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Chapter 7
Predicting elephant (Loxodonta africana)
presence in a Southern African 
agricultural landscape from the spatial 
heterogeneity of NDVI 6

Amon Murwira and Andrew K. Skidmore  

Abstract

We investigated whether and how the probability of African elephant (Loxodonta 
africana) presence was related to spatial heterogeneity of vegetation cover (estimated 
from a remotely sensed normalised difference vegetation index (NDVI) from  
Landsat TM) in space and over time in the agricultural landscape in northwestern 
Zimbabwe between the early 1980s and early 1990s.  A new approach was used to 
characterise spatial heterogeneity based on the intensity (i.e., the maximum variance 
exhibited when a spatially distributed landscape property such as vegetation cover is 
measured with a successively increasing window size or scale) and dominant scale (i.e., 
the scale or window size at which the intensity is measured).  This approach was 
implemented using a wavelet transform.  The results showed that spatial heterogeneity 
could explain 80 % and 93 % of the variance of the probability of elephant presence in the 
early 1980s and early 1990s respectively.  The changes in spatial heterogeneity predicted 
89 % of the variance of the change in elephant presence between the 1980s and 1990s.  
These results imply that if elephants are to be conserved in agricultural landscapes, it is 
important that wildlife management strategies aimed at sustaining wildlife species in 
agricultural landscapes take into account the level of spatial heterogeneity of natural 
vegetation.  In addition, the results imply the wavelet transform-derived spatial 
heterogeneity could improve the prediction of ecological patterns. 

6
Based on: The spatial distribution of elephants (loxodonta africana) in relation to the spatial heterogeneity 

of vegetation cover in a Southern African agricultural landscape, paper presented to the conference on Scales 
and Dynamics in Observing the Environment, 10-12, September 2003, Nottingham, UK. Also submitted to: 
Remote Sensing of Environment 
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7.1 Introduction 

