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 1 Introduction



Chapter 1

Introduction
The description of  the  DNA structure  in  1953 marked the  beginning of  the 
subsequent identification of genes and their functions. Over the past decades 
this information enabled the detection of genetic differences among individuals 
on the DNA level underlying many important traits. In farm animal breeding, 
the benefit of using genetic differences on the DNA, that are linked to genes of 
interest,  is  the  possibility  to  select  for  distinguishable  genetic  characteristics 
(genotypes)  instead  of  the  selection  based  on  (visible)  characteristics 
(phenotypes). How the availability of a genetic marker map can contribute in 
developing  a  research  tool  facilitating  discovery  of  genetic  factors  that 
contribute to susceptibility to disease, to protection against illness or to drug 
response, is illustrated in human by means of the haplotype map of the human 
genome (HapMap) project  [1].The availability  of  large numbers of  common 
DNA sequence  variants  in  the  human genome made  it  possible  to  use  this 
variation  for  genome  wide  association  (GWA)  studies.  This  enabled  the 
establishment of clear associations between particular genomic regions and a 
phenotype  of  interest,  for  example  for  diseases  like  diabetes  type  2  and 
Myocardial Infarction [2,3]. Furthermore, the publicly available HapMap data 
offers further opportunities in e.g. customization of medical treatments based on 
a patient's genetic make-up, thereby maximizing the effectiveness of the therapy 
and minimizing side effects for the patient.
Similar  initiatives  are  currently  deployed  in  a  number  of  farm animals,  the 
bovine  HapMap  Consortium  for  example  already  published  a  map  of  the 
genetic diversity among different bovine populations [4]. Detailed analyses of 
the genetic variation in farm animal populations, enable further insight in the 
genetic diversity of ancestral population and the effects of domestication, and 
selection, on this genetic diversity. With the availability of sequence variation 
data, also important traits like reproduction and resistance to livestock diseases 
can  be  studied  and  the  ongoing  development  of  DNA techniques  allow for 
improved  strategies  to  meet  the  breeding  goals.  The  development  of  large 
genotyping assays and automated genotyping tools allow for detailed genetic 
screening and can help to further optimize population management methods for 
the selection of new or improved traits. Currently animals can be selected based 
on their predicted genetic value using genetic  markers found throughout the 
genome. This approach is made possible by the availability of gene chips with 
tens  of  thousands  of  features  capable  of  measuring  single  nucleotide 
polymorphism (SNP) markers for a growing number of species. However for 
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most farm animals the number of SNPs identified is rather limited (Table 1). 
This  thesis  addresses  the  challenge  of  a  reliable,  high  throughput  and cost-
effective  identification  of  genetic  markers  in  DNA  sequencing  data.  We 
developed and validated strategies for detecting SNPs in genomes of animals 
using  traditional  and  current  second  generation  sequencing  data.  Developed 
SNP resources  may  be  applied  for  the  identification  of  trait  loci  and  the 
generation  of  linkage maps.  These  SNP recourses  have  been made  publicly 
available  and are  a  big step forward towards  fulfilling  the  requirements  for 
performing GWA studies in the animal species we analyzed. We also provided a 
first  glimpse in abundance of structural  variants  (SVs),  a  marker so far  not 
commonly used in animal genetics, which can be detected by an alternative use 
of data resulting from current second generation DNA sequencing techniques. 
In  the  next  paragraphs an overview will  be  given of  applications in  animal 
breeding  in  which  genetic  markers  are  being  used  and  how  markers  are 
obtained.

Table 1: Exponentially growing number of SNPs in dbSNP.

Number of SNP Clusters

Organism April 2008 March 2010

Human 14,708,752 105,098,087

Chicken 3,293,383 11,318,091

Cow 2,223,033 4,931,121

Pig 8,427 542,119

Turkey 0 8,5361

Duck 0 02

The increase in the number of SNPs in pig include 6374 SNPs identified by our 
study (chapter 2 of this thesis).1=Turkey SNPs (chapter 3 of this thesis) are 
scheduled to be included for next (132) dbSNP release . 2=Duck SNPs (chapter 
5 of this thesis) have not been submitted yet.

Markers in animal breeding
For  centuries  human  are  exploiting  variation  in  plant  and  animal  genetic 
resources  important  for  producing  food  and  other  agricultural  products. 
Through breeding, human have succeeded to significantly improve and secure 
production  of  these  products.  Initially,  breeding  progress  was  achieved  by 
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selecting and reproducing preferred individuals based on phenotypic records of 
the individual and its relatives. The application of Mendel's laws of inheritance 
and the inclusion of crosses in breeding schemes improved the selection for 
desired  traits.  The  continued progress  made  in  research  and technology  has 
allowed  the  production  of  improved  varieties  and  breeds  with  increasing 
accuracy  and  efficiency.  However,  characteristics  influenced  by  the 
environment,  multiple  genetic  factors  or  with  low  heritability,  are  difficult 
breeding targets. Furthermore traits that are difficult to measure, that are only 
visible late in life or in only one of the sexes, and traits that require sacrifice or 
challenge of the animal, are costly to screen for using phenotype information 
only. Examples of these traits are health and welfare traits like resistance to 
mastitis in dairy cows and traits related to sustainability like livestock fertility 
and intestine function.
The discovery of DNA and the established relationship between the information 
contained  in  DNA  and  the  structure  of  proteins,  which  determine  the 
characteristics  of  an  individual  allowed  for  a  shift  from  phenotype-based 
towards genotype-based selection. Differences in the DNA information, some 
of  which  causing  phenotypic  differences,  are  named  genetic  differences  or 
molecular markers. Molecular markers are DNA sequence variations, found at 
specific locations in the genome, and inherited by the Mendelian laws. They 
can be seen as landmarks on the genome that can be identified by molecular 
assays. Techniques to identify tens to hundreds of markers were for the first 
time  described  in  the  late  1970s  [5]  allowing  the  use  of  markers  to  detect 
associations with traits of interest [6].

Marker Assisted Selection

The  idea  behind  marker  assisted  selection  is  that  specific  genes  have  a 
significant effect on specific traits and that these can be targeted specifically 
during selection procedures. Using a marker map, putative genes significantly 
affecting traits of interest can be detected by testing for statistical associations 
between marker variants and a trait  of interest.  The availability of at least a 
sparse map of genetic differences (markers) together with information on their 
association with the animals’ phenotype is  used in marker assisted selection 
(MAS). In MAS, traits of interest are selected indirectly by not only selecting 
the trait itself (by phenotype) but also on a marker genetically linked to it.
However, relatively few traits in farm animals are controlled by a single or only 
a  few genes as  has been found for  hair/plumage color in animals  [7-10] or 
glycogen content in muscle [11]. The majority of traits of economic importance 

10



 Introduction

in farm animals are genetically complex quantitative traits that most likely are 
controlled by a large number of genes and regulatory elements. A chromosomal 
region that contains one or more genes or regulatory elements that influences a 
(multifactorial)  trait  is  known  as  a  quantitative  trait  locus  (QTL)[12].  The 
identification of QTL requires statistical analysis to demonstrate that specific 
genes or genomic regions have a significant effect on the phenotype. Typically 
QTL studies result in multiple regions on the genome each containing one or 
multiple genes that are associated with the trait being assayed or measured.
QTL detection can theoretically be applied to any species for which a molecular 
marker map is available. For many farm animals including chicken, cattle, pig 
and  sheep  molecular  marker  maps  are  available  and  many  QTL have  been 
identified [13-16].  Identified QTL are publicly  available in  the animal QTL 
database  (http://www.animalgenome.org/QTLdb/).[17].  However,  due  to  the 
limited  number  of  markers,  an  thus  the  limited  resolution,  the  genomic 
locations  of  QTL can  only  be  given  with  rather  large  confidence  intervals. 
Recent  advances  in  molecular  genetic  techniques  have  made  dense  marker 
maps  available  and  have  made  genotyping  of  many  individuals  for  these 
markers feasible. These developments had only a minor effect on the precision 
of mapping QTL by traditional linkage analysis [18]. Furthermore the identified 
QTL explain  only  a  limited  fraction  of  the  genetic  variation  of  the  trait  of 
interest. Within a QTL, some of the genes can have a relatively large effect and 
are referred to as major genes located at QTL. Effectively, only genes with large 
effects will be detected and mapped by QTL mapping although the term QTL 
strictly  applies  to  loci  of  any effect.  Therefore,  a  different  approach named 
genome  wide  marker  assisted  selection  (GWMAS)  is  needed  to  perform 
selection based on marker genotypes by optimally using all marker information.

GWMAS

In genome wide marker assisted selection (GWMAS) the significance testing is 
omitted by simply estimating the effects of all genes or chromosomal positions 
simultaneously [19]. Required dense marker maps provide many markers in and 
surrounding QTL regions which are all included in genome wide selection. In 
other words genome wide selection is a marker-based selection without first 
identifying  a  subset  of  markers  with  significant  effects.  Initially  genotype-
phenotype relationships are established in reference populations. By using all 
the obtained marker-phenotype information, additive genetic effects of markers, 
also called breeding values, of individuals without phenotypic record and no 
progeny  can  be  estimated.  Subsequently,  selection  based  on  these  breeding 

11



Chapter 1

values  can  be  applied  to  substantially  increase  the  rate  of  genetic  gain  in 
animals  and  plants,  especially  if  combined  with  reproductive  techniques  to 
shorten  the  generation  interval.  The  genome  wide  selection  approach  has 
proven to be useful in dairy cattle breeding [20] and in plants for example it 
outperformed Marker Assisted Recurrent Selection in Maize [21].

The role of markers in genome wide association studies

The aim of GWA studies is to find associations between the genotypes at each 
locus and presence of a trait. GWA studies in humans have already successfully 
identified a number of markers in or close to genes that are involved in common 
human diseases  [22-24]  and have  provided insights  on  novel  pathways and 
potential therapeutic targets [25]. In animal breeding large scale GWA studies 
have been applied in cattle to identify genomic locations associated with growth 
[26].
Genome sequencing, DNA marker identification and large scale genotyping led 
to the discovery that human and animal genomes consist of an alternating series 
of  blocks  of  high  linkage  disequilibrium (LD)  [4,27-30]  and  recombination 
hotspots  [31,32].Due  to  the  existence  of  LD  (a  non-random  association  of 
alleles at two or more loci) common variation in the genome can be surveyed 
by genotyping only a fraction of the total number of genomic variants that exist 
in the population [33]. An association study using indirect approach is able to 
capture  most  sequence  variation  because  insights  from  human  population 
genetics suggest that ~90% of sequence variation among individuals is due to 
common variants [34]. In cattle such an approach is also feasible since the cattle 
and human genomes show similar LD and haplotype block structure [35]. Due 
to a relatively low mutation rate, most of the common variants originally arose 
from  single  historical  mutation  events.  Common  variants  are  therefore 
associated with neighboring variants that were already present on the ancestral 
chromosome. These associations allow the identification of candidate genes by 
using information from a relatively small set of variants representing most of 
the common patterns of variation in the genome. This provides an important 
shortcut to carry out candidate-gene and GWA studies in a certain population by 
minimizing the numbers of SNPs that need to be genotyped [36].
The aim of  the  International  HapMap Projects  is  to  determine the  common 
patterns  of  DNA sequence  variation  in  the  human and animal  genomes,  by 
characterizing sequence variants,  their  frequencies,  and correlations  between 
them, in DNA samples from populations with ancestry. Haplotypes, which are 
defined as a set of SNPs on a single chromatid that are statistically associated, 
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are  identified  in  human  [36]  and  cattle  [4].  HapMap  projects  for  pig  and 
chicken are currently in progress.
The resulting haplotype maps provides a framework for studying associations 
between genes and phenotypes. By making use of LD, genotyping demands are 
reduced while still providing an equivalent power as threefold more randomly 
chosen markers [37]. Haplotype blocks, associated with a certain phenotype, 
can  subsequently  be  followed  over  generations  and  will  gradually  decay 
through  each  generation  due  to  recombination,  but  linkage  will  persist  for 
closely linked loci.  SNPs and sequence analysis are then used to define the 
minimum haplotype that is shared identical by descent among animals showing 
a certain phenotype [38].

Marker based comparative genomics in studying genome 
evolution
Comparative genomics allows the transfer of genome information from a well-
characterized species to another genome that is less well characterized. It can be 
applied  at  all  genomic  levels,  from  chromosome  maps  to  the  completely 
sequenced genome. In comparative genomics sequenced genomes are compared 
and the information provided by genome evolution is used to better understand 
genome function and evolutionary processes that act on genomes. Despite the 
recent  advances  in  sequencing  technologies,  the  remaining  challenges  in 
producing a genome sequence assembly, in particular from short  sequencing 
reads, is reflected by the small number of vertebrate genomes whose genome 
has been sequenced to date. In birds, for years there was only a single published 
genome sequence, that of the chicken [39] recently accompanied by the zebra 
finch genome [40]. The completion of the chicken genome and its associated 
resources like  mapped BACs,  markers,  linkage map and genome annotation 
facilitates the rapid development of detailed genomic information, potentially in 
all  other birds. Powerful strategies are combinations of in-silico and in-vitro 
approaches  involving  sequence  comparison,  cross-species  fluorescent  in-situ 
hybridization  (zoo-FISH)  [41,42]  and  the  use  of  whole-genome  tiling  path 
micro-arrays  for  cross-species  array  comparative  genomic  hybridization 
(aCGH) [43-45].  Such a combination of techniques provides information on 
gross  genomic  rearrangements,  gene  gains/losses,  copy  number  variation 
(CNV) and gene order conservation. These techniques do not require sequence 
data for any species other than the reference (i.e. chicken, zebrafish or human ) 
and have previously successfully been applied for a genome wide comparison 
of chromosomal rearrangements and CNVs between e.g. chicken and Peking 
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duck [43] chicken and turkey [46], zebrafish and catfish [47] and human and 
primates [48]. Results revealed a strong conservation of genome structure over 
tens  of  million  years  of  evolution  between  compared  species.  Comparative 
genomics therefore accelerates mapping studies in the studied species not only 
by facilitating the transfer of genetic information in the form of markers but 
also gene predictions directly from the closest sequenced reference species to 
the  studied  species.  Genetic  maps,  which  document  the  way  in  which 
recombination rates vary over a genome, are also an essential tool in studying 
genome  evolution.  Markers  can  be  used  to  construct  a  haplotype  map 
facilitating the study of genome evolution by means of recombination events. 
The  required  marker  density  depends  on  LD within  the  studied  population 
which  is  determined  by  the  effective  population  size,  mutation  rate  and 
recombination rate. The latter varies largely within species: e.g. ~0.4 cM Mb-1 
in  mouse,  ~0.8  cM Mb-1 in  human and ~2  cM Mb-1 within  chicken [49]. 
Moreover within a genome recombination rates for chromosomes can differ up 
to an order of magnitude with a relative excess of recombination on smaller 
chromosomes.

SNPs, a valuable and efficient molecular marker
Single  nucleotide  polymorphisms  (SNPs)  are  increasingly  finding  their 
application  in  studies  of  genetic  variation  within  populations.  More  than  a 
decade ago, SNP detection was laborious and genotyping cost were generally to 
high  (more  than  US$1  to  obtain  one  data  point)  to  perform  large  scale 
genotyping studies using SNPs. The introduction of high-throughput molecular 
marker discovery and the advances in high-throughput genotyping have reduced 
the cost per data point considerably. This reduction was mainly the result of 
three parallel developments [50,51]: (i) the discovery of vast numbers of single 
nucleotide polymorphism (SNP) markers in many species; (ii) development of 
high-throughput technologies, such as multiplexing and gel-free DNA arrays, 
for  screening  SNP  polymorphisms;  and  (iii)  automation  of  the  marker-
genotyping  process,  including  streamlined  procedures  for  DNA extraction. 
These developments have recently made the SNP marker more popular than 
other kinds of existing molecular markers, such as restriction fragment length 
polymorphisms  (RFLPs),  random  amplified  polymorphic  DNA  (RAPDs), 
amplified  fragment  length  polymorphisms  (AFLPs)  and  microsatellites.  The 
major advantages of using SNPs are their technical requirements (they can be 
automated  and  do  not  require  use  of  radioactivity)  and  the  relatively  small 
investment  of  time,  money  and  labour  to  develop SNP assays  and  perform 
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genotyping. Probably, the most important feature is their occurrence varying 
from on average one in 1300 bp in human [52], one in 300 to 400 bp in pig [53] 
and one in 200 bp in chicken [39] indicating that there are millions of SNPs on 
a single genome. SNPs are DNA single nucleotide (A,T,C or G) variations that 
occur, between alleles of an individual or between individuals. To be considered 
as  a  SNP,  by  definition  such  variation  must  occur  in  at  least  1%  of  the 
population. Although the majority of the SNPs have no known biological effect, 
some variations in DNA sequence are related to disease or  cause a  specific 
phenotype.  SNPs are evolutionarily  stable,  making them suitable markers in 
population studies.
The  availability  of  cheap  and  abundant  molecular  markers  like  SNPs  has 
changed the use of molecular markers in farm animal breeding programs. Once 
identified, millions of SNPs within a genome can be used to facilitate mapping 
of complex traits because all genomic regions involved are tagged by at least 
one SNP marker and thus can be traced in the pedigree. SNPs are no longer 
only an aid to the breeding process, but breeding strategies are adjusted to fully 
exploit SNPs to optimize breeding progress.

Techniques, challenges and threats in obtaining SNPs
SNPs need to be identified before they can be used in genotyping assays. In 
contrast  to human,  the number of  SNPs in the public databases is  still  very 
limited for most farm animals (Table1). Furthermore, at the start of this research 
project,  the  chicken  genome  was  the  only  available  sequenced  reference 
genome  of  a  farm  animal  species.  Nevertheless,  for  some  farm  animals, 
genomic sequence reads originating from different individuals and representing 
the  same  genomic  region  were  publicly  available  and  these  are  a  potential 
source to identify genetic variation in these species. For these species a SNP 
resource can be developed by applying computational methods on pre-existing 
sequencing and mapping data. In other species genome sequencing has not even 
started,  requiring  the  development  of  additional  cost-effective  sequencing, 
mapping and subsequent SNP detection approaches. 

Mining SNPs from DNA Sequence Data Computationally

The alignment of multiple sequence reads representing the same region on the 
genome  enables  the  identification  of  single  nucleotide  polymorphisms  [54]. 
Where available it is wise to gain access to the primary sequencing data from 
which base-calling scores automatically can be derived [55] and included these 
in the analysis. Base-calling scores provide additional information to determine 
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the probability that  identified differences represent true polymorphisms [56]. 
Observed sequence variants with high-quality scores are likely to represent true 
polymorphisms  whereas  low-quality  variants  have  a  high  chance  of  being 
sequencing  errors.  When  retrieving  sequence  data  from  public  databases, 
quality scores are not always available. Increasing the sequence coverage such 
that  putative  polymorphisms  are  confirmed  by  overlapping  reads  can 
compensate for this lack of information, since the chance that two independent 
sequence reads have a sequencing error at the same genomic position is small.
Commonly used software tools for multiple sequence alignment of reads are 
Phrap [57] and CAP3 [58]. These programs are able to reconstruct contiguous 
stretches  of  DNA sequence  from  smaller  (partly)  overlapping  reads.  The 
presence of  single  nucleotide  substitutions can automatically  be  detected by 
softwares like PolyPhred [59] and Polybayes [60].  A more recent version of 
PolyPhred [61] and other softwares including SNPdetector [62], novoSNP [63] 
and PolyScan [64] have been developed to detect heterozygous polymorphisms 
in  chromatogram  files  as  a  result  of  direct  sequencing  of  PCR-amplified 
sequences from diploid samples. Because of their entirely automated fashion, 
base  calling  (Phred),  assembly  (Phrap)  and  single  nucleotide  substitution 
detection (Polybayes) can be put in a de novo sequence based SNP detection 
pipeline [65] to reliably detect  SNPs from clustered EST sequences without 
manual intervention. As stated earlier, a lack of base-calling information can be 
compensated  by  requiring  a  SNP  redundancy  score.  Additionally  the  co 
segregation of the candidate SNP with other SNPs in the alignment is a measure 
of  confidence  [66].  A  SNP  detection  strategy  in  which  haplotypes  were 
mathematically  reconstructed  before  the  actual  SNP calling  was  performed 
further reduced the number of false positive SNP predictions [67]. Other SNP 
detection pipelines like SsahaSNP (Ning unpublished) require, in contrast with 
de  novo  sequence  based  SNP  detection  approaches,  a  reference  genome. 
Clusters of homolog sequences, are built by mapping whole genome shotgun 
reads  by  using  fast  search  algorithms  [68]  and  sequence  polymorphism are 
consequently  identified  [69].  Homology  search  tools  like  BLAT  [70]  and 
Megablast [71] are alternatives to perform this tasks efficiently. 

Impact of Next Generation sequencing on SNP discovery

A quite recent source of obtaining affordable sequence data are high throughput 
next-generation  sequencing  (NGS)  technologies  (Illumina  GA/Solexa, 
RocheGS/454,  Solid,  Helicos).  The  massively  parallel  approaches  in  these 
technologies  allows  much  faster  and  more  cost-effective  sequence 
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determination than the traditional dideoxy chain terminator method described 
by Sanger in 1977.  The throughput  for  these new sequencing approaches is 
measured in billions of base pairs per run, thousand times more than the daily 
output  of  an  automated  96  capillary  DNA sequencer  using  dye-terminator 
sequencing technology. High throughput is achieved by immobilization of 400 
thousand (Roche) to 40 million (Illumina) target DNAs and sequencing these 
fragments simultaneously. Furthermore, these new technologies allow the direct 
sequencing of DNA or cDNA without any cloning step and at decreasing cost 
per sequenced base (Table 2). Although all of these new technologies produced 
extremely short reads when they initially entered the market, the performance 
of (NGS) platforms have increased substantially. As an example: the first next-
generation sequencer released by 454 (GS20) had an average read-length of 110 
bp. A second improved sequencer has since then been introduced, the GS-FLX, 
which is able to obtain average read lengths of 250 bases and is able to perform 
mate-paired reads. A more recent release is the 454 FLX Titanium which has an 
average read length of 400 bp and it is not unlikely that future releases of NGS 
platforms  will  produce  read  lengths  comparable  to  those  produced  with 
traditional dye-terminator sequencing technology.

Table 2: Comparison of sequencing technologies in spring 2008.

Technology Approach max througput (bps) read 
length

% accuracy paired-
end

$/Mbp

Sanger ABI3730xl1 synthesis with dye terminators 1 Mbp/day (12) 800 99.0->99,999 no 1000

454/Roche FLX2 pyrosequencing 100 Mb/7.5hr (3.7K) 250 96.0-99.5 2x110 30

Illumina/Solexa3 sequencing by synthesis 3 Gbp/5days (6.9K) 36 96.2-99.7 2x36 2.10

ABI/SOLiD4 sequencing by ligation 3 Gbp/5days (6.9K) 35 99.0->99.94 2x25 1.30

Helicos5 single-molecule sequencing 7.5 Gbp/4days (22K) 25 93->99.0 no n/a

Throughput is compared by giving the maximum number of bases per second a 
platform generates at it's optimal readlength. Paired-end sequencing is for 
some platforms restricted to a read length. Sequencing cost are compared by 
indicating the price per mega base and only includes the costs of reagents and 
costs to perform one sequencing run.
1Applied Biosystems http://www.appliedbyosystems.com
2Roche Applied Science http://www.roche-applied-science.com
3Illumina, Inc. http://www.illumina.com
4Applied Biosystems http://www.appliedbyosystems.com
5Helicosbio http://www.helicosbio.com
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NGS  technologies  allow  cost  effective  sequencing  of  multiple  individuals 
which  is  beneficial  for  SNP  detection.  SNP  discovery  through  parallel 
pyrosequencing (454) of an individual human genome identified 3.32 million 
SNPs, with 606,797 of those as novel SNPs [72] which is comparable with the 
shotgun-sequenced  Venter  genome  (cost  $70  million)  that  had  3.47  million 
SNPs, with 647,767 of those being novel [72]. These authors stated that at least 
a 20X genome coverage is required to call 99% of heterozygous bases correctly 
within a single individual, resulting in a sequencing cost of 2 million dollar. For 
the Illumina method similar results (3.07 million SNPs of which 420 thousand 
novel SNPs) can be obtained by sequencing an individual genome with 36X 
coverage for less than half a million dollars [73] or ~ 4 million SNPs of which 
26% are novel SNPs at 30X coverage for a quarter of a million dollar. [74]. 
More recent developments using single molecule sequencing further reduce the 
sequencing costs. For example, the discovery of 2.8 million SNPs by whole 
genome resequencing at 28X coverage using this technology reduces the costs 
to  less  than  50  thousand  dollars  [75].  These  developments  indicate  that 
extremely high throughput sequencing machines that produce relatively short 
reads  are  favorable  for  SNP  discovery  in  a  whole  genome  resequencing 
approach.  In  addition,  simulations  suggest  that  85% of  35  bp  reads  can  be 
placed uniquely on the human genome whereas 95% of 35 bp paired end reads 
with 200 bp insert sizes have unique placement [76]. However SNP discovery 
in  species  with  limited  public  genomic  resources  benefits  from longer  read 
lengths.  It  has  been  demonstrated  that  reads  produced  with  pyrosequencing 
technology  can  be  assembled  de  novo  into  reasonably  long  contigs  that 
subsequently can serve as a genome reference on which short reads of other 
individuals  can  be  mapped  to  detect  SNPs  [77].  At  present  whole  genome 
sequence assembly by alignment of relative short NGS fragments without the 
availability  of  a  reference genome is  tedious,  but  possible  for  less  complex 
mammalian sized genomes [78]. Besides the consistent pattern of non-uniform 
sequence coverage each NGS platform generates [79], which is substantially 
lower in AT-rich repetitive sequences, repetitive regions are hard to reconstruct 
by  short-read  sequence  assembly.  Possible  NGS  SNP  detection  strategies 
circumventing the requirement of a sequenced reference genome are (ultra short 
read)  sequencing of  more  than one genotype and alignment  of  that  data  by 
using: (1) genome or transcriptome sequence data from model species closely 
related  to  the  species  of  interest,  (2)  whole  transcriptome  or  reduced 
representative  genome  sequence  data  for  the  species  of  interest,  based  on 
Roche/454 sequence technology [80,81].
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Systematic reduction of genome complexity towards a cost 
effective SNP detection approach

While sequencing of a mammalian sized genome remains costly, even using a 
NGS approach, sequencing at a deep depth on a subset of a genome is certainly 
in reach and will enable the identification of a considerable amount of genetic 
variation.  Methods  dealing  exclusively  with  the  expressed  fraction  of  the 
genome include the sequencing of cDNA, which is DNA reverse transcribed 
from a mature mRNA, and transcribed short sub-sequences of cDNA that are 
named  Expressed  Sequence  Tags  (ESTs).  Methods  used  for  a  systematic 
reduction of  genome complexity  include technologies  such as  Amplification 
Fragment  Length  Polymorphism  (AFLP)  [82],  Complexity  Reduction  of 
Polymorphic  Sequences  (CroPS)  [83]  and Reduced Representation  Libraries 
(RRL) [84]. Other methods are targeting a unique fraction of the genome, e.g. 
Cot Filtration [85]. By using the methods AFLP and RRL a set of relatively 
short genomic fragments are being sampled whereas Cot filtration results in a 
set  of  non  repetitive  genomic  fragments.  In  particular  for  highly  repetitive 
genomes the latter method facilitates sequence assembly and variant discovery.

Sequencing errors: a serious threat in SNP discovery

Errors in sequence reads are a serious threat in SNP discovery and subsequent 
marker  development.  Any  sequencing  error  can  give  rise  to  false  positives 
compromising downstream studies. When sequence information is generated, 
nucleotide sequence data is accompanied by probability values for each base 
call. The universally used metric for base calling quality is the “phred score” 
derived  from the  base-calling  software  Phred  [55].  The  phred  score  can  be 
calculated by the equation -10log10 P(the base calling is false). The sequence 
accuracy of a single read is limited by the fidelity of the polymerase used in the 
amplification and/or readout step of the sequencing technology which is on the 
order  of  10-5-10-7per  base  pair.  In  the  past  decades  Sanger  style  capillary 
sequencing machines have set the standard for accuracy at a minimum phred 
score of 20 or 99% accuracy per base. However, the accuracy between read 
positions 100 and 700 is typically greater then phred score 50, or 99,999%. 
These figures are in sharp contrast with the accuracy currently obtained by NGS 
platforms (Table 2). Even for SNP discovery we can deal with this low single 
read accuracy by using the overall consensus accuracy, which is the composite 
accuracy  from sequencing  a  specific  base  at  sufficient  depth.  A sequencing 
depth of three provides theoretically a 99,9% consensus accuracy at a the single 
read accuracy of 90%. Therefore NGS platforms that show coverage variability 
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perform the worst, whereas platforms, with the most uniform coverage, perform 
the  best  in  sequence accuracy [79].  Errors  that  persist  at  high coverage are 
systematic,  platform specific  and  typically  associated  with  certain  sequence 
contexts  [79,86,87].  The  combination  of  coverage  uniformity  and  platform 
specific biases determine what average target coverage is required to perform 
variant discovery with an acceptable (low) false positive rate. For an accurate 
detection of biallelic  sites the average depth of sequence coverage required, 
especially for the short-read technologies, is about 3-5 times higher than the 
empirically  determined  coverage  of  20-fold  utilizing  traditional  Sanger 
sequencing [79,88]. 
Besides sequencing errors also mapping errors, due to short reads and limited 
sensitivity  of  less  computational  intensive  alignment  algorithms,  cause  false 
positive SNP predictions in NGS data. The increasing sequencing throughput 
forces the replacement of the first  generation short  read alignment programs 
MAQ [76], SOAP [89], ELAND (Illumina), by a new generation of short read 
alignment  programs  including  BOWTIE  [90],  BWA [91]  and  SOAP2  [92]. 
Currently  methods  are  being  developed  for  SNP  detection  in  short  read 
mapping  data,  carefully  considering  the  data  quality,  alignment,  and 
experimental errors common to NGS technology [92]. Further improvements in 
read  length  and  base  calling  accuracy  and  the  exploitation  of  paired  end 
information  will  allow  the  move  to  less  computational  intense  algorithms 
requiring less memory but without the loss of sensitivity.

