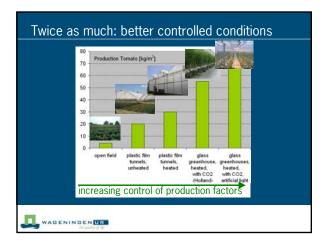


Outline

Introduction

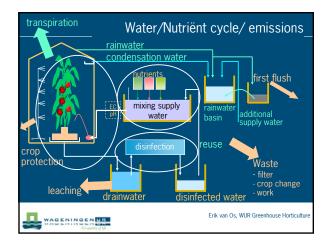
- Optimal integration of existing techniques
- Exploring new techniques and concepts
- Practical steps and guidelines

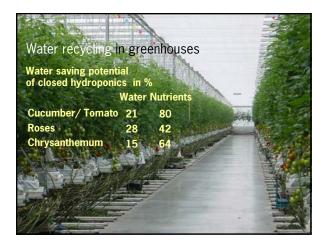
Acknowledgements

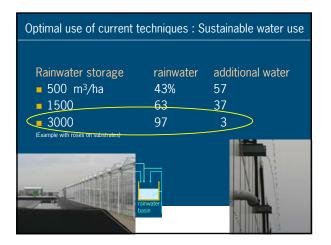

WAGENINGENUR

- Collegues: Arie de Gelder, Silke Hemming, Pierre Ramakers, Tom Dueck, Erik van Os
 Orsonisations: Ministry of Annoulture, Braduet Brad of Nationhus and research
- Organisations: Ministry of Agriculture, Product Board of Horticultue and research
 Programme Greenhouse as Energy Source

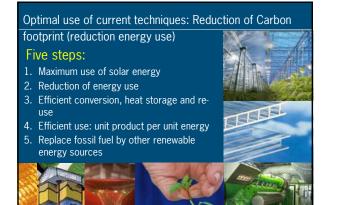
·//,

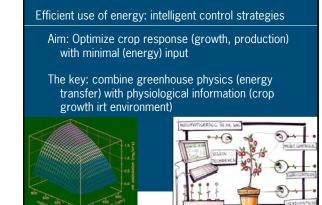


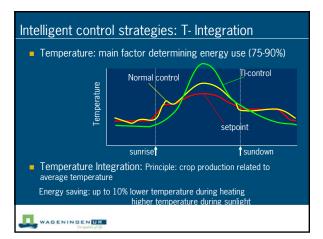

Iter	n	Quantity/m ²	Quantity/kg		
Yie	eld	Ca 60 kg			
Fertilisers kg (recirculation system)		1.6 kg	27 g		
	Uptake K	0.2000 g	3,4		
2	Uptake N	0.1200 kg	2 g		
3	Uptake P	0.0325 kg	9,5 g		
Chemicals (active components / IPM)		0.4-0.8 gram	0,01 g		
Electricity kWh		7 (25MJ/ 60MJ <mark>,</mark>)	$0.4MJ/1MJ_p$) (= 0.06 kg CO ₂)		
Natural gas use m ³		43-44 (1350 MJ)	22,5 MJ (= 1.3 kg CO ₂)		
Water I		8001	13,51		

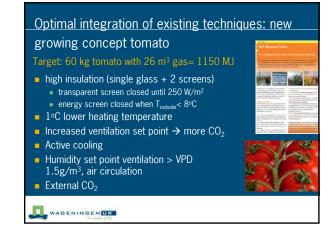

Outline

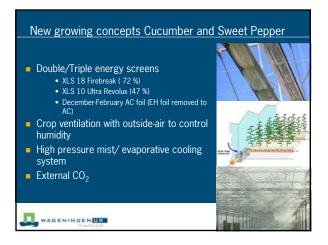
- Introduction
- Optimal integration of existing techniques:
- Exploring new techniques and concepts
- Practical steps and guidelines