Community based natural resource management (CBNRM) programmes in 
the agricultural landscapes of Southern Africa such as the Communal 
Areas Management Programme For Indigenous Resources (CAMPFIRE) 
in Zimbabwe (Hoare and Du Toit 1999, Hulme and Murphree 2001, Logan 
and Moseley 2002) owe their existence to the persistence of wildlife 
species throughout these landscapes.  However, wildlife species 
persistence in agricultural landscapes of Southern Africa, particularly in 
Zimbabwe, is increasingly being threatened by agricultural field expansion 
into the natural habitats (Cumming 1982, Cumming and Lynam 1997, 
Hoare 1999, Hoare and Du Toit 1999).  The critical question for wildlife 
managers and ecologists is: how can wildlife persistence outside the 
wildlife reserves be ensured in the face of expanding agriculture?  In other 
words, in what kind of agricultural landscape can wildlife species thrive?  
The answer is in understanding the kind of habitat conditions that can 
make elephants persist within the unique context of agricultural landscapes 
where arable fields cut up natural habitats into discontinuous patches of 
different spatial arrangements.  In such a landscape, it is not only the 
amount of natural habitat that is important for wildlife species persistence, 
but the spatial arrangement of habitat patches also becomes particularly 
critical.  Thus, to ensure wildlife species persistence in agricultural 
landscapes it is critical to understand how they respond to spatial 
heterogeneity (i.e., the patchiness in vital landscape properties such as 
vegetation cover (Legendre and Fortin 1989, Pickett and Rogers. 1997, 
Gustafson 1998) that is imposed by the agricultural fields onto the natural 
habitat.  Consequently, the need for research to characterise wildlife 
species response to spatial heterogeneity in agricultural landscapes is 
critical.
 Although empirical and theoretical literature recognises the 
importance of spatial heterogeneity to wildlife distribution (Turner 1989, 
Johnson, et al. 1992, Kareiva and Wennergren 1995, Turner, et al. 1997, 
Lynam and Billick 1999, Adler, et al. 2001), an understanding of the levels 
of spatial heterogeneity at which specific wildlife species can persist in 
agricultural landscapes is still rudimentary.  This may stem from the lack 
of clarity in the characterisation of spatial heterogeneity (Sparrow 1999).  
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In other words, this suggests that spatial heterogeneity needs to be properly 
characterised even before the wildlife response to spatial heterogeneity can 
be understood. 
 The quantification of spatial heterogeneity is an empirical 
approach based on observed data, thus it is a forerunner to testing specific 
hypotheses about ecological patterns (Perry, et al. 2002).  In this regard, 
ecologists have traditionally quantified spatial heterogeneity from remote 
sensing imagery by using two basic approaches: (a) the direct image 
approach, where straight reflectance or reflectance indices of remote 
sensing images are used to quantify spatial heterogeneity, using the 
original pixel size of the image (Goodchild and Quattrochi. 1997); and  
(b) the cartographic or patch mosaic approach, where the image is 
subdivided into homogeneous mapping units through classification 
(Gustafson 1998).  The first approach assumes that spatial heterogeneity is 
at the pixel size of the image and, in this case, it is only the reflectance 
values that are important.  The limitation of this approach is that its choice 
of scale (i.e., window size) is arbitrary, thus it is subjective.  Alternatively, 
using the patch mosaic approach to quantify spatial heterogeneity assumes 
a collection of discrete patches.  Based on this approach, characterisation 
of spatial heterogeneity is highly dependent on the initial definition of 
mapping units by the researcher (Turner 1989).  The limitation of this 
approach is that patches have abrupt boundaries and the variation within 
the patches is assumed to be irrelevant (McGrigal and Cushman 2002).  
The patch mosaic model is parsimonious and has therefore become the 
operating paradigm.  It is particularly valid where landscape patches have 
crisp boundaries, as with the regular landscapes of Europe (Pearson 2002).  
However, the model poorly represents spatial heterogeneity in landscapes 
that are characterised by gradients rather than discrete patches, for instance 
in savanna landscapes (Pearson 2002), and this leads to both loss of 
information and the introduction of subjectivity.  Nevertheless, alternative 
approaches to characterise spatial heterogeneity remain underdeveloped.  
 In view of the limitations in the approaches mentioned above, we 
develop a new approach to characterising spatial heterogeneity, based on 
intensity, as well as the dominant scale and apply it to predict wildlife 
species distribution, particularly that of the African elephant (Loxodonta 
africana) in an agricultural landscape.  Intensity is defined as the 
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maximum variance exhibited when a spatially distributed landscape 
property is measured with a successively increasing window size or scale.  
For example, measuring the variance in percent canopy cover along a  
100 m long transect in a tree plantation with 10 m wide tree stands (with 
uniformly high canopy cover) that evenly interchange with 10 m wide bare 
ground (with zero canopy cover) at a successively increasing window size, 
starting from 1 m up to 100 m, would yield the maximum variance at a 
window size equal 10 m.  This maximum variance is the intensity of spatial 
heterogeneity.  It is the scale or window size where the maximum variance 
in the landscape property is measured that is defined as the dominant scale 
of spatial heterogeneity.  In other words, intensity and dominant scale of 
spatial heterogeneity are properties of a landscape that are inseparable.  In 
this case, the dominant scale of spatial heterogeneity coincides with the 
dominant patch dimension (i.e., size of tree stands and bare ground) in the 
landscape.  Note that our definition of scale follows that of Levin (1992) 
and Rietkerk, et al. (2002) who define scale as the window or dimension 
(e.g., m, km, m2, km2) through which the landscape may be observed either 
in remote sensing images or by direct measurement.  In this study, scale is 
treated as a linear dimension, e.g., m, km.  We therefore propose that 
spatial heterogeneity be defined and quantified using both intensity and the 
dominant scale.  Of course, grain (i.e., the initial observation scale or 
window size at which the data is collected) and extent (overall size of the 
study area) limits the range of the dominant scale that can be detected 
(Wiens 1989).   
 Furthermore, in order to properly elucidate the centrality of the 
intensity and the dominant scale in the characterisation of spatial 
heterogeneity, we present a simulation of tree canopy cover along three 
artificial transects (fig. 7.1).  The tree canopy cover along by the three 
artificial transects that stretch over 1000 m is sampled at an interval of 1 m.  
Thus, the interval of 1 m defines the grain (observation scale) while the 
1000 m defines the extent (overall transect length).  The transects 1 and 2 
have a dominant scale of spatial heterogeneity of 100 m, i.e., maximum 
variance is recorded at the window size of 100 m whereas transect 3 has a 
dominant scale of 200 m.  The dominant scale of spatial heterogeneity in 
transects 1 and 2 is equal but the intensity of spatial heterogeneity is 
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Figure 7.1: Part (A) are transects with alternating spaces of trees and bare ground and part (B) 
shows the simulation tree canopy cover along each transect assuming that the cover measurements 
are made after every 1 m (i.e., grain = 1 m) and an extent of 1000 m.  For example, the (a) intensity 
(maximum variance) of transect 1 occurs at (b) a dominant scale of 100 m.  

different.  Next, a look at transects 1 and 3 shows that they have equal 
intensity of spatial heterogeneity but have different dominant scales of 
spatial heterogeneity.  Therefore, characterizing spatial heterogeneity in 
this example is incomplete if only the intensity or the dominant scale of 
spatial heterogeneity is considered.  Thus, we propose that both the 
intensity and dominant scale describe the spatial heterogeneity of a 
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landscape.  This method of characterising spatial heterogeneity in the 
landscape was developed and tested by Murwira and Skidmore (2003) 
 In this study, the objective was to use a wavelet transform to 
quantify the spatial heterogeneity of a normalised difference vegetation 
index (NDVI) and then test whether the wavelet-quantified spatial 
heterogeneity consistently explain wildlife species distribution in a 
landscape, particularly that of the African elephant (Loxodonta africana) in 
northwestern Zimbabwe between the early 1980s and early 1990s.  
Specifically we tested: (1) whether the probability of African elephant 
presence in different parts of the landscape was consistently and 
significantly related the dominant scale and intensity of spatial 
heterogeneity during the two dates and, (2) whether changes in the 
probability of elephant presence in different parts of the landscape, 
between the early 1980s and early 1990s, were related with changes in the 
dominant scale and intensity of spatial heterogeneity.  Murwira and 
Skidmore (2003) demonstrated the utility of wavelets in characterising 
spatial heterogeneity from a dominant scale and intensity perspective.  
 The African elephant was selected for several reasons.  Firstly, 
the Africa elephant is a keystone species of the African savanna (Hoare 
and Du Toit 1999) that need to be conserved.  Secondly, the African 
elephant is on the list of the world’s threatened species (IUCN 2002) and is 
considered a conservation priority.  Thirdly, the study area has been the 
only agricultural landscape in Zimbabwe outside the protected wildlife 
reserves with a healthy expanding elephant population (Cumming 1981).  
Nevertheless, this situation is increasingly being threatened by agricultural 
field expansion following the continual eradication of tsetse (Glossina sp.) 
since the 1960s.  Thus, there is need of interventionist strategies to 
conserve the elephant.  Fourthly, water is not a limiting factor in the study 
area (Cumming 1981), and since the African elephant is a habitat generalist 
(Kingdon 2001) it has a potential of being anywhere in the study area and 
it can be hypothesised that the level of spatial heterogeneity mainly affect 
its distribution.  Also, good survey data exists on the spatial distribution of 
the African elephant in the study area.  
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7.2 Materials and Methods 

