British Standard Institute

Calculation model CO₂ footprint
 the Dutch Horticultural Board and the ministry of Agriculture, Nature and Food Quality

Dutch Greenhouse Horticulture

Surface: 10.500 ha • Organic: + 100 ha Firms: 3.500 Main fuel: 95 % natural gas 45 m³/m²/year Average gas use: Heating system: • gas boiler: 95% area • co generation: 2.500 Mw_{el}: production: 10 TWh/year

CO₂ footprint

Calculation factors

- Energy; gas and electricity,
- Fertilizers
- Pesticides
- Plastics
- Rock wool, peat, etc..
- Transport to DC
- Greenhouse material are not specified, but calculated in the overhead of 10 %.

CO₂ footprint co generation 1

PAS 2050:

- 1. System reduction,
- 2. System expanding
- 3. Economic allocation.
- PAS 2050:
 - Production of heat, electricity and CO₂ → System expanding
- System expanding: GHG emission
 - gas CHP $\leftarrow \rightarrow$ avoided electricity production

CO₂ footprint co generation 2

System expanding: GHG emission

 gas CHP ← → avoided electricity production

 Avoided electricity production in NL

 CHP runs at daytime → supply of CO₂

 Kind of electricity plant:

 Weekdays → peak load: gas combustion
 Weekend → base load: coal combustion
 Avoided electricity: 2/7 coal 5/7 gas

Tomato case input data

		Organic estimated	Regular ¹⁾	Regular ¹⁾ with CHP
Production	kg/m ² /year	50	58.5	58.5
Electric power co generator	MW/ha			0.5
Cogeneration	hours/year			3565
Natural gas boiler	m ³ /m ² /year	43.2	43.4	15.0
Natural gas co generator	m ³ /m ² /year			49.7
Electricity	kWh/m ² /year	10	10	10
Electricity production	kWh/m ² /year			178
PE/PVC/PS	kg/ha/year	436	927	927
Pesticides	kg/ha/year		8	8

Tomato case CO₂ footprint 1

Tomato case CO₂ footprint 2

Discussion 1

Innovations conventional growers

- Heat delivery by greenhouse growers to
 - other companies,
 - other no greenhouse partners, such as schools, swimming pools, etc.
- CO₂ delivery by electricity or industrial plants to greenhouses
- Use of geothermal heat,
- Bio energy
- Fermentation
- Are the organic growers able and allowed to follow?
 Yes!

Discussion 2

Use CHP at greenhouse plant:

- Results based on at the heat and CO₂ demand of the crop
 → less waste of heat
- High electricity prices in compare costs gas CHP
 - \rightarrow longer runtime CHP \rightarrow more profit \rightarrow more waste of heat
 - More avoided electricity production electricity plants \rightarrow less GHG
- Low electricity prices in compare costs gas CHP
 - \rightarrow shorter runtime CHP \rightarrow less profit \rightarrow no waste of heat
 - Less avoided electricity production electricity plants \rightarrow more GHG

The CHP use as result of the economic influence the CO₂ footprint!

Discussion 3

Will be the CO₂ footprint the right method?
Toxicity: pesticides and fertilizers
Biodiversity
Soil healthy

. . .

Wageningen UR Greenhouse horticulture Innovations for and with the greenhouse horticulture

© Wageningen UR

Ministry of Agriculture, Nature and Food Quality Productschap // Tuinbou