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Chapter 1  

GENERAL INTRODUCTION 

Electron Spin Resonance (ESR) spectroscopy is a powerful tool for the direct study of 

free radicals, providing information about their surrounding and identity. Objects that 

normally don’t possess an unpaired electron also can be studied using the spin probe ESR 

technique. In this way structural and chemical information about the surrounding of the 

unpaired electron can be obtained as well as dynamic information about the spin probe 

motion. ESR spectra contain detailed information about the electron distribution in the 

molecule and the properties of its surroundings, but the analysis and interpretation of ESR 

data are quite complicated and involve different approaches ranging from simple estimation 

of signal intensity to sophisticated modeling of the molecule under study in order to predict its 

magnetic parameters.  

The goal of this thesis is to develop new comprehensive methods for the analysis of 

ESR spectra and interpretation of magnetic parameters. A new approach for the analysis of 

fast isotropic spectra is proposed. It is based on a combination of an experimental approach 

(multifrequency ESR) and accurate spectra simulation using an improved model, that will be 

further introduced below. The determined magnetic parameters of the spin probe are directly 

interpreted in terms of structural information about the spin probe surroundings (lipid 

bilayer). The obtained magnetic parameters of various spin traps are interpreted by artificial 

neural networks (ANN) in order to obtain information about the identities of trapped radicals. 

Then, Density Functional Theory (DFT) calculations are applied to study the mechanism of 

reactions involving free radicals detected by spin trapping ESR and to calculate magnetic 

parameters of the radical adducts. 

The purpose of this chapter is to provide a brief introduction of ESR spin-probe and 

spin-trap techniques, as well as to introduce the basic idea underlying the data analysis 
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approach for interpreting fast isotropic ESR spectra, computational chemistry and artificial 

neural networks as tools for the analysis of ESR data. 

1.1. Basic principals and parameters of Electron Spin Resonance 

Electron spin resonance (ESR), also called electron paramagnetic resonance (EPR), is 

a spectroscopic technique that detects chemical species that have unpaired electrons. A large 

number of materials, including free radicals, transition metal ions and defects in materials, 

have an unpaired electron and thus can be studied by the ESR technique (Abragam and 

Bleaney 1970). Materials, that do not posses unpaired electrons, such as lipid bilayers or 

proteins, can also be studied by ESR by introducing a spin probe or by spin labeling 

techniques (Berliner 1976). With the ESR technique the local environment (fluidity, viscosity 

and polarity) and molecular structure next to the unpaired electron can be studied as well as 

molecular motion. The general principle of ESR is based on the interaction of an unpaired 

electron with an external magnetic field (Zeeman effect). The essential aspects of ESR may be 

illustrated by considering the hypothetical case of a single isolated electron. The magnetic 

moment of an electron µ, in the presence of an external magnetic field, B, orients parallel (the 

lowest energy state) or anti-parallel (the highest energy state) to the direction of the magnetic 

field. The projection of the magnetic moment µ on the direction of the magnetic field is  

 

            (1) 

 

where h is Planck’s constant, ms -  the spin (projection) quantum number and  mS=-1/2 for the 

parallel state and mS=1/2 for the anti-parallel state.  

The difference in energy between the two states is proportional to the strength of the 

external magnetic field (Fig. 1). Using an oscillating magnetic field in the microwave range, a 

transition can be induced from the lower to the higher energy state and vice versa, but only if 

the energy of this microwave exactly matches the difference between the energy levels with  

mS = 1. The equation describing the absorption or emission of microwave energy between 

the two spin states is 

 

Ehg   B           (2) 

 

where E is the energy difference between the two spin states, h – Planck’s constant, g – the 

Zeeman splitting factor, which is close to ge=2.0023 (electron g-factor) for free radicals/spin 

2
s

z
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probes but its actual value depends on the electron configuration of the radical or ion,  – the 

Bohr magneton, B – the applied magnetic field,  – the microwave frequency. So the 

measured energy difference depends linearly on the magnetic field and without magnetic 

field, the energy difference is zero. 

 

Figure 1. Variation of the energies of an electron spin state as a function of the applied 
magnetic field strength. Absorption occurs only if the energy (µBgB) exactly matches the 

difference between the energy levels with mS = 1. 

Usually, in ESR spectroscopy, the electromagnetic radiation frequency is kept 

constant, and the magnetic field is scanned. At the resonance field strength B, where the peak 

of absorption occurs, the energy of the radiation matches the energy difference of the two spin 

states. The resonance field and the frequency are related by the g-factor:  

 

g = hν / (µBB)                         (3) 

 

When B increases, ν also increases, whereas g is a constant, the value of which is 

determined by the structure of the uncoupled electron orbits and local environments, i.e. by 

the properties of the paramagnetic species, but not by the external conditions. For another 

resonance frequency it will be another resonance field, but the ratio between resonance 

frequency and the strength of the resonance magnetic field will be the same and determined 

by the g-factor.  At higher frequencies only the resolution of the g-factor is improved.  

In addition to the g-factor, the unpaired electron is also very sensitive to its local 

surroundings, including the nuclei of nearby atoms that also have a magnetic moment and 

produce a local magnetic field at the electron. The interaction of an unpaired electron and a 



General introduction 
 

4 
 

nucleus is called hyperfine interaction. Each hyperfine interaction with a certain nucleus is 

characterized by the specific hyperfine splitting constant (a). 

 

h = µB g B  + a mI           (4) 
 

where mI is the nuclear quantum number. When the value of the hyperfine splitting constant is 

larger than the line broadening then well-separated peaks are observed in the ESR spectrum. 

In this case the hyperfine splitting constant provides information about the identity and 

number of atoms that make up a molecule. In nitroxide radicals the interaction with a nitrogen 

atom results in a three line pattern due to mI= 0, ±1 and aN= 14-17 G (Figure 2). On top of the 

interaction with nitrogen, there are also unresolved proton hyperfine interactions (mI=±1/2, 

aH=0.2-0.5G (Kao, Barth et al. 2007)). The peaks arising from these interactions are strongly 

overlapping; as a result they broaden each peak in the nitroxide spectrum. 

However, a nitroxide radical exhibits anisotropy, so the g-factor and hyperfine 

splitting constant are represented by 3x3 matrices. In this case the hyperfine splitting constant 

and g-factor are referred to as g and a-tensors.  Usually, for nitroxides a Cartesian molecule-

fixed coordinate system [x, y, z] is defined, where the x-axis coincides with the N-O bond and 

the z-axis is along the 2pz axis of the nitrogen atom, and the y-axis is perpendicular to others 

(Figure 2).  

 

 

Figure 2. Nitroxide ESR spectra due to the interaction of an unpaired electron with 14N (mi=0,±1) 
and nitroxide principal axes for g and a-tensors. 
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Because of the symmetry of the 2pz orbital, the [x, y, z] axes system coincides with the 

principal axes of the g and a tensors, so g and a-tensors are diagonal in this axes system. 

The tensors for the 2,2,6,6-tetramethylpiperidinooxy (TEMPO) spin probe are presented 

below (Windle 1981). 

 


















0027.200

00061.20

000087.2

g         (5) 


















0.300

068.00

0068.0

a , in mT.        (6) 

 
Moreover, the ESR spectral line shape contains information about dynamic processes 

such as molecular motion and fluidity (viscosity) in the local environment (Freed and 

Fraenkel 1963; Freed, Bruno et al. 1971). In this work only fast isotropic motion is 

considered. Then the molecule with the unpaired electron is allowed to tumble rapidly in an 

isotropic way as is the case in solutions or membranes, so the components of the g- and a-

tensors are averaged out. The rotational motion is a random process, and its timescale is 

characterized by the rotational correlation time τC, representing the characteristic time after 

which molecules with initially identical orientations lose their alignment. Generally, such 

isotropic motion should result in a Lorentzian line shape.  However, there are some factors 

that broaden the ESR line, such as inhomogeneous broadening from unresolved hydrogen 

hyperfine structure or broadening caused by oxygen or other paramagnetic species. As a result 

of such broadening the Voigt shape occurs (convolution of Gaussian and Lorentzian) 

(Kivelson 1960). The linewidth of the Voigt shape is determined by the rotational correlation 

time, τC, and the broadening constant, ГГ. The mathematical model for the simulation of ESR 

spectra of 2,2,6,6-tetramethylpiperidine-1-oxyl spin probe (TEMPO) is described in Chapter 

2. The same model is applied for the simulations of ESR spectra from 4-hydroxy-5,5-

dimethyl-2- trifluoromethylpyrroline-1-oxide (FDMPO) (Chapter 4, 6), α-(4-pyridyl-1-

oxide)-N-tert-butylnitrone (POBN) (Chapter 3) and 5-diisopropoxyphosphoryl-5-methyl-1-

pyrroline N-oxide (DIPPMPO) (Chapter 5) spin traps.  

The size of the ESR signal is related to the concentration of the ESR active species in 

the sample. In case of ESR, the size of the signal is determined as a second integral of the 

spectrum (integrated intensity). 
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To summarize, a fast isotropic ESR spectrum is characterized by 5 frequency-independent 

parameters, namely the integrated intensity, the g-factor, the hyperfine splitting constant or 

constants for several nuclei, the correlation time and the broadening constant. 

1.1.1. High-field ESR  

Traditionally, ESR experiments have been carried out at 9.5 GHz (X-band) and 0.3 T. 

Recently, a strong trend has evolved to expand the range of microwave frequencies and 

magnetic fields to higher values.  High-field ESR offers the great advantage of increased 

spectral resolution, a gain in g-factor sensitivity and the sensitivity to a different motional 

regime, i.e. different  τC,-values (Burghaus, Rohrer et al. 1992; Grinberg and Berliner 2004).  

The biggest advantage attributed to HF ESR is directly derived from Eq. 3, that 

describes the interaction energies of an unpaired electron with the nuclei in a typical 

paramagnetic radical.  By varying the external magnetic field B, it is now possible to separate 

the influence of the field dependent (µBgB) term from the field independent term (a). The 

difference in resonance positions due to the electron Zeeman term for two different radicals 

with isotropic g-values g1 and g2  is given by : 

 











21

11

gg

h
B

B


           (7) 

 

This separation is a factor of 10 higher at 95 GHz (W-band) as compared to X-band ESR. 

1.1.2. Spin probe 

Objects such as biological membranes do not have intrinsic paramagnetic properties 

and therefore do not give rise to an ESR spectrum. However, they can be studied by ESR 

spectroscopy utilizing the spin probe technique, in which a paramagnetic probe is introduced 

into the system under study (Berliner 1976). 

The spin label or spin probe can be any paramagnetic moiety that is sufficiently stable 

under the required experimental conditions and has a characteristic EPR spectrum that 

depends on the physical state of its close surroundings. The most commonly used spin probes 

are nitroxides. In nitroxides, the unpaired electron is located in a -orbital on the nitrogen and 

oxygen atoms. The spin of the unpaired electron will interact with both nuclei, but since the 

oxygen nucleus has no spin, only the interaction with the nitrogen nucleus will be observed. 

Thus the ESR spectrum of nitroxides that are tumbling rapidly in solution exhibits a 
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characteristic primary triplet coupling splitting from the 14N nucleus of the nitroxide group. 

The spectrum shows a triplet with 1:1:1 signal intensity centered at g~2.006 (Figure 2). In 

spin probes, the magnitude of the nitrogen hyperfine splitting aN and the g-tensor varies, 

depending on the spin probe surrounding environment (polarity). Moreover, the polarity 

dependence of the g- and a-tensors is opposite in nature: a spin probe in a more polar 

environment is characterized by larger a-tensor and lower g-tensor values. 

Various spin labels and probes are being used, depending on the specific goal of the 

study.  For example, TEMPO spin probes are often used to study properties of membranes 

(phase transition temperatures) (Bartucci and Sportelli 1993). In contrast to spin labels, which 

are covalently attached to some chemical reactive moiety, these spin probes can freely diffuse 

in the membrane and provide information about both the water and lipid phases. Thus, the 

ESR spectrum of TEMPO in a membrane is a superposition of two components coming from 

TEMPO in water (larger aN) and TEMPO in lipid phase (aN) (Figure 3 ).  

 

 

Figure 3. TEMPO spin probe and CW ESR spectrum of TEMPO in aqueous/ lipid phase at 9.5 
GHz (X-band) and 95GHz (W-band). 

The TEMPO spin probe is used in Chapter 2 for the study of lipid bilayers.  

1.1.3. Spin trapping 

The ESR spin-trapping technique is widely used for the detection and identification of 

short-lived free radicals (Janzen 1971; Janzen 1998). The method involves trapping of a short 

living free radical by an additional reaction to produce a more stable radical adduct, easily 

detectable by ESR. The appearance of the ESR spectra will depend on the original free radical 

structure, so the hyperfine coupling parameters of such an adduct permit identification of the 

initial radical. The main types of spin traps, which find use in studies of free radicals in 

biological systems, are nitroso and nitrone derivatives. Nitrones can trap a large number of 
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different radicals including carbon, hydrogen, oxygen, etc.  In this work FDMPO (Chapter 4, 

6), POBN (Chapter 3) and DIPPMPO (Chapter 5) spin traps were used (Figure 4).  

  

 

Figure 4. DIPPMPO, POBN and FDMPO spin trap structures and X-band spectra of their 
hydroxyl radical  adducts at  room temperature.  

1.2. Data analysis  

Data analysis is an important part of the research process. The goal of the analysis is to 

obtain information from raw data or characterize raw data by a set of parameters and to reveal 

trends in a data set. Methods of data analysis range form simple organization of data into 

informative tables or plots of experimental data to the creation of sophisticated models that 

describe the experimental system. Typically, these models require massive amounts of 

calculations, so computers are widely used for implementation of models and for calculations. 

The primary goal of creating a model is to replicate the experimental system through 

simplification (Law and Kelton 1991). Therefore, only its essential and interesting properties 

are dealt with. In general, there is a compromise between accuracy and simplicity of the 

model i.e. a very accurate model could be too complex to implement, whereas a simple model 

could be highly inaccurate. 
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1.2.1. Simulation Based Fitting 

Simulation based fitting (SBF) is used to find parameters of the model, that describe 

the system under study properly. Mathematically, the idea of SBF fitting is finding a global 

minimum of a function e with the corresponding set of parameters p=(p1 ….pm) (so-called 

tuning parameters) 

 

e=L(Y,f(p))                           (8) 

 

where L is a mathematical operator for a function, Y - experimental data, f(p) – artificial data 

obtained from an analytical function or simulation. Comparing experimental and artificial 

data by calculating the function e, the optimization procedure changes the tuning parameters, 

and the procedure repeats again, thereby trying to minimize the function e (Figure 5). There 

are several numerical optimization methods, which allow the minimization of the function e. 

In this work the non-derivative simplex method is used (Nelder and Mead 1965). This method 

constructs a simplex in the space of tuning parameters, so in the case of 2 parameters the 

simplex is represented by a line, 3–simplex is a triangle and 4-simplex is a tetrahedral, etc. 

Then the method moves the center of this simplex to the point where the target error goal is 

met. 

 

 

Figure 5. General scheme for simulation based fitting 

1.2.2. Simulation of fast isotropic ESR spectra  

In case of SBF applied to the analysis of ESR spectra, experimental and artificial data 

are represented by experimental and simulated ESR spectra. The simulated spectra are 
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constructed based on the tuning parameters: isotropic values of the hyperfine splitting 

constants and the g-tensor for the splitting pattern, and the correlation time, broadening, full 

hyperfine and g-tensors components for the line shape. The choice of the mathematical model 

for the line width approximation influences the accuracy of the correlation time parameter. 

The line width is a frequency dependent parameter, whereas the correlation time is not. 

Ideally, the approximation should be valid for any frequency. The mathematical model for the 

simulation of fast isotropic ESR spectra is presented in Chapter 2. 

The function e is calculated as the sum of square errors between the two spectra.  

 

              (9) 

 

During the optimization the tuning parameters are varied in order to find the minimum value 

of e, which corresponds to the best fit. 

1.3. Computational chemistry  

Computational chemistry uses the models and results of theoretical chemistry, 

incorporated into efficient computer programs, to calculate structure and properties of 

molecules, for example ESR parameters.  The calculations are based primarily on 

Schrödinger's equation and include the calculation of electron/charge distributions, molecular 

geometry in ground and excited states, potential energy surfaces, rate constants for reactions, 

etc. Thus, computational chemistry is used for the determination of molecular properties that 

are either inaccessible experimentally or can be obtained computationally more easily than by 

experimental means, in order to interpret experimental data and gain additional understanding 

of the molecular structure or chemical reaction under study. 

Computational chemistry methods range from highly accurate to very approximate. 

The highly accurate methods are typically used for small systems, since the computational 

time increases rapidly with the size of the system under study. The programs used in 

computational chemistry are based on many different quantum chemical methods that solve 

the molecular Schrödinger's equation associated with the molecular Hamiltonian. Methods 

which are based entirely on theory and derived directly from theoretical principles, without 

the inclusion of experimental data are called ab initio methods (Parr 1990). In ab initio 

methods the energy of the system is expressed with the help of quantum-mechanical 

wavefunction, that describes the state of a molecule. The wavefunctions become significantly 

more complicated as the number of electrons increases, which limits the application of ab 

  2))(( pfYe
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initio methods to molecules with up to 40 electrons. Ab initio methods have the advantage that 

they can converge to the exact solution. However, the downside is the computational cost and 

the exact solution may never be reached. Density functional theory (DFT) methods derive 

energy of the molecule based on determination of the electron density which is a physical 

characteristic of all molecules (Parr and Weitao 1994). Moreover, determination of the 

electron density is independent of the number of electrons so systems with a few dozens of 

electrons could be studies by DFT methods with little computational costs. Molecules that are 

even larger (hundred of electrons) can be studied by semi-empirical approximate methods 

(Hückel 1931; Hoffmann 1963).  

Over the last few years DFT-based methods have been widely accepted by the 

computational chemistry community as a reliable practical tool for the study of properties of 

the molecule, chemical reactions, etc. As the first step of the chemical reaction study, a 

geometry optimization is performed for each molecule under study, so the angles, dihedral 

angles and bond lengths are obtained. Then, the reaction path can be followed from reactants 

to products and the reaction is characterized in terms of enthalpy and Gibbs free energy 

changes. Moreover, optimized geometries reveal the spin density distribution and, thus allow 

to calculate magnetic parameters (hyperfine splitting constants) and to compare these with 

those determined from ESR experiments.  

In this work all DFT calculations were carried out using the Gaussian 03 program, 

which provides possibilities for electronic structure modeling (Frisch, Trucks et al. 2003). 

1.3.1. Geometry optimization 

The geometry of a molecule determines many of its physical and chemical properties, 

so even a small variation in the arrangement of atoms and electrons in a molecule can lead to 

changes in the energy of the molecular system. In case of SBF applied to the optimization of 

the geometry of a molecule, the experimental and simulated data are represented by chemical 

structures, while the tuning parameters are bond lengths, angles and dihedral angles. Each 

molecular geometry is described by its energy content. So the aim of geometry optimization is 

to find a point of minimal energy by varying the geometrical tuning parameters (bond angles, 

bond distances and dihedral angles). The minimum energy structure(s) obtained in this way 

represent (an) equilibrium structure(s), which are most stable and most likely to be found in 

nature.  

To observe the effect of small changes in the geometrical parameters on the energy 

content, the potential energy surface is calculated, which represents the mathematical 
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relationship of a particular molecular structure and the corresponding energy. In figure 6 the 

potential energy as a function of the OCO angle and the CC bond length is represented. 

 

Figure 6. Potential energy surface for CH3CO2: total energy as a function of the OCO angle 
and the CC bond calculated at B3LYP/6-31G(d) level of theory 

The potential energy surface is characterized by stationary points where the first 

derivative of the energy with respect to the coordinates is zero. The stationary points that 

correspond to minima represent the equilibrium structures for the molecule, such as different 

conformations and structural isomers. When several molecules undergoing a chemical 

reaction are considered, the extrema on the potential energy surface represent reactants and 

products. A saddle point (for a definition see next paragraph), which is also a stationary point 

but not an extremum, corresponds to the transition structure that connects products and 

reactants. So the idea of geometry optimization is to locate a stationary point based on a 

certain geometry of the molecule.   

1.3.2. Transition structure  

A point on the potential energy surface that is a maximum in one direction and a 

minimum in the other direction is a saddle point. Saddle points represent transition structures 

(TS’s) connecting two equilibrium structures, so a TS is defined as the state corresponding to 

the highest energy along this reaction coordinate. Moreover, assuming a perfectly irreversible 

reaction, at this point the colliding reactant molecules will always go on to form products.   
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1.3.3. Intrinsic reaction coordinate method  

Tracing the reaction path from a TS to reactants and products is essential for 

understanding the reaction. However, for some reactions the potential energy surface can be 

rather complicated such that it is not obvious whether the TS connects desired reactants and 

products. In this case, the path of a chemical reaction can be traced from the TS to the 

products and to the reactants, using the Intrinsic Reaction Coordinate method (Fukui 1981).  

Small steps along the negative gradient from the TS down to the local energy minimum in a 

mass-weighted coordinate system (Cartesian) are taken for calculations of the intrinsic 

reaction coordinate.  

 

Figure 7. The reaction pathway from the reactants (CH3COOOH and CH3COO) to the 
products (CH3COOH and CH3COO) using Intrinsic Reaction Coordinate method calculated at 

B3LYP/6-31G(d) basis set. 

The reaction of the dissociation of the peracetic acid O-O bond as well as subsequent 

reactions with formed free radicals was studied in chapter 5. 

1.3.4. Enthalpy of reaction  

Enthalpy describes the heat absorbed or released by the system under conditions of 

constant pressure. The absolute enthalpy is not measured directly, rather one usually deals 

with changes in enthalpy (H), i.e. the heat added or lost by the system. The enthalpy change 

that accompanies a reaction is given by the difference between the enthalpies of the products 

and the reactants: 

  

H =Hproduct – Hreactant          (7) 
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If the system has a higher enthalpy at the end of the reaction, then H is positive and the 

system absorbed heat from the surrounding (endothermic reaction). If the system has a lower 

enthalpy at the end of reaction, then H is negative and the system released heat during the 

reaction (exothermic reaction).  

Gaussian 03 calculates the sum of electronic (o )  and thermal enthalpies (Hcorr), and 

thus the enthalpy of a reaction can be calculated as: 

 

   
tsreaccorroproductscorro

o
r HHKH

tan
)298(               (8) 

 

This works since the number of atoms of each element is the same on both sides of the 

reaction, therefore all the atomic information cancels out, and only the molecular data is 

needed. 

1.3.5. Gibb’s free energy 

The Gibbs free energy, also called available energy, is a thermodynamic potential that 

measures the “useful” work obtained from an isothermal, isobaric thermodynamic system.  

The change ΔG in Gibbs free energy for an isolated system is defined as  

 

intSTHG             (9) 

 

where ΔH is the enthalpy change of the reaction (for a chemical reaction at constant pressure), 

Sint is the internal entropy of the system, T is the temperature. One can discern the following 

cases for a chemical reaction: 

ΔG <  0 :  favored or spontaneous reaction  

ΔG =  0 :  equilibrium situation 

ΔG >  0 :  disfavored or nonspontaneous reaction 

Gaussian 03 calculates the sum of electronic (o) and thermal free energy (Gcorr), thus the 

Gibbs free energy of a reaction can be calculated as: 

 

   
tsreaccorroproductscorro

o
r GGKG

tan
)298(               (10) 
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1.3.6. Magnetic parameters calculation 

In first order approximation, the isotropic hyperfine coupling constant aiso, which 

results from the interaction between an unpaired electron and nucleus A is equal to the Fermi-

contact term and it is proportional to the spin density  at the corresponding nucleus 

(Munzarová 2004).  

 

)(
3

4 1
ASgga ZAEAeiso

           (11) 

 

where gA is the nuclear g value, <SZ> is the expectation value of the z-component of the total 

electron spin, )(A    is the spin density at the nucleus A.   

1.3.7. Solvent effect 

The solvent effect on the aiso(N
14) values can be illustrated on the basis of two 

resonance structures of the nitroxide radicals:  

 

Figure 8. Two resonance structures of nitroxide in TEMPO 

For example, water solvent induces an increase in electron spin density on the nitrogen 

atom of the nitroxide fragment due to stabilization of the polar resonance structure > N+• O− 

at the expense of less polar structure > N O•.  

In order to take into account the effect of the solvent on the energy and, thus, the optimal 

geometry of the molecule in DFT calculations, Tomasi’s polarized continuum model (PCM) 

is usually employed (Tomasi, Mennucci et al. 2005).  This model considers only electrostatic 

solute-solvent interactions in order to mimic different solvents such as water (=79), DMSO 

(=47.2), ethanol (=24.3). The next step is to consider hydrogen bond formation between the 

solvent and solute molecules, as well as the spin density transfer onto the solvent molecule. 

This can be computed by including one or two solvent molecules interacting with the radical 
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center (Owenius, Engstrom et al. 2001). PCM and solvent molecules were used in DFT 

calculations of nitrogen and fluorine hyperfine splitting constants in chapter 4. 

1.4. Artificial neural networks 

Artificial neural networks (ANNs) have emerged as remarkable tools for pattern 

recognition, classification and the approximation of functions in scientific applications. They 

have been successfully applied to spectroscopic problems in magnetic resonance (Martinez 

and Millhauser 1998; Meiler and Will 2001).  

AANs have been developed as a generalization of mathematical models of biological 

nervous systems (Wasserman 1989; Bishop 1995). The basic processing elements of an ANN 

are called artificial neurons or nodes. The synaptic connections between neurons are 

represented by numerical weights, which measure the strength of a connection. The non linear 

characteristic exhibited by neurons is represented by a transfer function that emulates the 

firing of the neuron.  

The learning capability of an artificial neuron is achieved by adjusting the weights in 

accordance with a chosen learning algorithm. Once trained, an ANN can be an effective tool 

for the analysis of new data whose underlying statistics is similar to that of the training set.     

The general architecture of an ANN consists of three types of neuron layers: input, hidden and 

output layers (Figure 9).  
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Figure 9. General architecture of an artificial neural network 

1.4.1. Multi Layer Perceptron  

A Multi Layer Perceptron (MLP) is a type of neural network in which the output 

signals of the k-th layer are used as input for the neurons of the (k-1)-th layer Fig.9 

(Rosenblatt 1958). The MLP has no feedback (connections that loop) and lateral (connections 

inside one layer) connections, so propagation of the information from inputs to outputs is very 

fast.  Usually, a supervised training method, called back propagation, is used to train the MLP 

(Rumelhart, Hinton et al. 1986).  As the first step the training pattern’s input is propagated 

forward through the neural network to the output neurons. Subsequently, the actual network 

output is compared with the desired output values and error in each of the output units is 

calculated. The idea of training is to bring the error of each output neuron to zero by 

modifying the weights of the hidden layers (layer by layer).  

The MLP is the standard architecture for any supervised-learning pattern recognition 

and function approximation problem. In chapter 4 an MLP was used for the classification of 

the FDMPO radical adducts structure based on hyperfine splitting constants determined from 

the ESR spectrum. In chapter 5 the MLP was used for “black box” modeling of the phenol 

removal efficiency. Peracetic acid and MnO2 concentrations as well as duration of treatment 
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were used as input for the MLP. The output of the MLP provides the phenol removal 

efficiency. 

1.4.2. Radial Basis Function networks 

The Radial Basis Function (RBF) network is a three-layer feed forward network that 

uses a linear transfer function for the output units and a nonlinear transfer function (normally 

Gaussian) for the hidden layer neurons. The idea of an RBF network is inspired by the K-

Nearest Neighbor (k-NN) models (Fix and Hodges Jr. 1989), i.e. an object is classified based 

on the closest training examples in the feature space (Fig. 10). Clearly, the result of the 

classification depends on how many neighboring points are considered, i.e. if k=3 points are 

considered (Fig. 10), then the green circle is classified as a square, otherwise if k=5 points are 

considered then the circle is classified as a triangle.  

 

Figure 10. Example of the K-nearest neighbor classification. The test green circle is classified 
as a square when k=3 closest neighbor points are considered (there are 2 squares and 1 
triangle near the green circle). If k=5 closest neighbor points are considered then the test 
circle is classified as a triangle (3 triangles vs 2 squares).  