Structural variants, another source of genetic variation
Structural variants (SV), in particular those larger than one kilobase which are 
Copy Number Variants (CNVs) are one of the primary genomic mechanisms 
thought to underlie the evolutionary expansions of species in the past 90 million 
years. For many years gene duplication is thought to be the driving force in 
evolutionary change [93,94] a theory for which evidence is accumulating by a 
growing wealth of (comparative) genomic data. The high abundance of SV in 
genomes  has  made  scientists  curious  about  the  contribution  of  structural 
variation  to  disease  traits  and adaptation  of  groups  of  a  species  to  specific 
environmental  conditions.  Structural  variation  includes  insertions,  deletions, 
inversions and translocations in  a  size range of a  few bases to  hundreds of 
kilobases. SV formation occurs by both recombination based and replication 
based  mechanisms  and  de  novo  locus  specific  mutation  rates  appear  much 
higher for SVs than for SNPs. Because of their high mutation rate which is 
expected to  range from 1.7 × 10−6 to 1.0 × 10−4 per locus per generation 
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[95,96], 100 to 10,000 times higher than nucleotide substitution rates, genomic 
rearrangements occur frequent enough that both inherited and de novo events 
can be observed in the same family [97]. However, the contribution (relative to 
SNP) of SV to locus-specific mutation rate may vary throughout the genome. 
Analogously  to  CpG  dinucleotides  that  are  hotspots  for  base  substitutions 
[98,99],  flanking  low-copy  repeats  trigger  non-allelic  homologous 
recombination and can be considered the 'hotspots' for CNV [95]. In that sense 
the  relative  contribution  of  SV  to  mutation  rate  can  reflect  local  genome 
architecture, resulting in regional susceptibility to genome instability [100]. In 
the  Human  genome  SVs  are  common  and  likely  to  encompass  more 
polymorphic basepairs ,~0.7% of the genome, than SNPs [101,102].
SVs and phenotypes
Large scale identification [103-106] of the extensive presence of SVs in the 
human genome and subsequent association studies show that instances of CNVs 
are  related  to  human  health  and  common  genetic  diseases  like  Parkinson's 
disease, Autism, Psoriases and Rheumatoid Arthritis [107-110]. Phenotypes that 
have been related to SVs and are caused by genomic rearrangements, can be the 
consequence  of  a  variety  of  molecular  mechanisms  like  gene  dosage,  gene 
interruption,  gene fusion,  position  effects,  unmasking of  recessive  alleles  or 
functional polymorphism, and potential transvection effects [111]. 
CNVs  involving  dosage  sensitive  genes,  such  as  PMP22,  can  alter  gene 
expression levels and cause consequent clinical  phenotypes such as CMT1A 
(PMP22  over  expression)  and  HNPP (PMP22  under  expression)  [112,113]. 
When  the  breakpoint  of  a  SV is  located  within  a  functional  gene,  it  may 
interrupt the gene and cause a loss of function as exemplified by the phenotype 
color  blindness  [114].  SVs  can  also  result  in  a  biological  functional 
rearrangement between different genes or their regulatory sequences which has 
been found as a causative mutation in hypertension [115] and is called a gain-
of-function mutation. Furthermore a SV can have an effect on expression or 
regulation  of  a  nearby  gene  by  removing  or  altering  a  regulatory  sequence 
which is illustrated in one of the causes of campomelic dysplasia [116] as well 
as in other human diseases [117]. A SV resulting in a deletion of one allele may 
unmask another recessive allele or functional polymorphism. In patients with 
the common Sotos syndrome deletion, for instance, the activity of the plasma 
coagulation  factor  12  is  predominantly  determined  by  the  functional 
polymorphism  of  the  remaining  hemizygous  allele  [118].  SV in  regulatory 
elements  required  for  communication  between  alleles  have  been  shown  to 
mediate in transvection [119], that is the influence on gene expression by the 
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pairing of alleles on homologous chromosomes [120].

SVs and their role in evolution

In an evolutionary context,  SVs can also be potentially exposed to selection 
pressure  during  evolution,  including purifying  and positive  selection.  In  the 
human  genome,  the  majority  of  SVs  are  located  outside  genes  and  ultra 
conserved elements. Furthermore a significantly lower proportion of deletions 
than  duplications  overlaps  with  disease-related  genes  and  RefSeq  genes 
suggesting  purifying  selection  [102,121].  Purifying  selection  has  also  been 
observed in Drosophila, where duplications outnumbered deletions especially in 
functionally constrained regions [122]. Evidence for positive selection on SVs, 
in particular gene duplication, has been found by means of human-specific or 
primate-specific gene amplification. It was found that more than one fourth of 
the examined human genes represent CNVs in one or more of the 10 primate 
species and that gene gains typically outnumbered losses, suggesting positive 
selection in primate genome evolution [45].
In particular copy number differences caused by lineage-specific duplications, 
potentially altered the expression spectrum of duplicated genes which might 
have  resulted  in  the  acquisition  of  new functions  and  therefore  of  adaptive 
evolution.  The  strongest  evidence  comes  from  the  multiple  copy  protein 
domain,  DUF1220.  The copy number of  DUF1220 was shown to be highly 
expanded  in  humans,  reduced  in  African  great  apes,  further  reduced  in 
orangutan and Old World monkeys, only single-copy in non primate mammals, 
and  absent  in  non  mammalian  species  [123].  This  evolutionary  but  also 
functional evidence suggests DUF1220 and its expansion in the human lineage 
is critical to higher cognitive functions.
In human, evidence for adaptive evolution has been shown by the pattern of 
variation in copy number of the AMY1 gene which is coding for the enzyme 
responsible  for  starch  hydrolysis.  This  pattern  has  been  shown  to  correlate 
positively with amylase protein levels and the population differences in starch 
intake,  demonstrating  the  importance  of  starchy  foods  in  human  evolution 
[124]. Also in flies, SVs were found to affect genes and most notably high-
frequency duplication CNVs were found to involve toxin-response genes (for 
example,  Cyp6g1  contributing  to  resistance  to  DTT)  suggesting  positive 
selection on these CNVs [125].

Identifying SVs

Until  recently  identification  and  genotyping  of  structural  variants  was 
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performed using difficult and costly techniques such as array based comparative 
genome  hybridization  (aCGH)  [126-129]  or  fosmid  paired  end  sequencing 
(FPES) [130]. The former technique involves DNA microarrays which test the 
relative  frequencies  of  probe DNA segments  between two genomes and the 
latter is a laborious method based on low coverage Sanger style sequencing of 
fosmid ends. 
High  density  SNP-arrays  can  provide  some  insight  into  structural  variation 
because in many cases structural  variants reveal themselves through specific 
signatures in SNP genotype data. In particular polymorphic deletions, which are 
a  loss  of  genetic  material  and therefore  results  in  aberrant  patterns  of  SNP 
genotypes. Genotype mining will reveal putative deletions as large stretches of 
null genotypes or homozygous genotype calls deviating significantly from their 
expected  values  under  Hardy-Weinberg  equilibrium.  Mendelian  inheritance 
inconsistencies can arise if one parent harbors a deletion. However, such SNPs 
are routinely discarded as technical failures of genotyping. Other CNV calling 
approaches utilize probe intensity  measurements  from the SNP arrays rather 
than genotype calls [131].
Recent developments in NGS technology have dramatically economized paired 
end, whole genome sequencing. Mate pair or paired end sequencing methods 
have  proven  to  be  extremely  useful  for  structural  variant  discovery 
[130,132,133].  In  this  approach,  two  paired  reads  are  generated  at  an 
approximately known distance in the subject's genome. The reads are mapped 
to a reference genome, and pairs mapping discordant with the expected length, 
or with anomalous orientation, suggest structural variants. Paired end mapping 
(PEM) algorithms, which are based on the mining of such mate pairs, have been 
successfully  used  to  discover  structural  variants.  The  combination  of  next 
generation sequencing and paired end mapping is better at detecting SVs than 
aCGH  because  it  is  able  to  detect  smaller  rearrangements  which  actually 
depends  on  the  insert  size  used  for  constructing  the  genome  library.  By 
sequencing multiple libraries of varying insert  sizes the whole size range of 
structural variants can be discovered. 
These  improvements  in  detection  resolution  has  created  an  apparent  shift 
downward in SV size, resulting in an explosion in reports of variants in the 
range  of  100  bp  to  1  kb  [74,134,135].  These  variants  are  smaller  than  the 
operational definition of CNV and therefore are referred to as SVs. The SVs can 
be further classified as insertion, deletion, inversion or translocation. Also copy 
invariant  structural  variants,  such  as  inversions,  and  the  exact  location  of 
variation  breakpoints  can  be  determined  by  sequencing  [136].  Moreover, 
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breakpoint resolution, copy-number accuracy, specificity and sensitivity can be 
improved  simply  by  increasing  sequence  coverage.  However,  detecting 
variation in repeated regions remains problematic because of the reliability and 
uniqueness of the mapping of either end of a mate pair. 
The majority of large structural variants is expected to be present within these 
repeated  regions  [101,102,137]  and  array  based  comparative  genome 
hybridization  (aCGH)  is  still  the  platform  of  choice  for  the  detection  of 
variation in these regions. Also, genotyping individuals for previously known 
variants is currently more cost effective on array based technologies compared 
to NGS. 
The  Human  Genome  Structural  Variation  Group  [103,138]  and  the  1000 
Genomes Project [73,74] aim for characterization at the sequence level of the 
genomes of many individuals affected by common disorders and of subjects 
belonging to different ethnic groups in the next few years. In contrast to human 
where almost 50,000 SVs have been reported and stored in the Database of 
Genomic Variants [128] and of which some are linked to disease [139] only a 
few SVs have been detected in farm animals such as pig [140], cow [141,142], 
duck,  turkey, and chicken [43].  In these species also some phenotypes have 
been linked to structural variation like the KIT locus determining the hair color 
in pig [143], the pea-comb phenotype in chicken [144] and late feathering in 
chicken [145]. Although cost-effective genotyping techniques for known SVs in 
animals [146,147] have been described, the large scale identification of SVs in 
animal genomes have not yet been published.

Aim and outline of this thesis
The aim of this thesis is to contribute to the development of a genetic variability 
repository for farm animals, allowing the construction of linkage maps, SNP 
genotyping based estimation of kinship and pedigree reconstruction and QTL 
studies. The developed SNP repositories also contribute to the implementation 
of  GWA studies  and GWMAS in  a  broad  range  of  farm animals  including 
turkey, ducks and pigs. We also set the first step in developing a repository for 
SVs, a relatively new genetic marker in animal sciences, in the chicken genome. 
The specific objective of the work described in this thesis was to design and 
validate experimental approaches and bioinformatics data pipelines to address 
the challenge of the cost-effective identification of genetic  markers in DNA 
sequencing data.
In Chapter  2 we provide a strategy of how SNPs can be mined in publicly 
available  whole  genome  sequencing  datasets  consisting  of  output  from 
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traditional capillary sequencing platforms. Publicly available mapping data was 
included in the analysis to provide a rough estimate of the genomic location for 
each identified SNP.
In chapter 3 we report on the use of next generation sequencing technology in 
species that lack a sequenced reference genome as well as sufficient sequence 
repository.  Samples  of  multiple  individuals  were  pooled  and  genome 
complexity  was  systematically  reduced  to  cost  effectively  detect  genetic 
variation.
In chapter 4 we report on the application of paired end NGS to obtain a first 
impression about the presence of structural variation in the chicken genome. 
SVs were identified as abnormally aligned read pairs that have an orientation 
discordant from what was expected based on the constructed genome library 
and the chicken reference genome. We designed SV detection parameters to 
reliably distinguish true structural variation from false positive predictions.
In chapter 5 we anticipated on the fast developments in NGS technology and re-
implemented  our  SNP detection  approach  described in  chapter  3.  Identified 
SNPs were  compared with available repositories  and the  subset  of  common 
SNPs was validated by genotyping and used to benchmark other subsets of our 
SNP data.
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Chapter 2

Abstract

Background

Single nucleotide polymorphisms (SNPs) are ideal genetic markers due to their 
high abundance and the highly automated way in which SNPs are detected and 
SNP assays are performed. The number of SNPs identified in the pig thus far is 
still limited.
Results
A total  of  4.8  million  whole  genome shotgun  sequences  obtained  from the 
NCBI trace-repository with center  name “SDJVP”,  and project  name “Sino-
Danish Pig Genome Project” were analysed for the presence of SNPs. Available 
BAC and BAC-end sequences and their naming and mapping information, all 
obtained  from  SangerInstitute  FTP site,  served  as  a  rough  assembly  of  a 
reference genome. In 1.2 Gb of pig genome sequence, we identified 98,151 
SNPs  in  which  one  of  the  sequences  in  the  alignment  represented  the 
polymorphism and 6,374 SNPs in which two sequences represent an identical 
polymorphism.  To benchmark  the  SNP identification  method,  163 SNPs,  in 
which  the  polymorphism was  represented  twice  in  the  sequence  alignment, 
were selected and tested on a panel of three purebred boar lines and wild boar. 
Of these 163 in silico identified SNPs, 134 were shown to be polymorphic in 
our animal panel.
Conclusions
This SNP identification method, which mines for SNPs in publicly available 
porcine  shotgun  sequences  repositories,  provides  thousands  of  high  quality 
SNPs. Benchmarking in an animal panel showed that more than 80% of the 
predicted SNPs represented true genetic variation.

Background 
Single nucleotide polymorphisms (SNPs), one of the most abundant types of 
sequence  polymorphisms  in  the  genome,  are  the  most  suitable  markers  for 
genetic linkage mapping, fine-mapping and haplotype reconstruction. Over the 
past decade, SNPs have been the marker of choice due to their high stability, 
density and the highly automated way in which SNPs are detected and SNP 
assays  are  performed.  However  only  a  limited  number  of  SNPs  have  been 
identified  in  the  pig,  a  species  of  considerable  economical  and  medical 
importance. A few thousand SNPs in the pig are currently available, and these 
were mainly identified in expressed genes by either in vitro techniques [1] or by 
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mining  porcine  expressed  sequence  tag  (EST)  sequence  databases  [2,3].  In 
humans,  the  large-scale  identification  and  characterization  of  SNPs  has 
attracted much more attention, and consequently over 14 million SNPs (dbSNP 
build 128) have been identified [4], 3.1 million of which have been genotyped 
SNPs [5] and the SNP density is estimated as one SNP per 1000-2000 bases [6]. 
Genome scans with high SNP densities have proven to be an effective tool in 
whole genome association studies to identify genes involved in complex genetic 
traits [7,8,9,10]. The SNP density in pigs is about four-fold higher than that in 
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Figure 1: Steps performed for SNP mining in whole genome shotgun sequences 
in which BAC(-end) sequences and their mapping information served as a 
reference genome. Initially shotgun sequences are assigned to fingerprint  
contigs (A). Subsequently per fingerprint contig SNPs were mined using 
PhredPhrap and PolyPhred (B).
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humans with SNPs found at, on average, every 300 to 400 bps [11]. Despite the 
availability  of  the  most  highly  continuous  bacterial  artificial  chromosome 
(BAC) map of any mammalian genome [12] and the ongoing sequencing efforts 
in the pig [13], no large scale SNP mining on pig genome sequences has been 
published. The lack of a pig genome draft assembly still hampers the traditional 
method of  identifying SNPs,  in  which DNA shotgun sequences  of  different 
individuals  are  aligned  to  a  genomic  region  of  interest  using  alignment 
algorithms [14]. In these alignments, sequences are easily compared and SNP 
candidates can be reliably detected by computational methods like PolyPhred 
[15], which has been extensively tested for human SNP discovery [16,17,18]. 
Despite the unavailability of a draft sequence of the pig genome, a wealth of 
high quality sequence and mapping data is publicly available that can be used 
for SNP detection purposes. 
Here we describe a high throughput genome sequence mining pipeline from 
data of the ongoing pig genome sequencing project.  With this approach, we 
performed  a  SNP  mining  analysis  on  the  whole  genome  shotgun  dataset 
generated by the Danish-Chinese Pig Genome Sequencing Initiative [19] that is 
publicly available in the NCBI Trace Archive. BAC sequence data and the BAC 
mapping information to the porcine physical map [12] were combined and we 
used this as a crude assembly of a reference genome sequence. The pipeline is 
built from existing public software packages and implemented on a computer 
cluster, which enables efficient mining of large sequence data sets in parallel.
The  encouraging  outcome  of  this  study  is  a  good  starting  point  for  the 
development of a rapidly growing genome-wide set of SNP markers in the pig.

Results 

Clustering

At completion of this analysis, the number of finished and contigs of unfinished 
porcine  BAC  sequences  was  318  and  84,017,  resulting  in  50,225,986  and 
1,164,409,065  total  nucleotides,  respectively.  The  NCBI  Trace  repository 
contained 4,774,371 whole genome shotgun sequences for center SDJVP, with 
a total of 3,478,199,073 nucleotides.
Because  the  analysis  of  the  complete  data  set  for  the  whole  genome  was 
computationally too demanding, the identification of SNPs was performed by a 
2-step  process.  First,  the  shotgun  sequences  were  assigned  to  a  fingerprint 
contig by clustering based on their sequence similarity to BAC and BAC-end 
sequences. The results of the clustering by alignment were stored in a relational 
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database.  The  BAC and the  BAC-end naming as  well  as  the  mapping data 
provided the necessary information to assign the obtained sequence clusters to a 
specific fingerprint contig on the porcine physical BAC map. Clustering of the 
shotgun reads with BAC or BAC-end sequences is outlined in Figure 1A. 
This approach enabled the chromosomal assignment of the sequences, even for 
chromosomes  and  chromosomal  regions  for  which  currently  no  assembled 
chromosome sequence is available at the pre-ensemble [20] website. In total, 
838,711 shotgun sequences were clustered and assigned to a specific fingerprint 
contig (fpc) and 97.7% of these shotgun sequences mapped to a single unique 
fpc.

Identifying candidate SNPs

In  the  second  step,  the  actual  identification  of  SNPs  was  performed  per 
fingerprint  contig.  In  this  respect,  a  fingerprint  contig  can  be  considered  a 
'genomic  region  of  interest',  which  is  the  starting  point  in  traditional  SNP 
mining in species for which a genome draft is available. Per fingerprint contig, 
the  relational  database  was  queried  for  shotgun  reads,  in  which  repetitive 
sequences were tagged, and were aligned using PhredPhrap [21,22,23]. Finally, 
the alignments were searched for SNPs using PolyPhred [15] as outlined in 
Figure 1B. Identified SNPs were categorised by the number (one, two, three or 
four) of sequences that represent identical nucleotide substitution on the SNP 
position in the sequence alignment.  SNP prediction results  of  all  fingerprint 
contigs  were  combined  and  analysed  for  redundancy.  Redundancy  was 
expected, because a small fraction (2.3%) of the shotgun reads did not uniquely 
map to a single fingerprint contig. Paralogous and repetitive sequences typically 
cause ambiguous clustering results. Although the initial clustering of shotgun 
sequences  was  refined  in  the  alignment  procedure  by  Phrap  [23],  a  small 
number  of  SNPs  still  mapped  to  two  distinct  genomic  regions.  These 
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Figure 2: Distribution of SNPs on pig chromosomes 1, 4, 7 and 14. The X-axis 
represents the chromosome in intervals of 1Mb in size. On the Y-axis the 
number of identified SNPs is shown for the 1Mb intervals, each tick is five.
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ambiguous SNPs were removed from the data, resulting in a final list of 98,151 
unique SNPs (Table 1). The number of identified SNPs was drastically reduced 
when  the  constraint  for  the  number  of  sequences  representing  identical 
nucleotide substitution in a SNP was increased. When this number was raised 
above  two,  the  majority  of  predicted  SNPs  were  located  within  a  genomic 
context that was tagged as repetitive sequence.

Table 1: SNPs identified, substitution ratios and the fraction in 
repetitive context at increasing polymorphism representation 
constraints.

SNP
representation

Total SNPs
identified

Transition/
transversion

Fraction SNPs in repetitive
sequence

1 98151 1.9 0.39

2 6374 2.8 0.60

3 1202 4.2 0.90

4 462 5.8 0.96

Distribution of SNPs over the pig genome

At completion of this analysis (Dec 2007), the sequencing of the pig genome 
was ongoing and most  assembled BAC contig sequences were available for 
chromosomes 1,  4,  7,  and 14 The number of SNPs as a percentage of total 
number of identified SNPs per analysed chromosome is provided in Table 2.

Table 2: Distribution of SNPs over the analysed pig chromosomes 
in percentages of the total number identified.

SNP Chromosome

representation 1 2 3 4 5 7 8 9 11 12 13 14 15 16 17 18

1 20,2 3,0 2,2 12,7 2,9 12,7 2,4 1,0 5,9 0,3 6,2 15,5 6,2 2,2 5,1 1,4

2 22,6 2,6 2,0 12,1 2,2 14,1 2,0 1,0 4,4 0,2 5,7 16,5 7,4 1,8 4,0 1,3

To evaluate if the SNPs distribute equally throughout the pig chromosomes the 
exact  locations  of  unique  SNPs  predicted  on  chromosome  1,4,7,14  were 
determined by alignment.  A total  of  1783 SNPs that  mapped uniquely were 
plotted along these chromosomes as shown in Figure 2.
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Analysis of base changes

The  SNPs  in  the  subsets  of  candidate  SNPs  in  which  identical  nucleotide 
substitution is represented in one, two, three or four sequences in the alignment 
were categorized according to nucleotide substitutions: C/T or G/A (transitions) 
and C/G, A/G, C/A, T/G (transversions). For each category, we calculated the 
relative  nucleotide  substitution  frequencies  for  our  SNP dataset  and  for  the 
genomic porcine SNPs recorded in dbSNP [4] (Table 3). For the SNP subset in 
which identical nucleotide substitution is represented twice in the alignment, we 
observed a very similar relative increase in the proportion of transitions over 
transversions compared to the SNPs in dbSNP [4].

Table 3: Comparison of substitution frequencies of SNPs deposited 
in dbSNP[4] and polymorphisms identified in shotgun sequences.

Shotgun sequence analysis

dbSNP (genomic) SNP redundancy = 1 SNP redundancy = 2

Transitions 5404 73,04% 64167 65,38% 4676 73,36%

Transversions 1995 26,96% 33984 34,62% 1698 26,64%

Total 7399 98151 6374

SNPs in common with dbSNP
To estimate whether SNPs predicted by our method are already present in the 
public database of dbSNP [4], we compared the two datasets by clustering. In 
dbSNP [4],  we  selected  genomic  SNPs  (class=1)  with  at  least  50  bases  of 
sequence on each side. These 7,896 SNPs were trimmed to have exactly 50 
bases  of  flanking  sequence  and  were  analyzed  for  redundant  records.  The 
confirmed 7,586 unique SNPs were compared to our 98,151 predicted SNPs 
(singe representation of nucleotide substitution in alignment) by clustering. No 
clusters were formed, indicating that our dataset and dbSNP [4] share no SNPs 
in common.
Experimental validation of candidate SNPs
To balance the sequence context and the number of times a polymorphism is 
represented in the sequence alignment, SNPs in which a nucleotide substitution 
was  represented  at  least  twice  in  the  sequence  alignment  were  chosen  for 
experimental validation. A total of 163 selected candidate SNPs were validated 
by genotyping in a panel of three purebred boar lines (+ wild boar). A total of 
61,777  genotype  analyses  were  performed  providing,  in  addition  to  SNP 
prediction  validation,  insights  into  allele  frequencies  that  will  be  valuable 
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information  for  association  mapping  and  QTL  studies.  To  measure  the 
performance of our analyses, validated SNPs were included that previously had 
been used within the European Union (EU) pig biodiversity  project  II  (Pig-
BioDiv II) [24] as well as SNPs described by Rohrer et al [25] (Table 4). Also, 
16 known SNPs in the IGF2-region and 14 SNPs described in a number of 
publications were included see[
http://www.biomedcentral.com/content/supplementary/1471-2164-10-4-s1.doc].
For all 331 SNPs, the allelic variation was determined in our animal panel. In 
29 cases, the predicted candidate SNPs turned out to be monomorphic. Smaller 
fractions  of  SNPs  are  observed  to  be  monomorphic  in  the  PigBiodiv  and 
Various Literature SNP sets. The SNPs described by Rohrer et al [25] and the 
IGF2-region were all polymorphic in our animal panel. 
For each predicted candidate SNP that appeared to be polymorphic in our panel, 
minor  allele  frequencies  per  boar  line  and  overall  average  minor  allele 
frequencies were calculated see [
http://www.biomedcentral.com/content/supplementary/1471-2164-10-4-s2.xls].

Table 4: The performance statistics for each source of SNPs tested 
in our animal panel.

SNP source Total Fraction monomorph

PigBioDiv 99 0,07

Rohrer et al. 39 0

Various Literature 14 0,07

IGF2-region 16 0

This study 163 0,18

Discussion
Because of their highly automated high-throughput assays, SNPs are the marker 
of choice for molecular genetic analysis. SNPs can be obtained cost effectively 
by analysing public sequence data sets [26,27,28]. When sequence trace files 
are  involved  at  the  identification  of  SNPs,  true  polymorphisms  can  be 
distinguished from sequencing errors. Polymorphisms in which the identified 
base is doubtful due to a high error probability in the trace file, and therefore 
the most probable cause of the observed variation, are filtered out [29,30,31]. 
The number of  sequences in which a polymorphism is represented provides 
information as to whether a predicted SNP represents a true polymorphism. By 
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filtering the observed sequence variation for polymorphisms in which the minor 
allele is represented at least twice in the sequence alignment, the chance that the 
predicted SNP is caused by sequencing errors is extremely small. Because the 
dataset used in our analysis consisted of shotgun sequences providing a 0.66X 
coverage, the sequence redundancy in our dataset is limited. This low genome 
coverage  made  it  likely  to  detect  true  genetic  variation  already  at  a  low 
sequence  depth.  Even  SNPs  with  a  single  representation  in  the  sequence 
alignment might represent true nucleotide polymorphism at this low genome 
coverage. However, the chance that SNPs with a single representation in the 
sequence  alignment  turns  out  to  be  monomorphic  in  a  genotyping  assay  is 
relatively high. In order to obtain a set of high quality SNPs, we raised the 
threshold  to  a  two  times  representation  of  a  nucleotide  substitution  in  the 
sequence alignment. A further increase of the representation constraint at this 
low genome coverage would lead to a SNP set in which the majority of genetic 
variation being detected is located in repetitive sequences. In these repetitive 
sequences, the degree of periodicity in nucleotide usage is high, making it hard 
to distinguish true allelic variation from predicted sequence variation caused by 
paralogous sequences. The over-representation of SNPs in repetitive sequences 
can be explained by errors in clustering paralogous repetitive sequences,as wel 
as by the 1.8 times higher SNP density in periodic DNA, which is observed in 
humans [32]. 
Although sequence quality scores and a redundancy-based approach were used 
to filter sequencing errors from true nucleotide polymorphisms, a non-random 
distribution  of  polymorphisms  might  occur  in  a  particular  dataset.  These 
artefacts  become  visible  when  SNP  statistics  are  compared  to  other  SNP 
collections in the same species and are comparable to those found in related 
species. When compared to porcine SNPs deposited in dbSNP [4], our predicted 
SNPs in  which a nucleotide  substitution is  represented at  least  twice  in  the 
sequence  alignment  show  a  similar  transition/transversion  ratio  (Table  2). 
However,  the  transition  frequency  in  humans  was  determined  to  be  60  to 
approximately 66% in vivo [16,6] and 60%-69% in silico [27,29], respectively. 
According  to  the  SNP  statistics  in  Table  1,  it  is  evident  that  the 
transition/transversion  ratio  is  highly  biased  by  the  fraction  of  SNPs  in 
repetitive  sequences  in  a  particular  dataset.  A similar  transition/transversion 
ratio for porcine SNPs deposited in dbSNP and our subset of SNPs, in which 
nucleotide  substitutions  are  represented  at  least  two  times,  is  more  likely 
explained by coincidence than being representative of the pig genome. The 0.6 
fraction of sequences tagged as being repetitive in our SNP subset has likely 
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influenced the transition/transversion ratio. Therefore the transition/transversion 
ratio  observed in  the  total  number  of  predicted SNPs,  single redundancy,  is 
likely  more  representative  for  the  whole  pig  genome.  This  suggests  a 
comparable transition/transversion ratio between humans and pigs, which was 
expected because of the evolutionary relatedness of these species.
A comparison of  our  collection of  predicted candidate  SNPs to  the  porcine 
SNPs in dbSNP [4] revealed no SNPs in common, not  to our surprise.  The 
average SNP density in the 2.7 Gb pig genome is estimated to be one in 336 
base pairs [11], indicating that only a small fraction of the expected total of tens 
of millions of SNPs has been identified in the pig.
Not all predicted candidate SNPs turned out to be polymorphic in the animal 
panel. This doesn't  implicitly mean that this 0.18 fraction (Table 4) includes 
falsely predicted polymorphisms. SNPs in the PigBioDiv [24] and the SNPs 
derived from various literature [see
http://www.biomedcentral.com/content/supplementary/1471-2164-10-4-s1.doc] 
that  were  previously  experimentally  validated resulted  in  (0.07)  fractions  of 
monomorphic SNPs. These fractions of monomorphic SNPs observed in this 
study can be explained by difference in selection of the animal panel on which 
the SNPs have been validated and the animal panel we used, as well  as the 
absence of Chinese breed genetic background, near absence of Meishan and the 
use of another Large White in our panel.
Within our breed panel, we observed very low (<5%) Minor Allele Frequencies 
(MAF) in predicted candidate SNPs [see
http://www.biomedcentral.com/content/supplementary/1471-2164-10-4-
s2.xls].] and in the IGF2-region (data not shown). For SNPs in the IGF2-region, 
these low MAF are the result of intensive selection on that genomic region, 
whereas  for  the  predicted candidate  SNPs we did not  know what  to  expect 
because of the unknown genomic location of these SNPs. Intensive selection 
also might have caused these very low MAF. 

Conclusions
The  overall  performance  of  the  SNPs  identified  by  our  genome  shotgun 
sequence mining approach is comparable to those available in existing SNP 
repositories. In perspective of the ongoing sequencing of the pig genome, the 
SNP  data  generated  by  this  approach  will  provide  a  growing  number  of 
available markers that can be applied for genotyping and will increase the SNP 
marker density on the pig genome.
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Methods

DNA sequence data

The entire genome shotgun sequences used in this study were downloaded from 
the  NCBI Trace  repository  (species  SUS SCROFA,  center  SDJVP).  For  all 
sequences,  breed  and  mate  pair  information  was  obtained  and  stored  in  a 
relational database.  Finished and unfinished BAC sequences obtained within 
the porcine genome sequencing project were retrieved from the SangerInstitute 
FTP site at ftp://ftp.sanger.ac.uk/pub/sequences/pig/.
BAC-end  sequences  were  downloaded  from  the  Ensembl  [20]  FTP site  at 
ftp://ftp.ensembl.org/pub/traces/sus_scrofa/fasta/.
BAC  naming  and  mapping  data  were  obtained  from 
ftp://ftp.sanger.ac.uk/pub/S_scrofa/master_porcine_R7.tar.gz
and ftp://ftp.sanger.ac.uk/pub/S_scrofa/PIGendreads030105.txt.gz, respectively. 
Naming and mapping data were stored in a local relational database.

