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Abstract 
Sperber, B.L.H.M. Influence of pectin characteristics on complexation with β-

lactoglobulin 
Ph.D. thesis Wageningen University, the Netherlands, 2010 
Key words Pectin, β-lactoglobulin, soluble complexes, charge density, 

charge distribution, complex formation. 

Pectin and proteins are both common food constituents. The type of 

pectin that forms complexes with protein is known to be of great influence 

on the structure and stability of liquid foods. Therefore, the aim of this 

thesis is to investigate the influence of the overall charge and local charge 

density of pectin on the formation of soluble complexes with β-

lactoglobulin (β-lg). 

Combination of state diagrams and binding isotherms shows that a 

high local charge density of pectin is a prerequisite to form soluble 

complexes with β-lg at higher ionic strength. A high overall charge of 

pectin results in the close proximity of the GalA blocks. Therefore, β-Lg 

neighbours bind close together on pectin with a high overall charge, which 

leads to lateral repulsion and hence, maxima in the binding constant and 

the pH where insoluble complexes form with increasing ionic strength. 

The formation of soluble complexes has an enthalpic driving force from 

electrostatic attraction and an entropic driving force from the release of 

small counterions from the electric double layer and water molecules from 

hydrophobic surroundings. A high local charge density, at low ionic 

strength results in complex formation dominated by an enthalpic driving 

force. A low local charge density gives a more even distribution between 

enthalpic and entropic contributions. An increase in ionic strength 

decreases the enthalpic contribution, with a relative increase in the 

entropic contribution, supporting the idea of water release from 

hydrophobic surroundings. 

Adsorption from β-lg–pectin mixtures to a hydrophobic surface leads to 

low adsorption rates due to a low concentration of free protein. Sequential 

adsorption of β-lg and pectin shows that low overall charge pectin 

protrudes more into the solution than high overall charge pectin, resulting 

in a more negative ζ-potential for low overall charge pectin. After sequential 

adsorption, β-lg is most stable against wash-out with a terminal pectin 

layer. 
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1.1 Introduction 

Proteins and polysaccharides are key ingredients in many foods. 

Proteins perform several critical functions in food systems that contribute 

to the sensorial properties by thickening, gelation, emulsification, foaming, 

texturizing, water binding, adhesion and cohesion, and lipid and flavour 

binding (Damodaran & Paraf, 1997). In addition, their nutritional value is 

of great importance. Polysaccharides in foods are used for their action as a 

stabilizer, for water retention, thickener, gelation, emulsifier, but also as 

dietary fibre (Stephen & Churms, 1995). In food products, proteins and 

polysaccharides are often both present. When a solution of protein and 

polysaccharide are mixed, there are three options (see figure 1.1): the 

protein and polysaccharide are I) co-soluble, giving a stable solution in 

which both protein and polysaccharide are present individually; II) 

incompatible, which will give a phase separation into a protein rich and 

polysaccharide rich phase; III) form complexes, where protein and 

polysaccharide associate due to electrostatic forces. The formation of 

complexes between proteins and polysaccharides can be further divided 

into soluble complexes and insoluble complexes. The phase of aggregated 

insoluble complexes is also called a coacervate phase (Tolstoguzov, 1991). 

The complex formation between proteins and polysaccharides can be of 

great influence on the functional properties the protein and polysaccharide 

may have in a food. The formation of complexes between protein and 

polysaccharides will be discussed further in the following paragraphs. 

1.2 Complex coacervation 

The formation of complexes between proteins and anionic 

polysaccharides was already studied in the early 20th century by Tiebackx, 

Bungeberg de Jong and Kruyt (Tiebackx, 1911; Bungenberg de Jong & 

Kruyt, 1929). They studied the phase separation of gelatin and gum arabic 

into a concentrated gelatin–gum arabic phase and a phase that contains 

mainly solvent. This concentrated phase was called the coacervate phase, 

and the phenomenon of phase separation was called complex coacervation. 

The complexes are the result of electrostatic attraction between the two 
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Figure 1.1: Mixing of proteins and polysaccharides can lead to incompatibility, co-soluble 
polymers or complex formation. Complex formation can be separated in soluble complexes 
and insoluble complexes, or coacervate (Tolstoguzov, 1991). 

biopolymers. As complexes are formed, the opposite charges of the two 

biopolymers compensate each other. When sufficient protein has bound to 

the polysaccharide, there is a lack of electrostatic repulsion between the 

biopolymer complexes. Without the electrostatic repulsion, the complexes 

aggregate and subsequently phase separate (Mattison, Brittain et al., 

1995). 
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1.3 Complex formation between proteins and 
polysaccharides 

To discuss the complex formation between a protein and an anionic 

polysaccharide, the formation of complexes between proteins and 

polyelectrolytes, synthetic or natural, anionic or cationic, may be 

considered first, as the theory behind the complex formation is universal. 

p
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Figure 1.2: Generalized state diagram of protein–anionic polyelectrolyte complex formation. 
The mentioned pI is that of the protein (partly based on (De Kruif, Weinbreck et al., 2004)) 

The formation of complexes between proteins and polyelectrolytes is 

usually driven by electrostatic attraction (Schmitt, Sanchez et al., 1998), 

but under special conditions, also the release of small counterions from 

the electric double layer of both the protein and polyelectrolyte can be the 

driving force for complex formation (Henzler, Haupt et al., 2010). There are 

three states that can be identified, based on the type of complexes that are 

present in solution: Co-soluble polymers, soluble complexes, and insoluble 

complexes (coacervate phase). Figure 1.2 gives a schematic drawing of 

these three states. The states are separated by two state boundaries: pHc 
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in between co-soluble polymers and soluble complexes and pH for the 

association of soluble complexes to insoluble complexes (Dubin, Gao et al., 

1994). If the pH is changed further into the insoluble complex region, it is 

possible to resolubilize the coacervate phase into co-soluble polymers. If 

the state diagram is determined to include the resolubilization of the 

coacervate phase, pH is denoted as pH,1 and the pH at which the 

coacervate phase resolubilizes to soluble polymers is denoted as pH,2 and 

would be located below the insoluble complex region in figure 1.2 

(Weinbreck, De Vries et al., 2003).  

+- -

-

+- -

-

 
Figure 1.3: Electrostatic attraction and repulsion between a polyelectrolyte and a protein. 
Due to charge anisotropy on the protein surface there is a short range electrostatic attraction 
and a long range electrostatic repulsion (Seyrek, Dubin et al., 2003). 

pHc is located close to the iso-electric point (pI) of the protein, usually 

on the side where protein and polyelectrolyte are still of the same charge 

(the so called "wrong" side of pI (De Vries, Weinbreck et al., 2003)). This is 

attributed to charge anisotropy on the protein surface, so that local 

favourable electrostatic interactions with the polyelectrolyte are possible 

(Park, Muhoberac et al., 1992). The formation of soluble complexes is 

driven by electrostatic attraction, so the ionic strength influences the 

balance between short range electrostatic attraction and long range 

electrostatic repulsion by reducing the size of the electrical double layer 

(figure 1.3, (Seyrek, Dubin et al., 2003). Raising the ionic strength will 

move pHc from the wrong side of pI to the correct side (Mattison, Brittain et 

al., 1995; Weinbreck, De Vries et al., 2003). A theoretical model (De Vries, 
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Weinbreck et al., 2003; Weinbreck, De Vries et al., 2003) has been 

developed to predict pHc as a function of the polyelectrolyte charge density 

and protein charge anisotropy. 

pH is always located on the correct side of pI and is generally 

associated with the overall charge neutralization between protein and 

polyelectrolyte. The result is a lack of electrostatic repulsion between the 

individual protein–polyelectrolyte complexes and the individual complexes 

aggregate to give a macroscopic phase separation (Mattison, Brittain et al., 

1995). 

1.4 Functionality of protein–polysaccharide complexes 

For the functionality of protein–polysaccharide complexes we will focus 

on food applications. Protein–polysaccharide complexes are used to 

stabilize acidified milk drinks (AMD), enhance emulsion and foam stability, 

micro-encapsulation of ingredients, fat replacers and meat analogues 

(Tolstoguzov, 1991; Schmitt, Sanchez et al., 1998; Vargas, Pastor et al., 

2008; Dickinson, 2009; Given Jr, 2009). 

1.4.1 Acidified milk drinks 

The casein micelles in an AMD are not stable at the pH of the drink, 

resulting in their flocculation. To prevent the flocculation of the casein 

micelles, high methyl esterified pectin is added to the drink (Glahn, 1982; 

Parker, Boulenguer et al., 1994; Kravtchenko, Parker et al., 1995; 

Boulenguer & Laurent, 2003). The pectin adsorbs onto the surface of the 

casein micelles by means of attractive electrostatic interactions (Pereyra, 

Schmidt et al., 1997; Tuinier, Rolin et al., 2002). Pectin stabilizes the 

casein micelles against flocculation through a combination of steric 

hindrance and electrostatic repulsion (Glahn, 1982; Kravtchenko, Parker 

et al., 1995; Tholstrup Sejersen, Salomonson et al., 2007), but also the 

formation of a weak gel network by the pectin has been suggested (Laurent 

& Boulenguer, 2003). High methyl esterified pectin is preferred over low 

methyl esterified pectin as it protrudes more into the solution and hence 

provides a better steric stabilization (Pereyra, Schmidt et al., 1997). Of the 

high methyl esterified pectins only the calcium sensitive pectins are 
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capable of stabilizing the AMD (Glahn & Rolin, 1996; Laurent & 

Boulenguer, 2003). 

1.4.2 Emulsions 

An efficient emulsifier rapidly reduces the interfacial tension at the oil–

water interface, binds strongly to the interface and protects the oil droplets 

from coalescence (Dickinson, 2009). Proteins are capable of quickly 

adsorbing to the oil–water interface, but provide a poor stability towards 

environmental stresses like pH, ionic strength, heating and freezing 

(Güzey, Kim et al., 2004). The use of polysaccharides as emulsifiers leads 

to an emulsion with a good stability to environmental stresses, but 

polysaccharides are poor at producing small emulsion droplets and often 

require high concentrations (McClements, 2003). The combination of the 

two biopolymers seems ideal to obtain an emulsion consisting of small 

droplets and with good stability towards environmental stresses. 

Two different approaches to combine proteins and polysaccharides 

have been attempted: the formation of covalent complexes between protein 

and polysaccharides, mainly through a Maillard reaction, and the use of 

complexes based on the electrostatic attraction between protein and 

polysaccharide. Covalent complexes of protein and polysaccharide can be 

considered as a gum arabic analogue, where the protein adsorbs to the 

interface and covalently bound polysaccharide provides stabilization 

against coalescence and flocculation by electrostatic repulsion and steric 

hindrance (Neirynck, Van der Meeren et al., 2004; Dickinson, 2009). 

Stable emulsions using electrostatic complexes of proteins and 

polysaccharides can be separated in bilayer emulsions and mixed 

emulsions (Jourdain, Leser et al., 2008). Bilayer emulsions are prepared 

by creating a primary emulsion with a protein as emulsifier. To this 

primary emulsion, a solution of polysaccharide is added and the emulsion 

is allowed to equilibrate. After some time the emulsion pH is adjusted to 

the desired pH (Güzey, Kim et al., 2004; Güzey & McClements, 2007; 

Jourdain, Leser et al., 2008). Mixed emulsions are prepared using 

solutions containing both protein and polysaccharide. The protein and 

polysaccharide co-adsorb to provide an emulsion with improved stability. 

The presence of polysaccharide on the surface of the emulsion droplets 
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provides stabilization through steric repulsion between emulsion droplets 

by and increases the rigidity of the oil–water interfacial membrane 

(Einhorn-Stoll, Glasenapp et al., 1996; Jourdain, Leser et al., 2008; 

Gharsallaoui, Yamauchi et al., 2010). 

1.4.3 Foam 

Foams need stabilization of the air-water interface to protect them from 

draining. Foams are usually stabilized by proteins (Dickinson, 1998), but 

stability can be improved by the addition of a polysaccharide that 

increases viscosity or forms a gel in the stationary phase and thus reduces 

the drainage of water from the foam (Carp, Baeza et al., 2004; Baeza, 

Carrera Sanchez et al., 2005). The formation of electrostatic complexes 

between the protein and polysaccharide can enhance the foam stability, 

but may also limit the transport of the protein to the surface as the 

concentration of the fast adsorbing free protein is lowered (Ganzevles, 

Cohen Stuart et al., 2006). Increased foam stability of protein–

polysaccharide complexes, as compared to foam stabilized with only 

protein, has been reported by several authors (Schmitt, Palma da Silva et 

al., 2005; Miquelim, Lannes et al., 2010; Schmidt, Novales et al., 2010). 

The enhanced stabilization is thought to arise from the slowing of the 

drainage by the presence of the polysaccharide in the Plateau borders and 

increased viscosity in the continuous phase (Mann & Malik, 1996; 

Schmidt, Novales et al., 2010), and electrostatic repulsion between the 

surfaces of the air bubbles (Mann & Malik, 1996). 

1.4.4 Micro-encapsulation 

Micro-encapsulation, for food ingredients, is performed because a 

specific ingredient needs to be shielded from its environment. Shielding the 

ingredient can be necessary to prevent it from degradation, during the 

shelf life of the product or inside the body, to mask an off flavour, but also 

when the ingredient is not soluble in water (Schmitt, Sanchez et al., 1998; 

Guzey & McClements, 2006a; De Vos, Faas et al., 2010; Sagalowicz & 

Leser, 2010). Micro-encapsulation can be achieved by creating a very rigid, 

impermeable layer as the stabilizing layer of an emulsion. The ingredient is 

often in the oil phase of the emulsion, but when it is water soluble, a 
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W/O/W double emulsion needs to be prepared. The approach to micro-

encapsulation is therefore similar to creating emulsions with enhanced 

stability using proteins and polysaccharides outlined above. Of special 

interest have been the emulsions using the layer-by-layer approach, where 

alternating layers of protein and polysaccharide or anionic and cationic 

polysaccharide are deposited on the oil-water interface. These emulsions 

have been shown to be very stable under different environmental 

conditions like pH, salt and temperature (Guzey & McClements, 2006a; 

Güzey & McClements, 2006). 

1.4.5 Fat replacers and meat analogues 

Fat replacers and meat analogues are based mainly on the formation of 

insoluble complexes (coacervate), due to electrostatic attraction between 

the protein and polysaccharide. Common combinations for fat replacers or 

meat analogues are whey protein isolate, casein, egg white proteins, 

gelatin, or soy protein isolate, combined with xanthan gum, alginate, guar, 

or carrageenan (Schmitt, Sanchez et al., 1998; Laneuville, Paquin et al., 

2005). The coacervate phase needs to be broken into small particles in 

order to mimic the creaminess and melting sensation of fat (Laneuville, 

Paquin et al., 2000). Meat analogues are based on the fibrous particles 

that are obtained when protein and polysaccharides are allowed to form 

complexes under a constant shear force (Soucie & Chen, 1986). 

Alternatively, the protein can be trapped in a polysaccharide gel matrix by 

using a polysaccharide that forms a gel under the influence of calcium 

(Tolstoguzov, Izjumov et al., 1974; Kweldam, 2003) 

1.5 Techniques for studying protein–polysaccharide 
complex formation and characteristics 

An excellent and detailed review on techniques that are used to study 

protein–polyelectrolyte complexes was published by Cooper et al (Cooper, 

Dubin et al., 2005). The scope of the research described in this thesis 

limits itself to the formation of soluble complexes between proteins and 

polysaccharides in solution. Some useful techniques to study these soluble 

complexes will be outlined in this section. An overview of the techniques is 

presented in table 1.1. 
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1.5.1 Turbidimetric titration 

Turbidimetric titration is a useful technique to determine the pH where 

the state boundaries of protein–polyelectrolyte complex formation takes 

place and requires only a simple spectrophotometer to measure (Park, 

Muhoberac et al., 1992; Mattison, Brittain et al., 1995; Tsuboi, Izumi et 

al., 1996; Kaibara, Okazaki et al., 2000; Seyrek, Dubin et al., 2003; 

Weinbreck, De Vries et al., 2003; Liu, Elmer et al., 2010). Protein and 

polyelectrolyte are mixed at a pH where they are known to be present as 

co-soluble polymers. Next, the pH is altered in the direction of the protein 

pI, to start forming the complexes. This can be done by the addition of acid 

or base or, to avoid a dilution effect, glucono--lactone (Weinbreck, De 

Vries et al., 2003). Co-soluble polymers have a very low turbidity, but 

when the pH comes below pHc, and soluble complexes are formed, a steady 

increase in turbidity is observed. When the soluble complexes start to 

aggregate into insoluble complexes, the increase in turbidity is much more 

pronounced as the phase separation results in a turbid solution. pH can 

thus easily be identified by the change in the slope of the turbidity curve.  

1.5.2 Dynamic light scattering 

Dynamic light scattering (DLS) is another technique that can be used 

for identifying the state boundaries of a protein–polyelectrolyte system and 

has been used with great success (Seyrek, Dubin et al., 2003; Weinbreck, 

De Vries et al., 2003; Mekhloufi, Sanchez et al., 2005; Schmitt, Palma da 

Silva et al., 2005; Tan, Koopal et al., 2009). As the result of particle 

diffusion, the intensity of scattered light (Is) fluctuates around a constant, 

average intensity. DLS uses these fluctuations to determine the 

hydrodynamic radius (RH) of the scattering particle. At the same time, the 

average intensity of scattered light is measured, which can be used in a 

similar fashion to turbidity measurements to identify pHc and pH. Seyrek 

et al (Seyrek, Dubin et al., 2003) found, for a system of bovine serum 

albumin or heparin with hydrophobically modified poly(acrylic acid), that 

both turbidimetric titration and dynamic light scattering (DLS) gave 

comparable results for both pHc and pH. Weinbreck et al (Weinbreck, De 

Vries et al., 2003) found DLS to be more sensitive for a system of whey 

protein isolate and gum arabic. This difference in sensitivity of the two 
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techniques could be related to the different charge density of the used 

polyelectrolyte. The higher sensitivity of DLS compared to turbidimetric 

titrations makes it the method of choice to determine pHc and pH for 

protein–polysaccharide systems, as polysaccharides generally have a lower 

charge density than synthetic polyelectrolytes. 

The RH obtained from DLS experiments can be used to follow the 

formation of the soluble complexes. The measured RH is that of the 

polysaccharide, as small globular proteins do not scatter sufficient light to 

be measured in a solution with polysaccharides. For a whey protein–gum 

arabic system, it was found that binding of whey protein to gum arabic 

reduced the RH of gum arabic by reducing the internal repulsion. When 

insoluble complexes are formed, RH, like the intensity of scattered light, 

increases dramatically (Weinbreck, De Vries et al., 2003). 

1.5.3 Static light scattering 

Static light scattering (SLS) allows for the measurement of the radius of 

gyration (Rg), molecular weight (Mw) and the second virial coefficient (A2). 

For this, the intensity of light scattered by the protein–polysaccharide 

complexes is measured at different angles and at different concentrations 

to construct a Zimm-plot. From the Zimm-plot Rg, Mw and A2 can be 

calculated (Tsuboi, Izumi et al., 1996; Bowman, Rubinstein et al., 1997). 

The molecular weight of the complex allows for the calculation of the 

binding stoichiometry (n). When combining the RH measured using DLS 

and the Rg from an SLS experiment, the ratio RH/Rg gives information on 

the shape of the complexes, where a random coil would give a ratio 

between 1.3-1.5 (Tsuboi, Izumi et al., 1996). From A2 it can be determined 

if the complexes attract (A2 < 0) or repel each other (A2 > 0) (Bowman, 

Rubinstein et al., 1997). 

1.5.4 Proton titration 

Proton titration, or potentiometric titration, measures the amount of 

acid or base that is required to titrate a sample from pH A to pH B, 

corrected for the background solution. It can be used to measure pHc 

(Mattison, Brittain et al., 1995; Girard, Turgeon et al., 2002), but is a 

considerably more elaborate method than either turbidimetric titrations or 
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DLS, with a lower sensitivity. Proton titrations are useful to determine a 

shift in the pKa of the protein ionic amino acids under the influence of the 

binding to a polyelectrolyte (Mattison, Brittain et al., 1995; Wen & Dubin, 

1997; Kayitmazer, Shaw et al., 2005). Interpretation is straight forward 

when a polyelectrolyte is used that contains a strong acidic or strong 

alkaline group as ionic groups, but care should be taken when 

(bio)polymers are used that consist of weak acidic or basic groups (Fan, 

Wang et al., 2009). 

1.5.5 Electrophoretic mobility 

The electrophoretic mobility of a particle may be measured when it is 

subjected to an external electrical field. From the electrophoretic mobility, 

the ζ-potential of the particle can be determined. The binding of an 

oppositely charged protein to a polyelectrolyte compensates the charge of 

the polyelectrolyte. As the amount of bound protein increases, the ζ-

potential approaches zero (Ganzevles, Zinoviadou et al., 2006). From the ζ-

potential, it can be estimated whether the particles are sufficiently charged 

to protect the particles from aggregation by means of electrostatic 

repulsion (Parker, Boulenguer et al., 1994; Kravtchenko, Parker et al., 

1995). 

1.5.6 Frontal analysis continuous capillary electrophoresis 

Frontal analysis continuous capillary electrophoresis (FACCE) is a 

method based on capillary electrophoresis (CE). In a CE experiment, a 

sample is separated according to its charge/mass ratio by injecting a small 

sample into a capillary, over which an electrical field is applied. For 

studying the formation of soluble complexes between proteins and 

polyelectrolytes, the injection of only a small volume of sample will result 

in the disturbance of the binding equilibrium of protein to the 

polyelectrolyte, as free and bound protein will move at a different speed as 

a function of their charge/mass ratio. With FACCE, the sample is injected 

continuously, so that the concentration of free protein remains constant. 

The result is an electropherogram with two plateaus: the first plateau is 

the result of the free protein, the second plateau of both free and bound 

protein (Gao, Dubin et al., 1997). FACCE is often used for determining the 
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binding constant and binding stoichiometry, as both the amount of free 

and bound protein can be determined (Gao, Dubin et al., 1997; Hallberg & 

Dubin, 1998; Porcar, Cottet et al., 1999; Girard, Turgeon et al., 2003b; 

Hattori, Bat-Aldar et al., 2005; Le Saux, Varrenne et al., 2006; Seyrek, 

Dubin et al., 2007). 

FACCE is usually performed in a capillary of bare fused silica, which is 

negatively charged. Therefore, care should be taken to prevent adsorption 

of positively charged biopolymers (like a protein) to the capillary wall. A 

good rule of thumb to prevent the adsorption of protein to the capillary 

wall is: pH ≥ pI + 1 (Gao, Dubin et al., 1997; Porcar, Cottet et al., 1999; 

Seyrek, Hattori et al., 2004). 

1.5.7 Ultracentrifugation 

Ultracentrifugation has been employed to measure the amount of free 

protein in a solution with soluble complexes of protein and polyelectrolyte 

(Girard, Turgeon et al., 2002, 2003b). A small volume of the solution is 

centrifuged through a membrane with a molecular weight cut-off that 

allows the protein, but not the polyelectrolyte to which it binds, to pass the 

membrane. Care has to be taken not to centrifuge too much of the sample 

volume over the membrane to not disturb the adsorption equilibrium 

(Girard, Turgeon et al., 2002). From the measured concentration of free 

protein and calculated amount of bound protein, a binding isotherm can 

be constructed. When the free protein concentration is low, this technique 

can be treacherous, as even low protein binding membranes are known to 

bind some protein. 

1.5.8 Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) measures the heat released from 

the binding of protein to polyelectrolyte. At constant pressure, the released 

heat equals the enthalpy of binding. In addition, ITC may allow for the 

determination of a binding isotherm, a binding constant, binding 

stoichiometry, the Gibbs energy and the entropy change, by means of 

curve fitting (Kozlov & Lohman, 1998; Girard, Turgeon et al., 2003a; Guzey 

& McClements, 2006b; Romanini, Braia et al., 2007). This works well for a 

polyelectrolyte with a constant repeating unit, resulting in uniform binding 



Chapter 1 

16 

sites. For a system with a polyelectrolyte that has a variable repeating unit 

and hence non-uniform binding sites (like pectin), great care has to be 

taken into the selection of the model to fit the ITC data, as will be 

discussed in chapter 4 of this thesis. From the thermodynamic parameters 

obtained by ITC, the driving force behind the complex formation can be 

identified. Enthalpic contributions mainly result from electrostatic 

interaction between oppositely charged ionic groups, hydrogen bridge 

formation (Girard, Turgeon et al., 2003a; Schmitt, Palma da Silva et al., 

2005; Hofs, Voets et al., 2006; Romanini, Braia et al., 2007; Tan, Koopal et 

al., 2009). Entropic contributions may result from the release of small 

counterions due to the overlap of electrical double layers, the release of 

immobilized water, in particular dehydration of hydrophobic moieties, and 

changes in the conformational entropy of the biopolymers (Tan, Koopal et 

al., 2009; Henzler, Haupt et al., 2010). 

1.5.9 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) is used to determine the 

thermal denaturation temperature (Tm) of a protein. When the protein is in 

a complex with a polyelectrolyte, the conformational stability may be 

affected (Ibanoglu, 2005). Structure stabilizing ionic pairs or hydrogen 

bonds of the protein may be broken by the complex formation or the 

exposure of buried hydrophobic groups is stabilized by hydrophobic 

groups on the polyelectrolyte (for instance methyl groups on pectin) 

(Vardhanabhuti, Yucel et al., 2009; Jones, Decker et al., 2010). A number 

of studies have been performed on different systems, reporting the 

stabilization and de-stabilization of the protein, but also no effect on the Tm 

of a protein by complex formation with a polyelectrolyte (Zhang, Foegeding 

et al., 2004; Romanini, Braia et al., 2007; Vardhanabhuti, Yucel et al., 

2009). 

1.5.10 Circular dichroism 

Circular dichroism (CD) is a technique that measures the differential 

adsorption of left and right circularly polarized light. CD can be used to 

determine the secondary structural elements (α-helix, β-sheet and random 

coil) of a protein. Upon complex formation of protein and polyelectrolyte, 
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there may be a change in the secondary structure of the protein (Schmitt, 

Sanchez et al., 2001; Antonov & Wolf, 2005; Mekhloufi, Sanchez et al., 

2005).  

1.5.11 Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) measures the 

vibrational frequencies of specific bonds in a molecule. From the FTIR 

spectrum the type and amount of secondary structural elements can be 

determined. When the protein binds to a polyelectrolyte, the secondary 

structure of the protein may be altered, giving rise to a change in the FTIR 

spectrum of the protein. Identifying which type of secondary structure is 

altered by the binding to the polyelectrolyte can give information about the 

location on the protein where binding takes place (Schmitt, Sanchez et al., 

2001). 

1.6 Biopolymers used in the current study 

The research described in thesis deals with the complex formation 

between β-lactoglobulin (β-lg) and pectin. β-lg is the major whey protein, 

and often used a model protein for the preparation of emulsions, foams 

and gels (Dickinson, 1999; Van Vliet, Lakemond et al., 2004; Tcholakova, 

Denkov et al., 2006). Pectin is an anionic polysaccharide that is best 

known for its gelling capabilities in jams and jellies, but also finds 

application as a stabilizing or thickening agent (Voragen, Pilnik et al., 

1995). One application of pectin with special interest for this thesis is its 

capability to stabilize acidified milk drinks against sedimentation, as 

outlined in paragraph 1.3.1. In the two subsequent sections some 

structural characteristics of the two biopolymers are discussed in detail. 

