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Chapter 3
Detecting changes in the spatial 
heterogeneity of NDVI using a wavelet 
transform2

Amon Murwira and Andrew K. Skidmore 

Abstract

We investigate the use of a wavelet transform to detect changes in the intensity of spatial 
heterogeneity (i.e., the maximum variance exhibited when a spatially distributed 
landscape property such as vegetation cover is measured with a successively increasing 
window size or scale) and the dominant scale of spatial heterogeneity (i.e., the scale or 
window size at which the intensity is recorded) based on a normalised difference 
vegetation index (NDVI) of 1984 and 1999 in northwestern Zimbabwe.  The results 
demonstrated that a wavelet transform implemented within the innovative framework of 
the intensity and dominant scale of spatial heterogeneity could be an invaluable tool to 
analyse scale explicit changes in the landscape.  We concluded that this approach 
positively capitalises on the strengths of both the pixel-based or post-classification-based 
change detection methods.  In addition, we concluded that this innovative approach could 
improve the understanding of ecological patterns and their dynamics in the landscape.  In 
other words, it has a potential to radically improve studies that aim at predicting the 
spatial distribution and redistribution of organisms in the landscape in a scale explicit 
fashion.  

2 In review: International Journal of Remote sensing 
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3.1 Introduction 

In a landscape, land cover is spatially heterogeneous (i.e., patchy), as well 
as temporally dynamic (Turner 1989).  In addition, spatial heterogeneity of 
land cover is hypothesised to regulate biosphere dynamics such as the 
hydrological cycle and the variability in the spatial distribution of 
terrestrial wildlife species (Morrison, et al. 1992, Mac Nally and Bennet 
1997).  In this regard, the monitoring of changes in the spatial 
heterogeneity of land cover is critical for understanding global change, as 
well as changes in wildlife habitat. 
 The advent of satellite remotely sensed data and the concurrent 
development of digital change detection have improved the capacity to 
monitor changes in the spatial heterogeneity of land cover over time in 
large areas (Almeida-Filho and Shimabukuro. 2002, Rogan, et al. 2002).  
Thus, traditionally, remote sensing has used change detection techniques to 
monitor the spatial heterogeneity of land cover over time, largely at the 
grain (i.e., spatial resolution) of the satellite sensor.  However, the 
limitation of this approach is that its choice of scale is arbitrary, thus it is 
subjective.  This is because by assuming a constant and arbitrary pixel size 
or scale across the image, this approach ignores the scale dimension of 
spatial heterogeneity (Legendre and Fortin 1989, Legendre 1998, Ettema 
and Wardle 2002).  In other words, it is difficult to neglect the fact spatial 
heterogeneity occurs at a diversity of scales and that, often some scales are 
relatively more important than others (Wiens 1989, Hall and Hay 2003).  
Alternatively, remote sensing has used post classification techniques to 
detecting change in spatial heterogeneity (Trani and Giles 1999).  
However, the major weakness of this approach is that characterisation of 
spatial heterogeneity is highly dependent on the initial definition of 
mapping units by the researcher (Turner 1989).  In fact, using this 
approach, the variation within the patches is suppressed and assumed to be 
irrelevant (McGrigal and Cushman 2002).  
 Moreover, despite a recent interest in scale explicit analyses of 
remotely sensed imagery (Qi and Wu. 1996, Friedl 1997, Goodchild and 
Quattrochi. 1997, Walsh, et al. 1997, Hay, et al. 2001), approaches and 
methods to achieve this goal remain largely underdeveloped.  Therefore, in 
this study we develop a new approach to monitor spatial heterogeneity of 
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land cover from remote sensing imagery, based on intensity and dominant 
scale.  Intensity is defined as the maximum variance exhibited when a 
spatially distributed landscape property is measured with a successively 
increasing window size or scale.  For example, measuring the variance in 
percent canopy cover along a 100 m long transect in a tree plantation with 
10 m wide tree stands (with uniformly high canopy cover) that evenly 
interchange with 10 m wide bare ground (with zero canopy cover) at a 
successively increasing window size, starting from 1 m up to 100 m, would 
yield the maximum variance at a window size of 10 m.  This maximum 
variance is the intensity of spatial heterogeneity.  It is the scale or window 
size where the maximum variance in the landscape property is measured 
that is defined as the dominant scale of spatial heterogeneity.  In other 
words, intensity and dominant scale of spatial heterogeneity are properties 
of a landscape that are inseparable.  In this case, the dominant scale of 
spatial heterogeneity coincides with the dominant patch dimension (i.e., 
size of tree stands and bare ground) while intensity coincides with the 
maximum degree of contrast in vegetation cover between the bare ground 
and the tree stands.  Therefore, we can argue that the dominant scale is the 
relatively most important scale of spatial heterogeneity in the landscape.  
The definition of scale used in this study follows that of (Levin 1992, 
Rietkerk, et al. 2002) who define scale as the window or dimension (e.g., 
m, km, m2, km2) through which the landscape may be observed either in 
remote sensing images or by direct measurement.  In this study, scale is 
treated as a linear dimension, e.g., m, km etc.  Of course, grain (i.e., the 
initial observation scale or window size at which the data is collected) and 
extent (overall size of the study area) limits the range of the dominant scale 
that can be detected (Wiens 1989).  We propose that spatial heterogeneity 
be quantified and monitored using both the intensity and the dominant 
scale.  Therefore, the need to use methods that implement this approach is 
critical.
 A wavelet transform can be used to analyse satellite remotely 
sensed data to detect changes in the dominant scale and intensity of spatial 
heterogeneity of land cover over time.  This is because wavelets partition 
the variance of a data function such as a satellite image on a scale-by-scale 
basis (Lindsay, et al. 1996).  Wavelet transform was initially developed in 
the 1980s for signal analysis, but has also enjoyed increased attention in 



