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Abstract

In this study depth functions of soil organic mat®OM) were mapped across a 125’ lgtudy
area in the Netherlands. The mapping method isdbaesegeneral pedological knowledge about the
ten soil types in the area and their associateticaedistributions of SOM. For each soil type the
depth function structure was obtained by stackirsplaset from five model horizons. Each model
horizon had two associated parameters that chamesehe depth distribution of SOM. The depth
function parameters were calibrated with data freoil profile descriptions, and then spatially
interpolated. Given the soil type at a predictide,the depth function of SOM was obtained by
taking the depth function structure of that sgdeyand the interpolated, site-specific parametietiseo
model horizons in that structure. For the studwareoil map was available that represents sod typ
at any location with a probability distribution. @bining the soil type-specific depth functions with
this soil type map resulted in an estimated prdigbiistribution of depth functions at any locatim
the study area. For the purpose of validation gettdfunctions were used to compute map the SOM
stock for depth intervals 0-30 cm, 30-60 cm, 6090 TheR? values were 0.75, 0.23, and 0.09,
respectively. Similar results were found in othtrdg areas. This illustrates that there is a génera
challenge of capturing subsurface variation of pmlperties by our pedometric models.
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1. Introduction

Recently several attempts have been made to usemet#dc methods to map the three-
dimensional variation of soil properties (e.g. Maaet al., 2009; Meersmans et al., 2009; Minasny et
al., 2006; Mishra et al., 2009). These attemptscally involve the use of splines or exponential
decay functions to describe the variation of sodperties down a profile. Use of these functions is
based on the premise that soil properties varyimontsly with depth. Although this might be true fo
relatively undisturbed (uncultivated) soils formieda homogeneous parent material, in areas where
there has been strong human influence on soil feomar where highly contrasting sedimentary
layers are present within the soil profile, conting variation with depth is the exception rathenth
the rule. In these soils the depth distributionsofl properties often shows both continuous and
discontinuous variation, which make splines andoegntial decay functions less suitable for
modelling depth-wise variation of soil properti&sich soils require soil type-specific depth funesio

Soil maps are available for many areas. Thesearsik typically show the spatial distribution of
soil types (classes) that are defined, amongstatioa the basis of the presence of diagnostic soll
horizons and the properties of soil horizons. Hesod type maps can be considered discrete, three-
dimensional models of soil properties. When suchsyare available, then these might very well be
used for three-dimensional mapping of soil propsttiSoil horizons then act as carriers of soil
property information.

The aim of this study is to map the depth functiohsoil organic matter (SOM) based on general
pedological knowledge about the ten soil types he study area and the associated vertical
distributions of SOM. For each soil type the defithction structure was obtained by stacking a
subset from five model horizons. Each model horizwed two associated parameters that
characterizes the depth distribution of SOM. Thetlléunction parameters were calibrated with data
from soil profile descriptions, and then spatiailyterpolated using environmental covariates,
including the observed soil type at the observasibes. Given the soil type at a prediction site t



depth function of SOM was then obtained by takimg depth function structure of that soil type and
the interpolated, site-specific parameters of tleel@hhorizons in that structure.

2. Material and methods
2.1. Sudy area and data

The 125%m?study area is situated in the province of Drenththe northeast of the Netherlands
(Fig. 1). The area surrounds the village of Oogtssklen (52.75N, 6.72S). Podzols, plaggen soils,
peat soils and hydromorphic, humic earths soildlaanajor soil types. A dataset was available with
2111 soil profile descriptions in Drenthe (Fig. Minety-one of these are situated in the study.area
The remaining profile descriptions are situate@wlgere in the province at locations with similait so
conditions. The descriptions included the soil typigh a profile description including horizon
thicknesses and, for most of the horizons, SOM ardntFurthermore a raster soil map of 25-m
resolution of the province of Drenthe was availaiat distinguishes ten major soil types (Fig. 1).
Soil type is expressed as location-specific prdighdistributions, as predicted from environmental
covariates by multinomial logistic regression (Kemget al., 2009). Also, 26 grids of 25-m resolution
with biophysical predictor variables were availatdeenvironmental correlation.

<<FIG 1 NEAR HERE>>
2.2. Defining the depth functions: structure and parameters

For each of the ten soil types in the study aredepth function structure was defined that
describes the structure of the depth distributib8OM. To this end we defined five building blocks,
which we refer to as ‘model horizons’:

an organic topsoil with constant SOM with depth,

a mineral topsoil with constant SOM with depth,

an organic subsoil with constant SOM with depth,

a mineral subsoil with constant SOM with depth,

a mineral subsoil with SOM exponentially decreasinidp depth.
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For each soil type the depth function structure wlatained by stacking a subset from these five
model horizons. Each model horizon has two assatigiarameters that characterize the depth
distribution of SOM. For model horizons 1 to 4 thgmrameters are the SOM content (kg) snd
thickness (m). We shall denote these parameteCs axsdd; respectively, whereindicates the model
horizon. The SOM content in model horizon 5 is niledieby a negative exponential depth function
which is defined by parametefs, , which is the SOM content at the top of the mdd®izon, andk

(m) which is the rate of SOM decrease with depth. @&pth function for a soil type can then be

constructed using the depth function structurethedassociated parameters. The depth distribufion o
SOM described by this function then reflects trardiution one would expect on basis of the profile

morphology of the soil type.