1.7 Pectin 

Pectin is a complex polysaccharide that is found in the primary cell 

wall and in the middle lamella of plant cells (O'Neill & York, 2003). Pectin 

plays an important role in the formation of higher plant cell walls, where it 

influences properties as porosity, surface charge, pH and ion balance 

(McNeil, Darvill et al., 1984; Fry, 1988). Pectin consists of a so called 
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"smooth" region of homogalacturonan, and a "hairy" region that consists of 

a rhamnogalacturonan backbone that is branched with mainly neutral 

sugars side chains (figure 1.4, (Schols & Voragen, 1996). The side chains 

of the rhamnogalacturonan in the hairy regions consist mainly of neutral 

sugars, such as arabinose, galactose and xylose (Voragen, Pilnik et al., 

1995). 

1.7.1 Extraction of industrial pectin 

Pectin is isolated, most commonly from citrus or apple peel, by means 

of an extraction at elevated temperature with a dilute mineral acid, with a 

pH of approximately 2. Depending on the extraction conditions, the 

galacturonic acid (GalA) content and the methyl ester content can be 

varied. The pectin extract is separated from the remaining solid material, 

and concentrated by vacuum evaporation to prevent undesired pectin 

degradation due to alleviated temperatures under acidic conditions. Pectin 

is precipitated from the concentrated liquid by adding an alcohol (mostly 

iso-propanol). The pectin separates as a gelatinous mass which is 

recovered, washed, dried and ground (May, 1990; Rolin, 2002). 

Smooth region

(homogalacturonan) Hairy region

Smooth region

(homogalacturonan) Hairy region
 

Figure 1.4: Model representation of pectin structure. The smooth region consists of 
homogalacturonan, the hairy region has a rhamnogalacturonan backbone with different types 
of branched structures consisting of neutral sugars (Guillotin, 2005) 
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1.7.2 Composition of industrial pectin 

The acidic extraction of pectin removes most of the neutral side chains 

of the pectin, so that it mainly consists of homogalacturonan. We will 

therefore only discuss the structural features of the homogalacturonan. 

The pectin samples have a GalA content of between 70 and 85% (Daas, 

Boxma et al., 2001), the remainder consists of neutral sugars, methyl 

esters, acetyl esters, protein, phenols and ash (Kravtchenko, Voragen et 

al., 1992). Phenols are only a minor fraction (Kravtchenko, Voragen et al., 

1992), acetyl esters are usually only present in appreciable amounts in 

pectins isolated from sugar beets, olives or potato (May, 1990; Vierhuis, 

Korver et al., 2003). Some protein remains after the extraction, but usually 

not more than a few percent (Kravtchenko, Voragen et al., 1992; 

Dickinson, 2003). The methyl esters are present on the carboxylic group at 

C-6 of GalA (see figure 1.5). Although by weight the methyl esters only 

represent a few percent of the pectin mass, they are of great influence on 

the physico-chemical properties of the pectin as discussed below. 

 
Figure 1.5: Homogalacturonan 

1.7.3 Physico-chemical characteristics of pectin 

The degree of methyl esterification (DM) of pectin is defined as the 

percentage of GalA monomers esterified with methanol (Voragen, Pilnik et 

al., 1995). Pectins are classified into high methyl esterified pectin (HM-

pectin) and low methyl esterified pectin (LM-pectin) based on their DM. 

HM-pectin has a DM of 50% or more, LM-pectin a DM of less than 50% 

(May, 1990). 

The methyl esters of pectin can be distributed in different manners, 

which greatly affects the physico-chemical behaviour of the pectin. Pectin 

may form a gel in the presence of calcium. To do so, it requires a block of 

at least eight to twelve consecutive non-methyl esterified GalA (n-Me-GalA) 

monomers (Voragen, Pilnik et al., 1995). Pectins that form gels in the 

presence of calcium are called calcium sensitive pectins, pectins that don't 
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form gels are called non-calcium sensitive pectins The distribution of 

methyl esters over the GalA backbone is characterized by its degree of 

blockiness (DB). The DB of a pectin is measured by digestion of the pectin 

with an endo-polygalacturonase from Kluyveromyces fragiles. This enzyme 

can split the homogalacturonan, but requires 4 adjacent n-Me-GalA units 

to do so (Pasculli, Geraeds et al., 1991; Daas, Meyer-Hansen et al., 1999). 

The DB of the pectin is defined as the percentage of GalA that is released 

as mono-, di- or trimer of n-Me-GalA of the total content of n-Me-GalA of 

the pectin (Daas, Meyer-Hansen et al., 1999). A calcium sensitive pectin 

will have a high DB, a non calcium sensitive pectin a low DB. From the 

digests obtained for DB determination, additional information can be 

obtained about the methyl ester distribution. By looking more closely to 

the distribution of the mono-, di- and tri GalA released in the digest, an 

indication is obtained about the length of the GalA blocks. The ratio of 

GalA oligomers with and without methyl esterified residues, gives 

information about how close the GalA blocks are together (Daas, Voragen 

et al., 2000; Daas, Boxma et al., 2001). The DM determines the overall 

charge of pectin and the DB the local charge density. 

The DM and DB of a commercial pectin is the result of the plant 

source, the extraction process and, possibly, modification by endogenous 

pectin methyl esterases (PME) (Voragen, Pilnik et al., 1995; Rolin, 2002). 

The modification by endogenous PME can be of great influence on the 

functionality of the pectin as it removes methyl esters in a progressive or 

blockwise manner, thus creating calcium sensitive parts on the pectin. 

Pectins can be tailored to specific characteristics by treatment with alkali 

or fungal PME, which removes methyl esters in a random fashion. To 

remove methyl esters in a blockwise manner plant PME can be used 

(Limberg, Körner et al., 2000). Smart combination of the two allows for the 

production of pectins with the desired characteristics for a specific 

application of the pectin. 

1.8 β-Lactoglobulin 

β-Lg is the most abundant whey protein from bovine milk, making up 

more than 50% of a whey protein isolate (Cayot & Lorient, 1997). It is a 
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small globular protein with a molecular weight of 18.3 kDa (Verheul, 

Pedersen et al., 1999). The iso-electric point (pI) is 5.1 (Cayot & Lorient, 

1997). β-Lg consists of 162 amino acids and has two genetic variants A 

and B, that differ at positions 64 (Asp/Gly) and 118 (Val/Ala) (Brownlow, 

Cabral et al., 1997b). β-Lg is folded in a structure with 9 anti-parallel β-

strands and a short α-helix (figure 1.6) (Monaco, Zanotti et al., 1987; 

Sawyer, Kontopidis et al., 1999). β-Lg has an exposed hydrophobic surface  

pocket in a groove between the β-strand and α-helix (Tavel, Andriot et al., 

2008). In solution it is present predominately as a dimer between pH 3.5 

and 7.5. Higher order aggregates (mainly octamers) are reported just below 

the iso-electric point (Kumosinski & Timasheff, 1966; Verheul, Pedersen et 

al., 1999). The formation of these higher order aggregates is promoted by 

temperatures below 20°C (Kumosinski & Timasheff, 1966). β-Lg is often 

used in model studies on the functionality and application of whey protein. 

 
Figure 1.6: Model of the secondary structure of β-lg (Brownlow, Cabral et al., 1997a; 
Brownlow, Cabral et al., 1997b)) 

1.9 Aim of the current research 

The aim of this thesis is to study the formation of non-covalent 

complexes of β-lg and pectin in solution, with special emphasis on the 
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influence of the pectin overall charge and local charge density. Complex 

formation between proteins and polyions has received considerable 

attention, including complex formation between the two biopolymers used 

in this study. The use of charged synthetic polymers allows for variation in 

the overall charge, the charge density, and the hydrophobic exposure. The 

downside is that the polymerization reaction doesn't allow variation of the 

local charge density of the molecule, while keeping the overall charge 

constant. By selecting the right pectins, the local charge density can be 

varied, while the overall charge is kept constant, without having to change 

the polymer backbone. This allows to control the local charge density in a 

manner that is not available to a synthetic polymer. 

1.10 Outline of this thesis 

Chapter 1 gives a general introduction on the formation and 

functionality of complexes between proteins and polysaccharides; an 

overview of techniques to determine the characteristics of soluble 

complexes and the two biopolymers chosen for the work in this thesis are 

reviewed. 

In chapter 2 the complex formation between β-lg and pectin in solution 

is studied as a function of pH, ionic strength and mixing ratio of the two 

biopolymers. The construction of state diagrams based on dynamic light 

scattering data identifies the regions where either co-soluble polymers, 

soluble complexes or insoluble complexes are formed. From the ionic 

strength dependence of pHc a local charge density of the pectins is 

determined. Additionally, proton titrations are performed to obtain 

information about the interactions between β-lg and pectin inside the 

formed complexes. From the state diagrams, the region of soluble 

complexes is chosen for further investigation. 

Binding isotherms are described in chapter 3 and fitted with a 

theoretical model to obtain binding constants and cooperativity 

parameters. Also, the choice of the theoretical model is discussed, because 

choosing the correct model and fulfilling the basic assumptions associated 

with the model are essential for a correct interpretation of the binding 
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isotherms. The physico-chemical characteristics of the pectins used in this 

study are discussed in great detail. 

Isothermal titration calorimetric experiments of β-lg–pectin complex 

formation form the basis of chapter 4. Combined with the binding 

isotherms from chapter 3, molar binding enthalpies are obtained. From the 

binding constants obtained in chapter 3 Gibbs free energy of binding can 

be calculated. Combined with the molar binding enthalpies obtained from 

isothermal titration calorimetry, the driving force behind the complex 

formation (enthalpic or entropic) is determined. 

Chapter 5 investigates the adsorption of β-lg and pectin to a 

hydrophobic surface as a model system for the adsorption to oil-water or 

air-water interfaces. From this model system a prediction can be made 

which combination of β-lg and pectin may be successful in stabilizing 

emulsions and foams. 

Finally, in the general discussion in chapter 6, the combined results 

are discussed to give a detailed overview of the influence of pectin local 

charge and overall charge density on the complex formation with β-lg. In 

chapter 6 also an outlook will be given on the relevance of this information 

for industrial applications.  
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Chapter 2 

Influence of the overall charge and local 
charge density of pectin on the complex 

formation with β-lactoglobulin 

Abstract 

The complex formation between β-lactoglobulin (β-lg) and pectin is studied using 
pectins with different physicochemical characteristics. Pectin allows for the control 
of both the overall charge by degree of methyl esterification as well as local charge 
density by the degree of blockiness. Varying local charge density, at equal overall 
charge is a parameter that is not available for synthetic polymers and is of key 
importance in the complex formation between oppositely charged (bio)polymers. 
LMP is a pectin with a high overall charge and high local charge density; HMPB and 
HMPR are pectins with a low overall charge, but a high and low local charge 
density, respectively. Dynamic light scattering (DLS) titrations identified pHc, the 
pH where soluble complexes of β-lg and pectin are formed and pH, the pH of phase 
separation, both as a function of ionic strength. pHc decreased with increasing 
ionic strength for all pectins and was used in a theoretical model that showed local 
charge density of the pectin to control the onset of complex formation. pH passed 
through a maximum with increasing ionic strength for LMP because of shielding of 
repulsive interactions between β-lg molecules bound to LMP, while attractive 
interactions were repressed at higher ionic strength. Potentiometric titrations of 
homo-molecular solutions and mixtures of β-lg and pectin showed charge 
regulation in β-lg–pectin complexes. Around pH 5.5 to 5.0 the pKa's of β-lg ionic 
groups are increased to induce positive charge on the β-lg molecule; around pH 4.5 
to 3.5 the pKa values of the pectin ionic groups are lowered to retain negative 
charge on the pectin. Since pectins with high local charge density form complexes 
with β-lg at higher ionic strength than pectins with low local charge density, pectin 
with a high local charge density is preferred in food systems where complex 
formation between protein and pectin is desired. 
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Food Hydrocolloids 2009, 23 (3), 765-772 



 

 



Influence of pectin characteristics on the complexation with β-lg 

33 

2.1 Introduction 

The interaction between polysaccharides and proteins influences the 

stability and structure of foods (De Kruif & Tuinier, 2001). For instance, 

acidified milk drinks are stabilized against protein sedimentation by the 

addition of pectins (Glahn, 1982; Parker, Boulenguer et al., 1994; Laurent 

& Boulenguer, 2003), emulsions can be stabilized (Güzey, Kim et al., 2004; 

Güzey & McClements, 2007) or destabilized (Dickinson & Pawlowsky, 

1998) by the addition of polysaccharides, and foam stability can be 

influenced by polysaccharide–protein interactions (Nunes & Coimbra, 

1998; Schmitt, Palma da Silva et al., 2005; Ganzevles, Zinoviadou et al., 

2006). 

The attractive and repulsive forces between polysaccharides and 

proteins may lead to biopolymer incompatibility, (Tolstoguzov, 1991) or 

complex formation (Tolstoguzov, 2003). Complex formation between 

(oppositely) charged macromolecules in solution has been widely 

investigated (De Kruif, Weinbreck et al., 2004; Cooper, Dubin et al., 2005). 

In a protein–polysaccharide system, generally, the polysaccharide carries 

negative charge, while the sign of the protein's charge varies with the pH of 

the solution. The macromolecules are co-soluble when they are both 

negatively charged (Park, Muhoberac et al., 1992; Mattison, Brittain et al., 

1995; Girard, Turgeon et al., 2002; Weinbreck, De Vries et al., 2003). 

Soluble complexes are formed when the protein binds to the 

polysaccharide, forming a complex of which the charge has the same sign 

as the polysaccharide. The soluble complex is stabilized by electrostatic 

repulsion (Kaibara, Okazaki et al., 2000; Ganzevles, Zinoviadou et al., 

2006). This may already occur at the alkaline side of the pI of the protein, 

due to positively charged patches (Park, Muhoberac et al., 1992) or by 

charge regulation of the protein–polysaccharide system (Da Silva, Lund et 

al., 2006). Phase separation occurs when the charge of the protein–

polysaccharide complexes approaches neutrality. The lack of electrostatic 

repulsion between the complexes allows them to aggregate resulting in a 

macroscopic phase separation (Park, Muhoberac et al., 1992; Xia, Dubin et 

al., 1993; Mattison, Brittain et al., 1995; Weinbreck, De Vries et al., 2003). 
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pHc is the state boundary between soluble polymers and soluble 

complexes. The onset of complex formation is controlled by the interaction 

between a single protein molecule and a single sequence of polymer 

segments and therefore independent of the mixing ratio of protein and 

polysaccharide (Mattison, Brittain et al., 1995; Weinbreck, Nieuwenhuijse 

et al., 2004). pHc shifts to lower pH with an increase of ionic strength, due 

to shielding of the attractive interactions (Mattison, Brittain et al., 1995; 

Schmitt, Sanchez et al., 1998; Seyrek, Dubin et al., 2003; Weinbreck, De 

Vries et al., 2003). For certain combinations of protein and polyelectrolyte 

pHc can also pass through a maximum for increasing ionic strength, 

depending on the balance between attractive and repulsive forces (Seyrek, 

Dubin et al., 2003). pH is the state boundary between soluble complexes 

and separated phases and depends on the mixing ratio of protein and 

polysaccharide, as well as on ionic strength (Mattison, Brittain et al., 1995; 

Wen & Dubin, 1997; Cooper, Dubin et al., 2005). The phase separation is 

related to charge neutralization in the protein–polysaccharide complex, it 

implies that varying the ratio between protein and polysaccharide affects 

pH. When ionic strength is increased, pH decreases (Mattison, Brittain et 

al., 1995; Wen & Dubin, 1997; Weinbreck, De Vries et al., 2003). 

Pectin is isolated from plant materials by means of an acid extraction. 

After acid extraction the predominant structure of pectin is -(14) linked 

D-galacturonic acid (Voragen, Pilnik et al., 1995). These pectins are 

identified by two parameters: the degree of methyl esterification (DM) of the 

carboxyl group and the distribution of these methyl esters along the pectin 

backbone. The distribution of the methyl esters is represented as the 

degree of blockiness (DB), that can be investigated by digestion of pectin 

with endopolygalacturonase from Kluyveromyces fragiles (Daas, Meyer-

Hansen et al., 1999). A high DB value means that the methyl esters are 

distributed in a blockwise manner, a low value means a random 

distribution. Glahn and Rolin (Glahn & Rolin, 1996) found that a calcium 

sensitive high methyl esterified pectin (pectin that forms gel particles when 

calcium is added, which implies a high DB) is capable of stabilizing acid 

milk drinks while a non-calcium sensitive high methyl esterified pectin 

with similar DM showed no stabilization of the acid milk drink. 
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The work reported in this paper is focused on complex formation 

between β-lactoglobulin (β-lg) and pectin. β-lg is the major constituent of 

whey protein and has been shown to dominate the interaction between 

polysaccharide and whey protein isolate (Weinbreck, De Vries et al., 2003). 

Pectin is chosen as it provides the possibility of varying the charge density 

on the polymer: the DM controls the total amount of charge on the 

polymer, while the DB controls the distribution of the charge. In this study 

well defined pectins with known DM and DB are used. Studying the 

interaction of these pectins with β-lg gives insight in the mechanism 

underlying the stabilizing action that pectin has in many food systems, 

that are made up of emulsions and foams. 

2.2 Experimental 

2.2.1 Materials 

β-Lactoglobulin (pI 5.2) was purified from bovine milk using a non-

denaturing technique described previously by (De Jongh, Gröneveld et al., 

2001), with exception that the β-lg was dialyzed extensively against milli-Q 

water and lyophilized. β-Lg had a purity of over 98% and a ratio of the A:B-

β-lg types of approximately 60:40. β-Lg solutions were free of aggregated 

material as was verified by dynamic light scattering (DLS). Three pectins, 

low methyl esterified pectin (LMP), high methyl esterified calcium sensitive 

pectin (HMPB), and high methyl esterified non-calcium sensitive pectin 

(HMPR), were kindly provided by CPKelco (Lille Skensved, Denmark). The 

pectins originate from lemon and were characterized on degree of methyl 

esterification and degree of blockiness (DB) (Daas, Boxma et al., 2001). 

LMP (C30 in (Daas, Boxma et al., 2001)) has a DM of 30 and a DB of 16.5. 

HMPB and HM-NCSP were isolated from the same mother pectin on basis 

of calcium sensitivity. HMPB (C70 (Daas, Boxma et al., 2001)) has a DM of 

70 and a DB of 10.9, HMPR (C74 (Daas, Boxma et al., 2001)) a DM of 74 

and a DB of 1.7. This makes LMP and HMPB pectins with a blockwise 

distribution of the methyl esters and HMPR has a random distribution of 

methyl esters.  

The pectins contained 0.02-0.05 mole of calcium per mole of 

galacturonic acid. The calcium was removed by washing the pectins five 
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times with 60% ethanol, containing 5% (v/v) hydrochloric acid. Next, the 

pectins were washed with 60% ethanol until they were free of chloride 

(tested with 0.2 % (w/w) silvernitrate). Pectins were subsequently washed 

with acetone and air dried. This was sufficient for LMP and HMPB, but 

HMPR required further treatment. HMPR was dissolved to 10g/L and mixed 

with AG 50W-X4 200-400 mesh ion exchange resin from Bio-Rad 

Laboratories (Hercules, CA). HMPR and ion exchange resin were separated 

by centrifugation and HMPR was lyophilized. This resulted in pectins that 

contained less than 0.001 mole of calcium per mole of galacturonic acid. 

All chemicals were of analytical grade. 

2.2.2 Dynamic light scattering 

Dynamic light scattering was performed on an ALV light scattering 

instrument equipped with a 200mW argon ion laser, tuned at a wavelength 

of 514 nm. Temperature was controlled by a Haake C3 thermostat and 

maintained at 25 ± 0.1°C. Measurements were performed at a detection 

angle of 90°. pH titrations are performed directly in the measurement cell, 

using a Schott-Geräte computer-controlled titration set-up to control acid 

addition (0.04M HCl) and cell stirring. Samples were stirred for 30 seconds 

after acid addition, followed by a rest period of 15 seconds, after which the 

DLS-measurement was started. pH was measured with a Ag/AgCl glass 

electrode. The β-lg–pectin mixtures were titrated from their starting pH of 

6.8-7.5 to pH 3. 

The measured autocorrelation functions were analyzed with the 

method of cumulants (Stock & Ray, 1985). This method assumes that the 

scattering particles are spherical and that only the translational diffusion 

coefficient contributes to the decay of the autocorrelation function. The 

hydrodynamic radius (RH) was calculated from the average diffusion 

coefficient using the Stokes-Einstein relation for spherical particles. 

The pectin concentration was kept constant at 0.2 g/L, the β-lg 

concentration was varied between 0.2 g/L and 1.6 g/L giving weight ratios 

of 1, 2, 4 and 8 (β-lg/pectin). Ionic strength was set with NaCl to 4, 10, 30, 

75 and 300mM. The pH where the intensity of the scattered light starts 

increasing is taken as pHc; pH is identified as the pH where RH shows a 

sudden strong increase (see figure 2.1), indicating the formation of large 
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insoluble complexes (Park, Muhoberac et al., 1992; Mattison, Dubin et al., 

1998; Weinbreck, De Vries et al., 2003). All samples were measured in 

duplicate and pHc and pH were reproducible within 0.1 pH-unit. For sake 

of comparison the intensity of the scattered light is normalized (Inorm) for 

the intensity at pH well above pHc, where pectin is the sole scattering 

component. This was done to correct for differences in the intensity in the 

laser light between different samples. 

 
Figure 2.1: pH titration of a mixture of HMPB (0.2 g/L) and β-lg (0.8 g/L), monitored by DLS. 
Ionic strength is 4mM. Intensity of scattered light (●), intensity of scattered light × 50 (○), 
hydrodynamic radius of the HMPB-β-lg mixture (), and hydrodynamic radius of HMPB 
(0.2g/L) (). 

2.2.3 Potentiometric titrations 

Potentiometric titration curves were recorded on a Schott-Geräte 

computer-controlled titration set-up. pH was measured with a Ag/AgCl 

glass electrode. Titrations were performed under argon atmosphere. Prior 

to measurement the solutions were flushed with argon for 1 hour at pH 3 

and continuous stirring to efficiently remove CO2. Flushing occurred above 

the liquid to prevent foam formation. Next, solutions were brought to pH 8 
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and titrated with 0.1M HCl to pH 3.5, under a continuously refreshed 

argon atmosphere. Potentiometric titration curves were acquired for β-lg, 

the three pectins and mixtures of β-lg and pectin. Stock solutions were 

prepared at 4 g/L for β-lg and 1 g/L for pectin, and diluted to 1 g/L for β-

lg and 0.5 g/L for pectin solutions, mixtures of β-lg and pectin were made 

with a constant pectin concentration of 0.5 g/L at weight ratios of 1, 2 and 

4. Ionic strength of the solutions was set with NaCl to 4, 10, 30 and 

75mM. Blank solutions were measured for all ionic strengths and 

subtracted from the samples. To evaluate the influence of β-lg–pectin 

interaction on potentiometric titration behaviour, H+ is plotted against 

pH. H+ is defined as follows: H+ consumption of the mixture of β-lg and 

pectin, minus the H+ consumption of β-lg, minus the H+ consumption of 

pectin, all at the appropriate ionic strength and concentration of 

biopolymer. 

2.3 Results and discussion 

2.3.1 State diagrams of β-lg–pectin solutions 

Figure 2.1 shows a typical DLS-titration curve, showing the intensity of 

scattered light (I) and the hydrodynamic radius (RH) of the scattering 

particles. The titration starts around pH 7 where both the pectin and β-lg 

are negatively charged. I and RH are those of the pectin, as β-lg scattered 

too little light to be measured. The beginning of the titration curve shows a 

horizontal line for I, as well as for RH. The value for RH is high for a 

polysaccharide with an approximate molecular weight of 150kDa and 

caused by a small fraction of the pectin that is in an aggregated form 

(Jordan & Brant, 1978). When pHc at a pH of 6.3 is reached, I increases, 

while RH decreases. Clearly, this is the result of complex formation as RH 

remains constant for the HMPB blank. The formation of complexes between 

pectin and β-lg increases the amount of mass in the scattering particle, 

therewith causing I to rise. This rise is only a fraction of the total increase 

in I, but can be easily identified by zooming in on the I-axis. The decrease 

of RH is caused by the screening of charges by β-lg, which reduces internal 

repulsion in the pectin molecule. In addition, break up of pectin aggregates 

under the influence of β-lg molecules can not be excluded. pHc is above the 
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iso-electric point of β-lg (5.2), which means that complexes between pectin 

and β-lg are already formed when both individual polymers carry a net 

negative charge. This is found for many protein–polyelectrolyte systems 

(Park, Muhoberac et al., 1992; Weinbreck, De Vries et al., 2003)and also 

for β-lg–pectin complexes by Girard et al (Girard, Turgeon et al., 2002). 

At pH 5.4, when the iso-electric point of β-lg is approached, there is a 

steep increase in I, while RH starts sloping up slowly. This indicates that 

the pectin is being loaded with more β-lg molecules, while still forming 

soluble complexes. Around pH 4.5 the increase in I becomes even larger. 

At the same time the increase in RH becomes a bit steeper, causing the 

additional increase in I, as I is related to both the mass in the scattering 

particle as well as RH. As the pH is decreased further, pH is reached at pH 

4.2. As this is the pH where insoluble complexes are formed RH shows a 

dramatic increase. At pH the clear solution becomes turbid and sediments 

if not stirred. Under these conditions the intensity of the scattered light 

can not be reliably interpreted due to multiple scattering events. 

State diagrams (figure 2.2) displaying the values of pHc and pH for the 

three pectins and β-lg at different ionic strengths and weight ratios are 

constructed from the DLS titration curves. The three states are soluble 

polymers, soluble complexes and insoluble complexes or macroscopic 

phase separation (I, II and III respectively in figure 2.2). pHc decreases with 

increasing ionic strength for all three pectins and shows no correlation 

with WR, which is in accordance with (Mattison, Brittain et al., 1995). The 

higher ionic strength screens the charges on β-lg and pectin, which leads 

to a reduction in the attractive interactions, shifting pHc to lower pH where 

the protein carries more positive charge (Mattison, Brittain et al., 1995; 

Seyrek, Dubin et al., 2003; Weinbreck, De Vries et al., 2003). pHc is absent 

for HMPR at 300mM in the measured pH range. 

pH increases with increasing WR for all 3 pectins. When there is more 

β-lg in solution, more β-lg binds to the pectin, resulting in charge 

neutralization at a higher pH. For LMP pH passes through a maximum as 

a function of ionic strength, whereas for HMPB and HMPR pH decreases 

with increasing ionic strength. The overall charge on LMP is much higher 

than on HMPB and HMPR, and therefore LMP needs to associate with more 

β-lg molecules that have to be packed closer together to reach the point of 
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Figure 2.2: State diagrams of β-lg–pectin mixtures. pHc (solid symbols) and pH (open 
symbols) for LMP (a), HMPB (b) and HMPR (c). Weight ratio = 1 (●,○); 2 (,); 4 (,) and 8 
(,). Soluble polymers (I), soluble complexes (II) and insoluble complexes (III). Lines are 
drawn to guide the eye. 
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charge neutrality. By increasing the ionic strength, the repulsive forces 

between the β-lg molecules are reduced, allowing them to be packed closer 

together, leading to a higher pH (Moss, Van Damme et al., 1997; Seyrek, 

Dubin et al., 2003). 