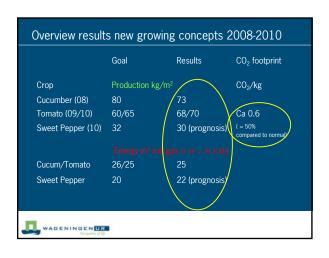


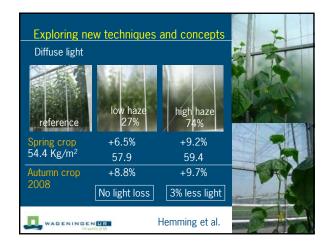


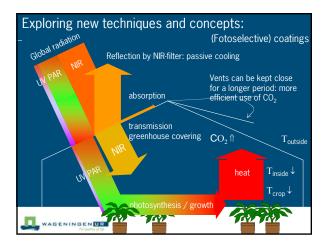


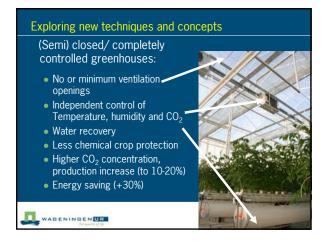




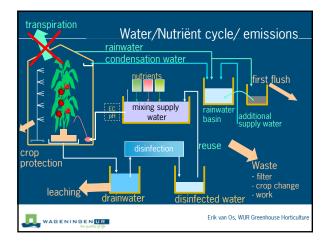


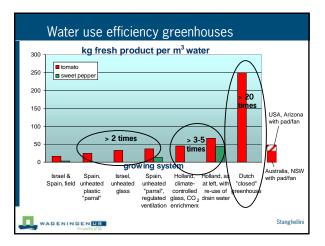


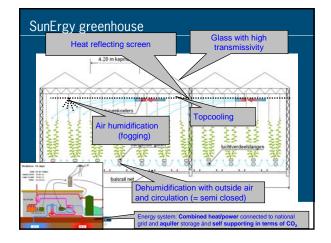




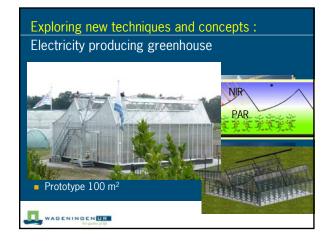
Comparison of o	diff	erent	prote	ected	crop	oing s	ysterr	าร
		Glass	Glass with C02	Glass with fogging	Glass with CO2 & fogging	CO2 & fogging &		Glass with CO2 & fogging & closed watersystem & insect nets & screens
Use of resources: Water consumption [kg produce/m3]		28.3	41.8	27.1	38.4	49.4	62.3	51.9
Energy (heat) consumption [MJ/kg] Produce less environmental loads:	-	14.7	9.9	14.5	9.7	9.7	4.5	9.2
CO2 application per unit produce		zero	high	zero	medium	medium	high	medium
Nutrient emissions		high	high	high	high	low	low	low
Pesticides applied per unit produce Efficiency of production process:	+	ing.	high	high	medium	medium	medium	
Yield per area [kp/m2]		36.0	53.3	36.4	54.7	54.7	68.9	67.5
	e	6.90 4	14.67	0.74	e 15.50	C 15.62	€ (2.40)	
Profit per area and year [6/m2/year] Return of investment [years]				4.4	3.0	3.1	7.9	3.0

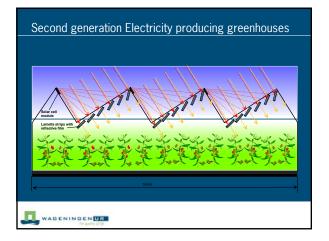






fects active	e cooling	on CO ₂	<u>concentr</u>	ation	/
Supply capacity: 230 kg CO ₂ ha ² h ¹	Open greenhouse	Semi-closed (150 W/m ²)	Semi-closed (350 W/m ²)	Completely closed greenhouse	
CO ₂ concentration (ppm)	600	730	950	1100	
CO ₂ supplied (kg/m²/y)	54.7	46.1	29.6	14.4	
Increased CO	2 concentra	tions $\rightarrow 10$)-20% highe	r yield	
WAGENINGEN				Quian, 20	08





Exploring new techniques and concepts :

- Combination of greenhouses and other (agro) activities (e.g. livestock farming, urban enviroment)
 - Re-use of CO₂, heat, minerals, waste

Outline

- Introduction
- Optimal integration of existing techniques:
- Exploring new techniques and concepts
- Practical steps and guidelines for the new growing concept to reduce the Carbon Footprint

