Peter deVoil
Daniel Rodriguez
Walter Rossing
Brendan Power

AGRO2010, Montpellier.



- Apsim & farm scale management
- Component based design
- Samples of WFM applications
- Informed Change



Case studies:

Long growing season(s), High rainfall variability

Irrigation
Broadacre Dryland
Mixed Grain & Grazing



Climate variability → Dynamic (responsive) management.





Dynamic (responsive) management:

```
init prepare post end simulation start simulation
  Pasture Management Initialisation
                               Tind/Replace
   Animal Management Initialisation
  Fam logic
                              17 # If a paddock is understocked, move the heaviest animals there.
                              18 for {set ipaddock 0} {$ipaddock < [llength $paddocks]} {incr ipaddock} {
   Rugplot stuff
                                     set paddock [lindex $paddocks $ipaddock]
  Crop Rotation Management
                                     set cropBeingEaten [cropBeingEatenIn $paddock]
                                    if {[isFeedAvailable $paddock] &&
                                        [numAnimalsIn $paddock] < $config($paddock,numAnimals) } {
                                        puts "animals: feed available and understocked in $paddock"
                                       while {$more && [numAnimalsIn $paddock] < $config($paddock,numAnimals)
                                           set mob [heaviestMobIn [lrange $paddocks [expr $ipaddock+1] end] ]
                                           if {$mob != {}} {
                                              moveStockTo $mob $paddock.$cropBeingEaten
                                           } elseif {[llength [mobsOnFarm]] < [llength $animals(mobs)]} {

    LeucaenaGrassPaddock

                                              moveStockTo [animalsIn 100 steers 250] $paddock.$cropBeingEaten
SorghumPaddock
```

www.tcl.tk

Dynamic (responsive) management:



www.microsoft.com

#### Software Architecture

- Component based design based around 4 simple entry points (get, set, publish, subscribe)
- Separation of functionality (via components) essential for re-use
- Modern byte-compiled languages support rapid prototyping of new components in the existing systems framework

### Case studies

- Participatory approach to describe change and adaptation to change
- 1. "What do you do"
- 2. What would change "what you do"
- 3. What adaptations are possible in "what you do"

## Case 1: Mixed grain & graze in Southern Queensland

- 4000ha farm
- 5 cropping fields 220ha = 1100ha
- Buffel (pasture) fields = 2000ha
- Leucaena/grass = 400ha
- Oats = 400ha
- Forage sorghum = 100ha
- 1 Forage legume in cropping rotation



## Case 1: Mixed grain & graze in Southern Queensland

"...What adaptations are possible"

- Large change in proportion of crop and pasture
- •Integrating summer legume into cropping area
- Integrating winter legume into cropping area





Case 2: Irrigated cotton & grain



- ~800 ha cropping area
- 3 storages with combined capacity of 1350ML
- 600ML annual bore allocation
- Captured overland flow ranges between 0 – 1450



## Case 2: Irrigated cotton & grain

What is the additional income from reverse osmosis treated water (a coal seam gas extraction byproduct).

Farm profitability increases until system capacity is reached at 4 ML/day

Whole farm gm increases by approx. \$60 000 /(ML\*day) (ie \$164/ML) up to 4ML/day



## Case 2: Irrigated cotton

- "...What adaptations are possible"
- What will be the likely impact of reduced bore allocations on long term profitability?
- Compare the profitability of a cotton monoculture with a cotton and maize and/or sorghum and/or soybeans and/or wheat rotation.
- Compare storing "out of season" water for use on cotton (high losses due to evaporation and seepage) against using the water immediately on a current (noncotton) crop







# In Summary

- APSIM model framework has been successfully applied to several WFM problems
- Each time is easier than the last
- Participatory nature of these adaptation case studies produces diverse study areas – interdisciplinary approach is unavoidable.

www.apsim.info

### **APSIM - Functional issues**

- 2 broad areas: development and maintenance
- New developments overseen by a reference panel composed of science and software specialists
- Maintenance the task of SEG:
- Regular indoctrination sessions training workshops
- Continuous integration cycle
- Regular "point" releases
- WWW (ie accessible) tools for source code, data repositories, tracking bugs, helpdesk and user groups



# Models and frameworks

- Why reuse or share models? To avoid hard work!
- Adaptation is easier than starting over

#### How:

- Keep it simple your conceptualisation, and your tools
- Adaptive means reuse and the framework changes too

#### Open Source

- Openness begins with open source
- Scientific legitimacy no more "black boxes"
- Wish to form genuine, 2-way relationships
- Earlier experiences are confidence building on our part as well
- Rigorous control → openness

Figure 1.9 Variability of Australian rainfall, for September-November (spring), December-February (summer), March-May (autumn) and June-August (winter)



Case 2: Irrigated cotton