For all three pectins pH is absent, within the measured pH range, 

above a certain ionic strength for the different WR's. Increasing the ionic 

strength reduces the repulsive forces between the individual β-lg molecules 

as well as between pectin and β-lg. At the same time it also reduces 

attractive electrostatic interactions between pectin and β-lg (Seyrek, Dubin 

et al., 2003). To achieve complete charge neutralization, the pectin needs 

to bind a certain amount of β-lg molecules. For the combinations of higher 

ionic strength and lower WR, insufficient amounts of β-lg binds to 

neutralise the pectin charge within the measured pH range. 

Figure 2.3 shows the normalized intensity of scattered light (Inorm) for the 

three pectins at a WR of 8. Inorm can be considered  as a measure for the 

amount of mass in the scattering particle (Weinbreck, De Vries et al., 

2003). An increase in Inorm is thus correlated to β-lg binding to pectin. For 

LMP (figure 2.3a), Inorm increases at the highest pH for an ionic strength of 

30mM, followed by 10mM, 4mM, 75mM and 300mM. This agrees with the 

profile of pH in figure 2.2a, where an ionic strength of 30mM results in 

the highest pH. At an ionic strength of 30mM the balance between 

repulsive and attractive charge interactions between LMP and β-lg is at an 

optimum for association. Electrostatic repulsion between β-lg molecules, 

due to an inhomogeneous charge distribution over the β-lg surface, may 

add to this (Seyrek, Dubin et al., 2003). For an ionic strength of 4mM Inorm 

reaches a lower value than for 10, 30 and 75mM. Although the attractive 

forces should be at a maximum at 4mM, the repulsive forces between the 

β-lg and pectin lowers the pH where β-lg and LMP associate. Repulsion 

between β-lg molecules at pH below pI, prevents the pectin from being fully 

loaded with β-lg molecules. pH is reached at lower pH, where pectin 

carries less negative charge and β-lg more positive charge to balance the 

lower number of β-lg molecules associated with the pectin molecules. 

For HMPB and HMPR the variation in Inorm follows the ionic strength: a 

higher ionic strength implies a lower pH where Inorm starts increasing. This 

is in accordance with figure 2.2 where pH decreases with increasing ionic 
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Figure 2.3: Intensity of scattered light, normalized to intensity of scattered light of pectin, for 
β-lg–pectin mixtures, pectin concentration is 0.2 g/L, weight ratio = 8. a) LMP, b) HMPB and c) 
HMPR. Ionic strength: 4mM (●), 10mM (), 30mM (), 75mM () and 300mM () 
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strength. At low ionic strength (up to 30mM) there is hardly any difference 

in the profile of Inorm against pH for the two HM-pectins. However, at 75 

and 300mM there is a clear difference: at 75mM HMPB associates with β-lg 

at a higher pH. At 300mM there is no increase in Inorm anymore for HMPR, 

where HMPB still shows a small increase. HMPB has a blockwise 

distribution of methyl esters, giving HMPB regions of high local charge 

density, like LMP, that show association with β-lg at higher ionic strength 

than the lower local charge density regions on HMPR. LMP contains more 

of these high local charge density regions than HMPB, resulting in a much 

larger increase of Inorm at an ionic strength of 300mM. It is inferred that the 

attractive forces between pectin and β-lg are largest when the pectin has 

parts that carry a high local charge density. 

De Vries, Weinbreck et al (2003) developed an analytical estimate for 

pHc that includes the effects of protein charge heterogeneity. The theory 

gives expressions for the dependence of pHc on ionic strength and the 

linear charge density of the flexible polyelectrolyte. It neglects many 

protein and polyelectrolyte structural details, but yields correct order-of-

magnitude estimates. The strength of complexation may be summarized by 

a single parameter: the critical salt concentration, ns,c, above which soluble 

complexes will only form at pH values below the protein isoelectric point 

(De Vries, Weinbreck et al., 2003; De Vries, 2004). The critical salt 

concentration can be estimated. In these estimates, the protein surface is 

viewed as a randomly charged surface with an average surface charge 

density , as a number density of elementary charges e per unit area and 

strong local variations  around this average value. The polymer is 

assumed to be an ideal chain consisting of segments with length lK, 

carrying  elementary charges per segment. This gives: 

K
c,s l

4.0n


  (2.1) 

The linear dependence on the polyelectrolyte charge density has also 

been confirmed in computer simulations (De Vries, 2004). An estimate for 

the charge density fluctuations on the protein surface at length scales in 

the order of the polyelectrolyte segment length is: 
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pIpH
2
K

2

pHl 





  (2.2) 

With µ a numerical prefactor, depending on the type of protein.  

In figure 2.4 the values for pHc are averaged for the four weight ratio's 

and plotted against the ionic strength. At low ionic strength β-lg binds to 

the pectin above pI. Factors contributing to "complexation at the wrong 

side of the isoelectric point" may include the heterogeneous protein charge 

distribution (De Vries, Weinbreck et al., 2003; De Vries, 2004; Da Silva, 

Lund et al., 2006) and shifts in dissociation equilibria induced by 

complexation (Biesheuvel & Wittemann, 2005; Da Silva, Lund et al., 2006). 

From figure 2.4 ns,c can be estimated: HMPB has a ns,c of 98mM, versus 

56mM for HMPR. LMP is estimated to have a ns,c of 95mM, comparable to 

HMPB. 

With ns,c estimated from figure 2.4, equation 2.1 and 2.2 can be used 

to determine , the amount of elementary charges per pectin segment. For 

this we estimate lK to be 2nm (Axelos, Lefebvre et al., 1987); µ was 
estimated to be 0.35 for β-lg and -2nm -0.25pH/  at the isoelectric 

point (De Vries, Weinbreck et al., 2003). This leads to a local charge 

density for HMPR of 1.1 e/nm and 1.9 e/nm for both HMPB and LMP. 

These numbers are rough estimates, but can be verified to be in the right 

range. The length of a galacturonic acid residue is 0.43nm (Rees & Wight, 

1971). This gives about 2.5 monomers per nm. With a DM of 30 for LMP, it 

can carry about 1.8 e/nm. For HMPB and HMPR this is about 0.75 e/nm. 

This clearly shows that the difference between the ns,c of HMPR and HMPB, 

respectively, can be interpreted as being due to a difference in the local 

charge density of a factor of almost 2, with HMPB resembling LMP in its 

local charge density. 

2.3.2 Potentiometric titrations 

The complexation of a protein with a charged polysaccharide or 

charged synthetic polymer is of electrostatic nature (Xia, Dubin et al., 

1993; Wen & Dubin, 1997; Girard, Turgeon et al., 2002). It has been 

shown for bovine serum albumin and poly(dimethyldiallylammonium 

chloride) (PDMDAAC) that complexation leads to a shift in pKa's of various 
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Figure 2.4: Critical pH values (pHc) versus ionic strength for β-lg–pectin mixtures, for LMP 
(●),HMPB (○), and HMPR (). Data are averages for different β-lg/pectin weight ratios (1,2,4 
and 8). The dashed horizontal line indicates the iso-electric point of β-lg (5.2). The arrows 
indicate estimates for the critical salt concentrations at which the pHc values cross the iso-
electric point: about 56mM for HMPR, about 98mM for LMP and about 95mM for HMPB 

amino acid residues of the protein (Wen & Dubin, 1997). Since the polymer 

used in these experiments carries its charge on a quaternary ammonium, 

only the protein is responsible for changes in the potentiometric titration 

curve. (Wen & Dubin, 1997) and (Mattison, Dubin et al., 1998) showed 

that the pKa's of the protein only start shifting when complexes between 

protein and polymer are formed, enabling the determination of pHc from 

potentiometric titrations. The potentiometric titration of β-lg and pectin is 

more complex than the titration outlined above as both protein and 

polysaccharide contain titratable groups in the measured pH range. 
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Figure 2.5: Dissociation curves of a) LMP, b) HMPB and c) HMPR. Ionic strength: 4mM (●), 
10mM (○), 30mM (), 75mM () 
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2.3.2.1 Potentiometric titrations of homomolecular solutions 

Potentiometric titration curves of the three pectins are shown in figure 

2.5. At ionic strength 4 mM there is a clear difference in the fraction of 

GalA deprotonated carboxyl groups (COO-) between the three pectins. LMP 

has a higher charge density than HMPB and HMPR, giving the GalA 

residues in LMP a higher pKa than the GalA residues in HMPB and HMPR. 

This causes COO- to decrease at higher pH for LMP than for HMPB and 

HMPR. The profile for COO- against pH is similar for HMPB and HMPR. 

Similar observations have been published by (Ralet, Dronnet et al., 2001) 

who performed potentiometric titrations on pectins de-esterified with 

fungal and plant pectin methyl esterase to obtain blockwise and random 

distributions of methyl esters on the pectin. When the ionic strength is 

increased to 75mM the curves are identical for all three pectins, because of 

the shielding of the charges on the pectin backbone, lowering the pKa of 

the carboxyl group. 

Figure 2.6 shows the potentiometric titration of β-lg at various ionic 

strengths. The curves correlate well with curves published by (Cannan, 

Palmer et al., 1942). It is assumed that the point of zero charge coincides 

with the iso-electric point (5.2) of β-lg. Below pI the charge on β-lg 

increases slightly with increasing ionic strength. This is caused by the 

shielding of charges on the β-lg molecule, resulting in a minor shift in the 

pKa of the ionic groups. 

2.3.2.2 Potentiometric titration of β-lg and pectin mixtures 

Figure 2.7 shows a titration curve for LMP, β-lg and a β-lg–pectin 

mixture at a WR of 4 and an ionic strength of 10mM. All the curves have 

been corrected for H+ consumption of the background, allowing the 

summation of the β-lg and LMP curves. When the charged groups of β-lg 

and pectin do not influence each other, the titration curve of the β-lg–LMP 

mixture should be identical to the sum of the individual β-lg and LMP 

curves. This is clearly not the case. This means there is charge regulation 

of β-lg and/or pectin ionic groups during complexation. 
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Figure 2.6: Potentiometric titration curve of β-lg. Ionic strength: 4mM (—), 10mM (ּּּ), 
30mM (– – –) and 75mM (–ּּ–). 

From pH 8 to 5.8 no complexes of β-lg and pectin are formed and the 

H+ consumption of the mixture is virtually equal to H+ consumption of the 

sum of the individual β-lg and pectin (H+ equals 0, see figure 2.8). This 

agrees with the findings of (Mattison, Brittain et al., 1995) and (Wen & 

Dubin, 1997) who report that the titration curve of bovine serum albumin 

and PDMDAAC only changes beyond pHc. (Girard, Turgeon et al., 2002) 

report that β-lg carries more negative charge at pH 7.5 in a solution 

containing pectin than in the absence of pectin, albeit this being well above 

pHc. The reason for this is: The system used by (Girard, Turgeon et al., 

2002), as well as in this study, uses a negatively charged polymer (pectin), 

where (Mattison, Brittain et al., 1995) and (Wen & Dubin, 1997) use a 

positively charged polymer. Since the sign of the charge of the ionic groups 

on the polymer is reverse, so is the complexing region. 
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At pH ≤ 5.5 H+ is positive. The negative field of the LMP negative ionic 

groups induce a shift in the pKa values of β-lg ionic groups (aspartic acid 

and glutamic acid) to a higher pH. This allows complex formation between 

β-lg and pectin above the pI of β-lg and results in H+ > 0. Around pH 5 

 
Figure 2.7: Potentiometric titration of β-lg (●), LMP (), β-lg–LMP weight ratio = 4 () and 
the summation of the β-lg and LMP titration for a weight ratio of 4 (). Ionic strength is 10 
mM, the H+ consumption of the background has been subtracted from all samples 

there is an increase in H+. As was already seen in the DLS curves this is 

the point where the majority of the β-lg binds to the pectin. Below pH 4.5 

H+ reduces, COO- for pectin decreases rapidly here (see figure 2.5a). To 

maintain a sufficient amount of negative charge on the pectin the positive 

β-lg ionic groups induce the lowering of the pKa of the pectin ionic groups, 

resulting in a decrease in H+. This decrease could not be observed by 

(Mattison, Brittain et al., 1995) or (Wen & Dubin, 1997) as they used a 

cationic polymer containing strong quaternary ammonium groups. (Girard, 

Turgeon et al., 2002) performed their potentiometric titrations only from 
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Figure 2.8: Difference in H+-consumption (H+) of β-lg–pectin mixtures. a) LMP, b) HMPB and 
c) HMPR. WR is 4 for all titrations, ionic strength 4mM (●), 10mM (), 30mM () and 75mM 
(). 
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pH 7.5 to 4.5, just outside the range to observe this charge regulation 

phenomenon. 

In figure 2.8 H+ is shown for all three pectins at a WR of 4. The largest 

change in H+ for LMP is at an ionic strength of 30mM. The ionic groups of 

pectin and β-lg need to be close together to influence each other, so H+ is 

only influenced by β-lg that is bound to pectin. The DLS measurements 

also showed that the highest amount of β-lg binds to LMP at this ionic 

strength. The increase in H+ for a β-lg–LMP mixture takes place at the 

lowest pH at an ionic strength of 75 mM. This agrees with the DLS 

titrations where Inorm for 75mM also starts rising at the lowest pH, when 

excluding 300mM. 

The potentiometric titration of HMPB follows the trend shown in the 

DLS titrations. At an ionic strength of 10mM the shift in H+ is largest, 

followed by 30mM and 75mM. H+ indicates that the highest amount of β-

lg binds at the lowest ionic strength. For an ionic strength of 75mM there 

is only a small change in H+ of the HMPB–β-lg sample. It indicates that at 

this ionic strength considerably less β-lg binds to the pectin than at lower 

ionic strengths. The maximum value for H+ is noticeably lower for HMPB 

than for LMP, again showing that LMP has more binding sites than HMPB. 

The influence of complex formation between β-lg and pectin on the 

titration behaviour is smaller for HMPR as compared to the other two 

pectins. The profile of the H+-curve (figure 2.8c) in case of HMPR is similar 

to that of HMPB and LMP, but the value for H+ is much lower. The lower 

local charge density of HMPR may be the cause that there are less ionic 

groups involved in the complexation between β-lg and HMPR compared 

LMP or HMPB. At an ionic strength of 75 mM there is hardly any effect on 

the pKa of the ionic groups of HMPR and β-lg. DLS titrations show that 

complexes are formed under these conditions, so they must either contain 

very little β-lg or the pKa's are hardly influenced. 

Table 2.1 compares pHc values obtained by DLS and potentiometric 

titration. In general the values for pHc obtained by DLS are somewhat 

higher than those derived from the potentiometric titrations. The change in 

H+ consumption in the potentiometric titrations is less sensitive to the 

onset of complex formation as only very few β-lg molecules bind, giving a 
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very small change in H+. This makes DLS titration the preferred 

technique for measuring pHc values. 

Table 2.1 Comparison of pHc measured by DLS and potentiometric titration (PT) for β-lg and 
LMP, HMPB and HM-NCSP, weight ratio is 4 

 LMP HMPB HMPR 

I (mM) DLS PT DLS PT DLS PT 

4 6.2 5.9 6.3 N/A 5.8 5.7 

10 6.0 5.8 5.9 5.6 5.7 5.1 

30 5.8 5.5 5.8 5.4 5.8 5.4 

75 5.3 5.4 5.6 4.6 5.2 4.5 

2.4 Conclusions 

Pectins with different physicochemical characteristics show different 

behaviour in their complexation with β-lg. HMPB and HMPR have the same 

DM, but different DB or, for that matter, local charge density. This 

difference in local charge density has an effect on the sensitivity of complex 

formation between β-lg and pectin for ionic strength. The blockwise 

distributed pectin (HMPB) with high local charge density allows to form 

complexes at higher ionic strength than a random distributed pectin 

(HMPR) having a low local charge density. Low methyl esterified pectin 

(LMP) has, like HMPB, a high local charge density and forms complexes 

with β-lg even at high ionic strength. An analytical estimate for ns,c, the 

salt concentration above which pectin and β-lg only form complexes below 

the pI of β-lg, indeed revealed comparable local charge densities for LMP 

and HMPB, while HMPR had a local charge density of about half that of 

LMP or HMPB. The amount of β-lg that can bind to LMP passes through a 

maximum for increasing ionic strength. The increase in ionic strength 

reduces electrostatic repulsion between the β-lg molecules, allowing them 

to be packed closer together. When ionic strength is increased further the 

reduced attractive electrostatic interactions between β-lg and LMP lead to a 

decrease in the amount of β-lg that binds to LMP. 

Complex formation between β-lg and pectin is subject to charge 

regulation in the complexes. At the onset of complex formation (pHc), 

around pH 5.0 to 5.5, the pKa values of the β-lg ionic groups are increased 
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to yield extra positive charge on the protein which favours complex 

formation. This leads to an increased in H+. At lower pH, 3.5-4.5, the pKa 

values of the pectin ionic groups are lowered to retain the negative charge 

on the pectin. This causes a decrease in H+. LMP displays a much larger 

change in H+ compared to HMPB and HMPR, indicating that more ionic 

groups are involved in the complex formation. Since LMP has a lower DM 

than HMPB and HMPR there are more binding sites on LMP, resulting in 

the involvement of more ionic groups as more β-lg binds to the pectin. 

HMPB shows more charge regulation than HMPR. From this it can be 

concluded that a blockwise distribution of methyl esters leading to regions 

of high local charge density favours binding.  

From the experiments described in this paper it is concluded that for 

the binding of β-lg to pectin regions of high local charge density are 

favoured. In food systems where ionic strength is often relatively high and 

complex formation between protein and pectin is desired, pectin with a 

high local charge density is therefore preferred. From the physicochemical 

characteristics of pectin, in particular its degree of methyl esterification 

and degree of blockiness, it is possible to predict the affinity for complex 

formation between the pectin and a specific protein. 
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Chapter 3 

Binding of β-lactoglobulin to pectins 
varying in their overall and local charge 

density 

Abstract 

The formation of complexes between proteins and polysaccharides is of great 
importance for many food systems like foams, emulsions, acidified milk drinks, 
and so on. The complex formation between β-lactoglobulin (β-lg) and pectins with a 
well-defined physicochemical fine structure has been studied to elucidate the 
influence of overall charge and local charge density of pectin on the complex 
formation. Binding isotherms of β-lg to pectin are constructed using fluorescence 
anisotropy, which is shown to be an excellent technique for this purpose, as it is 
fast and requires low sample volumes. From the binding isotherms the maximal 
adsorbed amount, binding constant (kobs) and the cooperativity of binding are 
obtained at different ionic strengths. The Hill model is used to fit the binding 
isotherms and is shown to be preferable over a Langmuir fit. At pH 4.25, kobs shows 
a maximum at an ionic strength of 10 mM when using a low methyl esterified 
pectin (LMP) due to the balance of attractive and repulsive electrostatic forces 
between β-lg and pectin and β-lg neighbours. For two high methyl esterified 
pectins, one with a blockwise distribution of methyl esters (HMPB) and one with a 
random distribution (HMPR), this ionic strength maximum is absent and kobs 
decreases with increasing ionic strength. kobs is found to be largest for LMP and 
HMPB and considerably lower for HMPR. A positive cooperativity is observed for 
both LMP (above an ionic strength of 45 mM) and HMPR (above an ionic strength of 
15 mM), but not for HMPB. Positive cooperativity is thought to be caused by a 
rearrangement of the pectin helix structure caused by binding of β-lg, thus creating 
new or binding sites with a higher affinity. To attain strong binding of β-lg to pectin 
it is preferable to use a pectin with a blockwise distribution of methyl esters. When 
complex formation takes place in high ionic strength media an LMP gives the best 
results, while at low ionic strength a high methyl esterified pectin with blockwise 
distribution may give better results, due to reduced electrostatic repulsion between 
both pectin and β-lg and β-lg neighbours. 

Published as: 
B.L.H.M. Sperber, M.A. Cohen Stuart, H.A. Schols, A.G.J. Voragen & W. Norde, 
Biomacromolecules 2009, 10 (12), 3246-3252 
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3.1 Introduction 

Complex formation between anionic polysaccharides and proteins find 

their application in a diversity of fields like food industry, biotechnology, 

medicine, pharmacy, and cosmetics (Schmitt, Sanchez et al., 1998). In the 

food industry complexes of protein and polysaccharides are used for the 

stabilization of acid dairy drinks, foams and emulsions, as fat substitutes, 

meat analogues, purification of macromolecules, or microencapsulation of 

ingredients (Vanderveen & Glinsmann, 1992; Wang, Gao et al., 1996; 

Sandrou & Arvanitoyannis, 2000; Laurent & Boulenguer, 2003; Schmitt, 

Palma da Silva et al., 2005; Gharsallaoui, Roudaut et al., 2007; Güzey & 

McClements, 2007). 

Complexes of proteins and anionic polysaccharides are formed because 

of attractive interactions between the two biopolymers and can be of an 

electrostatic or hydrophobic nature (Tribet, 2001). Hydrophobic 

interactions are limited in systems consisting of proteins and anionic 

polysaccharides as the alkyl side chain needs to be at least 3–4 carbon 

atoms long before significant hydrophobic interactions take place (Gao & 

Dubin, 1999). Electrostatic interactions occur because of opposite charges 

on both biopolymers. As in a food system, the charge of the polysaccharide 

is negative, and complex formation takes place below and around the 

isoelectric point of the protein. If complex formation occurs above the 

isoelectric point, it is usually attributed to locally positively charged 

patches on the protein (Park, Muhoberac et al., 1992). Depending on 

solution parameters, like pH, ionic strength, and concentration of the two 

biopolymers, either soluble or insoluble complexes are formed. Soluble 

complexes exist as long as the complexes are sufficiently stabilized against 

aggregation by electrostatic repulsion. Generally speaking, the phase 

boundary between soluble and insoluble complexes is found at the pH, 

ionic strength, and mix ratio of biopolymers that cause the complex of 

protein and polysaccharide to carry no net charge anymore (Park, 

Muhoberac et al., 1992; Weinbreck, De Vries et al., 2003; Sperber, Schols 

et al., 2009). 
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To compare the formation of complexes between anionic 

polysaccharides and proteins parameters like composition of the complex, 

association constant, and the cooperativity of the association are 

commonly considered. To obtain these parameters isotherms for the 

binding of the protein to the polysaccharide need to be constructed 

without disturbing the delicate equilibrium between bound and free 

protein (Porcar, Cottet et al., 1999). For this, Gao, Dubin et al. (1997, 

1998) developed frontal analysis continuous capillary electrophoresis 

(FACCE). This technique allows the determination of free ligand 

concentration without disturbing the equilibrium conditions due to 

continuous injection of fresh sample into the separation capillary. FACCE 

has been used successfully to construct binding isotherms for different 

combinations of protein and polyelectrolyte (Porcar, Gareil et al., 1998; 

Hattori, Kimura et al., 2001; Girard, Turgeon et al., 2003; Seyrek, Dubin et 

al., 2003; Østergaard, Khanbolouki et al., 2004; Le Saux, Varrenne et al., 

2006). The big advantage of this technique is that it uses only small 

amounts of sample (< 1 µL). There is one major drawback to the FACCE 

technique: To avoid binding of the protein to the negatively charged silica 

capillary, FACCE can only be used at a solution pH well above the pI of the 

protein (Gao, Dubin et al., 1997; Porcar, Cottet et al., 1999).  

Fluorescence anisotropy (FA) is a technique that measures the 

polarization of the emitted light after excitation of the sample with 

polarized light. The fluorescence anisotropy of a fluorophore is, among 

others, dependent on the diffusion rate and therefore the size of the 

fluorophore (Lakowicz, 2006). It implies that the fluorescence anisotropy of 

a fluorophore-containing protein, bound to a polysaccharide, deviates from 

the anisotropy when it is free in solution. FA has been used successfully in 

the construction of binding isotherms for protein–DNA complexes (Maleki, 

Royer et al., 2002; Datta & LiCata, 2003; Arosio, Costantini et al., 2004; 

Dragan, Frank et al., 2004). There are two big advantages of using 

fluorescence anisotropy over FACCE: because the measurement is 

performed directly in the solution, there is no need of separating free and 

bound protein and the measurement can be performed at any pH, provided 

that an optically clear sample is measured. 
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In this work, complexes between pectin and β-lactoglobulin (β-lg) are 

studied. Pectin is commonly used to stabilize acid dairy drinks and to form 

gels. Commercially available pectins are isolated from plant materials by 

means of an acid extraction after which their predominant structure is -

(14)-linked D-galacturonic acid (Voragen, Pilnik et al., 1995). The 

functionality of these pectins is mainly determined by two parameters: The 

degree of methyl esterification (DM) of the carboxyl group on C-6 and the 

distribution of these methyl esters (DB). A pectin with a random 

distribution pattern of the methyl esters has a low value for DB, a pectin 

with a blockwise distribution has a high DB (Daas, Meyer-Hansen et al., 

1999). The DM determines the overall charge of the pectin, while the DB 

determines the local charge density. 

β-Lg is the predominant protein in whey and used in foods for its 

emulsifying, foaming and gelation properties (Dickinson, 1998, 1999; Van 

Vliet, Lakemond et al., 2004) and dominates the complex formation 

between whey protein isolate and polysaccharides (Weinbreck, De Vries et 

al., 2003). A better understanding of the binding of β-lg to pectin will help 

to interpret the influence β-lg–pectin complex formation has on the 

stability of food structures like foams and emulsions (Ganzevles, 

Zinoviadou et al., 2006; Güzey & McClements, 2007). 

3.2 Materials and Methods 

3.2.1 Pectin 

Three pectins, a low methyl esterified pectin (LMP), a high methyl 

esterified calcium sensitive pectin (HMPB) with a blockwise distribution of 

methyl esters, and a high methyl esterified non-calcium sensitive pectin 

(HMPR)with a random methyl ester distribution, were kindly provided by 

CPKelco (Lille Skensved, Denmark). The pectins originate from lemon and 

were characterized by Daas, Boxma et al (2001) on DM and DB. Detailed 

information for the different pectins can be found in table 1. The pectins 

had a typical molecular weight of 150 kDa.(Daas, Voragen et al., 2001) 

The pectins contained 0.02–0.05 mol of calcium per mole of 

galacturonic acid (GalA), as determined by flame photometry. The calcium 

was removed by washing the pectins five times with 60% ethanol, 
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Table 3.1: Uronic acid content, DM, DB, distribution of mono-, di-, tri-GalA after endo-PG 
hydrolysis, methyl- to non-methyl esterified peak ratio (Me/n-Me)for LMP, HMPB, HMPR and 
poly-(galacturonic acid) (PGA) (Daas, Boxma et al., 2001) 

Pectin 

Uronic 
acid 

content 
(%) 

DM (%) DB (%) 
Mono-

GalA (%) 
Di-GalA 

(%) 
Tri-GalA Me/n-Me 

LMP 78.5 30.4 16.5 21 44 35 0.77 

HMPB 84.5 69.8 10.9 35 37 28 0.09 

HMPR 85.3 73.5 1.7 23 60 17 0 

PGA 86.0 0 88.2 21 42 37 0 

containing 5% (v/v) hydrochloric acid. Next, the pectins were washed with 

60% ethanol until they were free of chlorine (tested by addition of 0.2% 

(w/w) silvernitrate, until no white precipitate is formed). Pectins were 

subsequently washed with acetone and air-dried. This treatment for 

removing calcium was sufficient for LMP and HMPB, but HMPR required 

further treatment. HMPR was dissolved to 10 g/L and mixed with AG 50W-

X4 200–400  mesh ion-exchange resin from Bio-Rad Laboratories 

(Hercules, CA). HMPR and ion-exchange resin were separated by 

centrifugation and HMPR was lyophilized. This resulted in pectins that 

contained less than 0.001 mol of calcium per mole of GalA. 