Study area 
This study is based on the Sebungwe region in the northwestern part of 
Zimbabwe (fig. 7.2).  The Sebungwe region is composed of undulating 
topography with the average elevation of between 700 – 800 m above sea 
level.  The region is characterised by a single wet season (November to 
March) with a mean annual rainfall of 680 – 700 mm, as well as a long dry 
season (April to October).  Savanna woodlands and grasslands characterise 
the main natural land cover, i.e., Miombo woodland dominated by 
Brachystegia spp. and Julbernardia globiflora, Mopane dominated by 
Colophospermum mopane, Faidherbia woodland dominated by Faidherbia 
albida, Miombo-Mopane with co-dominance of Brachystegia spp. and
Julbernardia globiflora and Colophospermum mopane, as well as, Setaria 
dominated by Setaria incrassata, Ischaemum afrum and Dicathium
papillosum (Timberlake, et al. 1993) (fig. 7.2b).  The floristic-
physiognomic vegetation units do not change over time, representing the 
vegetation classes that would be there in an undisturbed environment 
(Timberlake, et al. 1993).  Therefore, the boundaries do not change within 
a matter of decades. 
 The Sebungwe contains of five wildlife reserves, interspersed 
with communal lands (fig. 7.2a) with varying degrees of agriculture and 
varying degrees of wildlife presence.  Communal lands are a land category 
characterised by collective or community land ownership and they are 
subdivided into administrative or management units called wards 
(fig. 7.2a).  In the communal lands wildlife presence is affected by the 
ecological conditions such as the availability of vegetation cover, and also 
poaching and human disturbance, and also poaching and human 
disturbance rather than by conservation measures or laws like in the 
wildlife reserves, i.e., wildlife species are present provided there are 
necessities such as enough cover and water.  Wildlife has to cross the 
communal lands when moving between the wildlife reserves.  Thus, the 
communal lands also provide wildlife corridors that link the wildlife 
reserves (Cumming and Lynam 1997). 
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Zimbabwe

(a)

(b)

Figure 7.2: The location of the Sebungwe region in Zimbabwe and (a) the wards, national parks and 
the history of the progression of tsetse eradication (source: Tsetse and Trypanosomiasis control 
branch, Harare) and (b) the physiognomic-floristic vegetation classes in the communal lands based 
on (Timberlake and Nobanda 1993).  The square box is a 61 km x 61 km area selected for this 
study. 
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 Moreover, the Sebungwe landscape evolved from a complex of 
different historical forces linked to the eradication of tsetse fly (Glossina 
sp.) and the related land use (fig. 7.2)a.  Historically, the Sebungwe region 
was home to both tsetse fly and a wide range of wildlife species until the 
1960s when the tsetse belt began to continually dwindle as a consequence 
of the tsetse eradication programme that was meant to enable livestock 
ranging and arable agriculture, thereby relieving population pressure from 
elsewhere in the country.  As tsetse fly was progressively destroyed since 
the 1960s, the valley began to be increasingly occupied by farmers 
(Cumming and Lynam 1997).  By the mid-1980s immigration had 
accelerated and the threat of arable agriculture on the persistence of 
wildlife began to increase in parts of the Sebungwe (Cumming and Lynam 
1997).  The results were the varying degrees wildlife presence as a 
function of varying levels of arable agriculture (Hoare and Du Toit 1999).  

b b

1981 - 83 1993 - 95

Figure 7.3: The probability of elephant presence within a 3 km radius in the study area in 1981-83 
and 1993-95 and the 61 km by 61 km square box selected for this study.  The ellipse (b) illustrates 
an area where there was a major noticeable decrease in the probability of elephant presence between 
1981-83 and 1993-95. 

 This study is based on a 61 km x 61 km area (square box in  
fig. 7.2), mainly covering the communal lands.  This study area was 
considered large enough for studying elephant distribution in the 
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Sebungwe.  Specifically, elephants in the Sebungwe region have an 
estimated range of between 83 km2 to 263 km2, approximating a horizontal 
length scale (horizontal dimension) of 9.1 km and 16.2 km, respectively 
(Guy 1976a, Dunham 1986).  This makes the extent of the study area, i.e., 
3721 km2, which is at least 14 times the estimated range of the elephant in 
the Sebungwe large enough to study elephant distribution. 
Elephant data 
The data on the spatial distribution of elephants in the 1980s and 1990s 
were determined using respectively a combined 1981-1983 data set, and 
1993-1995 data set.  These data were obtained from the point location data 
from the analyses of Sebungwe aerial surveys by Cumming and Lynam 
(1997) and made available by WWF in Harare.  The locational error of the 
elephant sightings was within 500 m, i.e. 250 m on the side of the aircraft 
and 1000 m along the flight path (Cumming and Lynam 1997).  The aerial 
surveys were carried out in the dry season, i.e., between August and 
October of the relevant years.  This was considered an appropriate period 
for studying the effect of spatial heterogeneity on elephant distribution 
because the crop fields are fallow during this time.  Crop fields tend to 
attract the elephants outside their normal natural range, thus making wet 
season (October to March) data much less reliable for assessing the effect 
of spatial heterogeneity.  In other words, an area that can be suitable for the 
elephant in the dry season can safely be assumed to be suitable in the wet 
season.  The data were in digital point map format.  We considered the 
elephant distribution map of our study area R as a spatial point pattern 
(Diggle 1983).  Each point where elephants were observed is called an 
event.  We calculated the first-order intensity function λ(x) for the elephant 
point map to give an expected number of events per unit 
area(Fotheringham, et al. 2000): 

