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HKVconsultants, Lelystad, The Netherlands 

J.M. van Noortwijk 
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ABSTRACT: To determine the design water levels along the major rivers in the Netherlands, 
two-dimensional flow models, based on the software package WAQUA, are applied. 
Calibration of these mathematical models is, in general, a time consuming process. This 
process can be automated by function minimisation with the simplex algorithm as proposed 
by Nelder and Mead (1965). In the present paper, this methodology and the results of an 
application to the Dutch IJssel river are described. To prevent unrealistic values for the 
parameters, constraints have been implemented. The results are encouraging. 
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1 Introduction 

In a low-lying country, such as the Nether-
lands, protection against high water levels 
during (extreme) river floods is of great im-
portance. The dike heights are based on the 
water levels for the design discharge. This 
discharge is based on a frequency analysis of 
the (annual) maximum discharges at the up-
stream Dutch border and has an average re-
turn period of 1250 years. The maximum 
discharge during the recent flood waves of 
1993 and 1995 has an influence on the fre-
quency analysis, resulting in a larger value 
of the design discharge. To cope with such 
trends in the discharge and possible other 
trends that may affect the water levels in the 
rivers, such as changes in land use, river ge-
ometry and bed level changes due to erosion 
or sedimentation, the law prescribes a regu-
lar update of the design water levels. The 
local dike height will be based on the design 
water levels. For the next update, the river 
flow models and the methodology for cali-
bration are reviewed. 
For the assessment of the water levels during 
a flood wave in the Dutch main rivers, the 
flow conditions in the river are simulated 
with a mathematical model. Although depth 
and width averaged flow simulations (one-
dimensional flow models) can also be used 
to predict the water levels in open channels, 
two-dimensional depth-averaged flow 
simulations (2DH-models), based on the 
software package WAQUA (Rijkswaterstaat, 
1992) are preferable. Depth-averaged mod-
elling allows a more precise representation 
of river characteristics, resulting in a more 
accurate prediction of water levels than 
would be possible with 1D-models. Apart 
from more accurate results, a 2DH-model 
also generates information of local flow 
conditions, which can be used to evaluate 
the effects of works to be executed in the 
major bed. Compensating measures can be 
defined to mitigate possible negative effects. 

Assuming that the river geometry has been 
thoroughly checked and that the measured 
hydraulic conditions in the river have been 
validated, the model can be calibrated by 
reducing the differences between measured 
and calculated flow conditions. Usually 
these differences are reduced by expert 
judgement with regard to the effect of vari-
ous specified hydraulic roughness compo-
nents, such as grass, woodland, shrubs and 
reed, on the flow conditions, followed by a 
recalculation of the flow conditions with 
adapted hydraulic roughness values. In gen-
eral, this is a trial and error approach that 
depends mostly on the skills of the expert, 
while the process is time consuming. Hence, 
there is a need for a systematic approach. In 
the present paper a more systematic ap-
proach is developed on the basis of a func-
tion minimisation using the simplex method 
as proposed by Nelder and Mead (1965). 
The underlying study for this paper has been 
commissioned by the Dutch Ministry of 
Transport, Public Works and Water Man-
agement, Institute of Integral Water Man-
agement and Wastewater Treatment (RIZA).  
The authors acknowledge E.H. van Velzen 
(RIZA) for his support during the study. 
 

2 Methodology   

For the purpose of calibrating two-dimen-
sional water-flow models, the roughness 
parameters must be determined as such that 
the measured and calculated water levels 
coincide as much as possible. This can be 
achieved by minimising the sum of the 
squared differences between measurements 
and calculations. A difficulty in using this 
method of the least squares is that one 
WAQUA simulation requires almost half an 
hour computing time (on a workstation). 
Therefore, the minimisation procedure to be 
chosen has to be fast, robust, and simple. 
Furthermore, computing the derivatives of 
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the object function is not feasible in this 
situation.  
A well-known minimisation algorithm using 
only function value information is the sim-
plex algorithm of Nelder and Mead (1965). 
When the number of parameters is small (i.e. 
smaller than about 15), this direct search 
method is often competitive with more com-
plex algorithms that require many algebraic 
calculations. Another advantage of the 
Nelder-Mead simplex algorithm is the small 
number of calculations that is needed to ini-
tialise the algorithm (this number equals the 
number of parameters n plus one). More ad-
vanced global optimisation techniques, such 
as neural networks, simulated annealing, and 
genetic algorithms, may require even one 
thousand iterations for finding the optimum 
(Solomatine, 1995). An efficient implemen-
tation of Dennis and Woods (1987) has been 
used to program the Nelder-Mead simplex 
method. 
In mathematical terms, the object function 
that represents the squares of differences 
between measurements and calculations can 
be written as 
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where j stands for the index of the river dis-
charge Qj,  k  for the index of the measuring 
location, wjk  for the weight attached to dis-
charge j and measuring location k, hjk and ϕjk  

for the measured and calculated water level 
at measuring location k given discharge j, 
respectively, and the vector x for the n mul-
tiplication coefficients that are introduced in 
Sections 3-4. 
The combination x* of multiplication coeffi-
cients is optimal when it minimises the ob-
ject function, i.e. when 