Clustering and alignment

Whole  genome  shotgun  sequences  were  masked  for  mammalian-specific 
repeats  and low complexity  regions  using  RepeatMasker  version  open-3.1.7 
[33]  with  options  -xsmall,  -species  pig,  default  sensitivity  and  using  the 
RepeatMasker Database release 20071204.
Clustering of data was performed by aligning the whole genome shotgun reads 
to the BAC sequences and BAC-end sequences using MegaBlast 2.2.16 [34].
Shotgun reads were aligned to BAC sequences using the alignment parameters -
U T -s 122 -p95 -F m. Results were filtered for alignments with more than 90% 
of the shotgun sequence length. To reduce the amount of ambiguous results in 
the clustering, only alignment results with a bitscore >90% of the best scoring 
alignment for that shotgun sequence were stored in a relational database.
Clustering  of  shotgun  sequences  by  alignment  to  BAC-end  sequences  was 
followed  by  assembling  each  cluster  using  CAP3  [35].  MegaBlast  [34] 
parameters (-p 95 -s 32 -F m -U T) were matched to the CAP3 [35] settings (-
o40, -p95), allowing only perfect assembled clusters. BAC-end sequences that 
were extended by shotgun sequences in the previous step were again used to 
cluster other shotgun reads until no extension occurred. Clustering results were 
stored in a local relational database.
Using the BAC and BAC-end naming and mapping information, we were able 
to query our clustering results by fingerprint contig name as used in the porcine 
physical  map  provided  by  the  Sanger  Institute.  Per  fingerprint  contig  the 
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shotgun sequences that clustered to this region were selected and mate pairs 
were added using the mate pair information in the NCBI Trace repository.
Multiple sequence alignments of the selected shotgun sequences and their mate 
pairs were generated by the sequence assembly script PhredPhrap [21,22,23]. 
Shotgun sequence trace  files  were  used as  input  for  PhredPhrap [21,22,23], 
which was run using the default parameters.
SNP identification
For identification of SNPs in the multiple sequence alignments of the shotgun 
sequences, we used PolyPhred [15] version 6.11 with options -snp hom -f 50, 
which lists homozygous SNPs with 50 bp flanking sequence.
Polyphred  results  were  parsed  into  tables,  information  from which  breed  a 
sequence  was  derived  and  whether  the  SNP is  located  within  a  suspected 
repetitive sequence was added.
Elimination of redundancy in identified SNPs by clustering
To remove any redundancy in our SNP predictions, the results (SNP position 
flanked by 50 bp genomic sequence) were first stored in FASTA format. The 
actual clustering was performed using blastclust [36] with parameters -S 99.5 -L 
1.0 -b T -p F -F F.  These  parameters  were  also used to  compare  our  SNP 
prediction results to public SNPs in dbSNP [4].
Distribution of SNPs over pig chromosomes
Unique SNPs flanked by 50 bp genomic sequence predicted on chromosome 
1,4,7,14 were mapped on the corresponding chromosomal sequence as provided 
by pre-ensemble [19]. The alignment was performed using BLAT [37] with the 
default parameters. SNPs that aligned uniquely to the chromosome with at least 
a 0.9 fraction of the flanking sequence involved in the alignment and a minimal 
sequence similarity of 96% were used to generate a SNP distribution plot.
SNP validation
For SNP validation, 163 SNPs were selected, with regions covered by at least 4 
reads  and  with  a  minimum SNP redundancy  score  of  2.  These  SNPs  were 
subsequently genotyped in an animal panel consisting of three purebred boar 
lines that originated from (1) Duroc and Belgian Landrace, (2) Large White, (3) 
German Pietrain and (4) Wild Boar. The four lines included 129, 120, 109 and 
21  individuals,  respectively.  Genotyping  was  performed  using  the  Illumina 
GoldenGate(R)  Genotyping  assay  on  an  Illumina®  BeadStation  with 
veraCode(TM) technology.  Oligonucleotides  were  designed,  synthesized  and 
assembled into oligo pooled assays (OPA) by Illumina Inc. Typing was carried 
out in a multiplex reaction, which included 384 loci.
Availability and requirements
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The SNPs identified in this study, in which the polymorphism was represented 
twice in the sequence alignment, have been deposited in the National Center of 
Biotechnology  (NCBI)  SNP  database  (dbSNP)  under  submitter  handle 
WU_ABGC. NCBI_ss 106817370–106823609 represent  predicted SNPs that 
were not tested on in our animal panel. Predicted SNPs that were confirmed are 
listed  in  [see 
http://www.biomedcentral.com/content/supplementary/1471-2164-10-4-s2.xls]. 
SNPs with a single redundancy will be available on request.
Authors' contributions
HHDK  designed  and  developed  the  SNP prediction  method  and  wrote  the 
manuscript.  AK and MdR designed and implemented the relational database. 
BD, SMK, RPC and SK collected and prepared the samples and performed the 
genotyping  analysis.  SK  summarized  the  genotyping  results.  MAMG 
coordinated and supervised the experiment implementation, and assisted in the 
manuscript preparation. All authors read and approved the final manuscript.

Acknowledgements 
We thank Jack Leunissen, Peter Groenen and Mari Smits for critically reading 
the  manuscript  and  for  their  helpful  comments.  This  study  was  funded  by 
Ministry of  Economic  Affairs  IS054062  and  the  Institute  for  Pig  Genetics 
(IPG), the Netherlands.

References
1. Fahrenkrug  SC,  Freking  BA,  Smith  TPL,  Rohrer  GA,  Keele  JW: Single 

nucleotide  polymorphism  (SNP)  discovery  in  porcine  expressed  genes. 
Anim Genet 2002, 33:186-195.

2. Uenishi  H,  Eguchi-Ogawa  T,  Shinkai  H,  Okumura  N,  Suzuki  K,  Toki  D, 
Hamasima N, Awata T: PEDE (Pig EST Data Explorer) has been expanded 
into Pig Expression Data  Explorer,  including 10 147 porcine full-length 
cDNA sequences. Nucleic Acids Res 2007, 35:D650-D653.

3. Panitz  F,  Stengaard  H,  Hornshøj  H,  Gorodkin  J,  Hedegaard  J,  Cirera  S, 
Thomsen B, Madsen LB, Høj A, Vingborg RK, Zahn B, Wang X, Wang X, 
Wernersson  R,  Jørgensen  CB,  Scheibye-Knudsen  K,  Arvin  T,  Lumholdt  S, 
Sawera  M,  Green  T,  Nielsen  BJ,  Havgaard  JH,  Brunak  S,  Fredholm  M, 
Bendixen C: SNP mining porcine ESTs with MAVIANT, a novel tool for 
SNP evaluation and annotation. Bioinformatics 2007,13:i387-i391.

4. Sherry  ST,  Ward  M,  Sirotkin  K: dbSNP-database  for  single  nucleotide 
polymorphisms and other classes of minor genetic variation. Genome Res 
1999, 9:677-679.

55

http://www.biomedcentral.com/content/supplementary


Chapter 2

5. Frazer  IHCA,  Ballinger  DG,  R.Cox  D,  Hinds  DA,  Stuve  LL,  Gibbs  RA, 
Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, 
Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan 
H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou 
J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, 
Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl 
E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He 
Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, 
Waye MMY, Tsui SKW, Xue H, Wong JT, Galver LM, Fan J, Gunderson K, 
Murray  SS,  Oliphant  AR,  Chee  MS,  Montpetit  A,  Chagnon  F,  Ferretti  V, 
Leboeuf M, Olivier J, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, 
Kwok P,  Cai  D, Koboldt  DC, Miller RD, Pawlikowska L, Taillon-Miller  P, 
Xiao M, Tsui L, Mak W, Song YQ, Tam PKH, Nakamura Y, Kawaguchi T, 
Kitamoto  T,  Morizono  T,  Nagashima  A,  Ohnishi  Y,  Sekine  A,  Tanaka  T, 
Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, 
Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly 
MJ, Bakker PIWd, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, 
Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham 
PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, 
Thorisson  GA,  Chakravarti  A,  Chen  PE,  Cutler  DJ,  Kashuk  CS,  Lin  S, 
Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, 
Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers 
S,  Spencer  C,  Stephens M, Donnelly  P,  Cardon LR,  Clarke G,  Evans DM, 
Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, 
Zhang H,  Zeng C,  Zhao H,  Matsuda  I,  Fukushima  Y,  Macer  DR,  Suda E, 
Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah 
C, Royal CDM, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, 
Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, 
Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, 
Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren 
BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter 
NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims 
SK,  Willey  DL,  Chen  Z,  Han  H,  Kang  L,  Godbout  M,  Wallenburg  JC, 
L'Archevêque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, 
Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson 
JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson 
R, Stewart J: A second generation human haplotype map of over 3.1 million 
SNPs. Nature 2007, 449:851-861.

6. Wang DG, Fan JB,  Siao CJ,  Berno A, Young P,  Sapolsky R,  Ghandour G, 
Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou 
T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux 

56



 Mining for single nucleotide polymorphisms in pig genome sequence data

J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES: Large-
scale  identification,  mapping,  and  genotyping  of  single-nucleotide 
polymorphisms in the human genome. Science 1998, 280:1077-1082.

7. Trikka D, Fang Z, Renwick A, Jones SH, Chakraborty R, Kimmel M, Nelson 
DL: Complex  SNP-based  haplotypes  in  three  human  helicases: 
implications for cancer association studies. Genome Res 2002, 12:627-639.

8. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, Daly MJ, 
Jager PLD, Walsh E, Lander ES, Rioux JD, Hafler DA, Ivinson A, Rimmler J, 
Gregory SG, Schmidt  S,  Pericak-Vance MA, Akesson E,  Hillert  J,  Datta  P, 
Oturai A, Ryder LP, Harbo HF, Spurkland A, Myhr K, Laaksonen M, Booth D, 
Heard  R,  Stewart  G,  Lincoln  R,  Barcellos  LF,  Hauser  SL,  Oksenberg  JR, 
Kenealy SJ, Haines JL, Consortium IMSG: A high-density screen for linkage 
in multiple sclerosis. Am J Hum Genet 2005, 77:454-467.

9. Schmidt S, Pericak-Vance MA, Sawcer S, Barcellos LF, Hart J, Sims J, Prokop 
AM, Walt Jvd, DeLoa C, Lincoln RR, Oksenberg JR, Compston A, Hauser SL, 
Haines  JL,  Gregory  SG,  Group  MSG:  Allelic  association  of  sequence 
variants  in  the  herpes  virus  entry  mediator-B  gene  (PVRL2)  with  the 
severity of multiple sclerosis. Genes Immun 2006, 7:384-392.

10.Consortium  WTCC,  (TASC)  ASC,  Burton  PR,  Clayton  DG,  Cardon  LR, 
Craddock  N,  Deloukas  P,  Duncanson  A,  Kwiatkowski  DP,  McCarthy  MI, 
Ouwehand WH, Samani  NJ,  Todd JA,  Donnelly  P,  Barrett  JC,  Davison D, 
Easton D, Evans DM, Leung H, Marchini JL, Morris AP, Spencer CCA, Tobin 
MD, Attwood AP, Boorman JP,  Cant B, Everson U, Hussey JM, Jolley JD, 
Knight AS, Koch K, Meech E, Nutland S, Prowse CV, Stevens HE, Taylor NC, 
Walters GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, 
Ring SM, Strachan DP, Pembrey M, Breen G, Clair DS, Caesar S, Gordon-
Smith K, Jones L, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans 
PA, Jones IR, Kirov G, Moskivina V, Nikolov I, O'Donovan MC, Owen MJ, 
Collier DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier 
IN, Ball  SG,  Balmforth AJ,  Barrett  JH,  Bishop TD, Iles  MM, Maqbool  A, 
Yuldasheva  N,  Hall  AS,  Braund  PS,  Dixon  RJ,  Mangino  M,  Stevens  S, 
Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, 
Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott 
NJ,  Sanderson J,  Matthew CG,  Barbour  J,  Mohiuddin  MK,  Todhunter  CE, 
Mansfield  JC,  Ahmad T,  Cummings FR,  Jewell  DP,  Webster  J,  Brown MJ, 
Lathrop MG, Connell J, Dominiczak A, Marcano CAB, Burke B, Dobson R, 
Gungadoo J, Lee KL, Munroe PB, Newhouse SJ, Onipinla A, Wallace C, Xue 
M, Caulfield M, Farrall M, Barton A, Genetics BiR, Committee GSS(S, Bruce 
IN, Donovan H, Eyre S, Gilbert PD, Hilder SL, Hinks AM, John SL, Potter C, 
Silman AJ, Symmons DPM, Thomson W, Worthington J, Dunger DB, Widmer 
B, Frayling TM, Freathy RM, Lango H, Perry JRB, Shields BM, Weedon MN, 

57



Chapter 2

Hattersley AT, Hitman GA, Walker M, Elliott KS, Groves CJ, Lindgren CM, 
Rayner  NW,  Timpson  NJ,  Zeggini  E,  Newport  M,  Sirugo  G,  Lyons  E, 
Vannberg  F,  Hill  AVS,  Bradbury  LA,  Farrar  C,  Pointon  JJ,  Wordsworth  P, 
Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Gough SCL, Seal S, 
(UK) BCSC, Stratton MR, Rahman N, Ban M, Goris A, Sawcer SJ, Compston 
A, Conway D, Jallow M, Newport M, Sirugo G, Rockett KA, Bumpstead SJ, 
Chaney A, Downes K, Ghori MJR, Gwilliam R, Hunt SE, Inouye M, Keniry A, 
King  E,  McGinnis  R,  Potter  S,  Ravindrarajah  R,  Whittaker  P,  Widden  C, 
Withers D, Cardin NJ, Davison D, Ferreira T, Pereira-Gale J, Hallgrimsdo'ttir 
IB, Howie BN, Su Z, Teo YY, Vukcevic D, Bentley D, Brown MA, Compston 
A,  Farrall  M,  Hall  AS,  Hattersley  AT,  Hill  AVS,  Parkes  M,  Pembrey  M, 
Stratton MR, Mitchell SL, Newby PR, Brand OJ, Carr-Smith J, Pearce SHS, 
McGinnis R, Keniry A, Deloukas P, Reveille JD, Zhou X, Sims A, Dowling A, 
Taylor J, Doan T, Davis JC, Savage L, Ward MM, Learch TL, Weisman MH, 
Brown  M: Association  scan  of  14,500  nonsynonymous  SNPs  in  four 
diseases identifies autoimmunity variants. Nat Genet 2007, 11:1329-1337.

11.Jungerius BJ, Gu J, Crooijmans RPMA, Poel JJvd, Groenen MAM, Oost BAv, 
Pas  MFWt: Estimation  of  the  extent  of  linkage  disequilibrium in  seven 
regions of the porcine genome. Anim Biotechnol 2005, 16:41-54.

12.Humphray SJ, Scott CE, Clark R, Marron B, Bender C, Camm N, Davis J, 
Jenks  A,  Noon  A,  Patel  M,  Sehra  H,  Yang  F,  Rogatcheva  MB,  Milan  D, 
Chardon P, Rohrer G, Nonneman D, Jong Pd, Meyers SN, Archibald A, Beever 
JE, Schook LB, Rogers J: A high utility integrated map of the pig genome. 
Genome Biol 2007, 8:R139.

13.Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan 
D, Rohrer G, Eversole K: Swine Genome Sequencing Consortium (SGSC): 
A Strategic Roadmap for Sequencing The Pig Genome. Comparative and 
Functional Genomics 2005, 6:251-255.

14.Myers  EW, Miller  W: Optimal  alignments  in  linear space. Comput  Appl  
Biosci 1988, 4:11-17.

15.Nickerson DA, Tobe VO, Taylor SL: PolyPhred: automating the detection 
and genotyping of single nucleotide substitutions using fluorescence-based 
resequencing. Nucleic Acids Res 1997, 25:2745-2751.

16.Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengård J, 
Salomaa V, Vartiainen E, Boerwinkle E, Sing CF: DNA sequence diversity in 
a  9.7-kb  region  of  the  human lipoprotein  lipase  gene. Nat  Genet 1998, 
19:233-240.

17.Rieder  MJ,  Taylor  SL,  Tobe  VO,  Nickerson  DA: Automating  the 
identification  of  DNA  variations  using  quality-based  fluorescence  re-
sequencing: analysis of the human mitochondrial genome. Nucleic Acids 
Res 1998, 26:967-973.

58



 Mining for single nucleotide polymorphisms in pig genome sequence data

18.Stephens M, Sloan JS, Robertson PD, Scheet P, Nickerson DA: Automating 
sequence-based detection and genotyping of SNPs from diploid samples. 
Nat Genet 2006, 38:375-381.

19.Rasmus W, Mikkel S, Frank J, Jan G, Frank P, Hans-Henrik S, Ole C, Thomas 
M, Henrik H, Ami K, Jun W, Bin L, Songnian H, Wei D, Wei L, Gane W, Jun 
Y,  Jian  W,  Christian  B,  Merete  F,  Soren  B,  Huanming Y,  Lars  B: Pigs  in 
sequence space: A 0.66X coverage pig genome survey based on shotgun 
sequencing. BMC Genomics 2005, 6:70.

20.Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates 
G, Cunningham F, Cutts T, Down T, Dyer SC, Eyre T, Fitzgerald S, Fernandez-
Banet  J,  Gräf  S,  Haider  S,  Hammond M, Holland R,  Howe KL,  Howe K, 
Johnson N, Jenkinson A, Kähäri A, Keefe D, Kokocinski F, Kulesha E, Lawson 
D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Prlic A, 
Rice  S,  Rios  D,  Schuster  M,  Sealy  I,  Slater  G,  Smedley  D,  Spudich  G, 
Trevanion S, Vilella AJ, Vogel J, White S, Wood M, Birney E, Cox T, Curwen 
V,  Durbin R,  Fernandez-Suarez XM, Herrero J,  Hubbard TJP,  Kasprzyk A, 
Proctor G, Smith J, Ureta-Vidal A, Searle S: Ensembl 2008. Nucleic Acids Res 
2008, 36:D707-D714.

21.Ewing B, Green P: Base-calling of automated sequencer traces using phred. 
II. Error probabilities. Genome Res 1998, 8:186-194.

22.Ewing  B,  Hillier  L,  Wendl  MC,  Green  P: Base-calling  of  automated 
sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 
8:175-185.

23.Green P: Phrap [http://www.phrap.org  http://www.phrap.org   ]  
24.Ollivier L, Alderson L, Gandini GC, Foulley JL, Haley CS, Joosten R, Rattink 

AP, Harlizius B, Groenen MAM, Amigues Y, Boscher MY, Russell G, Law A, 
Davoli R, Russo V, Matassino D, Désautés C, Fimland E, Bagga M, Delgado 
JV, Vega-Pla JL, Martinez AM, Ramos AM, Glodek P, Meyer JN, Plastow GS, 
Siggens KW, Archibald AL, Milan D, San Cristobal M, Laval G, Hammond K, 
Cardellino R, Chevalet C: An assessment of European pig diversity using 
molecular markers: partitioning of diversity among breeds. Conserv Genet 
2005, 6:729–741.

25.Rohrer GA, Freking BA, Nonneman D: Single nucleotide polymorphisms for 
pig identification and parentage exclusion. Anim Genet 2007, 38:253-258.

26.Gu  Z,  Hillier  L,  Kwok  PY: Single  nucleotide  polymorphism hunting  in 
cyberspace. Hum Mutat 1998, 12:221-225.

27.Taillon-Miller  P,  Gu  Z,  Li  Q,  Hillier  L,  Kwok PY: Overlapping genomic 
sequences: a treasure trove of single-nucleotide polymorphisms. Genome 
Res 1998, 8:748-754.

28.Picoult-Newberg  L,  Ideker  TE,  Pohl  MG,  Taylor  SL,  Donaldson  MA, 
Nickerson  DA,  Boyce-Jacino  M: Mining  SNPs  from  EST  databases. 

59

http://www.phrap.org/
http://www.phrap.org/


Chapter 2

Genome Res 1999, 9:167-174.
29.Kwok  PY,  Deng  Q,  Zakeri  H,  Taylor  SL,  Nickerson  DA: Increasing  the 

information  content  of  STS-based  genome  maps:  identifying 
polymorphisms in mapped STSs. Genomics 1996, 31:123-126.

30.Garg K, Green P, Nickerson DA: Identification of candidate coding region 
single  nucleotide  polymorphisms  in  165  human  genes  using  assembled 
expressed sequence tags. Genome Res 1999, 9:1087-1092.

31.Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H, Stitziel NO, Hillier L, 
Kwok  PY,  Gish  WR: A  general  approach  to  single-nucleotide 
polymorphism discovery. Nat Genet 1999, 23:452-456.

32.Madsen BE, Villesen P, Wiuf C: A periodic pattern of SNPs in the human 
genome. Genome Res 2007, 17:1414-1419.

33.Smith AFA, Green P: RepeatMasker [http://www.repeatmasker.org]
34.Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning 

DNA sequences. J Comput Biol 2000, 7:203-214.
35.Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome 

Res 1999, 9:868-877.
36.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment 

search tool. J Mol Biol 1990, 215:403-410.
37.Kent WJ: BLAT—the BLAST-like alignment tool. Genome Res 2002,  12: 

656-664.

60



 3 Large scale single nucleotide polymorphism discovery 
in unsequenced genomes using second generation high 

throughput sequencing technology: applied to turkey

Hindrik HD Kerstens1, Richard PMA Crooijmans1, Albertine Veenendaal1, Bert W Dibbits1, 
Thomas FC Chin-A-Woeng2, Johan T den Dunnen3, Martien AM Groenen1§

1Animal Breeding and Genomics Center, Wageningen University, Marijkeweg 40, Wageningen, 
6709 PG, The Netherlands

2ServiceXS, Plesmanlaan 1d, Leiden, 2333 BZ, The Netherlands
3Leiden Genome Technology Center, Human and Clinical Genetics, Leiden 

University Medical Center, Einthovenweg 20, Leiden, 2333 ZC, The Netherlands
§Corresponding author

Email addresses:
HHDK: hindrik.kerstens@wur.nl

RPMAC: richard.crooijmans@wur.nl
AV: tineke.veenendaal@wur.nl

BWD: bert.dibbits@wur.nl
TFCC: t.chinawoeng@servicexs.com

JHD: ddunnen@humgen.nl
MAMG: martien.groenen@wur.nl

Published in BMC Genomics. 2009 Oct 16;10:479.

mailto:martien.groenen@wur.nl
mailto:ddunnen@humgen.nl
mailto:t.chinawoeng@servicexs.com
mailto:bert.dibbits@wur.nl
mailto:tineke.veenendaal@wur.nl
mailto:richard.crooijmans@wur.nl
mailto:charles@darwin.co.uk


Chapter 3

Abstract 

Background

The development of second generation sequencing methods has enabled large 
scale  DNA  variation  studies  at  moderate  cost.  For  the  high  throughput 
discovery  of  single  nucleotide  polymorphisms  (SNPs)  in  species  lacking  a 
sequenced reference genome, we set-up an analysis pipeline based on a short 
read de novo sequence assembler and a program designed to identify variation 
within short reads. To illustrate the potential of this technique, we present the 
results  obtained with a  randomly  sheared,  enzymatically  generated,  2-3  kbp 
genome fraction of six pooled Meleagris gallopavo (turkey) individuals.

Results

A total of 100 million 36 bp reads were generated, representing approximately 
5-6% (~62 Mbp) of the turkey genome, with an estimated sequence depth of 58. 
Reads  consisting  of  bases  called  with  less  than  1%  error  probability  were 
selected and assembled into contigs.  Subsequently,  high throughput discovery 
of nucleotide variation was performed using sequences with more than 90% 
reliability  by  using the  assembled contigs  that  were  50 bp or  longer  as  the 
reference  sequence.  We  identified  more  than  7,500  SNPs  with  a  high 
probability of representing true nucleotide variation in turkeys. Increasing the 
reference  genome  by  adding  publicly  available  turkey  BAC-end  sequences 
increased the number of SNPs to over 11,000. A comparison with the sequenced 
chicken genome indicated that  the assembled turkey contigs were distributed 
uniformly across the turkey genome. Genotyping of a representative sample of 
340 SNPs resulted in a SNP conversion rate of 95%. The correlation of the 
minor allele count (MAC) and observed minor allele frequency (MAF) for the 
validated SNPs was 0.69.

Conclusions

We provide an efficient  and cost-effective approach for the identification of 
thousands  of  high  quality  SNPs  in  species  currently  lacking  a  sequenced 
genome  and  applied  this  to  turkey.  The  methodology  addresses  a  random 
fraction of the genome, resulting in an even distribution of SNPs across the 
targeted genome.
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Background 
The  scalability  and  availability  of  highly  automated  genotyping  assays  for 
single nucleotide polymorphisms (SNPs) has made the SNP a popular marker in 
genetic linkage and association studies in a variety of species. In humans, large-
scale identification and characterization has resulted in a repository of over 14 
million SNPs [1] that are now being used in whole genome association studies 
to identify genes involved in complex genetic traits [2-6]. The availability of a 
high quality reference genome sequence and resources to perform low coverage 
resequencing on a few individuals are prerequisites for the traditional method of 
whole genome SNP discovery; genomic sequences of different individuals are 
aligned to a reference genome and nucleotide variation is detected [7]. Although 
very effective in species whose genome has been sequenced, such as human, 
cow,  horse,  and  chicken,  for  the  majority  of  species  this  method  of  SNP 
discovery is currently not feasible. Although second generation sequencing has 
lowered  the  cost  per  sequenced  base  a  hundred-fold  and  allows  the 
resequencing of complete genomes in a fraction of the time, the size of the 
sequencing  target  still  exceeds  the  frequently  available  budget.  By  deep 
sequencing reduced representation libraries (RRL), SNPs can be discovered and 
allele frequencies estimated more economically [8]. The complexity of a pool 
of  DNA samples  from  multiple  individuals  is  reduced  by  two  orders  of 
magnitude [9] by isolating a fragment size range of a complete endonuclease 
digestion. Depending on the applied endonuclease, the obtained RRL contains 
hundreds  of  thousands  of  fragments  within  the  optimum size  range  of  the 
sequencing  platform,  equally  distributed  over  the  genome  and  with  a  low 
representation of repetitive elements. Tens of thousands of high quality SNPs 
can  be  identified  by  aligning  the  sequence  reads  that  result  from  deep 
sequencing the RRL to a genome reference sequence. This approach already has 
been applied to species with a more or less completed genome draft sequence, 
like cow [8], as well as on species in which genome sequencing is ongoing, 
such as pig [10].
However, many species, such as turkey, are still lacking a completely sequenced 
genome.  Although  high-throughput  sequencing  technologies  are  rapidly 
evolving  and  have  drastically  lowered  the  cost  of  whole  genome  DNA 
sequencing, the de novo assembly of a mammalian-sized genome remains a 
challenge [11]. Despite the number of published algorithms for short fragment 
de  novo  sequence  assembly  [12-16],  which  assembles  whole  prokaryotic 
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genomes  [17,18],  reconstructing  the  sequencing  targets  of  hundreds  of 
megabases will require parallelization of these algorithms. Furthermore, many 
of  these  species  still  lack  sufficient  genetic  markers  and  linkage  maps  that 
would aid in the ordering of the sequencing contigs and anchoring the contigs 
to specific chromosomes. Thus, the development of an efficient method for SNP 
discovery  in  such  species  is  of  high  importance.  We  provide  an  effective 
strategy for combining RRL deep sequencing with de novo contig assembly 
based on next-generation sequencing data. The key of our approach is based on 
using  RRLs  consisting  of  large  fragments  (2-3  kbp)  and  random  shearing. 
Performing high-throughput sequencing to a sufficient depth on sheared RRL in 
a pooled DNA sample in the first place enables reconstruction of the sampled 
genome  fraction  by  de  novo  sequence  assembly.  The  assembled  contigs 
subsequently serve as a reference genome to which all short reads derived from 
multiple individuals can be mapped accurately, and SNPs can be called reliably 
[19].
The aim of this study was to develop an extremely cost effective method to 
detect high quality SNPs in unsequenced genomes. We applied this method to 
turkey, a species of considerable economic importance, and used the genome of 
a closely related species, chicken [20-22], to benchmark our approach.

Results 

RRL preparation

We prepared a pooled DNA sample consisting of DNA samples from six turkey 
individuals. A RRL was prepared by digesting the pooled DNA sample with 
Sau3A and isolating the fragments in the size range of 2-3 kbp. This fraction 
consists of an estimated 5-6% of the turkey genome. The turkey genome has a 
high similarity to the chicken genome and is approximately the same size (~1.2 
Gbp).  Therefore,  the isolated 5-6% fraction of the turkey genome represents 
approximately 62 Mbp. This estimate was confirmed by selecting all 2-3 kb 
fragments of an in silico Sau3A digest of the chicken genome build WASHUC2, 
which resulted in a total of 27,025 fragments representing 63.4 million bases. 
The turkey RRL was sequenced using the Illumina sequencing technique [23] 
after random shearing of the isolated Sau3A fragments. The resulting data set of 
short sequence reads forms the basis for contig assembly, providing sufficient 
sequence context flanking the SNPs to allow for the subsequent development of 
SNP genotyping assays.
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DNA sequencing and sequence filtering

We generated 114 million sequence reads of turkey genomic DNA using the 
Illumina Genome Analyzer. The resulting 36 bp sequence reads were trimmed 
to 32bp because of the decay in base-call quality observed after the 32nd base. 
Subsequent removal of sequence reads with non-called bases resulted in almost 
108 million  reads,  providing an  estimated  56-fold  coverage  of  5-6% of  the 
turkey  genome.  We used  Sau3A to  generate  the  RRL and,  as  expected,  we 
observed that a fraction of the sheared DNA fragments started with the GATC 
restriction  tag  (Table  1),  though  the  observed  frequency  was  higher  than 
expected. 

Table 1: Summary of DNA sequence filtering results.

Filter applied1 Pass Filter (%) GATC start (%)

Pre-selection l32 n. 107888201 94.48 24.78

Assembly l32 n. q20 o230 27979963 24.50 46.64

SNP l32 n. q10 o230 32941906 28.84 40.23

1 sequences are filtered for length 32, without base-call errors (n or .). Singly 
represented reads are required to have a per base-call quality score of 20 
(assembly data set) or 10 (SNP data set). Sequences more than four times 
overrepresented, based on the expected 56X coverage, were discarded. 

We discarded 984,258 reads tagged as repeat by RepeatMasker [24]. Reads that 
were, based on the theoretical coverage, over-represented more than four times 
were also removed because of their likeliness to resemble repetitive sequences 
or to represent duplicated regions in the turkey genome. Besides not being able 
to  properly  reconstruct  repeats  without  mate-pair  information  at  this  low 
genome  coverage,  we  also  wanted  to  avoid  false  SNP predictions  due  to 
paralogous sequences. To improve the accuracy of the turkey genome assembly 
and reliably predict  SNPs on the assembled contigs,  data  were screened for 
quality by applying a maximum sequencing error tolerance for  reads with a 
single representation. For assembly purposes, we only tolerated one sequencing 
error per 100 bases, whereas one error per ten bases was tolerated in the reads 
used  for  SNP detection.  After  removing  repetitive,  overabundant,  and  low 
quality sequences with a single representation, almost 27 million reads (864 
million bp) corresponding to 8.6 million unique sequences remained for contig 
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assembly. For SNP detection purposes, almost 33 million reads (1.05 billion bp) 
corresponding to 13.8 million unique sequences passed our thresholds.

Reference genome construction

For the actual SNP detection, a required reference genome was constructed by 
first  performing  de  novo  short  read  sequence  assembly.  Available  de  novo 
assemblers were  SSAKE [12],  SHARCGS [13], Edena [14], Velvet [15], and 
ALLPATHS [16]. Likely because of the large genome target and relatively high 
error  rate  of  1%  ALLPATHS  and  SHARCGS  showed  an  unfeasible  large 
memory footprint and runtime. Probably because of the relatively low genome 
target coverage (14X) Velvet did return only 24 assembled sequence contigs all 
of which had a more than 15X coverage. Although Edena assembled contigs 
computationally  more  efficiently,  SSAKE  resulted  in  a  higher  number  of 
assembled sequences and longer sequence contigs (Table 2). 

Table 2: Short read assembly results.

algorithm1 and non-default parameters

edena -c 33 -m 16 velvet 152 SSAKE

contigs 230741 24 627600

assembled reads 8965681 NA 13964267

assembly length 17487533 2812 36163074

N50 90 129 53

1algorithm versions were: edena-2.1.1, velvet_0.3, SSAKE_v2.02parameter 
applies to hash_length

Based  on  these  results,  the  final  assembly  of  the  reference  genome  was 
performed with SSAKE. Using SSAKE [12], we assembled 36,163,074 bp into 
627,600 short sequence contigs, with an average coverage of 9.52 and an N50 
of 53 bp using the default assembly parameters. The quality of the reference 
genome assembly was estimated by mapping the short sequence contigs of at 
least 50 bp (further referred to as c50) to the draft genome sequence of chicken, 
the  most  closely  related  species  [20-22]  for  which  a  genome  sequence  is 
available. As a benchmark, we used 20,000 publicly available turkey BAC-end 
sequences  (BES)  (Table  3).  Direct  alignment  of  the  35  bp  Illumina  reads 
resulted in the unique alignment of approximately one-third of the sequences. 
This  fraction  of  turkey  sequences  uniquely  aligning  to  the  chicken  genome 
steadily increased with increasing contig length, until reaching a maximum of 
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73% for contigs in the size range of 100-150 bp. At contig lengths above 150, 
this percentage gradually decreases dropping below 10% for contigs of 1000 bp 
and  larger.  The  short  sequence  contigs  and  BES  within  the  size  range  of 
100-300  bp  had  comparable  mapping  statistics.  The  observed  trend  of  a 
decrease in alignment for the larger assembled contigs was not observed for the 
BES.