                                            2
πr

X))r),E(N(C(x,
lim

0r
)x(

=
=λ                                          (7.1) 

where E(N) is the expected number of events in the study area considered 
and C(x,r) a circular sub-region of R located at x with a radius r.  A kernel 
function was used in this study with r equal to 3000 m based on an 
exploratory analysis in S-PLUS software (Lam 2001).  This kernel radius 
was also large enough to overcome any locational errors in elephant 
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sightings.  We then normalised λ(x) by dividing it by the expected number 
of events in R to produce a normalised or probability function λn(x)
(Fotheringham, et al. 2000): 

                                                  
))X,R(N(E

)x()x(n λλ =                                            (7.2) 

Next, λn(x) was used to estimate the spatial distribution of elephants in the 
study area during the 1980s and 1990s.  The point pattern analysis method 
was used because it is spatially explicit and gives weight to elephant 
location rather than absolute numbers: the aim was to determine whether 
spatial heterogeneity affects the presence of at least a single elephant and 
since the elephant survey data sets were combined, adding the total number 
of observed elephants of the years would give a false impression about 
absolute elephant abundance.  Fig. 7.3 shows the maps of the probability of 
elephant presence in the early 1980s and the early 1990s. 

Remote sensing data 
The amount of vegetation cover or biomass was estimated from NDVI 
derived from the readily available TM images of 19 October 1984 and the 
one of 16 April 1992: 

                                                 
R)(NIR
R)(NIRNDVI

++++
−−−−====                                                   (7.3) 

where NIR and R are respective spectral reflectance values in the near 
infrared and the red.  Data were normalised to the range of 0 to 255 in 
order to facilitate data handing in image processing software.  Relative 
radiometric correction of the two images was done using the regression 
method based on pseudo variant objects such as water bodies, airstrips and 
roads (fig. 7.4).  This was done to minimise atmospheric effects in the 
analysis of spatial heterogeneity from the NDVI images of the two 
different dates.  Fig. 7.5 shows the NDVI images of the 61 km x 61 km 
study area.  As mentioned earlier, NDVI was used because it is an 
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Figure 7.4: Relationship between the DN values of sampled pseudo variant objects between the 
Landsat TM images of 19 October 1984 and 16 April 1992. 
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1984 1992

Figure 7.5: Map showing the 1984 and 1992 NDVI maps of the 61 km by 61 km square box 
overlaid with layers of ward boundaries and agricultural fields.  Low NDVI values indicate low 
vegetation cover and high NDVI values indicate high vegetation cover within a 0 to 255 range.  The 
NDVI values were stretched the same way for display to make them comparable but the NDVI 
ranges were different for 1984 and 1992.  

established index for estimating vegetation quantity (Walsh, et al. 1997, 
Walsh, et al. 2001).  Also, NDVI have been shown to provide an effective 
measure of photosynthetically active biomass (Tucker and Sellers 1986, 
Los. 1998, Turner, et al. 1999, Birky 2001, Hill and Donald 2003) and it is 
an index of total vegetation biomass (Goward and Dye 1987).  Also, NDVI 
is also strongly related to the extent of vegetation cover and therefore, can 
be used to detect land cover changes (e.g., woodland replacement with 
agriculture) and can also be used as an indicator of spatial heterogeneity in 
the landscape (Kerr and Ostrovysky 2003).  Dry season imagery was used 
in this study because elephant data was collected in the dry season.  In 
addition, it is easier to distinguish between fallow agricultural fields and 
natural vegetation using NDVI in the dry season than in the wet season, 
i.e., high NDVI values are expected for natural vegetation and lower NDVI 
values are expected for fallow agricultural fields (fig. 7.5).  Thus, it is 
apparent in fig. 7.5 that areas with low NDVI mainly coincide with 
agricultural fields.  It was assumed that the time differences between the 
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dates of the wildlife surveys and the satellite images was close enough and 
therefore, had negligible negative effects on the analysis.  
 Several advantages were envisaged in using Landsat TM imagery 
to characterise the spatial heterogeneity for the study of elephant 
distribution.  Most importantly, the spatial resolution or grain of  
Landsat TM, i.e., 30 m by 30 m was detailed enough to enable the 
quantification of spatial heterogeneity that is relevant for analysing 
elephant distribution; generally, the grain should be several magnitudes 
smaller than the total range of the organism (Sparrow 1999).  Since 
elephants in the Sebungwe region have an estimated range of 83 km2 to 
263 km2, approximating a horizontal length scale (horizontal dimension) of 
9.1 km and 16.2 km, respectively (Guy 1976a, Dunham 1986), the grain of 
30 m makes it 300 times smaller than the minimum range of the elephant.  
Characterising spatial heterogeneity using wavelets 
Wavelet energy (Bruce and Hong-Ye. 1996) was used to quantify the 
intensity and the dominant scale of spatial heterogeneity in the NDVI 
images of 1984 and 1992.  The determination of wavelet energy begins 
with a wavelet transform (in this study a Haar wavelet was used), which is 
defined as the convolution of two wavelet functions, i.e., the smooth