3.2.2 Preparation of β-lactoglobulin and Alexa Fluor 430 
labelled β-lactoglobulin 

β-Lg was purified from bovine milk using a non-denaturing technique 

as described by De Jongh, Gröneveld et al (2001) and was over 99% pure. 

β-Lg was fluorescently labelled with Alexa Fluor 430 carboxylic acid, 

succinimidyl ester (A10169, Invitrogen, Breda, The Netherlands). An amine 

reactive probe, chosen as the only available free thiol group (C121), 

induces a structural change of β-lg when modified (Jayat, Gaudin et al., 

2004). The labelling reaction was carried out according to the "Molecular 

Probes" protocol (http://www.probes.com). Typically, 10 mg of β-lg was 

dissolved in 1 mL of 0.1 M sodium bicarbonate buffer (pH 8.3). A stock 

solution of Alexa Fluor 430 was prepared by dissolving 5 mg in 0.5 mL 

DMSO. The labelling reaction was performed at room temperature by 

adding 10 µL of the Alexa Fluor 430 stock solution to the stirred β-lg 
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solution in 2 µL portions with a 10 minutes interval. The reaction was 

performed in the dark. A Total of 20 minutes after the last addition of the 

Alexa Fluor 430 stock solution, the reaction was stopped by adding 0.1 mL 

of a 1.5 M sodium hydroxylamine solution (pH 8.5). The conjugate was 

separated from not reacted reagent using a Sephadex G-25 gel filtration 

column (17–0851–01, GE Healthcare, Uppsala, Sweden) equilibrated with 

a 0.1 M sodium acetate buffer (pH 4.25). The degree of labelling was 

approximately 0.2 mol dye per mol β-lg. 

3.2.3 Weak anion-exchange high performance liquid 
chromatography 

Weak anion-exchange high performance liquid chromatography (WAX-

HPLC) was performed as described in detail by Guillotin, Van Loey et al 

(2007). In short, a Dionex Propac WAX-10 column (WAX; 4 × 250 mm) was 

attached to an Akta purifier system. A total of 200 μL of a 5 g/L pectin 

solution was injected and eluted (1 mL/min) with a linear gradient from 0 

to 0.6 M of sodium phosphate (pH 6) for 25 minutes. UV detection is at 

215 nm. All elution profiles were baseline corrected for an injection of 200 

μL of water. 

3.2.4 Fluorescence anisotropy 

Fluorescence anisotropy measurements were carried out on a TECAN 

Infinite F500 micro plate reader (TECAN, Austria) equipped with an 

excitation filter of 420 nm (10 nm bandwidth) and an emission filter of 540 

nm (10 nm bandwidth) and a Xenon flash lamp with a frequency of 40 Hz. 

The measurement time after the flash is set at 20 µs, and per 

measurement 10 flashes are recorded. Samples were measured in black 

flat bottom 96-well Fluotrac 200 plates (655076, Greiner Bio-One, Alphen 

a/d Rijn, The Netherlands). Fluorescence anisotropy is calculated as 

follows: 










I2I

II
A

||

||  (3.1) 
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with A the fluorescence anisotropy and I and I the intensity of the 

fluorescent light in the parallel and perpendicular direction, respectively 

(Lakowicz, 2006). 

3.2.5 Construction of binding isotherms 

Pectin is dissolved in a 20 mM sodium acetate buffer of pH 4.25 to a 

concentration of 0.5 mg/mL. The ionic strength of the pectin solution is set 

with sodium chloride to obtain the correct ionic strength (4–300 mM) after 

mixing with β-lg and buffer. β-Lg (nonlabelled) is dissolved in 20 mM acetic 

acid. Pectin and β-lg are kept overnight in the fridge to allow for full 

hydration of the molecules. Prior to experiments the pH is carefully 

adjusted with 1 M sodium hydroxide to 4.25. Samples of pectin and β-lg 

(both labelled and nonlabelled) are mixed to obtain weight ratios (mg β-

lg/mg pectin) of 0.25 up to 16, all with a pectin concentration of 0.1 

mg/mL and an Alexa Fluor 430 labelled β-lg concentration of 

approximately 1 µg/mL. Labelled and nonlabelled β-lg are assumed to bind 

identically to pectin. All points of the binding isotherm are averages of four 

samples. 

Binding isotherms are constructed from the fluorescence anisotropy 

measurements. The observed fluorescence anisotropy (Aobs) is the average 

of the fluorescence anisotropy of the free (Af) and bound (Ab) β-lg (Lakowicz, 

2006). A is the difference between Aobs and Af: 

  fffbbfobs AAfAfAAA   (3.2) 

with ff and fb the fraction of free and bound β-lg, respectively. As the 

fluorescence anisotropy is influenced by the viscosity of the solution Af is 

determined in a sample that contains both pectin and β-lg and has an 

ionic strength of 300 mM. At these conditions there is no complex 

formation between pectin and β-lg (Sperber, Schols et al., 2009) and the 

measured fluorescence anisotropy is that of free β-lg. The fluorescence 

anisotropy of bound β-lg, Ab, is determined by taking the maximum value 

for the fluorescence anisotropy throughout all the experiments. The value 

for bound β-lg is comparable to the fluorescence anisotropy value for 

labelled β-lg in the high viscosity medium glycerol. To obtain a molar 

concentration of β-lg, it is assumed that β-lg adsorbs as a dimer to pectin, 
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as there are no indications that adsorption to pectin disturbs the 

monomer–dimer equilibrium of β-lg. 

3.2.6 Analysis of binding isotherms 

The binding isotherms are fitted with a Langmuir and a Hill adsorption 

isotherm to obtain a binding constant and a measure for the cooperativity 

of the system (for the Hill model). Equation 3.3 gives the Hill model used to 

fit the binding isotherms: 

nn
obs

nn
obs

Xk1

Xk


  (3.3) 

with θ the fractional occupation of binding sites (Γ/Γm with Γm for the 

appropriate ionic strength), kobs the observed molar binding constant, n the 

Hill coefficient, and X the molar fraction of free β-lg (Norde, 2003). For n < 

1 the binding is anticooperative, for n > 1 cooperative and for n = 1 the 

binding is noncooperative and equation 3.3 reduces to the Langmuir 

model. The Langmuir model assumes reversibility of binding, identical and 

independent binding sites, and no interaction between the adsorbed 

molecules. The Hill adsorption allows for interaction between the adsorbed 

molecules by means of the Hill coefficient. 

The fitting procedure is performed using a nonlinear least-squares fit 

based on the Levenbert-Marquadt algorithm in Origin 5.0 software 

(Microcal Software, Northampton, MA). 

3.3 Results and discussion 

3.3.1 Size and distribution of non-methyl esterified 
galacturonic acid blocks along the pectin backbone. 

To determine the block size and block distribution of methyl esters on 

the pectin backbone several parameters have been determined by Daas, 

Boxma et al (2001) for the pectins used. These parameters are uronic acid 

content, DM, DB, distribution of mono-, di-, and tri-GalA after endo-PG 

digestion, and the ratio between the peak area of methyl ester (Me) 

containing oligosaccharides and the peak area of the non-methyl esterified 

(n-Me) oligosaccharides after endo-PG digestion (Me/n-Me ratio). The 
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details of these parameters can be found in table 3.1. Figure 3.1 shows the 

elution profile of the pectins on a WAX column to reveal the presence of 

populations of pectins with different characteristics in the same sample. 

The combination of all the parameters mentioned above provides a detailed 

picture of the fine structure of the three pectin samples. 

DM determination shows LMP to be a low methyl esterified pectin and 

HMPB and HMPR to be high methyl esterified pectin with virtually identical 

DM. The DB of HMPR is very low, indicating that only a very small fraction 

of HMPR is Kluyveromyces fragilis endo-PG digestible, while for both LMP 

and HMPB a considerable amount of n-Me-GalA is present in blocks. 

The digestion of pectin with endo-PG gives a distribution between 

mono-, di-, and tri-GalA oligomers released form the pectin as well as 

(partially) Me-GalA oligomers. If the distribution of mono-, di-, and tri-GalA 

resembles that of the distribution of a polygalacturonic acid digest, the 

blocks can be considered of "infinite length", as is the case for LMP. HMPB 

has a reduced amount of di-, and tri-GalA, with an increased amount of 

mono-GalA. This is indicative for a reduced block length of n-Me-GalA 

residues. HMPR has an even bigger reduction of tri-GalA oligomers, mainly 

in favour of di-GalA. This large decrease in tri-GalA shows that the n-Me-

GalA blocks present on HMPR are small, which is also indicated by HMPR 

being a noncalcium sensitive pectin. 

The Me/n-Me ratio shows how close endo-PG degradable blocks are 

together. Endo-PG degradable blocks more than six GalA residues apart 

will not be detected by this method (Daas, Voragen et al., 2000). HMPR has 

a Me/n-Me ratio of 0, implying that the blocks of GalA on HMPR are more 

than six GalA residues apart and can therefore be considered isolated 

blocks. Also HMPB has a very low Me/n-Me ratio. Although the blocks are 

much larger than for HMPR, they are still virtually isolated because of the 

high DM of HMPB. LMP has a high Me/n-Me ratio revealing the close 

proximity of the blocks. This is mainly caused by LMP being a low methyl 

esterified pectin, causing the blocks to be close together. 

The elution on the WAX-column (figure 3.1) reveals the presence of 

different populations within the pectin sample, as well as information 

about the size of the blocks in the pectin (Guillotin, Van Loey et al., 2007). 

Peaks in region I contain the material that does not bind to the column. 
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Figure 3.1: WAX elution profile after background correction of LMP (——), HMPB (– – –), and 
HMPR (• • •) 

For commercial pectin samples, it was found that this peak contains no 

GalA (Guillotin, Van Loey et al., 2007). Region II contains high methyl 

esterified, random pectin. HMPR has a large peak in region II, HMPB a 

much smaller one, and for LMP no peak is observed. In region III, high to 

intermediate methyl esterified pectin with a blockwise distribution is 

found. A small peak is found for HMPR, but HMPB has a continuous peak 

throughout this region, indicating a distribution in the block length for 

HMPB. LMP only starts showing a peak at the end of region III. Region IV is 

the "PGA"-region, where pectins with large ("infinite") blocks of n-Me-GalA 

elute. This is the region where virtually all LMP elutes, as well as some 

HMPB, while HMPR has no peak in this area. 

The three pectins can thus be characterized as follows: LMP has the 

lowest DM and, therefore, the most n-Me-GalA groups. The blocksize of n-

Me-GalA residues on LMP is large and they are close together. LMP has a 
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homogeneous blocksize, mainly because of its low DM, as shown by 

elution on the WAX column. HMPB and HMPR have a comparable DM, but 

differ in the distribution of the methyl esters. The blocks of n-Me-GalA on 

HMPB are large, albeit being somewhat smaller than those on LMP as 

shown by the Me/n-Me ratio. The blocks of n-Me-GalA on HMPB are 

considered to be isolated. The distribution on the WAX column shows that 

HMPB is a heterogeneous sample, consisting of many different pectins, 

ranging from HM-random pectin to PGA characteristics. HMPR is a pectin 

that contains no large blocks of n-Me-GalA and only very few isolated 

intermediate blocks of n-Me-GalA. 

3.3.2 Binding isotherms 

Binding isotherms are measured to investigate the binding of β-lg to 

pectins having different physicochemical characteristics. The influence of 

the local charge density and overall charge of the pectin on the complex 

formation with β-lg is expected to be reflected in the binding isotherms, 

showing the mass of β-lg bound per unit mass of pectin as a function of β-

lg concentration in solution. 

Figure 3.2 shows A for β-lg and LMP at pH 4.25 and an ionic strength 

of 4 mM. At low weight ratio (WR), A is constant at the maximum value, 

indicating that all β-lg is bound to LMP. When WR increases, A decreases 

as LMP reaches saturation and not all of the β-lg is bound to LMP. The 

data for A is used to calculate the fractions of free (ff) and bound (fb) β-lg, 

using equation 3.2. In figure 3.3 binding isotherms for β-lg to LMP, HMPB, 

and HMPR are shown. FA shows to be a reliable and fast technique for 

measuring binding isotherms between protein and polysaccharide, with 

the advantage over FACCE that it can also successfully measure binding 

isotherms below and around the pI of the protein, providing that the 

sample is optically clear. As the measurements are performed in microtiter 

plates, sample volumes can be kept at 1 mL or less and the measurement 

of an entire binding isotherm takes only several minutes. 

β-Lg shows a very high affinity for LMP and HMPB at low ionic strength, 

as virtually all added β-lg binds to pectin. Only when the pectin binding 

sites are close to saturation, the concentration of free β-lg increases. For  
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Figure 3.2: Fluorescence anisotropy of β-lg–LMP mixtures at pH 4.25, ionic strength is 4mM. 

HMPR the initial high affinity is lower, most likely by the virtual absence of 

large blocks of n-Me-GalA. When the ionic strength of the solution is 

increased, the binding of β-lg to pectin decreases. HMPR shows the highest 

sensitivity to ionic strength: at an ionic strength of 60 mM no binding of β-

lg to HMPR takes place anymore. At an ionic strength of 75 mM β-lg no 

longer binds to HMPB and for LMP binding of β-lg is suppressed at an ionic 

strength of 200 mM. This difference in sensitivity for ionic strength was 

found before by means of dynamic light scattering (DLS) (Sperber, Schols 

et al., 2009), only at slightly higher ionic strength. The measurements with 

DLS are extremely sensitive to complex formation: at pH 4.25, the increase 

in the intensity of scattered light (Is) at high ionic strength is below 1% of 

the increase in Is at low ionic strength. This high sensitivity of the DLS 

technique cannot be matched by FA, leading to a slightly lowered 

maximum ionic strength where complex formation is observed. 
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The maximum amount of β-lg adsorbed per gram of pectin (m) is the 

highest for LMP with an m of 138 µmol/g, HMPB and HMPR bind similar 

quantities of β-lg with 84 µmol/g and 82 µmol/g, respectively (see table 

3.2). Clearly, m increases when the DM becomes smaller. These m values 

are comparable to the m found by Girard, Turgeon et al (2003), who 

found, after recalculation to the same units, 122 μmol/g for a LMP (DM 

28.3) and 62 μmol/g for a HMP (DM 73.4), even though Girard, Turgeon et 

al (2003) measured at pH 4. 

 
Figure 3.3: Binding isotherm of β-lg to LMP (●,○), HMPB (,) and HMPR (,) at pH 4.25. 
Ionic strength is 10mM for filled symbols, and 45mM for open symbols. β-Lg is assumed to 
bind as a dimer. 

When m is calculated as mol β-lg per mol n-Me-GalA of the pectin, m 

is 44 mmol/mol for LMP, 58 mmol/mol for HMPB, and 64 mmol/mol for 

HMPR. The two HM-pectins bind considerably more β-lg than LMP. Gao 

and Dubin(Gao & Dubin, 1999) found that the minimum length of the 

alkyl side chain is 3–4 carbon atoms, before hydrophobic interactions start 

to influence binding of protein to a oppositely charged polymer. This  
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Table 3.2: Γm of β-lg to pectin for all three pectins at pH 4.25, ionic strength as indicated. 

LMP HMPB HMPR 

I (mM) Γm 
(μmol/g 
pectin) 

Γm 
(mol/mol 

GalA) 

Γm 
(μmol/g 
pectin) 

Γm 
(mol/mol 

GalA) 

Γm 
(μmol/g 
pectin) 

Γm 
(mol/mol 

GalA) 

4 138.1 0.044 83.1 0.057 82.4 0.064 

10 130.8 0.042 78.2 0.054 75.7 0.059 

15 127.7 0.041 84.4 0.058 67.8 0.053 

20 124.9 0.040 79.1 0.055 57.7 0.045 

25 119.3 0.038 74.9 0.052 58.1 0.045 

30 119.4 0.038 66.9 0.046 36.4 0.028 

45 109.2 0.035 57.8 0.040 23.6 0.018 

60 97.6 0.031 50.4 0.035   

75 95.5 0.031     

100 74.3 0.024     

150 40.5 0.013     

observation is substantiated by Girard, Turgeon et al (2002) who found 

hydrophobic interactions not to be important for pectin–β-lg systems. The 

difference in adsorption of β-lg per unit of n-Me-GalA for the different types 

of pectin is therefore not caused by different extents of hydrophobic 

interactions between β-lg and pectin. The maximum amount of β-lg that 

binds to pectin is found at or below an ionic strength of 10 mM, where 

both attractive and repulsive electrostatic forces are largest. LMP has the 

largest blocks of n-Me-GalA. This prevents all n-Me-GalA residues to 

participate in binding of β-lg due to electrostatic repulsion between β-lg 

neighbours, as β-lg molecules cannot be packed "shoulder to shoulder". 

The blocks of n-Me-GalA on HMPB are somewhat smaller, but also more 

isolated than on LMP. This may reduce repulsion between pectin and local 

negatively charged patches on β-lg, as the presence of Me-GalA residues at 

the edges of the n-Me-GalA blocks have no repulsive interactions with β-lg. 

HMPR binds slightly more β-lg than HMPB. Both have a similar DM, but the 

difference in DB allows HMPR the higher m: The more even spread of n-

Me-GalA on HMPR leads to less lateral repulsion between β-lg molecules as 

they are not packed as closely as on LMP or HMPB. 
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m may be estimated based on the dimensions of β-lg and the GalA 

unit. The β-lg dimer is an ellipsoid with a length of 6.9 nm and width of 

3.6 nm (Verheul, Pedersen et al., 1999), the GalA monomer has a length of 

0.435 nm (Rees & Wight, 1971). Considering the GalA content and the DM 

of the pectins, and depending on which diameter of the β-lg dimer is used, 

m is estimated to be between 196 and 375 µmol β-lg/g LMP, m between 

91 and 175 µmol β-lg/g HMPB, and m between 81 and 155 µmol β-lg/g 

HMPR. Only HMPR reaches the lower boundary of the estimation, LMP and 

HMPB bind less β-lg. Because m is measured at low ionic strength 

electrostatic repulsion between β-lg molecules will be high, thus lowering 

the packing density of β-lg on the pectin. Also, the estimation does not 

take the presence of Me-GalA into account. It is possible that not all n-Me-

GalA is participating in the binding of β-lg as their neighbours are of the 

Me-GalA kind, causing insufficient attraction between binding site on the 

pectin and β-lg. Because HMPR comes closest to the estimate, the presence 

of n-Me-GalA residues in the binding site seems to have less influence 

than the electrostatic repulsion caused by crowding of β-lg molecules along 

the pectin chain. 

3.3.3 Analysis of binding isotherms 

To obtain binding characteristics from the binding isotherms, the 

reversibility of binding of β-lg to pectin has to be established, as this is a 

key assumption of most binding models. The reversibility of the binding of 

β-lg to pectin with respect to dilution was tested by mixing samples of 

different WR and the same ionic strength. Samples of the same WR, but of 

different ionic strength were mixed to establish the reversibility with 

respect to ionic strength. The mixed samples gave the correct values for 

free and bound β-lg according to their new WR or ionic strength (data not 

shown) from which it was concluded that the binding of β-lg to pectin is 

reversible. 

The binding isotherms may be fitted with theoretical models to obtain 

information about the binding constant, kobs, and the cooperativity of 

binding. Previously, different models were used to describe the binding of a 

protein to either charged synthetic polymers or polysaccharides: a two 

class binding site Langmuir fit (Gao, Dubin et al., 1997; Porcar, Cottet et 
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al., 1999), the Hill model (Porcar, Cottet et al., 1999) and the McGhee–Von 

Hippel model (McGhee & Von Hippel, 1974, 1976) for overlapping binding 

sites (Gao, Dubin et al., 1998; Hallberg & Dubin, 1998; Girard, Turgeon et 

al., 2003; Seyrek, Dubin et al., 2003). The two class binding site Langmuir 

model, is used when two types of binding sites are present. The analysis of 

the pectin samples shows that especially HMPB, but also HMPR and LMP 

are not homogeneous in their distribution of methyl esters and hence the 

size of n-Me-GalA blocks. Additionally, it is difficult to define what is a 

binding site and how the presence of methyl esters influences the binding 

of β-lg to pectin. Because of this, it is more appropriate to use an average 

binding site model, instead of assuming two binding sites. 

The McGhee–Von Hippel model was originally developed for protein–

DNA binding, but has also been applied to protein–synthetic polyelectrolyte 

binding by Dubin et al (Gao, Dubin et al., 1998; Hallberg & Dubin, 1998; 

Seyrek, Dubin et al., 2003) and for β-lg–pectin by Girard, Turgeon et al 

(2003). This model takes into account that a binding site consists of 

multiple polymer repetitive units. When the binding sites are being filled, 

the space in between two bound ligand molecules may be smaller than the 

binding site of the ligand. The polymer units in between these two ligands 

are thus inaccessible for a ligand molecule to bind. This inaccessibility of 

polymer units results in an apparent negative cooperativity (McGhee & Von 

Hippel, 1974). The McGhee–Von Hippel model assumes a lattice as a linear 

array of N identical units. This assumption will work well for a 

polyelectrolyte built of continuously repeating units. Pectin's repeating unit 

is GalA, which would suit this assumption as well, if it were not for the 

methyl esters on the carboxyl group that make pectin consisting of two 

types of units. This makes the McGhee–Von Hippel model poorly applicable 

to β-lg–pectin systems, as one of the parameters in the model is the 

number of lattice units that are occupied by one ligand. 

The Hill equation is derived from the Langmuir model to allow for 

cooperative binding and has been used to describe the binding of BSA to 

synthetic polyelectrolytes with varying length in alkyl side chain (Porcar, 

Cottet et al., 1999). As no homogeneous binding site can be identified on 

the pectin, only an average binding constant can be obtained. The 

cooperativity parameter in the Hill model has an empirical character, only 
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showing whether or not the binding is cooperative or not. The empirical 

character of the cooperativity parameter makes it attractive for the β-lg–

pectin system where it is difficult to define what the binding site looks like. 

In view of these considerations, we decided to fit the binding isotherms 

with the Hill model and, for comparison, with the one site Langmuir model. 

Table 3.3: Hill coefficient of the binding of β-lg to pectin, obtained from the Langmuir and Hill 
model. 

n 
I (mM) 

LMP HMPB HMPR 

4 0.8 0.8 0.9 

10 0.7 0.9 1.2 

15 1.0 1.5 1.6 

20 1.1 1.3 1.8 

25 1.2 1.3 1.6 

30 1.1 1.0 2.3 

45 1.2 1.3 2.3 

60 1.5 1.2  

75 1.5 0.9  

100 1.9   

150 3.2   

Figure 3.4 shows the Hill fit, but also the fit of the Langmuir model (n = 

1) to the binding isotherms. As the Hill model is an extension of the 

Langmuir model, it is more flexible to fit the experimental data and, 

therefore, may fit the data better than the Langmuir model. Figure 3.5 

shows the observed binding constants from the Langmuir and Hill model, 

the Hill coefficient for the Hill model can be found in table 3.3. The values 

found for kobs by fitting with either the Langmuir or the Hill model are 

comparable. The additional information obtained from the Hill model 

concerning the cooperativity of binding, gives it preference over the 

Langmuir model. 

For LMP, kobs shows a maximum with increasing ionic strength. 

Seyrek, Dubin et al (2003) also found a maximum in kobs with increasing 

ionic strength for other protein–synthetic polyelectrolyte combinations. The  
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Figure 3.4: Fit of Langmuir (solid lines) and Hill (dotted lines) binding models to a) LMP, b) 
HMPB and c) HMPR at pH 4.25. Ionic strength for LMP: 10mM (●) and 75mM (○), HMPB: 10mM 
(●) and 45mM (○) and HMPR: 10mM (●) and 30mM (○) 
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Figure 3.5: Dependency of kobs on ionic strength of β-lg to pectin at pH 4.25 as obtained by 
the Langmuir (filled symbols) and Hill binding models (open symbols). LMP (●,○), HMPB 
(,)and HMPR (,), lines are merely to guide the eye. 

maximum of kobs is related to the distribution of positively and negatively 

charged groups on the protein molecule. The attractive and repulsive 

electrostatic forces between protein and polyelectrolyte associated with 

these charges lead to an optimum for binding at a specific ionic strength. 

For LMP this optimum is situated at 10 mM. The cooperativity parameter, 

n, is just below unity for the ionic strengths of 4 and 10 mM. When β-lg 

binds to LMP it will occupy more than one GalA. McGhee and Von Hippel 

(1974, 1976) showed that this can lead to apparent negative cooperativity, 

because the amount of n-Me-GalA residues between two bound β-lg 

molecules is lower than the amount required for binding of a β-lg molecule, 

making it harder to bind at higher θ. At low ionic strength, in this study 4 

and 10 mM, the Debye length is longer, therewith increasing the repulsion 

between β-lg molecules and, hence, making it more difficult for the next β-

lg molecule to adsorb in between two others. Binding isotherms of β-lg and 
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a LM-pectin were obtained at pH 4 by Girard, Turgeon et al (2003). Girard 

et al. reported a positive cooperativity at an ionic strength of 5 mM by 

fitting with the McGhee and Von Hippel model. Apart from the slight 

difference in pH, this is most likely caused by the use of frontal analysis 

continuous capillary electrophoresis (FACCE) and not by the choice of a 

different fitting model. When performing FACCE below the pI of the protein 

in a bare fused silica capillary, binding of the protein to the negatively 

charged capillary wall is inevitable (Seyrek, Hattori et al., 2004). In the 

initial region of the binding isotherm the concentration of free protein is 

very low, because the majority of β-lg is bound to pectin. The little amount 

of β-lg that is not bound to pectin binds to the capillary wall, leading to an 

underestimation of free β-lg at low concentrations of free β-lg. This was 

observed in our laboratory when trying to employ the FACCE technique to 

the β-lg–pectin system. Replacing the bare fused silica capillary by a 

poly(vinyl alcohol) coated capillary did not improve results. An 

underestimation of the free β-lg concentration at low concentrations of free 

β-lg leads to an apparent positive cooperativity, as β-lg seems to bind more 

profoundly after some β-lg is already bound to the pectin. The fluorescence 

anisotropy measurements, of this study, are not sensitive to this problem. 

The binding of β-lg to LMP shows n increasing slowly just above unity 

for an ionic strength of 15 to 45 mM. At this higher ionic strength the 

repulsive electrostatic interactions between the β-lg molecules are reduced, 

allowing a β-lg molecule to adsorb unhindered by its neighbours. Above 45 

mM n becomes larger than 1.5. Positive cooperativity for the adsorption of 

β-lg to pectin can be the result of two effects: attraction between β-lg 

molecules or a change in the binding sites on pectin creating new binding 

sites or binding sites of a higher affinity (Norde, 2003). Pectin folds into a 

helix structure in solution (Pérez, Mazeau et al., 2000). It is possible that 

binding β-lg to pectin disrupts this helical structure, thus changing the 

binding sites on pectin and allowing subsequent β-lg molecules to bind 

more easily. β-Lg molecules are known to form higher oligomers between 

pH 4.0 and 5.2 (Verheul, Pedersen et al., 1999), these aggregates are 

favoured at low temperature (<10ºC) and low ionic strength, both 

conditions that are not applicable to the current experimental conditions. 
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Attraction between β-lg molecules is therefore unlikely to be the cause of 

the positive cooperativity.  