 )(min)( * xx
x
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This unconstrained minimisation problem 
can be solved using the Nelder-Mead sim-
plex method. At each iteration n+1 points 
are used as the vertices of an n-dimensional 
simplex. In R2, for example, three points 
determine a triangle. First, on basis of the 
currently-used parametric vector, the other n 
vertices of the simplex are created by en-
larging one co-ordinate, e.g. with 5%, and 
keeping the other n-1 co-ordinates fixed (this 
is done for all n co-ordinates). Next, trial 
steps are generated by the four operations of 
reflection, expansion, contraction, and 
shrinkage. A reflected vertex is computed by 
reflecting the worst vertex (having the larg-
est object function value) through the cen-
troid of the n remaining vertices. Roughly, 
there are now three possibilities: 
 
1. If the reflected vertex has a function 

value which is less than the largest func-
tion value of the n remaining vertices and 
greater than or equal to the smallest func-
tion value of the n remaining vertices, 
then the reflected vertex is accepted and it 
is added to the set of the n remaining ver-
tices. 

2. If the reflected vertex has a function 
value which is less than the smallest 
function value of the n remaining verti-
ces, then the trial step has produced a 
good point and an expansion vertex is 
computed. The expansion vertex is ac-
cepted (and the simplex is expanded) if 
its function value is less than the smallest 
function value, otherwise the reflected 
vertex is accepted. 

3. If the reflected vertex has a function 
value which is greater than or equal to the 
largest function value of the n remaining 
vertices, then the simplex is contracted or 
shrunk. 

 
The iteration process stops when the simplex 
is small. The simplex then contains the 
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minimum or is very close to it. The number 
of evaluations of the object function is ap-
proximately proportional to the power law 
(n+1)2.11. For details, see Nelder and Mead 
(1965) or Dennis and Woods (1987). 
To prevent the roughness parameters to take 
unrealistic values, lower and upper bounds 
for the parameters can be introduced by ap-
plying the transformation 
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where li and ui are the lower and upper 
bound of xi, respectively, i = 1,...,n. Using 
this transformation, the constrained minimi-
sation problem 
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can now easily be transformed into the un-
constrained minimisation problem 
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which can be solved using the simplex algo-
rithm. 
 

3 Application 

To test the function minimisation with the 
simplex method of Nelder and Mead the 
IJssel river (one of the Rhine branches in the 
Netherlands) was selected. The method is 
applied to a section between Zutphen and 
Zwolle (see  
Figure 1). 
 

 

Figure 1: The IJssel river between Zutphen and 
Zwolle, the Netherlands 
 

This river section consists of a minor bed, 
with a more or less uniform flow width of 
approx. 90 m, and a major bed, with a width 
(storage and flow width) varying from 350 
m to 3100 m. The minor bed is an open 
channel with non-cohesive bed material. 
Different bed forms occur in the minor bed. 
The flood plain is mostly open with different 
kinds of grass and patches of reed, hedges, 
shrubs and woodland. For some locations in 
the flood plain, plans were developed for 
Nature Restoration, such as the Duursche 
Waarden on the right bank, opposite Vees-
sen (see  

Figure 2). 
At those locations there is more reed and 
woodland in the flood plain. Often, herds of 
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some kind graze in these areas to create an 
area with specific biological and ecological 
characteristics (ecotope). In the mathemati-
cal model, the flow over grass and over reed, 
and through shrubs and woodland is repre-
sented by a (local) roughness value. 

SSmmooootthh  ppaassttuurree

HHaayyllaanndd

RRoouugghh  ppaassttuurree

OOppeenn  ffoorreesstt  ((hhaarrddwwoooodd))

RReegguullaarr  ffoorreesstt

DDeennssee  ffoorreesstt  ((ssooffttwwoooodd))

SShhrruubb  ((yyoouunngg  wwii ll lloowwss))

RReeeedd

 

Figure 2: Types of vegetation in the Duursche 
Waarden (between Olst and Wijhe). 
 