),( yxφ  and detail ),( yxϕ functions, and an NDVI image y)f(x,  at successive 
bases, (2j), i.e., j = 0,1,2…J in the vertical (north-south), diagonal 
(northeast-southwest and northwest-southeast) and horizontal (east-west) 
directions for the 2-dimensional data.  A wavelet transform results in a set 
of coefficients where each coefficient is associated with a base level,  
j = 0,1,2…J, a direction and a particular location.  
The wavelet approximation y)(x,f̂ of the original 2-dimensional function 
f(x,y) is a sum of the smooths and the detail functions at different bases: 

                                  )y(x,
J

1j dir
dir
jDy)(x,JSy)(x,f ∑

====
∑++++====ˆ                                 (7.4)  

SJ represents the smooth coefficients and dir
jD  are the directional (i.e., 

vertical (north-south), horizontal (east-west) and diagonal (northeast-
southwest and northwest-southeast)) detail coefficients.  By convention, 
the grain of f(x,y) is equals to j = 0.  Therefore, each scale level j
corresponds to a window size or scale equals 2j * s where s is the size of 
the original grain at which f(x,y) is mapped (in this case 30 m, the spatial 
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resolution of Landsat TM).  The decision on the magnitude of J (i.e., the 
broadest base or window of focus) is made in advance and depends on how 
much detail is required in the analysis and also on the size of the image.  In 
this study we selected J equals 7, an equivalent of a spatial dimension of 
3840 m.  Note that the theory and formal treatment of wavelets has been 
covered exhaustively elsewhere (Mallat 1989, Ogden 1997) and is beyond 
the scope of this study. 
 Wavelet coefficients can be positive or negative but the absolute 
coefficient value measures the magnitude of contrast in f(x,y) at a specific 
location with a base of 2j.  Wavelet energy was calculated as a second 
moment of the wavelet transform defined as the sum of squares of the 
coefficients at base 2j, divided by the sum of squares of all the coefficients 
in y)(x,f̂ :

                                     Jjyxj

j
n

k
d

E
E d

j ...1,2,3),,(
2/

1

21
=∑

=
=                                       (7.5) 

where dj(x,y) are the detail wavelet coefficients at j and position (x,y), E is 
the total sum of squares of y)(x,f̂  and n/2j is the number of coefficients at 
level j. Then, wavelet energy values were plotted against scale and the 
highest local maxima in the wavelet energy function represented the 
intensity of spatial heterogeneity while the corresponding scale value 
represent the dominant scale of spatial heterogeneity (Murwira and 
Skidmore. 2003).  The detail functions rather than the smooth 
approximations were used in the analysis because they are scale specific.  
For example, details at j = 1 capture vegetation patches that have a size 
between 30 m and 60 m.  In contrast, smooth coefficients can only capture 
scales that are equal or greater than 2j, thus they are not scale specific.  
Relating the probability of elephant presence to spatial heterogeneity 
The relationship between the probability of elephant presence and the 
dominant scale and intensity of spatial heterogeneity was tested on the  
61 km x 61 km study area, i.e., in the communal lands of the Sebungwe.  
The individual units of analysis (sampling units) were defined to be the 
intersection of the ward boundaries and vegetation class boundaries, 
thereby incorporating variation due to management and ecological factors 
respectively.  These sampling units were obtained by crossing the ward and 
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vegetation class maps in a Geographical Information system (GIS).  The 
floristic-physiognomic vegetation class map (fig. 7.2) describes the 
potential vegetation classes, and is therefore constituted by floristic units 
that are constant over time (Timberlake, et al. 1993).  All in all, 22 units of 
analysis were used in this study.   
 Before the probability of elephant presence was related to the 
dominant scale and intensity of spatial heterogeneity, the wavelet functions 
for separate wards, as well as physiognomic-floristic vegetation classes 
(Miombo, Mopane, Miombo-Mopane and Setaria) were plotted and the 
dominant scale and intensity information was determined for each unit of 
analysis.  The Faidherbia vegetation class was excluded in the analysis 
because it covers a very small part of the study area such that not enough 
coefficients are included in the Faidherbia unit.  Then, the probability of 
elephant presence in each sampling unit was determined by crossing the 
map of the probability of elephant presence (fig. 7.3) and the map of 
sampling units defined by wards and vegetation classes and calculating the 
average probability of elephant presence.  The mean probability of 
elephant presence for each sampling unit of analysis was used as a measure 
of elephant presence in regression analysis. 
 Next, regression analysis was used to relate the probability of 
elephant presence to the dominant scale and intensity of spatial 
heterogeneity respectively using both the 1980s and 1990s data.  In 
addition, the probability of elephant presence was analysed as a function of 
 the dominant scale and intensity of spatial heterogeneity plus the 
interaction between the two.  Use of data from two dates gave us a 
possibility to check whether elephant presence was consistently related 
with the dominant scale and intensity of spatial heterogeneity irrespective 
of time.  The final regression analysis attempted to determine whether 
there was a relationship between the spatial changes in both dominant scale 
and intensity of spatial heterogeneity between 1984 and 1992 and the 
spatial changes in the probability of elephant presence between 1981-83 
and 1993-95.  To accomplish this, the intensity and dominant scale values 
of 1984 were subtracted from the respective values of 1992 so that positive 
values would represent an increase in each respective factor while negative 
values would represent a decrease in each respective factor between the 
two periods. 
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7.3 Results 

