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ABSTRACT:  Statistical dependence among random hydraulic variables generally stem from a common 
meteorological cause. Usually, this dependence increases the probability of occurrence of floods. There-
fore, in many (potential) applications in flood risk analysis there is a need for techniques that properly 
describe the statistical dependence among random variables. This study makes an inventory of existing 
bivariate correlation models as available from international literature and/or ‘Dutch practice’ in the design 
and testing of flood defence structures. Differences in correlation structures are described and quantified. 
Subsequently, their practical applicability is tested in two case studies.

of this ‘Dutch practice’ in testing flood defences 
is given.

Without adequate flood defence structures, 
almost 60% of the Netherlands would be regu-
larly flooded. To prevent floods by the sea, the 
large rivers and lakes, an extensive system of dikes 
and dunes has been constructed in the past. In the 
design and testing of dikes and dunes a safety level 
is defined of the order of 10–3 to 10–4 “failures” per 
year. This frequency is based on both the economic 
value of the protected area and the extent of the 
threat.

To test whether the flood defences fulfil the 
required safety level, representative hydraulic con-
ditions are derived. For this purpose a number of 
probabilistic models have been developed over the 
past decades. Different models have been developed 
for different water systems, such as Hydra-B for 
the tidal area of the Rhine-Meuse delta, Hydra-K 
for the coastal areas and Hydra-VIJ for the deltas 
of the rivers Vecht and IJssel. Furthermore, the 
model PC-Ring has been developed, which con-
siders entire ring dikes and therefore integrates the 
various water systems. Currently, PC-Ring still has 
the status of “research tool”, whereas the Hydra-
models are “officially approved” models.

3  Mathematical description of 
BIVARIATE correlation models

3.1  Introduction

For a mathematical description of bivariate corre-
lation models in this paper, two random variables 
V and W are considered, with known univariate 

1  Introduction

Statistical dependence among random vari-
ables representing hydraulic processes generally 
stem from a common meteorological cause. This 
dependence increases the probability of occur-
rence of extreme combinations of threats that 
may cause floods. Therefore, in many (potential) 
applications in flood risk analysis there is a need 
for techniques that properly describe the statistical 
dependence among random variables. A problem 
in this respect is that a multivariate distribution 
function that is derived directly from multivariate 
observation data usually conflicts with the previ-
ously established univariate distribution functions 
of the individual variables. This effect is especially 
profound in the tail ends of distribution functions, 
which are so crucial in risk analysis.

This paper describes a number of methods that 
incorporate statistical dependence of random vari-
ables in probabilistic risk analyses. These methods 
have the advantage that the derived bivariate dis-
tribution functions do not conflict with the uni-
variate distribution functions of the individual 
random variables. The application of these tech-
niques is demonstrated for two case studies.

2  Dutch practice in testing flood 
defences

Most techniques that are described in this paper 
have been applied in the models that form the tech-
nical basis of the procedure to test flood defences 
in the Netherlands. Therefore, a brief  description 
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distribution functions FV(v) and FW(w). The 
correlation models describe the mutual depend-
ence of these variables, resulting in a bivariate 
distribution function FV,W(v, w) = P(V ≤ v, W ≤ w). 
It is noted that some models in this paper can be 
extended to the multivariate case with 3 or more 
variables, but this is not always the case (at least: it 
does not always lead to sensible models). The latter 
is of little concern, though, since the quantifica-
tion of statistical dependence is generally limited 
to two variables in most practical applications in 
flood risk analysis.

To apply the models in this paper, a dataset 
(vi, wi), i = 1, 2, … , n is assumed to be available, 
for which a proper correlation model needs to be 
derived.

3.2  Statistical transformations

The correlation models in this paper transform 
random variables into variables with “convenient” 
distribution functions such as the standard nor-
mal, standard uniform or standard exponential 
distribution function. The correlation structure is 
then described in the transformed space and sub-
sequently transformed back to the real space. This 
section describes basic transformations and the 
most relevant associated features, as obtained e.g. 
from Ditlevsen & Madsen (1996).