For the RBF network application the neighboring points are represented by neurons. 

Then the Euclidean distance is computed from the point being evaluated (input point) to the 

center of each neuron. The weight (influence) of each neuron is calculated by a radial basis 

function using the radius distance as an argument. In general, the further a neuron is away 

from the point being evaluated, the less influence it has. The RBF network differs in several 

ways from the MLP: (1) the method for comparing input and weight vectors, (2) the choice of 

the transfer function employed at each node in the hidden layer, (3) the method for choosing 

the number of nodes in the hidden layer, and (4) the procedure used for training the network 

(Moody and Darken 1989). 

In chapter 6 an RBF network is used for extraction of fractions of FDMPO spin 

adducts from ESR spectra. 
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1.5. Outline of the thesis  

This thesis describes the methods of analysis of the fast isotropic ESR spectra of the 

TEMPO spin probe and of FDMPO, POBN and DIPPMPO spin traps.  In chapter 2, a method 

for analysis of ESR spectra is presented. The new approach consists of a combination of 

routine low frequency (9 GHz, X-band) and accurate high frequency (94 GHz, W-band) 

reference measurements and spectral fitting with fixed correlated parameters. Spectral fitting 

with the presented model and input values of R from the high frequency measurements, as 

expected, greatly improves the precision of the partition coefficient extracted from the X-band 

spectra. Based on flipid , the mole fraction partition coefficients for TEMPO in PC 20:1 and PC 

14:1 are calculated. 

In chapter 3, the influence of taxifolin on the Fenton reaction with ethanol and 

methanol is studied using the spin probe ESR approach. X-band ESR spectra of POBN spin 

adducts were analyzed with the model presented in chapter 2. The fitting of the experimental 

spectra made it possible to identify radical adducts that were formed in these reactions and to 

follow the kinetics of each component. Spectral decomposition reveals that the presence of 

taxifolin decreased the ESR signal intensity, affecting mainly the c-centered POBN radical 

adduct component. 

In chapter 4, a combination of ANN and DFT calculation is used for comprehensive 

analysis of FDMPO radical adducts presented in the Fenton reaction with DMSO, methanol, 

ethanol and PAA cleavage over MnO2. The model proposed in chapter 2 was adopted for the 

simulations of X-band ESR spectra of FDMPO spin adducts. An ANN was designed to 

estimate the chemical structure of FDMPO radical adducts based on obtained N- and F 

hyperfine splitting constants. The DFT calculations provide additional information about the 

chemical structure of these radical adducts and the influences of motional and solvent effects 

on the calculated N and F hyperfine splitting constants. 

In chapter 5, the dissociation of the peracetic acid (PAA) O-O bond as a relevant 

source of free radicals (e.g. •OH) was studied in detail. Radicals formed as a result of chain 

radical reactions were detected with electron spin resonance (ESR) and nuclear magnetic 

resonance (NMR) spin trapping (ST) techniques and subsequently identified by means of a 

simulation based fitting (SBF) approach. The reaction mechanism is established with a 

complete assessment of relevant reaction thermochemistry and confirmed by electronic 

structure calculations at different levels of theory. Furthermore, the heterogeneous 

MnO2/PAA system was tested for the elimination of phenol. An artificial neural network 
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(ANN) was designed to associate the removal efficiency of phenol with the process 

parameters such as the catalyst and PAA concentrations and the reaction time.  

In chapter 6, the antioxidant activity of the ethanol extract of pine and narcissus pollen 

was studied. A fast approach using RBF neural networks is proposed for the analysis of ESR 

spectra of FDMPO spin adducts. The ethanol extract of pine pollen prevents the formation of 

FDMPO/CH3 spin adduct in the Fenton reaction with DMSO, whereas the ethanol extract of 

narcissus pollen decreases the formation of both FDMPO/OH and FDMPO/CH2OH radical 

adducts in the Fenton reaction with methanol.  
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ABSTRACT 

In this work the factors decreasing the accuracy of the parameters extracted from X-

band spectra are explored.  The multifrequency ESR approach is applied for improvement of 

the analysis of X-band data.  The use of correlation times defined for TEMPO in aqueous 

(6.3ps) and lipid phases (61ps) from high-field ESR for X-band simulations improved the 

accuracy of lipid/water fraction parameters and made them as accurate as those obtained from 

the simulations of HF ESR spectra. In the presented work the multifrequency ESR spin probe 

partitioning approach was applied to the study of model membranes. The TEMPO lipid/water 

fraction parameter reflected changes in the polarity and structure of the lipid bilayers in the 

studies of DOPC/DOPG lipids and PC 14:1 and PC 20:1 lipids as a function of lipid 

concentration. The spin probe mole fraction partition coefficients for TEMPO in PC 14:1 

(Kx=736) and PC 20:1 (Kx=915) were obtained.  
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2.1. Introduction  

Biological membranes in living organisms act as structural barriers that maintain the 

integrity of a cell; they are selective permeability barriers for the passage of molecules in and 

out of a cell or organelle; they are the site at which a number of important enzymes act; and, 

in the case of nerve cells, their electrical properties are important for the transmission of 

information. The physical and chemical properties of biological membranes are of critical 

importance for understanding specific membrane functions. The structure of the membrane  

plays an important role in membrane partitioning, insertion and folding of membrane proteins. 

The study of membranes has been greatly advanced by the development of model bilayer 

membrane systems that are structurally related to biological membranes (Singer and Nicolson 

1972).  

Electron spin resonance (ESR) spectroscopy together with nitroxide spin probes and 

spin labels have enormously contributed to our current understanding of the structure and 

function of biological and model membranes (Berliner 1976; Marsh and Toniolo 2008). This 

is because the shape of ESR spectra of such probes is sensitive to the state of the binding of 

probes, the local polarity and proticity of the environment in which spin probes reside as well 

as to the molecular motion and orientation of the probes which strongly depend on the local 

viscosity, structure and dynamics of the environment (Mukai, Lang et al. 1972; Berliner 1976; 

Polnaszek, Schreier et al. 1978; Marsh 1981; Wisniewska, Widomska et al. 2006). Externally 

added 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) spin probe (this approach is often 

called free spin probe approach) is widely used in these studies due to its ability to penetrate 

into lipid bilayer, providing information about membrane permeability, the phase transitions, 

spin probe distribution in complex lipid mixtures (Polnaszek, Schreier et al. 1978; Bartucci 

and Sportelli 1993; Peric, Alves et al. 2005). 

Compared e.g. to spin labeled lipids approach, the free spin probe approach has three 

main advantages. First, a free spin probe can be externally added to the membrane under 

study at any time. On the contrary, labeled lipids are, in general, incorporated into a lipid 

bilayer during membrane preparation. Secondly, under physiological conditions the ESR line 

shape of such free spin probe could be analyzed in terms of the motional narrowing theory 

(Wilson 1966) making the analysis of ESR spectra simpler. Thirdly, such free spin probes are 

partitioning between a membrane environment and the aqueous phase surrounding it, 

providing simultaneous information about both phases. This is possible due to partial 

resolution of the high field nitrogen hyperfine lines, arising due to different properties of two 
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environments, which is often observed in ESR spectra at conventional X-band frequencies 

(Mukai 1972; Schreier, Polnaszek et al. 1978; Bartucci 1993). 

Typical continuous wave (cw) X-band ESR spectra of a free spin probe that distributes 

itself between aqueous and lipid phases is a superposition of two ESR spectra arising from 

spin probes in two different environments. In most cases such an ESR spectrum is analyzed in 

terms of a partitioning parameter which is expressed as the ratio of the intensities of the least 

overlapping high-field lines. The relative intensities of these two lines of the ESR spectra are 

proportional to the spin probe concentrations in the two phases. This ratio is commonly used 

for determination of phase transition temperatures, phase diagrams of lipid mixtures and etc  

(Pringle and Miller 1979; Bartucci and Sportelli 1993; Khulbe, Hamad et al. 2003). In this 

case only significant changes in ratio of the high field lines amplitudes are considered and 

interpreted qualitatively. However, the partition coefficient calculated in this manner results 

in error if differences in activation energies for probe motion in the two media affect the ESR 

lines differently (Peric, Alves et al. 2005).  

In order to improve the resolution and sensitivity of spin probe partitioning ESR 

different strategies have been employed. One strategy is based on the use of deuterated spin 

probes, which have narrower lines, but in most of the cases this does not provide full 

resolution of all three nitrogen hyperfine lines from each phase at X band. The other strategy 

is to enhance the resolution of X-band ESR by using the second harmonic detection followed 

by spectral fitting. This strategy was used by (Peric, Alves et al. 2005) and showed some 

improvement of resolution of two spectral components.  Another strategy is to separate 

components in the X band experimental spectrum with the aid of computer simulations  (Stoll 

and Schweiger 2006). As a result, hyperfine splitting, g-values and correlation time(s) are 

extracted from simulations of this multicomponent ESR spectrum. However, the quality of 

parameter determination is rather poor due to the limited sensitivity and resolution of X-band 

ESR. Moreover, such parameters as correlation time and amount of broadening that are 

obtained from fitting of the ESR spectra are strongly dependent on the simulation model and 

these data are not readily comparable.  

Dramatic progress in ESR techniques was achieved during the last decade when 

spectrometers operating at high-field/high frequency (95 GHz and above) became available 

(Lebedev 1994; Grinberg and Berliner 2004). The advantages of high-field ESR (HF-ESR) 

are mainly related to the increased electron Zeeman interaction, leading to higher spectral 

resolution and sensitivity. Thus, two spectral components, i.e. aqueous and lipid, are 

completely resolved in an experimental spectrum of TEMPO and g-values of each component 
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can be extracted with high accuracy. Moreover, HF ESR line shapes are sensitive to a 

different dynamic range than X-band lineshapes. The HF ESR time window is extended to the 

range of very fast spin probe motion which is irresolvable at X band.  

Despite the improved sensitivity and resolution of HF ESR which was demonstrated 

by Barnes et al (Barnes and Freed 1997) and Smirnov et al (Smirnov 1995) when applied to 

the study of various spin probes in solution, the application of HF-ESR to the study of free 

spin probes in lipid bilayers is rather limited (Smirnov 1995). One of the reasons is the sample 

size limitation, thus, higher concentrations of spin probes are usually used for HF ESR. 

Subsequently, the increase in spin probe concentration at HF ESR results in a strong effect on 

the shape of ESR spectrum i.e. leads to enormous line broadening and, therefore, to loss of 

sensitivity to the g-tensor and correlation time parameters. Also, the high sensitivity of HF 

ESR line shapes to the spin probe dynamics (correlation time) results in a large line width and 

low intensity of the lipid component, leading to a large inaccuracy in the fraction parameter in 

case of low partition of spin probes in lipid phase. Thus, the best strategy to improve the spin 

partition approach could be the use of multifrequency ESR, i.e. combining HF ESR (for 

obtaining accurate values of giso, aiso and the correlation time) with measurements at lower 

microwave frequencies (34 and 9 GHz). In this way the whole range of spin probe partition in 

lipid phase can be studied with the same accuracy and lower concentrations of spin probes 

can be used. 

The primary goal of this work is to explore the factors decreasing the accuracy of the 

parameters extracted from X-band spectra and the use of the multifrequency ESR approach 

for improvement of the analysis of X-band data.  The secondary goal was to apply the 

improved X-band analysis procedure to model membrane systems. The ESR spectra from 

TEMPO spin probe partitioning in model membranes were analyzed in terms of the motional 

narrowing theory; the Voigt line shape was successfully used for simulations of the ESR 

spectra obtained at different frequencies.  Simulations of High Field ESR spectra of TEMPO 

partitioning in lipid and aqueous phases resulted in accurate values of giso and aiso, correlation 

time, line widths and spin probe fraction parameter. In this work the fraction parameters are 

expressed as lipid or water component intensity normalized to the total ESR spectrum 

intensity. Thus the sum of lipid fraction and water fractions equals 1. The use of correlation 

times defined for TEMPO in aqueous and lipid phases from HF ESR for X-band simulations 

improved the accuracy of lipid/water fraction parameters and made them as accurate as those 

obtained from the simulations of HF ESR spectra. With this approach even small changes in 

TEMPO lipid/water fraction parameters could be traced and then turned into biophysical 
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information about the system, such as changes in the fluidity, structure or polarity profile of 

the membrane. In the presented work the multifrequency ESR spin probe partitioning 

approach was applied to the study of model membranes. The TEMPO lipid/water fraction 

parameter reflected changes in the polarity and structure of the lipid bilayers in the studies of 

DOPC/DOPG lipids and PC 14:1 and PC 20:1 lipids as a function of lipid concentration. The 

spin probe mole fraction partition coefficient, which correlates the concentrations of spin 

probes and lipids with fraction parameter, was computed from the obtained fraction 

parameters for PC 14:1 and PC 20:1 lipids.  

2.2. Material and Method  

2.2.1. Materials 

The phospholipids 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14:1PC), 1,2-

dipalmitoleoyl-sn-glycero-3-phosphocholine (16:1PC), 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC, 18:1PC), 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (20:1PC) 

and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) were obtained from 

Avanti Polar Lipids (Bermingham, AL, USA). The spin probe 2,2,6,6-tetramethylpiperidine-

1-oxyl (TEMPO) was obtained from Sigma-Aldrich. Per-deuterated 2,2,6,6-

tetramethylpiperidine-1-oxyl (pd-TEMPO) was obtained from Dr. Igor A. Grigoriev (Institute 

of Organic Chemistry, Novosibirsk, Russia). 

2.2.2. Sample preparation  

Aliquots of chloroform solutions of DOPC and DOPG were dried under a stream of 

nitrogen. Residual solvent was removed by evaporation under vacuum for at least a few 

hours. Vesicle solutions were prepared by re-hydration of the dry lipid film with 10 mM 

phosphate buffer at pH 7.5 followed by about 30 min vortexing at room temperature. 

Subsequently, the samples were extruded via a polycarbonate 100 nm filter to prepare 

homogeneous unilamellar vesicles. Before use the phosphate buffer was bubbled with 

nitrogen for about 1 hour to partially remove the oxygen. The spin probe pd-TEMPO was 

added to the vesicle samples prior to the ESR measurements from freshly prepared aqueous 

stock solutions. To insure a uniform spin probe distribution, the vesicle samples were 

additionally vortexed for about a few minutes. For multifrequency ESR, the pd-TEMPO 

concentration was 500 M and the phospholipid concentration was 100 mM. 
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Lipid concentration dependence experiments were done with the TEMPO spin probe 

and the phospholipids 14:1, 16:1, 18:1, 20:1 and 22:1PC’s. In these experiments, the spin 

probe concentration was fixed at 100 M and the phospholipid concentration was varied in 

the range from 7 to 100 mM. ESR samples were prepared as described above. 

2.2.3. ESR spectroscopy 

Room temperature X-band cw-ESR measurements were performed with an Bruker 

E500 Elexsys SuperX spectrometer equipped with a SHQF resonator (Bruker). Room 

temperature Q-band cw-ESR measurements were done on a Bruker spectrometer with ER 053 

QRD microwave bridge and standard ER 5106 QT resonator. For W-band measurements a 

homebuilt ESR spectrometer was used (see for example (Brutlach, Bordignon et al. 2006)). 

Temperature for W band measurements was set to 295 K with an accuracy of 0.5 degree. The 

X and Q-bands measurements were performed at room temperature (295-297K). The 

experimental parameters, such as modulation amplitude, microwave power, time constant and 

scan time were set to avoid disturbance of the ESR spectral shape providing reasonable S/N 

ratio. The modulation amplitude was set to 0.02-0.05 mT for X-band experiments, and 0.06 

mT for Q and W-band spectra. The microwave power was set to 1 mW for the X, Q and W 

bands spectra. Glass capillaries of 50l were used for X and Q-band measurements. For W-

band experiments quartz capillaries were used. 

The correction for the giso value of TEMPO in the aqueous and lipid phase was done 

from Q- and W-bands measurements with a 55Mn2+ ion in Mn/MgO (Burghaus, Rohrer et al. 

1992). In the W-band and X-band spectra the aqueous component (giso = 2.00561) was used 

as a reference.  

2.3. Theory 

2.3.1. Calculation of ESR spectral line shapes 

When a small, nearly spherical shaped, amphiphilic spin probe, such as pd-TEMPO or 

TEMPO is added to phospholipid bilayers, it will distribute itself between the lipid and 

aqueous phases. Since the rotational motion of the spin probe is relatively fast in both phases, 

the resulting ESR spectrum will be a superposition of two three-line isotropic ESR spectra 

originating from a spin probe in an aqueous and lipid environment. Positions of ESR lines for 

such isotropic spectra are characterized by an isotropic g value, giso, and hyperfine splitting, 

aiso that are given by: 
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 zzyyxxiso gggg 
3

1
,     (1) 

and 

 zzyyxxiso aaaa 
3

1
.     (2) 

 

Here gii and aii are the components of the g and a tensors of the spin probe. As the basic tensor 

components we used values published previously (Windle 1981): 

 

 0
xxg  = 2.0087, 0

yyg  = 2.0061, 0
zzg  = 2.0027, 

0
xxa  = 0

yya  = 0.68mT, 0
zza = 3.0 mT.    (3) 

 

It is well known that hydrogen bonding and the local solvent polarity influence all the 

g and a tensor components of the spin probe but to different extent (Owenius, Engstrom et al. 

2001). For lipid/aqueous systems the main effect is visible for the tensor components gxx and 

azz (Steinhoff 2000; Kurad, Jeschke et al. 2003) (Earle, Moscicki et al. 1994). We take this 

into account in the following way: 

 

xxxxxx ggg  0 , 

 

zzzzzz aaa  0 ,        (4) 

 

where gxx and azz are the corrections to the components induced by environment. The other 

tensor components are kept the same as in Eq. (3).

In the case of fast isotropic motion with a rotational correlation time R < 10-10 s (valid 

for lipid/aqueous systems under physiological conditions) the relaxation leads to the 

Lorentzian ESR line shapes with linewidth Гm (in T) given by (Israelachvili, Sjösten et al. 

1975):  

 

   Re

isoeisoe

m mIIaaamg
g

h
amg

g

h 
























 

















 

222

2

2

2

2
)1

15

1

45

4

8

3

15

1

45

4 (5) 

 



Multifrequency ESR 
 

30 
 

where  

 

  yyxxzz aaaa 
2

1 ,     yyxxzz gggg 
2

1 , 

yyxx aaa  ,    yyxx ggg  . 

 

The nuclear quantum states of the nitrogen nucleus (nuclear quantum number I = 1) 

are m = 0, ±1, γe = 1.760859770 × 1011 s-1 T-1 is the electron gyromagnetic ratio, ν the ESR 

microwave frequency, βe = 9.27400915(23)×10−24 J T-1 the Bohr magneton, and h = 

6.62606896(33)×10−34 J s Planck’s constant.  Гг is a residual line width, which is assumed to 

be constant for all three nitrogen hyperfine lines (Israelachvili, Sjösten et al. 1975).  

Due to inhomogeneous broadening originating from the presence of oxygen, 

unresolved hydrogen hyperfine structure, high spin probe concentration , etc., the 

experimental line shape of the TEMPO spin probes is not purely Lorentzian (Bales, Peric et 

al. 1998; Bales, Meyer et al. 2008). To take this effect into account, a convolution of Gaussian 

and Lorentzian functions was used for the lineshape analysis (Israelachvili, Sjösten et al. 

1975; Hemminga 1983). For the Gaussian lineshape, we use the linewidth values from Eq. 

(5). Satellite lines arising from the natural abundance 13C isotope were also included in the 

simulation. For this, a splitting constant of 0.58 mT is taken with a 1:1 splitting pattern (Hatch 

and Kreilick 1972). 

The fitting of the model parameters was done using the simplex method (Nelder and 

Mead 1965) because of its fast convergence. The optimization is navigated by the mean-

squared error function. Nine tuning parameters (giso, Aiso, R, ГГ for the aqueous and lipid 

components, and the fraction f, defined as a ratio of the double integral of the lipid or the 

aqueous component and the double integral of the total ESR spectrum, were allowed to vary 

during the optimization. 

The correlation between the model’s parameters aiso, giso, R, ГГ was tested in the 

following way.  The reference one-component ESR spectra were simulated for X, Q and W-

bands using R=70ps, ГГ=0.065mT, aiso=1.60mT, gxx=2.00874 values. Subsequently, the 

fitting of each reference spectrum was performed 500 times with random starting parameters. 

The determined aiso, giso, R, ГГ  parameters were checked for linear dependence between them.  
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2.4. Results 

Figure 1 shows the room temperature experimental ESR spectra of the pd-TEMPO 

spin probe in an aqueous solution of 18:1PC vesicles at X (9.4 GHz), Q (34 GHz) and W-

band (95 GHz). As was mentioned above, the ESR spectra consist of two spectral components 

due to the spin probe located in two different environments: lipid and water environment. At 

the X-band (Fig. 1a) the ESR spectra arising from the spin probe in different environment are 

only partly resolved (see high field component). The effect of the surrounding environment is 

only detectable at the high-field nitrogen hyperfine line, where the combined effect on gxx  

and azz and, thus, on giso and aiso is most pronounced and lines are partially resolved. When 

increasing the microwave frequency to the Q-band the spectral resolution due to giso increases 

(Fig. 1b) and at the W-band (Fig. 1c) both spectral components are fully resolved. The 

spectral component with the smaller hyperfine splitting is assigned to the spin probe in the 

lipid phase, whereas the outer spectral lines with higher hyperfine splitting arise from spin 

probes in the aqueous phase (Figure 1). In addition to spectral shift, the two spectral 

components have pronounced difference in line intensities and line width. This is because of 

the rotational motion of the spin probe in the lipid phase is slower as compared to the aqueous 

phase, its ESR spectral components are more broadened and consequently reduced in 

intensity. This broadening effect becomes even stronger at increasing ESR frequencies, 

because the g tensor and correlation time contribution increases with microwave frequency ν 

(see Eq. 5). 
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Figure 1. Room temperature ESR spectra of the spin probe pd-TEMPO in aqueous solution of 
DOPC vesicles at X (a), Q (b) and W-bands (c). The spin probe concentration was 500 µM and 
the lipid concentration 100 mM. The experimental spectrum (grey line) is shown together with 
the simulated spectrum (solid black line). The residual plot is the difference between the 
experimental and simulated spectra (solid ‘error’ line). At each frequency, all spectra are 
plotted on the same vertical scale 
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SBF was used to separate the two components in the experimental ESR spectra in Fig. 

1. The quality of the fits, as shown by the residuals between experimental and simulated 

spectra, is improving at higher microwave frequency. In general the simulated spectra at all 

three microwave frequencies are in a good agreement with the experimental ones, indicating 

that the isotropic motional narrowing approach in Eq. (5) can be used for the simulation of 

multifrequency ESR spectra of a free spin probe in water/lipid mixtures. From the fitting we 

get the aiso, giso, R, ГГ and the fraction f for lipid and aqueous components. 

Table 1 Estimated parameters for the aqueous and lipid components in the ESR spectra (500 µM pd-
TEMPO in an aqueous 100 mM DOPC vesicle solution) recorded at X (9.4 GHz), Q (34 GHz) and 
W(95 GHz)-band at room temperature. The sensitivity of the parameters was estimated using multiple 
fitting with random starting estimations. 

Tuning 

parameters 
X-band Q-band W-band 

component Water DOPC Water DOPC Water DOPC 

R (ps) 8 -60*  70±50 5-20*  60±15  6.3±0.5 61±2.5 

gxx  

(giso)
***

 

2.0082 

(2.0056) 

2.0088 

(2.0057) 

2.00827 

(2.00560) 

2.00878 

(2.00577) 

2.00827 

(2.00560) 

2.00881 

(2.00578) 

aiso (mT) 1.70 1.60 1.71 1.59 1.72 1.59 

f 
 0.49±0.05 

(0.45±0.01)** 

0.51±0.05 

(0.55±0.01)**

0.42±0.03 

(0.45±0.01)** 

0.58±0.03 

(0.55±0.01)** 
0.44±0.01 0.56±0.01 

* exact values were not defined due to the large inaccuracy.  

** values obtained from simulation of X and Q-band spectra with predefined R = 6.3 ps and R = 61 

ps for aqueous and lipid components, respectively. 

*** giso is calculated based using equation (1)  with obtained gxx  and 0
yyg  = 2.0061, 0

zzg  = 2.0027. 

 

As the next step the correlation between the model’s parameters aiso, giso, R, ГГ was 

tested. Among the determined aiso, giso, R, ГГ  parameters (all found solutions have the same 

goodness of fit) for X, Q and W-band, a correlation was found only between R and ГГ (Fig. 

2). It is clear from Fig.2 that the range of correlation between R and ГГ decreases at increased 

frequency, due to the increasing contribution from R to the linebroadening (Eq. 5). Thus, at 

W-band the correlation between parameters becomes negligible and accurate values of R and 

ГГ are determined. 
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Figure 2. Line broadening parameter (ГГ) versus correlation time (R) obtained from fitting of 

a reference spectrum at X, Q and W-band. The reference one component spectra at X, Q and 

W-bands were calculated using R = 70 ps, ГГ = 0.065 mT, aiso = 1.60 mT, gxx = 2.00874 

values. The reference spectra at each frequency were fitted 500 times with random starting 
parameters. 

Figure 3 shows spectra of pd-TEMPO spin probe in an aqueous solution of DOPC and 

DOPG vesicles at X (a), Q(b) and W-band (c). A higher partitioning of the spin probes into 

the lipid phase of DOPG than of DPC is observed. In addition, the polarity effect of the 

charged DOPG headgroups environment on the giso value of spin probe results in a shift of the 

Q and W-band spectrum of the lipid component to higher field (Fig. 3 b,c). All spectra are 

normalized using reference ESR spectra of spin probe in aqueous phase.  
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Figure 3. ESR spectra of 500 M pd-TEMPO in a 100 mM aqueous solution of DOPC (dotted 

line) and DOPG (solid line) vesicles at X- (9.5GHz), Q- (34GHz) and W-band (95GHz) at 293 
K. Spectra are normalized to the aqueous component. 

Parameters extracted from X-, Q- and W-band spectra of pd-TEMPO in aqueous solutions of 

DOPC and DOPG are summarized in Table 1 (DOPC) and Table 2 (DOPG). 

 



Multifrequency ESR 
 

34 
 

In order to improve the accuracy, the X and Q-band spectra from pd-TEMPO in 

aqueous solutions of DOPG and DOPG were simulated with R = 62 ps for the lipid and R = 

6 ps for the aqueous component as obtained from SBF of the W-band spectrum. The obtained 

fraction coefficients are summarized in brackets in the last row of Table 1 (DOPC) and Table 

2 (DOPG). Clearly, the use of reference parameters (R) determined from HF ESR increases 

the accuracy of the parameters obtained from the X and Q-band, because the optimization 

routine can now find the global minimum of the error function. 

Table 2 Estimated parameters for the aqueous and lipid component in the ESR spectrum (500 M pd-

TEMPO in a 100 mM aqueous solution DOPG vesicles). Spectra are recorded at the X, Q and W-
bands at 293K. The sensitivity of the parameters was estimated using multiple fitting with random 
starting estimations.   

Tuning 

parameters X-band Q-band W-band 

component Water DOPG Water DOPG Water DOPG 

R (ps) 7-50* 55±50 6-28* 50±15 6.2±0.5 65±2.5 

aiso (mT) 1.70 1,60 1.71 1,60 1.72 1,60 

gxx  

(giso)
*** 

2.0082 

(2.0056) 

2,0087 

(2.0057) 

2.00827 

(2.00560) 

2,00873 

(2.00574) 

2.00827 

(2.00560) 

2,00874 

(2.00575) 

f 0.4±0.1 

(0.36±0.01)** 

0.6±0.1 

(0.64±0.01)** 

0.43±0.03 

(0.37±0.01)** 

0.57±0.03 

(0.63±0.01)** 0.35±0.01 0.65±0.01

* exact values were not defined due to the large inaccuracy. The ranges of possible values were 
estimated after 10 fittings with random start parameters.   