Spatial heterogeneity in Sebungwe in 1984 and 1992 
Fig. 7.6 shows selected wavelet energy functions that illustrate changes in 
the dominant scale and the intensity of spatial heterogeneity in the study 
area between 1984 and 1992.  Generally, the wavelet energy functions in 
1992 had higher values than in 1984.  For example, the Setaria typifies 
changes in both the dominant scale of spatial heterogeneity and intensity of 
spatial heterogeneity between the two dates.  In 1984 the Setaria had larger 
dominant scales of spatial heterogeneity than in 1992, whereas the 
intensity of spatial heterogeneity in 1984 was less than in 1992. 
 Fig. 7.7 shows a multiscale wavelet energy representation of 
NDVI in the study area in 1984 and 1992.  It can be observed that there 
was a decrease in the dominant scales of spatial heterogeneity in the 
selected Setaria analysis units from 1920 m and 960 m in 1984 to 240 m 
and 480 m in 1992 respectively in Nenyunka and Madzivazvido.  In 
contrast, it can be observed that there was no change in the dominant scale 
of spatial heterogeneity for the selected Miombo-Mopane analysis unit in 
Madzivazvido between 1984 and 1992.  
Relationship between elephant presence and spatial heterogeneity in space 
Fig. 7.8 shows that there were significant (p < 0.05) quadratic relationships 
between the probability of elephant presence and the dominant of spatial 
heterogeneity, as well as between the probability of elephant presence and 
the intensity of spatial heterogeneity both in 1980s and 1990s.  The 
relationship between the dominant scale of spatial heterogeneity and the 
probability of elephant presence is such that there is an initial increase in 
the probability of elephant presence with increasing dominant scale until a 
certain level after which the probability of elephant presence declines with 
increasing dominant scale (fig. 7.8a).  The probability of elephant 
presence-dominant scale regression functions for 1980s and 1990s explain 
65 % and 68 % of the variance in the probability of elephant presence 
respectively.  Furthermore, it can also be observed that as the intensity of 
spatial heterogeneity increases, there is a concomitant increase in the 
probability of elephant presence until a certain level and then the 
probability of elephant presence begins to saturate or even decrease  
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Figure 7.6: Selected wavelet energy functions illustrating variations in intensity and dominant scale 
in different wards and vegetation classes in 1984 and 1992.  The arrow shows an example of the 
determination of the intensity and dominant scale of spatial heterogeneity from a wavelet energy 
function. 
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Figure 7.7: The spatial distribution of total wavelet energy per pixel at different scales (wavelet 
spans) across different wards in 1984 and 1992, as well as in selected vegetation class polygons (the 
total wavelet energy for the image was divided by 1000000 and then stretched between 0 and 20 to 
enhance the wavelet energy for visual presentation).  The polygon contained in a larger box depicts 
Setaria predominantly in Nenyunka ward while the polygon contained in the smaller box is 
Miombo-Mopane vegetation class in Madzivazvido ward. 

(fig. 7.8b).  The regression functions for 1980s and 1990s explain 61 % 
and 71 % of the variance in the probability of elephant presence 
respectively. 
 Fig. 7.9 shows the probability of elephant presence as a 
significant (p < 0.05) function of both the dominant scale and the intensity 
of spatial heterogeneity in 1980s and 1990s.  It can be observed that a 
combination of low intensity of spatial heterogeneity and large dominant 
scales of spatial heterogeneity is associated with a low probability of 
elephant presence.  For example, it can be observed the Setaria vegetation 
class in Simchembo ward, had a combined low intensity and large 
dominant scale in the 1980s and it was associated with a low probability of 
elephant presence (fig. 7.9a).  In addition, it can be observed that the 
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Figure 7.8: Significant (p < 0.05) relationships between the probability of elephant presence and the 
(A) dominant scale of spatial heterogeneity and (B) intensity of spatial heterogeneity (intensity) in 
the study area in the 1980s and 1990s in (�) Miombo, (�) Mopane, (�) Setaria Grassland and  
(�) Miombo-Mopane floristic-physiognomic vegetation classes.  

Miombo vegetation class in Nemangwe 5 ward had a combined low 
intensity and large dominant scale in the 1990s that was associated with a 
low probability of elephant presence (fig. 7.9b).  It can also be observed 
that agricultural fields covered most of Nemangwe 5 in 1992 (fig. 7.5). 
Next, it can be observed that the probability of elephant presence is high in 
environments where the intensity of spatial heterogeneity is high at 
intermediate dominant scales of spatial heterogeneity, namely around  
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480 m.  For example, it can be observed that the Miombo-Mopane 
vegetation class in Madzivazvido has an intermediate dominant scale of 
spatial heterogeneity and a high intensity of spatial heterogeneity that are 
associated with a high probability of elephant presence (fig. 7.9).  All in 
all, the regression functions of the 1980s and the 1990s explain 80 % and 
93 % of the variance in the probability of elephant presence respectively. 