Table 3: Quality estimation of turkey short read contigs based on 
alignment to the chicken genome.

frequency1 percentage mapping to chicken2

size contigs BES uniquely with secondary hit multiple hits total

50-70 124480 0 47 - 2 - 1 - 50 -

75-100 38382 1 53 0 2 0 1 0 56 0

100-150 25808 156 73 69 1 4 0 4 74 77

150-200 8878 226 69 78 1 6 0 4 70 88

200-300 6453 835 63 82 1 3 0 3 64 88

300-400 2372 2428 51 86 1 4 0 1 52 90

400-500 1192 6664 40 87 1 3 0 2 40 92

500-600 682 8509 30 88 1 3 0 2 31 93

600-800 688 1510 18 88 0 4 0 2 18 93

800-1000 308 54 11 83 0 0 0 2 11 85

>=1000 380 4 6 80 1 0 0 20 7 100

1 frequency in which contigs and BES (in italics) occurred per size category
2 per size category percentage of contigs and BES (in italics) that mapped to the 
chicken genome 

The  distribution  of  the  assembled  contigs  across  the  turkey  genome  was 
evaluated by aligning the contigs against the chicken genome. The contigs were 
distributed  uniformly  across  the  genome  (Figure  1 and 
http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s1.png). The mapping results were subsequently used to further improve the 
assembly by merging contigs that mapped to adjacent or overlapping locations 
on the chicken genome. Merging of these contigs resulted in a more contiguous 
reference sequence and an increase in the average size of the assembled contig 
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(this assembly is further referred to as c50ca). We detected 15,754 adjacent or 
overlapping contigs, 13,695 identical overlaps, and 24,593 contigs in total were 
merged into 10,898 bigger contigs,  representing 2,072,380 nucleotides and a 
N50  of  198  bp.  Finally,  we  further  extended  our  turkey  reference  genome 
(referred to  as  c50caB) by  including the  publicly  available  BES.  A total  of 
5,831 BES (2,840,087 bp) with 49,638 short sequence contigs (4,032,887 bp) 
assembled into 8,526 new contigs with a total  sequence length of 3,022,857 
base  pairs.  The  remaining  38,957,511  bp  of  the  genome  sequence  was 
represented by 578,885 singletons. The BES, as well as all contigs from the 
extended assembly,  were  aligned to  the  chicken genome sequence  by  using 
BlastZ [25] to predict their distribution within the turkey genome (Figure 1 and 
http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s1.png).

SNP discovery

We aligned 32,941,906 reads (Table 1) to each of the three reference genomes 
described  above  (c50,  50ca,  and  c50caB).  We  adjusted  the  alignment 
parameters  towards  an  approximately  uniform  distribution  of  nucleotide 
variation over the 32 bp reads using reference c50 (Figure 2). Putative SNPs 
within  sequence  clusters  with  a  sequence  depth  less  than  four  times  the 
maximum  theoretical  coverage  (58X),  and  in  which  the  minor  allele  was 
represented  at  least  three  times,  were  recorded.  Using these  parameters,  we 
identified 7,617 SNPs residing in 6,696 contigs out of the 209,623 contigs of 
the c50 reference.  By using the C50ca assembly, 321 additional  SNPs were 
detected (Table 4); furthermore, the fraction of SNPs with a sufficient flanking 
sequence increased considerably. Finally a further increase in the number of 
SNPs was  achieved by using the  reference assembly  that  included the  BES 
(c50caB). This reference consisted of 192,731 contigs of which 7,952 contained 
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Figure 1: Distribution of short read turkey contigs, turkey BES, and SNPs on 
chicken chromosome 4. In black, short read contigs <100bp; in blue, short read 
contigs ≥100bp; in red, BES; in yellow, BES-short-read contigs; and in green,  
SNPs. On the X-axis, the chicken genome in 200 kb intervals. On the Y-axis, the 
frequency of mapped turkey features for a specific chicken genome interval.
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one  or  more  SNPs.  Putative  SNPs  detected  in  uniquely  mapped  reference 
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Figure 2: The X-axis represents the 32 base sequence read. On the Y-axis is the 
cumulative number of identified SNPs per base position of the sequence read. 

Figure 3. Distribution of 6,134 SNPs that mapped uniquely to the genome, 343 
of which were selected for validation. In blue, 5,791 putative SNPs identified 
using the c50caB reference sequence and mapping uniquely to the chicken 
genome; in red, 343 uniquely mapping putative SNPs selected for validation.  
On the X-axis, the chicken genome in 1 Mb intervals. On the Y-axis, the 
frequency of mapped putative turkey SNPs for a specific chicken genome 
interval.
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sequence contigs were plotted along the chicken chromosomes. Alignment with 
the chicken genome showed that the identified putative SNPs were distributed 
uniformly across the genome (Figure 3).

Validation

The application of the chicken reference genome in the improvement of our 
turkey reference, in which turkey contigs were merged based on comparative 
alignment results, requires conservation between these two genomes. Chicken 
and  turkey  genome  conservation  was  determined  by  performing  PCR 
amplification with forward and reverse  primers  designed on 13 neighboring 
short read turkey contigs aligning up to 0.5 kb apart on the chicken genome. As 
a control, PCR was performed on the corresponding chicken DNA target for 
which  additional  primer  pairs  were  developed  in  the  case  that  the  turkey 
primers  were  not  cross  species  applicable
(http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s2.doc). The resulting PCR products on the turkey genome were compared with 
corresponding amplification  products  obtained on the  chicken genome;  they 
were approximately the expected length based on the chicken genome. 
The contig assembly and SNP detection procedure were initially validated by 
PCR  amplification  and  subsequent  sequencing  of  the  fragments  in  the  six 
turkey  individuals  that  made  up  the  DNA pool  from which  the  short  read 
sequence data set was generated. Primers were developed on 12 contigs, each 
containing multiple putative SNPs. All 29 SNPs predicted on these 12 contigs 
were  confirmed.  In  addition,  a  further  five  additional  SNPs  were  identified 
(http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s2.doc).
Further SNP validation was done by genotyping an animal panel consisting of 
96 animals using 343 predicted SNPs distributed uniformly over the chicken 
genome (Figure 3) and 41 randomly selected SNPs that did not map uniquely to 
a single location in the chicken genome.  A total  of  340 SNPs gave reliable 
genotypes  in  the  assay,  and 96% of  these  were  polymorphic  (Table  5).  We 
observed  that  SNPs  predicted  within  contigs  that  uniquely  mapped  to  the 
chicken genome had a more than five times higher chance of giving reliable 
genotypes  than  SNPs from contigs  that  aligned to  multiple  locations  in  the 
genome. The minor allele count (MAC) of each polymorphic SNP, the minor 
allele frequency (MAF) observed in the six animals represented in the discovery 
pool,  and  the  MAF  based  on  all  96  genotyped  individuals  are  shown  in 
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http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s3.xls.  The average MAF of all  successfully  typed SNPs was 0.28,  and the 
average  heterozygosity  in  the  individuals  typed  was  0.35.  The  correlation 
between MAC and MAF was 0.69 in the six animals that made up the discovery 
pool.

Table 4: Overview of SNPs identified.

nt flanking sequence1

reference2 contigs SNPs 40/40 20/20 2/40 

c50 209623 7609 2254 5218 6454

c50ca 195928 7930 2760 5636 6834

c50caB 192731 11287 5620 8902 10125

140/40 refers to SNPs that are flanked on both sides by at least 40 nucleotides 
of genomic sequence.20/20 refers to SNPs that are flanked on both sides by at  
least 20 nucleotides of genomic sequence.2/40 refers to SNPs that have at least  
2 nucleotides flanking sequence on one side and at least 40 nucleotides on the 
other.
2c50 refers to reference genome consisting of short read contigs of 50 bp or 
morec50ca is extended genome assembly based on chicken alignmentc50caB is 
extended genome assembly based on chicken alignment and turkey BES.

Table 5: SNP performance statistics.

SNP 384 selected SNPs

Mapped (343) % Unmapped (41) %

performance

polymorphic 304 88.6 20 48.8

monomorphic 12 3.5 4 9.8

not working 27 7.9 17 41.5

Genotyping performance of 343 SNP discovered in short read contigs that were 
uniquely mapped on the chicken genome and 41 SNPs discovered in contigs 
that were not, or not uniquely, mapped on the chicken genome.
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Discussion 

Next generation sequencing

Our large-scale nucleotide variation study on the turkey genome, including a 
partial  assembly  of  a  reference  genome,  demonstrates  that  short  fragment 
second-generation sequencing of randomly sheared large fragment RRLs is an 
efficient and cost-effective approach for SNP discovery, providing thousands of 
high quality SNPs, even in the absence of an available genome sequence. This 
approach  combines  the  advantages  of  using  an  extremely  cost-effective 
sequencing platform with the ability to provide SNP sequence context by short 
fragment  assembly.  The  sequence  context  provided  by  this  SNP detection 
approach makes this the ideal method for the development of SNP assays on a 
variety of genotyping platforms for all species without sequenced genomes. 
We had to discard nearly 75% of our sequence data to meet quality constraints 
for  the  sequence  assembly  (Table  1).  This  was  in  pair  due  to  suboptimal 
sequence densities resulting in suboptimal clustering on the tiles of the Illumina 
Genome Analyzer (see methods section), resulting in poor sequence quality and 
low sequence output. On top of this, a relatively large proportion (about half of 
the  sequences  passing  our  quality  thresholds)  started  with  the  endonuclease 
cleavage site. The underestimation of this fraction in the initial length trimmed 
sequencing data subset was most likely caused by sequencing errors in the first 
four  bases of  a  read.  Stringent  filtering of reads revealed the  real  ratio and 
provided a higher quality data subset, but lowered the total theoretical coverage 
of our sequencing target to 10X. To avoid this observed bias towards the ends 
of the RRL fragments, an option is to dephosphorylate the ends of the RRL 
restriction fragments prior to random shearing and ligation to the sequencing 
adaptors. We were only able to assemble roughly 60% of our sequencing target 
covered by our RRLs, most likely due to the limited sequence depth (10X) of 
our final data set after using stringent quality thresholds. The recent addition of 
paired  end  sequencing  to  second  generation  sequencing,  the  increased  read 
length  and  the  predicted  further  increase  in  sequence  length  and  tens  of 
gigabases of useful sequence data per machine run in the near future [23,26], 
will  allow  more  efficient  sequence  assembly.  This  will  result  in  increased 
coverage of the sequence target and an increased contig length of the assembled 
sequences, at lower costs. An improved assembly allows a substantial increase 
in the number of  SNPs identified,  as  well  as  a  considerable increase in the 
number  of  SNPs  for  which  a  genotyping  assay  can  be  designed.  Another 
strategy to increase the number of assayable SNPs would be to use combination 
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of two different sequencing platforms, such as Roche 454 and Illumina GA, in 
which longer reads (454) are being used for reference construction and short 
reads provide the necessary sequencing depth to detect nucleotide variation. 

Benchmarking and improving

We showed that the genome sequence of a closely related species can be used 
for benchmarking the assembled contigs, the genome coverage and can further 
improve the reference assembly by merging contigs  mapping to an adjacent 
location on the genome of that  particular  species.  In the case of  turkey,  we 
applied this cost-effective strategy by using the likewise Galliform genome of 
the  chicken.  Previous  studies  indicate  that  chicken  and  turkey  karyotypes 
(common ancestor ~28 MYA) have undergone relatively very few chromosomal 
rearrangements during evolution compared to mammals [20]. Moreover, results 
of cross species hybridisation studies and comparative genomics suggest that 
chicken  an  turkey  share  a  high  sequence  identity  [20-22]  which  makes  the 
chicken genome sequence usable to benchmark the turkey reference assembly.
An assessment  of  the  quality  of  our assembled turkey contigs was done by 
mapping the contigs to the chicken genome and comparing the results with the 
alignment statistics of turkey BES of the same size range. The results indicate 
that the contigs up to 300 bp, in general, are of good quality and that turkey 
BES share high sequence identity with the chicken genome. The comparison 
between the assembled contigs  and BES indicate that  most  of  these contigs 
represent valid sequences of the turkey genome. At increasing contig length, the 
number of sequences that align uninterrupted to a unique location in the chicken 
genome declines, dropping below 10% for contigs in the size range of 1000 bp. 
The fact that this decline is not observed for the turkey BES indicates that it is 
not due to small indels between the chicken and turkey sequences, but that this 
is an artifact caused by the assembly. These results indicate that at increasing 
contig  lengths,  the  chance  of  mis-assemblage  by  SSAKE  increases 
exponentially.  However,  because  most  SNP typing  assays  make  use  of  the 
sequences directly flanking the SNP, this will only have a small effect on the 
success rate of the genotyping assays. At total of 7609 SNPs were identified on 
the  assembled  short  read  contigs  of  which  84%  was  flanked  by  sufficient 
sequence to  allow probe  design in  a  genotyping assay.  To make the  turkey 
reference more contiguous we used the chicken genome to identify contig pairs 
that uniquely mapped adjacent to each other, showing a small overlap. In 87% 
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of these cases, overlapping contigs appeared to have identical sequences within 
the  overlapping  region.  Although  biased  by  the  alignment  algorithms  used, 
which  remove  unaligned  tailing  ends  of  contigs,  our  comparative  assembly 
results suggest that the mapped contigs are of a constant high quality and can be 
mapped with high accuracy. Therefore, these results allow the merging of the 
smaller contigs, resulting in a significant increase in the average length of the 
assembled  turkey  contigs.  The  resulting  reference  sequence  appeared  to  be 
beneficial in the identification of SNPs and, in particular, increased the number 
of SNPs with sufficient flanking sequence for designing a genotyping assay. 
This benefit  is  clearly  illustrated by the 4% increase in the total  number of 
SNPs  identified  and 22% increase  in  SNPs  with  at  least  40  bp  of  flanking 
sequence on both sides. The alignment of the turkey contigs with the highly 
similar chicken genome also turned out to be a good predictor of genotyping 
success rates for the SNPs (Table 5). The SNPs located on turkey contigs that 
aligned to more than a single location on the chicken genome appeared more 
likely to fail in the genotyping assay than SNPs located on uniquely aligning 
turkey contigs which is probably because these are likely to contain duplicated 
sequence or repetitive sequences of the turkey genome. Repetitiveness of turkey 
and  chicken  genome  sequences  were  compared  by  applying  the  IR  [27] 
algorithm on the available turkey BES (9,9 Mb) and 20,000 (8,3Mb) chicken 
genomic  sequences  randomly  selected  from  the  NCBI  database  (data  not 
shown). Obtained non-normalised  Ir values suggest that the turkey genome is 
slightly less repetitive (0.6247) than the chicken genome (0.7126). The average 
Ir for the chicken genome was 0.3905 and ranged from 0.0793 in chromosome 
19 to 1.3419 in chromosome 16. Compared to other eukaryotes like Human, 
Mouse and Arabidopsis [27] the chicken genome is at least  three times less 
repetitive which is in line with the results of a previous study in which repeats 
were computationally identified on the chicken genome [28]. This lower level 
of  repetitiveness is beneficial for the genotyping success rate because of the 
lower occurrence of false SNP predictions due to repetitive genomic regions. 
To further maximize the number of identified SNPs, the available turkey BES 
were added to the reference genome. Again, these additional sequences not only 
resulted in the identification of an additional 3357 additional SNPs, they also 
increased the number of SNPs with a sufficient amount of flanking sequence. 
The  assembly  of  short  read  contigs  and  BES  resulted  in,  at  least,  a  25% 
reduction of sequence redundancy in the assembled short read contigs. Removal 
of sequence redundancy in the reference genome is beneficial for downstream 
SNP detection because of the reduction in the number of sequence reads being 
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assigned ambiguously to multiple locations on the reference genome during the 
alignment.  SNPs  predicted  within  sequence  clusters  containing  these 
ambiguously mapped reads are indistinguishable from falsely predicted SNPs 
due to the clustering of paralogous sequences and thus discarded. 

Allele frequencies

Our conservative approach requiring a minimal MAC of three was designed to 
minimize  false  positive  SNP  discovery  and,  consequently,  ignored  large 
numbers of less abundant true nucleotide variations. The five additional SNPs 
we identified by PCR and sequencing that were not previously detected in silico 
are  a  typical  consequence  of  applying  a  minimum  redundancy  cut-off. 
However,  the  selection  for  SNPs  with  a  MAC  of  at  least  three  drastically 
reduces the chance that sequencing errors are considered an SNP. Keeping the 
number of false positives as low as possible in general is more important than 
maximizing the number of SNPs. True nucleotide variation might also be lost 
during sequence assembly in which contigs are extended by a read only if the 
consensus base ratio is 0.6 or more. Single nucleotide polymorphisms with a 
MAF higher than 0.4 very likely break the contig extension; for this reason, 
they will only be detected on the tailing ends of assembled contigs. The absence 
of sequence context on one side of these polymorphisms further hampers the 
alignment  of  additional  reads  to  form  deep  sequence  clusters  meeting  the 
minimum allele count constraint applied during SNP detection. This concept 
explains  the  increase  in  the  number  of  SNPs  discovered  on  the  extended 
reference genome though the number and total number of base pairs covered 
decreased. The occurrence of a few SNPs with an estimated MAC higher than 
0.4 can be explained by a lower MAC in the assembly data subset compared to 
the MAC in the SNP detection data subset. 

Conclusions 
Our  strategy  of  assembling  a  reference  genome  from  short  next-generation 
sequences  of  a  randomly  sheared  RRL  of  pooled  genomes,  followed  by 
subsequent  SNP  detection  by  aligning  the  same  short  reads  against  this 
reference  genome,  is  a  cost-effective  and efficient  method for  the  high  rate 
discovery of SNPs in species with unsequenced genomes. The availability of a 
closely  related  sequenced  genome  is  not  a  requirement  but  comparative 
mapping facilitates the selection for high quality SNPs. Our comparison with 
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the chicken genome further suggests that the high quality SNPs identified in 
this report most likely cover the complete turkey genome and provide the first 
large SNP resource for genetic studies in turkey. 

Methods

Library construction

Genomic DNA was extracted from the blood of six unrelated F0 individuals 
from a male and a female turkey line,  selected for growth and reproduction 
characteristics respectively, three samples from each line. The selection of the 
restriction  enzyme  was  based  on  the  10  to  20-fold  reduction  of  genome 
complexity in the 2-3 kb size region run on a 1.5% agarose gel. Ten enzymes 
were  tested  (Sau3A,  XhoI,  AvaI,  MspI,  SacI,  KpnI,  SalI,  AluI,  TagI;  New 
England Biolabs, Ipswich, MA, USA); of which, Sau3A was finally selected to 
make the Turkey RRL because of good digestion performance and a desired 
5-6% fraction of the genome in the 2-3KB size range. In total, 100 µg of the 
pooled DNA was digested using 1,000 units of the restriction enzyme Sau3A in 
a total volume of 240 µl. The digested pooled DNA sample was fractionated on 
1.5% low melting  point  agarose  gel  at  100V for  3  hours  and  stained  with 
ethidium bromide. The 2-3 kb sized fraction was sliced out of the gel, melted, 
and loaded on a new 1.5% low melting agarose gel for another fractionation at 
100V for 1 hour. The 2-3 kb fraction was sliced out of the gel and the DNA was 
recovered by ß-Agarase-I treatment, purified by phenol-chloroform extraction, 
and  precipitated  with  2-propanol.  DNA  was  dissolved  in  TE  with  a 
concentration  of  50  ng/µl.  The  isolated  DNA was  randomly  sheared,  end-
repaired, and prepared using the Illumina Sample preparation kit [29].

Sequencing

Five picomole aliquots of the library were processed with the Illumina Cluster 
Generation  Station  (Illumina  Inc.,  USA)  following  the  manufacturer's 
recommendations. The Illumina IG Genome analyzer (Illumina Inc., USA) was 
programmed to produce a theoretical fixed read length of 36 bp. Images were 
collected over 4,040 tiles, each of which contained 685-41,954 clusters.

Sequence filtering and reference assembly

Reads were trimmed to 32 bp, and reads with an occurrence of more than four 
times the theoretical coverage were discarded. Two data sets were created; one 
was the assembly data set and the other the SNP detection data set. In the SNP 
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detection data set, we required a per base quality score of at least 10 if the read 
was singly represented. For the assembly data set, we required that a particular 
32  bp  sequence  be  represented  two  times  or  that  every  base  in  the  32  bp 
sequence have a quality score of at least 20. 
Furthermore, the assembly data set was analyzed for repetitive elements using 
RepeatMasker [24] with default options, species chicken, and reads containing 
repetitive elements were removed. Remaining reads were assembled to short 
read  contigs  using  SSAKE  [12]  and  the  default  parameters.  The  data  set 
containing contigs larger than 50 bp are referred to reference genome c50.
The short  read contigs (c50) were mapped on the chicken genome with the 
selection criteria that a contig had to align along 80% of its length with at least 
60% identity. Short read contigs in the size range of 50-100 bp were mapped 
using Megablast [30], and short read contigs of 100 bp and longer were mapped 
using BlastZ [25]. Mapping results were parsed using a custom made Perl script 
to identify short read contigs that mapped adjacent or with a less than 21 bp 
identical overlap. These identified contigs were subsequently merged, and this 
data set is referred to as reference genome c50ca.
The turkey genome reference sequence was further extended by adding 20,388 
publicly available BES of the CHORI-260 turkey BAC library [31] to all short 
read contigs (data set c50ca) and assembled using phrap [32] and the default 
parameters.  Obtained  sequences  larger  than  50  bp  were  used  as  a  turkey 
reference genome in the SNP detection procedure and referred to as c50caB.

SNP detection

The SNP detection was performed with MAQ [19] (default parameters) using 
the SNP detection data set and one of the reference genomes (c50, c50ca, or 
c50caB).  Putative  SNPs  were  tagged  if  the  reads  involved  were  mapped 
unambiguously on the reference genome and the minor allele appeared at least 
three  times.  The SNPs were discarded if  the  depth exceeded four times the 
theoretical sequence depth, the consensus quality of the SNP was less than 30, 
or the best mapping read in the sequence cluster had a mapping score lower 
than 60. 

Validation

Validation  of  the  assembled contigs  and detected  SNPs  was  performed two 
ways.
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First,  PCR primers  were  designed  for  12  contigs  containing  multiple  SNPs 
using primer 3. The PCR was performed in 12 µl and contained 6 µl Abgene 2x 
PCR Mastermix (ThermoScientific), 60 ng template DNA, and 4 pmol of each 

of the two primers. The PCR cycling conditions were 95°C for 5 min, 35 cycles 
of 30 s at 95°C, 45 s at 55°C, and 90 s at 72°C, followed by a final elongation 
step of 72°C for 2 min.
The PCR products of the six animals from the discovery panel were purified 
using  millipore PCR cleanup filter plates (MSNU03050) and sequenced using 
the DETT sequencing kit  according to the manufacturer's specifications (GE 
Healthcare).  Unincorporated  dye  terminator  was  removed by  ethanol 
precipitation and analyzed on a 48-capillary ABI 3730 DNA analyzer (Applied 
Biosystems).  Sequencing  results  were  further  analyzed  with  the  STADEN 
Package.
The second method of validation was genotyping the SNPs using the Illumina 
GoldenGate® Genotyping assay on an Illumina® BeadXpress with veraCode™ 
technology. Selection criteria for the SNPs were  based on the Illumine design 
score (above 0.8) and MAC ranging from .5 to .15 detected by MAQ [19]. For 
the total 384 SNPs assayed, including 343 SNPs equally distributed along the 
chicken genome and 41 randomly selected SNPs that did not map to a single 
location in the chicken genome, oligonucleotides were designed, synthesized, 
and assembled into oligo pooled assays (OPA) by Illumina Inc. The 384 SNPs 
were  genotyped  in  96  animals  which  included  the  six  F0 animals  from the 
discovery panel and 29 additional F0 animals and further consisted of 47 F1 

animals  and  14  unrelated  animals  derived  from 2  inbred  lines.  Genotyping 
results were analyzed in Beadstudio.
The  correlation  between  allele  frequency  estimated  by  sequencing  and 
genotyping  was  calculated  over  310  observations 
(http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s3.xls) by randomly selecting the major or minor allele.

Availability and requirements
The SNPs identified in this study, in which the polymorphism is flanked by 20 
bp of sequence context on each side, have been deposited in the National Center 
of  Biotechnology  (NCBI)  SNP  database  (dbSNP)  under  submitter  handle 
WU_ABGC.  NCBI_ss  142460378-142468928  excluding  (142463311, 
142463314,  142463316,  142463318,  142463320,  142463322,  142463324, 
142463326,  142463328,  142463330,  142463332,  142466905,  142466907, 
142466910, 142466912) represents predicted SNPs that were not tested in our 
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animal  panel.  Predicted  SNPs  that  were  confirmed  are  listed  in 
http://www.biomedcentral.com/content/supplementary/1471-2164-10-479-
s3.xls. The SNPs with less than a 20 bp sequence context will be available upon 
request.
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Abstract

Background

Variation  within  individual  genomes  ranges  from  single  nucleotide 
polymorphisms  (SNPs)  to  kilobase,  and  even  megabase,  sized  structural 
variants  (SVs),  such  as  deletions,  insertions,  inversions,  and  more  complex 
rearrangements. Although much is known about the extent of SVs in humans 
and mice, species in which they exert significant effects on phenotypes, very 
little  is  known  about  the  extent  of  SVs  in  the  2.5-times  smaller  and  less 
repetitive genome of the chicken.

Results

We  identified  hundreds  of  shared  and  divergent  SVs  in  four  commercial 
chicken lines relative to the reference chicken genome. The majority of SVs 
were found in intronic and intergenic regions, and we also found SVs in the 
coding regions. To identify the SVs, we combined high-throughput short read 
paired-end sequencing of genomic reduced representation libraries (RRLs) of 
pooled  samples  from  25  individuals  and  computational  mapping  of  DNA 
sequences from a reference genome.

Conclusion

We provide a first glimpse of the high abundance of small structural genomic 
variations in the chicken. Extrapolating our results, we estimate that there are 
thousands of rearrangements in the chicken genome, the majority of which are 
located in non-coding regions. We observed that structural variation contributes 
to genetic differentiation among current domesticated chicken breeds and the 
Red Jungle Fowl. We expect that, because of their high abundance, SVs might 
explain phenotypic differences and play a role in the evolution of the chicken 
genome. Finally, our study exemplifies an efficient and cost-effective approach 
for identifying structural variation in sequenced genomes.

Background
Structural  variation  within  the  genome,  including  insertions,  duplications, 
deletions, and inversions of up to multiple kilobase pairs, have recently been 
described in a variety of species, including humans [1-3], mice [4], rats [5], 
silkworms [6]  drosophila  [7],  and  dogs  [8].  These  genomic  variations  were 
recently found to be widespread, encompassing 5% of the human genome [9], 
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and are thought to be involved in (co)determining complex phenotypes [10,11]. 
The contribution of structural variants (SVs) to complex phenotypes has been 
measured by association analyses of variance in gene expression levels (traits) 

and the presence of SVs. SNPs and SVs have been shown to account for 83.6% 

and  17.7%,  respectively,  of  the  total  detected  genetic  variation in  gene 
expression, with only a limited overlap [12]. The effect that SVs have on gene 
expression  is  likely  underestimated  given  the  much  less  completeness  and 
accuracy with which SVs could be queried at that time. In humans, SVs have 
been  associated  with  sporadic  and  Mendelian  diseases,  such  as  Williams-
Beuren syndrome, mental retardation, and red-green color blindness. SVs have 
also been associated with complex human traits, such as autism, schizophrenia, 
Crohn’s  disease, and  susceptibility  to  HIV infection  [13].  Because  of  their 
association  with  human  diseases,  the  importance  of  SVs  has  become 
increasingly  apparent  [9,14,15].  For  most  other  species,  including the major 
farm animals, chickens, cattle, and pigs, the extent and biological consequences 
of  SVs  have  remained  largely  unknown due  to  the  lack of  a  cost-effective 
approach for detecting SVs. 
Until recently, comparative genomic hybridization (array-CGH) was the most 
commonly used method for detecting SVs [16]. Fosmid paired-end sequencing, 
which is a more laborious technique, has been used to detect SVs larger than 8 
kb [17,18]. The inability to resolve smaller SVs using array-CGH results in the 
over-representation of larger SVs in current  databases of  structural  variation 
(e.g., http://projects.tcag.ca/variation/). The  resolution  of  array-CGH,  though 
extremely  costly,  can  be  improved  by  using  high-resolution  whole-genome 
tiling arrays. Most of these SVs have been identified by methods that do not 
resolve SV end points at the base pair level. In addition, methods like array-
CGH are based on a reference genome that currently does not encompass all 
SVs within the population and, thus, is limited in scope. Genomic regions that 
are the result of deletions not present in the reference genome are not captured 
by the array and not analyzed for SVs.
Next  generation  sequencing  (NGS)  technology  was  recently  shown  to  be  a 
powerful alternative to array-CGH for identifying genomic structural variation 
[1,7,19]. Using paired-end sequencing, SVs can be identified with single base pair 
resolution, and balanced rearrangements in which there is no gain or loss of a 
genomic region, such as inversions and translocations, cannot be identified by 
array-CGH. Paired-end sequencing and mapping (PEM) involves sequencing 
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the paired ends of fragments of known insert size from a genomic DNA library 
and computationally mapping DNA reads to a reference genome.
Here,  we  used  PEM  on  reduced  representation  libraries  (RRLs)  of  pooled 
chicken DNA samples. 
In the chicken genome, only 43 (larger) SVs have been described thus far [20]. 
These SVs encompass 16 chicken-turkey inter-specific copy number variants 
(CNV) and 32 chicken-duck inter-specific CNVs, of which five CNVs overlap 
with  inter-specific  chicken-turkey  CNVs [21].  In  chicken,  some  phenotypes 
have already been linked to structural variation, including the pea-comb [22] 
and late feathering [23] phenotypes. With PEM of an RRL, we provide a cost-
effective approach for exploring the presence of SVs at high resolution within 
four chicken breeds. 

Results

Paired-end sequencing and mapping

To  identify  genomic  rearrangements  in  the  chicken  genome,  we  applied 
massively parallel sequencing using the Illumina Genome Analyzer platform to 
sequence both ends of the genomic DNA fragments derived from the RRLs. We 
used pooled samples from 25 individuals to construct  AluI RRLs for a white 
egg layer line, brown egg layer line, and two different broiler lines. For the 
white and brown egg layer lines, the 150-200 bp AluI fragments were used for 
creating the RRL; for the two broiler lines, 125-200 bp  AluI fragments were 
used. From the brown and white egg layer RRLs, we obtained 31.61 million 
and 29.70 million raw reads, respectively, and from broiler 1 and broiler 2 we 
obtained a total of 34.8 million and 32.4 million raw reads, respectively. Reads 
were filtered for the presence of the restriction enzyme tag and trimmed to 32 
bases. We required a phred quality score [24] of at least 20 (Table 1) for each 
base in the 32-bp read. The fraction of read pairs for which both reads mapped 
back to the reference chicken genome (Red Jungle Fowl built WASHUC2) was 
55% for broiler 1 and 70% for broiler 2 (Table 1). In the layers, the fraction was 
66%  (brown  egg  layer)  and  62%  (white  egg  layer).  Of  the  approximately 
hundred thousand paired reads in all breeds, only one read (0.4-0.5%) mapped 
back to the reference genome, whereas up to 44% of the read pairs had no end 
mapping back to the reference genome.
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Table 1: Sequencing and mapping results for the four chicken 
breeds analyzed for structural variation.