For HMPB, there is no maximum observed in kobs. With the exception of 

4 mM, kobs is lower for HMPB than for LMP at all ionic strengths. As 

revealed by analysis of the size and distribution of n-Me-GalA residues, 

blocks of n-Me-GalA along the HMPB backbone are relatively isolated, and 

they are smaller in size than the blocks on LMP. This may be the reason 

that, at 4 mM, kobs is higher for HMPB than for LMP. When the size of the 

n-Me-GalA blocks on HMPB are of the optimal size for β-lg binding, the 

repulsion of unfavourable negative charges on β-lg and n-Me-GalA 

residues outside the binding site may be reduced as on HMPB these places 

are occupied by Me-GalA residues. Also, as the binding site is isolated from 

others, unfavourable electrostatic repulsion between β-lg molecules will be 

lower for binding to HMPB than to LMP. This is also a likely reason for the 

absence of a maximum in kobs with increasing ionic strength: there is not 

sufficient repulsion between HMPB and β-lg and between β-lg neighbours 

to reach an optimum in attractive and repulsive forces with increasing 

ionic strength. When the ionic strength is subsequently increased these 

repulsive interactions diminish, making the larger n-Me-GalA blocks on 

LMP favourable over the smaller blocks on HMPB. Increasing the ionic 

strength results in a decrease in kobs. There is some slight negative 

cooperativity at an ionic strength of 4 and 10 mM, but at higher ionic 

strength the cooperativity parameter remains close to unity.  

HMPR, like HMPB, shows no maximum in kobs probably because of 

similar reasons as outlined above for HMPB. kobs is also considerably lower 

at the various ionic strengths. As only a very few intermediate blocks of n-

Me-GalA are present on HMPR, the binding sites on HMPR do not contain 

sufficient n-Me-GalA to tightly bind β-lg. A positive cooperativity is 

observed above an ionic strength of 15 mM, most likely again due to the 

disruption of the pectin helix by adsorption of β-lg. 

3.4 Conclusions 

Fluorescence anisotropy is an excellent technique to measure 

immobilization of proteins and, hence, to determine binding isotherms of 
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protein to anionic polysaccharides. It has the advantage over FACCE that 

it can be used at any pH, providing the solution is optically clear. Because 

the measurements can be performed in microtiter plates, the sample 

volumes can be kept low and an entire binding isotherm can be measured 

within a few minutes. 

The physicochemical fine structure of the used pectins has been 

elucidated in detail, revealing that LMP has large blocks of n-Me-GalA of a 

homogeneous block size that are close together. HMPB has large blocks of 

n-Me-GalA that are isolated on the pectin backbone, with a heterogeneous 

distribution. HMPR has only very few isolated, relatively small blocks of n-

Me-GalA, that are of a homogeneous size. 

The Hill equation is preferred over the Langmuir model because of the 

additional information about the cooperativity of binding. The binding 

constant, kobs, obtained from the Hill equation and the Langmuir model are 

comparable. For LMP kobs shows a maximum at 10 mM, due to the balance 

between attractive and repulsive forces. Cooperativity is shown to increase 

for binding of β-lg to LMP with increasing ionic strength. At low ionic 

strength there is a slight negative cooperativity, caused by electrostatic 

repulsion between neighbouring β-lg molecules. Above 45 mM a positive 

cooperativity is observed, most likely caused by disrupting the helix fold of 

pectin, which makes more binding places accessible to β-lg. For HMPB, 

there is no maximum in kobs, but at 4 mM kobs reaches a higher value than 

for LMP. This is caused by the nature of the blocks of n-Me-GalA on HMPB. 

The blocks are smaller and of an isolated nature, compared to those on 

LMP. This leads to less electrostatic repulsion between β-lg and n-Me-GalA 

residues on pectin, but also between β-lg neighbours and, hence, a higher 

kobs. The cooperativity coefficient for binding of β-lg to HMPB is close to 

unity, indicating noncooperative binding over the entire range of ionic 

strengths. Binding of β-lg to HMPR gives the lowest kobs. The random 

distribution of n-Me-GalA leads to binding sites that have a reduced 

affinity compared to the binding sites on the other two pectins, probably 

because of a smaller number of n-Me-GalA residues per site. HMPR shows 

positive cooperativity at an ionic strength above 15 mM. The most likely 

explanation for this is again changes in the helix conformation of pectin, 

induced by the binding of β-lg. 
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To strongly bind β-lg to a pectin, it is best to choose a pectin with a 

blockwise distribution of methyl esters. This leads to binding sites with a 

higher affinity. When binding in media of higher ionic strengths is 

required, a low methyl esterified pectin is suited best. At low ionic strength 

it may be beneficial to use a high methyl esterified pectin with a large 

blocksize, because the isolated nature of the n-Me-GalA residues reduces 

the electrostatic repulsion between pectin and β-lg as well as between β-lg 

neighbours. 
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Chapter 4 

Influence of overall charge and local charge 
density of pectin on the complex formation 

with β-lactoglobulin as assessed by 
isothermal titration calorimetry 

Abstract 

The complex formation between β-lactoglobulin and pectins of varying overall 
charge and local charge density were investigated. Isothermal titration calorimetry 
experiments were carried out to determine the enthalpic contribution to the 
complex formation at pH 4.25 and various ionic strengths. Complex formation was 
found to be an exothermic process for all conditions. Combination with previously 
published binding constants (Sperber, Cohen Stuart et al., 2009), allows for the 
determination of the changes in the Gibbs energy and the change in entropy of the 
system upon complex formation between β-lactoglobulin and pectin. The local 
charge density of pectin is found to determine the balance between enthalpic and 
entropic contributions. For a high local charge density pectin, the main 
contribution to the Gibbs energy is of an enthalpic nature, supported by a 
favourable entropy effect due to the release of small counterions. A pectin with a 
low local charge density has a more even distribution of the enthalpic and entropic 
part to the change of the Gibbs energy. The enthalpic part is reduced due to the 
lower charge density, while the relative increase of the entropic contribution is 
thought to be caused by a change in the location of the binding place for pectin on 
the β-lactoglobulin molecule. The association of the hydrophobic methyl esters on 
pectin with an exposed hydrophobic region on β-lg results in the release of water 
molecules from the hydrophobic region and surrounding the methyl esters of the 
pectin molecule. An increase of the ionic strength decreases the enthalpic 
contribution, due to the shielding of electrostatic attraction in favour of the 
entropic contribution, supporting the idea that the release of water molecules from 
hydrophobic areas plays a part in the complex formation. 

B.L.H.M. Sperber, M.A. Cohen Stuart, H.A. Schols, A.G.J. Voragen & W. Norde, 
accepted for publication in Biomacromolecules  
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4.1 Introduction 

β-Lactoglobulin – pectin complex formation in solution has been used 

as a model system to study the formation of complexes between oppositely 

charged biopolymers (Wang & Qvist, 2000; Girard, Turgeon et al., 2002; 

Kazmierski, Wicker et al., 2003; Ganzevles, Zinoviadou et al., 2006; 

Sperber, Cohen Stuart et al., 2009). β-Lactoglobulin (β-lg) is chosen as it is 

the major constituent of whey protein (Verheul, Pedersen et al., 1999) and 

is used in the food industry for its capability to form gels and to stabilize 

emulsions and foams (Kinsella, 1984). It is a small globular protein with a 

well known structure (Sawyer, Kontopidis et al., 1999). It has an iso-

electric point of 5.1, a molecular weight of 18.3 kDa and is present 

predominately as a dimer between pH 3.5 and 7.5, with some higher order 

aggregates reported around pH 4.7 (Verheul, Pedersen et al., 1999). β-Lg is 

reported to have a hydrophobic surface pocket in a groove between the β-

strands and α-helix (Tavel, Andriot et al., 2008). 

Pectin is used by the food industry to stabilize acid milk drinks and in 

various applications as a gelling and thickening agent (Voragen, Pilnik et 

al., 1995). An industrially extracted pectin contains mainly galacturonic 

acid, that can be methyl esterified at the carboxylic acid on C6. Based on 

their degree of methyl esterification (DM), pectins are divided in low methyl 

esterified pectins, DM < 50%, (LMP) and high methyl esterified pectins, DM 

> 50%, (HMP). Further characterization of pectins can be based on their 

degree of blockiness (DB), which is a measure for the size of the non-

methyl esterified GalA (n-Me-GalA) blocks along the pectin backbone 

(Daas, Arisz et al., 1998). The DB is associated with the calcium sensitivity 

of pectin, as pectin with larger blocks of consecutive n-Me-GalA residues 

form gels under lower concentrations of calcium (Thibault & Rinaudo, 

1986). 

Complexes formed between proteins and polysaccharides are of special 

interest for the food industry as they are used to stabilize acid dairy drinks 

(Laurent & Boulenguer, 2003), foams (Schmitt, Palma da Silva et al., 2005; 

Miquelim, Lannes et al., 2010) and emulsions (Güzey, Kim et al., 2004; 

Dickinson, 2009), fat replacement (Laneuville, Paquin et al., 2005; Le 
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Révérend, Norton et al., 2010), encapsulation of ingredients (Gharsallaoui, 

Roudaut et al., 2007), and the purification of food or non-food proteins (Ye, 

2008). The use of the complexes is not limited to the food industry, they 

also find application as an antithrombic agent (Seyrek, Dubin et al., 2007), 

a drug delivery system (George & Abraham, 2006) and packaging material 

(Shih, 1994). 

The thermodynamics of complex formation between proteins and 

polysaccharides, or in a broader sense polyelectrolytes, may be studied by 

isothermal titration calorimetry (ITC). ITC measures the enthalpy of 

binding of the protein to the polyelectrolyte. A distinction can be made 

between two different systems: Complex formation between oppositely 

charged and between likewise charged protein and polyelectrolyte. 

Complex formation between likewise charged protein and polyelectrolyte is 

found to be an endothermic process due to unfavourable electrostatic 

interactions, and the complexes are formed by an entropic driving force 

(Henzler, Haupt et al., 2010). The entropic driving force is assigned to the 

release of small counter ions from the electrical double layer, due to local 

oppositely charged patches on the protein (Henzler, Haupt et al., 2010) and 

hydrophobic interaction, implying the release of water molecules from 

contact with hydrophobic moieties (Jelesarov & Bosshard, 1999; Lin, Chen 

et al., 2001). For oppositely charged systems an exothermic process is 

found, due to favourable electrostatic interactions (Lin, Chen et al., 2001; 

Girard, Turgeon et al., 2003; Hofs, Voets et al., 2006; De Souza, Bai et al., 

2009; Tan, Koopal et al., 2009). In addition to electrostatic interactions, 

entropic contributions due to the release of small counter ions and the 

release of water molecules are also reported (Hofs, Voets et al., 2006; Tan, 

Koopal et al., 2009). 

In this study complex formation between β-lg and pectin is studied by 

means of isothermal titration calorimetry. The combination of the ITC data 

with binding constants reported in a previous publication (Sperber, Cohen 

Stuart et al., 2009), allows for the calculation of both the enthalpic and 

entropic contributions to the Gibbs energy of the complex formation. This 

study is focused on the influence of the overall charge and local charge 

density of pectin on the complex formation. The use of various pectins that 

have been characterized in detail with respect to their physico-chemical 
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characteristics, provides insight into the mechanism of complex formation 

between β-lg and pectin. 

4..2 Materials and Methods 

4.2.1 Materials 

Three types of pectin, low methyl esterified pectin (LMP), high methyl 

esterified calcium sensitive pectin (HMPB), and high methyl esterified non-

calcium sensitive pectin (HMPR), were kindly provided by CPKelco (Lille 

Skensved, Danmark). The pectins are isolated from lemon and were 

characterized in detail by Daas et al.(2001) on degree of methyl 

esterification and degree of blockiness (DB), see table 4.1. The pectins had 

a typical molecular weight of 150 kDa (Daas, Voragen et al., 2001). 

Table 4.1: Uronic acid content, DM and DB for LMP, HMPB, HMPR (Daas, Boxma et al., 2001) 

Pectin 
Uronic acid 
content (%) 

DM (%) DB (%) 

LMP 78.5 30.4 16.5 

HMPB 84.5 69.8 10.9 

HMPR 85.3 73.5 1.7 

The pectins contained 0.02-0.05 mole of calcium per mole of 

galacturonic acid (GalA) as a result of their isolation process. To remove 

the calcium, the pectins were washed five times with 60% ethanol, 

containing 5% (v/v) hydrochloric acid. Next, the pectins were washed with 

60% ethanol until they were free of chlorine (tested with 0.2 % (w/w) 

silvernitrate) and subsequently with acetone and air dried. This treatment 

was sufficient for LMP and HMPB, but for HMPR only 50% of calcium was 

removed. Therefore, HMPR was further treated by dissolving it at 10g/L 

and adding AG 50W-X4 200-400 mesh ion exchange resin from Bio-Rad 

Laboratories (Hercules, CA). HMPR and ion exchange resin were separated 

by centrifugation and HMPR was lyophilized. This resulted in pectins that 

contained less than 0.001 mole of calcium per mole of GalA. 

β-Lg was purified from bovine milk using a non-denaturing technique 

as described by De Jongh et al (2001). β-Lg was over 99% pure. 
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4.2.2 Isothermal titration calorimetry 

ITC experiments were performed using a MicroCal MCS-ITC instrument 

(MicroCal, Northampton, MA). Pectins and β-lg were dissolved to 0.7 g/L 

and 50 g/L, respectively, in a 20mM sodiumacetate buffer, pH 4.25. The 

ionic strength of the buffer was set with NaCl. Solution pH was adjusted 

and the samples were stored at 4°C overnight to ensure full hydration of 

the polymer chain. The pH was adjusted again if needed and both pectin 

and β-lg were dialyzed using a 5kDa cutoff dialysis tube for 24 hours at 

4°C in the same vessel against the experimental buffer. This dialysis step 

is necessary to ensure pre-equilibration (Norde & Lyklema, 1978). 

Solutions were stored at 4ºC until they were used for measurement, but 

never longer than 2 days. 

Pectin and β-lg solution were degassed under vacuum just before the 

measurement. The ITC measurement cell (1.353 mL) was filled with the 

pectin solution, and titrated with the β-lg solution. ITC measurements 

were performed at 25ºC. The injection volume varied between 2.5 and 6.5 

µL, depending on the amount of heat released by the complex formation 

between pectin and β-lg. The time between subsequent injections was 500 

s, which was found to be sufficient to achieve equilibrium. The solution 

was stirred at 300 rpm throughout the experiment. The heats of dilution 

for the pectin solution and the β-lg solution were found to be minimal due 

to pre-equilibration in the dialysis tubes. Nevertheless, the small heats of 

dilution were subtracted from the raw experimental data. At constant 

pressure the heat exchange between the system and the surroundings 

equals the enthalpy change of the system. 

Heat peaks were integrated using Origin software supplied with the 

MicroCal MCS-ITC instrument. The calculated enthalpy is corrected for the 

amount of β-lg that actually binds to the pectin using the binding 

constant, kobs, and Hill coefficient published by Sperber et al (Sperber, 

Cohen Stuart et al., 2009) to obtain the enthalpy change per mole of 

bound β-lg. Binding of β-lg to pectin is expressed as a function of the 

molar ratio r, i.e., the ratio of the molar concentration of the β-lg dimer and 

the molar concentration of n-Me-GalA residues. 
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4.3 Results and Discussion 

Performing the ITC experiments at pH 4.25 is based on the state 

diagrams for β-lg and pectin complex formation, published by Sperber, 

Schols et al (2009). Depending on the type of pectin and the solution ionic 

strength, at pH 4.25, a large part of the ITC curve is in the region where 

soluble complexes are formed. It is assumed that in this region the 

detected heat changes are only due to the binding of β-lg to pectin and not 

to phase separation of β-lg – pectin complexes. Figure 1a shows a typical 

thermogram for the β-lg – LMP system. The large repetitive peaks occurring 

upon each injection of β-lg to LMP reflect an exothermic binding process, 

i.e., the binding is energetically favourable. The small, positive peaks at the 

end of the titration are the result of dilution heats when β-lg is injected in 

a solution of LMP that is already saturated with β-lg. This was confirmed 

 
Figure 4.1: Thermogram of the binding of β-lactoglobulin to LMP at pH 4.25 in a 20mM Na-
acetate buffer. The ionic strength is set to a total of 10mM using NaCl 
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by blank titrations. The use of a buffer with a low heat of ionization is 

important, as the complex formation between β-lg and pectin leads to 

charge regulation of ionisable groups of both β-lg and pectin, causing 

expulsion of protons from the complexes (Sperber, Schols et al., 2009). 

Figure 4.2 shows an example of the calculated heat release as the 

result of β-lg binding to pectin, in this case LMP. When the heat release is 

plotted against r, i.e., when not corrected for the amount of added β-lg that 

actually binds, a plateau is observed from r = 0 to r = 0.031. In this initial 

plateau 65% of the total β-lg binding takes place and virtually all of the 

added β-lg (>98%) binds due to the high affinity of the binding sites. At r = 

0.031 a gradual decrease of the heat effect is observed until r reaches  

 
Figure 4.2: Changes in enthalpy (● for raw ΔH, ○ for ΔH corrected for the fraction of β-lg 
actually binding) entropy (, as TΔS) and Gibbs energy (dashed line) for the binding of β-
lactoglobulin to LMP at pH 4.25 in a 20mM Na-acetate buffer. The ionic strength of the buffer 
is 4mM. The binding isotherm (solid line) is displayed as the percentage of added β-lg that 
binds. The r where lateral repulsion is calculated to start influencing binding is displayed by 
the two vertical lines. 
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0.061, whereafter no more heat is released. Inspection of the binding 

isotherm learns that this is close to the r-value where saturation of LMP 

binding sites with β-lg occurs. When these results are adapted for the 

amount of β-lg that actually binds to LMP, a secondary plateau appears at 

0.041< r < 0.058. At the start of this secondary plateau, 82% of the β-lg 

binding sites on LMP are occupied, and at the end this is 98%. At the end 

of this second plateau there is hardly any heat release anymore. Because 

in this trajectory of the binding isotherm only a very small fraction of the 

supplied β-lg binds, the result per mol bound β-lg molecule becomes 

erroneous and is not reliable for r > 0.061. 

Commercial pectins were shown to be heterogeneous materials with 

respect to their inter- and intramolecular distribution of methyl esters 

(Guillotin, Bakx et al., 2005; Sperber, Cohen Stuart et al., 2009). As β-lg 

binds to pectin via the negatively charged GalA residues, there will be an 

optimum to the GalA block length for the binding site. This makes the 

interpretation of ITC experiments for the complexation of β-lg with pectin 

treacherous. A change in the amount of released heat is not necessarily 

caused by saturation of the pectin molecule, but can also be caused by the 

binding of β-lg to binding sites of a lower affinity. The construction of a 

binding isotherm from the ITC data, as is often done with the software 

supplied with the ITC apparatus, should therefore be avoided for this 

specific type of polysaccharide. 

As judged from figure 4.2, up to r = 0.031, the binding of β-lg to LMP 

occurs on binding sites of essentially equal affinity. It is reasonable to 

assume that these sites have an "infinite" length of GalA residues. After r 

reaches 0.031, when the heat effect starts to decrease, different scenario's 

are possible: the binding sites are of a suboptimal length, leading to 

smaller favourable electrostatic attraction between β-lg by LMP and hence 

a reduction in the heat release, or the β-lg molecules need to bind closer

together, leading to unfavourable lateral repulsion between β-lg 

neighbours, or a combination of the two. A rough calculation may be 

performed to verify whether lateral repulsion between β-lg neighbours 

plays a role. The GalA monomer is reported to have a length of 0.43nm 

(Rees & Wight, 1971); the β-lg dimer is a prolate ellipsoid with a length of 

6.9 nm and width of 3.6 nm (Verheul, Pedersen et al., 1999). Based on the 
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GalA content of the pectins and DM, the total length of available GalA can 

be calculated. Electrostatic repulsion takes place when the electrical 

double layers surrounding the β-lg molecules overlap, that is at a 

separation of ≤ 2-1, where -1 is the thickness of the electrical double 

layer. For symmetrical electrolytes -1 can be estimated by: 

2cz10  (nm-1) (4.1) 

with c the salt concentration in M and z the valence of the ions. A 

minimum and maximum effective size of β-lg is calculated by using either 

the length or width of the β-lg molecule plus 2 times -1. Using these 

assumptions electrical double layer overlap is calculated to start at r 

between 0.025 and 0.032, depending on the orientation of the β-lg 

molecule. As can be seen in figure 4.2, this is roughly at the r-value where 

the heat release starts to decrease, indicating the onset of lateral repulsion 

between β-lg neighbours. 

From the binding constant (kobs) determined by Sperber, Cohen Stuart 

et al (2009) the Gibbs energy of binding, excluding the contribution from 

the configuration entropy associated with the distribution of β-lg along the 

pectin chain, can be calculated using the following relation: 

obskRTlnG   (4.2) 

with R is the gas constant and T the temperature (K). The change in Gibbs 

energy (ΔG), comprises changes in enthalpy (ΔH) and entropy (ΔS) as 

follows: 

STHG   (4.3) 

where ΔG is negative for a spontaneous process. The enthalpy change, ΔH, 

can directly be obtained from the ITC data because, at constant pressure 

(p), the heat effect (Δq)p = ΔH. The calculations from ΔH and TΔS to ΔG are 

shown in figure 4.2. For the first stage of binding, up to r is 0.031, ΔH < 

ΔG, implying, according to equation 3, an unfavourable entropy decrease, 

as ΔS < 0. This is unexpected as the entropy contribution associated with 

the binding of oppositely charged polymers is reported to be favourable, 

due to the release of counterions from the electrical double layer (Ball, 

Winterhalter et al., 2002; Bharadwaj, Montazeri et al., 2006; Hofs, Voets et 
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al., 2006; Tan, Koopal et al., 2009). However, as stipulated by Sperber, 

Cohen Stuart et al (2009), the distribution of methyl esters on the GalA 

backbone will lead to inhomogeneous binding sites. As kobs has been 

calculated by fitting the entire binding isotherm, it has an averaged 

character. Hence, as the most favourable binding sites will be occupied 

first, for low r, the negative value of ΔG may be underestimated and 

therefore ΔG consists of an enthalpic component and, most likely, also a 

favourable entropic term. As r increases, and the enthalpy release 

decreases, the negative value of ΔG is overestimated and the entropic 

contribution is probably smaller than shown in figure 4.2. At high r no 

heat release is measured, although, according to the binding isotherm, 

binding still takes place. As the binding isotherm was determined under 

conditions deviating from those of the ITC experiments, i.e., a lower total 

biopolymer concentration and not using a titration format, significant 

inaccuracy can be expected in the last part of the curve. Yet, also Tan et al 

(Tan, Koopal et al., 2009) reported that binding between lysozyme and 

humic acid at the end of the titration curve, where phase separation of the 

complexes takes place, is driven by an entropy increase. The main 

contribution to the entropy gain is attributed to the release of bound water 

from the surface of the complexes when they phase separate. 

Figure 4.3 shows the enthalpy changes for all three pectins at various 

ionic strengths. For LMP the profile of the enthalpy effect is similar at all 

ionic strengths, but the magnitude decreases with increasing ionic 

strength, and, furthermore, binding saturation is reached at lower r-value. 

The reduced enthalpy change is caused by screening of the electrostatic 

attraction between the oppositely charged groups on β-lg and GalA, as was 

also reported for complex formation between oppositely charged polymers 

by several authors (Hofs, Voets et al., 2006; De Souza, Bai et al., 2009; 

Tan, Koopal et al., 2009). For higher ionic strength LMP is saturated with 

β-lg at lower r, which is also related to the decrease in electrostatic 

attraction due to more efficient screening of electrostatic forces. This 

causes not all binding sites to be able to bind β-lg sufficiently strong, as 

shown before by Sperber, Cohen Stuart et al. (2009), who observed a 

decrease in the adsorption maximum of β-lg to pectin at higher ionic 

strength. 
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The titration of HMPB with β-lg shows a profile different from that of β-

lg to LMP. For the first 2 injections the heat release is as large as for LMP. 

It indicates that in HMPB less high affinity sites are present. The presence 

of a small number of high affinity sites on HMPB is in accordance with the 

conclusion that at the onset of complex formation the binding sites on LMP 

 
Figure 4.3: Corrected enthalpy change for the binding of β-lactoglobulin to LMP (●), HMPB (○) 
and HMPR () at pH 4.25 in a 20mM Na-acetate buffer. The ionic strength is set to a total of 4 
(a), 10 (b), 30 (c) and 75 mM (d) using NaCl. The r where lateral repulsion is calculated to 
start influencing binding is displayed by the two vertical lines. 

and HMPB have a similar local charge density (Sperber, Schols et al., 

2009). There is a gradual decrease of the heat release throughout the 

titration experiment. This indicates a large variety of binding sites, all with 

their individual binding constant. At low ionic strength (up to 10mM) 

binding of β-lg to HMPB takes place up to a higher r than for LMP. Since 

the reported binding constants for HMPB and LMP are comparable 

(Sperber, Cohen Stuart et al., 2009), this is believed to be caused by the 

fact that HMPB contains less binding sites than LMP, so that they have a 
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larger separation distance along the polymer chain. This allows binding of 

β-lg at higher r as there is less electrostatic repulsion between β-lg 

neighbors, leading to a more efficient use of the available binding places. 

The enthalpy of β-lg binding with HMPR is considerably lower than 

for the binding of β-lg to HMPB or LMP. The random nature of HMPR leads 

to the absence of high affinity sites as are present on HMPB and LMP. For 

low ionic strength there is an initial plateau containing binding sites of 

similar affinity. As for HMPB, binding of β-lg to HMPR takes place up to a 

higher r than for LMP, for the same reason as outlined for HMPB. The β-lg – 

HMPR system is more sensitive to ionic strength compared to HMPB or 

LMP. Since the size of GalA blocks on HMPR are smaller, the reduction of 

attractive electrostatic forces by increased screening at higher ionic 

strength leads to a suppression of binding at lower ionic strength. At an 

ionic strength of 75mM no heat release was detected, and at 30mM only 

for the first injection, despite the fact that β-lg and HMPR are reported to 

form complexes under these conditions (Sperber, Cohen Stuart et al., 

2009; Sperber, Schols et al., 2009). 