Chapter 3 

36

landscape studies (Bradshaw and Spies. 1992, Dale and Mah. 1998, de 
Carvalho 2001, Epinat, et al. 2001).  However, to the best of our 
knowledge the application of wavelets to analyse changes in the spatial 
heterogeneity of land cover from a dominant scale and intensity 
perspective has not been done.  
 In this study, the objective was to test whether a wavelet 
transform can be used to analyse change in the dominant scale and 
intensity of spatial heterogeneity of land cover estimated from a 
normalised difference vegetation index (NDVI) images.  To accomplish 
our objective, we selected of a part of northwestern Zimbabwe.  This 
particular site was selected because there were very visible changes that 
occurred between 1984 and 1999, thus making the site suitable for testing 
whether a wavelet transform can be used to analyse change in the dominant 
scale and intensity of spatial heterogeneity of land cover.  

3.2 Materials and methods 

Remote sensing
Two Landsat TM images acquired on the 19th of October 1984 and 6th of 
November 1999 were used in this study.  The images were subset to extract 
a farming area of a size 6 km x 6 km.  The farming area is situated in the 
northern part of Zimbabwe.  This particular site was selected because there 
are obvious changes that occurred between 1984 and 1999, particularly the 
presence of dammed water bodies in 1999 that were absent in 1984 with 
the corresponding presence of irrigated fields (see fig. 3.2 below).  Firstly, 
the images were geometrically matched.  Secondly, a relative atmospheric 
correction using the a regression method was applied on each band to 
correct for any radiometric differences that may have arisen due to 
atmospheric differences between the two dates (Song, et al. 2001).  The 
pseudo variant objects that were used for the regression analysis were 
deep-water bodies and airstrips present in both images (fig. 3.1).  
 Next, we estimated land cover heterogeneity for each date using 
NDVI, derived from the TM image: 

                                                       
R)(NIR
R)(NIRNDVI

++++
−−−−====                                             (3.1) 
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where NIR and R are the spectral reflectance values in the near infrared and 
the red.  Data were normalised to the range of 0 to 255 in order to facilitate 
data handing in image processing software.  NDVI has been shown to 
provide an effective measure of photosynthetically active biomass (Tucker 
and Sellers 1986, Los. 1998, Turner, et al. 1999, Birky 2001, Hill and 
Donald 2003) and it is an index of total vegetation biomass (Goward and 
Dye 1987).  Also, NDVI is also strongly related to the extent of vegetation  

Figure 3.1: Relationship between the DN values of sampled pseudo variant objects between the 
Landsat TM images of 19 October 1984 and 6 November 1999. 
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cover and therefore, can be used as an indicator of spatial heterogeneity in 
the landscape (Kerr and Ostrovysky 2003).  Fig. 3.2 shows the NDVI 
images of the study site for 1984 and 1999. 