Consider two random variables V and W with 
given univariate cumulative distribution functions 
(CDF’s) FV(v) and FW(w). The variables V and W 
are transformed to dimensionless random vari-
ables X and Y as follows:

FV(v) = FX(x) 
FW(w) = FY(y)	 (1)

where FX and FY are univariate cumulative dis-
tribution functions of the transformed variables. 
Equation (1) can be rewritten as:
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where function names J and K have been intro-
duced for convenience. This transformation means 
that for a given value v*, the transformed value 
x*  =  J(v*) has the same probability of (non-)
exceedance as v*. The major benefit of this trans-
formation is that a wide variety of correlation 
models can be applied on the transformed vari-
ables x and y, while at the same time the univariate 
distribution functions of the real variables V and 
W are preserved.

To derive the correlation model, the observed 
data (vi, wi) also needs to be transformed, into 
(xi, yi)  =  (J(vi), K(wi)). This transformation will 

distort the cloud of data-points to some extent and 
thus has some effect on the observed correlation 
structure of the data. For instance, the value of 
Pearsons correlation coefficient in the transformed 
space (x, y) may differ from its corresponding value 
in the real space (v, w). However, these differences 
are generally small. Furthermore, specific features 
of the correlation structure, such as “correlation 
increases for decreasing probability of exceed-
ance”, are generally preserved. The equations 
below describe the relation between the correlation 
structures in the real and transformed space.

Define FX,Y(x,y) as the bivariate CDF for trans-
formed variables x and y, and fX,Y(x,y) is the associ-
ated PDF. The corresponding functions FV,W(v, w) 
and fV,W(v,w) in the real space can be derived 
from FX,Y and fX,Y by applying the following two 
equations:

FV, W (v, w) = FX, Y (J(v), K(w))	 (3)

f v w f J v K w

dJ v

dv

dK w

dw
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(4)

where the latter follows by differentiation of 
Equation (3) with respect to v and w. Other rel-
evant information that can be obtained are the 
conditional CDF and PDF:

FW|V (w | v) = FY|X (K(w) | J(v))	 (5)

f w v f K w J v
dK w

dwW V Y X| |( | ) ( ) | ( )
( )= ( )

	
(6)

3.3  Copulas

3.3.1  General
An effective and relatively new approach to 
incorporate specific correlation structures are the 
copula functions or copulas (see e.g. Kallenberg 
2009, Kole et  al, 2006, Panchenko, 2005). In 
Dutch flood risk analysis, copulas have been 
applied in a probabilistic model to derive statistics 
of the spatially averaged water level of the IJssel 
Lake (Diermanse & Van der Klis, 2005).

Consider, two random variables V and W with 
univariate distribution functions FV and FW and 
bivariate distribution function FV,W(v,w). A func-
tion C: [0, 1]2 → [0, 1], is called a copula function 
of  FV,W if:

C (FV(v), FW (w)) = FVW (v, w)	 (7)

For example, if  V and W are statistically inde-
pendent, the copula function C is as follows:

C (FV(v), FW (w)) = FV(v) FW (w)	 (8)
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This function is referred to as the product 
Copula. Another example is the Gaussian copula. 
In 2 dimensions, this copula is as follows:
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where ρ is the correlation coefficient and Φ is the 
standard normal distribution function.

According to Sklar’s theorem (Sklar, 1959), the 
bivariate distribution function FV,W has exactly one 
copula function C if  the univariate distribution func-
tions FV and FW are both continuous. Equation (7) 
shows that a bivariate distribution function can eas-
ily be obtained if  the copula-function and the uni-
variate distribution functions are known.

3.3.2  Archimedean copulas
A well-known and widely used type of copula-
functions are the Archimedean copulas. This 
group of copulas is related to a generator func-
tion ϕ:[0,  1] → [0,  ∞]. This function should be 
continuous, strictly decreasing and convex. 
Furthermore, ϕ (0)  =  ∞ and ϕ (1)  =  0. For two 

standard uniformly distributed random variables 
x and y the following function is an Archimedean 
copula:

Cϕ (x, y) = ϕ –1 [ϕ(x) + ϕ(y)]	 (10)

Equations (11)–(13) shows generator functions 
of three Archimedean copulas:

Frank: ϕ α
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Clayton: ϕ
α

ααt t( ) = −( ) ∈ − ∞−1 1 1 0, ( , ) \ { }
	
(12)

Gumbel: ϕ ααt t( ) = −( ) ∈ ∞ln , ( , )1 	 (13)

The choice of parameter α determines the over-
all correlation for each Archimedean copula.

