Assistance for Irrigation under Deficit

International Workshop on "Innovative irrigation technologies for greenhouse vegetables" Menderes-Izmir (Turkey) 23 June 2009

Jos Balendonck

Farm Level Optimum Water Management: Assistant for Irrigation Under Deficit

> This Project is supported by "European Union 6th Framework Programme: FP6-2005-Global-4"

> > 2006 - 2009

Test Site: Menderes - İzmir / Turkey

Objectives

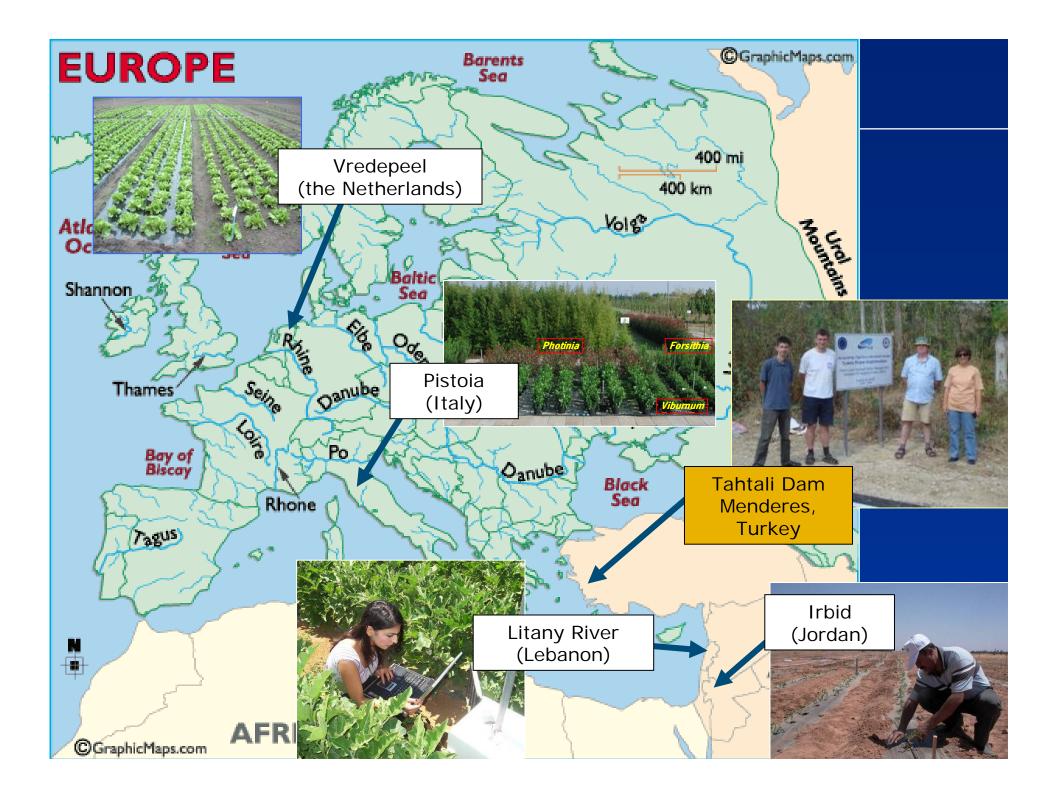
SAVE WATER

• Efficient use of available water

SAVE NUTRIENTS

Rational use of nutrients and marginal water resources PROTECT FARMER INCOME

• Maintain crop yields at affordable investments



European Project

7 universities + 3 companies
5 European + 3 other (Mediterranean) countries
Budget from European Commission: 1.7 M€
2006 - 2009

Experimental Site in Turke

Region Izmir (Tahtalı Dam)

- Preservation area
- Greenhouses
- Irrigation water from wells
- No leaching of fertilizer allowed

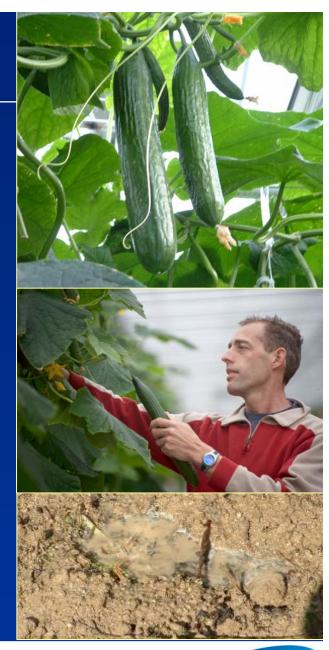
Objectives

- Local farmer (Cucumber)
- No drainage (reduce water use)
- Maintain a good marketable yield
- Evaluate and promote sensor activated control
- Test new tensiometers