1984 1999

Figure 3.2: The 1984 and 1999 NDVI images of the study site.  Low NDVI values indicate low 
vegetation cover and high NDVI values indicate high vegetation cover within a 0 (no vegetation) to 
255 (high vegetation cover) range.  The coordinates in metres (Universal Transverse Mercator 
(UTM) projection Zone 35 South). 

Detecting change in spatial heterogeneity using a wavelet transform 
A wavelet transform (Bruce and Hong-Ye 1996) was used to characterise 
the changes in the intensity of spatial heterogeneity, as well as the 
dominant scale of spatial heterogeneity in the NDVI images of 1984 and 
1999.  As a preamble, we denoted the 1984 image by F(x,y) and the 1999 
image by Z(x,y).  It is important to note that both images have the same 
spatial resolution s in both directions (i.e., s = 30 m).  The analysis of the 
change in spatial heterogeneity started with a wavelet transform (a Haar 
wavelet was used), which is defined as the convolution of two wavelet 
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functions, i.e., the smooth function φ (x,y) and detail function ϕ(x,y), and a 
function f(x,y) at successive bases, (2j), i.e., j = 0,1,2…J in the vertical 
(north-south), diagonal (northeast-southwest and southeast-northwest) and 
horizontal (east-west) directions.  A wavelet transform results in a set of 
coefficients where each coefficient is associated with a base level (i.e.,  
j = 0,1,2… J), a direction and a particular location.  
 Thus, the wavelet approximations, y)(x,F̂  and y)(x,Ẑ , of the 
original NDVI images F(x,y) and Z(x,y) respectively are each a is a sum of 
the smooth and the detail functions at different bases:  

                              y)(x,
J

1j dir
dir
jDy)(x,JSy)(x,F ∑

====
∑++++====ˆ                                    (3.2) 

                              y)(x,
J

1j dir
dir
jDy)(x,JSy)(x,Z ∑

====
∑++++====ˆ                                    (3.3) 

SJ represents the smooth coefficients and dir
jD  are the directional (i.e., 

vertical (north-south), horizontal (east-west) and diagonal (northeast-
southwest and northwest-southeast)) detail coefficients.  By convention, 
the smallest grain of f(x,y) is j = 0.  Therefore, each scale level j
corresponds to a grain equals sj *2  where s is the size of the original grain 
at which the NDVI is mapped (in this case 30 m, the grain of Landsat TM).  
The decision on the magnitude of J (i.e., the broadest base or window of 
focus) is made in advance and depends on how much detail is required in 
the analysis and also on the extent of the image.  In this study we selected J
equals 5, an equivalent of a spatial dimension of 960 m.  Note that the 
theory and formal treatment of wavelets has been covered exhaustively 
elsewhere (Mallat 1989, Ogden 1997)  
 In a wavelet transform, wavelet coefficients can either be positive 
or negative.  However, the absolute coefficient value measures the 
magnitude of contrast in a function (in the case, F(x,y) and Z(x,y) at a 
specific location with a base of 2j.  Therefore, we calculated wavelet 
energy as a second moment of the wavelet transform defined as the sum of  
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squares of the coefficients at base 2j, divided by the sum of squares of all 
the coefficients in y)(x,F̂  and y)(x,Ẑ :

                                   Jjyxj

j
n

k
d

E
E d

j ...1,2,3),,(
2/

1

21
=∑

=
=                                         (3.4) 

where ),( yxjd  are the detail wavelet coefficients at j  and position ),( yx , E