2.3. Mapping the depth functions

2.3.1. Derive model horizon parameters from profile descriptions

The soil profile dataset contains descriptions lofost 11,000 soil horizons. A model horizon
number was assigned to each soil horizon basedibnasizon code, geological deposit and soil type.
In many profile descriptions a model horizon cotssif several consecutive soil horizons. For model
horizons 1 to 4, the individual soil horizons thadke up the model horizon were aggregated and the
parameters SOM content and thickness were comptitegl.individual soil horizons that make up
model horizon 5 were used to fit an exponentiakgidanction with the paramete@;, andk using



non-linear least squares that minimizes the squdiféefences between the observed and predicted
SOM stocks of the individual soil horizons withletmodel horizon.

2.3.2. Predict the depth function parameters and construct soil type-specific depth functions

To map the depth functions for each soil type theameters of the model horizons used to
characterize the depth function structure of tlugt type, were interpolated on a 25-m square grid.
The parameters were interpolated by universal kgigiith variance models estimated by residual
maximum likelihood (Lark et al., 2006). The cortelh parameter€, andk of model horizon 5 were
interpolated by universal cokriging. Instead ofilmating a geostatistical model separately for each
soil type, we calibrated a single geostatisticadeidor each depth function parameter, using the
observed soil type (considered to be the true typit) as a covariate. The biophysical covariates
included in the trend parts of the models werecseteby ordinary-least-squares regression and the
Akaike Information Criterion as a selection criteri

Using observed soil type as a covariate in thedtygarts of the universal kriging models implies
that we should also use true soil type for predictat unsampled sites (Kempen et al., in press).
However, true soil type is unknown at unsampledsshut can be represented with a probability
model, which is what our soil type map does: atdacation it provides a probability distributioh o
ten soil types. This implies that at each predictsite we require predictions of each of the depth
distribution parameters for all soil types. Thisswaccomplished by predicting a given parameter as
many times as there are soil types whose depthhdison of SOM is partly described with this
parameter. And each time given one of the soil sypecurs at each prediction site. The predicted
parameters and the soil-type specific depth functisuctures allow us to construct the soil type-
specific depth functions of SOM at each predictsite. By combining the soil type-specific depth
functions with the soil type probability distribatis from the soil map we obtain a probability
distribution of depth functions at each locatiorhie study area.

2.4. Application and validation of the depth functions

For validation we used the soil-type specific tiefoinctions to compute the SOM stock (kgf)m
for depth intervals 0-30 cm, 30-60 cm, and 60-90 €his results in three soil type-specific SOM
stocks at each prediction site, i.e. a 25-m pikee SOM stock for a pixel is then predicted by:

K
Ci(s9= Z P (S)C (), 1)
k=L

where C, (s) is the SOM stock at locatias) p, (s) is the probability of occurrence of soil tykek =
1,2,...K,andC, (s) is the computed SOM stock for a user-defined dayénval for soil typek.

The predicted SOM stocks were validated with indeleat data from 50 sites selected by
stratified simple random sampling. At each sité samples were taken at the three validation depths
The SOM content of each sample was determinedtihveight loss-on-ignition method.

3. Results
3.1. Depth functions of SOM for the soil typesin the study area

Table 1 presents the model horizon sequence usszhgtruct the profile depth function of SOM
for each of the ten soil types in the study areahbws that for each soil type two or three model
horizons are required to construct the functiorr. iRstance, the depth function for soil typ® is
given by:

C, for z<d,
C,(2)=1C4 for d, <z<d, +d;, (2
C,exp(-kiz-(d, +d3)]) else



where C,(2) is the SOM content (kgfinat depthz from the soil surfaceC,, C,, d,, d, are the

SOM contents and depths of model horizons 2 ai8ir8ilar functions were constructed for the other
soil types.

<<TABLE 1 NEAR HERE>>

3.2 Spatial prediction of the parameters of the depth functions

Applying each parameter-specific universal (colkiigmodel as many times as there are soil
types whose depth distribution is partly descrilvédth this parameter, resulted in 50 predicted
parameters at each site: 25 soil type—model hoponbinations (Table 1) times two parameters per
combination. With these 50 predicted parametersthadoil-type specific model horizon sequences
we constructed the depth distribution function éaich of the ten soil types at each location in the
study area.