** values obtained from simulation of X and Q-band spectra with predefined R = 6.3 ps and R = 6.1 

ps for aqueous and lipid components, respectively. 

*** giso is calculated based using equation (1) with obtained gxx  and 0
yyg  = 2.0061, 0

zzg  = 2.0027. 

 

X-band ESR spectra of the TEMPO spin probe in 14:1PC are shown in Fig. 4. In this 

experiment, the phospholipid concentration was changed at a fixed spin probe concentration 

of 100 M. As can be observed at the high-field nitrogen hyperfine line, the lipid component 

increases upon increasing the phospholipid concentration. A similar behavior is observed for 

TEMPO in 20:1 and other PCs (spectra not shown).  
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Figure 4. X-band ESR spectra of TEMPO in PC 14:1 with different lipid concentration in mM, 

pd-TEMPO concentration was fixed to 100 M. Experiments were performed at room 

temperature.

Figure 5 shows the fraction of TEMPO in the lipid phase as a function of the 

phospholipid concentration. Fig. 5a and 5b show the results of analysis with no restrictions 

and with the fixed values Rwater=6.3*10-12s and Rlipids=6.1*10-11s, respectively. The error bars 

indicate the inaccuracy in the obtained parameter as a result of 10 fits of the ESR spectrum 

with random starting parameters. The fraction coefficient (f) of spin probes in the lipid phase 

as a function of phospholipid concentration was described previously with the following 

equation (White, Wimley et al. 1998; Santos, Prieto et al. 2003). 

 

 
 ][][/][
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   (6) 

 

where KX is the mole fraction partition coefficient, [W] and [L] are the molar concentrations of 

water and lipid, [Pbil] and [Pwater] are the bulk molar concentrations of the spin probe in the 

bilayer and aqueous phases, respectively, thus [Ptotal] = [Pbil]+[Pwater]. Eq.(6) assumes that all 

lipids in the bilayers vesicles are accessible to the spin probe. Because (i) under most 

experimental conditions [W] =55.3M >> [Pwater] and (ii) [L] >> [Pbil], to avoid concentration–

dependence effects on partition coefficients Eq.(6) can be simplified to Eq.(7):  
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where flipid  is the fraction of the spin probe in the lipid phase. Kx can be determined by least–

squares fitting of Eq. (7) to plots of flipid against [L] (Fig. 5b). 
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Figure 5. flipid as a function of lipid concentration for lipids with different acyl chain lengths: 

PC 14:1 and 20:1 . TEMPO concentration was 100 M. Additionally, 30 mM and 90 mM 

concentrations of PC 20:1 (triangles), PC 18:1 (triangles) and PC 16:1 (diamonds) were used. 
flipid was obtained from simulations with no restrictions of the parameters (a) and simulations 
with fixed correlation time values (b). Dashed lines - least square fitting of the fraction 
dependence with Eq.(7) using Kx = 915 for PC 20:1 and Kx = 736  for PC 14:1. 

2.5. Discussion 

The physical and chemical properties of biological membranes are of critical 

importance for understanding specific membrane functions. The structure of the membrane 

plays an important role in membrane partitioning, insertion and folding of membrane proteins. 

The transport of solutes across membranes is highly important for the functioning of a 

biological cell, and knowledge about their properties can be of help for developing drug 

delivery systems etc. X-band ESR in general and the partitioning technique in particular have 

become standard techniques to study membrane structure and functioning (Severcan and 

Cannistraro 1988; Severcan, Acar et al. 1997; Peric, Alves et al. 2005). One of the main 

reasons why application of X-band ESR to the study of membranes has become so popular is 

that all measurements can be done under physiological conditions. Increasing of the 

sensitivity of X-band partitioning ESR has primary importance for such studies. Although the 

application of high field ESR (95GHz and higher) improves the resolution drastically, this 

approach has some drawbacks. High field spectrometers are not yet available for routine and 

fast measurements, which would be needed for studying membrane structure and functions 
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under physiological conditions. However, high field ESR provides a pronounced 

improvement of reference measurements (Smirnov, Smirnova et al. 1995). High-field ESR 

requires some specific conditions/restrictions for measurements and sample preparation, such 

as limited sample size, very high concentrations of spin probe, etc. 

The goal of the current work is to develop a new and simple approach: combining high 

field ESR advantages for reference measurements with X-band partitioning ESR for fast, 

routine measurements under physiological conditions. To increase the sensitivity of X-band 

ESR and improve the accuracy of the parameters determined using routine X-band ESR, 

mathematical simulations were done using constraints for some of the parameters determined 

with high accuracy from reference measurements at high field ESR. 

2.5.1. Mathematical model for spectrum simulations  

The fits of ESR spectra presented in Fig. 1 allow the extraction of the fraction 

coefficient f for the pd-TEMPO and TEMPO spin probes in the lipid (flipid) and the aqueous 

phase (fwater). In addition, the isotropic tensor values giso and aiso are obtained that are related 

to the local polarity/proticity of the environment and the values of the isotropic rotational 

correlation times R that reflect the local viscosity. The parameters obtained from the fitting 

are summarized in Table 1. Clearly, the accuracy of the data obtained at the X-band is low; 

however, at the W-band the quality of the parameters is far better. In the first place, this is due 

to the features of the W-band spectral line shape, allowing an accurate fit. The introduced 

mathematical model uses an independent line width calculation for the m=0,±1 states of the 

nitrogen nucleus, based on values of the complete a and g -tensors  and the correlation time of 

the isotropic rotation. Changes in aiso and giso are reflected in both the position and line shapes 

of the individual lines (line amplitude and width). For X-band ESR detectable changes in the 

line shapes due to e.g. the giso value lie in a range of  ±0.001, whereas at W-band line shapes 

reflect the changes as small as giso=±0.0001, when the gxx component is varied. Variation of 

gyy, gzz, axx, ayy in the range of [±0.001] and [±0.04G] respectively have no effect on line 

shape and fitting accuracy for the X, Q and W-bands. Therefore, they were kept constant 

during the simulations.  

It is clear from the results of computer simulations that the accuracy of the parameter 

determination strongly depends on the correlation between the parameters that describe the 

spectral line broadening, i.e., the rotational correlation time R and the residual line width Гг 

(see Eq. 5). For this reason, we assume that the basic line shape of the ESR spectra is given by 

a Lorentzian/Gaussian convolution function that is determined only by one line-width 
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parameter, given by Eq. (5). However, in fitting synthesized model spectra, we see that even 

for a single spectral component at the X-band, R and Гг are strongly correlated (Fig 2), 

leading to large errors in the determination of R (obtained values range from 9 to 90 ps).  At 

the W-band this correlation is almost gone (Table 3) (obtained values range from 70 to 72 ps). 

This is due to the fact that the contribution of Гг in Eq. (5) becomes smaller at increasing 

frequencies, and the line broadening of the three ESR lines turns out to be more strongly 

dependent on m and R. The correlation between R and Гг decreases the accuracy of the 

fraction parameter, especially for the simulation of X band spectra (±0.1, f Table 1). It is 

obvious that such a low sensitivity will affect the quality of the parameters determined with 

X-band ESR.  

Table 3. Range of obtained values of the correlation time (R) and the line broadening (ГГ) parameters, 

reflecting the correlation between these parameters in the fitting procedure. Reference one component 

spectra at X, Q and W-band were calculated using R = 70 ps, ГГ = 0.065 mT, aiso = 1.60 mT, and gxx = 

2.00874. The range of the parameters was estimated using 500 fits with random starting estimations 

 X band Q band W band Reference 

Correlation time (R ) ps 8.8-89 66 - 77 70 - 72 70 

Broadening (ГГ),  mT 0.064 – 0.072 0.065 – 0.067 0.064 – 0.066 0.065 

 

A direct conclusion from these observations is that the determination of spin probe 

partition coefficients and R in X- and Q-band spectra will lead to large errors and that only at 

high-field ESR accurate values can be obtained. However, the limitations of HF ESR 

measurements at physiological conditions, such as sample size and increased concentration of 

spin probes, restrict its application to routine measurements. On the contrary, the X-band ESR 

has been well developed and is more suitable for the spin probe ESR approach, but its 

drawback is the lower sensitivity and resolution for giso and correlation time parameters. The 

combination of HF and X-band ESR is needed to study a membrane under physiological 

conditions. In this approach HF ESR should be applied to one particular “reference” sample 

with optimal concentration and ratio of the spin probe in the lipid and aqueous solution, 

resulting in the determination with high accuracy of the correlation time, giso and aiso 

parameters. The reference HF ESR measurement has to be done only once for a particular 

lipid and/or solvent in order to characterize the parameters in this particular system. 

Subsequently, the set of measurements (at physiological conditions) can be done at X or Q-

bands and then fitting is performed using relevant parameter values that were obtained from 

reference HF ESR measurements.  



Chapter 2 
 

39 
 

2.5.2. Simulations of High Field spectra 

From the analysis of the W-band spectrum of pd-TEMPO, a correlation time of R = 6 

ps in an aqueous environment (Table 1) is determined. This is in good agreement with already 

published values (Jolicoeur and Friedman 1978). This value is also similar to a rotational 

correlation time of 10 ps estimated for pd-TEMPO in aqueous environment by the modified 

Stokes-Einstein equation (Roozen and Hemminga 1990). 

The correlation time of pd-TEMPO in the lipid phase (R  61 ps) is in the range  of 

previously reported values of TEMPO in various lipid systems [20 – 80 ps] (Jolicoeur and 

Friedman 1978; Smirnov, Smirnova et al. 1995; Paktas and Sünnetçioglu 2007). It is 

important to note that the value of R of the lipid component obtained from the 34-GHz 

simulations is close to the one obtained from the 94-GHz simulations (see Table 1), even with 

the existing correlation between the parameters in the model. However, the value of R of the 

lipid component obtained from Q-band has a lower accuracy (±15 ps) than the one obtained 

from W-band (±2.5 ps). This demonstrates once more the importance of a proper combination 

of multifrequency ESR to study the partitioning of the spin probe in the lipid and aqueous 

phase and to characterize the lipid and aqueous environment based on the dynamics of the 

spin probe.  

The spin probe rotates with the same rate in both DOPC  and  DOPG  lipid 

(R=2.8*10-11s, Table 2) indicating a similar local environment/space that is available for the 

motion. From W-band simulations, pd-TEMPO in DOPG lipids has lower values for gxx 

(2.00874) and higher aiso (1.6 mT) and pd-TEMPO in DOPC has higher a value for gxx 

(2.00881) and a lower one for aiso (1.59 mT). This is in agreement with results from earlier 

studies of the correlation between giso and aiso. It has been reported that gxx decreases and azz 

increases at increasing solvent polarity (Owenius, Engstrom et al. 2001; Marsh and Toniolo 

2008). The difference in the values determined for gxx and azz indicates a more polar 

environment for the pd-TEMPO spin probe in DOPG lipids. Dielectric constants near the 

headgroup region of lipid vesicles have been reported for DOPC (=14.0) and a DOPC/DOPG 

mixture (=18.2) (Koehorst, Spruijt et al. 2004). On the contrary, no difference in the polarity 

() was reported for the center of these lipid bilayers (dielectric constant =2 (Koehorst, 

Spruijt et al. 2004)). Therefore, if the spin probe would be located in the center region of the 

lipid bilayer, no difference in the gxx values would be expected for DOPC and DOPG 

vesicles. Thus, the most probable location of the nitroxide group of TEMPO is close to the 

lipid headgroup area.  
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Finally, our data clearly indicate that the spin probe partitioning is larger in DOPG 

than in DOPC vesicles for the given spin probe and lipid concentrations (Table 1 and 2). This 

observation, as well as the lower polarity for DOPC head-groups, is consistent with the 

relatively strong repulsion between the charged DOPG head-groups which results in a larger 

area per molecule than for DOPC (areas per lipid molecule are 0.72 nm2 (Tristram-Nagle, 

Petrache et al. 1998) and 0.80 nm2 for DOPC and DOPG, respectively), and therefore DOPG 

could provide more free space for TEMPO molecules in these vesicles than in DOPC. The 

location of the spin probe near the headgroup region and a higher fraction of spin probes in 

DOPG then in DOPC vesicles due to bigger area per lipid were also reported before for 

DTNB spin probes (Peric, Alves et al. 2005).  

2.5.3. Analysis of X band spectra. 

The shape of the ESR spectrum of a nitroxide spin probe at X-band frequency is 

sensitive to re-orientational motions with correlation times of 100 ps to 200 ns (Beier and 

Steinhoff 2006). As discussed above, both components of the lipid/aqueous system at room 

temperature are not within the X-band EPR time window. This results in the strong 

correlation between the rotational correlation time (R) and the line broadening parameters 

(ГГ), and leads to a large inaccuracy for the calculated value of flipid (Table 1,2,3). In general, 

correlated parameters in the model lead to infinite number of solutions with the same 

goodness of fit (i.e. multiple local minima are found), and the obtained values for these 

parameters are strongly dependent on the starting values in the fits. 

Simulations of the X-band spectra for the DOPC and DOPG lipid/aqueous systems 

were most of the time satisfactory, but the fraction parameter obtained from the X-band 

simulations has a lower accuracy (±0.05) than the one obtained from the W-band (±0.01) 

(Table 1 (DOPC), Table 2 (DOPG)).  Moreover, the accuracy of the obtained correlation time 

(R) for the aqueous and lipid phase components is very low. Slightly better results were 

obtained from simulations of the Q-band spectra (Table 1 – DOPC, Table 2 -DOPG), but the 

values of flipid and fwater as well as R for the aqueous component are still inaccurate and vary 

from those obtained from the W-band. 

When analyzing the X-band spectra from TEMPO in PC 14:1 and 20:1 lipids using a 

model with no restrictions for the parameters, we obtained flipid as a function of lipid 

concentration as indicated in Figure 5a. flipid increases with lipid concentration for both types 

of lipids and no significant difference was observed for PC 14:1 and 20:1 due to the large 

error margins. However, it has been reported (Wimley and White 1993) that the structure of 
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the lipid bilayer could play a major role in partitioning and changes in the thickness and area 

per lipid could affect the spin probe partitioning. Therefore, one might expect differences in 

partitioning in both cases. 

If we now use the results obtained from the HF W-band ESR to improve the accuracy 

of the analysis of the X-band spectra, the error in the parameters can significantly be reduced. 

Only one HF “reference” measurement is needed, resulting in an accurate value for the line 

broadening parameter Гг. If we now analyze the effect of lipid concentrations on TEMPO 

partitioning in PC 14:1 and PC 20:1 using Rwater=6.3*10-12s and Rlipids=6.1*10-11s (values 

obtained from W-band spectrum of pd-TEMPO in DOPC at room temperature) an accuracy of 

±0.01 for the fraction parameter is obtained (previously it was ±0.05 when no HF ESR 

parameters were used), which is comparable to the accuracy of the W-band analysis (Figure 

5b). Even though the difference in partitioning of TEMPO in the lipid phase for short and 

long lipids is very small, about 5% as determined from our study, our simulations of X-band 

spectra with fixed (determined from “reference” HF-ESR) R for aqueous and lipid 

components clearly indicate that the partitioning of TEMPO in PC 20:1 lipids is higher then 

in PC 14:1 for the whole range of lipid concentrations. Moreover, additional experiments with 

PC 16:1, PC 18:1 and PC 22:1 show  the same trend of increasing partitioning of spin probes 

in the lipid phase when the lipid length is increased (Fig 5 b,  PC 16:1, ▼ PC 18:1 and ◊ PC 

22:1 ). Accurate values of the fraction parameter f extracted from X-band spectra also allow 

the determination of the mole fraction partition coefficients (cf. Eq. 7) of TEMPO in PC 20:1 

(915) and PC 14:1 (736). The mole fraction partition coefficient Kx of TEMPO together with 

Eq. 7 determine the fraction of TEMPO in lipids for arbitrary lipid concentrations. Thus, the 

fraction coefficient determined from the experiment could always be compared with the 

theoretical one from Eq. 7 and their difference reflects the changes in the lipid bilayer 

structure. This is potentially important for spin probe ESR studies of interactions between 

lipid bilayers and peptides, which are influencing the properties of the lipid bilayer and, 

therefore, and these changes are also expected to be reflected in changes of the spin probe 

fraction coefficients (Srivastava, Phadke et al. 1989).  

The larger value of Kx for PC 20:1 is quite an interesting observation, since higher 

partitioning in these lipids is not correlated with the area per lipid. At a fixed temperature, the 

area per lipid slightly decreases with increasing acyl chain length, indicating an increased Van 

der Waals attraction for longer lipid chains (Peric, Alves et al. 2005). Comparing PC 20:1 and 

PC 14:1, the expected decrease in thickness of the lipid bilayer could be about 12 Angstrom, 

whereas the increase in area per lipid is 0.02 nm2 (Yuan 2007), which should lead to a lower 
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fraction, flipid, of TEMPO in  PC 20:1  than in PC 14:1 lipids. Generally, the molecular 

mechanisms that account for the partitioning of the molecules between the aqueous and the 

lipid phase are rather complex (Wimley and White 1993) and not well understood. Thus, the 

driving forces for partitioning of TEMPO in the lipid phase could be not only the lipid bilayer 

structure, but also the hydrophobic effects of the polarity of the spin probe (TEMPO is a more 

apolar molecule with a higher chemical affinity for hydrophobic solvent than for expample 4-

oxo-2, 2, 6, 6-tetramethyl-1-piperidinyloxy, thus TEMPO has higher partitioning in the same 

type of the membranes) (Buitink, Leprince et al. 2000). Partitioning of TEMPO in PC 20:1 is 

preferable due to a slightly higher  dielectric constant next to the headgroup ( = 12) than in 

the case of PC 14:1 ( = 11.8) (Koehorst, Spruijt et al. 2004). However, the understanding of 

this effect will require additional experiments and results will be published later.  

Routine X-band measurements with a proper high field reference measurement, can 

drastically improve the sensitivity of the partitioning technique and can be used e.g. to study 

lipid-peptide and lipid-protein interactions, drug delivery systems, and the stability of model 

and physiological membranes. 

2.6. Conclusions 

We have shown that model membranes can be studied with small spin probes at X-

band leading to high-precision values of the ESR parameters. The new approach consists of a 

combination of routine low-frequency (9 GHz, X-band) and accurate high-frequency (94 

GHz, W-band) reference measurements and spectral fitting with fixed correlated parameters. 

This approach can be used for spin probe partitioning studies, which can be very useful in the 

description of changes in structural properties of phospholipid vesicles. The use of spectra at  

high frequency (94 GHz) greatly improves the precision in the determination of the values for 

the rotational correlation time and giso. Spectral fitting with the presented model and input 

values of R from the high-frequency measurements, as expected, greatly improves the 

precision of the partition coefficient extracted from the X-band spectra. Based on flipid the 

mole fraction partition coefficients for TEMPO in PC 20:1 and PC 14:1 were calculated. The 

method of X-band spectra simulations with parameters obtained from HF ESR can be applied 

in many other cases as long as a suitable small probe can be found and measured at high 

frequency in desired experimental conditions.  

ACKNOWLEDGMENTS 

We thank Marcus A. Hemminga for valuable discussion about membranes and spin probes.  



 

43 
 

REFERENCES 

Bales, B. L., M. Meyer, et al. (2008). "EPR line shifts and line shape changes due to spin 

exchange of nitroxide-free radicals in liquids 4. Test of a method to measure re-

encounter rates in liquids employing 15N and 14N nitroxide spin probes." J. Phys. 

Chem. A 112(11): 2177-2181. 

Bales, B. L., M. Peric, et al. (1998). "Contributions to the gaussian line broadening of the 

proxyl spin probe EPR spectrum due to magnetic-field modulation and unresolved 

proton hyperfine structure." J. Magn. Reson. 132(2): 279-286. 

Barnes, J. P. and J. H. Freed (1997). "Aqueous sample holders for high-frequency electron 

spin resonance." Rev. Sci. Instrum. 68(7): 2838. 

Bartucci, R. and L. Sportelli (1993). "ESR investigation on the phase transitions of DPPC 

vesicles in presence of high concnetration of Li+, Na+, K+ and Cs+." Colloid Polym. 

Sci. 271(23): 262-267. 

Bartucci, R., Sportelli, L. (1993). "ESR investigation on the phase transitions of DPPC 

vesicles in presence of high concentration of Li+, Na+, K+ and Cs+." Colloid Polym. 

Sci. 271: 262-267. 

Beier, C. and H.-J. Steinhoff (2006). "A structure-based simulation approach for Electron 

Paramagnetic Resonance spectra using molecular and stochastic dynamics 

simulations." Biophys J. 91(7): 2647-2664. 

Berliner, L. J. (1976). Spin labeling : theory and applications / edited by Lawrence J. Berliner. 

New York :, Academic Press. 

Brutlach, H., E. Bordignon, et al. (2006). "High-field EPR and site-directed spin labeling 

reveal a periodical polarity profile: The sequence 88 to 94 of the Phototransducer 

NpHtrII in complex with Sensory Rhodopsin, NpSRII." Appl. Magn. Reson. 30: 359-

372. 

Buitink, J., O. Leprince, et al. (2000). "Dehydration-Induced Redistribution of Amphiphilic 

Molecules between Cytoplasm and Lipids Is Associated with Desiccation Tolerance in 

Seeds." Plant Physiol. 124: 1413-1426. 

Burghaus, O., M. Rohrer, et al. (1992). "A novel high-field/high-frequency EPR and ENDOR 

spectrometer operating at 3 mm wavelength." Meas. Sci. Technol. 3: 765-774. 

Earle, K. A., J. K. Moscicki, et al. (1994). "250-GHz Electron Spin Resonance studies of 

polarity gradients along the aliphatic chains in phospholipid membranes." Biophys. J 

66: 1213-1221. 



References 
 

44 
 

Grinberg, O. and L. J. Berliner (2004). Very High Frequency (VHF) ESR/EPR. New York, 

Kluwer/Plenum Publishers. 

Hatch, G. F. and R. W. Kreilick (1972). "NMR of some nitroxide radicals: 13C coupling 

constants." J. Chem. Phys. 57(9): 3696-3699. 

Hemminga, M. A. (1983). "Interpretation of ESR and saturation transfer ESR spectra of spin 

labeled lipids and membranes." Chem. Phys. Lipids 32: 323-383. 

Israelachvili, J., J. Sjösten, et al. (1975). "ESR spectral analysis of the molecular motion of 

spin labels in lipid bilayers and membranes based on a model in terms of two angular 

motional parameters and rotational correlation times." Biochim. Biophys. Acta 382(2): 

125-141. 

Jolicoeur, C. and H. L. Friedman (1978). "ESR lineshapes and kinetic behavior of nitroxide 

spin probes in micellar solutions." J. Solution Chem. 7(11): 813-835. 

Khulbe, K. C., F. Hamad, et al. (2003). "ESR spectra of spin probe in PPO membrane." 

Polymer 44: 695–701. 

Koehorst, R. B. M., R. B. Spruijt, et al. (2004). "Lipid Bilayer Topology of the 

Transmembrane {alpha}-Helix of M13 Major Coat Protein and Bilayer Polarity 

Profile by Site-Directed Fluorescence Spectroscopy." Biophys. J. 87(3): 1445-1455. 

Kurad, D., G. Jeschke, et al. (2003). "Lipid membrane polarity profiles by high-field EPR " 

Biophys. J 85: 1025-1033. 

Lebedev, Y. (1994). "Very-high-field EPR and its applications." Appl. Magn. Reson. 7(2): 

339-362. 

Marsh, D. (1981). Electron spin resonance: spin labels. Berlin, Springer. 

Marsh, D. and C. Toniolo (2008). "Polarity dependence of EPR parameters for TOAC and 

MTSSL spin labels: Correlation with DOXYL spin labels for membrane studies." J. 

Magn. Reson. 190(2): 211-221. 

Mukai, K., C. M. Lang, et al. (1972). "A spin label investigation of some model membrane 

systems." Chem. Phys. Lipids 9(3): 196-216. 

Mukai, K., Lang, C. M., Chesnut, D. B. (1972). "A spin label investigation of some model 

membrane systems." Chem. Phys. Lipids 9: 196-216. 

Nelder, J. A. and R. Mead (1965). "A simplex method for function minimization." Comp. J. 

7(4): 308-313. 

Owenius, R., M. Engstrom, et al. (2001). "Influence of solvent polarity and hydrogen bonding 

on the EPR parameters of a nitroxide spin label studied by 9-GHz and 95-GHz EPR 

spectroscopy and DFT calculations." J. Phys. Chem. A 105(49): 10967-10977. 



References 
 

45 
 

Paktas, D. D. and M. M. Sünnetçioglu (2007). "EPR spin probe investigation of irradiated 

wheat, rice and sunflower seeds." Radiat. Phys. Chem. 76(1): 46-54. 

Peric, M., M. Alves, et al. (2005). "Precision parameters from spin-probe studies of 

membranes using a partitioning technique. Application to two model membrane 

vesicles." Biochim. Biophys. Acta 1669(2): 116-124. 

Polnaszek, C. F., S. Schreier, et al. (1978). "Analysis of the factors determining  the EPR 

spectra of spin probes that partition between aqueous and lipid phases." J Am Chem 

Soc 100(26): 8223-8232. 

Pringle, M. J. and K. W. Miller (1979). "Differential effects on phospholipid phase transitions 

produced by structurally related long-chain alcohols." Biochemistry 18(15): 3314–

3320. 

Roozen, M. J. G. W. and M. A. Hemminga (1990). "Molecular motion in sucrose-water 

mixtures in the liquid and glassy state as studied by spin probe ESR." J. Phys. Chem. 

94(18): 7326-7329. 

Santos, N. C., M. Prieto, et al. (2003). "Quantifying molecular partition into model systems of 

biomembranes: an emphasis on optical spectroscopic methods." BBA - Biomembranes 

1612(2): 123-135. 

Schreier, S., C. F. Polnaszek, et al. (1978). "Spin labels in membranes problems in practice." 

Biochim. Biophys. Acta 515(4): 395-436. 

Severcan, F., B. Acar, et al. (1997). "Investigation of the fluidity of biological fluids with a 

PDDTBN spin probe." J. Mol. Struct. 408-409: 279-281. 

Severcan, F. and S. Cannistraro (1988). "Use of PDDTBN spin probe in partition studies of 

lipid membranes." Chem.Phys. Lett. 153(2-3): 263-267. 

Singer, S. J. and G. L. Nicolson (1972). "The fluid mosaic model of the structure of cell 

membranes." Science 175(23): 720-731. 

Smirnov, A. I., T. I. Smirnova, et al. (1995). "Very high frequency electron paramagnetic 

resonance of 2,2,6,6-tetramethyl-piperidinyloxy in 1,2-dipalmitoyl-sn-glycero-3-

phosphatidycholine liposomes: partitioning and molecular dynamics. ." Biophys. J. 68: 

2350-2360. 

Smirnov, A. I., Smirnova, T. I., Morse, P. D. (1995). "Very high frequency electron 

paramagnetic resonance of 2,2,6,6-tetramethyl-piperidinyloxy in 1,2-dipalmitoyl-sn-

glycero-3-phosphatidycholine liposomes: partitioning and molecular dynamics. ." 

Biophys. J. 68: 2350-2360. 



References 
 

46 
 

Srivastava, S., R. S. Phadke, et al. (1989). "Effect of incorporation of drugs, vitamins and 

peptides on the structure and dynamics of lipid assemblies." Mol Cell Biochem 91(1): 

99-109. 

Steinhoff, H.-J., Savitsky, A., Wegener, C., Pfeiffer, M., Plato, M., and Möbius, K. (2000). 

"High-field EPR studies of the structure and conformational changes of site directed 

spin labeled bacteriorhodopsin." Biochim. Biophys. Acta 1457: 253-262. 

Stoll, S. and A. Schweiger (2006). "EasySpin, a comprehensive software package for spectral 

simulation and analysis in EPR." J. Magn. Reson. 178: 42-55. 

Tristram-Nagle, S., H. I. Petrache, et al. (1998). "Structure and interactions of fully hydrated 

dioleoylphosphatidylcholine bilayers." Biophys J. 75(2): 917-925. 

White, S. H., W. C. Wimley, et al. (1998). [4] Protein folding in membranes: Determining 

energetics of peptide-bilayer interactions. Method. Enzymol., Academic Press. 