Figure  1 shows scatter-plots of four copulas: 
Gumbel, Frank, Clayton and Gaussian. In these 
Figures the correlation coefficient is taken to be 
equal to 0.7 by selecting the proper value of α and 
ρ in equations (9), (11), (12) and (13). A close look 
at Figure 1 reveals the specific features of these four 
copulas. Application of the Gumbel copula results 
in high correlation for values of x and y close to 1. 

Figure 1.  5.000 samples of 2 standard uniformly distributed random variables with four different copula structures. 
In all cases the correlation coefficient is taken equal to 0.7.
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Since x and y are standard uniformly distributed, 
this implies the correlation increases in the right 
tails of the univariate distribution functions. In 
other words, if  a sample of the first random vari-
able is relatively large, the accompanying sample 
of the second variable most likely is relatively large 
as well. Clayton’s copula on the other hand gener-
ates high correlations in the left tails of the uni-
variate CDFs. In that respect Frank’s copula and 
the Gaussian copula are much more symmetrical, 
where the latter shows stronger correlation in the 
extremes (both left and right).

3.4  Homoscedastic model (HOS)

The name homoscedastic refers to the fact that 
the variance of the conditional distribution of y, 
given x, is constant. This as opposed to the het-
eroscedastic model where the variance varies with 
x, see section  3.5. This model (Geerse, 2004) is 
applied in the probabilistic model Hydra-VIJ 
(Section  2) to describe the correlation between 
the discharge of the river IJssel and the spatially 
averaged water level of the IJssel lake into which 
the river discharges. Furthermore, it is used in the 
probabilistic model Hydra-B to describe the cor-
relation between sea water level and wind speed. 
In this model, transformed variable x is standard 
exponentially distributed:

F(x) = 1 – e–x	 (14)

Variable y is related to x as follows:

F y e y x dxY
x( ) ( )= − − −

∞

∫ Λσ δ
0

	 (15)

where δ is a constant and Λσ is a CDF with mean 
0 and standard deviation σ. Figure  2 presents a 
schematic view of this correlation model. It shows 
the conditional CDF of y has a constant variance 
around the line y = x–δ. Small values of σ are asso-
ciated with high correlation and vice versa.

The fact that y is described as a function 
of x has a relevant practical implication with 
regard to the use of transformations. Section 3.2 
describes how observations of variables V and 
W are transformed to variables X and Y, using 
the four respective univariate distribution func-
tions (see Equation (1)). Subsequently, the corre-
lation structure is derived from the transformed 
observations. In the HOS model, however, the 
transformation can only be applied once the cor-
relation structure is defined, because otherwise 
the univariate distribution function of variable 
Y is not available (see Equation (15)). In practice 
this means the best combination of δ and Λσ is 

determined to some extent by “trial-and-error”, 
using the observed correlation structure of vari-
ables V and W as a valuable starting point. A use-
ful criterion for goodness-of-fit is to verify whether 
the confidence intervals of the assumed correlation 
model are in accordance with the observations. In 
section 4, some examples of this comparison are 
presented.

The conditional distribution of y, given x, is:

f(y | x) = λσ (y – x – δ)	 (16)

where λσ is the PDF that is associated with Λσ. In 
this model, variable y is not standard exponentially 
distributed like x. However, asymptotically (if  
y→∞) variable y is exponentially distributed. With 
the appropriate selection for constant δ, y is even 
standard exponentially distributed in the limit. For 
instance, if  Λσ is a Gaussian distribution, δ should 
be taken equal to:

δ σ= −
2

2
	 (17)

Figure  3 illustrates that, with this choice of 
parameter δ, y is indeed standard exponentially 
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Figure 3.  Probability density function of y in the HOS 
model, compared with the standard exponential density 
function.
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Figure  2.  Schematic view of the HOS model in the 
transformed space.
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distributed in the tail. We note that the choice of δ 
will have no influence at all on the resulting bivari-
ate distribution FV,W (v,w) in the real space. In that 
sense it is a redundant parameter and serves only to 
obtain the convenient property of y being asymp-
totically standard exponentially distributed in the 
transformed space.