is the total sum of squares of either y)(x,F̂  or y)(x,Ẑ , and n/2j is the number 
of coefficients at level j. We used wavelet energy to determine the 
intensity and the dominant scale of spatial heterogeneity. 
 In order to analyse the changes in spatial heterogeneity between 
1984 and 1999, we began by plotting the wavelet energy functions for 
1984 and 1999 using only the significant wavelet coefficients obtained 
after applying a universal filter (Bruce and Hong-Ye. 1996) to all the 
wavelet coefficients (i.e., in the horizontal (east-west), vertical (north-
south), and diagonal (northeast-southwest and northwest-southeast) 
orientations).  Specifically, the wavelet energy values obtained for 1984 
and 1999 were plotted separately against scale (i.e., from 60 m to 960 m).  
Next, to see whether there was a change in spatial heterogeneity, the 
highest local maxima representing the intensity, as well as the 
corresponding dominant scale of spatial heterogeneity in 1984 and 1999 
were determined and compared.  It is important to note that this was 
implemented using only the detail functions rather than the smooth 
approximations.  This is because detail functions are scale specific.  For 
example, details at j = 1 capture vegetation patches that have a size 
between 30 m and 60 m.  In contrast, smooth coefficients can only capture 
scales that are equal or greater than 2J, thus they are not scale specific. 
Finally, we plotted the maps of the wavelet coefficients that correspond to 
the intensity and the dominant scales of spatial heterogeneity at which the 
intensity occurred in both 1984 and 1999.  

3.3 Results 

Fig. 3.3 shows the wavelet energy functions that resulted from the wavelet 
transform of the 1984 and 1999 NDVI images.  It can be observed that in 
the horizontal (east-west) orientation, the intensity of spatial heterogeneity 
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occurred at a dominant scale 120 m in 1984 whereas in 1999 it occurred at 
a dominant scale of 480 m, an increase of 360 m.   
 In addition, it can be observed that in the vertical (north-south) 
orientation the intensity of spatial heterogeneity occurred at the dominant 
scale of 240 m in 1984 whereas in 1999 it occurred at a dominant scale of 
480 m, an increase of 240 m.  Also, in the diagonal (northeast-southwest 
and northwest-southeast) orientation, the intensity of spatial heterogeneity 
occurred at a dominant scale of 240 m in 1984 whereas in 1999 it occurred 
at a dominant scale of 480 m.  Furthermore, it can be generally observed 
that the intensity of spatial heterogeneity was higher in 1999 compared 
with 1984. 
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Figure 3.3: Directional wavelet energy functions for study site in the (�) horizontal (east-west), (�)
vertical (north-south) and (�) diagonal (northeast-southwest and northwest-southeast) orientation in 
1984 and 1999.  The arrows indicate the intensity, as well as the dominant scale of spatial 
heterogeneity in the horizontal (east-west) and vertical (north-south) orientations in 1984 and 1999. 
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(a)

(b)

(b)

1984 1999

Figure 3.4: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the horizontal (east-west) orientation in 
1984 shown in fig. 3.3 (i.e., dominant scale = 120 m).  The arrows indicate a high wavelet 
coefficient that coincides with the small water body in 1984 and in 1999. 
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(a)

(b)

(b)

1984 1999

Figure 3.5: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the vertical (north-south) orientation in 
1984 shown in fig. 3.3 (i.e., dominant scale = 240 m).  The arrows indicate a high wavelet 
coefficient that coincides with the small water body in 1984 and in 1999. 
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1984

(a)

Figure 3.6: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the horizontal (east-west) orientation in 
1999 shown in fig. 3.3 (i.e., dominant scale = 480 m).  The arrows indicate a high wavelet 
coefficient that coincides with the large water body in 1999. 
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1984

(a)

Figure 3.7: The (a) NDVI images of the study site in 1984 and 1999 and the (b) two dimensional 
and (c) 3-dimensional images showing the magnitude of the wavelet coefficients that constitute the 
intensity and the dominant scale of spatial heterogeneity in the vertical (north-south) orientation in 
1999 shown in fig. 3.3 (i.e., dominant scale = 480 m).  The arrows indicate a high wavelet 
coefficient that coincides with the large water body in 1999. 