Volume 295: 62-87. 

Wilson, R., Kivelson, D. (1966). "ESR linewidths in solution. I. Experiments on anysotropic 

and spin-rotational effects." J. Chem. Phys 44(1): 154-168. 

Wimley, W. C. and S. H. White (1993). "Membrane partitioning: Distinguishing bilayer 

effects from the hydrophobic effect." Biochemistry 32(25): 6307-6312. 

Windle, J. J. (1981). "Hyperfine coupling constants for nitroxide spin probes in water and 

carbon tetrachloride." J. Magn. Reson. 45(3): 432-439. 

Wisniewska, A., J. Widomska, et al. (2006). "Carotenoid-membrane interactions in liposomes 

: effect of dipolar, monopolar, and nonpolar carotenoids." Anglais 53(3): 475-484. 

Yuan, C., O'Connell, R. J., Jacob R.F.,  Mason R.P.,  Treistman, S.N. (2007). "Regulation of 

the gating of BKCa channel by lipid bilayer thickness." J.  Biol. Chem. 282: 7276-

7286. 

 

 



 
 

47 
 

 

 

Chapter 3  

 

 

SPIN TRAPPING STUDY OF THE INFLUENCE OF TAXIFOLIN ON 

FENTON REACTION IN ETHANOL AND METHANOL 

 

 

 

 

Katerina Makarova, Katarzyna Łastawska, Katarzyna Zawada, Iwona Wawer  

 

Published in Current Topics in Biophysics Online, 2010, vol. 33 (Suplement A),  

p. 153-156. 

 

 

 

 

 

ABSTRACT 

To examine the effect of solvents on the nature and amount of the spin adducts, spin 

trapping experiments with 4-POBN, the Fenton reagents and taxifolin were performed in 

solutions of ethanol or methanol and water. The addition of taxifolin resulted in a decrease of 

the spectrum intensity of the spectrum that was dependent on taxifolin concentration. 

Computer simulation revealed that 4-POBN/•CH(CH3)OH adduct dominated in ethanol 

whereas 4-POBN/•OH and 4-POBN/•CH2OH adducts are present in methanol.  
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3.1 Introduction 

Flavonoids are a group of compounds abundant in plants and also present in human 

diet. Many studies confirm the role of flavonoids in preventing diseases like coronary heart 

disease, cancer and age-related neuropathologies. Flavonoids are able to scavenge free 

radicals, chelate transition metal ions and interact with other antioxidants (Teixeira, Siquet, 

Alves, Boal, Marques, Borges, Lima & Reis, 2005). Taxifolin, which is present in the plants 

from pinus genus (in pinus maritima), in the milk thistle seeds (Kim, Graf, Sparacino, Wani & 

Wall, 2003), and in citrus fruits, has a flavanonol structure and can act as an antioxidant due 

to reducing properties of its hydroxyl groups. The radical-scavenging activity of fruit extracts, 

juices and herbal teas was estimated by various methods including ESR technique 

(Oszmiański, Wolniak, Wojdyło & Wawer, 2007; Wasek, Nartowska, Wawer & Tudruj, 

2001; Oszmiański, Wolniak, Wojdyło & Wawer, 2008). 

The aim of this research was to study the radicals produced in Fenton reaction with 

methanol or ethanol and the mechanism of their reaction with taxifolin. The ESR technique, 

coupled with spin trapping methods and computer simulation has been extensively used for 

the detection and identification of short-lived free radicals. The method of spin trapping is 

based on the scavenging of the radicals by a spin trap, leading to the formation of a spin 

adduct with higher stability. In this work a 4-POBN spin trap was chosen due to its stability 

and its selectivity toward trapping of carbon-centered radical species. Normally, it is easy to 

establish the presence of the radical and more of a challenge to identify it. Computer 

simulation is the most powerful technique in the analysis of multi component ESR spectra. 

3.2 Experimental details 

3.2.1 ESR spectroscopy 

ESR spectra were measured on a MiniScope MS 200 spectrometer from Magnettech at 

room temperature (23-24C) in 50 µl capillary tubes. Typical instrument settings were: 

microwave attenuation 10 dB, modulation amplitude of 0.5G, sweep time 20s. Measurements 

of kinetics were performed every 3 minutes unless indicated otherwise. The simulations of 

fast motion ESR spectra were performed with routines implemented in EasySpin toolbox 

(Stoll & Schweiger, 2006) for Matlab. The ESR spectra of 4-POBN spin adducts exhibit 

hyperfine splittings from one 14N and one 1H – nuclei. The hyperfine data provided a good 
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initial guess for the fitting (Janzen, Wang & Shetty, 2006; FinkelStein, Rosen & Rauckman, 

1982; Sridhar, Beaumont & Powers, 1986).   

3.2.2  Generation of free radicals for ESR 

α-(4-Pyridyl N-oxide)-N-tert-butylnitrone (4-POBN) was purchased from Sigma 

Aldrich. Solutions were prepared using distilled and degassed water. Taxifolin solutions 

(0.010 M) in methanol and (0.012 M) in 96% ethanol were prepared, kept in a refrigerator and 

protected from light. Samples were prepared using 20 µl of 20mM 4-POBN dissolved in 

water. POBN was mixed with 20 µl of 5mM FeSO4 prepared freshly from 0.1M stock 

solution and 20 µl of 25mM H2O2 solution, prepared from 30% solution. Finally, 20 µl of 

taxifolin sample (or solvent only) was added. The taxifolin concentration varied from 0.1mM 

to 2mM. 

3.3 Results and discussions 

The Fenton reaction was the method for generating free radicals. To examine the 

effect of solvents on the nature and amount of the spin adducts, spin trapping experiments in 

the Fenton reagents in ethanol, methanol and water were performed first. The second set of 

experiments was performed in the presence of taxifolin solutions. 

3.3.1 Spin Trapping in solvents 

The 4-POBN/•OH radical adduct was the only species obtained in the Fenton reactions 

based on Fe(II) in water. The 4-POBN/•OH adducts were unstable and decayed fast to ESR 

silent products. The hyperfine splittings obtained by computer simulations are aN = 14.9G and 

aH = 1.63 G. These values are in agreement with previous data (Janzen et al., 2006) and were 

used for further simulations. 
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Figure 1. X-band ESR spectra of 4-POBN/•OH and 4-POBN/•CH2OH spin adduct in 
Fenton reaction with methanol recorded after 4, 46 and 140 minutes of reaction (solid 
line). The dotted lines are calculated spectra using hyperfine splitting constants from 
Table 1.  

A 6-line ESR spectrum due to 4-POBN radical adducts was recorded when mixing 

Fe2+ (as FeSO4), H2O2, 4-POBN and methanol. The spectra were registered every 3 minutes, 

starting from the 4th minute after the addition of H2O2 to the sample. Computer simulation of 

the spectrum (Fig. 1) revealed a species having hyperfine coupling constants of aN = 15.5 G 

and aH = 2.8 G and aN = 15.0 G and aH = 1.6 G (Table 1) values reasonably close to 4-

POBN/•CH2OH and 4-POBN/•OH adducts in aqueous solution (Sridhar et al., 1986). The 

ESR spectrum measured 4 minutes after the addition of H2O2 to the sample and the spectrum 

measured after 140 minutes of the reaction had a similar (30%) ratio of 4-POBN/•OH (Fig. 1). 

The ESR signal measured 20-80 minutes after H2O2 addition to the sample was dominated by 

4-POBN/•CH2OH radical adduct (Fig. 1). 

Table 1. Isotropic hyperfine splitting of 4-POBN adducts in solutions   

System Adduct hyperfine splitting, G 

aN aH 

Fe(II)/H2O/4-POBN 4-POBN/ OH 14.9 1.6 

Fe(II)/MeOH/4-POBN 4-POBN/ OH 15.0 1.6 

 4-POBN/ CH2OH 15.4 2.8 

Fe(II)/EtOH/4-POBN 4-POBN/ CH(CH3)OH 15.5 2.5 

 

The Fenton reaction in ethanol can generate a number of radicals (Bosnjakovic and 

Schlick, 2006). Computer simulation of radicals that were trapped by 4-POBN revealed a 
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mixture of C-centered radical adducts. The 4-POBN/•CH(CH3)OH adduct, the most 

commonly detected, dominates the spectrum with hyperfine splittings: of aN = 15.5 G and aH 

= 2.5 G (Table 1). However, the 4-POBN/•OH radical adduct was not detected in Fenton 

reaction with ethanol. This result suggested that •OH radicals rather react with ethanol 

producing •CH(CH3)OH radicals, and then they are trapped by 4-POBN. It is important to 

note that the reaction of ferryl radical, usually produced in Fenton reaction, with ethanol 

(Yamazaki and Piette, 1990) is another mechanism of •CH(CH3)OH radicals production. 

3.3.2 Spin trapping in Fenton reagents in the presence of taxifolin solutions  

Taxifolin concentration had a significant effect on the intensity of the ESR signal and 

kinetics of its decay. The taxifolin concentration of 0.1mM decreased the intensity by about 

50% in comparison with the reference. The concentration of 2mM caused signal decay during 

15 minutes. The spin adducts which were detected in the presence of taxifolin in methanol 

were similar to the situation in the absence of taxifolin, i.e. 4-POBN/•OH and 4-

POBN/•CH2OH appeared. The first stage of the reaction, where •OH radicals were formed 

and trapped by 4-POBN remained unchanged, however higher concentrations of taxifolin 

decreased the intensity of carbon-centered radical adduct signal and shortened the period of 

carbon-centered radical domination in the spectrum (Fig. 2). 
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Figure 2. (a)2nd integral of ESR signal intensity of 4-POBN radical adducts from Fenton 
reaction with methanol (■) in the presence of 0.1mM (◊), 1mM (○) and 2mM (▼) of taxifolin. 
(b) ratio between 4-POBN/OH (grey symbols) and 4-POBN/CH2OH (black symbols) 
components in reference (■) system and in the presence of 0.1mM (◊), 1mM (○) and 2mM (▼) 
of taxifolin. 
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The same dominating adduct (4-POBN/•CH(CH3)OH) was identified in the presence 

of taxifolin in ethanol. The effect of taxifolin concentration on the ESR signal intensity was 

similar to the system with methanol. The taxifolin concentration of 0.1mM decreased the 

intensity by about 50 % in comparison with the reference, higher concentrations (1mM and 

11.7mM) caused a very fast decay of the ESR signal (Fig.3). 
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Figure 3. 2nd integral of ESR signal intensity of 4-POBN radical adduct from Fenton reaction 
with ethanol (■) in the presence of 0.05mM (◊), 0.1mM (○), 1mM (▼) and 11.7mM () of 
taxifolin. 

 

The general conclusion is that the presence of taxifolin affects the intensity of carbon-

centered 4-POBN adduct component. There are several possible explanations for this effect: 

(i) taxifolin could react with 4-POBN radical adducts resulting in ESR silent products; (ii) 

taxifolin could react with radicals formed in the experimental systems (scavenging), and (iii) 

the reaction of taxifolin with Fe(II) or intermediate radicals that are involved in 1-

hydroxyethyl or hydroxymethyl radical production. 

3.4 Conclusions 

The radicals formed in the Fenton reaction with methanol and ethanol were studied 

with ESR spin trapping technique and analyzed with the aid of computer simulations. The 

fitting of experimental spectra made it possible to identify radical adducts that were formed in 

these reactions and to follow the kinetics of each component. It was shown that the presence 

of taxifolin decreased the ESR signal intensity, affecting mainly the c-centered radical adduct 

component. Taxifolin mechanism of the reaction with free radicals requires further 

investigation. Further experiments are in progress. 
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ABSTRACT 

The 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO) spin trap is 

very attractive for spin trapping studies of free radicals due to its high stability and high 

reaction rates with various free radicals. However, the identification of FDMPO radical 

adducts is a challenging task, since they have very comparable ESR spectra. Here we propose 

a new method for the analysis and interpretation of the ESR spectra of FDMPO radical 

adducts. As the first step the strongly overlapping ESR spectra were analyzed with the aid of 

computer simulations. As a result of simulations the N- and F-hyperfine splitting constants 

that include both interactions of the electron spin with the nearby nuclei and interactions with 

the solvent were obtained. During the second step an artificial neural network (ANN) was 

adopted to identify the radical adducts formed in the variety of chemical systems (e.g. Fenton 

reaction, cleavage of the powerful disinfectant peracetic acid over MnO2, etc). The introduced 

ANN operates excellently on both “known” FDMPO radical adducts measured in slightly 

different solvents and not a priori “known” FDMPO radical adducts. Finally, the N- and F-

hyperfine splitting constants of OH*, CH3*, CH2OH* and CH3(C=O)O* radical adducts of 
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FDMPO were calculated using density functional theory (DFT) at the B3LYP/6-

31G//B3LYP/6-31G++ level of theory to confirm the experimental data.  

4.1 Introduction 

Production of free radicals is essential in normal metabolism. However, in unregulated 

concentrations, they have been widely regarded as a cause of cell injury and death (Blake, 

Allen et al. 1987). Understanding of biological mechanisms that involve free radicals requires 

efficient radical detection and accurate characterization. Electron Spin Resonance (ESR) 

spectroscopy has been extensively used for the detection and identification of short-lived free 

radicals. However, the short lifetime, the high reactivity and as a consequence the low 

concentration of free radicals limit their direct detection. To overcome these drawbacks the 

spin trapping method was introduced (Janzen 1971). It is based on the trapping of radicals by 

a spin trap, leading to the formation of a more stable radical, a so called spin adduct, that can 

be easily detected by ESR spectroscopy. Moreover, the shape of ESR spectra of a spin adduct 

can be used to identify the trapped radical. The spin trapping technique has found application 

in the study of the in vitro and in vivo formation of free radicals (Dikalova, Kadiiska et al. 

2001).  

However, the application of the spin trapping technique to investigate radical 

formation in complex systems ( e.g. biological systems) also meets two important limitations: 

(1) a different trapping efficiency of particular types of radicals, and (2) a short lifetime of 

some spin adducts (e.g. superoxide) (Finkelstein, Rosen et al. 1979). To overcome these 

limitations, a number of novel spin traps have been introduced and evaluated for qualitative 

analysis of radical-generating systems. One of them, 4-hydroxy-5,5-dimethyl-2-

trifluoromethylpyrroline-1-oxide (FDMPO), a fluorinated analogue of  5,5-dimethylpyrroline-

N-oxide  (DMPO), is potentially important for the study of radical production due to the high 

stability of the FDMPO radical adducts (up to several days) and the high trapping rate for a 

wide range of free radicals (including C-centered, OH, O2 and other free radicals) 

(Khramtsov, Reznikov et al. 2001; Bacic, Spasojevic et al. 2008). High FDMPO spin-trapping 

efficiency and its application to the trapping of oxygen and c-centered free radicals in 

chemical and biological systems have been studied previously (Khramtsov, Reznikov et al. 

2001). However, the identification of FDMPO radical adducts is a challenging task, since the 

relation between the structure and the ESR spectral parameters (splitting pattern) for FDMPO 

spin adducts is not unique. In most cases the different radical adducts exhibit very comparable 

splitting patterns: a triplet of which each line is split in a 1:4:4:1 quartet due to the interaction 
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of the electron spin with the nuclear spins of the nearby N- and F-nuclei. Structural 

assignment of spectral components can be based on comparison of the ESR parameters of 

spin adducts produced in alternate ways, e.g in different solvents (Janzen, Zhang et al. 1995). 

However, the differences found between the different spin adducts may be quite small and the 

changes in the ESR parameters due to a change in the solvent may be larger than the 

differences between the various radicals (Janzen, Zhang et al. 1995; Janzen 1998). 

These above mentioned drawbacks are important in complex biological systems if 

more than one type of radical is generated. In that case, the measured ESR spectrum is a linear 

superposition of the spectra of the different spin adducts. Such a superposition of overlapping 

spectra often causes difficulties for qualitative and quantitative analysis of the ESR spectra 

and complicates the direct extraction of hyperfine splitting constants. Such multi-component 

ESR spectra can be analyzed with the aid of simulation based fitting (SBF), which allows the 

most accurate extraction of hyperfine splitting constants. In this approach the experimental 

ESR spectrum is approximated by a simulated one. The simulated ESR spectrum is obtained 

via mathematical modeling. The choice of the mathematical model for simulation determines 

which parameters are obtained after the fit and their accuracy. A fast isotropic motion model 

is successfully used for the simulation of the ESR spectra of various spin traps (Busi, Travagli 

et al. 2010; Rokhina, Makarova et al. 2010). The difference between experimental and 

simulated spectra is characterized by an error function or the residuals.  So the goal of SBF is 

to minimize the error function (or residuals) by adjusting ESR parameters, such as hyperfine 

splitting constants (aiso), giso, correlation time and fractions of the components. The 

experimental and simulated spectra are cyclically compared until the error function is 

minimal. The set of ESR parameters, which corresponds to the minimum error, is used for 

identification of the trapped radical. This type of analysis is usually performed by a special 

program (for example  EasySpin toolbox for Matlab (Budil, Lee et al. 1996; Stoll and 

Schweiger 2006), or a home developed program (Kirste 1992; Budil, Lee et al. 1996)).  

An alternative approach to identify radical adducts is the comparison between the 

theoretical ESR parameters calculated on the basis of Density Functional Theory (DFT) 

optimized geometries, and the experimental ESR parameters of the studied radical adduct 

(Jerzykiewicz, Cwielag-Piasecka et al.). DFT calculations allow in particular to estimate both 

the structure of the trapped radical and to predict its ESR spectral parameters, such as 

hyperfine splitting constants and giso. Good agreement with experiments was achieved for 

DEPMPO and DMPO radical adducts and TEMPO using DFT calculations at B3LYP, EPR-

II, PBE level of theory (Owenius, Engstrom et al. 2001; Fau and Bartlett 2003; Villamena, 
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Hadad et al. 2004). The computed parameters depend on the molecular geometry, method and 

basis set of the calculation. In addition, both solvent and vibrational effects change the 

hyperfine splitting constants of a molecule by a few percent with respect to the nonvibrating 

gas phase values. In extreme cases, solvent effects may introduce 10 % deviations, and 

vibrational effects (large amplitude motions) deviations as large as 37 % (Fau and Bartlett 

2003). Solvent effects can be approximated by taking into account the Polarized Continuum 

Model (PCM)  with inclusion of several solvent molecules (Owenius, Engstrom et al. 2001), 

but vibrational effects are expensive to calculate (Fau and Bartlett 2003). Thus, it is more 

practical to determine trends in the dependence of the the calculated hyperfine splitting 

constants on structure and solvent than to compare absolute values with experimental results 

(Owenius, Engstrom et al. 2001).   

Despite the continuing improvement of accuracy and speed of DFT calculations, there 

is still a need for a new strategy to radical adducts identification. Key aspects for a new 

identification method are its applicability to a large number of radical adducts and its 

robustness to solvent effects on hyperfine splitting constants. However, the correlation 

between ESR parameters and FDMPO radical adduct structure is hard to express explicitly. 

The artificial neural network (ANN) approach (Wasserman 1989; Bishop 1995) is a powerful 

tool for approximating functions. Here we explore its applicability for FDMPO radical adduct 

identification with the use of ESR parameters. Due to its flexibility in dealing with different 

types of input data and with nonlinearity, artificial neural networks have been successfully 

applied to a variety of  classification, pattern-recognition and function-approximation tasks in 

industry, business and science (Roth 1990; Corne, Johnson et al. 1992). Unlike the standard 

methods for function approximation, the ANN approach does not require the explicit 

specification of a specific function. In ANNs, which were inspired real biological neural 

networks, the synaptic connections between neurons are represented by numerical weights, 

which measure the strength of a connection, and by a transfer function that emulates the firing 

of the neuron. The training of a network involves the establishing of a set of numerical 

weights that successfully connects the training input (FDMPO adduct hyperfine splitting 

constants) to the desired output (a predefined group of radicals). Once being trained, an 

artificial neural network can be an effective and rapid tool for identification of unknown 

radical adducts formed in a reaction.  

The goal of the present work was to develop a new comprehensive approach for the 

analysis of ESR spectra from FDMPO spin adducts to identify trapped radicals. The new 

approach combines simulation of experimental ESR spectra from FDMPO spin adducts and 
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identification of radical adducts by ANN based on obtained N- and F- hyperfine splitting 

constants (hfsc). To support spin adduct identification theoretical DFT calculations were 

undertaken. The proposed approach was applied to the analysis of FDMPO spin adducts 

generated in the Fenton reaction with DMSO, methanol, ethanol and cleavage of the powerful 

disinfectant peracetic acid (PAA) over MnO2. Optimized geometries and theoretical ESR 

parameters are reported for FDMPO/OH, FDMPO/CH3, FDMPO/CH2OH and 

FDMPO/CH3COO radical adducts. 

4.2 Materials and Methods 

4.2.1 ESR spectra simulation 

An SBF approach was used to analyse the ESR spectra.  The fast isotropic motion 

model (Israelachvili, Sjösten et al. 1975) was used to simulate ESR spectra from FDMPO spin 

adducts and to extract parameters. The superimposed ESR spectrum arises from different 

FDMPO radical adducts in the same media, resulting in triplets of which each line is split in a 

1:4:4:1 quartet. In this case changes in the hyperfine splitting constant values (aF and aN) and 

giso are attributed only to the radical adduct structure. The radical adduct geometry also 

influences the rotational correlation time R, which defines the broadening of the ESR line 

shape. The additional broadening of ESR line shape, originating from the presence of 

paramagnetic oxygen, influences all spectral lines of different components in the same way so 

only one parameter, Гг, is needed to describe it. The experimental ESR line shape was 

described by a Voigtian line shape (a convolution of a Gaussian and Lorentzian line shape 

with a 1:1 ratio). A fitting program, based on the simplex optimization method of Nearled and 

Mead (Nelder and Mead 1965), was employed to extract the g-factor, nitrogen and fluorine 

hyperfine splitting parameters as well as the rotational correlation time and the fraction of 

each radical adduct component. In order to eliminate the correlation between parameters 

(described in chapter 2) and improve the accuracy of fraction parameter the simulations were 

performed using one value of Гг for all spectral components.  

4.2.2 Neural Network Modeling.  

A small artificial neural network was programmed with Matlab R2009a software using 

the “newp” routine. A multi-layer feedforward neural network, also known as a multilayer 

perceptron (MLP) (Rosenblatt 1958), was used in this study. This is a fully connected neural 

network since a neuron in any layer of the network is connected with all the neurons/nodes of 
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the previous layer. The output signals from the first layer form the input signals for the output 

layer. The layers between the input and output layers are known as hidden layers (neurons in 

these layers are called hidden neurons). An MLP with sigmoid activation functions (Mitchell 

1997) and one hidden layer was used. A simple scheme of the network structure and the 

behavior is shown in Figure 1. The N- and F-hfsc values were used as input for the ANN. The 

output of the ANN is a pre-defined group of the radical adducts with similar structure. In this 

study 4 groups of radical adducts were pre-defined.  The use of a combination of 1 and 0 

signals for the ANN output results enables the use of only 2 output nodes for the coding of the 

4 groups, i.e. group 1 corresponds to the [0;0] output of the ANN, group 2 – [1,0], group 3 – 

[0,1] and group 4 – [1,1]. The MLP was trained by the back propagation algorithm (BPA) 

(Rumelhart, Hinton et al. 1986). During the neural network learning process, the weights of 

the connections were adjusted by backward propagation of the error signals at the output of 

the neural network, layer by layer, until the error between the predicted outputs and the actual 

outputs was minimized to the target value, Sum Squared Error (SSE) of 0.001 (William 

1986). 

 

Figure 1. Multi Layer Perceptron with one hidden layer. 

 

4.2.3 Training and testing data sets. 

The data sets for training and validating the neural network model consists of input 

data, i.e. nitrogen and fluorine hyperfine splitting constants, and corresponding output data, 

i.e. the group of radical adducts. The input data consisted of nitrogen and fluorine hyperfine 

splitting constants reported by Khramtsov et al (Khramtsov, Reznikov et al. 2001) for the 
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FDMPO spin trap and was extended with data published by Janzen et al (Janzen, Zhang et al. 

1995) for  5,5-dimethyl-2-(trifluoromethyl)-1-pyrroline N-oxide (2-TFDMPO). Hydrogen 

hyperfine splitting constants were not included as parameters since spectra from radical 

adducts where hydrogen hyperfine constants could be extracted were not considered for the 

classification problem. For a better performance of the neural network the input data was 

scaled in the interval [0; 1] to avoid that higher input values (nitrogen hyperfine splitting 

constants) had a higher weight in the learning process than the smaller input values (fluorine 

hyperfine splitting constants). The neural network was trained on F- and N-hfsc values of 2-

TFDMPO spin adducts (Table 1, 2-TFDMPO), and then the performance of the trained ANN 

was tested on data not presented in the training set (Table 1, FDMPO). 

Table 1. Training and testing set of input (hyperfine splitting constants of various FDMPO and 2-
TFDMPO spin adducts) and output (groups of radical adducts) data. 

FDMPO* - testing set 

aN aF Group Radical adduct 

13.9 2.75 2 OH 

14.9 2.05 4 CH3 

14.75 2.4 3 CH2OH group 

2-TFDMPO** -training set 

13.14 2.8 1 O2 

13.98 2.7 2 OH 

14.37 2.64 3 HOCH2CHCHOH 

14.47 2.87 3 HOCHCH3 

14.52 2.74 3 HOCHCH2CH3 

14.22 2.33 3 HOCH2 

14.9 2.05 4 CH3 

14.42 2.33 3 HOCH2 

14.32 2.93 3 CH3CH3COH 

14.91 1.76 4 HCC 

13.14 2.8 1 OOH 

*Data from Khramtsov et al. 2001(Khramtsov, Reznikov et al. 2001) 
** Data form Janzen et. al. 1995 (Janzen, Zhang et al. 1995) 
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4.2.4 DFT calculations 

To obtain independent support for the interpretation of ESR spectra, quantum 

chemistry calculations using density functional theory (DFT) were performed on a set of 

FDMPO radical adducts to obtain F-hfcs and  N-hfcs values. All calculations were carried out 

using the GAUSSIAN 03 program (Frisch, Trucks et al. 2003). Optimized geometries of 

FDMPO/OH, FDMPO/CH3, FDMPO/CH2OH and FDMPO/CH3COO radical adducts were 

obtained with DFT at the B3LYP/6-31G level of theory. Stationary points for geometry 

optimization of FDMPO radical adducts were determined to have zero imaginary vibrational 

frequencies as derived from a harmonic vibrational frequency analysis at the level of theory at 

which the stationary points were optimized. The atomic coordinates of the geometry 

optimized radicals were subsequently used to perform a scan over the dihedral angle of the 

trifluoromethyl group and the pyrroline ring. For each dihedral angle (rotation of CF3), the 

total energy and the F-hfcs and N-hfcs were calculated with the B3LYP/6-31++G basis set. 

The solvent effect on the hyperfine splitting values was considered using the polarizable 

continuum model (PCM) to include the effect of the solvent dielectric constant and two 

solvent molecules to include the effect of hydrogen bonding (Owenius, Engstrom et al. 2001; 

Tomasi, Mennucci et al. 2005).  

4.2.5 Sample preparation 

MnO2, PAA (40%), EDTA, methanol, ethanol, DMSO and other chemicals were 

purchased from Sigma Aldrich and Merck & Co., Inc. FDMPO was purchased from Alexis 

Biochemicals (USA). All chemicals were of laboratory reagent grade and were used without 

further purification. Distilled water was used in all the experiments. The Fenton reaction was 

carried out using 5 µl of 0.5 mM FeSO4 and 5 µl of 5 mM H2O2. The samples were prepared 

by adding 5 µl of 10 mM FDMPO and 5 µl of ethanol or methanol. 

