Intelligent water use in horticulture – trends in Dutch research

Public workshop 20th August 2010 UWS Hawkesbury, Australia

Silke Hemming Wageningen UR Greenhouse Horticulture, NL silke.hemming@wur.nl

International dimension

Challenges:

- World population is now three times higher than 100 years ago (actual 6,8 billion)
- 2,4 to 3,3 billion people will suffer water shortage in 2025
- Poor water quality (salinity, pollution, pathogens)
- Competition between agriculture and industry / tourism
- 70% of water use world wide by agriculture
- → more intensive production necessary
 = more production with less resources (water, energy, soil...)
- > greenhouses?

Relative yield

Water quality and quantity

- Salinity → crop stress, yield losses
- Pathogens → yield losses
- Scarcity of water → yield losses, quality losses, decreased income
- Increasing water prices
- → resistant varieties, water purification, out of the soil, closed cycles....
- → greenhouses?

Desalinization plant of Carboneras, covers 1/3 of water needs of **Almeria**, costs 0.5 €/m³

Water use efficiency increases with ...

Water losses to air – "closed" water cycle

Water losses to air – "really closed" water cycle

Water use efficiency closed greenhouse

Closed greenhouse

Minimum ventilation openings, keep ventilation as close as possible

Temperature and humidity regulation with heat exchangers and recovery

Water losses to soil - emissions

- Policy
- Directive water and emissions in Europe
- Directive about emission of nitrate, phosphate, chemicals and heavy metals
 - GLAMI emission norm of N and P to surface water
 - Emission of chemicals important
 - Goal 2027: Zero emission from a greenhouse
 - Minimum emission to ground, water and air

AquaReuse: Water recycling on regional level

Water losses to soil – emissions

- Projects in greenhouses
 - Recirculation roses
 - Chrysanthemum on substrate
 - Lysimeter use in chrysanthemum
- Project open field crops
 - Leech out of the soil
 - Trees on gutters

Water losses to soil - sensors and control

- Sensors:
 - Tensiometer
 - WET-sensor (Water content, EC, Temperature)
 - Wireless sensor network
- Control:
 - Time
 - Sensor based
 - Model based (e.g. ET)
 - Water sources with different quality

Water losses to soil – sensors and control

Waterman = Soil Sensor Activated Control for

Water Management

 Goal: minimum penetration of water in ground water in openfield

- Virtual closed system
- Sensors for water content and EC
- Models for evapotranspiration and nutrient uptake

Decision Support Systems

Flow Aid = Farm Level Optimal Water management

- Combining different information from
 - Weather forecast
 - Water storage
 - Climate data (temperature, irradiation, wind)
 - Economical data of farming system
 - Soil based sensors (water content, EC, temperature)
 - Crop models (growth, transpiration, salinity tolerance)
- Support decision of grower → "apply water now"

Water efficient systems

- Protected cultivation improves water use efficiency
 - Closed greenhouses reduce water losses to air
 - Recycling in hydroponics reduces water emission to soil
 - Regional water recycling
- Sensors and intelligent control
- Models and decision support system

Thank you for your attention!

© Wageningen UR