Sequencing Mapping

Breed Raw 
reads

Paired
l32q201

Concor-
dant2%

Neither  
end3 %

One 
end4 %

Diff 
chr5 %

Too 
short6

Too
 long7

Relative
orientation8

Brown 
egglayer

31.61 23.59 66.26 33.17 0.45 0.02 417 19252 480

White 
egglayer

29.70 21.84 61.95 37.15 0.54 0.12 894 18836 1862

Broiler 1 34.82 24.83 70.40 29.06 0.43 0.01 1837 19086 303

Broiler 2 32.28 20.64 55.33 44.08 0.37 0.04 4458 16525 724

Paired-end sequencing of RRLs resulted in the indicated number of raw reads 
per breed. Sequencing read counts are in millions. Mapping percentages are 
relative to Paired l32q20.1Paired l32q20 = paired reads had the RRL 
restriction tag trimmed to 32 bp and were filtered for a minimum per base 
quality of 20; 2Concordant = both reads of a read pair mapped to the expected 
orientation relative to each other and in the expected distance according to the 
RRL size range; 3Neither end = none of the reads of a read pair mapped to the 
reference; 4One end = only one read of a read pair was mapped; 5Diff chr = 
both reads of a read pair mapped, but to different chromosomes; 6Too short = 
both reads of a read pair mapped to the expected orientation relative to each 
other but at a closer distance than expected based on the RRL size range; 7Too 
long = both reads of a read pair mapped at a larger distance from each other 
than expected; 8Relative orientation = reads of a read pair mapped in another 
orientation relative to each other than expected based on the reference chicken 
genome. 

To calculate the sequence coverage of the RRL, we estimated the number of 
fragments in the RRL by performing an  in silico AluI digest  of the chicken 
genome build WASHUC2, which resulted in 583,826 fragments of 150-200 bp, 
whereas 947,538 fragments of 125-200 bp were obtained. We calculated RRL 
sequence  coverage  based  on  the  paired-end  reads  that  passed  our  sequence 
quality filters. Coverage of the RRLs ranged from 11-13X in broiler lines to 
18-20X in the layer lines, indicating that we analysed, on average, 22-40% of 
the haplotypes of the 25 individuals used for constructing the RRL (Table 2).

For each breed, we calculated insert sizes for paired ends that mapped in the 
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correct  orientation  (Figure  1).  The  results  show  a  peak  at  ~185  bp  and  a 
shoulder of smaller fragments, indicating that the insert sizes were not equally 
distributed. The upper limit of fragment size was clearly demarcated at ~210 bp, 
which corresponded well to the size range of the excised fragments. Based on 
these results, the lower limit was estimated to be ~135 bp in the layer lines and 
~110 bp in the broiler lines, which is consistent with the applied size selection. 
To eliminate false positives, we established size thresholds of 100 and 220 bp 
and considered mapping paired reads within this range as consistent with the 
reference genome. 

Table 2: RRL construction simulated by an in silico AluI digest of 
the WASHUC2 build of the reference chicken genome.

Line Size-range Number of  
fragments

Genome fraction Sequenced
(32 bp reads)

RRL 
coverage

Layers 150-200 583826 101 Mb (8%) 18.7 Mb (1.5%) 37-40X

Broilers 125-200 947538 151 Mb (12%) 30.3 Mb (2.4%) 22-26X

Fragments were collected in corresponding size ranges as used in the in vitro 
RRL preparation. The total number of collected fragments and number of bases 
captured are indicators of what genome fraction was sampled. Based on 
trimmed reads, the fraction of the genome actually sequenced was calculated.  
The number of raw read pairs obtained (see Table 1) divided by the number of  
fragments is an indicator of the RRL coverage.

Rearrangements

In  each breed,  roughly  0.1% of  the  mapping read  pairs  had  no concordant 
alignment in the reference genome, referred to as discordant paired-end reads 
[2,17], indicating a potential SV. Discordantly mapping read pairs are pairs that 
map too short or too far of a distance in base pairs according to the RLL size 
range or in another relative orientation than expected based on the reference 
genome (Table 1). Paired reads that mapped to two different chromosomes (up 
to  0.12%)  were  excluded  from further  analysis.  Discordantly  mapping  read 
pairs with similar mapping coordinates and predicting a similar putative SV 
were clustered in 10,559 clusters. Clusters were classified as having an insert 
size that was too large (deletions, n=5135), too small (insertions, n=5241), or an 
incorrect orientation of ends (inversion breakpoints, n=183) with respect to the 
chicken genome sequence.
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Because of the high number, not all of the clusters are presumed to represent a 
true  genomic  rearrangement,  but  are  incorrectly  mapped  reads  caused  by 
sequencing errors that  result  in low quality mapping. Therefore,  the average 
mapping  quality  of  discordantly  mapping  read  pairs  was  evaluated  per 
chromosome compared to the average mapping quality scores of read pairs that 
mapped  consistently  within  the  reference  genome.  However,  the  average 
mapping quality  of  discordantly  mapping reads  was  similar  to  the  mapping 
quality of concordantly mapping read pairs (Table 3). We also observed that the 
average  coverage  by  paired  reads  differed  up  to  two-fold  between 
chromosomes, but the number of fragments per chromosome in the RLL highly 
correlated with chromosome size. 
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Figure 1: Distribution of fragment sizes for concordantly mapping reads in the 
four sequenced chicken breeds. For unclear reasons, broiler 2 had remarkably 
higher representation of smaller fragments (left long shoulder), whereas 
fragments in base pairs of the size range 180-200 were two magnitudes less 
abundant compared to the three other breeds.
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Table 3: Comparison of the mapping quality and distribution 
between concordantly and discordantly mapping read pairs.

Chromo
-some

Number of mapping 
read pairs

Average mapping 
quality

Mapping 
density

RRL
density

1 5329141 15630 67.92 69.11 38 1286
0

1148

2 3968343 15049 68.14 71.29 39 1029
1

1149

3 3344481 11031 68.87 68.20 34 1030
3

1119

4 2758645 8155 68.53 70.40 34 11555 1098

5 1975228 5390 68.53 67.93 32 11547 1065

6 1258393 2782 68.31 69.69 30 1344
3

1056

7 1336228 4669 68.78 65.41 29 8221 1053

8 1119526 2866 68.63 72.82 27 1070
2

1067

9 1016524 3232 68.16 69.65 25 7907 1028

10 761372 2725 68.20 69.52 30 8278 1044

11 677920 1381 68.56 68.70 32 1587
9

1050

12 864303 3039 68.33 69.74 24 6758 989

13 780565 2107 68.47 66.72 24 8976 966

14 740461 3512 67.86 69.36 21 4504 929

15 669260 1378 68.56 68.47 19 9411 916

20 722054 2501 68.78 68.27 19 5592 911

Z 1845751 11981 68.05 68.79 40 6227 1271

The number of concordant and discordant (in italics) mapping read pairs per 
chromosome are given. The average mapping quality of concordantly and 
discordantly mapping read pairs was calculated per chromosome. By 
calculating the mapping density, the distribution of mapping read pairs over the 
genome were evaluated. Mapping density was calculated by dividing the 
chromosome length by the number of concordantly/discordantly mapping read 
pairs. RRL density was calculated to ascertain the contribution of the RRL 
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approach to differences in mapping density. RRL densities were calculated by 
dividing the chromosome length by the (in silico) estimated number of RRL 
fragments.

To be considered as a true putative SV cluster, we required both ends to have an 
average mapping quality  similar  to  concordantly  mapping reads,  which  was 
~60. In total, 7,789 clusters consisting of 3794 deletions, 3931 insertions, and 
64 inversion breakpoints met this criterion. SV clusters predicting a deletion or 
insertion  were  further  prioritized for  confirmation screening on the  basis  of 
parameters  listed  in  the  Methods  section. To  validate  our  approach  for 
identifying SVs, we initially evaluated 15 (SV13-28) predicted SVs (Table 4) 
using  PCR to  genotype  pooled  samples  from the  four  chicken  breeds  with 
primers spanning predicted breakpoint junctions. A total of eight SVs yielded a 
clear PCR product of the expected size (Figure 2A). For these SVs, PCR was 
performed on individuals from breeds in which the SV was confirmed to be 
present  by the SV-specific  PCR product  (Figure  2B).  Individual  SV-specific 
PCR products typed homozygous for the SV were sequenced to disentangle the 
rearrangement at  the base-pair level.  The sequence analysis results  for these 
eight identified rearrangements were all consistent with our SV predictions.

Discriminating putative SVs from false positives

The results  suggest  that  the  presence  of  concordantly  mapping reads  partly 
overlapping the predicted SV region did not correlate with the quality of SV 
prediction,  whereas  reference  errors  in  the  predicted  SV  region  correlated 
negatively.  Furthermore,  the  results  indicate  that  putative  SVs  predicted  by 
single or few discordantly mapping read pairs that mapped a slightly different 
distance than expected were false positives, whereas the majority of putative 
SVs with greatly  deviating mapping distances were confirmed as being true 
SVs.  With this  limited number of  observations,  we formulated a  simple but 
fitting  rule  to  determine  SV clusters  with  a  high  likeliness  to  represent  a 
genomic rearrangement from false positives. 
We hypothesize that the size range of targeted DNA fragments isolated from the 
gel might contain a very small fraction of fragments outside the established size 
thresholds  (Figure  1).  This  lack  of  proper  separation  is  likely  caused  by 
migration artefacts caused by secondary DNA structures.  To compensate for 
this bias, we required that predicted SVs based on discordantly mapping read 
pairs  that  mapped  to  the  reference  between  220  and  720  bp  meet  a 
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representation  constraint.  In  our  proposed  validation  rule,  we  assumed  an 
inverse relationship between the span-size deviation of a predicted SV and the 
number of discordantly mapping read pairs (n) required to predict a true SV. We 
hypothetically  state  that  SVs  meeting  the  abundance  constraint  (span-size 
deviation)×n >500 can be validated as true deletions.
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Figure 2: PCR-based genotyping on a breed level (A) and individual level (B).
A) Genotyping for the presence of SVs in breeds, represented by pooled 
samples. Except for SV50 and SV51, a small (see Table 4 for approximate sizes 
and breed encoding) PCR fragment that was absent in the reference was 
expected in some of the breeds that have the deletion. In SV50 and SV51, a 
slightly larger PCR fragment than that observed in the reference was expected 
in breeds that have the insertion.
B) Genotyping for the presence of SVs in eight individuals of breeds in which 
the SV was detected in pooled samples. Except for SV50 and SV51, a small PCR 
fragment was expected in individuals homozygous for the deletion and SVs in 
which the reference genotype is too long for PCR. Heterozygous individuals in 
which both genotypes can be spanned (see Table 4) by PCR show two bands. In 
SV50 and SV51, both PCR fragments, which differ slightly in size, are expected 
in heterozygous individuals, whereas only the larger fragment is expected in 
individuals homozygous for the insertion.
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Table 4: Validation structural polymorphisms.

Prediction Confirmation

SV Span 
size

n CMP RE aamq Breed Breakpoints Size Size in 
RRL

Breed

15 251 1 X 97 2

14 402 3 97 1,2 10_1627991-1628223 232 170 1,2

13 414 2 93 W

18 640 1 X 99 1

22 661 121 X X 77 W,B,1,2

17 729 4 X 94 W,2 3_110574268-110574832 564 165 W,2

20 780 6 X 96 W,1,2

21 884 1 X X 99 1

19 970 2 X 99 1

25 1248 3 73 2 1_188914114-188915200 1086 162 B,1,2

23 1319 1 97 2 2_55356006-55357163 1157 162 1,2

24 1376 2 70 2 4_23256240-23257477 1237 139 W,B,1,2

26 5845 1 X 90 W 2_112569238-112574924 5686 159 W

27 19574 15 X 96 W,1 - - - -

28 8128 489 X 93 2 1_61836457_61844398 7941 187 W,B,1,2

50 64 48 71 B,1,2 2_152470660* 1,2

51 86 39 69 2 3_19576932 115 201 W,B,1,2

52 229 141 79 B,1,2 4_43663736-43663781 45 184 W,B,1,2

53 274 10 76 B,1,2 6_6687386-6687469 83 191 B,1,2

54 283 140 X 74 B,1,2 2_46860428-46860509 81 202 B,1,2

55 360 4 76 1 3_67474749-67474961 212 148 1

56 367 21 X 72 B 1_189692870-189693048 178 189 B

57 544 4 69 1,2 7_28561048-28561407 359 185 12

58 662 2 60 1 1_44948882-44949390 508 154 W,B,1,2

59 868 2 X 97 2 1_99177206-99177957 751 117 B,1,2

Span size is the distance (in base pairs) on the reference sequence spanned by discordantly mapping read pairs. The 
number of observed discordantly mapping read pairs that support the presence of this structural variant (SV) is given 
by n, whereas CMP represents the number of concordantly mapping read pairs present in that particular genomic 
region. Discordantly mapping read pairs spanning an assembly problem in the reference genome are flagged in the RE 
column. The alternative mapping quality of a predicted SV is the average mapping quality calculated over discordantly  
mapping read pairs within a cluster. Deletion breakpoints are in the notation chr_start-stop, whereas insertion 
breakpoints are given in the notation chr_position. Breakpoints were not acquired for SV27 and not accurately acquired 
due to low sequence complexity in SV50. W = white egg layer; B = brown egg layer; 1 = broiler 1; 2 = broiler 2.*Due 
to the low sequence complexity, the exact location of insertion could not be revealed
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We assumed that this empirical rule is also applicable to insertions predicted by 
read pairs that  map (too short)  a  distance of  32-100 base pairs. To test  our 
empirical rule, we applied it to the subset of deletion (n=3794) and insertion 
(n=3931) clusters used in the previous validation study, obtaining 186 candidate 
putative  deletions  and  two  insertions.  Both  insertion  candidates  (SV50  and 
SV51) and a total of eight deletions (SV52-SV59), four of which narrowly met 
the  rule  constraints  (Figure  3),  were  selected  for  confirmation.  PCR-based 
genotyping analysis showed that all selected candidates were confirmed in the 
pooled  samples  (Figure  2A).  We  also  observed  that  the  PCR-based  SV 
genotyping results for pools correlated well with the predicted presence of a 
particular SV in the breeds based on the sequence dataset (Table 4).
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Figure 3: Distinguishing putative deletions from false positives in genotyping 
validation results obtained by PCR.Predicted deletions in the initial validation 
study that were confirmed are in green; those that could not be confirmed are 
in red. The black line represents the discrimination rule (span-size 
difference)×n >500, which is valid for 220-720 bp. The SV predictions that  
were selected based on the model and confirmed are in blue. 



 Structural variation in the chicken genome identified by paired-end next-
generation DNA sequencing of reduced representation libraries

Breed-specific and shared SVs

Genotyping results suggested that the presence or absence of SVs in a particular 
breed is  fairly  well  predicted by  the sequencing data.  Therefore,  we further 
analysed  186  rearrangements  (deletions)  validated  by  our  rule  for  breed 
specificity. We also analysed breed specificity for 280 putative deletions that 
resulted from applying a less stringent read mapping quality constraint, which 
was also applied in previous SV detection studies [19,25].  The results  were 
compared by plotting both data subsets in weighted Venn diagrams (Figure 4). 
In the validated dataset of 186 deletions, we detected the most SVs in broilers, 
114 in broiler 1 and 109 in broiler 2, whereas fewer SVs were detected in the 
layer lines, 60 in white egg layers and 85 in brown egg layers. Ten percent of 
the rearrangements were present in all four breeds. SVs detected in white egg 
layers were 23% breed-specific, and the other 77% were evenly shared with the 
other breeds. The brown egg layers had the fewest breed-specific SVs (18%) 
and shared a remarkably high percentage (65%) with broiler 1. Broiler 1 and 
broiler 2 showed similar percentages of breed-specific SVs, and 36% of the 
SVs in broiler 2 were shared with broiler 1. Applying a less stringent mapping 
quality constraint resulted in a 50% increase in SVs, whereas the distribution of 
SVs over the four chicken breeds remained approximately the same.

Distribution of predicted SVs

The majority of detected SVs were small (Figure 5); roughly 85% of all SVs 
were < 1 kb and 60% were < 500 bp. However, we also predicted and validated 
SVs spanning multiple  kilobases.  Predicted SVs validated by  our  rule  were 
mapped to the chicken chromosomes,  and we observed an even distribution 
(Figure 6). Sequence annotations of the regions overlapping the identified SVs 
were extracted from Ensembl [26]; 44% of the SV read pairs mapped within 
genes. The read pairs for a minor fraction of the SVs (~2%) spanned predicted 
exons;  these were SVs putatively affecting genes at  the transcriptional  level 
(Table 5). The majority of all predicted SVs represented a putative deletion of 
low complexity and repetitive sequence motifs in intronic or intergenic regions 
(Table 6). A remarkable predicted SV was SV52, representing a deletion within 
exon  ENSGALE00000116074  of  gene  ENSGALG00000010719,  which  has 
been annotated as DNA glycosylase FPG2.
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SVs at base pair resolution and overlap with functional elements

All PCR-validated SVs were characterized by traditional sequence analysis to 
reveal  their  breakpoint  locations, from which the  chromosomal  position and 
exact  deletion/insertion  sizes  were  derived  (Table  4).  Sequence  losses  were 
annotated using Ensembl [26]. For rearrangements in SV52, we analyzed the 
effect  on  the  in  silico transcript  to  which  it  was  mapped.  The  majority  of 
intronic  deletions  resulted  in  a  loss  of  a  variety  of  known repetitive  motifs 
(Table 7). In contrast, we could not find annotations in Ensembl [26] for most 
losses in intergenic regions or known repeats using RepeatMasker (Smith and 
Green unpublished). DNA sequences at the SV breakpoints were analyzed for 
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Figure 4: Venn diagrams representing the distribution of predicted deletions in 
the four chicken breeds at mapping constraints 60 (left) and 35 (right).
The number of structural variants is proportionally represented per breed, and 
line colors were assigned as follows: green = brown egg layer; blue = broiler 
1; red = broiler 2; and purple = white egg layer. For example, the area that is  
surrounded by the blue line in the left diagram represents SVs found in broiler  
1. Of these, 23 were specific for broiler 1 (yellow area), and 28 were shared 
with broiler 2 (dark yellow area surrounded by both the blue and red lines). The 
orange area surrounded by the blue, red, and green line represent 18 SVs 
shared by broiler 1, broiler 2, and brown egg layers. The red area in the middle 
of the diagram surrounded by the four line colors represents 20 SVs shared by 
the four breeds analyzed.
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signatures indicating the mechanism by which the SVs formed. We identified 
microhomology  in  three  sequenced  SVs.  Finally,  the  SV we  observed  in  a 
coding  region  involved  a  deletion  in  the  end  of  the  last  exon 
(ENSGALE00000116074) of transcript ENSGALT00000038211.

Table 5: Annotation of putative deletions on the in silico transcript 
level.

Transcript(s) Modification Protein

ENSGALT00000005255 Truncation last exon Flavin_mOase

ENSGALT00000003325 Truncation exon 9 or 5' 
deletion exon 10

PDZ domain

ENSGALT00000025445 5' deletion in last exon Ionic channel

ENSGALT00000008864/40988 5' deletion in exon 4 Transcription factor

ENSGALT00000022933 Truncation exon 10 EGF-like

ENSGALT00000013428 Truncation exon 2 Unknown

ENSGALT000000002076/23151 Truncation last exon ADP-ribosylation factor-like

Putative SVs with breakpoints predicted in exons were further analyzed in 
Ensembl [26]. Involved transcripts and protein functions were identified and 
putative modifications recorded.

99

Figure 5: Size distribution of predicted deletions at two mapping constraints. 
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Discussion
By sampling a portion of the genome from four chicken lines using stringent SV 
detection constraints, we detected 188 SVs encompassing ~130 kb. Assuming 
considerable limitation in the detection of classes of SVs by our method, the 
chicken genome may differ in SVs to a greater extent than in SNPs. Therefore, 
we  counted  the  total  number  of  nucleotides  involved.  The  majority  of  SVs 
identified by our method were small deletions, most of which resulted in a loss 
of repetitive motifs in intronic regions or a loss of unannotated sequences in 
intergenic regions. Both insertions mapped to intergenic regions as sequences of 
a  few tens  of  base  pairs  and  low  complexity.  However,  we  also  predicted 
rearrangements  in  coding  regions,  revealed  the  exact  breakpoints  on  the 
reference genome for 16 SVs, and confirmed our predictions. To what extent 
SVs in intronic and intergenic regions contribute to the evolution of the chicken 
genome  or  chicken  phenotypes  remains  unclear,  especially  because  the 
functions of these genomic regions are largely unknown [27]. To date, studies 
involving  the  detection  and  exploitation  of  genetic  variation  in  chicken 
encompass large SVs by means of CNVs but do not include smaller SVs. Our 
study reveals that, given their high frequency, these smaller SVs will need to be 
incorporated in genotyping because they might explain phenotypic differences. 
In addition, our data suggest that structural variation has contributed to genetic 
differentiation among current domesticated chicken breeds and the Red Jungle 
Fowl, and might have played a role in chicken genome evolution.
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Figure 6: Distribution of predicted SVs over the chicken chromosomes.Shown 
are chicken chromosomes in which 186 deletions (red) and 2 insertions (blue) 
were identified.
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Table 6: Putative functional annotations of predicted SVs.

Coding Repeats

aamq n % genes % within 
exons

% exons % CR11 % 
GGLTR2

% 
other3

% 
TR4

% 
dust5

%!6

35 280 43.9 0.36 5 19.6 5.3 5.0 25.0 36.1 42.9

60 186 43.0 0.54 3.8 18.8 4.3 3.2 26.9 36.6 41.9

SVs of data subsets aamq 35 and aamq 60 were annotated based on their 
mapping location on the chicken genome. SVs were analyzed to determine 
whether they mapped within genes, within exons, or partially overlapped exons.  
1CR1 = chicken repeat 1 [36]2GGLTR = Gallus gallus long terminal  
repeat3other = other specific repeat classes4SVs that mapped in repetitive 
sequences were analyzed for signatures of common repeats in the chicken 
genome and scanned for tandem repeats identified by Tandem Repeat Finder 
[37];5SVs that mapped in repetitive sequences were analyzed for signatures of  
simple repeats identified by the DUST algorithm [38]; 6The fraction of SVs that  
mapped in intronic and intergenic regions not identified as repetitive or low 
complexity are given in column “%!”.

RRL-based approach to SV detection

Currently, sequence-based genome-wide surveys of SVs involve the preparation 
of  whole  genome  fragment  libraries  in  combination  with  paired-end 
sequencing. Such approaches require relatively large investments, particularly if 
multiple  individuals  from  multiple  breeds  have  to  be  screened.  This  study 
demonstrated the potential of massive parallel paired-end sequencing of RRLs 
constructed from the pooled DNA of multiple individuals. SVs were predicted 
based on the read pair information from the paired-end sequenced small insert 
RRL,  which  was  purposely  created for  SNP detection.  The  small  RRL size 
allowed for PCR-based confirmation and characterization of the SV at the base 
pair level of acquired deletions and small insertions with minimal sequencing 
efforts.  Revealing  inversion  and  translocation  breakpoints  is  much  more 
laborious due to the limited information RRL approaches provide. We showed 
that read pair analysis of a paired-end sequenced RRL is already sufficient for 
obtaining a first glimpse of SVs in a particular species. However, PEM of a 
randomly  sheared  and  size-selected  whole  genome  library  provides  a  more 
complete  catalog  of  rearrangements  characterized  between  a  sample  and  a 
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reference [1,19]. An even more complete picture including SVs of a larger size 
and  more  complex  rearrangements  will  require  paired-end  sequencing  of 
several  libraries  of  different  insert  sizes  [28].  Extremely  demanding  is  the 
detection of all structural variation, which requires whole genome sequencing 
and  de  novo  assembly because  the  identification  of  (small)  deletions  and 
insertions  with  comparable  or  shorter  length  than  the  standard  deviation  of 
paired-end insert sizes cannot be identified by mapping approaches. Moreover, 
reference-based approaches,  included mapping approaches,  are  biased to  the 
completeness  of  the  reference  and,  thus,  ignore  variants  in  regions  that  are 
missing from the reference genome due to structural variation. Finally, de novo 
assembly has the advantage of resolving SVs to a single base pair level, and 
inserted sequences can be obtained [29].

Next generation sequencing

We  used  a  NGS  approach  to  identify  genomic  rearrangements  within  four 
commercial  chicken  breeds  by  comparing  their  genomes  to  the  sequenced 
chicken genome (Red Jungle Fowl). We excluded several classes of sequence 
reads from further analysis, including reads that did not show the restriction 
enzyme tag and those that showed more than one mismatch in the alignment. 
The first constraint was applied to eliminate false positive insertion predictions 
due to a breakdown of the RRL resulting in shorter spans of paired-end reads, 
whereas  the  second  constraint  was  applied  to  reduce  the  number  of  false 
predictions due to sequencing errors. However, we realize that by taking these 
measures we also discard many read pairs because of true nucleotide variation, 
which occur in one of every 200 bp in the chicken [30]. The inclusion of read 
pairs with more than one mismatch in the alignment can be considered but has a 
risk of falsely predicted SVs due to mapping errors, requiring a revalidation of 
our proposed SV size deviation versus the observed frequency rule (Figure 3). 
On the other hand, reducing the mapping constraints might reveal additional 
true SVs potentially hidden in the considerable fraction of read pairs with only 
one end or no end mapped to the reference when using our mapping constraints. 
However, this fraction of read pairs with mapping problems might also largely 
represent sequences of gaps in the genome (estimated to encompass ~100 Mb in 
total) and, thus, cannot be mapped.
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Table 7. Annotation of confirmed deletions and DNA signatures at 
breakpoints.

Nr Gene Exons Repeats Signatures

52 ENSGALG00000010719 ENSGALE00000116074 MH

54 ENSGALG00000012116

53

56

55

14 ENSGALG00000001729 trf1 MH

57 ENSGALG00000011699 dust

58 dust

17 ENSGALG00000016679 CR1-F0, Z-REP, trf, 
dust

59

25 dust, trf

23 ENSGALG00000012402 dust, trf

24 ENSGALG00000020249 dust, trf

26 CR1-Y4, dust, trf

28 ENSGALG00000012956 CR1-D2, Mariner1, 
GG, dust

MH

Deletions were annotated based on their mapping position on the chicken 
genome and deleted sequences were analyzed for common and more chicken-
specific repeats. trf = repeats identified by Tandem Repeat Finder [37]; dust = 
simple repeats identified by the DUST algorithm [38]; CR1, = chicken repeat 1 
[36]; Z-REP = macrosatellite family on chicken chromosome Z [39]; GG = 
repeats on the chicken genome identified by RECON [40]. We also analyzed the 
DNA sequence at SV breakpoints for signatures indicating the mechanism by 
which the SVs are formed, and we identified microhomology (MH) in some 
cases.
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SV distribution across breeds

Theoretically, our approach for identifying SVs allows the prediction of SVs 
and insight into how a predicted SV is distributed across breeds. We showed 
that  the  observed  distribution  of  SVs  is  a  good  predictor  for  the  actual 
distribution of  the  SV in breeds.  Even with limited sampling,  predicted SV 
distributions  correlated  with  the  PCR-based  genotyping  results  of  pooled 
samples (Table 3). In general, PCR-based genotyping revealed that predicted 
SVs are more widely shared in breeds than predicted by our sequencing-based 
estimation. This situation is caused by limited  sampling, and the reduction of 
target sequence complexity by creating RRLs might have contributed to this 
difference.  Our  sampling  regimen  required  enzyme  recognition  sequences 
flanking a SV within the size range for the RRL to include a particular SV in 
the RRL. Breed-specific SNPs in  AluI sites may have caused one or both SV 
alleles to not be sampled and are, thus, not predicted to be present in that breed, 
consequently  affecting  our  sequencing-based  estimation  of  SV  distribution 
across breeds.  Conversely, our  PCR-based genotyping approach with pooled 
samples was not affected by sampling limitation or AluI SNPs and revealed the 
presence of SVs in a breed even at allele frequencies of 0.1 (data not shown).
Because of the difference in the predicted presence of a SV in a breed and the 
genotyping results, we realize that the 186 SVs with which we estimated breed 
specificity might not be fully representative.  The use of different RRL sizes 
(150-200  bp  in  layers  and  125-200  in  broilers)  is  reflected  in  a  1.5-2-fold 
difference in the SVs detected in broilers and layers. The fairly large percentage 
of  SVs shared  in  broilers  can  be  interpreted  as  being  due  to  the  effects  of 
selection during line development by commercial companies and is consistent 
with the results of recent SNP genotyping [31], but it might be over-estimated 
in  our  study  due  to  the  difference  in  RRL construction. The  percentage  of 
predicted  SVs  shared  by  brown  egg  layers  and  broiler  1,  however,  is  an 
indication that these breeds are more genetically related compared to the other 
breeds.  Recent  SNP genotyping results  for  brown and white  egg layers  and 
three broiler lines also indicated that the brown egg layer breed is more closely 
related to broiler lines than to white egg layers [31], which is in agreement with 
our conclusion based on SV distribution. 
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Abundance, location, and size of SVs in the chicken genome

The reduction in the percentage of the genome covered by sequencing a RRL 
instead of randomly sampling the whole genome placed high constraints on the 
detection of SVs. The actual amount of SVs is likely much higher because we 
only  sampled  those  that  are  flanked  by  restriction  sites,  and  such  that  the 
intermediate sequence length of the variant was in the size range of the RRL. 
Large insertions were not expected to be detected because our RRL approach 
only  allows  for  the  detection  of  up  to  about  170  bp,  the  size  between  the 
maximum  RRL fragment  size  (~200  bp)  minus  the  mapping  size  of  two 
completely overlapping reads (32 bp).
Although the larger SVs are most likely under-represented in our data due to the 
constraints of the applied detection method, we can conclude that the majority 
of SVs in the chicken genome are smaller than 1 kb (Figure 5). This finding is 
consistent with human studies [2] in which SV abundance inversely correlated 
with SV size.  We observed that  99% of  the  predicted SVs were  located  in 
intronic (43%) and intergenic regions (56%), which together comprise ~90% of 
the chicken genome. As expected, SVs were less abundant in coding regions, 
which  is  consistent  with  the  idea  that  the  most  common  rearrangement 
mechanism requires substrates, such as microhomology, low copy repeats, and 
segmental  duplications,  which  are  more  abundant  in  non-coding  regions 
[10,32,33].  In  3  of  15 sequenced SV breakpoints,  we were  able  to  identify 
signatures in the DNA sequence indicating the mechanism by which SVs are 
formed.  All  identified  signatures  involved  microhomology  at  the  breakpoint 
junction  that  resulted  from either  nonhomologous  end-joining  or  replication 
fork stalling and template switching events [34]. Other SVs did not show a clear 
sequence signature.