4.2.6 ESR measurements 

ESR measurements were carried out using an X–band Bruker E500 Elexsys SuperX 

spectrometer with 100 kHz field modulation. Typical instrument settings were 5 mW 

microwave power, 0.5 G modulation amplitude, 20 s time constant, and 4 scans were 

accumulated. 
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4.3 Results and discussion 

4.3.1 ESR spectra simulation 

In Fig 2. the ESR spectra of FDMPO adducts (solid line) recorded for the Fenton 

reaction with DMSO (1), methanol (2), ethanol (3) and for the PAA cleavage over MnO2 (4) 

in the presence of FDMPO, immediately after the addition of all reagents, are presented. For 

these systems, the ESR spectral shapes result from the superposition of at least two spectra 

originating from two different radical species. The generated free radical species are 

characterized by hyperfine splitting constants from fluorine and nitrogen, F-hfsc (aF) and N-

hfsc (aN), respectively. However, these parameters could not be extracted directly from the 

experimental spectra, due to the spectral overlap. For an accurate interpretation of the 

experimental spectra of FDMPO radical adducts and the identification of the trapped radicals 

analysis using the SBF technique is needed. Based on SBF different components in the 

experimental ESR spectra (Fig. 2) were separated on the basis of the N- and F-hfsc values. In 

general the simulated spectra (Fig. 2, spectra b) are in a good agreement with the experimental 

ones (Fig. 2, spectra a), indicating that the proposed model for spectra simulations 

(Israelachvili, Sjösten et al. 1975) that considers only the nitrogen complete hyperfine 

splitting tensor and the g-tensor, can be used for the simulation of X band ESR spectra of the 

FDMPO radical adducts. The fits allowed to extract the fraction coefficient f for the two 

FDMPO spin adducts and the isotropic nitrogen and fluorine hyperfine splitting constants (aN 

and aF ) (Fig. 2, spectra d,e). f is defined as the ratio of the integrated intensity of one of the 

spectral components and the total integrated intensity of the ESR spectrum. In addition, the 

isotropic tensor values giso and the values for the isotropic rotational correlation times R were 

obtained. These parameters are also related to the structure of the radical adduct. However, 

they are usually not used for the identification of the radical adduct because values of giso and 

R extracted from X-band ESR spectra are not accurate enough to show the pronounced 

difference for various spin adducts. According to the SBF, the hyperfine coupling constants 

determined for one of the radical adducts were aF = 2.60-2.77 G and aN = 13.6-13.7 G (Table 

2). These constants are characteristic for FDMPO/OH* (Fig. 2 spectra d). The hyperfine 

coupling constants of the second radical adduct (Fig. 2, spectra e) were aF = 1.93-2.6 G and  

aN = 13.8-14.6 G, values that are typical for carbon centered radicals (Khramtsov, Reznikov 

et al. 2001). 
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Figure 2. Experimental and simulated spectra of FDMPO spin adducts. (1) DMSO; (2) 
methanol (3) ethanol, (4) PAA cleavage of MnO2; (a,b) Experimental and simulated spectrum 
of the FDMPO radical adducts; (c) residuals; (d) FDMPO/OH radical adduct component; 
(e) c-centered FDMPO radical adduct component 

Table 2. The results of ANN identification of groups of FDMPO radical adducts. The input values of 
experimental hyperfine splitting constants are obtained by SBF of ESR spectra of various FDMPO 
spin adducts from the Fenton reaction with methanol, ethanol and DMSO and the PAA/Mn  system.  

Experimental System ANN output 

aN, G aF, G Group Radical adduct 

13.6 2.77 Fenton with methanol 2 OH* 

14.08 2.13 Fenton with methanol 3 CH2OH* 

13.6 2.7 Fenton with ethanol 2 OH* 

14.1 2.59 Fenton with ethanol 3 CH3CH2OH* 

13.7 2.59 Fenton  2 OH* 

14.6 1.93 Fenton with DMSO 4 CH3* 

13.7 2.68 Fenton with DMSO 2 OH* 
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13.8 2.46 PAA 3 CH3COO* 

13.7 2.6 PAA 2 OH* 

4.3.2 Development of ANN for identification of radical adducts on the basis of spectral 

parameters according to the chemical structure  

Traditionally, for the majority of spin traps the assignment of radical adducts is based 

on the formation of the same adducts from known sources. However, the available spectral 

parameters sometimes do not vary enough to provide structural information about groups 

attached further away than two or three bonds from the nitroxyl group (Janzen and Liu 1973). 

This certainly holds for FDMPO (Khramtsov, Reznikov et al. 2001). The identification of 

FDMPO trapped radicals is mainly based on precise hfsc values originating from the spin trap 

moiety (in particular, the N- and F-hfsc values), which act as spectral fingerprints of the 

trapped radical. For instance, c-centered radical adducts have larger N-hfsc values than oxyl 

adducts (Janzen and Liu 1973; Khramtsov, Reznikov et al. 2001). In addition, the magnitude 

of F-hfsc can also be a useful marker for the identification of the FDMPO spin adducts, 

though it is not likely to vary in an easily predictable manner (i.e. not linearly dependent on 

the trapped radical adduct type).  

Therefore, the primary goal of the development of an ANN is to create an effective 

tool to correlate N- and F-hfsc values with the structure of radical adducts. So, N- and F-hfsc 

values of the variety of radical adducts are used as input for the ANN. The output of the ANN 

is the pre-defined group of radical adducts. However, prior to the analysis of experimental 

data the ANN requires training. Training a network involves establishing a set of numerical 

weights that successfully connect a training input (FDMPO adduct hyperfine splitting 

constants) with a desired output (predefined group of radicals). Once trained, an artificial 

neural network can be an effective and rapid tool to reveal radical adducts that are not a priori 

known.  

In order to provide a systematic manner for the classification of the radical adducts 

according to their chemical structure, several representative FDMPO radical adducts with 

well-determined parameters were taken from previously published data (Khramtsov, 

Reznikov et al. 2001) (Table 1). However, this data set was too small for the efficient training 

of the ANN, so the training set was extended with hyperfine splitting constant of 2-TFDMPO 

(Janzen, Zhang et al. 1995). The chemical structure of the 2-TFDMPO spin trap is similar to 

that of FDMPO. Therefore, the hyperfine splitting constants corresponding to the same radical 

adducts have similar values. For example, aN
 = 13.9 and aF

 = 2.75 of FDMPO/OH* are very 
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comparable to aN
 = 14.0 and aF

 = 2.7 of 2-TFDMPO/OH*, as well as hyperfine splitting 

constants of FDMPO/CH3* (aN=14.6 and aF=2.05) and 2-TFDMPO/CH3* (Figure 3, Table 1). 

In Figure 3 aF has been plotted versus aN for several FDMPO and 2-TFDMPO radical 

adducts (data from Table 2). One can clearly observe four groups based on a similar 

electronegative character of the free radical group attached to carbon-2 atom.  

 

Figure 3. Plot of aF vs aN for groups of 2-TFDMPO (open symbols) and FDMPO (filled 
squares) radical adducts based on published F- and N-hfsc values (Janzen, Zhang et al. 1995; 
Khramtsov, Reznikov et al. 2001). 

Group 1 (coded as [0,0] output of ANN) contains oxygen O2* and OOH* radicals. 

Group 2 (coded as [1,0] output of ANN) includes only the hydroxyl (OH*) radical 

where oxygen goes in combination with hydrogen. The radical adducts in group 1 and 2 with 

two electronegative (polar) groups attached to carbon-2 give relatively small N-hfsc values 

(Table 1). Radical adducts from Group 2 (OH*) and Group 1 (O2* and OOH*) spin adducts 

could be distinguished based on N-hfsc values,  since hydroxyl N-hfsc values are about 0.8 G 

larger than those of superoxide spin adducts.  F-hfsc values are insensitive to changes in the 

trapped-radical structure showing a difference of approximately 0.1G for these two groups.  

Group 3 (coded as [0,1] output of ANN) includes carbon-oxygen radical adducts with 

a CO (alkoxyl) group attached to carbon-2 i.e. hydroxymethyl radical (CH2OH*), 1-

hydroxyethyl radical (CH3CHOH*) and etc. For this group only a small change is found in the 

N-hfsc values with different radical adduct structure, although the variation in F-hfsc values is 

about 0.6 G. The N-hfsc values of this group of radical adducts are 0.5 G smaller than the N-
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hfsc values of group 4, and 0.5-1.5 G larger than the N-hfsc values of the 1st and the 2nd 

group. 

Group 4 (coded as [1,1] output of ANN) includes radicals with the largest N-hfsc and 

the smallest F-hfsc values, and includes the carbon-centered spin adducts without oxygen 

(e.g. –CH3* and CHC* ). The N-hfsc values are about 1-1.8 G larger (compared in the same 

solvent) and the F-hfsc values about 0.7 G smaller as compared to those from OH* and O2* 

spin adducts.  

Thus, in the case of FDMPO and 2-TFDMPO, the variation of the nitrogen and 

fluorine hyperfine splitting of radical adducts provides structural information mainly about 

the group attached not further away than three – four bonds from the nitrogen and fluorine 

atoms (e.g. CH, CO, OH and OO). The free radical groups can be described qualitatively as 

electron-donating groups or electron-withdrawing groups (Church 1986). Spin adducts with 

electron-donating free radicals favor a positive imbalance of spin density on 14N and exhibit 

larger N-hfsc values, whereas spin adducts with progressively stronger electron-withdrawing 

groups have smaller N-hfsc values and a smaller positive imbalance of spin density on 14N. 

This effect was studied  for PBN-nitronyl-C13 adducts (Haire, Krygsman et al. 1988), which 

exhibited larger N-hfsc values in case of a nonpolar CH3* radical adduct and smaller N-hfsc 

values in case of  an OH*  radical adduct. 

In addition to the chemical structure information, N- and F-hfsc values also reflect the 

polarity and proticity of the radical adduct environment. Generally, there is an increase in the 

N-hfsc with an increase in the polarity of the solvent (Owenius, Engstrom et al. 2001). 

Indeed, the N-hfsc value reported for the 2-TFDMPO/CH2=CH  spin adduct in water solvent 

(=79) is 1.5 G higher than the  N-hfsc value in benzene (=2.27) (Janzen, Zhang et al. 1995). 

In case of the Fenton reaction and the Fenton reaction with DMSO, ethanol and methanol the 

changes in the polarity are rather small (Yang, Yang et al.; Harvey and Prausnitz 1987), so 

only a small variation of  the N-hfsc values is expected. 

The main advantage of an ANN is its ability to operate well on a priori “unknown” 

data, which makes the ANN a valuable and attractive tool for the analysis of systems 

generating new type of free radicals or systems in different solvents. An MLP with one 

hidden layer consisting of 55 nodes was always accurate enough for the identification of the 

group of similar FDMPO radical adduct structures on the basis of experimental N- and F-hfsc 

values. The network was trained with the training set for around 600 iterations, until the SSE 

between desired output and actual output of the ANN reached its lowest point (0.001). Being 
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trained on the 2-TFDMPO data set, the ANN, due to its ability to generalize, performs well on 

the testing set of hyperfine splitting constants of FDMPO radical adducts from Table 1.  

Subsequently, the F- and N-hfsc values extracted from the experimental ESR spectra 

of FDMPO spin adducts formed in the Fenton reaction with DMSO, methanol and in the PAA 

cleavage over MnO2 (Table 2) were analyzed with this ANN. These experimental data contain 

additional details which are not captured in the training set. Such details include imperfect 

knowledge of the hyperfine splitting constants due to simulation error (0.05 G) and due to the 

different polarity of the solvents used. It was reported that the polarities of water/DMSO 

(Yang, Yang et al.), water/ethanol and water/methanol mixtures are slightly lower (~70) than 

those of pure water (=79). In any case, it appears that the MLP is very robust and quite 

capable of dealing with both indicated problems. The FDMPO/OH radical adduct was 

observed and successfully recognized by the ANN in all studied experimental systems, 

namely Fenton, Fenton reaction with methanol, ethanol, DMSO and also in the Mn/PAA 

system. The N- and F-hfsc values extracted by SBF varied in the range from 13.6 to 13.74 G 

and 2.59 to 2.84 G, respectively. In all cases the MLP performed well and assigned these pairs 

of hyperfine values to FDMPO/OH radical adduct (Table 2). The assignment of the c-centered 

radicals was also successful (Table 2). The c-centered radical adduct from the Fenton reaction 

with DMSO was assigned to group 4, and was associated with the FDMPO/CH3 spin adduct. 

The c-centered radical adducts observed in the Fenton reaction with methanol and ethanol, 

FDMPO/CH2OH* and FDMPO/CH3CH3OH*, were successfully assigned by the MLP to the 

3rd group. The c-centered spin adduct observed in the PAA system, namely 

FDMPO/CH3COO*, was also assigned to group 3, notwithstanding the fact that the MLP was 

not trained to recognize this type of FDMPO spin adduct. However, in order to identify the 

radical adducts within the assigned group other methods are needed. 

4.3.3 ESR parameters of FDMPO spin adducts calculated by DFT 

DFT calculations are used to predict ESR parameters based on the chemical structure 

of a radical adduct. DFT calculations can be used as the next step of analysis within the group 

of radical adducts identified by ANN. The prediction of spin densities and N-hfsc values for 

various compounds bearing a nitroxyl moiety, for example, nitronyl nitroxides pyrrolidine N-

oxides and piperidine N-oxide, has been reported using computational DFT methods. The 

B3LYP/EPR-II//B3LYP/6-31G(d)//B3LYP6-31++G level of theory has been employed 

previously to predict N-hfsc for various nitronyl nitroxides and they were found to be in good 

agreement with experimental values (Villamena, Hadad et al. 2004).  
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Figure 4 shows the optimized structures together with the charge and spin density 

distribution of FDMPO radical adducts as a result of DFT calculations. The calculated 

electron spin density is localized mainly on the nitroxide fragment (NO), whereas the spin 

densities on atoms of the pyrroline ring and the methyl and trifluormethyl groups are 

insignificant. One can also observe in Figure 4 that the redistribution of the electron spin 

density induced by the trapped radical structure occurs mainly in the NO bond.  Thus, only 

the nitroxide fragment of the FDMPO spin adducts was considered in more detail. With 

variation of radical adduct structure the total spin density (sum of N and O spin densities) in 

the nitroxide fragment slightly decreases (from 0.97 to 0.96 for CH3* and OH* radicals, 

respectively).  
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Figure 4. F and N hyperfine splitting constant values, charge and spin density populations (in 
parentheses) of CH3, OH, CH2OH and CH3COO spin adducts of FDMPO spin trap and two 
water molecules calculated at the B3LYP/6-31++G level of theory.  

Qualitative interpretation of the spin density distribution in the nitroxide group is 

based on the localization/delocalization of the unpaired electron on the N and O atoms. An 

electron-withdrawing group (OH) removes electron density from the system and causes a 

decrease in the spin density of the N atom (0.44). In contrast, an electron donating group 

(CH3) adds electron density to the system and results in an increase of the spin density on N 

(0.47). The analysis of obtained N-hfsc values follows the general trend i.e. FDMPO spin 
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adduct with progressively stronger electron–withdrawing radicals (OH) exhibit smaller N-

hfsc values (13.18G), while FDMPO with electron-donating CH3 group exhibit an N-hfsc of 

14.3 G. 

The results of the calculation are shown in Table 3. Interestingly, the DFT calculations 

result in 3 different values for aF for the trifluoromethyl group (2.28, 5.28 and 1.82 G for 

FDMPO/OH*, respectively as shown at Figure 4). This is the consequence of the fact that the 

DFT calculations consider only one orientation of the trifluoromethyl group, whereas in an 

experimental system the trifluoromethyl group is allowed to rotate freely, so the F-hfsc values 

are averaged, resulting in the typical spectrum of a triplet, of which each line is split into a 

quartet with a 1:4:4:1 intensity ratio (Janzen, Zhang et al. 1995). However, when the rotation 

of the CF3 group is limited due to interaction with solvent or with trapped radical, the 

spectrum will change dramatically. The phenyl adduct of 2-TFDMPO (Janzen, Zhang et al. 

1995) exhibits an entirely different type of spectrum that consists of three groups of doublets 

with unresolved peaks, due to three different F-hfsc values. 

In order to improve the results of the single point calculation, the dihedral angle of the 

trifluoromethyl group and of the pyrroline ring was changed, allowing rotation of the 

trifluoromethyl group only, as was done for bis-di(trifluoromethyl) nitroxide (Mattar, 2009). 

For each dihedral angle the single point calculations of the hyperfine splitting constants were 

performed using B3LYP/6-31++G level of theory. Subsequently, the Maxwell-Boltzman 

distribution was applied to calculate numerical values of the rotationally averaged hyperfine 

couplings. The total energy of the optimized geometries, Etot, was used to determine the 

probability, p, that the radical adduct exists in a certain conformation with a specific dihedral 

angle :  
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These probabilities are used to weight the contribution of the hfsc at that angle in the 

calculation of the averaged isotropic hyperfine coupling constants via the mean value 

expression: 
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Subsequently, the averaged values from the CF3 group were used for comparison with 

experimental values. Rotation of the CF3 group influenced N-hfcs as well. The rotation 

averaged values of aN and aF are presented in the Table 3. Indeed, the averaging over the 

dihedral angle drastically improves the results of hyperfine splitting calculations. The 

averaged values of F-hfsc are only slightly overestimated by 0.1 and 0.4 G for FDMPO/OH 

and FDMPO/CH3 radical adducts respectively in comparison with the experimental values 

from Table 2.  

Table 3 Hyperfine splitting constants of various FDMPO spin adducts from  DFT calculations at the 
B3LYP/6-31++G level of theory using the PCM model for the water solvent and 2 water molecules. 

FDMPO radical adduct aN,G aF,G 

CH3* 14.63 2.52 

CH2OH* 14.43 2.45 

OH* 13.3 2.6 

CH3COO* 13.27 1.99 

 

In general, the ANN provides the direct assignment of an unknown radical adduct to 

the predefined group with similar structure. In contrast, the accurate and time consuming DFT 

calculations are generally applied to the known radical adduct structure in order to get more 

information about optimal geometry and the spin density distribution of the radical adduct. 

Additional calculations of spin adduct varying the optimized geometry allow to study in detail 

all the factors that influence magnetic parameters and evaluate their contributions.  

4.4 Conclusions 

The N- and F-hyperfine splitting constants of FDMPO radical adducts were obtained 

via computer simulations. Identification of the FDMPO radical adducts observed in the 

Fenton reaction with methanol, ethanol, DMSO and the PAA cleavage over MnO2 was 

performed with an ANN. The ANN performed well with experimental data and tolerated the 

solvent effect on N- and F-hyperfine splitting constants. To verify the results of the ANN 

identification DFT calculations of the minimum energy geometry of OH*, CH3*, CH2OH* 

and CH3OO* radical adducts of FDMPO spin trap have been performed.  The charge and spin 

densities on N and O atoms as well as the N- and F-hyperfine splitting constants were 

calculated.  Spin densities on N (0.47) are higher for the c-centered radical adducts as 

compared to those of hydroxyl adducts (0.44).  This results in smaller N-hfsc values (13.18 G) 
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for the FDMPO/OH radical adduct and larger N-hfsc values for the FDMPO/CH3 (14.6 G), 

FDMPO/CH2OH (14.5 G) and FDMPO/CH3OO radical adducts.  

This study demonstrates that a combination of computer simulation based fitting of 

ESR spectra, ANN and DFT calculations allows a comprehensive analysis of FDMPO radical 

adducts. Computer simulations were used for the decomposition of the ESR spectra and 

extraction of hyperfine splitting constants. Then ANN-based identification was used for 

preliminary estimation of the radical adduct chemical structure. And finally the chemical 

structure could be verified by DFT calculations of hyperfine splitting constants. This 

approach is potentially important for the analysis of multi-component free radical systems 

with a variety of free radicals. The approach outlined here can easily be generalized to other 

radical adducts which exhibits overlapping ESR spectra.  
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ABSTRACT 

The homolysis of peracetic acid (PAA) as a relevant source of free radicals (e.g. •OH) 

was studied in details. Radicals formed as a result of chain radical reactions were detected 

with electron spin resonance and nuclear magnetic resonance spin trapping techniques and 

subsequently identified by means of the simulation based fitting approach. The reaction 

mechanism, where hydroxyl radical was a primary product of O-O bond rupture of PAA was 

established, with a complete assessment of relevant reaction thermochemistry. Total energy 

analysis of the reaction pathway was performed by electronic structure calculations (both ab 

initio and semiempirical methods) at different levels/basis sets (e.g. HF/6-311g(d), B3LYP/6-

31G(d), etc.). Furthermore, the heterogeneous MnO2/PAA system was tested for the 

elimination of a model aromatic compound - phenol. An artificial neural network (ANN) was 

designed to associate the removal efficiency of phenol with the process parameters such as  

concentration of both the catalyst and PAA and the reaction time. Results were used to train 

and test ANN to identify an optimized network structure which represented the correlations 

between the operational parameters and the removal efficiency of phenol.  
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5.1 Introduction 

Advanced oxidation processes (AOPs) is a group of chemical oxidation processes, 

which use various oxidants (mainly ozone (O3) and hydrogen peroxide (H2O2)) to produce 

hydroxyl radicals (•OH). Hydroxyl radical is known as one of the most powerful oxidizing 

agents, capable of attacking a wide range of organic pollutants with rate constants in the order 

of 106 to 109 M-1 s-1 (Rey, Faraldos et al. 2009). Despite of a great number of currently 

available AOPs (e.g. O3 and H2O2, ultraviolet (UV) and ultrasound (US) irradiations as well 

as their combinations), there is still a continuous search for the new and more effective 

strategies to generate hydroxyl radicals. 

Peracetic acid (PAA) has been known as a disinfectant agent due to its bactericidal, 

virucidal, fungicidal, and sporicidal effectiveness as demonstrated in various applications 

(Koivunen and Heinonen-Tanski 2005). The desirable attributes of peracetic acid are the ease 

of treatment implementation, broad spectrum of activity, absence of persistent toxic or 

mutagenic residuals as well as by-products, small dependence on pH fluctuation, and short 

contact time (Kitis 2004). However, the exact PAA oxidation mechanism is still controversial 

due to the complexity of the reaction pathway. Recently, Adeola and co-workers (2004) 

compared the use of hydrogen peroxide – activated acetic acid and commercially available 

PAA for the disappearance of ά-methylnaphthalene or benzo[a]- pyrene in the aqueous phase. 

They reported that peracetic acid degraded parent compounds faster than the combination of 

acetic acid and hydrogen peroxide, probably due to the different reaction pathways, 

unfortunately not yet understood (N'Guessan, Carignan et al. 2004). Therefore, a systematic 

comprehension of basic reactions involved in the PAA oxidation process is critically needed 

to evaluate the potential of peracetic acid as a relevant •OH source. Generally speaking, 

homolysis of peracetic acid is much more complex process in terms of free radicals 

generation in comparison to the traditional AOPs, due to that several radical species with 

different reaction abilities are produced (Lubello, Gori et al. 2004). A rate constant of 6 x 10-

12 s-1 can be estimated for O-O bond rupture of PAA at 25 °C that is consistent with a very 

low rate of bond dissociation in the gas phase or in the absence of a catalytic influence (Bach, 

Ayala et al. 1996). Moreover, in the presence of UV irradiation, PAA undergoes UV photo-

dissociation in a manner similar to the hydroperoxides based upon the likelihood of the 

stepwise O-O reaction (Keller, Wojcik et al. 2008). Subsequently, a similar principle can be 

suggested for PAA dissociation in the presence of the eligible catalyst (as in widely accepted 

and researched Fenton reaction) leading to the formation of various radical species with 
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different reactivity, which are able to attack the target compound and oxidize it to less 

hazardous products. However, there is a lack of studies of the radical reactions occurring 

during PAA oxidation of organic contaminants. Therefore, the profound understanding of 

PAA homolytic cleavage and the subsequent reactions is essential due to the use of such a 

specific oxidant  that is able to produce radicals with different activity may have a great utility 

(N'Guessan, Carignan et al. 2004).  

Emerging evidence of the radical reaction pathway may be obtained by means of the 

spin trapping (ST) technique with electron spin resonance (ESR) and nuclear magnetic 

resonance (NMR) spectroscopy (Bacic, Spasojevic et al. 2008). The ST technique is based on 

the trapping of short-lived/unstable free radical by a nitrono compound (spin trap) to form a 

relatively stable paramagnetic product – spin adduct, which can be easily detected by the 

conventional spectroscopic methods. High sensitivity renders ESR useful for free radical 

investigations in a great number of chemical and biological systems (Bacic, Spasojevic et al. 

2008). However, the major limitation of ESR ST technique is the accurate interpretation of 

the generated spectra (Villamena, Locigno et al. 2006). ESR spectra often require simulations 

to extract parameters, needed for the interpretations of the spin trapping results. One of the 

approaches is simulation-based fitting (SBF), a standard tool for the analysis of experimental 

spectra obtained in complex chemical and biophysical systems (Nazarov, Apanasovich et al. 

2004). The purpose of SBF is the approximation of experimental data by the available 

synthetic data obtained via mathematical modeling.   

Another drawback of the ESR methods is the finite lifetime of the paramagnetic 

species (spin adducts), which are formed as a result of spin trapping. Many 

degradation/decomposition reactions of spin adducts lead to the formation of diamagnetic 

products, which are undetectable by the ESR, however they can be detected by NMR 

spectroscopy (Khramtsov, Berliner et al. 2001). Contrary to the ESR spectra, the NMR 

spectra are represented as distinct sharp peaks at various chemical shifts, which ease the 

identification of the detected species even for the complex systems (Argyropoulos, Li et al. 

2006). Thus, both methods compensate each other's drawbacks – the ESR detectable spin 

adducts are stable over a long period of time after a conversion into their final diamagnetic 

forms and thus, are suitable for NMR measurements (Argyropoulos, Li et al. 2006).   

In this study, phenol was chosen as a model aromatic molecule. The major aims of the 

current research were to comprehensively study the homolysis of PAA, including theoretical 

and practical approaches. The primary aim was to assess the generated radical species using 

both, ESR and NMR spectroscopy spin trapping (ST) with the subsequent identification by 
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simulation-based fitting (SBF) technique. The secondary aims were: (1) to develop the 

thermodynamically justified reaction mechanism based on the experimental results and 

quantum chemistry calculations, such as semiempirical and ab initio density functional theory 

(DFT) calculations; and (2) to estimate main practical aspects of phenol oxidation with PAA 

catalyzed by MnO2, such as the influence of the reaction parameters as encoded relationships 

between the process variables organized as inputs and outputs of an artificial neural network 

(ANN). Shortly, ANN is the comprehensive approach of the data treatment by detecting the 

patterns and relationships in data, which allows to account the interaction effects between the 

optimized parameters. Herein, ANN was build and trained to predict the process efficiency 

based on the variability of the process parameters.  

5.2 Experimental Section 

5.2.1 Instrumental. 

The experiments were carried out in a 100 mL batch reactor equipped with a magnetic 

stirrer and a temperature controller. The reaction mixture was stirred at a speed of 800 rpm for 

0-180 min. to provide a complete mixing for uniform distribution and full suspension of the 

catalysts particles (MnO2). The commercially available MnO2 (SBET = 3.375 m² g-1), peracetic 

acid (PAA), phenol and DTPA (diethylene triamine pentaacetic acid) were purchased from 

Sigma Aldrich and the nitrone spin trap DIPPMPO (5-diisopropoxyphosphoryl-5-methyl-1-

pyrroline N-oxide) from Alexis Biochemicals. All the chemicals were of laboratory reagent 

grade and used without further purification. Solutions were prepared using high purity 

deionized water (>17.7 MΩ). The reactants were added simultaneously at the beginning of 

each run. For experiments, unless specified otherwise, untreated catalyst (0.1–3 gL-1) was 

introduced as a suspension to the reaction medium with the following PAA (0.5-10 %) 

addition at various concentrations. Samples were taken at regular intervals (10 min.) for the 

subsequent analysis and filtered through a syringe filter (0.45 μm hydrophilic Millipore filter) 

to separate the catalyst particles from the solution. Control experiments were conducted for 

the optimum concentrations of reagents and samples were taken every 5 minutes. The pH of 

the filtrate was then determined by a pH meter (3401 WTW, Germany). The degradation of 

phenol was monitored by UV–Vis spectroscopy at λ = 268.4 nm (Perkin Elmer UV–Vis 

Spectrometer Lambda 45, US) (Rokhina, Lahtinen et al. 2009). The specific surface area of 

the catalyst was measured and calculated according to the BET method on a Quantachrome 

Autosorb 1 analyzer (Quantachorome instruments, UK) with liquid nitrogen at −196 °C.  
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X-band ESR spectra were recorded on an ELEXYS E500 (Bruker, Germany) spectrometer 

with 100 kHz field modulation. Typical instrument settings were 5 mW microwave power and 

a modulation amplitude of 1 G or less. Spectra simulations were performed with the 

“EasySpin” toolbox for MATLAB distributed by Stefan Stoll (Stoll and Schweiger 2006).  