Some of the relations for the hydraulic 
roughness, such as the roughness due to 
grass, can be represented by the roughness 
formulation as proposed by Nikuradse: 

)
12

log(18
sk

h
C =  

with C = Chézy value, h = water depth and 
ks = roughness according to Nikuradse. Oth-
ers, such as the flow through woodland, re-
quire a more complicated relation between 
roughness and the actual flow velocity 
and/or water depth, see Klopstra et al, 
(1997):  
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with Ai = flow area of vegetation, As = flow 
area, Cb = Chézy value due to bed friction 

alone, Cd = drag coefficient of vegetation, 
Ct = total Chézy value, g = acceleration of 
gravity, L = length of vegetation in flow 
direction and R = hydraulic radius. 

In the mathematical model, approximately 
20 types of vegetation are distinguished with 
their own influences on the hydraulic rough-
ness. It is, however, not practical to optimise 
all vegetation types in the calibration of the 
mathematical model using the simplex algo-
rithm. The vegetation types with only a lim-
ited area of appearance in the river section 
are excluded from the parameter optimisa-
tion.  

 
A further reduction of the number of pa-

rameters is obtained by assuming a fixed 
ratio between different classes of the same 
vegetation type, such as short grass, normal 
grass and long grass. The hydraulic rough-
ness is represented by a Nikuradse type of 
roughness, with kshort grass = knormal grass/2.5 
and klong grass = 5 knormal grass. The function 
minimisation results in an optimal value for 
normal grass, but due to the roughness ratio 
between normal grass and short and long 
grass, the hydraulic roughness of these 
vegetation types are also influenced. A 
similar approach has been applied for 
woodland and shrubs. For the representation 
of the hydraulic roughness of bed forms in 
the minor bed, the roughness predictor ac-
cording to Van Rijn (1985) and Ogink 
(1986), simplified by Van Velzen (1998), 
has been used: 

})exp{1( 3.07.0 −−−= hhk s βα  

with α,β = coefficients, h = water depth and 
ks = minor bed roughness (Nikuradse). In 
this formulation the influence of the charac-
teristic grain size (D50) on the roughness of 
the minor bed is incorporated in the coeffi-
cients α and β. Due to the variation of the 
grain size in longitudinal direction both co-
efficients are not constant and are also pa-
rameters in the function minimisation. For 
all the types of roughness a multiplication 
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coefficient is defined, which is varied in the 
function minimisation to obtain a minimum 
value for the object function. To reduce the 
number of parameters related to the minor 
bed, a fixed ratio was assumed for the values 
of the coefficient α in the various sections 
and similarly the coefficient β. 
The simplex algorithm can be applied to a 
complete hydrograph. The object function is 
the sum of the squared differences between 
measured and calculated water levels at a 
regular time interval during the hydrograph 
for a given number of measuring locations. 
To reduce the required computing time for 
the function minimisation, the hydrograph is 
(temporarily) represented by m = 5 steady 
state discharges (Q1 = 750 m3/s, Q2 = 1050 
m3/s, Q3 =1350 m3/s, Q4 = 1600 m3/s and 
Q5 = 1850 m3/s). In the river section that is 
modelled, the water levels are measured in 
p = 4 stations (Zutphen, Deventer, Olst and 
Wijhe) upstream of the outflow boundary 
location in the mathematical model. The 
measured water levels for the locations 
mentioned above were obtained from stage-
discharge relations (see Figure 3).  
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Figure 3: Stage-discharge relation for measuring 
location Wijhe. 
 
The mathematical model is, amongst others, 
used for the prediction of water levels at ex-
treme flood conditions with an average re-
turn period of 1250 years. It is therefore im-
portant to reduce the uncertainty in the pre-
dicted water levels at high discharges. This 
can be achieved by weighing the differences 
between measured and calculated water lev-

els. The water level differences were given 
weight j for river discharge Qj, i.e. wjk = j for 
j = 1,...,m and k = 1,...,p. Note that all meas-
uring locations are given equal weight. 
The minimised value x* of the object func-
tion (1) gives an indication of the average 
inaccuracy of the calculated water levels in 
comparison to the measured water levels 
according to: 

]2)1([
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4 Results 

Computations have been carried out with a 
different number of parameters in the func-
tion minimisation. In the first series only 
n = 5 roughness parameters were used 
(grass, α and β constant in longitudinal di-
rection, woodland and shrubs) without con-
straints in the value of the roughness pa-
rameters, according to Equation (1) as long 
as they are positive and the model calcula-
tions are stable.  
However, the roughness parameters tend to 
take unrealistic values. To prevent unrealis-
tic values, a lower and an upper bound is 
specified for each roughness parameter and 
the calculations were repeated. The devel-
opment of the object function (2) during the 
function minimisation is given in Figure 4. 
The corresponding iteration process of the 
multiplication factors for the various types 
of roughness is shown in  
Figure 5 up to and including  
Figure 9.  
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Figure 4: Decrease of object function each time 
a new minimum is found in the simplex (5 
parameters). 
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Figure 5: Multiplication coefficient for grass. 
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Figure 6: Multiplication coefficient for α of 
minor bed roughness. 
 