Conclusion
We  provided  a  first  glimpse  of  the  abundance  and  genomic  locations  of 
structural  variation in the chicken genome by identifying 188, mostly small, 
rearrangements, some of which were in coding regions, though a majority were 
located in non-coding regions.  Based on the present data,  we expect to find 
thousands of small (<1 kb) and hundreds of larger rearrangements in the whole 
chicken  genome,  encompassing  more  nucleotides  than  SNPs,  and  that  are 
putatively  involved  in  phenotypic  variation.  We  observed  that  structural 
variation has contributed to genetic differentiation among current domesticated 
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chicken  breeds  and  the  Red  Jungle  Fowl.  Finally,  we  showed  that  little 
sequencing effort on a reduced representation of a genome is sufficient for the 
detection and base pair level annotation of a variety of SVs in a sequenced 
genome.

Methods

SV detection using RRLs of pooled samples and NGS

Individual  DNA samples  were  pooled  according  to  breed  and  the  genome 
complexity reduced by isolating a fraction of a complete genome digest. The 
isolated  genome  fraction  was  paired-end  sequenced  using  Illumina  genome 
Analyzer  technology.  The  paired-end  reads  were  aligned  to  the  reference 
chicken  genome  and  SVs  identified  as  significant  differences  between  the 
mapping distances identified by the paired-end reads and the size range used for 
constructing  the  RRLs.  Deletions  relative  to  the  reference  genome  were 
identified by paired ends spanning a genomic region in the reference genome 
longer than the size in the RRL, whereas insertions were identified by paired 
ends spanning a shorter genomic region in the reference sequence than expected 
based on the  RRL. Inversion breakpoints  were detected by paired ends that 
mapped in a different relative orientation compared to the reference genome.

Paired-end sequencing

Genomic  DNA was  extracted  from  300  µl  of  blood  from  25  unrelated  F0 

individuals  from  brown  and  white  egg  layer  lines  and  two  broiler  lines 
consisting of 13 males and  12 females (Broiler 1) and 25 males (Broiler 2) 
using a Puregene DNA isolation kit (D-70KA; Gentra Systems, Inc., USA). 
The RRLs were prepared by digesting 25 µg of pooled DNA using 1,000 units 
of the restriction enzyme AluI in a total volume of 240 µl. The selection of the 
restriction enzyme was based on the 10-fold reduction of genome complexity in 
the optimum size range (100-200 bp) of the sequencing technology platform 
(Genome Analyzer, Illumina). The digested DNA sample was fractionated on 
polyacrylamide gel at 100 V for 3 h and stained with ethidium bromide. The 
size fractions were sliced out of the gel and the DNA recovered by shearing the 
gel pieces and eluting over night in 300 µl recovery buffer (8 mM Tris pH 8.0, 
0.08 mM EDTA, 1.25 M ammonium acetate. After a 15-min incubation at 65°C, 
the eluent was purified using a Montage DNA Gel Extraction Device (Millipore 
Corporation, Bedford, MA) and precipitated with isopropanol. The DNA was 

106



 Structural variation in the chicken genome identified by paired-end next-
generation DNA sequencing of reduced representation libraries

washed  with  ethanol  and  re-suspended  in  DNA hydration  solution  (Gentra 
Systems, Inc., USA).
We  prepared  the  Genome  Analyzer  paired-end  flow  cell  according  to  the 
manufacturer's protocol. Five picomole aliquots of the RRLs were processed 
using the Illumina Cluster Generation Station (Illumina, Inc., USA) following 
the  manufacturer's  recommendations.  The  Illumina  GAII  Genome  Analyzer 
(Illumina,  Inc.,  USA)  was  programmed  to  produce  a  theoretical  fixed  read 
length of 36 bp. 
Images from the instrument were processed using the manufacturer's software 
to  generate  FASTQ  sequence  files.  Paired  reads  that  had  both  the  RRL 
restriction tag and a per base phred (Ewing and Green, 1998) quality score of at 
least 20 were aligned to the chicken genome (WASHUC2) using the MAQ [35] 
algorithm v0.7.1.

Artefact removal

Paired  reads  in  which  one  or  both  ends  were  mapped  with  more  than  one 
mismatch or mapped ambiguously on the reference sequence were excluded 
from analysis, as these would not reliably detect SVs. Discordantly mapping 
read pairs  in  which the  two ends mapped >220 bp apart  were  classified as 
deletions and subsequently clustered based on overlapping mapping positions. 
SVs longer than 100 kb disrupted clustering and were excluded. Read pairs that 
mapped within 100 bp of each other were classified as insertions, whereas read 
pairs that mapped with one of the two ends in the incorrect orientation were 
classified  as  inversions.  Both  insertions  and  inversions  were  also  clustered 
based on mapping positions.

Confirmation of identified SVs 

For  each  SV  cluster,  we  recorded  the  number  of  reads  spanning  the 
rearrangement, regardless of whether a normally mapping pair was observed or 
whether  a  sequence  gap  in  the  WASHUC2  build  was  present  within  the 
genomic range in which the deletion was predicted. SV clusters were prioritized 
for validation as follows: (i) an alternative mapping quality score of at least 60, 
(ii) both reads of a discordantly mapping pair mapped within a single predicted 
Ensembl exon or gene [26], and (iii) the genomic sequence flanking the SV 
allows  primer  design  within  200 bp.  We applied  these  criteria  for  selecting 
candidates distributed over the 220 bp-20 Kbp (deletions) and 32 bp-100 bp 
(insertions) size ranges. If these criteria yielded more than one candidate, the 
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candidate with the highest alternative mapping quality score was selected.
Primers were designed to span the possible breakpoint by locating them 40-200 
bp  outside  the  mapping  location  of  discordantly  mapping  read  pairs.  The 
minimum and maximum aberrant PCR product size was expected to be the sum 
of  the  minimum/maximum fragment  size  in  the  RLL and required  flanking 
genomic  region  for  primer  development.  PCR  reactions  were  initially 
performed in the Red Jungle Fowl reference and the pooled samples of all four 
breeds.  For  breeds  in  which  the  rearrangements  were  detected,  individual 
samples  were  genotyped  by  PCR.  The  PCR  products  of  homozygous 
individuals,  or  samples  in  which only  the  aberrantly  sized product  resulted, 
were sequenced on a conventional Sanger capillary sequencer and the results 
compared to the reference sequence to identify breakpoints. Both ends of the 
PCR product on the reference (Red Jungle Fowl) were sequenced and mapped 
to the reference to ensure that it originated from the expected genomic position.
Confirmed SVs were defined as those for which PCR reactions resulted in a 
distinct  band in  the  expected size  range in  at  least  the  breed for  which the 
rearrangement was predicted and with no matching band in the reference (Red 
Jungle Fowl). The PCR results had to be supported by unambiguous sequencing 
data mapping confirming the rearrangement. 
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Chapter 5

Abstract 

Background

Next  generation  sequencing  technologies  makes  it  feasible  to  economically 
obtain  the  genomic  sequence  information  that  is  currently  lacking for  most 
economically  and  ecologically  important  species.  For  the  mallard  (Anas 
platyrhynchos),  genomic  information  like  sequencing  data  and single-
nucleotide-polymorphisms (SNPs) is limited. The duck is, besides a species of 
agricultural importance, also a member of a taxon of focus when it comes to 
long distance dispersal of Avian Influenza. Therefore, it is important to facilitate 
duck breeding by providing sufficient genetic markers for QTL mapping and to 
study  duck  migration  in  a  population  genetic  framework.  For  large  scale 
identification  of  SNPs  we  performed  sequencing  of  wild  duck  DNA and 
compared our data with ongoing genome sequencing of domesticated duck and 
data from a duck EST-sequencing project.

Results

More than a billion basepairs (bp) of high quality sequence information were 
generated  resulting  in  a  16X  coverage  of  a  reduced  representation  library 
covering 5% of the wild duck genome (1.38Gbp). Sequence reads (62 bp) were 
aligned to a draft (domesticated) duck reference genome and allowed for the 
detection of over 122,000 SNPs within our (wild) duck sequence dataset.  In 
addition almost 62,000 nucleotide positions on the domesticated duck reference 
showed a different nucleotide compared to the wild duck sequence reads on that 
position. Of SNPs that were identified within our sequence data of wild duck, 
more than 20,000 were shared with SNPs identified in the sequenced domestic 
duck  or  EST  sequencing  projects. The  shared  SNPs,  being  predicted  in 
independent projects, were considered to be highly reliable and to represent true 
nucleotide polymorphisms and were used to benchmark non-shared SNPs on 
metrics like transition/transversion rates and the distribution of the SNPs over 
the  nucleotide  positions in  the  sequence  reads.  A comparison of  the  shared 
SNPs with the sequenced chicken genome indicated a uniform distribution of 
the SNPs across the duck genome. Genotyping of a representative sample of 
364 shared SNPs resulted in a SNP conversion rate of 99.7%. The correlation of 
the  minor  allele  count   and  observed  minor  allele  frequency  in  the  SNP 
discovery pool for the validated SNPs was 0.72.
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Conclusion

We identified almost 150,000 SNPs in wild mallards that will likely yield good 
conversion rates in genotyping. Of these, ~101,000 SNPs were detected within 
wild  duck  and  ~49,000  were  detected  as  polymorphisms  between  wild  and 
domesticated  ducks. In the ~101,000 SNPs we found a fairly large subset of 
~20.000  SNPs  in  common  between  the  wild  duck  and  the  sequenced 
domesticated duck suggesting a low genetic divergence between wild duck and 
its domesticated relative. This subset showed almost 100% SNP conversion rate 
at  genotyping.  Comparison,  on  metrics  like  transition/transversion  rates  and 
SNP distribution over sequence reads, of the total SNP set (122,000 + 62,000 = 
184,000 SNPs) to the validated subset, shows similar characteristics for both 
sets.  This  indicates  that  we  have  detected  a  large  amount  (~150.000)  of 
accurately  called  duck SNPs,  that  will  be  beneficial  for  both  industrial  and 
ecological applications.

Background
The  mallard  (Anas  platyrhynchos)  is  the  most  abundant and  well-known 
waterfowl species. Besides duck is important as a hunted game species, it can 
also be seen as a flagship species in wetland conservation and restoration.Ducks 
(Anseriformes: Anatidae) in general have become the migratory taxon of focus 
when it comes to long distance dispersal of Avian Influenza in the wild [1,2], 
and the mallard has been identified as the most likely species that  transmits 
avian influenza viruses [3,4]. The general migration trend of the mallard is from 
the north (breeding grounds) to the south (wintering grounds) avoiding freezing 
conditions  at  breeding  sites  [5],  but  in  Europe  no  clear  flyways  could  be 
inferred so far [6]. This is why Wink [7] proposed the use of SNPs to study bird 
migration  in  a  population  genetic  framework.  Since  the  number  of  SNPs 
necessary to detect low levels of differentiation is expected to be high (>80) for 
highly mobile  organisms [8,9],  we aimed at  a  high throughput  discovery  of 
SNPs in wild duck. Large scale discovery of  SNPs in the genome of the wild 
mallard  might  also  provide  a  useful  set  of  markers  in  the  descendant 
domesticated  duck  (Anas  platyrhynchos  domestica).  With  it  being  the  third 
most  consumed  species  of  the  world  wide  poultry  market  [10],  the  duck 
provides a valuable subject for detailed genomic studies. Nevertheless, genomic 
information  about  the  duck  is  limited  to  a  few studies  providing  only  low 
resolution linkage and physical  map [11,12].  Therefore our study of mallard 
will also facilitate duck breeding objectives by providing sufficient markers for 
improving the duck linkage map and allowing QTL mapping using SNPs. A 
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general limitation in developing a SNP-set in non-model organisms has been 
the unavailability of extensive sequence information from multiple individuals 
that represent a sufficient portion of the genetic variability of the population or 
species  under  study.  However,  the  Illumina  Solexa  Genome  Analyser 
technology  [13,14,15]  coupled  with  the  approach  of  generating  a  reduced 
representation library  (RRL) [16] was shown to be  an efficient  approach in 
solving this problem in turkey (Meleagris gallopavo) [17] and great tit (Parus 
major)  [18].  Also  in  rainbow  trout  [19],  pig  [20,21]  and  cattle  [22]  next 
generation  sequencing  of  RRLs  has  been  effective  in  the  identification  of 
considerable numbers of SNPs.  Here, we describe the discovery of more than 
180,000 novel SNPs in the genome of the mallard, currently lacking a published 
sequenced  genome.  By  lack  of  a  reference  genome  we  initially  aimed  for 
paired-end sequencing on a Illumina GAII of a library of fragments in the size 
range  of  110-130  bps  and  with  a  read  length  of  76  bases.  This  creates  an 
overlap between the forward and reverse reads of a pair which allows merging 
of the reads. Merging the reads helps in providing sufficient flanking sequence 
of a SNP which is a requirement for genotyping and is hard to retrieve in the 
absence of a reference genome. However, at the time of our study, sequencing 
of  the  duck  genome  and  de  novo assembly  was  in  progress  and  almost 
completed  by  the  Beijing  Genome  Institute  (BGI).  This  allowed  for  SNP 
discovery by next generation sequencing of a RRL of pooled wild duck samples 
and  mapping  of  almost  13  million  of  the  resulting  reads  to  a  draft  duck 
reference sequence. SNPs identified were compared with those observed within 
the  reference  sequence  of  domesticated  duck  (Huang  et  al.,  in  prep.)  and 
mallard  EST  sequencing  (Vignal,  unpublished  data)  resulting  in  more  than 
20,000 shared high quality SNPs.

Results

Complexity reduction

We targeted for a sequencing depth of about 40 times at limited sequencing cost 
by  sequencing  a  fraction,  or  RRL,  representing  5%  of  the  duck  genome. 
Restriction enzymes were screened for suitability for RRL construction, with 
the  goal  of  a  20  fold  complexity  reduction  of  the  duck genome within  the 
targeted  size  range  of  110-130  bp.  Restriction  analyses  showed  that  these 
requirements are met by combining two libraries, one created by digestion with 
AluI  and one by digestion with  HhaI,  representing 4% and 1% of the duck 
genome, respectively.
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An in silico digest of the highly similar chicken genome [23,24] predicts similar 
genome fractions of the RRLs of 4.1% for AluI, but only 0.2% for HhaI (data 
not shown). After enzyme selection, we prepared two pooled DNA samples of 
nine wild mallard individuals from three locations across Europe. To prepare 
the  libraries,  we  digested  these  samples  with  AluI or HhaI and  isolated 
fragments in the 110-130 bp size range from a preparative polyacrylamide gel. 
The genomic libraries  were  combined in  the  sequencing sample  preparation 
procedure. By lack of a reference genome we aimed for paired-end sequencing 
on a Illumina GAII of the combined libraries and with a read length of 76 bases. 
This creates an overlap between the forward and reverse reads of a pair which 
allows merging of the reads. Merging the reads helps in providing sufficient 
flanking sequence of a SNP. This sequence is necessary for genotyping and is 
hard to retrieve in the absence of a reference genome. Merged paired reads, 
possibly supplemented with single reads, are subsequently clustered for SNP 
discovery. 

Illumina sequencing and SNP detection

We generated 34.8 million 76 bp reads using three lanes on an Illumina GAII of 
which two lanes were run in paired-end mode. It was shown that a phred quality 
score [25] threshold of 12 ensures sufficient quality reads for SNP detection 
purposes [20,26]. Because the average base quality score over all reads dropped 
below 12 after position 62, reads were trimmed to 62 bp. After trimming, we 
performed  additional  quality  based  filtering  (see  methods)  and  finally  we 
retained 16.6 million reads (47%) of 62 bp length corresponding to a total of 
1.03 billion bp of sequence information (Table 1).

Table 1: Summary of DNA sequence filtering results

raw (76 bp) l62 n. q12 o1521 % paired-end % single % 

reads 34,818,352 16,611,852 47.7 10,793,170 65.0 5,818,682 35.0

bases 2,547,361,732 1,029,934,824 40.4 669,176,540 65.0 360,758,284 35.0

Paired and single sequence reads remaining after filtering raw reads.1Raw 
sequences were filtered for length 62, without base-call errors (n or .). Singly 
represented reads are required to have a per base-call quality of 12. Sequences 
more than four times overrepresented, based on the raw RRL coverage (38X, 
see methods, were discarded.
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Of these reads 35% were single and 65% were paired reads. By creating RRLs 
5% (69 Mb) of the mallard genome was represented (estimated size 1.38 billion 
bp) based on several entries in the Eukaryotic genome size databases [27]. From 
this we calculated that the raw sequencing data is covering the sequence target 
38 times whereas the quality filtered data provide a ~16x target coverage. Using 
MAQ [28] 12,823,563 of the reads could be mapped onto the duck reference 
genome  (Huang  et  al.,  in  prep.).  A total  of  632,163  putative  SNPs  were 
identified by MAQ [28] of which 122,413 candidate SNPs passed our applied 
SNP calling  quality  thresholds  (see  methods).  This  set  of  SNPs  is  further 
referred to as duck-RRL (d-RRL).

SNP usability

More than 98.8% of the SNPs were flanked by at least 40 bp on either side and 
do  meet  the  requirements  for  probe  design  constraints  for  all  genotyping 
platforms whereas all  SNPs meet  the flanking sequence requirements for an 
iSelect (Illumina) genotyping assay. For the 2565 SNPs that showed more than 
two  alleles  we  only  considered  the  most  frequently  observed  minor  allele 
because tri- or tetra-allelic SNPs are very rare and  it is likely that other minor alleles 
represent sequencing errors instead of true variants. Analysis of the estimated 
allele counts of the SNPs in our dataset  (Figures 1A and 1B) show that we 
obtained a majority of SNPs with a high minor allele count (MAC).
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Figure 1:Minor allele frequency distributions.n the boxplot (A) MAC 
distributions of d-RRL (SNPs identified in this study) and d-Shared (SNPs that  
d-RRL shares with d-EST and d-WGS (also see Venn diagram Figure 2D)) are 
compared. Histograms (B and C) show MAC distributions of d-RRL and d-
Shared at a bin width of 0.05
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SNP quality assessment

Sequencing errors  are more  abundant  in lower quality  tailing nucleotides in 
next generation sequencing reads and putatively cause false SNP predictions. 
An increase in the number of SNPs towards the end of the reads is expected if 
sequencing errors are the cause of a substantial amount of predicted SNPs in the 
dataset. To validate our sequence filtering and SNP detection constraints, we 
plotted the distribution of the SNPs over the 62 positions in the sequence reads 
(Figure 2A). Positions one, two and 62 all show an underrepresentation of SNPs 
whereas positions three, four and five show an overrepresentation. SNPs are 
equally distributed over read positions 6 to 25 and at 26 the number of SNPs 
per  nucleotide  position drops but  after  this  remains more  or  less  steady till 
position 62.  Because of the RRL insert size (~110-130bp), there is a putative 
overlap between paired forward and reverse reads (62 nucleotides each) from 
position 48 onwards . This putative overlap from bases 48-62 results in a higher 
sequence depth and a tiny increase in the number of SNPs being detected at 
these nucleotide positions (Figure 2A).
Sequencing errors result in the introduction of random polymorphisms resulting 
in an expected transition (A/G or C/T) versus transversion (A/C,A/T,C/G,G/T ) 
rate of 1:2. However, in the d-RRL dataset we observed in the class transitions 
(TS) that the number of A/G substitutions almost equals the number of C/T 
substitutions. Also the substitutions within the class transversions (TS) occurred 
in comparable frequencies (Table 2). The TS:TV ratio for d-RRL is 2.3:1 which 
is similar to the ratio of 2.2:1 calculated for chicken, based on more than 3 
million chicken SNPs present in dbSNP.
Sequencing errors were also evaluated per read position by plotting the TS:TV 
ratio  observed  over  the  62  positions  in  the  sequence  reads  (Figure  2).  We 
observed steady expected TS:TV ratios for positions 7-61 whereas TS:TV ratios 
for positions one to six were lower and the TS:TV ratios for position 62 was 
higher than expected.

SNP benchmarking

At the time of our study, sequencing of the duck genome and de novo assembly 
was in progress and almost completed by the Beijing Genome Institute (BGI). 
Next generation sequencing data, covering both alleles of a single domesticated 
duck resulted in the identification of 2,826,871 putative SNPs (further referred 
to as d-WGS). Duck-EST sequencing identified a total of 6456 SNPs (further 
referred  to  as  d-EST),  in  coding  regions  of  the  duck  genome  (A.  Vignal, 
unpublished data).
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Figure 2: SNP distributions within datasets and between datasets.
Diagrams A-C show the distribution of SNP predictions over the nucleotide 
position in the sequence reads for d-RRL, d-Shared and d-Between. Each 
filled dot represents the cumulative number of occurrences that the read 
position was involved in a SNP call. Open dots represent the average TS:TV 
ratio of SNPs indentified in that read position. Diagram D shows how many 
SNPs are shared between independent SNP sets d-EST (SNPs identified by 
EST sequencing of domesticated duck (Vignal, unpublished data)), d-WGS 
(SNPs identified in whole genome assembly of domesticated duck (Huang et  
al., in prep.)) and d-RRL (SNPs identified in RRL sequencing of wild duck 
(this study)).
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To benchmark d-RRL we compared it with these two external and independent 
datasets and identified SNPs that are shared with either d-WGS or d-EST. We 
observed 20,180 SNPs (16.5%) in common between d-RRL and SNPs in the d-
WGS  dataset.  Furthermore  d-RRL  had  four  SNPs  in  common  with  d-EST 
whereas d-WGS shared 244 SNPs with d-EST (Figure 2D). Only a single SNP 
was shared between all three datasets. The subset of SNPs (n=20,184) that d-
RRL shared with either of the two other SNP resources is further referred to as 
d-Shared. We analysed d-Shared by calculating the MACs and the TS:TV ratios 
(Figure  1C and Table  2).  Furthermore  we plotted the  TS:TV ratio  per  read 
position  and  the  distribution  of  the  SNPs  over  the  62  nucleotides  of  the 
sequence reads analogous as was done for d-RRL. In d-Shared we observed a 
similar distribution of MACs compared to d-RRL (Figure 1C). The distribution 
of the SNPs in d-Shared over read positions 7-62 is similar to that observed for 
d-RRL; however, d-Shared shows a higher variation in SNPs between the read 
positions (Figure 2B). Also TS:TV ratios at these read positions were similar 
with slightly more variation per read position in d-Shared.

Table 2 Transition/transversion ratios in SNP subsets

Transitions Transversions Total TS:TV1

subset R Y M W S K

d-RRL 42313 42602 9658 9051 9114 9675 122,413 2.3

d-Shared 7300 7442 1396 1227 1334 1484 20,184 2.7

d-Between 20156 21333 5464 5165 4804 4830 61,752 2.0

1=The transitions total divided by the transversions total for a data subset.

Although reduced,  also d-Shared showed a  peak in  SNPs on read positions 
three  to  six  like  we  observed  in  d-RRL.  However,  TS:TV ratios  for  these 
positions were at expected level of  >2.3 indicating that most SNPs in these 
read  positions  likely  resulted  from  true  nucleotide  polymorphisms.  Finally, 
compared to d-RRL, the d-Shared subset  of  SNPs showed a higher average 
TS:TV  ratio  of  2.7  and  indicated  a  relative  increase  of  (C/T)  over  (A/G) 
transitions (Table 2).

Domesticated versus Wild

Besides the identification of SNPs within the wild mallard population we also 
mined for nucleotide positions in the genome that show differences between the 
wild mallard population and the domesticated duck reference. We considered 

123



Chapter 5

nucleotides in the wild mallard consensus where MAQ [28] did not assign an 
ambiguity  code  but  that  were  different  from  the  corresponding  non-
polymorphic position in the domesticated duck reference. We identified 61,752 
SNPs (further referred to as d-Between) and assessed the quality of this set of 
SNPs by  plotting  the  TS/TV ratio  per  nucleotide  position  and  plotting  the 
distribution of the SNPs over the 62 nucleotide positions in the sequence reads 
(Figure  2C).  The  number  of  SNPs  predicted  in  the  first  six  read  positions 
showed a high peak whereas from position six to 62 the number of SNPs per 
read position is more or less constant, steadily increasing towards the end. The 
TS:TV ratios were as expected except on the first six read positions and the 
tailing end,  where  it  was  lower  than  expected.  Compared to  d-RRL and d-
Shared the overall TS/TV ratio of d-Between is lower, 2:1, and shows a relative 
increase of (C/T) over (A/G) transitions (Table 2). 

The distribution of SNPs over the genome

Knowing genomic positions of SNPs as genetic markers is important. Many 
population genetic and genetic mapping applications rely on unlinked markers. 
Thus, for future use in generating a duck linkage map and performing QTL 
studies in  duck it  is  essential  that  the SNPs are  widely distributed over the 
genome. The next generation sequenced duck genome assembly that we used as 
a genome reference, consists of thousands of scaffolds and contigs which are 
not assigned to chromosomes. Estimating the distribution of SNPs across the 
duck genome therefore is not possible using this sequenced duck reference. For 
this reason the closest related available genome sequence (chicken) was used 
for estimating the distribution of the identified SNPs. Common and high quality 
duck SNPs (d-Shared) were aligned to the chicken genome and the distribution 
of this SNP-set was plotted over the chicken chromosomes (Figure 3). A total 
of 4,272 SNPs could be mapped to unique locations evenly distributed over the 
chicken genome.

SNP validation by genotyping

The d-shared  subset  of  SNPs was  validated  by  genotyping an  animal  panel 
consisting of 765 ducks using 384 predicted SNPs distributed uniformly over 
the  chicken  genome  (Figure  3).  A total  of  364  (95%)  SNPs  gave  reliable 
genotypes  in  the  assay,  and  363  (99.7%)  of  these  were  polymorphic.  The 
average minor allele frequency (MAF) was 0.32 in the animals that made up the 
discovery panel and 0.31 in the whole animal panel (Figure 4). The average 
heterozygosity was 0.39 in the discovery panel and 0.34 in the whole animal 
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panel. The allele frequencies of polymorphic genotyped SNPs in the discovery 
pool  showed  a  correlation  of  0.72  with  the  allele  counts  derived  from the 
sequence data in the nine animals represented.
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Figure 3:Distribution of duck SNPs that uniquely mapped on the chicken 
genome.In blue are duck SNPs that mapped uniquely to the chicken genome.  
Mapped SNPs that were selected for genotyping are in red. On the X-axis, the 
chicken genome in 400 kb intervals. On the Y-axis, the frequency (0-15) of  
mapped duck SNPs for a specific chicken genome interval is given.

Figure 4: Genotyping minor allele frequency and heterozygosity distributions.
Validation of the d-Shared subset involved genotyping of 384 selected SNPs on 
765 ducks including the nine animals that made up the SNP discovery panel.  
Minor allele frequency (MAF) and heterozygosity of SNPs were calculated for 
the discovery panel as well as for the whole set of genotyped ducks.
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Discussion
This  SNP  detection  study  is  the  first  large  sequence  variant  discovery 
performed in mallards. The availability of a large number of SNPs provides 
sufficient markers to study bird migration in a population genetic framework 
[7]. This large number of accurately called SNPs will also facilitate improved 
linkage maps of the duck genome and provide a sufficiently dense marker map 
allowing  for  high  resolution  QTL studies  in  duck,  further  facilitating  duck 
breeding.  Furthermore,  such  high  density  linkage  maps  are  essential  for 
chromosomal assignment of the sequence scaffolds of the sequenced reference 
genome.

SNP detection within a pool of wild European mallards

Initially, our study was designed to detect SNPs within a pool of wild European 
mallards by single-end and paired-end sequencing of a small fragment RRL. We 
targeted for genome libraries of sufficiently small fragments for paired reads to 
overlap. This allows the reads to be merged resulting in the complete sequence 
of the majority of the fragments in the RRL. Merged paired reads subsequently 
would serve as a reference genome. However, with the recent availability of a 
next generation sequenced duck genome assembly, a reference based mapping 
approach  became  feasible,  enabling  a  more  efficient  SNP  identification 
approach.  This study shows that  the overlap in the in general  lower quality 
tailing end of paired-end sequence reads is beneficial in reference based SNP 
detection.  We  observed  that  the  number  of  SNPs  being  predicted  per  read 
position shows a tiny increase in the overlapping tailing ends whereas earlier 
studies  [17,18,20]  reported  decreasing  numbers  of  predicted  SNPs  per 
nucleotide  position  towards  the  end of  sequence  reads.  The  TS/TV ratio  of 
SNPs predicted in the overlapping tailing ends remains in the expected range 
(Figure  2A)  suggesting  that  predicted  SNPs  are  reflectig  true  nucleotide 
polymorphism. A local decrease in  TS/TV ratio would be observed if SNPs in 
read  positions  (51-61  in  d-RRL  and  52-60  in  d-Between)  are  caused  by 
randomly  introduced  polymorphisms  (e.g.  sequencing  errors).  Because 
transitions are outnumbering transversions, coinciding with the idea that most 
SNPs are caused by CpG DNA methylation, we expect that the predicted SNPs 
represent true nucleotide polymorphisms. The increased number of SNPs at the 
overlapping tailing ends can be explained by a local higher sequence coverage, 
caused by sequence overlap of paired reads, resulting in a higher representation 
of variants. A higher coverage allows for multiple observations of the variant in 
low quality sequence allowing it to pass MAQ's quality thresholds to call it a 
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true SNP [28]. As a result, even more rare sequence variants in these overlaps 
will meet the minor allele occurrence constraint in the SNP detection method. 
An  indication  that  the  additionally  identified  SNPs  at  the  read  tailing  ends 
involve rare sequence variants is the lower representation of these SNPs in d-
Shared. 

Ascertainment bias due to limited sequence depth

Besides limited sequencing depth also sequence quality is a limiting factor for 
calling SNPs. This is illustrated by the global trend in the number of predicted 
SNPs per read position in d-RRL and d-Shared (Figure 2A and 2B) which are 
mirroring the decreasing trend of average base call score per nucleotide position 
inherently present in Illumina sequencing (as also observed in our data set, data 
not  shown).  A similar  trend is  not  observed in d-Between because  here the 
SNPs are predicted from differences between the reference and the pool wild 
mallards. Read depth is less limiting in d-Between because the read depth is 
only used to provide one unambiguous (consensus) base, deviating from the 
reference, of sufficient quality whereas in d-RRL the read-depth has to provide 
sufficient calls for both the major allele and the minor allele to be called as a 
SNP.
Besides the unequal distribution of identified SNPs over the read positions also 
the underrepresentation of SNPs with a MAC <0.2 is an indicator of a coverage 
limitation. Due to the limited coverage, only SNPs that are present in multiple 
individuals in the pool have a reasonable probability to meet the minor allele 
representation  constraint  set  by  our  SNP  detection  method.  More  common 
alleles will pass the representation constraint more frequently than rare alleles 
resulting in an overrepresentation of common alleles and an underrepresentation 
of rare alleles.