For 31P spectra 560 scans were recorded at room temperature on a 7.1 T Bruker Avance 

NMR spectrometer  using a basic single pulse sequence without proton decoupling. 

Trimethylphosphate was used as the internal standard for quantification and was added to the 

sample prior to measurement. Ascorbate (10 mM) was added to the reaction system before 

NMR study in order to convert radical adducts to the NMR detectable diamagnetic 

hydroxylamines.  

5.2.2 ANN computation.  

For the details see Supporting Information. 

5.2.3 Quantum Chemistry Calculations.  

All the calculations were carried out with 6-31G(d) and 6-311G(d) at the B3LYP level 

of theory using Gaussian 03 suite of programs. The optimized structures were set at minimum 

of the potential energy hypersurfaces by the vibrational frequency analysis. Enthalpies of the 

reactions were calculated as described elsewhere (Ochterski 2000).  PAA heat of formation 

was calculated by an atomization method (Ochterski 2000). These calculations determined the 

total atomization enthalpy, and the computed heat of formation was then obtained in 

combination with the calculated and experimental heat of formation of the atoms C, H and O. 

The experimental data used were the JANAF values of C (169.73 kcal mol-1), H (50.62 kcal 

mol-1), O ( 58.99 kcal mol-1) (Curtiss, Raghavacharin et al. 1997).  

5.3 Results and Discussion 

5.3.1 Detection of Free Radicals.  

In highly complex free radical systems it is of paramount importance to use techniques, 

such as ESR that enable an accurate identification of formed radicals. However, an extreme 

caution must be exercised when interpreting the results of ESR experiments with spin traps, 

since several routes exist, whereby various radical adducts may arise (Clément, Gilbert et al. 

1998). To overcome the aforementioned drawbacks, the performance of phosphorylated spin 

trap DIPPMPO (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) was evaluated, 
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because of its ability to differentiate between various trapped radicals due to the additional 31P 

hyperfine splitting constant (Mojovic, Spasojevic et al. 2005). The presence of the β-

isopropyloxyphosphoryl group shielded the unpaired electron of the NO in a spin adduct, thus 

increasing the stability of adducts that can be detected by EPR spectroscopy (Figure S1). 

Moreover, DIPPMPO contained NMR active 31P, which facilitated NMR spectroscopy in 

addition to ESR. The reaction mechanism of spin trapping with the subsequent assignment of 

diamagnetic and paramagnetic products is shown in the Supporting Information (Scheme S1). 

Representative 31P-NMR spectrum of the reaction medium after the addition of all the 

reagents to the reaction system is shown as an inset in Figure 1. The spectrum consists of two 

main peaks at different chemical shifts. The small peak at 25.3 ppm can be attributed to the 

reduced hydroxyl adduct DIPPMPO/OH (Khramtsov, Berliner et al. 2001), while another 

peak at 22.2 ppm originates from diamagnetic DIPPMPO itself (Argyropoulos, Li et al. 

2006). These data confirm the presence of hydroxyl radical in the reaction system as a 

primary radical product of PAA homolytic cleavage. To establish the secondary products of 

the subsequent radical chain reactions, the system was further studied with ESR.  

Figure 1 Experimental and simulated ESR spectra of PAA cleavage over MnO2 with 
DIPPMPO with incorporated NMR spectra (ESR parameters were as follows: 20 mW 
microwave power, 20.48 ms time constant, 81.92 conversion time, 0.5 G modulation 
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amplitude, sweep width 100G, 31P NMR parameters were recorded with 256 of total 
scans  with acquisition time of 1.60 s.). 

Figure 1 shows the ESR spectrum (solid line) recorded for the reaction system 

containing PAA, MnO2 and DTPA in the presence of DIPPMPO. The spectra consisted of 12 

major ESR lines, which were composite due to superposition of the signal of the different 

adducts. Simulations were performed to extract the values of hyperfine splitting constants (aP, 

aN and aH) for the radical identification (see Supporting Information for details). Based on this 

approach, the values of the simulated splitting constants of spectral components indicate the 

hydroxyl adduct as the main component and several carbon centered adducts (Table 1). The 

simulated spectrum (Fig. 1, dash line) does not significantly differ from the experimental 

spectra (Fig. 1, solid line). There were some additional spectral lines detected, which could be 

seen at the bottom of Figure 1b, however, their contribution to the overall spectral intensity 

was negligible and therefore was ignored. 

Table 1. ESP parameters of DIPPMPO spin trapping for the assessment of free radicals in 
MnO2/PAA system 

Compound Spin adduct parameters Reference 
 ap,G aN,G aH, G  

Compound 1 47.1 14.8 22.3 Current study  
•CH3 47.1 14.4 22.6 Charlier and Tordo, 2002 
Compound 2 49.5 14.8 22.2 Current study  
•CH3C(=O) 49.0 14.2 21.2 Charlier and Tordo, 2002 
Compound 3 46.7 14.1 13.3 Current study  
•OH 46.8 14.0 13.2 Charlier and Tordo, 2002 
 46.5 14.1 13.5 Villamena et al. 2003 
Compound 4 49.7 14.0 11.0 Current study  
CH3OO •    50.2 13.2 11.1 Charlier and Tordo, 2002 
Compound 5 50.9 10.2 13.9 Current study  
CH3C(=O)O•     
 

5.3.2 Formation Mechanism of Detected Radicals. 

Herein, the radical formation mechanism that is significant to the overall AOP 

efficiency is introduced. Relatively short chains are involved in the homolytic cleavage of 

peracetic acid. The initiation reaction involves the homolysis of PAA peroxy bond into two 

primary radicals: acyloxy and hydroxyl radicals according to the reaction proposed by 

Heywood and colleagues in 1961 (Heywood, Phillips et al. 1961): 

CH3C(=O)OOH→CH3C(=O)O•+•OH     (1) 
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As a result, formed hydroxyl radical is able to attack not only the organic pollutant but 

also the PAA molecule as well: 

CH3C(=O)OOH+•OH→CH3C(=O) •+O2+H2 O              (2) 

CH3C(=O)OOH+•OH→CH3C(=O)OO• +H2O              (3) 

Meanwhile, the primary acyloxy radical, which is very unstable, tends to dissociate to methyl 

radical and carbon dioxide according to monomolecular decarboxylation:  

CH3C(=O)O•→•CH3+CO2                     (4) 

2CH3C(=O)O•→2•CH3+2CO+O2       (4a) 

However, in the reactions where the carbon-centered radical is resonance stabilized, the 

reaction is reversible and is followed by the interaction of methyl radicals with oxygen to 

produce a weak peroxy radical (El-Agamey and McGarvey 2003): 

•CH3+O2  →    •CH3OO              (5) 

This reaction is relatively fast in oxygen saturated environments and therefore, the amount of 

methyl radicals in the reaction system is limited (Shi and Li 2007). 

Hydroxyl radical formed as a primary radical, simultaneously reacts with 

CH3C(=O)O• to generate a new PAA molecule, therefore re-starting the new oxidation cycle 

(Ciotti, Baciocchi et al. 2008): 

•OH+CH3C(=O)O•→ CH3C(=O)OOH   (6) 

It is important to note that all the generated radical species are able to interact with the 

target organic compound (e.g. phenol), contributing to its oxidation.  

5.3.3 Thermochemistry of free radicals formation in MnO2/PAA system.  

Peracetic acid is weaker than carboxylic acids, which can be attributed to intra-

molecular hydrogen bonding (Keller, Wojcik et al. 2008). Moreover, the electrophylic activity 

of PAA highly depends on an opportunity of both, the heterolytic and homolytic ruptures of 

the O-O bond. Therefore, in order to assess the homolytic cleavage of PAA, the 

thermochemistry of the proposed free radical reaction was estimated.  

The making and breaking of bonds is the basis of all the chemical transformation. A 

sound knowledge of energies required to break bonds and energies released upon their 

formation is fundamental to understand the chemical processes (Blanksby and Ellison 2003). 

The molecular bond lengths used in the current study (Table S4) were in a good agreement 

with the previously reported values (Sicilia, Maio et al. 1993). Heat of formation that was 

assessed by the group additivity methods (accuracy of calculation was within 1–2 kcalmol −1) 

was −82 kcal mol −1 for PAA, where the O-O bond dissociation energy was 42.5 kcal mol−1. 
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 These two values were used to determine the energy of PAA homolysis that produced 

radicals. However, calculations performed by adopting the atomization approach at HF/6-

31g(d) level of theory, indicated the heat of formation of PAA nearly −76.7 kcal mol−1, 

whereas the O-O bond dissociation energy was 48 kcal mol −1. It was reported that the heat of 

formation of PAA and its radical products might vary by more than 1–2 kcal mol −1, but this 

should have little effect upon the relative available energies (Rokhina, Lahtinen et al. 2009). 

The obtained data allowed to construct the energy diagram for the radical reaction pathway 

(Figure 2). As could be seen in Figure 2, secondary decomposition was the major source of 

energy in this pathway. The heat of formation of C(O)OOH was determined by subtracting 

the methyl radical heat of formation from that of PAA and by adding 94 kcal mol −1 for the C-

C bond strength.  
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Figure 2 Energy profile of free radicals formation scheme in heterogeneous MnO2/PAA system. 

The calculation revealed that all the proposed reactions were thermodynamically 

possible. The homolysis of the PAA peroxy bond produced two primary radicals with 

unknown activation barrier (Shi and Li 2007). The subsequent formation of secondary 

radicals (reactions [2-5]) was nearly spontaneous. In the MnO2/PAA radical system, the attack 

of the target molecule by the hydroxyl and acyloxy radicals was a process with low activation 

barrier (Shi and Li 2007). Therefore, the rate determining step in the catalytic PAA oxidation 
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process should be the formation of primary radicals via reaction [1]. Furthermore, such 

formation of primary radicals can be caused by the higher barriers required for the peroxy 

bond homolysis (Shi and Li 2007). 

5.3.4 Phenol oxidation by MnO2/PAA system.  

According to the reactions [1 – 5], free radicals that participated in the oxidation of 

phenol were •OH, CH3C(=O)O• and •CH3. However, the input of •CH3 was rather limited due 

to the lower reaction constant (in the range of 106 s-1 and 109 s-1 for k•CH3 and k•OH, 

respectively) and limited availability in oxygen saturated environments (Shi and Li 2007). 

Indeed, •CH3 reaction rate complemented the hypothesis that the competition between the 

interaction of •CH3 radical and phenol as well as •CH3 disappearance occurred.  

The primary mechanism of phenol decomposition was via abstraction of an H-atom from the 

substrate: 

•CH3+ C6H5OH→ C6H5O•+CH4           (7) 

The substrate radical (C6H5O•) can also be formed by the attack of hydroxyl and acyloxy 

radicals. The thermochemistry of MnO2 catalyzed reaction revealed the electrophilic attack of 

the •OH radical in para position with the subsequent formation of an unstable 

dihydroxyphenyl radical. During the next step, hydrogen abstraction occurred through another 

•OH radical, giving rise to the stable intermediates 1,2-benzenediol (catechol) and 1,4-

benzenediol (hydroquinone) (Morales-Roque, Carrillo-Cárdenas et al. 2009). 

•OH+ C6H5OH→ C6H5O•+ C6H4(OH)2            (8) 

It should be noted that formed acyloxy radicals can also attack phenol and initiate the 

formation of ring-cleavage products (Gonzalez Cuervo, Kozlov et al. 2004): 

C6H5OH + CH3C(=O)O•  → C6H5O• + CH3C(=O)OH  (9)    

Acetic acid can also be formed as a result of the recombination between the organic radicals 

leading to the formation of coupling products: 

•CH3C(=O) +•OH→ CH3C(=O)OH  (10) 

CH3C(=O)OOH+ •CH3C(=O)O →•CH3C(=O)OO + CH3C(=O)OH (11)  

5.3.5 ANN Model Development.  

In the absence of either catalyst or PAA, no phenol removal was observed and both 

reagents were found to be completely inert towards the degradation of phenol, when applied 

separately. Due to the complexity of the system under study, only the most significant process 
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parameters such as the reagent concentrations and the reaction time were considered as 

essential for the experimental design.  

The optimized ANN structure is depicted in Figure 3. For the ANN modeling, one 

layer of hidden-neurons was used. The developed ANN was characterized by one hidden 

layer containing seven neurons. Correlations were obtained from the database with a 

confidence level of 98.64%. The overall optimization error was less than 5%. After 

optimization it was possible to quantify the effect of each experimental variable and collect 

the removal efficiencies. 

 

Figure 3 ANN optimized structure. 

Figure 4 (a, b) presents the predicted phenol removal efficiency with PAA and in the 

presence of heterogeneous catalyst MnO2, for a wide range of the catalyst and PAA 

concentrations and for different treatment durations. It was observed that an increase in the 

process parameters significantly decreased the removal efficiency. The increase in the 

removal efficiency was observed only when the reaction proceeded for 120 min., therefore 

120 min. was adopted as the optimal process time. The plots summarizing the main effects are 

depicted in Figure 5.  
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Figure 4 ANN predicted curve of phenol removal rates for different concentrations of 
(a) MnO2 and (b) PAA for different time intervals (120 and 180 min). 
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The catalyst concentration was determined to be the most essential parameter. The 

removal efficiency increased with an increase in the catalyst load until the optimal value of 70 

% was reached. After that, phenol degradation remained nearly the same, regardless the 

catalyst load. This may be attributed to that the increase in phenol oxidation rate occurred 

with an increase in the catalyst concentration, because the catalyst activated peracetic acid to 

form free radicals (Mijangos, Varona et al. 2006). Thus, the maximum removal of phenol was 

about 70 % for 0.7–3 g L-1 catalyst load and 100 ppm of PAA, whereas the lowest removal 

efficiency of 5–6 % was observed for the lowest (0.1 g L-1) catalyst concentration and 100 

ppm of PAA (Figure 5a). The following analysis of PAA concentration effect revealed that 

PAA was more effective oxidant at average (e.g. 50 ppm) concentrations (Figure 5b). It is 

well documented that for so-called Fenton-like processes that involve the homolysis of the 

oxidizing agent in the presence of the catalyst, the excess of the oxidizing agent acts as a 

radical scavenger (Mijangos, Varona et al. 2006). The optimal ratio between the catalyst and 

the oxidizing agent, at which the production of radicals and radical scavenging was well 

balanced for 0.7 gL-1 of MnO2 and 50 ppm of PAA and led to the highest removal efficiency 

of the target compound (80 %) in 120 min (Figure 5c). It was also determined that the catalyst 

with the surface area (S BET) of 3.4 m² g-1 exhibited the catalytic activity of 0.042 mM m-2s-1 

per surface area. 

 

A B 
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Figure 5 Plots of main effects on phenol removal efficiency: a) reagent concentrations, 
b) reaction time. 

The efficacy of the proposed experimental modeling with ANN is demonstrated in 

Figure 6. Figure 6 compares the results obtained from the phenol degradation tests under 

optimized process parameters with those acquired from neural computation after 120 min. of 

the treatment in the presence of PAA. The computed results were selected at the intermediate 

points that were not considered in the experiments and were found to be very close to the 

interpolation curves. A good agreement between data was obtained with a standard deviation 

less than 3%.  
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Figure 6 Comparison between the experimental and simulated results for the removal 
efficiency of phenol with optimized parameters (C[MnO2]=0.7 g L-1, C[PAA]= 50 ppm, 
time 120 min.)  
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SUPPORTING INFORMATION 

 

ANN computation.  

The ANN feed-forward network was built to analyze the effects of catalyst and PAA 

concentrations and reaction time to the removal efficiency of phenol. Such a network encodes 

the relationships between I/O variables through a large set of neurons, which act as 

mathematical decision centers. All the variables were connected by weights as assigned 

numbers translating the strength of neuron connections. Weights were assigned to these 

connections between the neurons of the neighboring layers. In order to predict phenol removal 

efficiency with the least possible error, these values must be optimized. Therefore, the back-

propagation perceptron multilayer has been used to model system dependencies. A more 

detailed ANNs description can be found elsewhere (Másson and Wang 1990; Nazarov, 

Apanasovich et al. 2004). Input variables were looked as number of fluxes, which fed the 

network structure and reached the output pattern. The ANN optimization process was based 

on a training procedure to eliminate the error between the ANN and experimental responses 

for a given set of input variables. Such optimization considered neuron number and weight 

updates. Network training was a process by which the connection weight and bias on the 

ANN were adapted through a continuous process of simulation by the environment in which 

the network was embedded (Kasiri, Aleboyeh et al. 2008). The number of experiments to feed 

the ANN structure was 325. The ANN processing stages were divided into three steps: 

training, validation and test. The validation and test sets were randomly selected from the 

experimental data to assess, validate and model power of the nets. The ANN performance was 

stabilized after the inclusion of 10 nodes in the hidden layer. The network was then tested and 

validated by comparing its predicted output values with the experimental ones using an 

independent set of data. The training data set can be found in Tables S2 and S3. Thus, the 

network input contained three neurons representing catalyst concentration, PAA concentration 

and the reaction time, respectively. The output pattern comprised one neuron representing the 

removal efficiency of phenol. Experimental sets were organized in training and test samples. 

Optimization parameters and ANN characterization data are summarized in Table S2. The 

ANN used was designed by STATISTICA7 software (StatSoft, USA). The statistical analyses 

were carried out by Statgraphics Plus (Version 5.1).  

Table S1. ANN optimization parameters 
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Parameter  Value  Comments       

    Variable type  Minimum  Maximum   

Input variables 3 PAA concentration (ppm) 0 200  

  MnO2 concentration (gL-1) 0 3  

  Time (min) 0 240  

Output variables   1 Phenol removal efficiency (%)  0 100  

Architecture 

Perception 

model See (Másson and Wang 1990) for definition   

Training algorithm 

Back 

propagation See (Másson and Wang 1990) for definition   

  Category Sample number   

Database 325 samples Train 105   

  Test 105   

Optimization cycle 

number  2000 

One cycle corresponds to training and testing of the whole database 

passage 

Number of hidden 

layers 3 Suitable for non linear correlations.  

Number of neurons 

in each layer Varied This number is calculated from the optimization procedure 

            

 

 

 

Table S2. Training set for ANN: the effect of MnO2 concentration and the reaction time on the 
removal efficiency 

Time 

(min)/MnO2 

concentration 

(gL-1) 

RR,% 

0 0,1 0,5 0,7 1,0 1,5 2,0 2,5 3,0 

0 0 0 0 0 0 0 0 0 0 

10 0 0,59 4,3 10,12 13,7 14,1 13,9 14,2 13,8 

20 0 1,47 6,1 14,5 21,54 21,2 22,2 20,2 21,8 

30 0 2,12 8,2 17,34 25,45 29,3 30,3 31,3 30,3 

40 0 2,43 9,97 24,4 30,24 37,5 38,5 37,9 38,6 

50 0 2,89 12,1 30,2 35,4 43,8 43,4 44,8 44,6 

60 0 3,1 14,5 36,7 40,23 51,23 52,23 51,9 53 

70 0 3,42 16,3 45,4 45,1 59,12 59,87 59,42 60,12 

80 0 3,78 18,7 53,2 50,24 63,12 64,46 65,9 65 

90 0 4,1 20,43 61,3 56,1 65,5 67,32 70 69,5 



Supporting information 
 

96 
 

100 0 4,4 23,12 65,2 60,32 69,12 70,12 69,12 70,12 

110 0 4,8 25,45 67,2 68,2 71,45 71,3 72 71,45 

120 0 5,11 27,13 74 69,1 71,54 71,34 73,23 73,56 

130 0 5,446 27,23 74,2 69,3 71,63 71,38 73,46 73,67 

140 0 5,34 27,24 74,4 69,4 71,72 71,42 73,69 73,78 

150 0 5,36 27,45 74,3 69,3 71,71 71,46 73,92 73,89 

160 0 5,25 27,43 74,4 69,4 71,9 71,5 73,95 73,14 

170 0 5,34 27,45 75 69,7 71,99 71,54 73,38 74 

180 0 5,4 27,42 75,3 70,4 71,98 69,45 72,13 74,12 

 

Table S3. Training set for ANN: the effect of PAA concentration on the removal efficiency 

Time 

(min)/PAA 

concentration 

(ppm) 

RR,% 

0 5 10 50 70 100 150 200 

0 0 0 0 0 0 0 0 0 

10 0 3,7 3,4 13,1 9,3 8,1 6,3 4,5 

20 0 6,1 5,4 21,5 18,2 17,2 15,2 12,3 

30 0 10,6 9,1 26,4 23,5 22,5 19,2 19,8 

40 0 13,3 11,2 31,78 29,7 29,3 25,6 25,4 

50 0 16,4 13,5 37,3 35,1 35,3 33,2 27,5 

60 0 20,7 15,4 45,1 41,2 40,2 37,6 34,21 

70 0 24,1 18,6 51,7 47,9 46,9 43,2 38,4 

80 0 28,5 21,3 57,45 54,93 53,93 45,6 43,4 

90 0 31,4 25,3 63,23 59,91 58,91 49,98 48,67 

100 0 35,2 28,6 69,45 63,12 62,12 55,47 53,98 

110 0 38,1 34,5 75,21 68,34 67,34 59,6 56,4 

120 0 41 39 78 70 69 63 57 

 

 

 

 

 

 

 

Figure S1. Chemical structure of DIPPMPO (diisopropoxy-phosphoryl-5-methyl-1-pyrroline-

N-oxide) 
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Scheme S1. The general trapping chemistry of the DIPPMPO spin trap system 

The radical (R•) reacts with the nitrone spin trap DIPPMPO (a) to form stable 

paramagnetic adduct (b), which is Electron Paramagnetic Resonance (EPR) detectable. The 

paramagnetic species (b) decays with time and undergoes unimolecolar and/or bimolecular 

decomposition producing the corresponding diamagnetic species, the hydroxylamine (c) and 

the nitrone (d) via a disproportionation reaction. The stable diamagnetic products (c+d), 

derived from the radical adducts were Nuclear Magnetic Resonance (NMR) detectable (in the 

present case 31P NMR). 
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Figure S2. Simulation details 

The simulations of fast motion ESR spectra were performed with routines implemented in 

EasySpin toolbox  (Stoll, 2006) for Matlab. The splitting pattern for single DIPPMPO radical 



Supporting information 
 

98 
 

adduct originated from one nitrogen, one proton and one phosphor. The fitting of 

multicomponent experimental spectra DIPPMPO radical adducts by the simulations were 

performed by simplex method developed by Nelder and Mead (Nelder, 1965).  This 

optimization routine was chosen due to its fast convergence; however it requires a good 

starting guess, especially in the case of large set of fitted parameters (many component 

spectra). The hyperfine data from (Charlier and Tordo, 2002) provided a good starting guess 

for fitting.  To decrease the number of fitted parameters, the line positions (splitting pattern) 

was adjusted first. As the next step, all hyperfine values were fixed and only linewidth 

parameters and ratio of the components were fitted.  Parameters obtained from the best fit of 

the experimental spectra were: the isotropic hyperfine coupling constants (aN, aH, aP), g-tensor 

(with respect to 2.00569 for DIPPMPO OH radical adduct (Culcasi,2006)) and  ratio of the 

component. 

Table S4.  Optimized bond length (Å) and angles (deg)  

Species Parameters Level of theory 

B3LYP/6-31g(d) 

CH3C(O)OOH CC 1.504 

 H’C 1.091 

 HC 1.094 

 CO 1.215 

 CO’ 1.355 

 O’O” 1.442 

 O”H” 0.99 

 H’CC 111.7 

 HCC 108.7 

 CCO 127.0 

 CCO’ 110.9 

 CO’O” 111.0 

 O’O”H” 99.8 

CH3C(O)OO• CC 1.501 

H’C 1.090 

HC 1.095 

CO 1.189 

CO’ 1.446 
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O’O’’ 1.328 

H’CC 109.2 

HCC 110.0 

CCO 129.9 

CCO’              107.6 

CO’O’’ 113.0 

CH3C(O)O• CC 1.496 

H’C 1.093 

HC 1.096 

CO 1.261 

H’CC 110.1 

HCC 109.1 

CCO 124.1 

CH3CO• CC 1.517 

H’C 1.096 

HC 1.095 

CO 1.189 

CCO 1.276 

H’CC 111.5 

HCC 108.7 

H’CCO 0.07 
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ABSTRACT 

 

In this work, an artificial neural network (ANN) is explored for its ability to extract the 

fractions of radical adducts from narrow line ESR spectra. The ANN trains fast and performs 

well on signals with signal/noise of 200. The obtained fraction coefficients are in agreement 

with the ones obtained by an iterative fitting approach. The time needed for data processing 

by the ANN was in the order of seconds and it did not increase with the number of analyzed 

spectra.  

This approach was shown to be rapid and highly efficient for the analysis of two 

component ESR spectra from 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide 

(FDMPO) radical adducts formed in the Fenton reaction in the presence of DMSO or 

methanol. The anti-oxidant properties of the DMSO or methanol extracts from long-lived pine 

pollen and short-lived narcissus pollen are shown by their influence on the kinetics of 

FDMPO adducts formation in the Fenton reaction. These findings suggest neural network 

offers a promising approach for the study of antioxidant activity of plant extracts.  
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6.1 Introduction 

The spin-trapping technique is used for the in vitro and in vivo study of the kinetics 

and mechanisms of reactions in which short-lived free radicals are formed. Spin trapping 

utilizes the reaction of unstable free radicals with nitrone or nitroso spin traps, resulting in the 

production of spin adducts that can be detected by Electron Spin Resonance (ESR)  

spectroscopy (Janzen 1971; Janzen, Stronks et al. 1985). The resulting spin adducts are 

nitroxide radicals which have an ESR spectra with a hyperfine structure characteristic for the 

type of trapped free radical. This can be used for identification of that free radical. The time 

evolution of the ESR spectra is used to study the mechanism of reactions resulting in these 

free radicals.  

The ESR spin trapping technique has some limitations. One of them is the short 

lifetime of most spin adducts. One of the most commonly used spin traps, 5,5-

dimethylpyrroline-N-oxide (DMPO) forms very short-lived spin adducts with O2*, OH* and 

alkyl radicals.  The lifetime of a DMPO-OOH* adduct is approximately 50 s (Finkelstein, 

Rosen et al. 1979). Recently, a new class of spin traps has been developed. These are DMPO 

derivatives (Frejaville, Karoui et al. 1995; Khramtsov, Reznikov et al. 2001) that have 

improved properties for trapping of free radicals and an extended lifetime from several 

minutes (5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO)) to several hours 

(4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO)) (Khramtsov, 

Reznikov et al. 2001; Chalier and Tordo 2002; Khan, Wilmot et al. 2003; Bacic, Spasojevic et 

al. 2008).  

Another limitation was the ability of some spin traps to form spin adducts with 

different radicals. DEPMPO and FDMPO can trap different types of free radicals in the 

system under study, resulting in an ESR spectrum, which is a linear superposition of the 

spectra of the various radical adducts.  

Generally, the splitting patterns of the various radical adducts are not significantly 

different, when their lifetimes are long (Janzen 1998). Although DEPMPO or FDMPO form 

relatively stable spin adducts, the identification and analysis of the kinetics of trapped radicals 

from ESR spectra is difficult. On the contrary, the spectra from different DMPO free radical 

adducts are well resolved, but study of the kinetic of the radical formation is difficult because 

of the short lifetime of the spin adducts. 

The kinetics of each radical adduct in a mixture can be analyzed either (i) by following 

the time-evolution of a single peak intensity of the given adduct in a multi-component ESR 
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spectrum (Staŝko, Rapta et al. 1993) or (ii) by Simulation Based Fitting (SBF). The method of 

a single peak analysis is only applicable for non-overlapping spectral components, or partly 

overlapping components with fully resolved peaks, as in the case of DMPO spin adducts. 