 Figs. 3.4 and 3.5 illustrate the spatial distribution of wavelet 
coefficients that constituted the intensity of spatial heterogeneity that 
occurred at the dominant scale of 120 m and 240 m in 1984 in the 
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horizontal (east-west) and vertical (north-south) orientations respectively, 
as well as the corresponding wavelet coefficients in 1999 for comparison 
purposes.  It can be observed that the highest coefficients in 1984 
represented small water bodies, as well as agricultural fields of sizes 
between 120 m and 240 m.  In addition, it can be observed that despite the 
fact that the intensity of spatial heterogeneity occurred at these dominant 
scales (i.e., 120 m and 240 m) in 1984, the wavelet coefficients and hence 
the wavelet energy was relatively higher at the same scales in 1999.  In 
other words, in the year 1999 the 120 m and 240 m no longer constituted 
the dominant scales of spatial heterogeneity. 
 Furthermore, figs. 3.6 and 3.7 show the spatial distribution of 
wavelet coefficients that constituted the intensity of spatial heterogeneity 
that occurs at the dominant scale of 480 m in 1999, in the horizontal (east-
west) and vertical (north-south) orientations respectively, as well as the 
corresponding or constituent wavelet coefficients in 1984.  It can be 
observed that the largest increase in the magnitude of the wavelet 
coefficients was associated with the emergence of two large water bodies 
in 1999.  In addition, it can be observed that in 1984 agricultural fields 
occupied the spots now occupied by water bodies in 1999.  Furthermore, it 
can be observed that the horizontal (east-west) wavelet coefficients  
(fig. 3.6) reflect that change in the intensity of spatial heterogeneity and the 
dominant scale of spatial heterogeneity is not only an effect of the 
introduction of water bodies onto the farm but also a contribution of 
irrigated fields reflected in the high NDVI values of 1999.  

3.4 Discussion  

In this study, we have demonstrated that a wavelet transform can be 
applied on multi-temporal remote sensing imagery to detect changes in 
both the intensity of spatial heterogeneity and the dominant scale of spatial 
heterogeneity.  For example, the dominant scale of spatial heterogeneity 
increased from between 120 m and 240 m in 1984 to 480 m in 1999, 
suggesting that the dominant patches size at which NDVI (vegetation 
cover) varied maximally had increased (fig. 3.3).  This is mainly due to the 
large water bodies that were introduced between 1984 and 1999.  In 
addition, the intensity of spatial heterogeneity was higher in 1999 than in 
1984, suggesting that the maximum variance in vegetation cover increased 
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dramatically between the years (fig. 3.3).  The increase in the amount of 
vegetation cover (NDVI) in places and also the decrease in vegetation 
cover due to the introduction of large water bodies explains the increase in 
intensity.  Therefore, we can deduce that by using a wavelet transform, we 
are not only able to detect the differences in the maximum variance of 
vegetation cover, but we are also able to detect any the changes in the 
constituent patch dimensions at which the maximum variance occurs.  This 
supports the main hypothesis in landscape ecology that changes in the 
spatial heterogeneity of a landscape are scale dependent (Turner 1989).  
 Moreover, the results in this study demonstrated that a wavelet 
transform uses the strengths of both the pixel-based or post-classification-
based change detection methods by being able to detect changes in both the 
maximum variability (intensity) and in the size (dominant scale) of 
recognisable features in the landscape.  In other words, while the pixel-
based method makes it difficult to know the size of the patches that 
dominate the landscape without further analysis, it can capture variability 
in the landscape.  In contrast, the post-classification-based change 
detection can give an idea about the size of the constituent patches in the 
landscape but it leads to the loss of quantitative information on variability 
in the landscape.  Consequently, we can conclude that the wavelet 
transform based change detection within the framework of the intensity 
and dominant scale of spatial heterogeneity is a novel improvement over 
the abovementioned methods because we can detect both the change in 
variance and the size of the constituent patches that contribute to that 
change.  

3.5 Conclusion  

Landscapes are spatially heterogeneous and temporally dynamic at 
different scales (Turner 1989).  In addition, landscapes are composed of 
scale domains that represent the relative importance of a landscape 
property at different scales (Wiens 1989).  In this regard, any 
methodological framework that analyse change in the landscape must have 
the capacity to handle scale explicitly (Hall and Hay 2003).  
 The findings in this study demonstrated that a wavelet transform 
implemented within the framework the intensity and dominant scale of 
spatial heterogeneity could be used to analyse scale explicit changes in the 
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landscape.  We conclude that the approach used in this study uses the 
strengths of both the pixel-based or post-classification-based change 
detection methods.  In addition, we conclude that the approach used in this 
study is innovative and could improve the understanding of ecological 
patterns and their dynamics in the landscape.  In other words, it could 
radically improve studies that aim at predicting the spatial distribution and 
redistribution of organisms in the landscape in a scale explicit fashion.  