SNP quality assessment by comparison

We  identified  a  large  number  of  putative  SNPs  in  the  sequenced  pool  by 
sampling ~5% of the mallard genome. Extrapolating the total number (d-RRL + 
d-Between) of identified SNPs would result in a SNP every ~375bp. The actual 
number  of  true  SNPs  in  d-RRL  and  d-Between  is  expected  to  be  lower 
considering the over representation of predicted SNPs in the read positions one 
to  six  together  with  low  TS:TV  ratios  in  these  read  positions.  Also  the 
comparison of d-RRL with d-WGS, in which common true variants remained 
and false SNPs are discarded, show that SNPs predicted in read positions one to 
six should be used cautiously. The distribution of d-Shared does not show over 

127



Chapter 5

representation of SNPs on position one to six. Furthermore, expected TS:TV 
ratios in d-Shared were observed for positions three to six and expectedly lower 
TS:TV ratios in position one and two due to the RRL enzyme restriction motif. 
Therefore we think that a considerable fraction of SNPs in read positions one to 
six in d-RRL and d-Between are false positives. Because standard sequencing 
error rates of the Illumina GAII are low (<0.005) in the first 20 bases of a read 
[29] we expect that the first 6 bases in our sequence dataset were affected by 
non-standard,  systematic,  sequencing  errors.  These  are  most  likely  resulting 
from a combination of inadequate separation of sequencing clusters due to the 
restriction tag in the RRL and an overloaded sequencing flowcell  (Kees-Jan 
Françoijs personal communication). This hypothesis is sustained by the fact that 
quality scores were considered by the SNP calling algorithm [28] and that two 
observations of the minor allele were required for a putative SNP making it 
unlikely that these numbers of false positives are due to standard sequencing 
errors. Low TS:TV ratios for SNPs at read position 61 and 62 in d-Between 
suggest that the SNPs from these positions should also be omitted. Subtracting 
SNPs from positions one to six (and position 61 and 62 in d-Between) results in 
101,095 SNPs in d-RRL and 48,592 SNPs in d-Between that will likely yield 
good conversion rates in genotyping.

Shared SNPs

We showed that  d-RRL shares  one  sixth  of  the  SNPs  with  d-WGS and an 
almost  negligible  number  of  SNPs  with  d-EST.  ESTs  only  represent  a  few 
percent of the genome of which only a fraction was sampled by the RRL. Due 
to this limited shared genome fraction and because SNPs in coding regions are 
rare, a large overlap in SNPs between these sources was not expected. Between 
d-WGS and d-EST we observed a relative 2.6 times larger overlap which can be 
explained by a more or less complete overlap in sampled genome fraction and a 
better representation of rare alleles in d-WGS. The statistically relatively large 
overlap  between  d-WGS  and  d-RRL  indicates  a  low  genetic  divergence 
between wild mallard and domestic duck. A relatively large fraction of shared 
SNPs between two independent studies is also suggesting a low false discovery 
rate. As stated earlier, the SNPs identified in this study will be used to study 
bird migration in  a  population genetic  framework [7].  Because  the  required 
number of markers for such an analysis is small compared to the total amount 
of markers we generated, we selected SNPs from d-Shared that show an equal 
distribution  over  the  chicken  genome.  This  requirement  greatly  reduces  the 
number  of  available  markers  since  only  a  small  fraction  could  be  mapped 
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(Figure 4) due to the relatively large evolutionary distance between chicken and 
duck  (90  million  years)[24].  Genotyping  of  this  SNP subset  confirmed  the 
expectation that SNPs which are shared between independent SNP detection 
studies are of high quality.

Conclusions 
When performing SNP identification studies  using next  generation sequence 
technologies,  it  is  important  to  know  what  limitations  in  sensitivity  and 
specificity can be expected, particularly at low sequence coverage. We show 
that sensitivity decreases with decreasing base calling quality towards the ends 
of sequence reads. which can be compensated for by increasing the sequence 
coverage  in  the  tailing  ends.  SNP  distribution  and  TS/TV  ratio  over  read 
positions  are  helpful  metrics  for  the  assessment  of  systematic  errors  in  the 
sequencing  dataset  in  particular  when  statistics  can  be  compared  to  a  high 
quality subset of the data. We showed that the fairly large subset of predicted 
SNPs that is shared between independent SNP detection studies in wild and 
domestic duck is likely to represent true SNPs, and suggests a low divergence 
between these subspecies.

Methods

Sample collection and preparation

Mallard DNA samples have been prepared from ethanol preserved whole blood 
collected from nine individuals from three locations across Europe: two females 
and  a  male  each  from  Doñana  (Spain),  Northern  Netherlands  and  Ottenby 
(Sweden). Each of these individuals was either directly caught from the wild, or 
was  first  generation  descendant  from  local  wild  mallard  parents.  DNA 
extraction was performed using the Gentra Systems Puregene DNA purification 
Kit  according to  the  manufacturer’s  instructions.  Briefly,  ~200µl  blood was 
digested  with  9  µg  Proteinase  K  (Sigma)  in  Cell  Lysis  Solution  (Gentra 
Systems)  at  55ºC  over  night.  Proteins  were  subsequently  precipitated  with 
Protein Precipitation Solution (Gentra Systems) and spun down. DNA from the 
supernatant  was  precipitated  with  isopropanol  and  washed  twice  with  70% 
ethanol. DNA quantity and purity were measured using the Nanodrop ND1000. 
Possible  degradation was inspected on an agarose gel  and only high quality 
DNA samples were used to prepare the DNA pool. Equal amounts of DNA from 
the nine mallards were combined into two pools of 25 µg each. Aliquots of 5 µg 
for each pool were digested with either  AluI or  HhaI (10 units per reaction, 
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Pharmacia). The digested pools in O’range loading dye (Fermentas) were size-
fractionated on precast 10% polyacrylamide in 1xTBE with the Criterion™Cell 
(BioRad). The gel was run 190 minutes at 100 volt and stained for 30 minutes 
in  ethidium bromide  solution.  After  staining,  the  target  fragment  size  range 
between 110-130 bp was sliced out of the gel. The gel slice was sheared by 
nesting  a  0.5ml  Eppendorf  tube  (with  a  hole  in  the  bottom formed  with  a 
needle) containing the gel slice inside a 2ml Eppendorf tube, and centrifuged at 
14000 rpm for 2 minutes. The sheared gel pieces were covered with 300ul DNA 
recovery  buffer  (8mM  Tris  pH  8.0,  0.08  mM  EDTA,  1.25M  ammonium 
acetate),  vortexed,  and  eluted  at  4°C  overnight,  followed  by  15  minutes 
incubation  at  65°C.  The  slurry  was  divided  over  two  Montage  DNA gel 
extraction devices (Millipore) and centrifuged at 5000g for 10 minutes to purify 
the  eluted  gel.  DNA was  precipitated  by  adding  1/10  volume  3M  sodium 
acetate pH 5.2, 1 volume isopropanol and 1/500 volume glycogen, washed with 
ethanol  and  resuspended  in  DNA hydration  solution  (Gentra  Systems).  The 
genomic  libraries  were  combined  and  prepared  using  the  Illumina  Sample 
Preparation  kit  [31]  and  sequenced  for  76  cycles  with  the  Illumina  GAII, 
Illumina Inc., USA, with a paired end module attached.

SNP detection

Prior to analysis we applied quality filters to the raw reads. Due to the use of 
restriction enzymes AluI and HhaI for creating the genomic libraries we expect 
that the sequence reads start with a ‘C’. Therefore, reads not starting with ‘C’ 
were  discarded  as  unreliable  or  contamination.  All  reads  of  the  sequencing 
dataset  were  trimmed  from  the  position  where  the  average  quality  score 
dropped below 12. Reads containing a base that was called with a quality lower 
than 12 were discarded unless an identical  copy of the read occurred in the 
dataset, since it is unlikely to have two fragments of such a long sequence of 
nucleotides being identical by chance. We removed reads that - based on the 
theoretical raw sequencing coverage of the RRL (38X) - were more than four 
times overrepresented to limit the number of sequences from repetitive regions 
in the dataset.
As reference genome we used a next generation sequenced domesticated duck 
reference genome from the Beijing Genome Institute (Huang et al. in prep.). 
MAQ [28] was used to map the quality filtered reads to the duck genome with 
default  parameters.  Putative  SNPs  were  tagged  if  the  reads  involved  were 
mapped unambiguously to the reference. We filtered the MAQ [28] SNP output 
according to  several  rules:  minimal  map quality  per  read:  10;  minimal map 
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quality of the best mapping read on a SNP position: 10; maximum read depth at 
the  SNP  position:  four  times  the  actual  coverage  after  quality  filtering; 
minimum consensus quality:  10 [20].  We required that the minor allele at  a 
polymorphic position in the reference was observed at least 2 times.

EST-mapping

We mapped d-EST SNPs on the genome reference to identify their genomic 
locations whereas SNPs in d-RRL and d-WGS were predicted on an identical 
genome reference coordinate system. Mallard SNPs (with on average 116 bp of 
flanking sequence) being predicted in EST sequences by the group of Alain 
Vignal (INRA France, unpublished data) were mapped on the duck reference 
genome using GMAP [32].  Results were filtered for SNPs that aligned with 
96% sequence identity.

Comparative mapping

To  examine  the  distribution  of  SNPs  over  the  genome,  we  comparatively 
mapped our predicted SNPs (including 100bp flanking sequence at each side) 
on the repeat masked chicken genome. Mapping was performed using BLAT 
[33] with parameters -oneOff=1 -minIdentity=70.

SNP validation by genotyping

SNPs  were  validated  by  genotyping  an  animal  panel  using  the  Illumina 

GoldenGate® Genotyping assay on an Illumina® BeadXpress with VeraCode™ 
technology. Selection criteria for the SNPs were based on the Illumina design 
score (above 0.8) and the assayed 384 SNPs should equally distribute along the 
chicken genome to minimise the extent of linkage between neighbouring SNPs. 
Oligo-nucleotides were designed, synthesised, and assembled into oligo pooled 
assays (OPA) by Illumina Inc.  The 384 SNPs were genotyped in 765 animals 
which  included  domesticated  ducks  of  a  French  (7)  and  a  Chinese  (189) 
mapping population,  non-Anas platyrhynchos (36) ducks  species,  ~500 wild 
ducks from Europe, North America and Asia and the nine ducks that made up 
the SNP discovery panel. Genotyping results were analysed in Genome Studio 
(Illumina).  The correlation between allele frequency estimated by sequencing 
and genotyping was calculated over 361 SNP loci that were polymorphic in the 
discovery panel genotyping by randomly selecting the major or minor allele.
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General discussion
In animal breeding the principles of genetics and biometry are applied to exploit 
the  genetic  potential  of  farm  animals  to  improve  the  efficiency  and 
sustainability of production and to secure food availability. Principles of animal 
breeding were applied to change animal populations thousands of years before 
the  sciences  of  genetics  and  biometry  were  formally  established.  In  the 
Introduction  of  this  thesis  I  already  give  an  impression  of  how  the  recent 
availability of a vast amount of molecular markers can contribute to significant 
genetic gains in breeding and increase our knowledge of genome structure and 
evolution.
The aim of this thesis is to contribute to the development of a genetic variability 
repository for farm animals.  We designed and validated DNA sequence data 
analysis pipelines for obtaining genetic markers in farm animals which can be 
used in the construction of linkage maps, SNP genotyping based estimation of 
kinship  and  pedigree  reconstruction  and  QTL  studies.  We  focused  on 
bioinformatics methods to analyze whole genome sequencing data from both 
traditional capillary and next generation DNA sequencing (NGS) platforms. We 
targeted for the development of a cost effective and reliable prediction method 
to identify thousands of true single nucleotide polymorphisms (SNPs) in species 
with and without a sequenced reference genome. We also aimed for a method to 
identify structural variants (SVs) at a high resolution in an available NGS data 
set. This dataset was created on a reduced representation of the chicken genome 
and allowed getting a first glimpse of the abundance of structural variation in an 
avian  genome.  In  this  final  chapter  I will  evaluate  the  design  and 
implementations of the constructed data analysis pipelines in the light of the 
recent  revolution  in  DNA sequencing.  I  also  show  the  results  of  our  data 
analysis pipelines and to what applications our developed marker repositories 
can contribute to (Table 1). Finally I will discuss the current status and future 
perspectives in the discovery of genetic variation in livestock.

SNP mining in publicly available sequence repositories
In Chapter 2 we describe the design of an approach to identify thousands of 
genetic markers in the pig genome using public sequencing databases. At the 
time this work was performed, the pig genome sequencing project [1] had been 
running for two years and the first release of the pig genome reference sequence 
was expected to take at least another two years. 
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Table 1: Applications that our developed markers sets can 
contribute to

Species Class of 
genetic 

variation

Applied 
technique for 
identification

Nr of 
obtained
markers

Applications for detected markers

Chicken SV Paired-end 
sequencing of 
genomic RRLs 
and mapping to 
reference 
genome

188 Development of a repository of SVs in 
chicken for future SV genotyping based 
association studies (currently not 
feasible)

Duck SNP (Paired-end) 
sequencing of 
genomic RRLs 
and mapping to 
reference 
genome

149,687 Improving the duck genome markers and 
linkage maps allowing the chromosomal 
assignment of the sequence scaffolds of 
the sequenced reference genome. These 
dense maps will also improve resolution 
in QTL studies and allow for duck 
migration studies in a population genetic 
framework

Pig SNP Mining public 
sequence 
repositories and 
mapping to 
BAC and BAC-
end sequences 

6,374 Genotyping based estimation of kinship 
or pedigree reconstruction and QTL 
studies.

Turkey SNP Sequencing of a 
randomly 
sheared 
genomic RRLs 
and mapping to 
assembled 
contigs

11,287 Improving the turkey genome markers 
and linkage maps which aids in the 
chromosomal assignment of the sequence 
scaffolds of the sequenced reference 
genome. These improved maps also 
allow for QTL detection at higher 
resolution.

RRL = reduced representation library
BAC = bacterial artificial chromosome
QTL = quantitative trait loci
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Within  the  framework  of  this  sequencing  initiative,  pig  bacterial  artificial 
chromosomes (BACs) that were completely or partially sequenced and BAC 
end sequences  including  their  naming  and  mapping information  were  made 
available  to  researchers  worldwide.  Furthermore,  a  previous  pig  sequencing 
initiative on five different  breeds had resulted in 4.8 million whole genome 
shotgun  sequence  reads  of  at  least  150  bp  stored  in  a  public  database  and 
providing a genome coverage of 0.66 [2]. 
Assuming  that  the  whole  genome  shotgun  sequence  reads  are  not  equally 
represented, this dataset [2] potentially holds the information for a large number 
of  Single  Nucleotide  Polymorphisms  (SNPs).  Our  highly  automated  SNP 
identification  pipeline, consisting of publicly available softwares, enabled the 
identification  of  thousands  of  high  quality  SNPs.  The  use  of  a  sequence 
alignment  program in combination  with  a  computational  method to  identify 
polymorphisms, is a common method for automated de novo sequence-based 
SNP  detection  and  has  been  described  for  SNP  detection  in  ESTs  [3-5]. 
However a genomic implementation by the integration of BAC mapping and 
naming information in  the  pipeline  to  compensate  for  a  lack of  a  reference 
genome  sequence  is  unique  in  its  kind.  Read  mapping  performance  was 
facilitated  by  including  mate  pair  information  of  shotgun  sequences.  The 
pipeline  was  implemented  on  a  computer  cluster,  which  enabled  efficient 
mining of large sequence data sets in parallel.
A total of 98 thousand SNPs were identified of which 6,374 had a redundancy 
of two or more. This work showed that mining of public whole genome shotgun 
sequence databases can result in the identification of thousands of SNPs. The 
identified SNPs distribute equally over the genome and have a performance that 
is  comparable  to  those  available  in  existing  SNP  repositories.  Our  SNP 
detection pipeline has resulted in an increased SNP marker density on the pig 
genome.  One  intended  applications  of  these  identified  SNPs  was  the 
development  of  a  marker  based  method  for  the  estimation  of  kinship  and 
pedigree reconstruction in pig.  For  this purpose we provided a,  at  that  time 
considerable, set of thousands of markers. Recently hundreds of thousands of 
markers became available in pig [6] due to the availability of the draft genome 
sequence of the pig and the launch of NGS technology. NGS allows for SNP 
detection over a considerable larger part of the pig genome, in larger number of 
individuals and breeds, at affordable costs.
The developed SNP detection pipeline consists of universal pieces of software 
and queries common public data repositories. Nevertheless its applicability in 
other species is probably limited by its specific requirements. For at least part of 

140



 Discussion

the mapped BACs, BAC sequences have to be available for clustering whole 
genome shotgun reads by sequence homology.  Because only clustered reads 
homologous to a mapped BAC sequence can lead to SNPs that can be assigned 
to a genomic location by using the BAC mapping information. Furthermore, a 
sufficiently  large  whole  genome  sequence  repository  derived  from multiple 
individuals  is  a  prerequisite  to  identify  SNPs  by  sequence  alignment.  Most 
animal  genome  sequencing  projects,  however,  are  primarily  targeting  for  a 
whole genome sequence of one individual and perform only low coverage re-
sequencing on a few individuals afterwards.

A future approach to SNP mining in public data

The  implementation  of  automated  SNP identification  pipelines  will  become 
challenging in the near future. Until recently, these pipelines were handling data 
coming  from a  single  sequencing  platform which  has  been  the  sequencing 
standard  for  two  decades.  Nowadays  multiple  sequencing  platforms  with 
different  types  of  raw  data  output  have  emerged.  Although  the  platforms 
Illumina GAII and the Helicos HeliScope approximate the traditional capillary 
sequencers,  the platforms Roche GS FLX and SOLiD produce a completely 
different  raw  sequencing  signal  and  data  conversions  will  be  required  to 
compare  or  merge  sequencing data  from different  platforms.  However,  data 
conversion will introduce uncertainties and loss of important information to e.g. 
discriminate  between  sequencing  error  and  polymorphism.  To,  reliably, 
compare  sequences  coming  from  a  variety  of  platforms,  new  base  calling 
algorithms need to be developed that convert platform-specific quality scores 
and sources of errors into a universal quality scale. Such information is needed 
in the sequence alignment stage of the pipeline. Short reads with, compared to 
traditional  Sanger  sequencing,  substantial  error  rates  can  be  aligned  more 
precisely by including quality scores in the alignment of these sequence reads 
[7]. This will avoid misinterpretation of misaligned reads as positional variants. 
Finally, the sequence quality and platform specific biases will determine how 
often a sequence variant has to be detected to be scored as a true polymorphism. 
Therefore,  the  development  of  algorithms  for  automated  SNP detection  on 
sequencing data coming from different platforms will remain a big challenge. 
The enormous variation in platform biases and error rates is a big hurdle for 
implementing an all in one sequence analysis solution.
Given the recent developments in whole genome sequencing, another important 
issue related to the implementation of a SNP-detection pipeline as described in 
Chapter 2 is the requirement for a high quality BAC map. The more than 1000-
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fold increase in sequencing throughput has reduced the time span between the 
moment that a BAC map becomes available and the moment that a reference 
genome  sequence  is  released.  Implementing  a  SNP detection  pipeline  that 
roughly maps predicted SNPs on a BAC-map is most likely not worth the effort 
when SNPs can be mapped with a base pair precision on the reference sequence 
just a few months later. In addition it is questionable whether upcoming NGS 
genome sequencing projects will invest in generating high quality BAC maps 
prior to genome sequencing. Sequence length, sequence quality and coverage 
are all increasing and, together with the development of mate pair sequencing 
on the NGS platforms, provide an increased texture to the sequence data. These 
developments will make de novo assembly using only the sequence data feasible 
in  the  near  future.  However,  for  a  complete,  true  and  unbiased  de  novo 
assembly of complex genomes the availability of a BAC map is still extremely 
useful,  although  for  most  genome  sequencing  projects  (less  laborious) 
comparative  mapping  approaches  are  being  used  [8].  Moreover,  the  recent 
developments in DNA sequencing have reduced sequencing cost drastically and 
provide,  in  particular  if  combined  with  a  sequencing  target  complexity 
reduction,  an  attractive  alternative  for  BAC  mapping.  Such  alternatives  are 
described in Chapters 3 and 5 of this thesis and will be further discussed in the 
next paragraph.

Mining  for  SNPs  in  unsequenced  genomes  by  next-
generation sequencing
Cost effective sequencing and reconstruction of a large complex animal genome 
is  currently  still  a  major  challenge.  However,  reduced  complexity 
representations of genomes are ideal sequencing targets for SNP detection as is 
shown in Chapters  3 and 5 of  this thesis.  The recent  improvements in read 
length and sequence quality and the decreased cost per base, facilitate obtaining 
sufficient  coverage  of  the  fragments  present  in  a  genome  library.  For  the 
approach described in Chapter 3, random shearing of the genome library was a 
necessity to sufficiently cover the fragments of the library by short sequence 
reads. For the approach used in Chapter 5, the read length and the mate pair 
information  was  sufficient  to  cover  the  (considerably  smaller)  library 
fragments. Sequenced and assembled library fragments subsequently served as 
reference subgenome providing sufficient sequence context to identify and map 
SNPs. We have shown that the short reads resulting from a few NGS runs on 
reduced  representation  libraries  provide  both  genomic  context  and  ample 
coverage  to  perform sequence  variant  discovery.  Thousands  of  high  quality 
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SNPs were obtained of which the turkey SNPs showed a genotyping conversion 
rate of 95%. Due to the lack of a complete genome build in turkey and duck, we 
used a comparative mapping approach to assign predicted SNPs to a genomic 
location. The prediction of the genomic locations of SNPs in the target genome 
by  mapping  the  sequenced  library  fragments  to  the  chicken  chromosomes, 
might have introduced some bias towards the physical  map of the reference 
species. However, we show for turkey that it is an effective approach for the 
selection  of  SNPs  to  be  included  in  genotyping assays  for  constructing  the 
linkage  map.  The  successful  construction  of  a  turkey  linkage  map,  which 
assisted  in  the  turkey  reference  genome  build,  shows  that  a  comparative 
approach is effective in reconstructing genomes from NGS sequence contigs 
and  scaffolds  (Turkey  genome  paper  submitted).  From  the  chicken-turkey 
comparative  map  we  can  conclude  that  chicken  and  turkey  karyotypes 
(common ancestor ~28 MYA) have undergone relatively very few chromosomal 
rearrangements during evolution, which is consistent with an earlier study [9]. 
A similar approach is currently being performed to build the  duck reference 
genome. Constructing the chicken-duck comparative map requires duck SNPs 
that show an even distribution on the chicken reference genome. We observed 
that for duck, compared to turkey, a considerable lower fraction of SNPs could 
be  mapped.  Nevertheless,  based  on  thousands  of  SNPs  that  still  could  be 
mapped and sufficiently  cover  the  chicken genome,  I  expect  that  these  will 
allow  for  duck  linkage  map  construction  and  facilitate  the  duck  reference 
genome build. This would mean that even evolution periods of ~90 MYA can 
be spanned in avian genome assembly using comparative genomics approaches.
The numbers of identified markers will not allow for genome wide association 
studies (GWAS) in turkey because recent linkage studies in the highly similar 
chicken genome [10] suggest that at least 100,000 SNPs are required to exploit 
haplotype information. However the availability of a complete turkey reference 
genome allowed for exploiting the full potential of the nucleotide variation in 
our  sequencing  dataset.  Using  this  reference  we  revealed  a  total  of  37,041 
putative  SNPs  which  is  a  step  closer  towards  the  100k  SNPs  required  for 
GWAS in  turkey.  The  sum of  SNPs  identified  by  our  analysis  (Chapter  5) 
within  the  wild  duck  pool  and  between  wild  duck  and  domesticated  duck 
already exceeds 100,000. Together with the  high quality SNPs identified in 
whole  genome sequencing  and  EST sequencing  in  duck  the  here  identified 
SNPs will very likely allow for GWAS in duck. 
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Further improvements

Although increasing read length and mate pair information already allows for 
complete sequence coverage of library fragment sizes of a few hundred base 
pairs, larger insert sizes still require that libraries have to be randomly sheared, 
sequenced and reconstructed by sequence assembly. Equal sequence coverage 
of the large fragment libraries facilitates sequence assembly but is not obtained 
without taking measures in sample preparation (Chapter 3 and [11]). Recently 
developed sample preparation techniques avoid overrepresentation of sequences 
derived from the ends of the fragment of the library and maximize coverage 
yield  and  limit  coverage  variability  [11].  I  believe  that  these  preparation 
techniques  will  contribute  to  the  reconstruction  of  a  larger  fraction  of  the 
reduced  representation  library  (RRL)  and  that  it  would  have  increased  the 
number of reconstructed library fragments that could be mapped in our turkey 
study  (Chapter  3).  This  assumption  is  supported  by  a  recent  publication 
describing a “new” strategy for whole genome sequencing by  partitioning the 
genome using RRLs prior to assembly [12]. The authors state that advances in 
sequencing technology and approaches will facilitate the sequencing of RRLs 
containing more fragments with fewer reads. This will allow for whole genome 
sequencing of  mammalian-sized genomes using a relatively small number of 
fragment pools. This raises the question of how long unsequenced genomes will 
remain unsequenced.

How long will unsequenced genomes remain unsequenced?

The human, mouse, cattle, chicken, fruit fly and many microbial species are 
examples  of  groups  of  species  for  which  a  sequenced  reference  genome is 
available. I have experienced that the number of species within this group is 
growing exponentially as a result of the increasing output at decreasing cost of 
NGS  sequencers.  As  an  example:  within  one  year,  a  few  months  after 
submission of Chapter 3 to a scientific journal and in the course of the analysis 
for Chapter 5, next generation sequenced genomes for turkey and duck became 
available for our group but not yet in public domain. Initially NGS has been 
applied for (re-)sequencing of relatively small sequencing targets like complete 
prokaryote genomes and eukaryote genomes for which the sequencing target 
had been reduced e.g. by using individual BACs. More recently data from a 
NGS whole genome shotgun approach has been used to close small gaps in the 
assembly of traditional Sanger reads and to assist in scaffolding the genome by 
providing  mate  pair  data  as  a  result  of  paired  end  sequencing  of  genomic 
libraries with specific large inserts [13].  A next generation genome scale  de 
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novo sequencing approach has been reported for bacteria [14-16] but typical 
results in thousands to millions of contigs and scaffolds when applied on much 
larger  and more complex sequencing targets,  like the  duck (Huang et  al.  in 
preparation), turkey (Dalloul et al. submitted), giant panda [17], cucumber [13] 
and human (Table 2) genomes. Reconstruction of repetitive genomic element 
using NGS is hard because repeat sequences prevent short reads from being 
assembled unambiguously. Furthermore each NGS platform produces a unique 
reproducible pattern of variable sequence coverage [19]. By mixing of different 
NGS read types in the assembly regions of low coverage in one NGS approach 
might be sufficiently covered by the other. This theory is supported by mixing 
Roche/454 and Illumina read data which indeed resulted in improved de novo 
assemblies of microbial genomes compared with assemblies based on data from 
either platform alone [20,21]. Promising results in whole genome sequencing 
by partitioning using RRLs and sequencing of these RRLs by a mix of NGS 
read types will  likely make  de novo  assembly of mammalian-sized genomes 
soon feasible.

Table 2: Achievements of current de novo short fragment sequence 
assemblers

assembler n contig 
N50

scaffol
d N50

genome 
coverage

species Short read 
archive

refe-
rence

SOAPdenovo 7.4kb 446.3kb 87.4% human 
(Asian)

ERA000005 [8]

SOAPdenovo 5.9kb 61.9kb 85.4% human 
(African)

SRA0002712 [8]

ABBYS 2.76 M 1499 bp 69% human 
(African)

SRA000271 [18]

SOAPdenovo 4611bp 85% human 
(African)

SRA000271 [8]

SOAPdenovo 40kb 1.3Mb giant panda [17]

SOAPdenovo 12.5 172kb cucumber [13]

1contigs equal to or larger than 100 bp
2supplemented with large insert library
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A first  glimpse of the extent of structural variation in an 
avian genome
SV markers are rarely used in animal genetics but might gain interest once their 
abundance is estimated and their putative relation with phenotypic differences 
is understood. Do SVs influence phenotypes and what is the impact of SVs on 
animal  genome evolution?  Previously  used  methods  in  CNV screening  like 
fluorescent  in-situ  hybridization  (FISH)  of  bacterial  artificial  chromosomes 
(BACs) and array based comparative genome hybridisation (array-CGH) have a 
limited resolution. Due to this limit in resolution the majority of the identified 
SVs have not yet been finely resolved to the nucleotide level. For most reported 
CNVs in animals, we do not know their true population frequency because they 
have  not  been genotyped.  To be  able  to  study  the  potential  role  of  SVs  in 
phenotypes and  in genome evolution, we will need a more complete catalog of 
SVs  in  animal  genomes  and  large  SV  genotype  datasets  from  different 
populations. Precise  de novo CNV mutation rates throughout the genome are 
required to better understand the contribution of CNV versus SNP to  genome 
evolution,  particularly  with  respect  to  gene  duplication/triplication  and exon 
shuffling [22].

Low requirements for obtaining a promising first glimpse

In Chapter 4 we provide a first glimpse of the extent of structural variation in an 
avian genome at a ~50 bp resolution. We show that even the analysis of mate 
pair  information of a paired end sequenced reduced representation library is 
sufficient to predict several hundreds of candidate structural variants (SVs) in 
the chicken genome. More than 180 of these SVs are very likely to represent 
true structural variation between four chicken breeds and red jungle fowl. The 
sequencing and the bioinformatics approach we used put high constraints on the 
SV detection thereby putatively ignoring true variants. Future validation studies 
can be considered to find out what constraints can be relaxed, at tolerable false 
positive rates, to increase sensitivity of the detection method. The majority of 
SVs identified by our method were small deletions, which is consistent with an 
earlier study where an inverse relationship between the number of SVs in the 
human genome and their size was established [23]. Our detection strategy did 
allow for the detection of insertions in only a very limited size range (few tens 
of basepairs). I expect that the actual size and frequency of the total number of 
small insertions in the chicken genome is similar to the observed number of 
small deletions. Based on our findings in Chapter 4 we expect thousands of 
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rearrangements smaller than one kb and hundreds of larger rearrangements in 
the chicken genome. Furthermore our study identified SVs in coding regions of 
the genome suggesting that some of the small SVs putatively can be related to 
phenotypes.  Based on this  first  glimpse,  I  think,  there is  evidence that  SVs 
considerably  contribute  to  phenotypes  and  genome  evolution  and  that  it  is 
worthwhile  to  obtain  a  more  complete  picture  of  the  extent  of  this  type  of 
genetic variation in animal genomes.

More demanding approaches completing the catalog of SVs

Our SV detection method can be classified as a paired-end resequencing and 
mapping  approach  using  standard  insert  libraries.  Paired-end  mapping 
approaches combined with high-throughput sequencing [23-28], (Chapter 4 of 
this thesis) provide the possibility of reliably detecting SVs that are one to three 
orders of magnitude smaller than those assayed previously using FISH mapping 
of BACs or array-CGH or lower-density oligonucleotide arrays.  Most recent 
advances in paired-end sequencing, which were not available at the time of our 
study, are the use  of large insert library kits and increased read lengths. The 
latter  will  improve  mapping accuracy  whereas  the  first  will  allow for  deep 
paired end sequencing of insert libraries in a larger size range.
Paired-end  reads  of  large  insert  libraries  will  allow  for  spanning  repetitive 
elements,  which  likely  hold  the  majority  of  genomic  structural  variation 
[29-31]. By  constructing libraries from a randomly sheared genome, each SV 
will  be  predicted  by  paired  end  reads  from a  variety  of  genome fragments 
sampled from that genomic region. This will facilitate breakpoint resolution and 
reduces required additional PCR and sequencing efforts [32]. In spite of  these 
improvements,  the  SV  detection  strategy  by  paired  end  sequencing  and 
mapping (PEM) still  has a fairly large false negative detection rate for large 
structural  variants  and  segmental  duplications  compared  to  more  laborious 
techniques such as fosmid paired end sequencing (FPES) or oligonucleotide 
arrays comprising millions of optimized probes [33]. Segmental  duplications 
are more difficult to ascertain using PEM because many of the reads in these 
regions  do  not  map  to  unique  locations  in  the  genome  [24].  However,  a 
quantitative NGS approach for detecting segmental duplications can be used to 
complement the paired -end mapping technique. In this approach the depth of 
coverage in sequence data is analyzed to look for genomic regions that differ in 
copy number between individuals [34].
A shortcoming of reference based SV detection techniques like PEM and array-
CGH is the bias towards the reference genome. In a sequencing context, reads 
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obtained from large genomic regions that are missing in the reference cannot be 
mapped  whereas  in  a  micro-array  context  these  genomic  regions  are  not 
represented by probes. This lack of genomic information will potentially hide 
structural  variation  between  the  sampled  individuals.  Therefore,  the  most 
versatile  strategy  for  SV  detection  is  sequencing  and  unbiased  de  novo 
assembly of individual genomes [8]. This approach will undoubtedly result in a 
more  accurate  and  complete  catalog  of  structural  variation  in  a  genome. 
However it  is unclear what sampling depth is needed to reliably capture the 
majority of SVs. In human there is evidence that there are many SVs related to 
disease present within the general population with frequencies lower than the 
classical definition of a polymorphism (>1%)[35].
Furthermore a linear representation of a genome which is currently being used 
is not proper to capture and represent all structural variation and therefore needs 
to be replaced by a higher level of data storage and visualization. Because of the 
costs of whole genome sequencing and the impossibility to reconstruct complex 
genomes by de novo assembly of NGS data this approach of SV detection will 
remain  unfeasible  in  animal  sciences  for  the  near  future.  Even  if  we  had 
(almost) completed the catalog of structural variation, it would not be possible 
to genotype CNVs genome-wide due to the lack of a robust manner. Currently 
the  degree  of  uncertainty  in  genotype  inference  reduces  the  power  of 
association  studies,  and  potentially  increases  the  risk  of  false-positive 
associations.