Relationship between elephant presence and changes in spatial 
heterogeneity
After, analysing how spatial heterogeneity is related to the probability of 
elephant presence from sampling unit to sampling unit, we also analysed 
whether changes in spatial heterogeneity in the sampling units over time 
explained the changes in the probability of elephant presence between the 
early 1980s and the early 1990s.  Fig. 7.10 shows that spatial changes in 
the probability of elephant presence between the early 1980s and the early 
1990s were significantly (p < 0.05) related with changes in dominant scale 
and intensity of spatial heterogeneity in the sampling units between the 
same periods.  It can be observed that a combination of an increase in 
intensity of spatial heterogeneity and a decrease in the dominant scale of 
spatial heterogeneity were associated with a decrease in the probability of 
elephant presence in the study area.  On the other hand, a decrease in the 
intensity of spatial heterogeneity in combination with an increase in the 
dominant scale of spatial heterogeneity is also associated with the decrease 
in the probability of elephant presence.  For example, a combination of the 
decrease in the dominant scale of spatial heterogeneity and the increase in 
intensity of spatial heterogeneity in Setaria in Nenyunka ward were 
associated with a decrease in the probability of elephant presence (fig. 7.6, 
fig. 7.7 and fig. 7.10).  Concurrently, an increase in agricultural fields in 
the same land unit between 1984 and 1992 can be observed (fig. 7.5).  In 
addition, a combination of the increase in dominant scale of spatial 
heterogeneity and the decrease in intensity of spatial heterogeneity in the 
Mopane vegetation class in Nemangwe 5 ward was associated with a 
decrease in the probability of elephant presence (fig. 7.6, fig. 7.7 and  
fig. 7.10).  Also, a concurrent increase in agricultural fields in the same 
land unit between 1984 and 1992 (fig. 7.5) can be observed.  In contrast, it 
is apparent (fig. 7.10) that a combined increase in the intensity of spatial 
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heterogeneity and dominant scale of spatial heterogeneity was associated 
with an increase in the probability of elephant presence up to a certain 
level and then it decreases.  For example an increase in the intensity and 
dominant scale of spatial heterogeneity in the Miombo vegetation class in 
Nabusenga was associated with an increase in the probability of elephant 
presence (fig. 7.10) The regression function explained 89 % of the variance 
of the change in probability of elephant presence between the 1980s and 
1990s.
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Figure 7.9: A significant (p < 0.05) relationship between the probability of elephant presence and 
the intensity and dominant scale of spatial heterogeneity plus their interaction in the early (a) 1980s 
and (b) 1990s.  The graph surface represents increasing probability of elephant presence from green 
(lowest probability) to deep red (the highest probability of elephant presence).  
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Figure 7.10: A significant (p < 0.05) relationship between change in the probability of elephant 
presence and changes in the intensity and dominant scale of spatial heterogeneity between the 1980s 
and 1990s.  On all axes, positive values indicate an increase, negative (-) indicate a decrease and 
zero (0) indicates no change.  The green on the graph surface represents a greater decrease in the 
probability of elephant presence and deep red represents an increase in the probability of elephant 
presence.  