(See presentation by: H. Tuzel)

Activities in Izmir – Menderes - Antalya

- **3** Years of experiments in Menderes (2007-2009)
- Meeting and field visit Flow-Aid project group (April 2008)
- International Symposium (Antalya, April 2008)
- Farmers and local authorities meeting (June 2008)
- Workshop for farmers and companies (June 2009)


No restriction on water use

Target Farmer

- Give the crop enough water and fertilizer to maximize crop yield
- Give more, to be sure that all plants get enough (variability)

Results

- Good crop yield, high income
- Leaching or run-off of water and fertilizers
- Slightly higher costs due to over use of water and fertilizers

Leaching Restrictions

Less water and fertilizer result in:
Yield loss
Crop damage
Lower income

Farmer target

Avoid or minimize crop losses

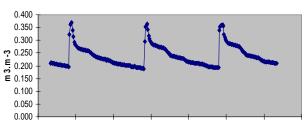
• But ... with more work

Solutions

Substrates and recirculation

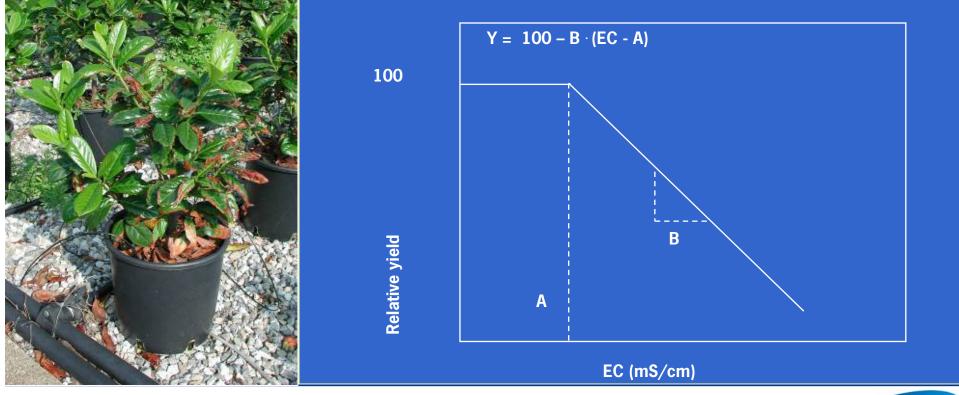
if not

Drip irrigation with fertigationAutomate the control



How to support farmers?

Advice when and how much to irrigate
Advice when and how much to fertigate
Continuous feed-back about crop status
Sensors, controllers, computer software
Process automation: less work
Affordable technologies



Yield Response to Deficit Irrigation

Water Quantity (Evapo-Transpiration)Water Quality (Salinity)

See also presentation by: A. Pardossi

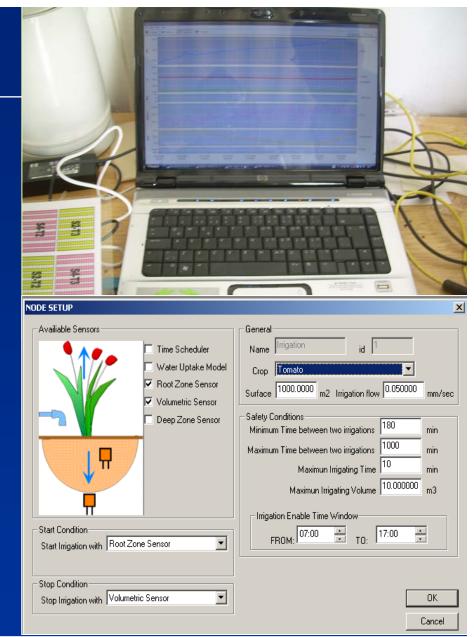
Crop Stress Response Database

9 ?									
		EV Project nº036958 Farm Level Optimal Water management: Assistant for Irrigation under Deficit				UNIVERSITÀ DI PISA			
FLOW									
AID									
EDIT	Product Name	BARLEY		•					
SAVE RECORD AS	RECORD NAME	CROP (SHORT NAME)	SCIENTIFIC NAME		ET GROUP (FAO)	REFERENCES		Open Web Pag	
ADD NEW RECORD	BARLEY	BARLEY	Hoi	rdeum vulgare	3 -		0		
DELETE RECORD		· · · · · ·			,				
CANCEL		DEVELOPMI STAG		START DAY (1-365)	DURATION (DAYS) Kc	ROOT DEPTH (m) Ky	P (RAW/TAW)	ECth	Ь
		Initial	I		40 0.00	0.00 0	0.55	8	5
EXPORT DATABASE		Crop developm	ent II		60 0.00	0.00 0	0.55	8	5
REPORT		Mid Season	Ш	305	60 0.00	0.00 0	0.55	8	5
gional Setting; Regno Unito		Late Season	IV		40 0.00	0.00 0	0.55	8	5
		Total growing c	s ycle ⊺		200 0.00	0.00 1.15	0	8	5
		< <<	<	Record 1 of 20) >>>	>			