From Figure 4 it follows that the simplex 
algorithm approaches the minimum value 
asymptotically. This also holds for the mul-
tiplication coefficients of the various types 
of roughness. Apart from the multiplication 
coefficient for grass, the resulting values of 
the multiplication coefficients approach ei-
ther the lower bound or the upper bound. 
There is a simple explanation for this. Since 

most of the flood plain is covered with grass, 
slight adjustments in this type of roughness 
result in noticeable changes in the calculated 
water levels, improving the object function. 
The other types of vegetation cover only 
relatively small areas. Therefore, for a small 
change in water level, large changes in 
roughness are required to improve the object 
function and the resulting multiplication co-
efficient approaches the lower or upper 
bound.  
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Figure 7: Multiplication coefficient for β of 
minor bed roughness. 
 

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12
Simplex number

co
ef

fi
ci

en
t

woodland
Series4

 
Figure 8: Multiplication coefficient for 
woodland. 
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Figure 9: Multiplication coefficient for shrubs.  
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In the function minimisation so far, the 
roughness for the minor bed is assumed to 
be constant in longitudinal direction. In re-
ality, however, the minor bed roughness 
varies in longitudinal direction. The varia-
tion in longitudinal direction was taken into 
account by increasing the number of vari-
ables in the simplex algorithm. In the flow 
direction r = 6 sections were distinguished, 
each section having its own minor bed 
roughness. Because each section adds two 
more parameters to the simplex assessment, 
the total number of parameters in the sim-
plex was increased to n = 15. Due to the 
larger number of parameters, more simula-
tions with the mathematical model were re-
quired to minimise the object function. To 
reduce the time required for computations, 
the number of discharge levels was reduced 
from m = 5 to m = 2 levels (Q1 = 1650 m3/s 
and Q2 = 1800 m3/s). Due to the reduced 
number of discharge levels, the object func-
tion has a smaller starting value. The itera-
tion process of the object function minimi-
sation is shown in  

Figure 10. According to Equation (3), the 
average inaccuracy in the computed water 
levels is approximately 0.04 m. 
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Figure 10: Decrease of object function each time 
a new minimum is found for the simplex (15 pa-
rameters). 
 

The optimised values of the multiplication 
coefficients γgrass, γwoodland, γshrubs, α1, ..., αr, 
β1, ..., βr are given in Table 1, where r = 6.  
 

Table 1: Multiplication coefficients for the pa-
rameters in the simplex determination. 
Multiplication 
Coëfficiënt for: 

Lower bound Value Upper bound 

γgrass 0.50 0.982 2.50 
γwoodland 0.20 0.227 2.00 
γshrubs 0.30 0.369 3.00 
α1, section 1 0.80 1.298 1.30 
α2, section 2 0.80 1.300 1.30 
α3, section 3 0.80 0.801 1.30 
α4, section 4 0.80 0.805 1.30 
α5, section 5 0.80 0.802 1.30 
α6, section 6 0.80 1.299 1.30 
β1, section 1 0.36 1.693 1.70 
β2, section 2 0.36 1.692 1.70 
β3, section 3 0.36 1.692 1.70 
β4, section 4 0.36 0.365 1.70 
β5, section 5 0.36 0.366 1.70 
β6, section 6 0.36 0.369 1.70 
 

5 Conclusions 

The present study demonstrates that the dif-
ferences between measured and calculated 
water levels can be minimised by applying 
the simplex algorithm of Nelder and Mead. 
With prescribed constraints based on rea-
sonable physical bounds for the parameters, 
the calibration process is comparable to the 
process that would have been used other-
wise, but with much less human effort. With 
or without constraints, the simplex algorithm 
converges to a minimum value for the object 
function. The final value of the object func-
tion is an indication of the average inaccu-
racy of the calculated water levels compared 
to the measured water levels. Application of 
the simplex algorithm can be compared to a 
reverse solution of the momentum and con-
tinuity equation. Instead of solving the water 
levels for given discharge and roughness, the 
simplex algorithm solves the roughness for 
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given discharge and water levels. The larger 
the area of a particular roughness, the more 
the roughness value influences the water 
levels, and the more suitable such a pa-
rameter will be in the function minimisation. 
The optimised parameters also depend on 
the measured water levels. Small changes in 
water levels may have a significant effect on 
the value of one or more parameters, espe-
cially if the roughness area is small in com-
parison to the total area between successive 
measuring points.  
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