3.5  Heteroscedastic model (HES)

In the heteroscedastic model (HES) the variance of 
variable y is dependent on x. This model, described 
in Geerse & Diermanse (2006), is very similar to 
the model of the previous section. In this case, 
however, σ is a function of variable x:

F y e y x dx
Y

x
x( ) ( )= −

∞

( ) − −∫ Λσ δ
0

	 (18)

Function σ(x) can be any positive function, 
which makes this model very flexible. With this 
model an increase (or decrease) of the correlation 
with increasing values of x (and, consequently, v), 
can be simulated (e.g. see Figure 4).

In this model, there is no choice of parameter 
δ that will result in variable y being asymptoti-
cally standard exponentially distributed. Since the 
choice of this parameter also has no effect on the 
resulting bivariate CDF FV,W(v, w) in the real space, 
it is set equal 0.

3.6  De Haan method (DH)

The correlation model “De Haan” (DH) is 
applied in the probabilistic model Hydra-K (see 
Section  2) to describe the correlation between 
wind speed and sea water level. It differs from the 
previously described methods since it does not 
use a parametric description of the correlation 

structure. Instead, it translates the observations to 
more extreme conditions and as such assumes the 
observed correlation structure is applicable for the 
entire domain of possible extreme events.

The theoretical foundation of this method is 
introduced in De Haan & Resnick (1977) and fur-
ther developed for the Dutch part of the North Sea 
by De Valk (1996). In this model, paired observa-
tions (vi, wi)i = 1..n of  variables V and W are trans-
lated to the standard exponential space:
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Where n is the number of observations. The 
variables V and W are assumed to be asymptoti-
cally dependent. In the transformed (x,y)-space this 
means:

lim
u

P Y u X u c
→ ∞

> >( ) = > 0	 (20)

This implies a relatively strong correlation for 
extreme events.

In the standard exponential space, data is shifted 
along a line of 45°. This means for a user defined 
value of λ, the following translation is applied:
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The value of λ is chosen such that the observa-
tions are shifted towards the area of interest. In 
flood risk analysis, this means λ should be chosen 
such that for a substantial percentage of the shifted 
pairs of observations failure of the flood defence 
occurs. This is schematically depicted in Figure 5, 
where the closed circles are the observations and 
the open circles are the shifted observations. This 
Figure also shows the limit state of the flood 
defence, i.e. the transition line between ‘failure’ 
and non-failure of the flood defence. Combina-
tions of x and y to the upper right of the limit state 
will lead to failure, so this area is called the failure 
domain. The position of the limit state results from 
a comparison of the hydraulic load and the resist-
ance of the flood defence. For this paper, the limit 
state and failure domain are assumed to be known. 
This shift of observations can be used, provided 
Equation (20) holds, to obtain an estimate of the 
frequency of failure of the flood defence:

µ κ λ λ= −( )
T

e 	 (22)

where µ is the frequency of failure (per year), 
κ(λ) is the number of shifted observations in the 
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Figure  4.  Schematic view of the HES model in the 
transformed space.
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failure domain, T is the length of the period of 
observations (in years) and λ is as defined before. 
The value of λ should be chosen in such a way that 
the value of µ is rather insensitive to small changes 
in λ. As long as Equation (20) holds, it is possible to 
find such a value of λ (De Haan & Resnick, 1977).

4  Case studies

The application of the correlation models is 
demonstrated for two case studies. The first case 
study is about the correlation between the dis-
charge of the IJssel river and the level of the IJs-
sel lake, into which the IJssel river discharges. The 
second case study is about the correlation between 
wind speed and water level of the Dutch North 
Sea. A comparison is made with respect to whether 
the correlation models are capable of reproducing 
the observed correlation structures. Furthermore, 
the influence of the choice of correlation model on 
computed dike failures is quantified.

4.1  Case study IJssel river and IJssel lake

With a total surface of 1,182 km2, the IJssel Lake is 
the largest lake in the Netherlands. The IJssel river 
drains at an average rate of approximately 400 m3/s 
into the lake. The lake is separated from the sea by 
a dike (the “Afsluitdijk”). High water levels in the 
IJssel Lake are the result of extended periods dur-
ing which the discharge of the IJssel river exceeds 
the outflow through the sluices of the Afsluitdijk 
into the sea. As a result, peak discharges of the IJs-
sel river and peak levels of the IJssel lake are corre-
lated. This is relevant for dikes along the IJssel delta, 
because increased lake levels will lead to increased 
water levels in the river due to backwater effects.