When both OH radicals and carbon-centered radicals are trapped by FDMPO, none of the 

peaks are well resolved, and decomposition of the spectrum is needed.  

The SBF method is widely used for the decomposition of any multi component ESR 

spectrum. The idea of SBF is approximation of the experimental spectrum by a simulated one 

based on the mathematical model. The fitting algorithm minimizes the error (difference) 

between two spectra by varying parameters for simulation of the artificial spectra.  The fast 

isotropic motion model is successfully used for the simulation of ESR spectra of spin probes  

(Israelachvili, Sjösten et al. 1975; Smirnov, Smirnova et al. 1995) and spin traps (Busi, 

Travagli et al. 2010; Rokhina, Makarova et al. 2010). The spectral parameters (hyperfine 

splitting constants  and correlation time) together with the fraction of each component are 

determined by SBF. Subsequently, trapped radicals are identified based on extracted 

hyperfine splitting constant values of radical adducts. Thus, the time evolution of each 

component in multi component ESR spectra could be followed based on accurate fitting and 

extraction of the fraction at every time point.  

Simulation of one ESR spectra is relatively fast and takes a couple of minutes on a pc 

and  routines and programs for simulations are available (Kirste 1992; Budil, Lee et al. 1996; 

Stoll and Schweiger 2006). When analyzing a set of spectra (e.g. from kinetic measurements), 

each spectrum is fitted iteratively, and the time needed for the analysis of all the spectra is 

linearly dependent on the number of spectra. The use of new spin traps with prolonged 

lifetimes of spin adducts results in an extension of the time over which the reaction can be 

studied by the spin trapping approach, and thus, increases the number of spectra for the 

analysis. The development of a method, which uses a non-iterative approach for analyzing 

spin adduct spectra, would be quite helpful because it will perform faster then an iterative 

approach. Such a method could be applied for real time analysis of ESR spectra during 

kinetics measurements, directly providing information about both integrated intensities of 

each spectral component and, therefore, concentrations of paramagnetic species. For that 

purpose the use of Artificial Neural Networks (ANNs) were explored (Wasserman 1989; 

Bishop 1995; Haykin 1998).  

ANNs have emerged as a remarkable tool for signal processing. ANNs have been 

developed as generalizations of mathematical models of biological nervous systems. The 

basic processing elements of neural networks are called artificial neurons or nodes. In a 
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simplified mathematical model of the neuron, the effect of the synapses is represented by 

connection weights that modulate the effect of the associated input data. The nonlinear 

characteristic exhibited by neurons is represented by transfer function. 

In this study two types of ANN, the Radial Basis Function (RBF) network and Multi 

Layer Perceptron (MLP) network, were explored for their ability to extract the fraction of 

radical adducts from narrow line ESR spectra (fast isotropic motion model). Our results show 

that the RBF network trains very rapidly and performs well both with artificial and 

experimental data, whereas MLP trains slowly and performs well only with data from testing 

set, so only RBF network was used for analysis of experimental spectra. Once trained, the 

RBF network requires nearly the same time to extract the fraction coefficient at any number 

of spectra. The accuracy of this ANN approach and the time needed for data processing are 

compared with those of an iterative fitting approach. RBF is applied to the decomposition of 

multi-component ESR spectra from FDMPO radical adducts formed in the Fenton reaction in 

the presence of dimethylsulfoxide (DMSO) or methanol (MeOH). The anti-oxidant properties 

of the DMSO or MeOH extracts from long-lived pine pollen and short-lived narcissus pollen 

are shown by their influence on the kinetics of FDMPO adducts formation in the Fenton 

reaction. This experiment reveals the possible application of this method to study antioxidant 

activity of plant extracts.  

6.2 Material and methods 

6.2.1 Sample preparation 

All chemicals, except the spin trap FDMPO, were purchased from Sigma Aldrich and 

Merck & Co., Inc. FDMPO was purchased from Alexis Biochemicals (USA). The chemicals 

were of laboratory reagent grade and used without further purification. Distilled water was 

used in all the experiments.  

Fenton's reagents (5 µl of 0.5 mM FeSO4 and 5 µl  5mM H2O2)
 were used to generate 

hydroxyl radicals in a primary reaction. 5 µl of 10 mM FDMPO was added to trap free 

radicals. 5 µl of  plant extracts in dimethylsulfoxide (DMSO) or methanol were added to study 

their antioxidant activity. In the control 5 µl of DMSO or methanol were added instead of 

plant extract in the respective solvents. 
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6.2.2 Plant material 

Pine and narcissus pollen were collected locally near Wageningen,  The Netherlands, in 

May-June 2009, sieved, air-dried on the laboratory bench and subsequently stored at -20°C 

until used. 1 mg of air-dried pollen was soaked in 5 ml ethanol for 1 day. After extraction 

pollen was separated from the solvent by filtration through filter paper. The filtrate was 

collected and the solvent was removed by evaporation. The dry extract was dissolved in 5 ml 

of DMSO or methanol, and the solution was filtered.  

6.2.3 ESR 

ESR measurements were performed on a Bruker E500 Elexsys SuperX. The typical 

settings for kinetic measurements were 5 mW microwave power, modulation amplitude of 1 

G, 20 s time constant, single scan measurements. The number of recorded spectra is specified 

for each experiment, the time delay between measurements was 300 s.  

In order to obtain high accuracy parameters from spectra fitting, reference ESR spectra for 

simulation were recorded separately from the kinetic measurements. These reference spectra 

were recorded with 0.2 G modulation amplitude, 5 mW microwave power, 20 s time constant 

and 20 scans were accumulated for a better signal to noise ratio. All ESR experiments were 

performed at room temperature.   

6.2.4 Simulation based fitting 

Simulation of FDMPO spin adduct spectra was performed using the mathematical 

model for fast isotropic motion (Israelachvili, Sjösten et al. 1975) of nitroxide spin probes and 

the Nelder and Mead optimization routine (Nelder and Mead 1965). The spectral line shape 

was described as a convolution of a Lorentzian and Gaussian function in a 1:1 ratio, i.e. the 

same value of broadening was used for simulation of the Lorentzian and Gaussian lineshapes 

(Israelachvili, Sjösten et al. 1975).  Hyperfine splitting values published by Khramtsov 

(Khramtsov, Reznikov et al. 2001) were used as a starting point for spectra simulations. 

Fraction coefficients were determined as the ratio between the double integral of a single 

component and the double integral of the total ESR spectra. Thus, the sum of all fraction 

coefficients extracted from a multi-component spectrum is equal to 1. Hyperfine splitting 

constants together with giso and the rotational correlation time were obtained from simulation 

of the reference ESR spectra (see Table 1). For the analysis of the time evolution of the ESR 

spectra the number of tuning parameters was reduced and only the fraction coefficients were 

fitted. 
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6.2.5 Artificial Neural Network 

Using the Matlab Neural Network Toolbox both types of ANN were designed with 

“newrb” (RBF) and “newp” (MLP) routines.  

 

Figure 1. RBF Neural network architecture. The spectrum matrix consists of 20 columns of 

ESR spectra (simulated or experimental), each represented by R= 512 points. These spectra 
are presented to the network and the weights of S hidden layer nodes and the output nodes are 
adjusted to correctly predict the value of fraction coefficient f. 

The general architecture for the RBF network is shown in Fig. 1. According to theory 

the RBF network has three layers: an input layer, a hidden layer with a non-linear RBF 

activation function and a linear output layer. The input layer I is a vector that consists of R = 

512 points of an ESR spectrum. In this type of ANN the input layer is sometimes not 

considered as a layer since it makes no processing, so in Matlab description of “newrb” 

function only two-layers (the hidden layer with RBF activation functions and output layer 

with linear transfer function) are described. Then, at each node of the S nodes in the hidden 

layer, the Euclidian distance is used to compare the weight vector Wi to I, and the value then 

passes through a Gaussian function characterized by a spread constant p. The output of each 

node in the hidden layer is thereby given as 

 

 pIWfO ii /)2log(            (1) 

 

where i varies from 1 to S. The output layer implements a weighted sum of the hidden layer 

outputs. The collection of S scalars resulting from the S nodes in the hidden layer is then 

passed as a vector to the two nodes of the output layer yielding values for the fraction 

coefficients. The spread constant is adjusted empirically. The number of nodes in the hidden 

layer, S, is determined dynamically during the training process (Haykin 1998).   

Another type of ANN, an Multi Layer Perceptrion (MLP) is composed of M layers, 

i.e. input, output and one or more hidden layers  (Rosenblatt 1958). Each layer m has Nm 

neurons. Each neuron i in one layer connects with a certain weight Wm
i to every neuron in the 

following layer. The output Oi of a neuron i is an activation function Fm of the weighted sum 

 

 Component 1 

Component 2 
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of the outputs coming from the neurons in the previous layer Nm+1 (output layer has m=1, the 

input layer has m=M). 

 

             (2) 

 

 

The number of hidden layers, number of neurons in each layer and type of activation 

function are adjusted empirically, whereas the weights Wm
i are adjusted during the training 

procedure. Usually, a supervised training method, called back propagation, is used to train the 

MLP (Rumelhart, Hinton et al. 1986). 

During the training procedure the performance of ANN is determined based on (i) 

Minimum Sum Squared Error (SSE) (William 1986) and (ii) the smallest maximum percent 

error for each fraction in the set. The percent error for each value was calculated using  

i

ii
i O

OO
E


             (3) 

where Oi are the expected output values, iO  - the modeled output values. The SSE was 

calculated as the sum of the percent errors. The training of the ANN stops when the SSE 

reaches a pre-defined value. Then the ANN was tested for its ability to generalize the new 

data whose underlying statistics is similar to that of the training set. This step allows to avoid 

the situation that ANN is over-fitting, i.e. ANN performs well only on training set, however it 

fails on new data.  

6.2.6 Training set construction 

ESR spectra were simulated as described above. Values chosen for parameters 

depended on the system under study (Table 1). A matrix of 20 two-component ESR spectra 

was generated with fraction coefficients ranging from 0 to 1 for each experimental system, i.e. 

the Fenton reaction with methanol and the Fenton reaction with DMSO. Two matrices of 20 

spectra (Figure 2) were constructed for training. The two matrices of spectra for the testing set 

were simulated following the same procedure. However, other values for the fraction 

coefficients, not presented in the training set, were used, i.e. the fraction coefficients for the 

training set was 0.0, 0.1, 0.15, 0.2 and etc., whereas for testing set we used fraction 

coefficients 0.02, 0.08, 0.12 etc. To improve the performance and robustness of the neural 

network on experimental data, a 5% random noise was added to the simulated spectra. Then, 
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spectra in the training, testing and experimental sets were normalized by setting the double 

integral of the spectrum equal to one before introduced to the network. 

330 331 332 333 334 335

0

5

 

 

FDMPO/OH

20%

40%

60%

80%

Magnetic field

0%

100%

FDMPO/CH
3

 

Figure 2. Six spectra out of a training set of 20 with different fractions of FDMPO/CH3* and 
FDMPO/OH*, where 0% corresponds to FDMPO/CH3, 100% to FDMPO/OH*. The 
parameters used for simulations were determined from experimental reference spectra of 
FDMPO/OH* and FDMPO/CH3* adducts and are summarized in Table 1. 

6.3 Results and discussion  

6.3.1 Spectra analysis using simulations 

Fitting of a typical ESR spectrum of FDMPO radical adducts obtained in the Fenton 

reaction with DMSO (Fig. 3 A-a, b) shows the presence of two spectral components with 

different splitting patterns. One component with AF = 2.68 G and AN = 13.7 G corresponds to 

the FDMPO/OH* adduct (Fig 3A-d). A second component with AF = 1.93 G and AN = 14.6 G 

corresponds to the FDMPO/CH3* adduct (Fig. 3A-e). The same two FDMPO radical adducts 

were detected in the Fenton reaction in the presence of pine pollen extract dissolved in DMSO 

(data not shown). 



Chapter 6  
 

113 
 

3300 3310 3320 3330 3340 3350

e

59%

Magnetic field, G

c

 a, b

d

Fenton reaction with DMSO

41%

 

3300 3310 3320 3330 3340 3350

d

e48%

Magnetic field, G

a,b

c

52%

Fenton reaction with methanol

 

A B 

Figure 3. Experimental (a) and simulated spectra (b) of FDMPO adducts from Fenton 
reaction with DMSO (A) or methanol (B). (A) The two components are assigned to 
FDMPO/OH* (d) and FDMPO/CH3* (e) spin adducts. (B) The two components are assigned 
to FDMPO/OH* (d) and FDMPO/CH2OH* (e) spin adducts. (c) Represents the difference 
between the experimental spectrum (a)  and the simulated one (b).  

The simulation of ESR spectra of the spin adducts obtained in the Fenton reaction with 

methanol (pure solvent or plant extract in methanol) also shows the presence of two radical 

adducts - OH* (AF=2.77 G, AN=13.6 G, Fig.3 B-d)) and CH2OH* (AF=2.13 G, AN=14.08 G, 

Fig. 3 B-e)) (Table 1).  

Table 1. Magnetic parameters of FDMPO adducts from a Fenton reaction with DMSO and with 

methanol, determined from simulation based fitting of experimental reference ESR spectra.  

Source FDMPO adducts Parameters 

aN (G) aF (G)  (s) 

Fenton reaction in 

DMSO 

FDMPO/OH 13.7  2.6 1*10-11 

FDMPO/CH3 14.6 1.93 2*10-11 

Fenton reaction in 

methanol 

FDMPO/OH 13.7 2.6? 1*10-11 

FDMPO/CH2OH 14.08 2.13 5*10-11 

 

Generally, the simulated spectra (Fig 3, b) are in good agreement with the experimental 

ones (Fig 3, a) and the obtained hyperfine splitting values are in good agreement with 

previously published ones (Khramtsov, Reznikov et al. 2001).  Once magnetic parameters 

were extracted from reference ESR spectra and the components were identified, there was no 

need to perform the fitting of all parameters at each point of the time evolution of the ESR 

spectra. So, for the analysis of the time evolution of the ESR spectra the number of 

parameters was reduced to the fraction coefficient only. 
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6.3.2 Choice of ANN architecture 

Before being applied to the analysis of experimental data both types of ANN, RBF and 

MLP, need to be trained on a set of inputs and desired outputs. The RBF and MLP neural 

networks were trained on 20 simulated ESR spectra, six of which are shown in Fig. 2. 

Subsequently, the MLP and RBF performance was checked on 30 simulated ESR spectra 

from the testing set. The training of MLP was quite slow (around 20 minutes on a standard 

pc). Several hidden layers (1 to 10) and different number of nodes (1 to 20) in each of the 

hidden layers were tested for the error goals 0.01 and 0.001. The maximum percent error for 

each spectrum and the total SSE for the whole set were calculated by varying the number of 

hidden layers, number of nodes in hidden layers and epochs of training. It was found that the 

training process reached the error goal 0.001 after around 6000 epochs for the MLP with 2 

hidden layers with 5 and 15 nodes and sigmoid activation function. However, the MLP failed 

on testing set, what indicates over-fitting of the MLP, when ANN loses the ability to 

generalize. In case of MLP, over-fitting of the network is mainly caused by a large number of 

training epochs. However, other configurations of MLP and/or smaller number of training 

epochs did not result in reaching the error goal 0.001. 
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Figure 4. Sum square errors as a function of the RBF spread constant for different error goals. 

Contrary to MLP, the training for the RBF network was fast (in the order of a minute 

on a standard pc). Several values of the spread constant were examined (Fig. 4) for error goals 

0.01 and 0.001. The maximum percent error for each spectrum and the total SSE for the 

whole set were calculated by varying the spread constants (Table 2). The smallest SSE and 

the smallest error percent were obtained when the spread constant was 20. In general spread 
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constants larger then 8 were already enough for a good performance of our RBF network 

(SSE = 0.175), however a large maximum percent error value (25%) indicates that some 

fraction coefficients are determined with large error. The RFB with spread constant 20 had 

the best performance based on SSE and maximum percent values, however, a further increase 

in spread constant decreased the accuracy of the RBF (Table 2) and resulted in over-fitting. In 

case of RBF network, the over-fitting of the network is caused by the number of nodes in the 

hidden layer and a too large spread constant. As explained elsewhere (Hagan, Demuth et al. 

1996), a small spread constant results in a steep radial basis curve, forcing a small number of 

neurons to respond to an input, while a large spread constant results in a smooth radial basis 

curve, allowing more neurons to respond to an input. Once training was completed to a goal 

error of 0.001, the testing set was presented to the network and the fraction coefficients f  

were compared to the correct values. The correlation between the correct and output values 

was used to quantify the goodness of fit. Fig 5 shows the network output plotted against the 

correct f for spread constant 2, 8, 20 and 30. Clearly, too small values of the spread constant 

(2 and 8) result in large errors in extracted fraction coefficients in the ranges [0 0.1] and [0.9 

1] of the fraction coefficients.  

Table 2. Dependence of RBF network performance on the spread constant.  

Spread constant Maximum Percent error Sum Square Error  Goal error achieved 

2 0.44 0.225 0.00139 

8 0.258 0.175 0.00183 

20 0.099 0.0318 0.00143 

30 0.122 0.0455 0.00079 
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Figure 5. Correlation between RBF network output and actual fraction coefficients from the 
testing set for spread constants of 2, 8 and 20.  

The failure of MLP to extract the fractions of components from ESR spectra could be 

due to the nature of ESR spectra. A typical ESR spectrum of FDMPO spin adducts is sparse, 

i.e. it has relatively few non-zero values (relatively narrow ESR peaks).  In this case RBF has 

an advantage due to radial basis activation function which computes the output of a neuron 

based on calculated distance (Eq.1), so the further a neuron is from the point being evaluated, 

the less influence it has. This property probably is responsible for the robustness of RBF for 

the analysis of such ESR spectra. In MLP all neurons contribute equally, thus the noise has 

strong influence on the performance of such ANN. Therefore, for the analysis of experimental 

spectra only RBF networks were created using spread constant 20 and error goal 0.001. For 

each experimental system, such as the Fenton reaction in methanol and in DMSO, a new RBF 

neural network was trained on an input set of spectra simulated with parameters determined 

from experimental spectra of the corresponding system (Table 1). The outputs of the RBF 

network were the fraction coefficients of hydroxyl and c-centered radical adducts of FDMPO.  

6.3.3 Analysis of spectra observed during Fenton reactions 

Fig. 6 shows the time evolution of the integrated intensity of the total ESR spectrum and 

of its spectral components (FDMPO/OH* and FDMPO/CH3*) obtained in the Fenton reaction 

with DMSO (Fig. 6a) and with pine pollen extract dissolved in DMSO (Fig. 6b). Peaks of 

both spectral components in the total spectra overlap heavily (Figure 3a), and the direct 

quantification of both adducts from ESR spectra is practically impossible  
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Figure 6. Time evolution of the double integrals of the total experimental ESR spectra from 
FDMPO spin adducts and of the two spectral components FDMPO/CH3* and FDMPO/OH*, 
determined by iterative fitting of spectra (lines) and by RBF (symbols). a – Fenton reaction 
with DMSO, b – Fenton reaction with pine pollen extract dissolved in DMSO. 

To obtain the time evolution of both spectral components, the fractions of components 

from the spectra were automatically extracted by (i) iterative simulation based fitting and (ii) 

from the RBF network trained to recognize FDMPO/OH and FDMPO/CH3 radical adducts. 

Then, the extracted fraction coefficients were multiplied by the total integrated spectral 

intensity. The same approach was used for the analysis of spin adduct ESR spectra observed 

in the Fenton reaction in the presence of methanol (Fig. 7a) and in the presence of narcissus 

pollen extract dissolved in methanol (Fig. 7b).  
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Figure 7. Time evolution of the double integrals of the total experimental ESR spectra of 
FDMPO spin adducts and of the two spectral components FDMPO/CH2OH* and FDMPO/OH*, 
determined by iterative fitting of spectra (lines) and by RBF (symbols). a – Fenton reaction with 
methanol, b – Fenton reaction with narcissus pollen extract dissolved in methanol. 
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6.3.4 Kinetic analysis 

The ESR intensity of the given component is proportional to the actual concentration of 

the corresponding radical adduct. During the first 100 minutes of the Fenton reaction with 

DMSO (Figure 6a), the spectrum is dominated by the FDMPO/OH* adduct component (Table 

3, reactions 1 and 5). The intensity of the FDMPO/OH* component decreased in time 

together with an increase of the FDMPO/CH3* adduct component, indicating the reaction of 

the OH* with DMSO to form the CH3* (Table 3, reaction 2), and later to form FDMPO/CH3* 

adduct (Table 3, reaction 6). However, the rate constant of reaction 6 is two orders of 

magnitude lower then that of reaction 2, thus the excess amount of CH3 radicals could react 

with H2O2 and becomes a second source for OH* radicals (reaction 4), resulting in an increase 

of the FDMPO/OH* adduct component (Figure 6a). The mechanism of this reaction is similar 

to that described elsewhere (Yamazaki and Piette 1991; Lee, Lin et al. 2002).  

Table 3. Possible reactions and corresponding rate constants. 

Reaction Reaction rates 

108 (M-1s-1) 

Reference 

1 Fe(II)+H2O2->OH* +OH* +Fe(III) 63.5 (Rigg, Taylor et al. 1954) 

2 OH*+DMSO->CH3*+CH3(S)OH 54 - 72 (Milne, Zika Rod et al. 

1989; Lee, Lin et al. 2002) 

3 OH*+CH3OH->CH2OH*+H2O 9.7 (Buxton, Greenstock et al. 

1988) 

4 CH3*+H2O2-> CH3OH+OH* 0.35 (Stevens, Clarke et al. 

1972) 

5 FDMPO +OH*->FDMPO/OH* 22.4 (Khramtsov, Reznikov et 

al. 2001) 

6 FDMPO+CH3
*->FDMPO/CH3

* 0.1 (Khramtsov, Reznikov et 

al. 2001) 

7 FDMPO+CH2OH*->FDMPO/CH2OH* 0.2 (Khramtsov, Reznikov et 

al. 2001) 

 

The addition of pine pollen extract dissolved in DMSO changed the proposed 

mechanism of reaction. Only a small number of CH3 radicals are trapped by FDMPO, the 

FDMPO/OH* component dominates in the total spectrum, and the spectral intensity increases 

with time (Figure 6b). In this system the compounds extracted from pine pollen by methanol, 



Chapter 6  
 

119 
 

compete with DMSO for primary OH* radicals preventing the formation of carbon-centered 

radicals  (Table 3, reaction 2). Therefore, the extract from pine pollen clearly shows anti-

oxidant activity in relation to hydroxyl radicals. 

The time evolution of the ESR radical adducts spectra during the Fenton reaction with 

methanol (Fig. 7a) revealed a constant steady state concentration of FDMPO/OH* 

component, and the increase of total spectral intensity is only due to the formation of 

FDMPO/CH2OH* adducts (Table 3, reactions 3 and 7). Adding the extract from narcissus 

pollen dissolved in methanol results in a decrease of the total spectrum intensity and in the 

intensities of both spectral components (Fig. 7b). Obviously, the compounds extracted from 

narcissus pollen scavenge both hydroxyl and CH2OH*, demonstrating the anti-oxidant 

activity in relation to these two free radicals.   

6.3.5 Comparison of the efficiency of iterative analysis and artificial neural networks 

The accuracy and time performance of SBF and ANN approaches are summarized in 

Tables 4 and 5. Determination of the fraction coefficients was successful using either iterative 

SBF method whit the fraction coefficient as the only variable parameter or the RBF artificial 

neural network. Indeed, the determined fraction coefficients are well correlated (Table 4). 

However, the time required for the analysis of the set of spectra from one kinetic experiment 

differs drastically for the two approaches. 

Table 4. Correlation R between the fraction coefficients extracted by RBF network and by iterative 
fitting  

System R (correlation)   

Fenton reaction with DMSO 0.991998 

Fenton reaction with pine pollen extract 

dissolved in DMSO 

0.992585 

Fenton reaction with methanol  0.993563 

Fenton reaction with narcissus pollen extract 

dissolved in methanol 

0.997104 

 

The application of the SBF approach is straightforward, the time needed for analysis 

of one spectra is about 156 s,  and the productivity of the iterative approach is linearly 

dependent on the number of spectra to be analyzed (Table 5), resulting in 1560 min for 600 

spectra and 2600 min for 1000 spectra. The advantages of SBF for analysis of the spectra are 

that it doesn’t require any preprocessing of data or code modification, and more parameters, if 
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necessary, could be extracted from each spectrum. In addition to fraction coefficients and 

integrated intensity, the hyperfine splitting constants, g-tensor and correlation time can be also 

determined. However, in the presented applications these additional parameters are constant 

in time, so they are already defined from the simulation of one spectrum. Contrary to the SBF 

iterative analysis, the productivity of an ANN method for analysis of one spectrum is 0.12 s, 

and when a set of 600 spectra is analyzed it increases to only 0.25 s. A further increase of the 

number of spectra doesn’t influence significantly the processing time for the RBF network, 

because it depends mostly on the time needed for file operation (loading and saving), not on 

the analysis procedure itself.  The drawbacks of ANN are that the network should be modified 

for the actual spin adducts under study and trained to experimental data obtained at the actual 

conditions before application and only fractions are determined from the experimental 

spectra. The time for programming a new RBF in Matlab, creating training and testing sets 

(simulations of spectra with varying fraction parameters) is around 15 minutes.  

Table 5. Efficiency of RBF network and SBF Iterative fitting analysis*.  

Action RBF network Iterative fitting 

Preprocessing data 15 min 0 

Training 0.4 s 0 

analysis of 1 spectrum  0.12 s 156 s 

analysis of 600 spectra  0.25 s (3s)** 1560 min 

analysis of 1000 spectra  0.28 s 2600 min 

* The numbers were obtained on a pc with 1.9 GHz AMD Turion processor and 2GB RAM.  
** Total time of analysis including loading spectra from file and saving results to file 

 

In general, the choice of the method for experimental data analysis and processing 

depends on which information should be extracted from experimental spectra (e.g. only 

fraction coefficients and intensity of ESR spectra as a function of time or , in addition, other 

parameters if one expects that the spectra will change as well), the availability of sufficient, 

high quality data for creating the set of simulated spectra for neural network training and the 

number of spectra. Even in the unfavorable case that a new system has to be analyzed and a 

RBF network has to be trained for that system (15 min), RBF will be beneficial already if 

more then 10 spectra have to be considered (Figure 8). Moreover, the developed RBF network 

can be used for real time analysis of spectral components during kinetic measurements 
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Figure 8. Computing time for the RBF network (dotted line) and iterative SBF (solid line) 
approach as a function of the number of spectra.  

6.4 Conclusions 

The RBF neural network approach was shown to be highly efficient for the analysis of 

strongly overlapping two component ESR spectra from FDMPO radical adducts. The same 

accuracy of the fraction coefficient was obtained for all systems under study by the artificial 

neural network as compared to SBF method. ANN performs well on new spectra with 

signal/noise of at least 200. The neural networks were separately trained for Fenton reaction 

in DMSO and Fenton reaction in methanol. Despite the time needed for preprocessing spectra 

and training procedures, ANN approach is faster then iterative fitting and can be used for real 

time analysis of experimental spectra. 
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Chapter 7 

 

SUMMARIZING DISCUSSION 

7.1 Introduction 

ESR spectroscopy is a powerful tool for the direct study of free radicals, providing 

information about their surrounding, identity and motion. However, the analysis of ESR 

spectra is a challenging task because of the complexity of the spectra and partly overlapping 

peaks. In this thesis methods to analyze fast motion ESR spectra from spin probes and spin 

trap adducts are presented. As a first step spectra simulation is needed in order to obtain 

accurate ESR parameters of the contributing components, especially in the case of 

overlapping ESR spectral components. This situation was met in the study of model 

membranes by use of the distribution of the TEMPO spin probe over the water and the lipid 

phases (Chapter 2),  as well as the formation of  various spin adducts in spin trap studies of 

reactions that involve radical species (Chapters 3,4,5,6).   