Table 4.2 shows values for the changes in Gibbs energy and enthalpy 

resulting from the binding of β-lg to pectin. For LMP, ΔG does not differ 

much from ΔH in the first plateau for ionic strengths of 4 and 10 mM, 

although also an entropic contribution to the binding of β-lg to LMP is 

expected in this region due to the release of small counterions. At the final 

part of the titration, ΔH (after correction for the amount of β-lg that 

actually binds to LMP) is smaller than ΔG. As discussed above, this may 

well be due to overestimation of kobs, and, hence, of ΔG in this titration 

region. At ionic strengths of 30 and 75 mM, ΔG is considerably larger than 

ΔH. This suggests that part of the interaction between β-lg and LMP at this 

ionic strength is driven by an entropy gain. It is unlikely that this entropy 

gain originates only from the release of small counterions, as entropy 

change due to the release of small counterions should reduce with 

increasing ionic strength (Henzler, Haupt et al., 2010). Possibly, the 

reduced electrostatic forces allow β-lg to bind at different places on LMP, 

causing the release of water molecules that are associated with the 

hydrophobic methyl groups of pectin. It is also possible that a different 

part of the β-lg molecule is available for binding to LMP. As β-lg has an 
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exposed hydrophobic cavity (Tavel, Andriot et al., 2008), binding of LMP in 

this cavity could result in the release of immobilized water molecules from 

both β-lg and LMP. Schmitt et al (Schmitt, Sanchez et al., 2001) found a 

change in the tertiary structure of β-lg upon binding to acacia gum. They 

reported a decrease in the α-helix content of β-lg when it was in a complex 

with acacia gum. β-Lg only has one α-helix that is located next to the 

exposed hydrophobic cavity (Tavel, Andriot et al., 2008). 

Table 4.2: Parameters obtained from the ITC data. kobs from Sperber, Cohen Stuart et al 
(2009). The plateaus are identified in figure 4.3 

 I (mM) 
10-6 × 
kobs 

ΔG 
(kJ/mol) 

ΔHini 
(kJ/mol) 

ΔHPlat,1 
(kJ/mol) 

ΔHPlat,2 
(kJ/mol) 

4 366 -48.9 -59.4 -51.4 -30.4 

10 434 -49.3 -52.3 -48.1 -26.0 

30 152 -46.7 -38.1 -37.7 -26.0 
LMP 

75 60.9 -44.4 -28.8 -27.9 -13.5 

4 520 -49.8 -57.2   

10 330 -48.6 -50.0   

30 95.7 -45.5 -37.3 - - 
HMPB 

75 9.2 -39.7 -22.8 - - 

4 302 -48.4 -25.5 -24.6 -12.2 

10 111 -45.9 -36.7 -19.5 -7.0 HMPR 

30 22.2 -41.9 -5.9 - - 

Finally, it should be mentioned that the ITC experiments are performed 

at much higher biopolymer concentrations than the binding isotherms 

experiments, to obtain a good signal to noise ratio. This may introduce 

uncertainties in the comparison of thermodynamic parameters obtained 

from the different types of experiments. 

For HMPB, ΔG is larger i.e., more negative, than ΔH for all ionic 

strengths, with the exception of the first few injections at an ionic strength 

of 4 and 10mM. These first few injections involve binding sites comparable 

to LMP. After those first few injections and at higher ionic strength the 

complex formation between β-lg and HMPB is therefore driven both by 

enthalpic and entropic contributions, with the relative contribution of the 

entropic component increasing with increasing ionic strength. β-Lg binds 
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on HMPB in blocks of GalA, like on LMP, but as discussed before, the 

majority of GalA blocks on HMPB are not as large as on LMP, resulting in 

many different types of binding sites having their own individual binding 

affinities and, hence, leading to a gradual reduction in the release of heat 

from the onset of the titration curve. β-Lg therefore binds on binding sites 

that are not isolated from interaction with the methyl esterified groups of 

HMPB. This results in the release of hydration water surrounding the 

hydrophobic methyl group and possibly the hydrophobic cavity of β-lg, 

which, in turn, raises the entropy of the system. 

Complex formation between β-lg and HMPR comprises, like for HMPB, 

an enthalpic and an entropic component. Where for HMPB initially ΔH ≈ 

ΔG, for HMPR the binding of β-lg upon the first addition already comprises 

an enthalpic component (as the result of electrostatic interactions between 

the oppositely charged groups) and an entropic contribution (from the 

release of small counter ions and hydration water surrounding the methyl 

groups of pectin and, possibly, the exposed hydrophobic region of β-lg). As 

the ionic strength increases, the enthalpic contribution is fully suppressed 

and only the entropic component remains. 

4.4 Conclusions 

The complex formation between β-lg and pectin is driven by both 

enthalpic and entropic contributions. The enthalpic contribution consists 

of the electrostatic attraction between oppositely charged groups on β-lg 

and pectin. The entropic contribution is the result of the release of small 

counter ions from the electrical double layer surrounding the β-lg and 

pectin ionic groups, as well as the release of water restricted in its 

movement surrounding the pectin methyl esters and an exposed 

hydrophobic region on β-lg. 

The balance between the enthalpic and entropic contribution to 

complex formation depends strongly on the pectin physico-chemical 

characteristics. The local charge density and overall charge of a pectin 

determines the ratio between the enthalpic and entropic contribution of 

complex formation. The complex formation between β-lg and LMP at pH 

4.25 is mainly enthalpy driven for ionic strengths up to 10 mM, although 
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entropic contributions are suspected to be underestimated, due to the 

averaged character of kobs. At 30 mM and above there is also a 

considerable entropic contribution to the complex formation. For HMPB the 

onset of complex formation is mainly enthalpically driven at ionic strength 

up to 10mM, but when the high affinity, LMP resembling, binding sites are 

filled, a considerable entropical contribution is part of the driving force for 

complex formation as well. β-Lg – HMPR complex formation is driven by an 

enthalpic and entropic component at ionic strengths up to 10mM. At 

30mM the enthalpic contribution is found to be absent and the complex 

formation is fully entropically driven. 

It can be concluded that when β-lg binds to a pectin, the local charge 

density of the pectin determines the composition of the driving force for 

complex formation. For a pectin with a high local charge density, such as 

LMP, the main driving force is of an enthalpic nature, originating from the 

favourable electrostatic interactions. The complex formation is supported 

by a favourable entropic contribution, resulting from the release of small 

counterions. When the local charge density of pectin is lower, like for 

HMPR, but also for HMPB, the entropic contribution to the driving force of 

complex formation becomes more pronounced. It is postulated that this 

may be the result of lower electrostatic repulsion between β-lg and pectin, 

allowing β-lg to bind in such a way that the entropic contribution 

comprises of both the release of small counterions, as well as immobilized 

water molecules from the pectins methyl groups and, possibly, from an 

exposed hydrophobic cavity on β-lg. An increase in ionic strength results 

in an increase of the relative contribution of the entropic component, 

supporting the idea that the release of water molecules from hydrophobic 

regions on both pectin and β-lg plays a role in the driving force of complex 

formation. 
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Chapter 5 

Adsorption of β-lactoglobulin and pectin to 
a solid hydrophobic surface 

Abstract 

Hydrophobized silica is used as a model system to study the adsorption of β-
lactoglobulin (β-lg) and pectin to an oil-water interface. Adsorption takes place both 
from mixtures as sequentially. The adsorption of β-lg and pectin to a hydrophobic 
surface is investigated at pH 4.25, where soluble complexes are formed over a large 
range of mixing ratio's. The adsorption to a hydrophobic surface from a mixed β-lg–
pectin solution leads to a reduction in the rate of adsorption as compared to a 
solution of β-lg alone. This can be related to a lower concentration of free β-lg. 
When low weight ratio's of β-lg / pectin are used, the ζ-potential is lower than for 
higher weight ratio's, due to charge compensation of β-lg that is bound to pectin. 
The low rate of adsorption of mixtures of β-lg and pectin hampers emulsion 
stabilization, as the newly created surface cannot be covered before coalescence of 
the droplets would occur. Sequential adsorption of β-lg and pectin results in the 
build up of multi layers of β-lg and pectin. When the multilayer is completed with a 
layer of pectin with a high local charge density, it is most stable against the wash 
out of β-lg from the multilayer. When the last layer is of a pectin with a low overall 
charge, the ζ-potential is lowest. This indicates that high methyl esterified pectin 
protrudes more into the solution than low methyl esterified pectin. The above 
suggests that to enhance the stability of an emulsion a primary emulsion of β-lg 
needs to be prepared to which high methyl esterified, blockwise pectin is added to 
create a secondary emulsion that is stabilized by a layer of pectin adsorbed on top 
of the β-lg layer. 

Published as (in modified form): 
B.L.H.M. Sperber, M.A. Cohen Stuart, H.A. Schols, W. Norde & A.G.J. Voragen, 
2009, Pectin–β-lactoglobulin complex formation: influence of pectin overall charge 
and local charge density. In H.A. Schols, R.G.F. Visser & A.G.J. Voragen Eds., 
Pectins and Pectinases. (pp. 213-229), Wageningen, The Netherlands: Wageningen 
Academic Publishers 
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5.1 Introduction 

Pectin is widely used in the food industry for its gelling properties in 

the production of jams and jellies, fruit juice, confectionary products and 

bakery fillings (Voragen, Pilnik et al., 1995; May, 1997), but pectin is also 

added to acidified dairy drinks to stabilize the casein micelles from 

precipitation (Tholstrup Sejersen, Salomonson et al., 2007). Pectin 

stabilizes the casein micelles by electrosorption to the micelle surface 

(Pereyra, Schmidt et al., 1997; Maroziene & De Kruif, 2000; Tuinier, Rolin 

et al., 2002). It was first postulated that the negative charge of the pectin 

stabilised the casein micelle by electrostatic repulsion (Glahn, 1982), but ζ-

potential measurements showed that the charge of the casein micelle-

pectin complexes was not sufficient for stabilization and the stabilization 

occurs by a combination of electrostatic repulsion and steric hindrance 

(Kravtchenko, Parker et al., 1995). For the stabilisation of acidified milk 

drinks, the choice of pectin is very important, as different pectin types 

have different stabilizing properties. The difference in stabilising properties 

of the pectins is related to the degree of methyl esterification (DM) and 

distribution of the methyl esters (DB) of galacturonic acid within the pectin 

backbone. High methyl esterified (HM) pectin is found to be a better 

stabiliser of acidified milk drinks than low methyl esterified (LM) pectin 

(Pereyra, Schmidt et al., 1997; Liu, Nakamura et al., 2006). This better 

stabilization by HM-pectin is explained by the proportion of the pectin 

molecule that is bound to the casein micelle. A LM-pectin has mainly non-

methyl esterified GalA (n-Me-GalA) residues, resulting in the binding of the 

majority of the pectin molecule to the casein micelle. HM-pectin has much 

less binding places, resulting in a pectin molecule that protrudes more into 

the solution and provides a better stabilization of the casein micelle by 

steric repulsion (Pereyra, Schmidt et al., 1997; Rolin, 2002; Boulenguer & 

Laurent, 2003). For a long term stability of the acidified milk drink it is 

important that a weak gel network is formed (Boulenguer & Laurent, 

2003). Of the HM-pectins, calcium sensitive pectin is preferred over a non-

calcium sensitive pectin as the blocks of n-Me-GalA bind strongly to the 

casein micelle, while the randomly distributed non-calcium sensitive 
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pectin hardly binds to the casein micelle (Glahn & Rolin, 1996; Laurent & 

Boulenguer, 2003). 

Emulsions are often stabilised by proteins. Proteins adsorb on the oil-

water interface, thereby protecting the emulsion against coalescence 

(Dickinson, 1999). Protein-stabilised emulsions are often not stable to 

environmental stresses like pH, salt, heating, freezing or shear forces 

(McClements, 2003). One way of improving the stability of the emulsion is 

the addition of a charged polysaccharide to the system (Dickinson, 1994; 

Güzey, Kim et al., 2004). There are two ways to stabilize the emulsion: a 

sequential adsorption of protein and polysaccharide, or the preparation of 

an emulsion from a mixed solution of protein and polysaccharide. 

Sequential adsorption, or layer-by-layer deposition, is achieved by making 

a primary emulsion with protein, to which a solution of polysaccharide is 

added. This gives stable emulsions, although an ultrasound treatment 

seems to be a prerequisite to prevent flocculated droplets for a system 

consisting of β-lg and pectin(Güzey, Kim et al., 2004). Emulsions prepared 

from a mixture of sodium caseinate and dextran sulphate are also stable. 

No bridging flocculation was observed in these emulsions (Jourdain, Leser 

et al., 2008). The characteristics of the adsorbed complexes and the 

structures of the adsorbed layers from sequential adsorption on the 

interface between oil and water are however still poorly understood 

(Dickinson, 2008). 

To investigate the influence of pectin physicochemical characteristics 

(overall charge and local charge density) on the adsorption to hydrophobic 

surfaces, like oil-water or air-water surfaces, of β-lg and β-lg–pectin 

complexes a model system of hydrophobized silica was used. Sperber et al. 

(Sperber, Schols et al., 2009) studied the formation of complexes of β-lg 

and pectin as a function of pH and ionic strength by means of state 

diagrams. The region where soluble complexes of β-lg and pectin are 

formed was chosen to study the functionality of β-lg–pectin complexes on 

hydrophobic surfaces. Furthermore, the possibility of a layer-by-layer 

deposition of β-lg and pectin from their individual solutions by alternating 

exposure to solutions of β-lg and pectin was investigated. 
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5.2 Materials and Methods 

5.2.1 Materials 

Three pectins, low methyl esterified pectin (LMP), high methyl esterified 

calcium sensitive pectin (HMPB), and high methyl esterified non-calcium 

sensitive pectin (HMPR), were kindly provided by CPKelco (Lille Skensved, 

Denmark). The pectins originate from lemon and were characterized by 

Daas et al.(Daas, Boxma et al., 2001) on degree of methyl esterification 

and degree of blockiness (DB), see table 1. The pectins had a typical 

molecular weight of 150 kDa.(Daas, Voragen et al., 2001). 

Table 5.1: Uronic acid content, DM and DB for LMP, HMPB, HMPR (Daas, Boxma et al., 2001) 

Pectin 
Uronic acid 
content (%) 

DM (%) DB (%) 

LMP 78.5 30.4 16.5 

HMPB 84.5 69.8 10.9 

HMPR 85.3 73.5 1.7 

The pectins contained 0.02-0.05 mole of calcium per mole of 

galacturonic acid (GalA). The calcium was removed by washing the pectins 

five times with 60% ethanol, containing 5% (v/v) hydrochloric acid. Next, 

the pectins were washed with 60% ethanol until they were free of chlorine 

(tested with 0.2 % (w/w) silvernitrate). Pectins were subsequently washed 

with acetone and air dried. This was sufficient for LMP and HMPB, but 

HMPR required further treatment. HMPR was dissolved to 10g/L and mixed 

with AG 50W-X4 200-400 mesh ion exchange resin from Bio-Rad 

Laboratories (Hercules, CA). HMPR and ion exchange resin were separated 

by centrifugation and HMPR was lyophilized. This resulted in pectins that 

contained less than 0.001 mole of calcium per mole of GalA.  

β-Lactoglobulin (β-lg) was purified from bovine milk using a non-

denaturing technique as described by De Jongh et al.(De Jongh, Gröneveld 

et al., 2001) β-Lg was over 99% pure. 

5.2.2 Hydrophobization of solid surfaces 

Surface modification of silicium wafers was performed as previously 

described by Van der Wielen et al (Van der Wielen, Baars et al., 2000), with 
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some minor modifications. For the reflectometry measurements, silicium 

wafers are oxidized by placing them in an oven at 1000ºC for 

approximately 90 minutes. The wafers were cut to size and sonicated for 

15 minutes in ethanol. Wafers were subsequently rinsed with ethanol and 

milli-Q water and dried in a stream of nitrogen. Next, the wafers were 

cleaned by immersion in a solution of concentrated sulphuric acid and 

20% hydrogen peroxide (3:1). Wafers were washed with Milli-Q water and 

dried in a stream of air. The cleaned, dry wafers were hydrophobized by 

immersion in a 1% dichlorodimethyl-silane (DCDM-silane) solution in 

toluene. The strips were removed from the DCDM-silane solution and 

immersed in toluene. Next, the wafers were washed, first with acetone and 

second with Milli-Q water. The wafers were stored in Milli-Q water until 

further use (always within 24 hours). 

For the ζ-potential measurements, microscope glass slides were 

hydrophobized using the same protocol outlined above, except for heating 

at 1000ºC and sonication. 

5.2.3 Reflectometry 

The adsorbed amount of material on the hydrophobized silica wafers is 

measured by reflectometry. Reflectometry is a simplified form of 

ellipsometry, where the changes in intensity of a reflected polarized laser 

beam are measured. For a detailed description of this technique, we refer 

to Dijt et al (Dijt, Cohen Stuart et al., 1990). Briefly, the technique can be 

described as follows: The output signal (S) is defined as the ratio of the 

parallel (I) and perpendicular intensities (I) of the reflected light: 




I

I
S  (5.1) 

Due to the adsorption of material, S changes from its original value S0 

to a value S0 + ΔS. As S is set to zero for S0 only ΔS is reported. ΔS can be 

converted to an amount of mass per unit area. For this, the composition of 

the adsorbed layer needs to be known, as well as the refractive index of the 

different layers: 3.85 for Si, 1.46 for SiO2, 1.44 for protein and 1.33 for 

water. The refractive index increment (dn/dc) for β-lg is 0.181 ml/g (De 

Feiter, Benjamins et al., 1978). For the pectins the following dn/dc's were 
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measured using a Shodex RI-72 instrument: 0.123 ml/g for LMP, 0.121 

ml/g for HMPB and 0.124 ml/g for HMPR. 

The experiments are started by a buffer rinse of the surface. When a 

stable baseline is obtained, the buffer flow is replaced by a sample flow. 

5.2.4 Streaming potential 

The streaming potential is measured to calculate ζ-potential of the 

surface. Two hydrophobized glass slides are mounted in a cell separated by 

0.1mm. The sample solution is forced to flow through the cell by a 

mechanical pressure difference, Δp. The streaming potential (Vs) is 

measured, from which the ζ-potential can be calculated as follows: 

Kp
V 0s







 (5.2) 

where ε0 is the dielectric permittivity of vacuum, ε the dielectric 

constant of the solvent, η the dynamic viscosity of the solvent and K the 

conductivity of the cell filled with solution (Elgersma, Zsom et al., 1992). 

The ζ-potential of the surfaces is determined when the adsorption of 

material from the solution is complete. 

5.3 Results and Discussion 

The adsorption of β-lg and pectin, both from mixtures and sequentially, 

to a hydrophobized silica surface is a model for adsorption phenomena at 

hydrophobic surfaces in foods like oil-water or air-water interfaces. Fast 

adsorption is required to be able to stabilize new surface area that is being 

formed when emulsions are produced (Dickinson, 2003). With 

reflectometry, information about the rate of adsorption and the adsorbed 

amount can be determined. To prevent coalescence of emulsions the 

charge density of the stabilized interface is important and can be 

determined by streaming potential measurements. 

5.3.1 Adsorption of β-lg and pectin from homo-molecular 
solutions 

Figure 5.1 shows the adsorption of β-lg and LMP to hydrophobized 

silica at pH 4.25. β-lg adsorbs very fast, reaching a plateau value that 
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corresponds to approximately 1.3 mg/m2. β-Lg is known to adsorb quickly 

to hydrophobic interfaces (Paulsson & Dejmek, 1992). The ζ-potential of 

the hydrophobized silica surface was determined to be -10.0 mV. Not all of 

the silanol groups have reacted with DCDM-silane, leaving a negative 

charge on the hydrophobic surface. As the adsorption experiment takes 

place below the pI of β-lg, this will increase the adsorption rate due to 

attractive electrostatic forces between β-lg and the surface. After 

adsorption of β-lg the ζ-potential of the surface is found to be +11.7 mV. 

The adsorbed amount of β-lg can be increased by increasing the ionic 

strength, which reduces electrostatic repulsion in the adsorbed layer, 

allowing the β-lg molecules to be packed closer together. Increasing the 

concentration of the β-lg solution from which the β-lg adsorbs will also 

increase the adsorbed amount, as the β-lg has less time to adapt its 

structure, i.e., to "spread" over the surface (Elofsson, Paulsson et al., 

1997). 

 
Figure 5.1: Adsorption of β-lg (──) and LMP (─ ─) to hydrophobic surface, pH 4.25, 20 mM 
NaAcetate, I is set with NaCl to 10 mM. [β-lg] = 10 mg/L [LMP] = 100 mg/L. 
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From a solution of LMP only very slow adsorption takes place. The 

negative charge of both the hydrophobic surface and the pectin slows the 

adsorption kinetics. Pectin is known to adsorb very poorly to hydrophobic 

surfaces and to have no emulsifying properties. It is therefore not unlikely 

that the actual slow adsorption observed is the result of contaminations in 

the pectin sample, as they are known to contain, for instance, a small 

amount of protein (Dickinson, 2003). Furthermore, the very slow 

adsorption kinetics for LMP, and the absence of an adsorption plateau, 

indicate that the adsorbing component is present at a low concentration. 

This indicates that the observed adsorption is the result of a contaminant. 

Since the adsorption is considered to be the result of a contaminant in the 

pectin sample and has not reached an adsorption plateau after 20 

minutes, the surface charge after adsorption was not determined. 

5.3.2 Adsorption of β-lg–pectin from mixed solutions 

The adsorption on hydrophobic surface from a mixed solution of β-lg 

and pectin is shown in figure 5.2. For comparison, also the curve of β-lg 

from figure 5.1 is shown. It is difficult to obtain an adsorbed amount from 

these graphs, as this depends on the refractive index increment (dn/dc) of 

both β-lg and pectin. For adsorption from homo-solutions this is easy to 

do, since the composition of the adsorbed layer is known. With the 

adsorption from mixed solution both β-lg and pectin may adsorb, but it is 

unknown in what ratio. In literature, values for the dn/dc for pectin can be 

found ranging from 0.092 - 0.183 ml/g (Corredig, Kerr et al., 2000; Hunter 

& Wicker, 2005; Gulfi, Arrigoni et al., 2007). In this study, LMP, HMPB and 

HMPR were found to have nearly identical dn/dc of 0.123, 0.121 and 0.124 

ml/g respectively. Possibly this is the result of the extensive washing of the 

pectins to remove salt ions complexed with the carboxyl groups of the 

galacturonic acid. Since the pectins all have the same dn/dc, it is possible 

to qualitatively compare the results for the different samples. 

The adsorption from mixed solutions of β-lg and LMP shows a 

considerable reduction of the adsorption speed, compared to adsorption 

from a β-lg homo-solution, for both a WR of 2 and 6. Sperber et al 

(Sperber, Cohen Stuart et al., 2009) published binding isotherms of β-lg 

and pectin. The same pectins and conditions were used in this study. The  
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Figure 5.2: Adsorption of β-lg–pectin mixtures. β-lg–LMP, WR 2 (―――), WR 6 (▬▬▬); β-lg–
HMPB, WR 2 (― • ―), WR 6 (― • • ―); β-lg–HMPR, WR 2 (– –), WR 6 (–– ––) and β-lg (• • •) to 
hydrophobic surface.  pH is set to 4.25, using a 20 mM NaAcetate, the ionic strength is set 
with NaCl to 10 mM. [β-lg] = 10 mg/L. 

binding isotherm shows that for the WR 2 sample the pectin is far from 

saturation, and the affinity of β-lg for LMP is very high, causing virtually 

all β-lg to be bound to LMP. Only 0.15% of β-lg was found to be free in 

solution. For WR 6 saturation of LMP is reached and 27% of the β-lg is 

present as free β-lg. The result of this considerable lowering of [β-lg]free is a 

reduced rate of adsorption, as the adsorption rate is controlled by [β-lg]free. 

This was also found for the adsorption to air-water interfaces from β-lg–

LMP mixtures by Ganzevles et al (Ganzevles, Cohen Stuart et al., 2006), 

where the change in surface pressure due to the adsorption of β-lg from a 

β-lg–LMP mixture could be approximated by using a 10 times diluted β-lg 

homo-solution. The adsorbed amount from the mixture is lower than for 

adsorption from a β-lg solution alone. Since there is only very slow 

adsorption of β-lg on the surface, there is a lot of time for the adsorbed β-lg 
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molecules to rearrange on the surface, leading to spreading of the β-lg 

molecules on the surface. 

The ζ-potential of the surface is -19.9mV for WR 2 and -9.7mV for WR 

6. For WR 2, the binding sites on LMP are far from saturated, leaving 

negative charge on LMP uncompensated by positive charge of the β-lg, 

thus giving a negative ζ-potential. At WR 6 LMP is close to saturation with 

β-lg, but the overall charge of the complex is still negative (see also 

Ganzevles et al(Ganzevles, Zinoviadou et al., 2006)). 

For HMPB the WR 2 sample also shows a considerable reduction in the 

adsorption rate. From the binding isotherm it follows that 6.5% is present 

as β-lgfree, for WR 6 this is 52%. Although the WR 6 sample shows some 

reduction in adsorption rate, it is a relatively small reduction, as can be 

expected from a reduction of [β-lg]free by only a factor 2. More pronounced 

is the difference in the amount of adsorbed mass in the WR 6 sample. The 

signal is approximately two times as high as for adsorption of β-lg alone. 

This implies that besides a surface coverage of β-lg that is comparable to a 

surface coverage of β-lg alone, a considerable amount of complexes of β-lg 

and HMPB adsorbs on top of the β-lg surface layer. A buffer rinse showed 

that only approximately 10% of the adsorbed material could be desorbed 

(results not shown), indicating that the complexes are tightly bound to the 

β-lg surface layer. The ζ-potential of the surface for WR 2 and 6 are -

21.6mV and -13.9, respectively, which may be explained following the 

same reasoning as for LMP. 

The adsorption from mixtures of β-lg–HMPR is similar to that of 

mixtures of β-lg–HMPB. For WR 2 13% of β-lg is not bound to HMPR, 55% 

for WR 6. The higher [β-lg]free compared to HMPB for WR 2 leads to an 

increased adsorption rate, compared to the adsorption from a solution of 

β-lg–HMPB. The ζ-potential for WR 2 is -22.4mV, for WR 6 it is -10.8mV. 

Figure 5.3 gives a model representation of the adsorption from a β-lg 

solution and from β-lg–pectin mixtures. The adsorption from a solution of 

β-lg is represented in figure 5.3a. The β-lg adsorbs quickly leaving little 

time for rearrangement of the protein on the surface to reach the optimal 

conformation on the surface. Figure 5.3b shows the adsorption from 

mixtures of β-lg and pectin at a WR of 2. Since the [β-lg]free is low, 

adsorption of β-lg is slow allowing the protein to spread on the surface. 
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The pectin adsorbing onto this β-lg layer is far from being saturated with 

β-lg, allowing the pectin to cover a larger surface area. Figure 5.3b also 

represent the adsorption from a solution of β-lg–LMP at WR 6, since [β-

lg]free is also low under those conditions. The resulting pectin layer for LMP 

at WR 6 will contain more β-lg. Finally, figure 5.3c shows the adsorption 

from mixtures of β-lg and HMPB or HMPR at WR of 6. As the concentration 

of [β-lg]free is considerably higher, the adsorption of β-lg is much faster, 

allowing for limited relaxation on the surface. The pectin is fully saturated 

with β-lg and the majority of the pectin protrudes into the solution, 

causing a considerable increase in the adsorbed mass compared to 

adsorption from a solution of β-lg. 

a b ca b c

 
Figure 5.3: Model representation of adsorption on a hydrophobic surface from a solution of 
a) β-lg b) β-lg–pectin mixture at WR 2 for all pectin and WR 6 for LMP c) β-lg–pectin mixture 
at WR 6 for HMPB and HMPR. 