Figure 6 shows observed combinations of IJssel 
river peak discharges and IJssel lake peak levels in 
the transformed space. The 3 lines show the 10%, 

50% and 90% exceedance lines for the HES model 
(section 3.5) with σ(x) = 0.4 + 0.28x, where x is the 
transformed value of the discharge.

Of all the models described in chapter 3 the HES 
model turned out to be best in accordance with the 
observed data. The HOS model, for instance, did 
not perform as well as the HES model because the 
data shows a clear increase in variance with increas-
ing discharge, which cannot be incorporated in the 
HOS model. The Frank copula and Clayton copula 
are inappropriate here, because for these copulas 
the correlation for higher values is too low. The 
Gaussian copula is much more capable of repro-
ducing the correlation in the extremes, especially if  
a high value is chosen for the correlation coefficient 
ρ (see Equation (9)). However, a high correlation 
coefficient also results in a relatively narrow margin 
between the 10% and 90% quantiles which causes 
far less than the required 80% of the observations 
to be located inside of this band. For the Gumbel 
copula, a lower value of ρ is sufficient to model the 
correlation of the extremes, leading to a better rep-
resentation of the correlation of the lower values of 
x and y in comparison with the Gaussian copula. 
The DH method is considered unsuitable in this 
case, because the increasing variance for increasing 
values of x indicates that discharge and lake level 
are not asymptotically dependent.

For a quantitative comparison of the correlation 
models, two hypothetic failure domains are defined 
as depicted in Figure 7. Clearly, these domains rep-
resent events that are far more extreme than the 
observed events. This is typical in Dutch practice in 
designing and testing flood defences, where safety 
standards in the order of 10–3 to 10–4 failures per 
year are applied. Table 1 shows the selected model 
parameters and resulting probabilities of failure 
for the two failure domains. The standard devia-
tion σ in the models HOS and HES was chosen 
in such a way that it best fitted the data, while Λσ 

Figure  5.  Shifting observations in the standard expo-
nential space along the line of 45 degrees.
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was taken to be a normal distribution function. 
For the copulas a correlation coefficient of 0.7 was 
selected, which was derived directly from the data.

Application of the DH method gives the highest 
probability of failure. This is no surprise, since this 
model assumes the variables are asymptotically 
dependent, which means a very strong correlation 
in the extremes. Based on the correlation structure 
of the observations, this property is considered 
unrealistic for the two variables in this case study. 
The Gumbel copula also assumes strong correla-
tion in the extremes, which is why it generates the 
second highest failure probabilities. The Frank and 
Clayton copula, on the other hand, assume a weak 
correlation in the extremes, which means a com-
bined occurrence of extreme values of the two vari-
ables is far more unlikely than for the other models. 
This is why the resulting probability of failure is 
orders of magnitudes lower for these two copulas 
than for the other models. The lack of correlation 
in the extremes in these two models is considered 
unrealistic in this case study.

Visual inspection yields that the best fit to the 
data is provided by the HES model. The HOS, 
DH and Gumbel models did not perform as well 

as the HES model, since they seem to overestimate 
the correlation in the extreme while the Gauss 
model seems to underestimate the correlation in 
the extreme. Frank and Clayton are not appro-
priate at all because of the lack of correlation in 
the extremes. Note that the HOS, DH and Gum-
bel models, though not performing very well, only 
yield differences in failure probabilities of a factor 
2.5 or less in comparison with the HES model. 
Compared to other sources of uncertainties in the 
probabilistic safety calculations for dikes, an error 
of such a factor is relatively small. The conclusion, 
at least for this case study, is that it is relevant to 
take the correlation between discharge and lake 
level into account, but that the exact choice of the 
model and model parameter values are not crucial, 
as long as the model is reasonably well in accord-
ance with the observations.

4.2  Case study North Sea

The most crucial flood defences in the Netherlands 
are the dunes and dikes that protect the land from 
floods of the North Sea and connected estuaries. 
Potential extreme loads for these defences are a 
combination of high water levels and waves. Both 
are generated by the wind, which causes high water 
levels and high waves to be correlated. The proba-
bilistic model Hydra-K (Section  2) uses the DH 
method to describe the correlation between water 
level and wind speed. Wave characteristics are sub-
sequently derived from the water level and wind 
speed, using the wave simulation model SWAN 
(Booij et al, 1999).