In the spin trap studies the next step is identification of the spin adducts based on the 

obtained hyperfine splitting values. This has been approached by use of an artificial neural 

network (ANN) and/or calculations of the theoretical hyperfine splitting constants based on 

electronic structure calculations.  These calculations, in combination with ANN, have also 

been used to study the reaction pathway of the dissociation of the cleavage of peracetic acid 

(Chapter 5).  

7.2 Modeling and analysis of the ESR spectrum (Chapters 2,3,4,5,6)  

In this work simulation based fitting (SBF) was used for the analysis of ESR spectra. 

An experimental ESR spectrum was approximated by a simulated one based on a 
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mathematical model. The optimization algorithm varies parameters within the model in order 

to minimize the difference between the two spectra (error function). The same mathematical 

model was successfully used for the modeling of the ESR spectra from the TEMPO spin 

probe (Chapter 2) and from various spin traps (Chapters 3, 4, 5, 6). The ESR line shape was 

described by a convolution of Lorentzian and Gaussian lineshapes. The aim of the computer 

simulations was to obtain the ESR parameters with high accuracy, i.e. the optimization 

routine should find a global minimum of the error function. It turns out that the accuracy of 

the parameters obtained from the simulations of the ESR spectra measured at X (9.5 GHz), Q 

(34 GHz) and W-band (95 GHz) increased with the frequency. Only for the W-band spectrum 

the optimization routine found a global minimum. For the Q and X-band spectra the 

optimization ended at some local minimum. It appeared that in the model for the fast isotropic 

ESR spectrum simulations the rotational correlation time and the line broadening are strongly 

correlated. These correlated parameters can direct the optimization routine to multiple local 

minima, decreasing the accuracy of the parameters obtained from X and Q-band. The effect of 

the correlated parameters diminished with the increase of frequency. At W-band a high 

accuracy of the parameters can be obtained. 

Other models of isotropic motion reported in previous studies use more parameters for 

spectra simulations. That results in more correlated parameters and that decreases the 

efficiency of optimization routine because the global minimum cannot be achieved. Then 

either more complicated and time consuming routines are implemented in order to ensure that 

the optimization finds global minimum or the same SBF performed 10-100 times in order to 

get the average values. In contrast to previous studies presented in literature, where the main  

goal was to improve the optimization routine used to find the global minimum, in this work 

the global minimum was achieved by elimination of the correlation between the parameters in 

the model by using high frequency. Since the rotational correlation time is independent of the 

frequency, the simulations of X and Q-band spectra can be performed with rotational 

correlation times defined from the W-band measurements.  Doing so, the accuracy of the 

remaining parameters was greatly improved.   

Values of the rotation correlation time of TEMPO in water (6 ps) and in DOPC lipids 

(62 ps) (Chapter 2) obtained from simulation based fitting are in agreement with previous 

reported studies where SBF were used for the extraction of the correlation time from W-band 

ESR spectra. It is not surprising because at W-band or higher frequency there is no correlation 

between parameters and thus no problem of finding global minimum.   
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In case of spin trapping ESR all radical adducts are in the same solvent, thus the line 

broadening effect due to presence of paramagnetic oxygen is similar for all spectral 

components. However, the rotational correlation times of different radical adducts depend on 

the structure of the trapped radical.  In this case one broadening parameter was used for the 

simulation of all radical adduct components, however the correlation time parameters were 

different. That also decreases the correlation between parameters at X-band and improves the 

accuracy of obtained parameters. 

SBF was applied to extract accurate values of hyperfine spitting constants of POBN 

(Chapter 3), FDMPO (Chapters 4 and 6) and DIPPMPO (Chapter 5) radical adducts, in order 

to identify the trapped radicals. In addition, fitting of the experimental spectra allowed to 

follow the kinetics of each radical adduct. SBF revealed POBN/CH(CH3)OH* (aN=15.5G, 

aH=2.5G), POBN/OH* (aN=15.0G, aH=1.6G) and POBN/CH2OH* (aN=15.4G, aH=2.8G) in 

the spin trapping studies of the Fenton reaction with ethanol and methanol (Chapter 3). For 

both reactions the presence of taxifolin resulted in a decrease of the spectrum intensity of the 

radical adducts. 

In Chapter 6, the influence of pollen extracts (narcissus and pine) on the Fenton 

reaction with methanol and with dimethylsulfoxide was studied using SBF. The obtained 

hyperfine splitting values correspond to FDMPO/OH*, FDMPO/CH3* observed in the Fenton 

reaction with dimethylsulfoxide and FDMPO/OH*, FDMPO/CH2OH* observed in the Fenton 

reaction with methanol. The obtained parameters, i.e. nitrogen and fluorine hyperfine splitting 

constants, giso, rotation correlation time and line broadening, were used for the simulations of 

spectra for the training and testing sets of artificial neural networks.  

SBF revealed 5 components in the ESR spectrum of the reaction medium, where 

peracetic acid cleavage over MnO2 took place in the presence of the spin trap DIPPMPO 

(Chapter 5). Obtained hyperfine splitting values of spectral components suggested the 

hydroxyl adduct as the main component and several carbon-centered adducts. The extracted 

values of the hyperfine splitting constants of POBN, FDMPO and DIPPMPO spin traps are in 

agreement with values presented in literature. In addition, hyperfine splitting constants of a 

new free radical, CH3(C=O)O*,  were obtained for the corresponding DIPPMPO (aP= 50.9 G, 

aN= 10.2 G, aH = 13.9 G) and FDMPO (aN= 13.8 G, aF=2.46 G) spin adducts (Chapters 4 and 

5).   

The SBF is successfully used for ESR spectra decomposition and extraction of 

parameters, however SBF does not recognize radical adducts. The conclusion about radical 
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adduct identity is drawn based on previously published data or producing the same radical 

adduct in another way.   

7.3 DFT calculations (Chapters 4 and 5) 

As it was reported in previous studies, comparison between the theoretical ESR 

parameters, calculated on the basis of DFT optimized geometries, and the ESR experimental 

parameters of the studied paramagnetic species is a successful method for the species 

structural identification. However, in order to draw a sound conclusion based on theoretically 

calculated ESR parameters DFT calculations should use an appropriate basis set and should 

consider solvent–solute interactions and sometimes also motional effects. In this work the 

appropriate settings for DFT calculations were selected based on calculations of known 

radical adducts, such as FDMPO/OH and FDMPO/CH3. Hyperfine splitting constants of 

various FDMPO radical adducts were calculated using DFT calculations at B3LYP/6-31G** 

level of theory (Chapter 4). Good agreement between the theoretically calculated and the 

experimentally obtained hyperfine splitting constants of FDMPO/OH* (aN= 13.3 G, aF= 2.6 

G), FDMPO/CH2OH*(aN= 14.43 G, aF= 2.45 G), FDMPO/CH3*(aN= 14.63 G, aF= 2.52 G) 

was achieved if the solvent effect and effect of the rotation of the tryfluoromethyl group was 

included in the calculations. The good agreement between the experimental ESR parameters 

and the theoretical ESR parameters (aN= 13.27 G, aF= 1.99 G) calculated on the basis of 

optimized geometry of FDMPO/CH3(C=O)O*  allows identification of the new radical adduct 

observed in the reaction of cleavage of peracetic acid over MnO2 (Chapter 4).    

DFT calculations at B3LYP/6-31g(d) level of theory were performed in order to study 

the reaction pathway of the homolysis of peracetic acid, i.e. dissociation of the O-O bond of 

preracetic acid and formation of free radicals (Chapter 5). The optimized geometry of the 

reactants, products and transition structures were obtained. The heat of formation of peracetic 

acid (-76.7 kcal mol-1) calculated by adopting an atomization approach at HF/6-31G (d) level 

of theory as well as the calculated O-O bond dissociation energy (48 kcal mol-1) are higher 

than values reported previously, calculated by the group additivity methods. However, this 

has little effect upon the relative available energies. Therefore, such data can be used to 

construct an energy diagram for the radical reaction pathway. Our DFT calculations revealed 

that the dissociation of the peracetic acid O-O bond produced two primary radicals, *OH and 

CH3(C=O)O*. The subsequent formation of secondary radicals, CH3CO*, CH3(C=O)2O*, 

CH3* and CH3OO*, was nearly spontaneous. This information was not directly accessibly 

from spin trapping ESR, which only reveals free radicals that react with the spin trap. 
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7.4 Artificial neural networks (Chapters 4, 5 and 6) 

Artificial neural networks (ANN) solve different linear and non linear approximation 

problems. However, each application of an ANN requires an individual architecture design. In 

general, a multilayer perceptron (MLP) with several hidden layers is a good starting point, 

due to its ability to approximate any non-linear function. However, in some cases when the 

desired accuracy of the MLP output either cannot be achieved with current ANN architecture 

or the training of the MLP takes too long (several days) then other types of ANN should be 

checked for the better performance.  

The MLP type of ANN was used for the estimation of FDMPO radical adduct 

structures based on their ESR parameters (Chapter 4). Being trained only on previously 

published data ANN successfully associated the experimentally obtained hyperfine splitting 

constants with a pre-defined group of FDMPO radical adducts. The FDMPO radical adducts 

were grouped based on a similar structure of the radical addends, i.e. FDMPO radical adducts 

that contains carbon-centered spin adducts without oxygen (e.g. CH3* and CHC* ) are 

assigned to one group, whereas the other group includes carbon-oxygen FDMPO radical 

adducts with a CO (alkoxyl) group (CH2OH*, CH3CHOH* and etc). Nevertheless, although 

the ANN does not provide a chemical structure of the radical adduct, it is very efficient for the 

preliminary analysis of the type of trapped radicals (c-centered, hydroxyl, etc.). ANN 

performed well on FDMPO/CH3(C=O)O*  which is totally new and assigned it to carbon-

oxygen FDMPO radical adducts with a CO (alkoxyl) group. This approach is potentially 

important for the analysis of multi-component free radical systems with a variety of free 

radicals. 

In Chapter 5 it is demonstrated that a multilayer perceptron type of ANN associates 

well the removal efficiency of phenol with relevant process parameters (concentrations of 

MnO2 and PAA and the reaction time). Being trained on a limited experimental dataset the 

ANN predicted phenol removal rates for the different MnO2 and PAA concentrations. This 

allowed determining the optimal parameters (0.7 g L-1 of MnO2 and 50 ppm of PAA) for the 

highest removal efficiency of phenol (80%) in 120 min, without performing a large number of 

experiments. The control experiment using the optimized parameters confirmed the predicted 

ANN values of the removal efficiency. 

A radial basis function network, another type of an artificial neural network, was 

adopted to extract the fraction coefficients of different FDMPO spin adduct components from 

an  ESR spectrum (Chapter 6), since MLP failed on experimental data. In contrast to SBF this 

method is significantly faster already when more than 20 spectra are analyzed. This radial 
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basis function network was applied to the decomposition of two-components ESR spectra 

from FDMPO radical adducts formed in the Fenton reaction with dimethylsulfoxide or with 

methanol in the presence of the extract of pine pollen and narcissus pollen. The radial basis 

function network analyzed a set of 600 spectra in less than 1 minute, whereas the fitting 

approach required around 1500 minutes for the same number of spectra. Thus the radial basis 

function neural network approach is highly efficient for the analysis of large number of ESR 

spectra if only fractions of components and intensity of the ESR spectra are varied. It turns 

out that the compounds extracted from narcissus pollen scavenge both OH* and CH2OH*, 

demonstrating the antioxidant activity in relation to these two free radicals in the Fenton 

reaction with methanol. The extract from pine pollen clearly shows anti-oxidant activity in 

relation to hydroxyl radicals only in the Fenton reaction with dimethylsulfoxide.  

7.5 General conclusions 

The improved method to simulate fast isotropic ESR spectra from TEMPO spin probes 

and various spin traps presented in this thesis results in high accuracy ESR parameters. With 

the inclusion of W-band data to simulations very accurate ESR parameters are obtained even 

from X-band spectra. Moreover, application of the ANN to the extraction of the fraction of 

the spectral components in X-band ESR spectra from spin adducts decreases drastically the 

time of analysis. The obtained ESR parameters of spin adducts were interpreted by ANN 

(identification of trapped radicals) and DFT calculations (both identification of trapped free 

radicals and following the reaction pathway which result in formation of observed free 

radicals). In general, a combination of the proposed methods, i.e. simulation based fiting of 

ESR spectra, artificial neural networks analysis and DFT calculations, is needed to extract 

successfully the unique information from ESR spectra of spin traps.  
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Chapter 8 

 

SAMENVATTING 

Electron Spin Resonantie (ESR) is een krachtige techniek waarmee direct aan vrije 

radicalen gemeten kan worden. Hierbij wordt informatie verkregen over de locale omgeving 

en de moleculaire beweging van de radicalen. De analyse van ESR spectra is echter nog 

steeds een uitdagende taak vanwege de complexiteit van de spectra en (gedeeltelijke) overlap 

van resonantie lijnen van verschillende componenten. In dit proefschrift worden een drietal 

methoden gepresenteerd en vergeleken om ESR spectra van spin probe moleculen en 

radicalen die met zogenaamde spin trap moleculen een adduct vormen die met ESR waar te 

nemen zijn, in de vloeistof fase (snelle, isotrope beweging) te analyseren. Deze analyse 

methoden zijn toegepast om model membranen te bestuderen via de verdeling van de spin 

probe TEMPO over de water en de lipide fase (hoofdstuk 2). Daarnaast is de vorming van 

radicaal spin trap adducten in reacties waarbij radicalen betrokken zijn bestudeerd en zijn de 

radicaal adducten geidentificeerd (hoofdstukken 3-6). Als voorbeeld is de Fenton reactie, een 

overgangsmetaal gekatalyseerde oxidatiereactie, gebruikt. De Fenton reactie is de opsplitsing 

van waterstofperoxide (de oxidator, H2O2) door reactie met een ijzer(II) ion (de katalysator, 

Fe2+) in zeer reactieve (radicaal) deeltjes die in staat zijn organische moleculen te oxideren. 

Hoewel deze reactie al in 1876 door H.J.H. Fenton werd ontdekt en sindsdien onderwerp van 

ontelbaar veel studies is geweest, is het reactiemechanisme en de aard van de zeer reactieve 

deeltjes meer dan een eeuw later nog steeds niet met zekerheid bekend. Het grootste 

experimentele probleem is dat de reactieve deeltjes slechts een zeer korte tijd bestaan voordat 

ze reageren, zodat ze nauwelijks direct in een meting zijn waar te nemen. Desalniettemin 

wordt de Fenton reactie (en varianten hierop) veelvuldig toegepast in de industrie. Het 

probleem van de korte levensduur van de reactieve deeltjes is hier ondervangen door de 

radicalen te laten reageren met verschillende ESR spin traps, waarbij langer levende radicaal 

spin trap adducten worden gevormd. Identificatie van deze radicaal adducten is gebaseerd op 

de waarde van de hyperfijn splitsingsconstanten. Deze is benaderd door middel van (1) fitten 
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van de experimentele spectra op basis van spectra verkregen via een mathematisch simulatie 

model (SBF), (2) toepassing van artificieel neurale netwerken (ANNs) en/of (3) berekeningen 

van de theoretische waarden gebaseerd op de electronen structuur van de radicaal adducten. 

Deze berekeningen, in combinatie met de toepassing van ANN, zijn ook gebruikt om het 

reactiepad van de (katalytische) dissociatie van perazijnzuur (PAA), een bekend 

radicaalvormend antimicrobieel middel, te ontrafelen (hoofdstuk 5). 

In SBF worden via een optimalisatie algoritme de parameters binnen het model 

gevarieerd, zodanig dat het verschil tussen de twee spectra (de error functie) een vooraf 

gedefinieerd minimum bereikt. Een nieuw model is gebruikt met minder variabele parameters 

dan in de reeds in gebruikzijnde modellen. Deze oude modellen resulteren in (sterke) 

correlaties tussen de parameters en daardoor in verlies van efficientie en nauwkeurigheid. Het 

hier beschreven model (hoofdstuk 2) kon succesvol toegepast worden voor verschillende 

omgevingen,  zowel voor de ESR spectra van de spin probe TEMPO in water en lipide fase 

als van verschillende radicaal spin trap adducten gevormd door Fenton reacties (hoofdstukken 

3-6). De lijnvorm wordt beschreven met een convolutie van een Lorentz en een Gauss 

lijnvorm. Het blijkt dat parameters verkregen met dit model nauwkeuriger worden bij spectra 

verkregen met X (9.5 GHz), Q (34 GHz) en W-band (95 GHz) ESR spectrometers, 

respectievelijk. Alleen voor de W-band spectra resulteerde de optimalisatie in een echt 

globaal minimum voor de error functie. Voor spectra verkregen met X en Q-band eindigde de 

optimalisatie van de error functie in een of ander locaal minimum. Gebleken is dat er in het 

gebruikte model een sterke correlatie bestaat tussen twee parameters: de rotatie correlatietijd 

en de lijnverbreding. Het effect van deze correlatie vermindert bij toename van de 

meetfrekwentie. Bij W-band wordt een hoge nauwkeurigheid en reproduceerbaarheid voor 

beide parameters verkregen. De rotatie correlatietijd is niet afhankelijk van de 

meetfrekwentie, in tegenstelling tot de lijnverbreding. Daarom kunnen de resultaten met X en 

Q-band verkregen sterk verbeterd worden in nauwkeurigheid als de waarde van de rotatie 

correlatietijd verkregen via een enkele (referentie) meting met W-band, gebruikt wordt voor 

simulatie van de eenvoudiger te meten X of Q-band spectra. 

Waarden van de op deze manier verkregen rotatie correlatietijd van TEMPO in water 

(6 ps) en in DOPC (62 ps) zijn in goede overeenstemming met eerder gepubliceerde waarden 

verkregen met andere simulatiemodellen aan W-band ESR spectra. Dit is niet echt 

verwonderlijk, omdat bij die (of nog hogere) frequentie er geen correlatie meer is tussen de 

parameters. 
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Voor de spin trap ESR studies zijn alle radicaal spin adducten in hetzelfde oplosmiddel 

gemeten en het lijnverbredingseffect door de aanwezigheid van zuurstof is vergelijkbaar voor 

alle spectrale componenten. De rotatie correlatietijden van de verschillende radicaal adducten 

echter zijn afhankelijk van de structuur van de ingevangen radicalen. In dit geval kon voor het 

SBF model dezelfde lijnverbredingsparameter worden gebruikt voor alle radicaal adducten, 

maar verschillende rotatie correlatietijden waren vereist. Op deze manier kon de correlatie 

tussen deze twee parameters in het SBF model voor simulatie van X-band ESR spectra sterk 

worden geminimaliseerd. 

SBF is toegepast om nauwkeurige waarden van de hyperfijn splitsingsconstanten voor 

POBN (hoofdstuk 3), FDMPO (hoofdstuk 4 en 6) en DIPPMPO (hoofdstuk 5) radicaal 

adducten te verkrijgen uit X-band ESR spectra. Op deze manier konden in de reacties 

gevormde en ingevangen radicalen worden geidentificeerd en de kinetiek van elk radicaal 

adduct tijdens de reacties worden gevolgd. In de Fenton reactie in ethanol en methanol 

(hoofdstuk 3) werden zo POBN/CH(CH3)OH*, POBN/OH* en POBN/CH2OH* aangetoond. 

Voor beide reacties had de aanwezigheid van taxifoline een afname in de intensiteit van de 

radicaal adducten tot gevolg, een duidelijke indicatie voor antioxidant activiteit. SBF is 

toegepast om het effect van pollen extracten (narcus en den) op de Fenton reactie met 

methanol en met dimethylsulfoxide te bestuderen met behulp van de spin trap FDMPO. De 

gevonden hyperfijn splitsingsconstanten correspondeerden met die van FDMPO/OH*, 

FDMPO/CH3* in het geval van de Fenton reactie met dimethylsulfoxide en met die van 

FDMPO/OH* en FDMPO/CH2OH* in het geval van de Fenton reactie met methanol. De 

gevonden waarden voor de hyperfijn splisingsconstanten, giso, de rotatie correlatietijden en de 

lijnverbreding zijn gebruikt voor de trainings- en testsets voor ANNs. 

Met behulp van SBF aan de ESR spectra van het reactiemedium waarin PAA werd 

gesplitst over MnO2 in aanwezigheid van de spin trap DIPPMPO (hoofdstuk 5) werden 5 

componenten aangetoond. Op grond van de hyperfijn splitsingsconstanten kon worden 

geconcludeerd dat het hydroxyl adduct de belangrijkste component was. Daarnaast kwamen 

verschillende koolstofgecentreerde radicaal adducten voor. 

De gevonden waarden voor de hyperfijn splitsingsconstanten van POBN, FDMPO en 

DIPPMPO radicaal adducten zijn in goede overeenstemming met waarden gepresenteerd in 

de literatuur. Daarnaast zijn de hyperfijn splitsingsconstanten van een niet eerder 

waargenomen radicaal, CH3(C=O)O*, gevonden, voor de spin adducten met DIPPMPO en 

FDMPO (hoofdstukken 4 en 5). 
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SBF kan succesvol worden ingezet voor de decompositie van ESR spectra en om 

parameters die de spectra bepalen te extraheren, maar kan niet worden toegepast om radicaal 

adducten te identificeren. Identificatie is gebaseerd op eerder gepubliceerde data van ESR 

parameters of via kwantummechanische berekeningen op basis van de elektronenstructuur 

voor de betreffende structuur volgens het principe van de dichtheid functionaal theorie (DFT). 

Kennis van de elektronenstructuur in moleculen maakt het mogelijk om naast ESR parameters 

zoals de hyperfijn splitsingsconstanten ook de chemische reacties tussen moleculen te 

voorspellen en te begrijpen. 

Vergelijking van experimentele en theoretische ESR parameters, verkregen op basis 

van DFT geoptimaliseerde structuren, is een succesvolle methode om het soort 

paramagnetische molecuul te identificeren. Om echter een correcte conclusie te kunnen 

trekken moeten de DFT berekeningen een juiste basisset gebruiken en interacties met het 

oplosmiddel/medium en eventueel ook kinetische effecten van/in het molecuul meenemen. 

Hier zijn als uitgangspunten voor de DFT berekeningen settings en parameters gebruikt die 

een succesvolle vergelijking gaven van de resultaten met bekende radicaal adducten, zoals 

FDMPO/OH* en FDMPO/CH3*. Hyperfijn splitsingsconstanten van verschillende FDMPO 

radicaal adducten zijn berekend met DFT op B3LYP/6-31G structuurniveau (hoofdstuk 4). 

Goede overeenstemming voor FDMPO/OH*, FDMPO/CH2OH* en FDMPO/CH3* werd 

gevonden als het effect van het oplosmedium en rotatie van de trifluoromethyl groep in de 

berekening voor de hyperfijn splitsingsconstante werden meegenomen. De goede 

overeenkomst tussen experimentele en theoretische waarden van de hyperfijn 

koppelingsconstanten voor FDMPO/CH3(C=O)O)* is gebruikt voor de identificatie van dit 

nieuwe radicaal adduct in de reactie voor de splitsing van PAA over MnO2 (hoofdstuk 4). 

DFT berekeningen met de B3LYP/6-31G basisset zijn vervolgens ook uitgevoerd om het 

reactiepad van de homolyse van PAA, i.c. de dissociatie van de O-O binding van PAA en de 

vorming van vrije radicalen, te bestuderen (hoofdstuk 5). Op deze manier werden de 

geoptimaliseerde structuren van de reactanten, producten en overgangsstructuren verkregen. 

De berekende vormingsenthalpie van PAA (-76.7 kcal mol-1) en de bindingsdissociatie 

energie (48 kcal mol-1) zijn hoger dan waarden gepubliceerd op grond van een iets andere 

methode. Dit heeft echter weinig effect op de relatieve beschikbare energieën. Daarom 

kunnen de aldus verkregen gegevens gebruikt worden om een energiediagram te maken voor 

het radicaal reactiepad. Onze DFT berekeningen legden bloot dat de dissociatie van de O-O 

binding in PAA resulteerde in twee primaire radicalen, OH* en CH3(C=O)O*. De daarop 

volgende vorming van secundaire radicalen, CH3CO*, CH3(C=O)2O*, CH3* en CH3OO*, 
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was nagenoeg spontaan. Deze informatie was niet direct te verkrijgen uit de spin trap studies, 

waarmee alleen radicalen die reageren met de spin trap te zien zijn. 

De derde benadering is met behulp van ANN’s. ANN’s worden gebruikt voor het 

oplossen van verschillende lineaire en niet-lineaire benaderingsproblemen. Elke toepassing 

van een ANN vereist een individueel architecturaal ontwerp. Hier zijn twee verschillende 

ANN’s gebruikt: een multilaags perceptron (MLP) met verschillende verborgen lagen, en een 

radiaal basisfunctie netwerk (RBF). De laatste werd gebruikt voor die gevallen waar de MLP 

faalde.  

Een MLP is gebruikt voor de schatting van de waarschijnlijkheid dat FDMPO radicaal 

adducten, die vallen binnen bepaalde van te voren gedefinieerde structuurklassen, aanwezig 

waren (hoofdstuk 4). De MLP werd hierbij getraind met reeds eerder gepubliceerde data. De 

FDMPO radicaal adducten konden worden gegroepeerd op basis van vergelijkbare structuur 

van de radicalen, i.c. koolstof gecentreerd zonder zuurstof (bv CH3 * en CHC*) als een 

groep, terwijl een andere groep uit koolstof-zuurstof radicaal adducten met een CO-groep (bv. 

CH2OH*, CH3CHOH*, etc) bestaat. De ANN was zeer efficiënt om een eerste analyse to 

doen om de type radicaal adducten te herkennen, echter zonder echt te identificeren. Zelfs het 

totaal nieuw gevonden FDMPO/CH3(C=O)O* adduct werd geclassificeerd in de koolstof-

zuurstof FDMPO radicaal adducten met een CO (alkoxyl) groep. Deze benadering is 

potentieel belangrijk voor de analyse van multi-component vrije radicaal systemen met 

verschillende radicalen. 

Een MLP netwerk was zelfs succesvol om de efficiëntie van de afbraak van fenol te 

associëren aan relevante procesparameters (concentratie MnO2, PAA en de reactietijd). 

Eenmaal getraind met een beperkte experimentele dataset voorspelde de ANN de 

afbraaksnelheid van fenol voor de verschillende MnO2 en PAA concentraties. Hiermee 

konden de optimale parameters voor de hoogste afbraak efficiëntie voor fenol worden 

bepaald, zonder een groot aantal experimenten te moeten uitvoeren. Het controle experiment 

onder de geoptimaliseerde parameters bevestigde de voorspelde waarden van de 

afbraakefficiëntie (hoofdstuk 5). 

Een RBF netwerk werd opgezet om succesvol de fractiecoëfficiënten van 

verschillende FDMPO radicaal spin adducten uit experimentele ESR spectra te extraheren 

(hoofdstuk 6). MLP faalde hierin. Het RBF netwerk was aanzienlijk sneller dan SBF, zodat al 

bij meer dan 20 spectra, ondanks de tijd nodig voor de trainingsstap, er tijdwinst optrad. Dit 

RBF netwerk werd gebruikt om (twee component) ESR spectra van FDMPO radicaal 

adducten te ontleden. Deze adducten werden gevormd in de Fenton reactie met 
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dimethylsulfoxide of met methanol, in afwezigheid en aanwezigheid van pollenextracten van 

den of narcis. Het RBF netwerk analyseerde een set van 600 spectra in minder dan 1 minuut, 

terwijl SBF voor hetzelfde aantal rond de 1500 minuten nodig had. Dit demonstreert dat 

ANNs zeer efficiënt zijn om grote aantallen complexe ESR spectra te analyseren als alleen de 

fracties van de componenten, of intensiteiten in de ESR spectra, variëren.  

Beide pollen extracten vertoonden antioxidant activiteit. Het extract van narcispollen 

in methanol vangt zowel OH* als CH2OH* weg, het extract van denpollen in 

dimethylsulfoxide tegen hydroxyl radicalen. 

In het algemeen is een combinatie van de drie voorgestelde analyse methoden nodig 

om succesvol de unieke informatie verborgen in ESR spectra van spin trap moleculen uit de 

spectra te halen.  
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