5.3.3 Sequential adsorption of β-lg and pectin 

Sequential adsorption of β-lg and pectin onto a hydrophobic surface 

can be used in the formation of secondary emulsions, which have an 

improved emulsion stability (Güzey & McClements, 2006), or for 

encapsulation purposes (De Kruif, Weinbreck et al., 2004). As pectin does 

not adsorb to a hydrophobic surface the first layer is made of β-lg. In total 

4 layers of both β-lg and pectin are deposited, but build-up of more layers 

was found to be possible. 

Figure 5.4 shows the sequential adsorption of β-lg and pectin to a 

hydrophobic surface. As expected, the first layer of β-lg is identical for all 

three pectins, as no pectin has been in contact with the surface. A short 

buffer rinse removes the β-lg solution before pectin is offered to the 

surface. The ζ-potential of the β-lg layer is +12mV, as found before. After 
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adsorption of pectin the ζ-potential of the adsorbed layer has become 

negative: -28mV for HMPB and HMPR, but only -17mV for LMP. The 

difference in ζ-potential of the LMP layer compared to the HMPB and HMPR 

layer is attributed to the orientation of the pectin layer. As LMP contains 

many more carboxyl groups, its orientation is much "flatter" on the surface 

than for the two HMP's that protrude farther into the solution. As the loops 

of two HMP’s are not in contact with the β-lg covered surface, their 

negative charge is not compensated by the positive charge of the protein. 

As the ζ-potential is measured at the shear plane, more charge 

compensation by small counterions takes place in a thicker layer. The 

actual difference in ζ-potential between a terminal layer of one of the two 

HMP’s and LMP may therefore actually be larger than was measured. The 

 
Figure 5.4 Sequential deposition on a hydrophobic surface of β-lg and LMP, HMPB and 
HMPR. [β-lg] = 10 mg/L, [pectin] = 100 mg/L, 20mM NaAcetate buffer pH 4.25, I is set with 
NaCl to 10 mM. Buffer (──), β-lg (──), pectin (── · · ──) 

difference in orientation between LMP and HMP was also suggested by 

Pereya et al for casein–pectin complex formation (Pereyra, Schmidt et al., 
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1997). The adsorption of pectin on the β-lg layer has only a small effect on 

ΔS, mainly because of the low dn/dc compared to β-lg, but pectin is 

adsorbing on the β-lg surface, as indicated by the change of the ζ-potential.  

The following layers for LMP all show the same trend, β-lg adsorbs on 

the LMP layer, LMP on the β-lg layer. The ζ-potential of terminal β-lg layers 

was determined to be -2mV. This shows that no overcompensation of LMP 

charge takes place. The terminal LMP layers have a ζ-potential of about -

21mV, somewhat lower than the first layer of LMP. As adsorbing LMP 

needs to share β-lg molecules in order to attach to the existing layers, the 

charge compensation of β-lg is probably a bit more efficient for the 

subsequent layers of LMP. From the increase in ΔS, it seems that more β-lg 

adsorbs in subsequent layers. At the same time, the buffer rinse and LMP 

adsorption, after the initial plateau, seem to lower ΔS a bit. Although the 

binding isotherm shows a high affinity of β-lg for pectin at an ionic 

strength of 10mM, there will still be some desorption when the surface is 

in a solution that is void of either β-lg, LMP or both. Therefore, when β-lg 

is subjected for adsorption, it may also replenish some of the β-lg that was 

washed out during the buffer rinse and LMP adsorption. When comparing 

the buffer rinse after β-lg and LMP adsorption, the loss of mass is much 

greater after adsorption of β-lg than after adsorption of LMP, which implies 

that desorption of β-lg from a saturated LMP layer is much easier than 

from an unsaturated one. 

Sequential adsorption of β-lg and HMPB shows a pattern similar to that 

of LMP. The increase in ΔS is comparable to LMP, although the desorption 

of β-lg seems to be somewhat higher. Since HMPB has a higher DM than 

LMP, it should contain less binding sites for β-lg. Since approximately 

equal amounts of β-lg adsorb to a HMPB layer as to a LMP layer this hints 

again to a different orientation of the pectin on the surface, where HMPB 

protrudes more into the solution than LMP and thus more HMPB can 

adsorb onto the β-lg layer. The desorption of mass after the initial 

adsorption of HMPB is caused by the β-lg not being bound as tightly to 

HMPB as to LMP (Sperber, Cohen Stuart et al., 2009), allowing it to move 

through the HMPB layer easier than for LMP. The ζ-potential of the layers is 

-28mV for a HMPB-terminal layer and -3mV for a β-lg terminal layer. So, 
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also for the β-lg–HMPB system adsorption of β-lg does not lead to 

overcompensation of the pectin charge. 

The sequential adsorption of β-lg and HMPR shows a similar pattern to 

both LMP and HMPB, although the desorption of β-lg, especially after the 

adsorption of a β-lg layer, is more pronounced than for the two other 

pectins. As HMPR contains much less high affinity binding sites than LMP 

and HMPB (Sperber, Cohen Stuart et al., 2009), the desorption of β-lg in a 

buffer solution or a solution of HMPR is much easier as compared to LMP 

and HMPB. For the ζ-potential a similar trend is observed: the HMPR layers 

have a ζ-potential of -28mV, like HMPB, but the ζ-potential after β-lg 

adsorption is -8mV. Where the charge of pectin was almost fully 

compensated for LMP and HMPB, HMPR cannot bind sufficient β-lg to 

compensate all the negative charge on the pectin. 

5.4 Conclusions 

The stabilization of oil-water or air-water interfaces requires a high rate 

of adsorption of the surface-active component. In β-lg–pectin systems the 

surface-active component is β-lg, as pectin has no surface-active 

characteristics. Pectin and β-lg are shown to form soluble complexes in the 

pH region roughly between pH 5.5 and 3.5, depending on pectin type and 

ionic strength. Within this pH range, it is possible to use the formation of 

complexes between β-lg and pectin to enhance the surface stabilizing 

capacity of β-lg. To this end, it is important to choose the right type of 

pectin. LMP, a pectin with a high local charge density and high overall 

charge is shown to form complexes at the highest ionic strength of the 

tested pectins. HMPB, a pectin with a low overall charge, but high local 

charge density due to a block wise distribution of the methyl esters, also 

has a good tolerance to ionic strength. HMPR, with a low overall charge and 

a low local charge density, has the poorest tolerance to ionic strength. This 

shows that the ability to form complexes between β-lg and pectin is mainly 

determined by the local charge density. 

Adsorption of β-lg to a hydrophobic surface is quick, but when pectin 

is added and adsorption has to take place from mixtures of β-lg and 

pectin, the adsorption is slower. This is caused by a lowering of the 
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concentration of unbound β-lg, which is confirmed by binding isotherms 

(Sperber, Cohen Stuart et al., 2009). A reduced adsorption rate was also 

found by (Ganzevles, Zinoviadou et al., 2006) for adsorption to the air-

water interface from mixed β-lg–pectin solutions. At WR of 6 (β-lg to 

pectin), [β-lg]free is relatively high and the adsorption is reasonably fast. 

The ζ-potential of these surfaces is only half compared to when a WR of 2 

is used (-11mV vs. -20mV).  

Sequential adsorption of β-lg and pectin leads to thick films in which 

adsorbed layers of β-lg and pectin are stacked in alternate fashion. When a 

pectin with a high local charge density is used (LMP or HMPB), the 

adsorbed layer is much more stable against desorption of β-lg and pectin, 

than when a pectin with a low local charge density (HMPR) is used. LMP 

and the two HM-pectins have a different conformation on the surface: The 

HM-pectin molecules are thought to protrude more into the solution, due 

to less binding sites on the pectin, where LMP is more "flat" on the surface. 

The speed of adsorption and the surface characteristics make 

sequential adsorption the preferred technique over the adsorption from 

mixtures of β-lg and pectin to stabilize interfaces. Pectins with a high local 

charge density, or blockwise distribution of the methyl ester, have the best 

tolerance for ionic strength, while pectins with a low overall charge, or high 

DM protrude most into solution, giving the largest ζ-potential. This shows 

that to enhance emulsion stability, it would be best to prepare a primary 

emulsion with β-lg as emulsifier to which a HMPB solution is added to 

create a secondary emulsion where the surface is stabilized with a layer of 

HMPB on top of the β-lg surface. 
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6.1 Aim 

The aim of the research described in this thesis is to investigate the 

effect of the overall charge and local charge density of pectin on the 

formation of soluble complexes with proteins. The overall charge and local 

charge density of pectin have been found to be a determining factor in the 

ability of pectin to stabilize casein micelles in acid dairy drinks (Glahn & 

Rolin, 1996; Pereyra, Schmidt et al., 1997; Laurent & Boulenguer, 2003). 

In many food systems, small globular proteins are used to stabilize 

interfaces (oil–water, air–water). The functionality of these proteins is 

influenced by the presence of pectin by the formation of complexes. In the 

current study a small globular protein, β-lactoglobulin (β-lg), is used, to 

study the formation of soluble complexes between β-lg and pectin and the 

influence of these complexes on the functional properties of β-lg. β-Lg is 

chosen as it is the main constituent of whey protein and as such, it is 

often used as a model protein for the functionality of whey protein. The 

main parameters of interest for this thesis are the influence of the overall 

charge and local charge density of pectin on the formation of soluble 

complexes and the stability of those complexes at different pH and ionic 

strength. 

First, the influence of pectin physicochemical characteristics on the 

soluble complex formation with proteins is discussed. Next, the 

possibilities to tailor pectin samples to give them the desired 

physicochemical characteristics are presented. Finally, applications of 

soluble complexes consisting of protein and pectin are discussed, followed 

by an outlook to possible new applications based on soluble complexes of 

protein and pectin. 

6.2 Influence of pectin overall charge and local charge 
density on the complex formation with proteins 

The work described in this thesis has been performed on a system 

consisting of β-lg and pectins with varying, but well defined, 

physicochemical characteristics. A generalized model for the influence of 

overall charge and local charge density of pectin on the formation of 

soluble complexes with β-lg is presented. This model is used to predict the 
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formation of soluble complexes between other food proteins and pectin 

based on the influence of the overall charge and local charge density of 

pectin on the formation of complexes with these proteins. 

6.2.1 Pectin physicochemical characteristics 

Three different pectins are used in this thesis: one low methyl esterified 

pectin (LMP) and two high methyl esterified pectins (HMP). These pectins 

are discussed in detail in chapter 3 (Sperber, Cohen Stuart et al., 2009b) 

of this thesis. The two HM-pectins were isolated from the same mother 

pectin based on their ability to form gels with calcium ions. The fraction 

that formed a gel was called HMPB (B for blockwise distribution of methyl 

esters), the non-calcium sensitive fraction was called HMPR (R for random 

distribution of methyl esters). The characteristics of the pectins are 

summarized in table 6.1. 

Table 6.1 Characteristics of pectins used in this study 

pectin overall charge local charge density DM1 DB1 

LMP high high 30 16.5 

HMPB low high 70 10.9 

HMPR low low 74 1.7 
1 DM = degree of methyl esterification, DB = degree of blockiness (from Daas, Boxma et al 

(2001)) 

6.2.2 State boundaries for complexes between pectin and β-
lactoglobulin 

The formation of soluble complexes of β-lg and pectin is studied with a 

variety of techniques. Figure 6.1 shows a generalized state diagram for 

complex formation between β-lg and pectin. pHc, the pH where soluble 

complexes are formed, is dependent on the local charge density of pectin: a 

higher local charge density moves pHc to higher pH. An increase in ionic 

strength results in a decrease of pHc. pHc is independent of the mixing 

ratio of β-lg and pectin. pH, the pH where soluble complexes are no longer 

stable and aggregate to form a separate phase, is found to be dependent on 

the overall charge and to some extent on the local charge density. For a 

high overall charge pectin the binding sites for β-lg on pectin are so close 

together that at low ionic strength lateral repulsion between β-lg 
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neighbours takes place. When the ionic strength is increased the lateral 

repulsion decreases and pH shifts to higher pH. Further increase of the 

ionic strength leads to a decrease in pH as the attractive electrostatic 

forces diminish as well. For the low overall charge pectins the binding sites 

for β-lg are sufficiently spaced to be considered isolated from each other 

and lateral repulsion between β-lg neighbours has no influence on the 

complex formation. Also, for both low overall charge pectins, an increase in 

ionic strength leads to a decrease in pH. 

 
Figure 6.1 Generalized state diagram of complex formation between β-lg pectins with 
different overall charge and local charge density; LMP (●,○), HMPB (,) and HMPR (■,□). Closed 
symbols are for pHc and open symbols are used for pH. 

6.2.3 Mechanism of β-lactoglobulin binding to pectin 

In chapter 2 (Sperber, Schols et al., 2009) the local charge density of 

the binding sites on the three pectins is calculated using a theoretical 

model developed by De Vries, Weinbreck et al (2003). This model showed 
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the binding sites at the onset of complex formation to have a local charge 

density of about 1.9 e/nm for the two pectins with a high local charge 

density and 1.1 e/nm for the pectin with a low local charge density. The 

charge density of a block of GalA residues, with a GalA residue length of 

0.43 nm (Rees & Wight, 1971), is estimated to be 1.9 e/nm, taking the 

fraction of deprotonated carboxylic groups (0.8) into account. This means 

that the optimum binding site for β-lg on pectin consists of a block of only 

non-methyl esterified GalA residues. 

A more detailed study of the soluble complexes at pH 4.25, by means of 

binding isotherms (chapter 3, (Sperber, Cohen Stuart et al., 2009b)) and 

isothermal titration calorimetry (chapter 4), reveals that β-lg binds 

strongest to pectin with a high local charge density. For the high overall 

charge pectin, LMP, it is found that the binding constant passes through a 

maximum with increasing ionic strength, due to lateral repulsion between 

β-lg neighbours. It also showed that a high local charge density is required 

for binding β-lg at higher ionic strength (>45mM). In figure 6.2 the 

observations from chapter 2 and 3 (Sperber, Cohen Stuart et al., 2009b; 

Sperber, Schols et al., 2009) are combined to form a visualisation of 

influence of the pectin overall charge on the lateral repulsion between β-lg 

neighbours. 

The binding of β-lg to pectin has a main driving force of enthalpic 

origin from electrostatic attraction between the β-lg and pectin ionic 

groups. When binding takes place on binding sites with a low local charge 

density, or at higher ionic strength for pectins with a high local charge 

density, there is an additional entropic driving force. The entropy gain is 

the result of the release of small counterions from the electrical double 

layer and the release of water molecules from hydrophobic moieties on 

both pectin and β-lg. The entropy gain due to the release of small 

counterions is also expected to be present for high local charge density 

pectins at low ionic strength, but was not experimentally proven. 
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Figure 6.2 Model representation of the binding of β-lg to pectin. In gray the β-lg dimer. The 
dashed line around the β-lg dimer shows the double layer thickness for low ionic strength 
(10mM), the dotted line for a medium of high ionic strength (75mM). Pectin is represented as 
circles; open for non methyl esterified GalA and closed for methyl esterified GalA. On the top 
a LM-pectin is shown, in the middle a HM-pectin with a blockwise distribution of methyl 
esters and below a HM-pectin with a random distribution of methyl esters. The drawing is 
approximately to scale, but due to the charge anisotropy on the β-lg surface, the actual 
potential fields around the ionic groups will show a different profile. 
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6.2.4 Complexes between pectin and other small globular 
proteins 

The main prerequisite for the formation of soluble complexes between 

small globular proteins and pectin is the existence of favourable 

electrostatic interactions between the two components. Electrostatic 

attraction between pectin and protein exists when the solution pH is below 

the pI of the protein. Table 6.2 holds data on food proteins, commonly 

used on food systems. These proteins could be combined with pectin to 

form soluble complexes, with the goal to enhance the functional properties, 

like emulsion or foam stabilization, of the protein by complexation with 

pectin. The proteins have, with the exception of lysozyme, pI's comparable 

to that of β-lg. This means that the state diagram presented in figure 6.1 

remains relatively unchanged. There will however be variations in the 

charge anisotropy on the protein surface. This may result in pHc to shift 

up for higher charge anisotropy and down for a more even distribution of 

charge on the protein surface, compared to β-lg. The position of pH is 

defined by the neutralization of the pectin negative charge by the positive 

charge on the protein. It will most likely shift in the same direction as the 

pI of the protein compared to the pI of β-lg. The range of pH - pI can 

change with the pI of the protein. As the pI of the protein becomes lower, 

so does the negative charge of pectin that needs to be compensated by the 

protein, shifting the value of pH - pI closer to zero. For proteins with a 

higher pI than β-lg the non-monotonic behaviour of pH for LMP may be 

increased as the amount of charge on the protein may be higher around 

pH and lateral repulsion between proteins plays a bigger role. 

Especially the plant derived proteins may be present in higher order 

aggregates. Often, they consist of different subunits with an acidic and 

basic polypeptide. If such a protein is used to form soluble complexes with 

pectin, it is expected that pectin will bind preferentially to the basic 

peptide. 

There is a considerable variation in the molecular weight of the 

proteins, especially taking into account that several proteins combine to 

form higher order aggregates. The persistence length of the pectin chain is 

in the order of a β-lg monomer, one of the smallest proteins in table 6.2. 
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This implies that, combined with the fact that charge regulation takes 

place in the complexes (see chapter 2, (Sperber, Schols et al., 2009)), 

pectin can adjust its conformation to move away from unfavourable area's. 

The effect of the size of the protein on the formation of complexes with 

pectin can be considerable, depending on the type of pectin used. LMP is 

known to be a poor stabilizer of casein micelles as it covers the surface of 

the micelle and doesn't protrude into the solution. For HM-pectins tails 

and loops are created that have a stabilizing effect. 

Table 6.2 Overview of physical properties for proteins used in food applications 

protein origin pI Mw (kDa) reference 

β-lactoglobulin bovine milk  5.1 18 (Cayot & Lorient, 1997) 

BSA bovine milk  4.7-4.9 66 (Cayot & Lorient, 1997) 

α-lactalbumin bovine milk 4.5-4.8 14 (Cayot & Lorient, 1997) 

caseinate1 bovine milk 4.9-5.6 19-25 (Modler, 2000) 

ovalbumin hen egg white 4.5 45 (Mine, 1995) 

lysozyme hen egg white 10.8 14 (Doi & Kitabatake, 1997) 

vicilin2 pea ~5.5 30-70 

(Gatehouse, Croy et al., 
1981; Sanchez-Monge, 

Lopez-Torrejón et al., 2004) 

legumin2 pea 4.7 60 
(Gatehouse, Croy et al., 

1980) 

glycinin2 soy 5.0-6.0 55-65 (Rickert, Johnson et al., 
2004; Kuipers, 2007) 

β-conglycinin2 soy 5.0-6.0 50-70 (Sykes & Gayler, 1981; 
Kuipers, 2007) 

1 Caseinate is present as a higher order aggregation protein 
2 Plant storage proteins are usually present as higher order aggregates of several subunits 

The tolerance of the soluble complexes against ionic strength could be 

influenced by the protein pI. When the protein pI is higher than the pI of β-

lg, the soluble complex region will be at higher pH than for β-lg. At higher 

pH, the pectic GalA residues have a higher fraction of deprotonation. This 

leads to a higher overall charge, and subsequently a higher local charge 

density on the pectin. To compensate this negative charge of the pectin, 

more positive charge of the protein is needed and although charge 

regulation in the complexes will take place, the higher charge of the 
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protein and higher local charge density of the pectin are expected to 

improve the tolerance towards ionic strength of the system. 

6.2.5 Complexes between pectin and casein micelles 

For the complex formation of pectin with casein micelles, it is known 

that the type of pectin is of great influence on the stabilization of the 

casein micelles in an acidified milk drink. HM-pectins are preferred over 

LM-pectins. Among the HM-pectins, a pectin with a blockwise distribution 

of methyl esters provides the best stabilization (Glahn & Rolin, 1996; 

Pereyra, Schmidt et al., 1997; Laurent & Boulenguer, 2003). 

In chapter 5 (Sperber, Cohen Stuart et al., 2009a), the adsorption of β-

lg to a hydrophobic solid surface is described. Subsequently, pectin is 

adsorbed on top of the β-lg layer. This can be seen as a model system for 

the adsorption of pectin on the surface of the positively charged casein 

micelles under the conditions of an acidified milk drink (around pH 4.0-

4.5). It is shown that both HMPB and HMPR pectins adsorb in a different 

manner than LMP. The HM-pectins protrude more into the solution, 

resulting in a more negative ζ-potential than for LMP. The ionic strength of 

milk is considerably higher than the 10mM used in these experiments. 

Consequently, HMPR will not be able to adsorb onto the casein micelle at 

these higher ionic strengths and, therefore, stabilization on the basis of 

combined electrostatic–steric hindrance is unlikely for a HMPR. 

It was shown, that HMPB is a heterogeneous sample (chapter 3, 

(Sperber, Cohen Stuart et al., 2009b)), with parts having a similar local 

charge density as LMP, while other parts have a lower charge density. This 

explains the observation of Boulenguer and Laurent (2003) that not all of 

the added pectin adsorbs on the surface of the casein micelle. 

6.3 Influence of pectin bound calcium on the soluble 
complex formation with β-lactoglobulin 

The pectins used in this study were treated to remove residual calcium. 

In this section the motivation to remove this residual calcium from the 

pectins will be outlined. 

Calcium is used for the isolation of pectin, but it is also present in the 

plant material pectins are isolated from. The pectins used in this thesis 



General discussion and outlook 

135 

were tested on their calcium content by flame photometry. The pectins 

were found to have a calcium content of up to 0.05 mol/mol GalA. As 

discussed above, and in more detail in chapter 4 of this thesis, the release 

of small counterions from the GalA electrical double layer is one of the 

driving forces for the formation of complexes between protein and pectin. 

In addition, calcium can also bind very specifically on the pectin GalA 

units to form junction zones, involved in the formation of pectin gels 

(Voragen, Pilnik et al., 1995). To investigate if pectin bound calcium has an 

influence on the formation of complexes between β-lg and pectin, calcium 

free pectins were prepared, to which know amounts of calcium were added. 

For LMP and HMPB washing the pectin powder with an acidified 

ethanol solution was found to be sufficient, while, surprisingly, for HMPR 

the pectin needed to be dissolved in water and mixed with an ion exchange 

resin (Sperber, Schols et al., 2009). It is not expected that HMPR binds the 

calcium more strongly than LMP or HMPB. When acidified ethanol is used 

to remove calcium, the pectins are still in a solid form. For reasons not 

fully understood, the structure of the HMPR powder doesn't allow for the 

exchange of calcium in the acidified ethanol slurry. 

Figure 6.3 shows the binding isotherm of calcium to the three calcium 

free pectins. The maximum amount of bound calcium per mole of GalA 

units is highest for LMP, followed by HMPB and HMPR binds the least 

calcium. The affinity is highest for LMP, again followed by HMPB and lastly 

HMPR. This is, as expected, according to the degree of blockiness of the 

pectins. 

To study the influence of calcium on the formation of complexes 

between pectin and β-lg, pectins with a calcium content of 0.3 mol/mol 

GalA were prepared. Next, β-lg was added to a weight ratio of β-lg/pectin of 

10 and the free calcium concentration was measured again (β-lg was 

verified to be calcium free). Table 6.3 shows the results for LMP and HMPB, 

as HMPR did not bind sufficient calcium for an accurate measurement of 

the change in free calcium concentration before and after addition of β-lg. 

LMP binds a higher fraction of calcium than HMPB at pH 4.25, showing 

that there are more calcium sensitive regions on LMP than on HMPB. The 

addition of β-lg releases most of the calcium bound to LMP, but only a 

fraction of the calcium bound to HMPB. This directly shows that small 
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Figure 6.3: Binding isotherm of calcium to calcium free LMP (●), HMPB (○) and HMPR () at 
pH 5.7 

counterions are released from the electrical double layer by the formation 

of complexes between pectin and β-lg, also when they are more specifically 

bound than monovalent ions like sodium. It also shows that the majority 

of the calcium on LMP is bound in regions of large blocks of GalA where β-

lg preferably binds as well, while HMPB binds most of the calcium in 

regions that are not favoured for the binding of β-lg. This confirms that β-

lg prefers to bind in regions of high local charge density. 

Table 6.3 Release of calcium from pectin by the binding of β-lactoglobulin at pH 4.25 

Pectin 
Ca2+ added to solution 
(mol Ca2+ / mol GalA) 

% of added Ca2+ bound 
to pectin 

% of bound Ca2+ released 
by addition of β-lg 

LMP 0.30 61 70 

HMPB 0.30 20 10 
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As mentioned before, the release of small counterions from the 

electrical double layer of pectin and protein ionic groups is one of the 

driving forces behind the complex formation. To be in full control of the 

solution conditions and to be able to compare results between pectins, it 

was decided to use calcium free pectins in this study. 

6.4 Possibilities of tailoring pectins to desired 
characteristics 

The characteristics of pectin being beneficial to form soluble complexes 

with proteins have been described in section 6.2. To obtain pectins with 

the desired characteristics for a specific application, several strategies to 

modify the overall charge (DM) and local charge density (DB) can be 

followed. Pectins can be chemically or enzymatically de-esterified. A pectin 

preparation can also be fractionated as a function of the local charge 

density. Fractionation with calcium can separate a pectin sample in a 

calcium sensitive and non-calcium sensitive fraction. Anion exchange 

chromatography can provide a more gradual fractionation. 

6.4.1 Chemical de-esterification 

Chemical modification of pectin can be performed during the extraction 

of pectin from the plant material by controlling the extraction conditions 

(pH, temperature and time). By choosing the proper conditions a DM 

between 55 and 80 can be obtained (Rolin, 2002). If a DM below 55 is 

desired, an additional treatment is needed to remove more methyl groups. 

The possibilities for this are acid hydrolysis or saponification by a base. 

For saponification, a strong alkali can be used (e.g. NaOH), but 

temperature should be kept low to avoid β-elimination, especially with high 

DM-pectins (Rolin, 2002). Chemical removal of methyl esters occurs in a 

random fashion (De Vries, Hansen et al., 1986). Thus the increase of the 

degree of blockiness is marginal until a low DM is reached (see figure 6.4). 

The advantage of a chemical modification is that it acts on all the different 

populations in the pectin sample. The chemical modification therefore does 

not create additional populations with a much lower DM than the sample 

average, which can be beneficial if the pectin is to be used in a calcium 

rich food, where a calcium induced gel is not desired. Chemical de-



Chapter 6 

138 

esterification can also be used to increase the overall charge of a high DM 

pectin with a high DB. 

 
Figure 6.4: Dependency of degree of blockiness on the degree of methyl esterification for 
several commercial pectins (+) (Daas, Boxma et al., 2001). A commercial DM 77 pectin (●) and 
a DM 72 pectin (■) were de-esterified with a pPME (○,□). The solid black line represents the 
relation between DM and DB for randomly de-esterified pectins by means of chemical 
saponification. 

6.4.2 Enzymatic de-esterification 

The degree of methyl esterification of pectin can be lowered 

enzymatically using a pectin methyl esterase (PME). These enzymes 

hydrolyse the methyl ester bond to release methanol and a GalA residue 

with a free carboxylic group. There are two types of PME's available: PME's 

that hydrolyze methyl esters in a processive manner and PME's that 

hydrolyze methyl esters in a random manner. PME's with a processive 

mode of action are found in plants (pPME) and PME's with a random mode 

of action are found in fungi (fPME) (Willats, Orfila et al., 2001; Benen, Van 
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Alebeek et al., 2003). As a pectin with a blockwise distribution of methyl 

esters has been shown to form soluble complexes with protein at higher 

ionic strength than compared to a random distribution, the use of pPME 

will be discussed. 