Irrigation and Fertigation Controllers

Timer

- Sensor controlled
- ET-control
- Multiple valves
- Multiple water sources
- Stand-alone operation
- Computer programmed



See presentation by: D. Jenkins

Irrigation Scheduler

Automate Irrigation
Full or Deficit Regimes
Day to day planning
Dose and Time
Plant Status (monitoring)
Crop Stress Model
Set Irrigation Controllers

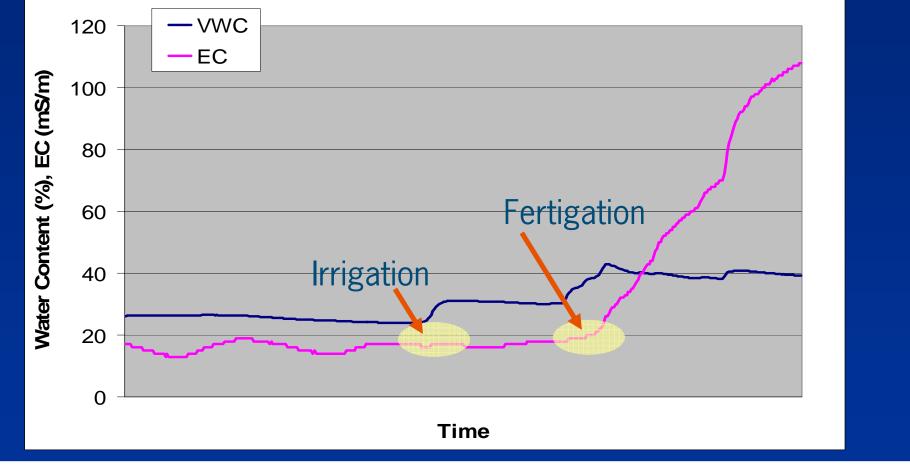
Sensors for Water and Fertilizers

Soil Water Content

• Water available to crop

Electrical Conductivity (EC)

- Pore Water EC
- Total Nutrient Concentration


Examples

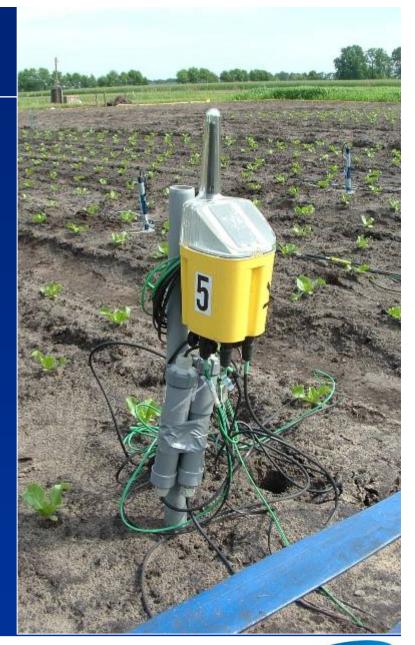
- WET-sensor (Delta-T-Devices)
- ECHO-5TE probe (Decagon)

Example of WET-sensor readings

Irrigation and Fertigation Event

Robust tensiometer

Water filled tensiometer: water suction tells farmer "when to irrigate" Tensiometer <u>without water</u>: Larger range No air entry at dry end Less maintenance Easy installation


FLOW

See presentation by: R. Whalley

Wireless Sensor Network

Monitoring in field
No cabling, easy installation
Multiple nodes and sensors
Robustness in field

Long Range (100m – 500m)
Weather proof
Solar powered

Under sub-optimal growing conditions, technology can offer farmers more possibilities to:

Efficiently use water and nutrients
Minimize run-off, percolation losses
Prevent crop damage

Technology be used in a wide range of farming practices

Soil or substrates
Protected or non-protected
Arid or non-arid zones
Multiple quality water sources

Many more questions ...

Does it work ... When are these tools available ... Is it really affordable?

- You are invited to listen to the participants from the FLOW-AID project:
 - R. Whalley, UK: New technology to control irrigation
 - H. Tuzel, Turkey: Results from test site
 - A. Pardossi, Italy: Estimating ET for irrigation scheduling in greenhouse crops
 - N. Sigrimis, Greece: Irrigation Scheduling for Water Saving Green Technologies
 - D. Jenkins, UK: SME's presentation
- Visit the test-site and share your ideas !!!