3.3. Application and validation of the depth functions

Fig.2 shows the predicted SOM stocks for the tliegth intervals. The spatial pattern of each
map is clearly controlled by the soil type with thegest probability at a prediction site (Fig. 1Bhe
average SOM stock in the soils in the study areahi® 0-30 cm layer is 28 kg mthat of the 30-60
cm layer 18 kg i, and that of the 60-90 cm 10 kg’nBubsoil SOM stocks are much more variable
than topsoil stocks. This can be explained by tloéilp morphology of the soil types, which is much
more variable for the subsoils than for the tosdihe stock for the 0-90 cm layer ranged betwéen 1
and 182 kg M. The largest stocks are found in brook-valleythameastern and southwestern parts of
the study area where peat soils dominate. Hereageestock for the 0-90 cm layer is 140 kg for
thick peat soils®, mP) and 70 kg i for thin peat soilsRY, mPY). Medium stocks, ranging from 30-
50 kg n? are found in the areas dominated by plaggen sefis podzols PZ) and earth soilsHS).
The lowest stocks (21 kg fhare found in two drift-sand complexes in the herh part of the study
area.

<<FIG 2 NEAR HERE>>

Validation of the predicted SOM stock for the thregers indicated that the accuracy of
prediction decreased for each depth interval. Fer0t30 cm th& was 0.75, for the 30-60 cm layer,
0.23 for the 60-90 cm layer, and 0.09 for the 60c80layer. These results agree with findings of
Malone et al. (2009) and Minasny et al. (2006) walsm reported a decreasing accuracy of prediction
with depth for soil organic carbon and availablaev@apacity.

4. Discussion and conclusions

This study provides an example how general pedocdébgknowledge about soil profile
morphology related to soil types can be used to deggth functions of SOM. This is in contrast with
previous studies were one type of function is ugsgbically a spline or exponential decay)
irrespective of soil type and under the assumptia the depth-wise variation of soil properties is
only continuous. Furthermore, our approach is ¢joselated to the traditional approach of
representing depth distribution of soil propertiggh representative profile descriptions—the soil
horizons of which are characterized by typical ealtor several soil properties—that are associated
the map units of a soil type map. However, our apgh is more flexible than the approach based on
representative profile descriptions. The parametethe functions (e.g. the SOM content and
thickness of the horizons) can vary in space, ddipgnon environmental conditions that can be
represented by a set of covariates. Additionally, depth functions are mixed functions that can
describe both discontinuous (stepped) and contsdepth-wise variation within a soil profile, which
likely better represents the true depth-wise viaiabf soil properties for most soil profiles inrou
study area than a complete discontinuous (a seikdo model) or continuous function (spline or
negative exponential).



Validation with an independent dataset shows thetdepth functions provided good estimates of
the SOM stock in the upper part of the soil profitwever, the functions performed poorly for the
highly variable soil subsurface. Similar resultsev®und in other study areas with different saitsl
where different functions and different sets ofiemvmental covariates were used to model the depth-
wise variation of soil properties. This illustratdsat there is a general challenge of capturing
subsurface variation of soil properties by our peetrsic models.
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Tables
Table 1

Model horizon sequence used to construct the wod-specific depth distribution functions of SOM
and the associated parameters that describe thie dispibution function.

Soil type Model horizon Depth distribution paranste
1 2 3 4 5

P X X X Cy,dy, Cs,dg, Cy k

mP X X X C,, dy, C5,dg, Cy, k

PY X X X Cy,dy, Cgd3, Cy, k

mPY X X X C,, dy, C3,d3, Cy, k

BF X X C, dy,, Cy k

Pz X X C, d,, Cy k

ES X X CZ! d21 Cav k



PS X X X C,, dz, Cya, d4,Ca, k
T X X CZ! d2! Ca: k
S X X Cy, dy, Cy Oy

Fig. 1. (a) The study area in the province of Dnerdéind locations soil profile descriptions used for
calibration of the profile depth functions. Theenhsvith the study area shows the elevation wittk dar
shadings indicating low positions and light shaditige high positions. (b) Soil map of the studyaare
The depicted soil type at each location is the typié with the largest probability. P = thick peatls
(organic layer >40 cm), mP = thick peat soils witimeral surface horizon, PY = thin peat soils, mPY
= thin peat soils with mineral surface horizon, BFbrown forest soils, PZ = podzols, ES =
hydromorphic earth soils, PS = plaggen soils, Tlacigl till soils (glacial till present within 40nc
from the surface), S = sandy vague soils.
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Fig. 2. Predicted SOM stock (kgfjrat 0-30 cm, 30-60 cm and 60-90 cm depth intervals