Two approaches of pectin modification with pPME may be chosen: 

using the native PME's (mainly for citrus, apple is low in native PME) 

present in the plant material from which the pectin is isolated (Owens & 

Maclay, 1948; May, 1990), or adding a pPME once the pectin is isolated 

(Luzio, Forman et al., 2001). Figure 6.4 shows the DM and DB of 

commercially available lemon pectins. There is already considerable 

difference between the samples with respect to the DB at comparable DM. 

Since no pPME's are added, this is the result of the native pPME's of the 

citrus fruits.  

Adding pPME to an isolated pectin will lower the DM and increase the 

DB (Daas, Boxma et al., 2001). As can be seen in figure 6.4, the addition of 

pPME to a HM-pectin increases DB considerably with only a small 

decrease in DM. This is caused by the mode of action of the pPME, 

hydrolyzing a series of sequential methyl esterified GalA units on a single 

pectin molecule, before dissociating and acting again on a new pectin 

molecule. This results in the lowering of the DM of some pectin molecules, 

while some other pectin molecules in the preparation are unaltered 

(Tucker & Seymour, 2002). There is some control that can be exerted on 

the size of the blocks that are produced by a pPME. The easiest way to 

achieve this is by increasing the dosage of pPME, which will cause more 

pectin chains to be altered. When the reaction is stopped at the same DM 

as for a lower dosage of pPME, there should be more blocks of a shorter 

average size. It has been shown by Denès, Baron et al (2000) that changing 

the solution pH affects the mode of action of the pPME. At pH 4.5 short 

blocks were formed on all pectin molecules, while at pH 7.0 large blocks on 

only a fraction of the pectin molecules were created. 

The use of pPME can be tricky. When using the endogenous pPME of 

the plant material, it is difficult to control the extent of their action as the 

starting DM and DB are not known and the reaction can not be monitored. 

If the pPME is added after down stream processing of isolated pectin, the 

control of the de-esterification process is much easier as it can be 



Chapter 6 

140 

monitored by the amount of base that is needed to keep the solution pH 

constant. The use of pPME can create populations differing in DM and DB 

in the pectin sample, but depending on the application this in not 

necessarily a disadvantage. 

6.4.3 Fractionation of pectin on local charge density 

Pectin preparations consist of complex, heterogeneous molecules and 

many different molecules with different DM and DB may be present 

(Guillotin, Bakx et al., 2005). Pectins with more homogenous 

characteristics can be obtained by fractionation. The easiest method for 

fractionation is based on the calcium sensitivity of pectin. By adding 

calcium to a solution of pectin, the calcium sensitive pectin, with a more 

blockwise distribution, precipitates, while the non calcium sensitive pectin 

stays in solution. The calcium can be subsequently washed out (Glahn, 

2000). It has to be taken into account that especially the calcium sensitive 

fraction is still very heterogeneous in the distribution of methyl esters 

(Daas, Boxma et al., 2001; Williams, Foster et al., 2003), as was also 

shown for the two HM-pectins used in this study by weak anion exchange 

chromatography, where HMPB eluted as a broad band, indicating the 

presence of many different local charge densities (chapter 3, (Sperber, 

Cohen Stuart et al., 2009b)). Fractionation of pectins by calcium sensitivity 

could be used in combination with pPME de-esterification, to separate the 

modified pectin from the original, unmodified pectin, as the modified 

pectin will have blocks of GalA residues that can form junction zones 

under the influence of calcium ions. 

Ion exchange chromatography can also be used for the fractionation of 

pectins. This technique has been used successfully on analytical and 

laboratory preparative scale to separate fractions of different DM and DB 

(Ralet, Bonnin et al., 2001; Guillotin, Bakx et al., 2005). However, ion 

exchange chromatography is an expensive technique to perform on 

industrial scale. To use it for fractionation of pectins requires a higher 

value application than the stabilization of foods. 
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6.4.4 Amidation of pectin 

When pectins are chemically de-esterified, it is also possible to use 

ammonia as base. Part of the methyl esters are replaced by amide groups 

in this process (Rolin, 2002). The use of amidated pectins would be 

interesting in the formation of soluble complexes with proteins as the polar 

amide group interacts differently than the hydrophobic methyl groups. The 

amide groups are able to interact with the protein by forming hydrogen 

bridges, where the methyl esters have a hydrophobic interaction. 

 
Figure 6.5 Dependency of degree of blockiness on degree of methyl esterification for several 
commercial, amidated pectins (+) (Guillotin, Van Kampen et al., 2006). The solid line 
represents the relation between DS and DB for a random distribution of substituents. 

There are however limitations to the use of amidated pectins: the 

fraction of GalA that can be amidated for food use is legally restricted to 

25% (Rolin & De Vries, 1990); higher degree of amidation is possible, but 

results in poor solubility (Reitsma, Thibault et al., 1986). Amidation of 
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pectin leads to demethylation of pectin and the degree of substitution (both 

amide groups and methyl esters) of the amidated pectin is usually 50 or 

lower (Guillotin, Van Loey et al., 2007). The blockiness of these pectins is 

not much higher that that of random distributed pectins (figure 6.5), as 

can be expected for a chemical, non-selective process (Guillotin, Van 

Kampen et al., 2006). Due to the low degree of substitution and the legal 

restriction on the degree of amidation of amidated pectins, the behaviour is 

expected to be dominated by the electrostatic interaction between the non-

substituted GalA residues and the protein ionic groups. Also, amidated 

pectins are reported to lower the stability of caseinate by forming inter-

pectin hydrogen bridges (Einhorn-Stoll, Salazar et al., 2001), which makes 

amidation an undesired modification to enhance the functionality of 

proteins in foods. 

6.5 Implications for protein–pectin soluble complex 
applications 

Protein–pectin soluble complexes find their application in the 

stabilization of acidified milk drinks, foams, emulsions and the 

encapsulation of ingredients. The choice of the right pectin for an 

application will be of great influence for the success of the application. To 

make the correct choice of pectin the results of this thesis can be very 

helpful. 

6.5.1 Acidified milk drinks 

The stabilization of acidified milk drinks has already been mentioned 

shortly in section 6.2.5. Stabilization of AMDs is needed to prevent the 

casein micelles to aggregate and subsequent whey separation (Tromp, De 

Kruif et al., 2004). To stabilize AMD's it is important that pectin adsorbs 

onto the casein micelle. To do so, a high local charge density of the pectin 

is needed. Several authors have shown that not all of the pectin that is 

added to a AMD adsorbs onto the casein micelle, and that the free pectin 

contributes to the stabilization by forming a weak network (Boulenguer & 

Laurent, 2003; Tromp, De Kruif et al., 2004; Jensen, Rolin et al., 2010). 

The stabilization of AMD also depends on the ionic strength of the solution 

as dilution with water destabilizes the AMD (Jensen, Rolin et al., 2010). 
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This can be directly related to the work in this thesis, where pectins are 

shown to be heterogeneous (chapter 3, (Sperber, Cohen Stuart et al., 

2009b)) and binding of pectin to protein is highly depending on the block 

size of GalA units and the ionic strength (chapter 2, 3 and 4, (Sperber, 

Cohen Stuart et al., 2009b; Sperber, Schols et al., 2009)). A too low ionic 

strength will allow the non-adsorbing pectin to adsorb on the casein 

micelle as well. 

Modification of pectin with a pPME, to create larger blocks of GalA, 

may provide an improved stabilization of AMDs. The modified pectin 

molecules with a high local charge density will bind strongly to the casein 

micelle, the unmodified pectins remain in the serum phase, where it 

contributes to the stabilization of the AMD through its viscosifying 

properties. 

6.5.2 Foam stability 

The effect of protein–polysaccharide complexes on foam formation has 

been studied in detail in the thesis of Ganzevles (2007), where also a table 

with strategies on how to use protein-polysaccharide complex formation to 

enhance their functionality is presented. To stabilize foam, there needs to 

be a free fraction of protein that can adsorb to the air water interface when 

it is formed. When the surface is stabilized, protein–pectin complexes aid 

in the stabilization by electrostatic repulsion between the surfaces of the 

air bubbles. Unbound pectin in the Plateau borders reduces drainage of 

the foam by an increase in viscosity (Mann & Malik, 1996; Schmidt, 

Novales et al., 2010). To enhance foam stability it is therefore important to 

choose a pectin that consists of a mixed population: one fraction that can 

form complexes with the protein, and another fraction that remains in 

solution to increase the viscosity in the Plateau borders. Modification of 

random high methyl esterified pectin with a pPME could yield such a 

pectin. 

6.5.3 Emulsion stability and encapsulation 

Complex formation of protein with anionic polysaccharides have been 

shown to enhance emulsion stability (Güzey, Kim et al., 2004; Güzey & 

McClements, 2007; Jourdain, Leser et al., 2008; Jourdain, Schmitt et al., 
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2009). Emulsions can be created by means of a bilayer emulsion or a 

mixed emulsion. For a bilayer emulsion, first an emulsion is prepared 

using protein as emulsifier, subsequently, the anionic polysaccharide is 

added to create the bilayer of protein and polysaccharide. A mixed 

emulsion is prepared by using a mixture of protein and polysaccharide as 

emulsifier (Jourdain, Leser et al., 2008). 

Since the enhancement of emulsion stability depends on the formation 

of a complex between protein and pectin at the interface, the use of pectin 

with a high local charge density would be preferred. As stabilization, like 

for AMD, also depends on the pectin protruding into the solution, the use 

of a HM-pectin is required. For the quick stabilization of the oil–water 

interface, it is important to have free protein in solution for using the 

mixed emulsion protocol. If the bilayer protocol is used it is also an option 

to create the emulsion with the solution pH above pHc and subsequently 

lower the pH, to adsorb the pectin on the protein layer. 

Güzey and McClements (2007) made emulsions using β-lg and pectin 

(citrus, DM 60). The emulsion was created by making an emulsion at pH 7, 

that is above pHc. After the emulsion was created, the pH was lowered to 4, 

leading to the adsorption of pectin on the β-lg covered emulsion droplets. 

At pH 4, the emulsion with β-lg and pectin showed a higher resistance 

against salt induced flocculation than an emulsion with only β-lg. Possibly, 

the stabilisation of the emulsion can be further enhanced by using pectin 

with a higher local charge density, to improve the stabilizing capabilities of 

the β-lg–pectin complexes at higher ionic strengths (>50 mM). Pectin with a 

lower overall charge, but similar local charge density as currently used, 

could enhance the stabilization, as a larger proportion of the pectin 

molecule will not bind to the β-lg surface. This results in an increase in the 

thickness of the adsorbed pectin layer, as well as the ζ –potential of the 

layer due to less charge compensation by β-lg. Such pectins could be 

prepared by using a pPME, followed by fractionation on the charge density 

by means of calcium sensitivity or anion exchange chromatography to 

isolate the pectins with a high local charge density. 

For the encapsulation of ingredients, which often occurs in an oil 

phase, similar strategies can be followed as outlined here for emulsions.  
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6.6 Outlook for future research on protein–pectin 
complex formation 

The results presented in this thesis increase our understanding of 

the formation of complexes between pectin and proteins, with special 

emphasis on the pectin overall charge and local charge density. The local 

charge density of the pectin was shown to be a key parameter in the 

formation of soluble complexes. To get a more detailed view on the 

influence of the local charge density, but also of the overall charge of 

pectin, the work presented in this thesis should be expanded using more 

pectins, characterized to the same detail. Combination with fractionation 

of pectins by means of preparative anion exchange chromatography, would 

allow the use of pectins with a much more narrow distribution of local 

charge density, providing more detailed information on the influence of the 

local charge density. 

Adsorbing protein to a solid matrix, like small polystyrene beads 

with a high specific surface area, and subsequently adsorbing pectin on 

top of the protein layer, would form a great basis to investigate the 

dependency of the formation of soluble complexes on ionic strength. The 

non-adsorbing fraction of pectin can easily be separated from the adsorbed 

fraction by centrifugation and as the ionic strength is stepwise increased, a 

fractionation of pectin based on the affinity for the charged protein surface 

can be obtained. The desorbed fractions of pectin can be analyzed on DM, 

DB, and weak anion exchange chromatography to give an insight in the 

requirements for pectin to form complexes with protein at specific ionic 

strengths. 

Another important step would be the use of these well characterized 

pectins in actual applications like emulsions and foams. Currently, 

research published on the use of pectin in relation to its complex 

formation with proteins usually does not characterize the pectins beyond 

their DM, where also the DB of the pectins is shown to be a very important 

parameter for its functionality. Ganzevles (2007) used well defined pectins 

in her studies on protein-polysaccharide complexes at the air-water 

interface, but no actual foams to test foam stability were produced, based 

on her findings using model systems. 
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Fluorescence anisotropy (FA) was shown to be an excellent 

technique to measure binding constants for soluble complexes below the pI 

of the protein. The advantages of FA over frontal analysis continuous 

capillary electrophoresis, which is currently used most frequently, are the 

ability to also measure around and below the protein pI and its high 

sample throughput. FA is therefore the method of choice to determine 

binding isotherms, not only for protein–pectin soluble complexes, but for 

protein–polyelectrolyte soluble complexes in general. 
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Summary 

The aim of this thesis is to investigate the influence of the overall 

charge and local charge density of pectin on the formation of soluble 

complexes with β-lactoglobulin (β-lg). Pectin is a naturally occurring 

polysaccharide, used in many food applications, among which the 

stabilization of acidified milk drinks. After an industrial acid extraction, 

pectin mainly consists of galacturonic acid (GalA) residues. These GalA 

residues can be methyl esterified at the carboxylic group on C-6. The 

amount of methyl esters determines the degree of methyl esterification 

(DM) and, hence, the overall charge of the pectin. The distribution of the 

methyl esters defines the degree of blockiness (DB), related to the local 

charge density of the pectin. 

To investigate the influence of overall charge and local charge density 

of pectin on the soluble complex formation, the three pectins used in this 

study were characterized in the greatest detail. Chapter 3 combines results 

from other studies on the same pectins with new analysis to give a detailed 

structural analysis of the pectins. In short, LMP has a high overall charge 

and high local charge density with the blocks of non-methyl esterified GalA 

close together. HMPB (B for blockwise distribution) has a low overall charge 

and high local charge density and isolated blocks of non-methyl esterified 

GalA. Finally, HMPR (R for random distribution) has a low overall charge 

and a low local charge density. The few blocks of non-methyl esterified 

GalA units on HMPR are also of an isolated nature. 

The complexing regions of β-lg and pectin, as function of pH, ionic 

strength and weight ratio (WR, [β-lg]/[pectin]), are identified in chapter 2 

by means of dynamic light scattering (DLS) titrations. From the DLS data, 

pHc (state boundary between co-soluble polymers and soluble complexes) 

and pH (state boundary between soluble complexes and insoluble 

complexes) are identified and state diagrams are constructed. pHc is found 

to decrease with increasing ionic strength and to be independent of WR, 

which is consistent with literature. pH increases for increasing WR. For 

HMPB and HMPR, pH is found to decrease with increasing ionic strength. 

For LMP pH passes a maximum with increasing ionic strength, due to 

lateral repulsion between β-lg neighbours as the result of the closeness of 
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the binding sites. From the state diagrams, pH 4.25 is chosen to be used 

in further studies of soluble complex formation as throughout a large 

range of ionic strengths and WR only soluble complexes are formed. The 

pHc values are used to estimate the local charge density for the binding 

sites on the pectins at the onset of complex formation. LMP and HMPB are 

found to have similar local charge densities, while HMPR is found to have a 

lower local charge density. Proton titrations of β-lg–pectin mixtures show 

that charge regulation takes place to allow the β-lg and pectin ionic groups 

to better match each other. 

In chapter 3 fluorescence anisotropy is introduced as a technique to 

measure binding isotherms of proteins to charged polysaccharides. The 

binding isotherms are fitted with the Hill model to obtain a binding 

constant and cooperativity parameter. The complex formation shows a 

strong dependency on local charge density. A high local charge density 

allows complex formation between β-lg and pectin up to higher ionic 

strength. LMP shows a maximum in the binding constant at an ionic 

strength of 10 mM, due to lateral repulsion of β-lg neighbours. The binding 

of β-lg to pectin is found to be cooperative, which is thought to originate 

from a rearrangement of the pectin helix structure upon binding of β-lg. 

The mechanism of binding is investigated by means of isothermal 

titration calorimetry (ITC) in chapter 4. Using the binding constants 

obtained in chapter 3, a Gibbs free energy is calculated. Combination with 

the enthalpy data obtained by ITC gives values for the enthalpic and 

entropic contributions to the complex formation. Enthalpic contributions 

originate from electrostatic interactions between β-lg and pectin, entropic 

contributions by the release of small counter ions from the electrical 

double layers and the release of water molecules from hydrophobic 

regions. The local charge density of pectin is found to determine the 

balance between enthalpic and entropic contributions. For a high local 

charge density, the complex formation is dominated by an enthalpic 

component, supported by an entropic contribution. The enthalpic 

contribution is smaller for pectin with a lower local charge density. The 

relative increase in the entropic contribution is thought to arise from the 

association of the pectin methyl esters to an exposed hydrophobic moiety 

on the β-lg surface. An increase in the ionic strength lowers the enthalpic 



Summary 

155 

contribution to the driving force, in favour of the entropic contribution, 

supporting the idea that release of water molecules from hydrophobic 

areas participates in the complex formation. 

The functionality of β-lg–pectin soluble complexes is studied in chapter 

5. Hydrophobized silica is used as a model surface for oil-water and air-

water surfaces. Pectin is not capable of adsorbing to the hydrophobic 

surface, while β-lg readily adsorbs. Adsorption of β-lg–pectin soluble 

complexes results in a reduction of the adsorption rate of β-lg, as most of 

the β-lg is bond to pectin and not available for adsorption to the 

hydrophobic surface. This reduced adsorption rate hampers the emulsion 

stabilizing properties as the newly formed oil-water interface is not covered 

before coalescence of the emulsion droplets takes place. Sequential 

adsorption (layer-by-layer) of first β-lg, followed by pectin, and so on, 

results in the build up of a multilayer system of alternating β-lg and pectin 

layers. A terminal pectin layer is efficient against the wash out of adsorbed 

material. Systems consisting of a low overall charge pectin show the most 

negative ζ-potential, due to tailing and looping of the pectin chains. This 

suggests that for the formation of a double layer emulsion pectin with a 

low overall charge would be most suited. 

In chapter 6 the results from the experimental chapters are combined 

to give the following general view. The local charge density of pectin 

determines the tolerance towards ionic strength: a higher local charge 

density allows complex formation up to a higher ionic strength. The overall 

charge influences how close the binding sites on pectin are together. A 

high overall charge puts binding sites in close proximity, causing pH and 

the binding constant to pass through a maximum with increasing ionic 

strength. The knowledge obtained for the β-lg–pectin system is 

extrapolated to other small globular proteins, as well as larger aggregation 

proteins, like casein micelles. Strategies to tailor pectins to the desired 

characteristics of overall charge and local charge density are outlined. 

Finally, an outlook is given on areas of interest for future research on 

protein-pectin soluble complexes. 
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Samenvatting 

Het doel van dit proefschrift is het onderzoeken van de invloed van de 

totale electrische lading en de lokale ladingsdichtheid van pectine op de 

vorming van oplosbare complexen met β-lactoglobuline (β-lg). Pectine is 

een natuurlijk voorkomend polysacharide, met vele toepassingen in 

levensmiddelen, zoals de stabilisatie van zure melkdranken. Na een 

industriële extractie bij lage pH, bestaat pectine voornamelijk uit 

galacturonzuurresiduen (GalA). De carboxylgroep van GalA kan op C-6 

methylveresterd zijn. De hoeveelheid methylesters bepaalt de 

methyleringsgraad (DM) en de totale lading van pectine. De verdeling van 

de methylesters (DB) bepaalt de lokale ladingsdichtheid van pectine. 

Om de invloed van de totale lading en de lokale ladingsdichtheid van 

pectine op de vorming van oplosbare complexen te bestuderen, worden drie 

in deze studie gebruikte pectines in detail gekarakteriseerd. Hoofdstuk 3 

combineert resultaten uit andere studies op dezelfde pectines met nieuwe 

analyses om een gedetailleerde structurele karakterisering van de pectines 

te geven. Samengevat, LMP heeft een hoge totale lading en hoge lokale 

ladingsdichtheid, met de niet methylveresterde GalA blokken dicht bij 

elkaar. HMPB (B voor blok verdeling) heeft een lage totale lading en hoge 

lokale ladingsdichtheid, met geïsoleerde niet methylveresterde GalA 

blokken. HMPR (R voor willekeurige verdeling) heeft een lage totale lading 

en lage lokale ladingsdichtheid. De weinige blokken die zich op HMPR 

bevinden kunnen als geïsoleerd voorkomend worden beschouwd. 

Het gebied waar β-lg en pectine complexen vormen als functie van pH, 

ionsterkte en gewichtsratio (WR, [β-lg]/[pectine]), wordt in hoofdstuk 2 

bepaald door middel van dynamische lichtverstrooiing (DLS) titraties. Met 

de DLS data worden toestandsgrenzen pHc (co-oplosbare polymeren en 

oplosbare complexen) en pH (oplosbare complexen en onoplosbare 

complexen) geïdentificeerd en toestandsdiagrammen samengesteld. pHc 

neemt af met toenemende ionsterkte en is, consistent met de literatuur, 

onafhankelijk van de WR. pH neemt toe met toenemende WR. Voor HMPB 

en HMPR neemt pH af met toenemende ionsterkte. Voor LMP passeert pH 

een maximum met toenemende ionsterkte vanwege laterale repulsie tussen 

β-lg buren door de nabijheid van de bindingsplaatsen. pH 4.25 is gekozen 
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voor verdere bestudering van oplosbare complexen, omdat over een groot 

gebied van ionsterkte en WR oplosbare complexen worden gevormd. De 

pHc waarden worden gebruikt om de lokale ladingsdichtheid van de 

bindingsplaatsen bij het begin van complexvorming te bepalen. LMP en 

HMPB hebben een vergelijkbare lokale ladingsdichtheid, terwijl voor HMPR 

een lagere lokale ladingsdichtheid wordt gevonden. Proton titraties van β-

lg–pectine mengsels tonen aan dat er ladingsregulatie optreedt tijdens de 

complexvorming, zodat de geladen groepen van β-lg en pectine beter bij 

elkaar passen. 

In hoofdstuk 3 wordt fluorescentieanisotropie geïntroduceerd om 

bindingsisothermen tussen eiwitten en geladen polysachariden te meten. 

De bindingsconstante en coöperativiteitsparameter wordt uit de 

bindingsisothermen verkregen door middel van een fit met het Hill-model. 

De complexvorming vertoont een sterke afhankelijkheid van de lokale 

ladingsdichtheid. Een hoge lokale ladingsdichtheid faciliteert 

complexvorming tussen β-lg en pectine bij een hogere ionsterkte. LMP 

vertoont een maximum in de bindingsconstante bij een ionsterkte van 10 

mM, ten gevolge van laterale repulsie tussen β-lg buren. De binding van β-

lg aan pectine is coöperatief. Een herschikking van de helixstructuur van 

pectine wanneer β-lg bindt, wordt gedacht hiervan de oorzaak te zijn. 

Het bindingsmechanisme is onderzocht door middel van isothermische 

titratie-calorimetrie (ITC), zoals beschreven in hoofdstuk 4. De Gibbs vrije 

energie wordt berekend met de bindingsconstanten uit hoofdstuk 3. Door 

deze te combineren met de enthalpie data van de ITC, wordt de 

enthalpische en entropische bijdrage aan de complexvorming verkregen. 

Enthalpische bijdragen komen voort uit elektrostatische interacties tussen 

β-lg en pectine, entropische bijdragen door het vrijkomen van kleine 

tegenionen uit de elektrische dubbellaag en watermoleculen uit hydrofobe 

regio's. De lokale ladingsdichtheid van pectine bepaalt de balans tussen de 

enthalpische en entropische bijdragen. Voor een hoge lokale 

ladingsdichtheid wordt de complexvorming gedomineerd door een 

enthalpische bijdrage, ondersteund door een entropische bijdrage. De 

enthalpische bijdrage wordt lager in geval van een lagere lokale 

ladingsdichtheid. De relatieve toename van de entropische bijdrage wordt 

toegeschreven aan de associatie van pectine methylesters met een 
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blootliggend hydrofoob gebied op het β-lg oppervlak. Een toename in de 

ionsterkte verlaagt de enthalpische bijdrage aan de drijvende kracht ten 

faveure van de entropische bijdrage, hetgeen de hypothese van de 

deelname van het vrijkomen van watermoleculen uit hydrofobe delen 

bijdraagt aan de complexvorming wordt hierdoor ondersteunt. 

De functionaliteit van oplosbare β-lg–pectine complexen wordt 

beschreven in hoofdstuk 5. Gehydrofobiseerd silica wordt gebruikt als 

model oppervlak voor olie-water en lucht-water grensvlakken. Pectine 

adsorbeert niet op het hydrofobe oppervlak, terwijl β-lg snel adsorbeert. 

Adsorptie van oplosbare β-lg–pectine complexen resulteert in een afname 

van de adsorptie snelheid van β-lg, omdat het merendeel β-lg gebonden is 

aan pectine en dus niet beschikbaar voor adsorptie op het hydrofobe 

oppervlak. Deze gereduceerde adsorptiesnelheid hindert de emulsie-

stabiliserende eigenschappen, omdat het nieuw gevormde olie-water 

oppervlak niet volledig wordt bedekt voordat coalescentie van de 

emulsiedruppels plaatsvindt. Sequentiële adsorptie (laag-voor-laag) van β-

lg, gevolgd door pectine, en zo verder, resulteert in de opbouw van een 

multilaag van afwisselend β-lg en pectine. Een eindstandige pectinelaag is 

het efficiëntst tegen het uitwassen van geadsorbeerd materiaal. Het 

gebruik van een pectine met een lage totale lading leidt tot de meest 

negatieve ζ-potentiaal, door een lus en staart oriëntatie van pectine ketens. 

Dit insinueert dat voor de vorming van een dubbellaag emulsie pectine met 

een lage totale lading het meest geschikt zou zijn. 

In hoofdstuk 6 worden de resultaten uit de experimentele 

hoofdstukken gecombineerd tot een meer algemeen beeld. De lokale 

ladingsdichtheid van pectine bepaalt de tolerantie voor ionsterkte: een 

hogere lokale ladingsdichtheid faciliteert complexvorming bij een hogere 

ionsterkte. Een hoge totale lading heeft tot gevolg dat de bindingsplaatsen 

dicht bij elkaar zitten, met als gevolg dat pH en de bindingsconstante een 

maximum passeren voor toenemende ionsterkte. De kennis opgedaan voor 

het β-lg–pectine systeem wordt geëxtrapoleerd naar andere kleine 

globulaire eiwitten en grotere geaggregeerde eiwitten zoals caseïne 

micellen. Strategieën om pectine te modificeren tot de gewenste 

eigenschappen met betrekking tot totale lading en lokale ladingsdichtheid 
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worden besproken. Tot slot wordt een blik geworpen op mogelijkheden voor 

vervolg onderzoek aan oplosbare eiwit-pectine complexen. 
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