Figure  8 shows observed combinations of sea 
water level and wind speed at location Hoek van 
Holland for wind direction 330  degrees (in the 
transformed space). The 3 lines show the 10%, 50% 
and 90% exceedance lines for the HOS model with 
σ = 1.6. It shows that the HOS model in this case 
is in accordance with the observations. This auto-
matically means the same can be said about the 
HES model (since HOS is a special case of HES). 
Method DH is also more plausible in this case than 
in the first case study since the data does not show an 
increase in variance with increasing value of x. Sim-
ilar to the previous case, Gumbel showed the best fit 
of the 4 copulas. Frank and Clayton proved to be 
inadequate because, again, the lack of correlation in 
the extremes in these two models is unrealistic.

For a quantitative comparison of the correla-
tion models, two hypothetic failure domains are 
defined. These failure domains are very similar 
to the ones shown in Figure 7. Table 2 shows the 
resulting failure probabilities. The maximum dif-
ference between the models that are reasonably 
in accordance with the data (HOS, HES DH and 
Gumbel) is a factor 2, comparable to the previous 

Table  1.  Probability of failure for the two failure 
domains of Figure 7.

Model Parameters

Failure dom. 1 Failure dom. 2

10–4per year 10–4per year

HOS σ = 1.2 0.54 0.82
HES σ = 0.4 + 0.28x 0.31 0.63
DH – 0.78 1.00
Gauss ρ = 0.7 0.10 0.32
Gumbel ρ = 0.7 0.63 0.91
Frank ρ = 0.7 0.00 0.00
Clayton ρ = 0.7 0.00 0.00

Figure  7. O bserved combinations of IJssel river peak 
discharges and IJssel lake peak level in the transformed 
space and 2 hypothetical failure domains.
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case study. So, again, in terms of design and testing 
of dikes this difference is limited.

5  Conclusions

A wide variety of correlation structures can be 
described using the models presented in this paper. 
The models are very straightforward to apply and 
have the advantage that the resulting bivariate dis-
tribution functions do not conflict with the (previ-
ously established) univariate distribution functions 
of the individual random variables.

In probabilistic applications in hydraulics, gener-
ally there is a significant statistical dependence in the 
extremes. Application of correlation structures that 
underestimate this dependence structure may lead 
to a severe underestimation of the probability of 
failure of a flood defence structure of several orders 
of magnitude. For the case studies in this paper, this 
was the case for the Frank and Clayton copula and 
to a lesser extent also for the Gaussian copula.

The method of De Haan has the advantage 
that it is “non-parametric” i.e. no model param-
eters need to be estimated from the observed 
data. However, it can only be applied to describe 

combinations of variables that are asymptotically 
dependent. This property defines such a strong cor-
relation structure in the extremes, that it generally 
will not hold in practical applications in hydraulics.

The heteroscedastic (HES) model is the most 
“flexible” of the models presented here. With this 
model, a wide variety of correlation structures can 
be described, due to the variance function that can 
take any form as long as it is positive.

The results of the case studies showed the impor-
tance of taking the correlation structure of the varia-
bles under consideration into account in a probabilistic 
analysis of failure probabilities of flood defences. 
Application of a badly chosen correlation model 
might lead to errors in the failure probabilities of sev-
eral orders of magnitudes. However, the results of the 
case studies also suggest that the exact choice of the 
correlation model and associated parameter values 
seems not very crucial, with regard to the resulting 
probability of failure, as long as the model is reason-
ably in accordance with the observed data.
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Figure 8. O bserved combinations of sea water level and 
wind speed at location Hoek van Holland for wind direc-
tion 330 degrees. The 3 lines show the 10%, 50% and 90% 
exceedance lines for the HOS model.

Table 2.  Probability of failure for case 2.

Model Parameters

Failure dom. 1 Failure dom. 2

10–4per year 10–4per year

HOS σ = 1.6 0.43 0.74
HES σ = 1.8–0.09x 0.57 0.83
DH – 0.70 1.00
Gauss ρ = 0.6 0.05 0.19
Gumbel ρ = 0.6 0.36 0.63
Frank ρ = 0.6 0.00 0.01
Clayton ρ = 0.6 0.00 0.01
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