7.4 Discussion 

Spatial heterogeneity and the probability of elephant presence in space 
Murwira and Skidmore (2003) demonstrated the utility of wavelets in 
characterising spatial heterogeneity from the dominant scale and intensity 
perspective.  Using wavelets to analyse spatial heterogeneity from this 
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perspective, the findings in this study have demonstrated a temporally 
consistent (i.e., in the 1980s and the 1990s) near unimodal (i.e., the 
relationship describes mainly the descending part of a unimodal model) 
elephant presence-spatial heterogeneity relationship along the dominant 
scale and the intensity gradients across 22 land units (fig. 7.8 and fig. 7.9).  
This result is consistent with the unimodal species distribution or limiting 
factor models, such as the species-productivity (Wang, et al. 1999, Wang,
et al. 2001) and the species-altitude (Wang, et al. 2002) models, except 
that in this case, it is spatial heterogeneity that is limiting to the distribution 
of elephants.  However, the fact that only the descending part (i.e., from 
intermediate dominant scale to large dominant scale) of the unimodal 
relationship is pronounced is because the study area is largely constituted 
by intermediate to large dominant scales of spatial heterogeneity but not a 
full range of dominant scales of spatial heterogeneity that include small 
dominant scales.  This finding (i.e., unimodal relationship) is invaluable for 
landscape planning that takes elephant conservation into consideration 
because spatial heterogeneity could be manipulated to suit a threshold 
favourable for both elephants and humans. 
 Moreover, results on the bivariate elephant presence-intensity and 
the elephant presence-dominant scale relationships shade the first light on 
how elephants interact with spatial heterogeneity.  For example, the 
elephant presence-intensity relationship, demonstrates that elephants tend 
to prefer environments with high intensity of spatial heterogeneity (i.e., 
with high variability) in vegetation cover compared with areas with low 
variability (fig. 7.5, fig. 7.8b) (see Chapter 1).  An investigation by 
Murwira, et al. (2003) demonstrated that intensity of spatial heterogeneity 
correlates strongly with the NDVI average and the NDVI coefficient of 
variation that estimate the amount of cover and its variability respectively.  
Therefore, since high intensity or variability represents a spatially complex 
vegetation cover pattern, this confirms the observation that elephants in the 
Sebungwe associate with areas of high vegetation density and variability to 
maximise their chances of finding food and shelter (Guy 1976b).  
However, the fact that this relationship either saturates or even decrease at 
high intensity values imply that as the variability in vegetation cover 
increases beyond a certain level, it either no longer has an effect on 
elephant presence or it even results in a negative trend (fig. 7. 8b) just like 
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in the species richness-productivity relationship (Said 2003).  But it may as 
well be partly due to the related influence of the dominant scale of spatial 
heterogeneity, i.e., the patch dimension at which the intensity is manifested 
because the quadratic elephant presence-dominant scale relationship 
indicated that elephants prefer intermediate dominant scales of spatial 
heterogeneity but avoid relatively small and relatively large dominant 
scales of spatial heterogeneity (fig. 7.8a).  
 Furthermore, this study demonstrated that a comprehensive 
understanding of the elephant presence-spatial heterogeneity relationship 
could only be satisfactorily enhanced if both intensity and dominant scale 
are used in the analysis (see Chapter 1).  In this regard, the results showed 
that the peak probability of elephant presence is defined by high intensity 
(high variability in vegetation cover) that occur at intermediate dominant 
scales of spatial heterogeneity (i.e., around 480 m) that reflect 
environments characterised by intermediate patch dimensions of natural 
vegetation and fewer agricultural fields (fig. 7.5 and 7.10).  In contrast, 
lower probabilities of elephant presence are associated with:  
(1) environments with low intensity (low variability in vegetation cover) 
that occur at large dominant scales of spatial heterogeneity (descending 
limb of the unimodal curve), and (2) environments that have small 
dominant scales of spatial heterogeneity (ascending limb of the unimodal 
curve) (fig. 7.9).  The former coincides with environments that are 
dominated by grasslands and agricultural fields (fig. 7.5 and fig. 7.9) while 
the latter coincides with environments dominated by small patches, 
suggesting (as mentioned earlier) that elephants avoid environments that 
are largely open (grasslands and agricultural fields) and environments that 
are dominated by small vegetation patches respectively.  
 The determination of wildlife species-specific thresholds of the 
spatial distribution of habitats is critical for the effective management of 
wildlife species but the perpetual and troubling question has always been 
whether these thresholds can be ecologically relevant (Jansson 2002).  
Given the prominence of the community based wildlife management 
programmes, such as CAMPFIRE, whose existence is rooted in the 
sustainable utilisation paradigm (Hulme and Murphree 2001), we feel that 
our findings are ecologically relevant by giving an indication of the kind of 
optimum or threshold environment that may encourage human-elephant 
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coexistence, namely high intensity (i.e., high variability) in vegetation 
cover at intermediate dominant scales of spatial heterogeneity (i.e., around 
480 m), as well as environments that elephants tend to avoid (fig.7.9).   
Changes in spatial heterogeneity and the probability of elephant presence 
Our findings demonstrated that the changes in elephant presence between 
the early 1980s and the early 1990s were unimodally related to changes in 
spatial heterogeneity, suggesting that elephants are repulsed by extreme 
changes of spatial heterogeneity while intermediate changes of spatial 
heterogeneity may encourage elephant persistence in the landscape.  In 
fact, the results demonstrated that elephants relocate when an increase or 
decrease in the intensity of spatial heterogeneity occurs together with a 
decrease in dominant scale of spatial heterogeneity, or a decrease in 
intensity occurs together with an increase in the dominant scale of spatial 
heterogeneity.  This suggests that elephants avoid areas that are 
increasingly being dominated by either: (1) small patches irrespective of 
the level of the intensity or maximum variability in vegetation cover or  
(2) large patches with a predominantly low intensity or maximum 
variability in vegetation cover, e.g., grasslands or agricultural fields. In 
contrast, elephant presence increased or remained constant with 
intermediate increases or no change in both intensity and the dominant 
scale of spatial heterogeneity, suggesting that elephants prefer 
environments that remain unchanged in terms of the levels of spatial 
heterogeneity.  Consequently, we deduce that a combined change in the 
intensity and dominant scale of spatial heterogeneity had a significant 
effect on the probability of elephant presence in the communal lands of the 
Sebungwe region between the 1980s and 1990s. 

7.5 Conclusions 

We tested whether and how elephants were related to the wavelet 
transform derived-intensity and dominant scale of spatial heterogeneity.  
We also tested whether and how changes in elephant presence were related 
to changes in the intensity and the dominant scale of spatial heterogeneity 
across different sampling units in the study area between the early 1980s 
and the early 1990s.  Therefore, some conclusions and management 
recommendations were drawn from the results.  Firstly, we concluded that 
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the wavelet transform-based intensity and dominant scale of spatial 
heterogeneity could reliably and consistently predict elephant distribution 
in an agricultural landscape.  Secondly, we concluded that changes in the 
intensity and dominant scale of spatial heterogeneity could also reliably 
predict changes in elephant distribution.  Furthermore, we could 
recommend from the results that management decisions must take into 
consideration the factor of spatial heterogeneity when planning the amount 
and spatial arrangements of agricultural fields that could enhance wildlife 
species persistence for the benefit of CAMPFIRE.  Finally, we assert that 
considering the dominant scale and intensity factors improves the 
characterisation of spatial heterogeneity from remote sensing that can be 
useful in predicting other ecological patterns such as the distribution of 
different wildlife species. 