SVs and (unraveling) their relation to phenotype

The biological effect and the evolutionary process behind medium sized (10-50 
kb) and small (<10 kb) SVs, which are thought to represent the majority of SVs 
in the human genome, remains currently largely unknown. These SVs generally 
have been below the reliable detection limit, and thus are underrepresented in 
current databases [35,36].
For large SVs, studies in human have provided evidence for their involvement 
in gene regulation by various molecular mechanisms, including gene dosage, 
gene disruption, gene fusion and position effects. A well known example of the 
influence of SVs on phenotype is the deletion of the alpha-globin gene resulting 
in  alpha-thalassaemia  in  homozygous  carriers  [37]  and  protection  against 
malaria in heterozygous carriers [38]. Altered regulation caused by SVs has also 
been associated with Mendelian [39,40] as well as sporadic traits, and also has 
been  associated  with  complex  diseases  like  Parkinson  disease,  Alzheimer 
disease, mental retardation, Autism and Schizophrenia in human. Furthermore 
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recent studies have reported that altered expression levels due to CNVs affect 
susceptibility  to  HIV,  Crohn  disease,  psoriasis,  Pancreatitis,  Systemic  lupus 
erythematosus and glomerulonephritis [41]. Moreover, CNVs can also represent 
benign  polymorphic  variants  and  in  particular  gene  duplication  and  exon 
shuffling are thought to be a predominant mechanism driving gene and genome 
evolution.  As stated in the Introduction of this thesis only a limited number of 
animal traits have been linked to CNVs. Currently a large scale CNV detection 
study  is  being  performed  at  an  eight  kb  resolution  using  array  based 
comparative genome hybridization (R. Crooijmans, personal communication). 
The study of CNVs, in particular those that result in gene amplification favored 
by  positive  selection,  may  reveal  genomic  regions  that  were  evolutionally 
favored because of  their  adaptive  benefits.  Genomic alteration due to  major 
environmental  impact  (e.g.  domestication)  can  be  identified  and  modified 
genomic  regions  might  be  linked  to  traits  or  hide  thus  far  undiscovered 
functional genes.
Common SVs in  human seem to show patterns of  allele  frequency,  linkage 
disequilibrium and population differentiation that mirror the properties of SNPs 
[42]. Cataloging the genomic locations, haplotypes and sequence properties of 
these alternative structural alleles will therefore also be an important direction 
for completing databases of common patterns of genetic variation in animals. A 
complete catalog encompassing SNPs and SVs can be used when attempting to 
unravel the molecular genetic basis of a given phenotype. In other words SNP 
based linkage and association studies  should be  supplemented by SV based 
linkage and association studies.  Traits  previously intractable by conventional 
genetic  (SNP)  analysis  may  become  manageable  by  including  SVs  in  the 
analysis,  as  was  shown  for  autism  spectrum  disorders  in  human  [43]. 
Furthermore the simultaneous study of SNPs and SVs, both common and rare, 
will be needed to understand the relative contribution of each form of variation 
to traits in animal populations.
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Discovery of genetic variation in animals, what can be 
expected in the near future
Discovery  of  genetic  variation  in  the  near  future  needs  to  include  both  the 
identification of variation at the nucleotide level and the profiling of structural 
variation between the reference and individuals. Ultimately this is accomplished 
by  de  novo assemblies  allowing  a  sound  identification  of  DNA sequence 
information that is unique to each population. More sources of genetic variation 
can  be  captured  by  analysis  of  individual  genomes,  transcriptomes  and 
epigenetics. Collectively, these data will facilitate a more predictive biological 
approach  to  the  study  of  phenotypes  in  farm  animals  and  provide  more 
understanding  of  the  genetic  basis  of  traits.  Acquired  understanding  of  the 
genetic basis of traits can be applied in breeding programs to improve product 
quality, production efficiency and to reduce the incidence and impact of disease.

Individual genomes

NGS of genomes enables the genotype-phenotype correlations to be studied in 
the context of the whole genome. The potential utility of individual sequencing 
has been illustrated by a recent cancer study in which complete genomes of 
healthy  and  affected  tissues  were  sequenced  and  intra-individual  genome 
comparisons  revealed  cancer  related  somatic  mutations  [44,45].  Currently 
sequencing  based  association  studies  reveal  genotypes  by  evaluating  the 
number of reads obtained from specific chromosomes and thus can replace map 
based genetics [46]. 
To fully understand genome function and evolution, the complete sequence of 
multiple individuals representing a population of a species will be required. In 
humans such sequencing projects are ongoing and have already resulted in the 
publication of the complete genomes of five individuals [25,27,28,47,48]. For 
human and mouse high-resolution profiles of genomic variation will soon be 
available(www.1000genomes.org,www.sanger.ac.uk/modelorgs/mousegenomes
). NGS are revolutionizing these sequence gathering efforts and help to obtain 
whole genome sequence for additional species of interest.  With the advent of 
ultra low cost sequencing technology, routine sequencing of individual animal 
genomes will become real within a period of 5-10 years. Using this data it will 
be  possible  to  determine  precisely  which  regions  in  animal  genomes  are 
actually functional, allowing variants found in those regions to be prioritized for 
follow-up.  The  goal  is  to  characterize  the  genetic  architecture  of  animal 
diseases  and  complex  traits,  moving  beyond  the  common  SNPs  that  are 
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currently forming the backbone of genome-wide association studies.

Transcriptome sequencing

Transcriptome  sequencing  is  a  reduced  target  sequencing  approach  and  has 
been used for applications ranging from gene expression profiling, non coding 
RNA  discovery  and  quantification,  genome  annotation  to  rearrangement 
detection.  A  next-generation  high-throughput  transcriptome  sequencing 
approach has as a unique feature that the data can be analyzed in various ways. 
It  can be  analyzed to  provide  insight  into the  level  of  gene expression,  the 
structure of genomic loci can be analyzed, and sequence variation present at 
loci (e.g.,  SNPs) or due to RNA editing can be detected. In animal sciences 
NGS will  economize  identification  and quantification  of  mRNA  and small 
regulatory RNAs under different conditions or in different cell types. Thereby it 
may  replace  micro-array  based  techniques  [49],  serial  analysis  of  gene 
expression (SAGE)[50] and massively parallel  signature sequencing (MPSS)
[51].  Major  benefits  are  the  less  stringent  standardization  and  replication 
requirements  and  a  more  robust  detection  of  rare  RNAs  provided  by  high 
sampling depth.
The increasing number of sequenced genomes of animal species fueled by the 
advances in sequencing technologies has emphasized that  techniques for the 
annotation of  protein-coding genes involving the elucidation of their  correct 
exon-intron  structures  are  lagging  behind.  EST driven  techniques,  currently 
being the standard for protein coding gene annotation, fail to cover 20-40% of 
transcripts including rare transcripts, transcripts with highly specific expression 
patterns, extremely long transcripts, transcripts as a result of alternative splicing 
and transcripts coming from complex loci [52]. Next generation sequencing has 
the potential to capture rare transcripts by providing much deeper coverage of 
EST libraries. Paired end sequencing technology and increased read length will 
allow for a cost effective detection of a higher variety of transcripts in the near 
future. This has already been illustrated in a cancer study in human in which 
rearrangements in the transcribed part of the genome were detected by a paired-
end ditag transcriptome sequencing methodology [53]. 
In  animal  sciences  transcriptome  sequencing  is  a  valuable  technique  to 
complete gene catalogs in animals and to quantify gene expression levels. A 
complete  catalog  of  genes  and  their  expression  levels  measured  in  animals 
showing trait differences will be helpful to correlate genetic variation in genes or 
variation in expression level to these traits.
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Next-generation sequencing and epigenetics

Epigenetics  is  the  study  of  heritable  gene  regulation  caused  by  other 
mechanisms than the DNA sequence itself. The two major types of epigenetic 
modifications  regulating  gene  expression  are  DNA methylation  by  covalent 
modification of  cytosine-5′  and posttranslational  modifications  of  the  amino 
acids  that  make  up  histone  proteins.  Methylated  DNA regions  tend  to  be 
transcriptionally less active, through a mechanism not fully understood whereas 
modified histone proteins might change the way that DNA is wrapped around 
nucleosomes  which  influences  gene  expression  as  well.  Important  specific 
epigenetic processes in animal breeding include imprinting, gene silencing and 
maternal  effects.  Epigenetics  also  accounts  for  some  of  the  mechanisms 
explaining why differentiated cells in a multicellular organism are programmed 
to only express the genes that are necessary for their own activity. Studies in 
human have implicated that epigenetic modifications are of prime importance in 
oncogenesis and development, setting the grounds for the Human Epigenome 
Project [54] and the forthcoming Cancer Epigenome initiative [55].
Bisulphite sequencing is one of the approaches used to detect DNA methylation 
and currently next-generation sequencing makes it feasible to perform genome-
scale  bisulphite  sequencing  on  large-mammalian  genomes  using  reduced 
representation libraries and thus is providing a scalable and valuable tool for 
epigenetic  profiling  of  cell  populations  [56].  Posttranslational  covalent 
modification of histone tails including methylation, acetylation, phosphorilation 
and ADP ribosylation are thought to have an effect on the strength of DNA-
histone  interactions  thereby  determining  the  accessibility  of  DNA  to 
transcriptional regulators [57]. Histone modifications have been identified by 
chromatin immunoprecipitation (ChIP).  NGS is  currently  being used for the 
high throughput sequence based characterization of bound DNA (ChIP-Seq). 
ChIP–seq offers higher  resolution and cleaner  data  at  a  lower cost  than the 
array-based alternatives for genome wide profiling of large genomes and will 
allow the profiling of a large number of DNA binding proteins, as well as a 
more  complete  set  of  chromatin  marks  in  thousands  of  epigenomes  across 
multiple tissues, cell types, conditions and developmental stages [58].
Epigenetic mechanisms and their effects in gene activation and inactivation, are 
increasingly understood to play a considerable role in phenotype transmission 
and  development.  To  increase  the  understanding  of  this  role  in  animal 
reproductive biology and to understand how mammalian species are regulated 
by  imprinting,  next  generation  sequencing  can  be  used  to  perform  a 
comprehensive analysis of imprinted genes in animals.
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Now we can efficiently generate data for variant discovery; how we 
gonna analyze and store it?

NGS technology promises to deliver cost effective genome coverage in many 
applications  in  the  very  near  future,  allowing individual  genome sequences, 
comprehensive  transcriptome  sequencing  and  epigenetics.  Using  this 
information we can generate more complete reference genomes with fewer gaps 
in which SNP and SV information is  integrated.  A comprehensive reference 
genome  including  the  genomic  variation  observed  in  many  individuals 
representing populations will not fit in the currently used linear representation. 
Most likely the next generation reference genome will consist of data structures 
and compression algorithms holding the multi dimensional complex of genomic 
sequence data.
Therefore,  some  hurdles  in  software  development  and  solving  hardware 
deficiencies have to be taken to efficiently handle and analyze these amounts of 
high complexity data and to keep them accessible.
Great  challenges  for  many  laboratories  are  likely  to  be  the  effective 
management and analysis of the immense amount of sequencing data in order to 
make NGS applications a routine. This will require the development of efficient 
and robust software tools and pipelines for data analysis. We have shown that 
close interaction between geneticist, laboratory scientists and bioinformaticians 
is fruitful to take up the gage of handling and interpreting this data.
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Summary

Summary
Current genetic marker repositories are not sufficient or even are completely 
lacking for most farm animals.  However, genetic markers are essential for the 
development  of  a  research  tool  facilitating  discovery  of  genetic  factors  that 
contribute to susceptibility to disease, to protection against illness and to overall 
welfare and performance in farm animals. 
Genomic  analyses  of  related  species  reveals  the  evolution  of  genome 
organization as well as supports the identification of the genetic background of 
economically  and  biologically  important  traits.  The  availability  of  genetic 
linkage  maps  and  genome  sequence  information  that  is  conserved  across 
compared  species,  enables  the  construction  of  comparative  maps  which 
facilitate  the  study  of  evolutionary  processes  ranging  from major  structural 
changes such as genomic or intra chromosomal rearrangements to fine scale 
differences  such  as  single  nucleotide  substitutions.  Also  the  transfer  of 
information like gene predictions directly from the closest sequenced reference 
species  to  the  studied  species  is  facilitated  by  comparative  maps. Genetic 
markers  are  essential  in  constructing  linkage  maps  facilitating  comparative 
genomics. Thousands of genetic markers can also be applied in genome wide 
selection  approaches,  strategies  that  will  substantially  increase  the  rate  of 
genetic gain in animal breeding.
By  large  scale  identification  of  Single  Nucleotide  Polymorphisms  (SNPs)  and 
Structural Variants (SVs) we aimed to contribute to the development of a repository 
of genetic variants for farm animals. We targeted for the identification of sufficient 
SNPs allowing for construction of linkage maps, SNP genotyping based estimation of 
kinship or pedigree reconstruction and studies aiming for the detection of quantitative 
trait loci (QTL).  For this purpose bioinformatics data pipelines were designed and 
validated  to  address  the  challenge  of  the  cost  effective  identification  of  genetic 
markers in DNA sequencing data. Provided SNP detection strategies can be applied 
in almost  any organism of interest  without the requirement  for  a fully  sequenced 
reference genome. By the lack of a reference genome SNPs are assigned to putative 
genomic  locations  by  (comparative)  mapping  to  closely  related  species.  We also 
provide low cost strategies for obtaining sufficient sequencing data to reliably detect 
SNPs in species lacking a reference genome such as, at  the time of these studies, 
turkey and duck. For the already sequenced chicken genome we show that limited 
paired end sequencing is sufficient to catch a glimpse of the abundance of structural 
variants.
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High quality SNPs as a result of mining public sequencing data

In chapter 2 we identified SNPs in publicly available whole genome sequencing 
datasets consisting of output from traditional capillary sequencing platforms. 
We mined pig whole genome shotgun sequencing data by sequence alignment 
and clustering.  Sequence  clusters  were  assigned to  genomic  locations  using 
publicly  available  BAC  sequencing  and  BAC  mapping  data.  We  predicted 
thousands of SNPs within the sequence clusters and included a rough estimate 
of  their  genomic  location.  Genotyping  of  an  animal  panel  proved  that  the 
overall performance of the SNPs identified by our genome shotgun sequence 
mining approach is comparable to those available in existing SNP repositories.

Cost effective approach of obtaining SNPs in unsequenced 
genomes

In chapter 3 we report on our first results using NGS, a technique enabling the 
quick and cost effective generation of a whole genome sequencing dataset. We 
show how this technique can be used to detect genetic variation in the, at that 
time,  unsequenced  turkey  (Meleagris  gallopavo)  genome.  To  decrease 
sequencing costs we pooled the DNA of multiple individuals and sequenced a 
subset of the genome by creating a reduced representation library (RRL) of the 
pooled  sample.  By  pooling  the  DNA of  multiple  individuals  we  reduced 
sequencing cost by handling only one (pooled) sample whereas the construction 
of a (RRL) resulted in a ten times reduction of the sequencing target while the 
thousands  of  obtained  SNPs  still  cover,  at  intervals,  the  whole  genome. 
Sequencing,  assembly  and  SNP discovery  were  benchmarked  by  applying 
comparative  genomics  using  the  sequenced  genome  of  the  closely  related 
species chicken. The quality of the SNPs and a correlation between genotype 
and  sequence  derived  allele  frequencies  were  determined  by  genotyping  a 
selection of the identified SNPs.

First glimpse on the structural variation in the chicken genome

In chapter 4 we report on the application of paired end NGS for the detection of 
structural  variation  in  four  chicken  breeds.  Paired  end  sequencing  is  an 
extension on sequencing analysis that provides information about which pair of 
reads are coming from the outer ends of the same sequenced DNA fragment. 
We  paired  end  sequenced  reduced  representation  libraries  (RRLs)  of  four 
chicken breeds that included genomic DNA fragments within the size range of 
125-200bp. Paired end reads were optimally mapped to the chicken reference 
genome.  SVs were  identified as abnormally aligned read pairs  that  have an 
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orientation  discordant  from  the  reference  genome  or  improper  span  sizes 
compared to the size-range of the RRL. We designed SV detection parameters 
to  distinguish  true  structural  variants  from  false  positives  due  to  RRL 
contaminants, sequencing and mapping errors or gaps in the chicken reference 
genome.  Parameters  were  further  optimized  by  validation  of  a  small 
representative sample of SVs using PCR and traditional capillary sequencing. 
SVs were annotated and provide a first glimpse of the high resolution sequence 
map of chicken structural variation.

Genome wide SNP discovery and benchmarking

In  chapter  5  we  reimplemented  our  SNP detection  approach  described  in 
chapter 3 according to the fast developments in NGS technology. We applied 
the reimplemented pipeline  for  obtaining SNPs to  allow genotyping in wild 
duck (Anas platyrhynchos). We show that the improvements in sequencing like 
higher sequence quality, paired end and longer read length facilitates variant 
discovery.  A next-generation  sequenced  domesticated  Peking  duck  reference 
genome consisting of tens of thousands of scaffolds and contigs served as a 
reference  genome.  Obtained  SNPs  were  compared  with  two  external  SNP 
repositories that resulted from either SNP identification in the duck reference 
assembly or duck EST sequencing. A subset of high quality SNPs that were 
shared  by  our  data  and  either  of  both  external  datasets  was  constructed, 
validated by genotyping and served to benchmark all SNPs that we identified 
within the wild ducks and those identified as sequence differences between wild 
duck and the domesticated Peking duck reference genome. Based on alignment 
results with the closely related chicken genome we estimate that we cover the 
complete duck genome with the SNPs identified.

What did we contribute and what can be expected in the near future

We developed SNP repositories which fulfill a requirement for SNPs to perform 
linkage  analysis,  comparative  genomics  QTL studies  and  ultimately  GWA 
studies in a range of farm animals. We also set the first step in developing a 
repository  for  SVs  in  chicken,  a  relatively  new  genetic  marker  in  animal 
sciences.
In chapter 6, I evaluate and discuss the results of our bioinformatics approaches 
for  obtaining  these  high  quality  markers  cost  effectively.  I  discuss  the 
exponentially growing amount of data in publicly available databases due to 
ongoing  developments  of  new  sequencing  technologies  which  consequently 
result  in  less  uniformity  of  the  public  data.  Next  I  look  back  on  our  SNP 
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detection results and approaches using NGS technology. Furthermore I give my 
view on the significance of detecting structural variation in animal genomes and 
what methods can be considered. Finally I discuss what can be expected in the 
near future if emerging sequencing techniques and the development of efficient 
bioinformatics analysis solutions keep pace.
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Momenteel zijn voor  landbouwhuisdieren de aantallen beschikbare genetische 
merkers niet  toereikend en voor veel  diersoorten zijn ze zelfs  helemaal  niet 
voorhanden.  Genetische merkers  zijn  echter  essentieel  voor  het  ontwikkelen 
van een methode om genetische factoren te identificeren die te maken hebben 
met  gevoeligheid  voor  ziekte,  resistentie  tegen  ziekte  en  het  algeheel 
welbevinden en de  prestaties  van landbouwhuisdieren.  Door middel  van het 
vergelijken van genomen binnen een soort of van aan elkaar verwante soorten 
kunnen veranderingen in het genoom worden onthuld. Samen met de registratie 
van kenmerken over meerdere generaties kan met deze kennis de genetische 
achtergrond van economisch en biologisch belangrijke eigenschappen worden 
geïdentificeerd.  Het  beschikbaar  zijn  van  genetische  kaarten  en  de  genoom 
sequentie, welke in zekere mate geconserveerd is tussen verwante soorten, stelt 
ons  in  staat  genomen te  vergelijken  en  verschillen  gedetailleerd  in  kaart  te 
brengen.  De  veranderingen door  toedoen van genoom evolutie  variëren  van 
kleinschalige  veranderingen  zoals  de  substituties  van  enkele  basen  tot  intra 
chromosomale  of  genomische  herschikking.  In  kaart  gebrachte  genoom 
vergelijkingen worden gebruikt om kennis als bijvoorbeeld genvoorspellingen 
van de soort waarvan de genoom sequentie bekend is, toe te passen op de soort 
in studie.
Een genetische merker is een variatie in het erfelijk materiaal (DNA) waarvan 
de overerving te volgen is. Genetische merkers zijn onmisbaar bij het in kaart 
brengen  van  de  verbondenheid  van  genomische  regio's  tot  elkaar  (linkage 
studies), wat belangrijke informatie is bij het vergelijken van genomen. Merkers 
worden  ook  gebruikt  in  het  volgen  van  erfelijke  eigenschappen  in  een 
stamboom. Tegenwoordig worden in de fokkerij duizenden genetische merkers 
toegepast om bij selectieprocedures zoveel mogelijk genomische informatie in 
de afweging mee te  nemen.  Met deze aanpak kan in  de  verbetering van de 
genetische samenstelling van landbouwhuisdieren per generatie-interval meer 
vooruitgang worden geboekt.
Met de grootschalige identificatie van base substituties (SNPs) en structurele 
varianten  (SVs)  in  landbouwhuisdieren  hebben  we  willen  bijdragen  tot  de 
ontwikkeling  van  een  verzameling  genetische  variatie,  welke  als  merkers 
gebruikt  kunnen  worden.  We  stelden  ons  tot  doel  voldoende  SNPs  in  te 
identificeren  welke  het  mogelijk  maken  genetische  kaarten  te  construeren, 
stambomen  van  een  populatie  te  reconstrueren  en  de  verwantschap  tussen 
dieren te kunnen bepalen. Ook wilden we studies faciliteren waarin locaties op 
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het  DNA worden  geïdentificeerd  welke  een  effect  hebben  op  een  bepaalde 
erfelijke  eigenschap  van  een  dier  (QTL studies).  Om  ons  doel  te  kunnen 
bereiken zijn, door toepassing van bio-informatica, datapijplijnen ontworpen en 
gevalideerd. Hiermee zijn we de uitdaging aangegaan de genetische variatie in 
publiek beschikbare DNA sequentie analyse data zo kosteneffectief mogelijk 
identificeren. Onze aanpak van SNP detectie kan worden toegepast in nagenoeg 
elk  organisme  zonder  dat  daarvoor  de  volledige  DNA sequentie  van  een 
referentiegenoom  beschikbaar  moet  zijn.  Het  ontbreken  van  een 
referentiegenoom wordt gecompenseerd door SNPs aan genomische locaties toe 
te  wijzen  met  behulp  van  een  beschikbare  genoom  vergelijking  met  een 
verwante soort, waarvoor wel genomische informatie beschikbaar is. Daarnaast 
laten we strategieën zien waarmee tegen lage kosten voldoende DNA sequentie 
data  kan  worden  verkregen  om  SNPs  te  detecteren  in  soorten  zonder 
referentiegenoom en onvoldoende DNA sequentie data, zoals ten tijde van onze 
studie  kalkoen  en  eend.  Tenslotte  laten  we  zien  dat  een  beperkte  sequentie 
analyse op uiteinden van fragmenten van het kippen genoom voldoende is om 
een eerste indruk te krijgen van de aanwezigheid van structurele variatie.

Kwalitatief goede SNPs als resultaat van het doorspitten 
van publieke sequencing data.
In  Hoofdstuk  2  hebben  we  SNPs  geïdentificeerd  in  publieke  genoom 
sequencing  data  afkomstig  van  traditionele  capillaire  sequentie  analyse 
platformen.  We  hebben  quasi-random  sequentie-analyse-data  van  varken 
geanalyseerd  door  overeenkomstige  DNA sequenties  te  zoeken  en  deze  te 
clusteren.  Deze  DNA sequentie  clusters  werden  toegekend  aan  genomische 
locaties  indien  ze  homoloog  waren  aan  additionele  publieke  sequentie  data 
waarvan de genomische locatie bekend was. We voorspelden duizenden SNPs 
in de DNA sequentie  clusters  en konden aan de verkregen SNPs een grove 
indicatie van de genomische positie toekennen. Met het genotyperen van een 
selectie dieren hebben we bewezen dat de prestaties van de SNPs die we met 
onze aanpak voorspelden vergelijkbaar is met reeds beschikbare SNPs.

Kosten effectieve aanpak voor het verkrijgen van SNPs in 
genomen waarvoor geen sequentie data beschikbaar is.
In  hoofdstuk  3  rapporteren  we  over  onze  eerste  resultaten  met  een  nieuwe 
generatie sequentie-analyse-apparatuur (NGS), waarmee snel en kosteneffectief 
een sequentie dataset van een heel genoom kan worden gegenereerd. We laten 
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zien hoe deze  techniek kan worden gebruikt  voor  detectie  van SNPs in  het 
kalkoen genoom, waarvoor in die tijd nog geen genoom sequentie beschikbaar 
was. Omwille van lage sequencing kosten hebben we het DNA van meerdere 
kalkoenen samengevoegd en  van fragmenten  verspreid  over  het  genoom de 
sequentie  bepaald.  Het  samenvoegen  beperkte  de  sequentie  analyse  tot  één 
DNA sample.  De complexiteit  van dit  sample  hebben we met  een tienvoud 
gereduceerd door  geen sequentie  analyse  op het  hele  genoom uit  te  voeren, 
maar verspreid over het genoom kleine fragmenten. Hiermee vergrootten we de 
kans dat we van meerdere kalkoenen DNA-sequentie van dezelfde genomische 
locatie  hebben.  De vergelijkingen van de  sequenties  afkomstig van dezelfde 
genomische locaties leverde duizenden kalkoen SNPs op. Het kippengenoom, 
waarvan de DNA sequentie al bekend is, hebben we gebruikt om de sequentie 
analyse, het reconstrueren van de genoom fragmenten en de detectie van SNPs 
te staven. De geïdentificeerde SNPs bleken in intervallen het  kippengenoom 
geheel te bedekken. De kwaliteit van de SNPs en of de frequentie waarin de 
variatie gevonden is in de sequentie data overeenkomt met die in een populatie 
kalkoenen, is vastgesteld door met een selectie van de geïdentificeerde SNPs 
een groep kalkoenen te genotyperen.

Een eerste indruk van de structurele variatie in het kippen 
genoom
In  hoofdstuk  4  beschrijven we de  toepassing  van paired-end NGS voor  het 
detecteren van structurele variatie in vier kippen rassen. Paired-end sequentie 
analyse geeft informatie over welk paar sequenties in sequentie data afkomstig 
is van de uiteinden van hetzelfde op sequentie geanalyseerde DNA fragment. 
We  hebben  verspreid  over  het  genoom  van  vier  kippenrassen  paired-end 
sequentie analyse gedaan op fragmenten tussen de 125 en 300 basenparen in 
lengte.  De  optimale  locaties  van  beide  sequenties  van  ieder  sequentie-paar 
werden bepaald op het kippen referentiegenoom. Structurele varianten (SVs) 
werden herkenbaar doordat sequenties van een sequentie paar hun ideale positie 
open het referentiegenoom vonden in een grotere of kleinere afstand van elkaar 
dan  de  verwachtte  afstand  (125-300  bp).  SV  detectie  parameters  werden 
opgesteld  om  echte  SVs  van  vals  positieven  (veroorzaakt  door  fragment 
contaminatie,  fouten  in  sequentie  en  locatie  bepaling  of  fouten  in  het 
referentiegenoom)  te  onderscheiden.  De  parameters  werden  verder 
geoptimaliseerd door de validatie van een kleine representatieve steekproef met 
behulp  van  PCR  en  traditioneel  capillaire  sequentie  analyse.  SVs  werden 
vervolgens geannoteerd en geven de  eerste  resultaten weer  van het  in  kaart 
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brengen van structurele variatie in het kippen genoom.

Genoom wijde SNP detectie en prestatie vergelijkingen
In  hoofdstuk  5  hebben  we  de  SNP detectie  methode,  zoals  beschreven  in 
hoofdstuk 3, aangepast op de snelle ontwikkelingen in NGS technologie. We 
hebben de aangepaste methode toegepast in eend voor het verkrijgen van SNPs 
welke het genotyperen van wilde eenden mogelijk maken. We laten zien dat de 
ontwikkelingen in  sequentie  analyse  technologie,  zoals  hogere  kwaliteit  van 
sequenties, gepaarde uiteinden en langere sequenties, de opsporing van variatie 
ten goede komen. Het genoom van de gedomesticeerde eend hebben we als 
referentiegenoom gebruikt. Dit genoom is met NGS technologie geanalyseerd 
en  bestond  uit  duizenden  langere  en  korte  sequentie  fragmenten.  Verkregen 
SNPs werden vergeleken met SNPs uit twee externe SNP verzamelingen welke 
het  resultaat  waren  van  SNP  identificatie  bij  het  maken  van  het 
referentiegenoom van de eend ofwel de sequentie analyse op het deel van het 
eendengenoom dat tot expressie komt (EST-sequencing). De verzameling SNPs 
die  in  onze  resultaten  voorkwamen  en  ook  in  één  van  de  andere  twee 
verzamelingen,  werden  gevalideerd  middels  genotyperen.  Deze  verzameling 
gemeenschappelijke SNPs vormde de maatstaf waaraan we onze volledige SNP 
resultaten gemeten hebben. De volledige verzameling bestaat uit SNPs die we 
geïdentificeerd  hebben als  verschillen  tussen  wilde  eenden en  SNPs  die  we 
identificeerden  als  verschillen  tussen  wilde  eend  en  het  genoom  van  de 
gedomesticeerde eend. Resultaten van het positioneren van eenden SNP op het 
kippen genoom suggereren dat we SNPs hebben gevonden verspreid over het 
hele eenden genoom.

Wat hebben we bijgedragen en wat kan worden verwacht in 
de nabije toekomst
We hebben SNP verzamelingen ontwikkeld welke voorzien in een vraag naar 
SNPs om linkage studies,  genoom vergelijkingen en QTL-studies te doen in 
landbouwhuisdieren. Als onze SNP verzamelingen verder worden aangevuld, 
dan zijn studies mogelijk waarin honderdduizenden genetische variaties worden 
getest  op  correlatie  met  een  overerfbare  eigenschap  (GWA studie).  Verder 
hebben we de eerste stap gezet in het ontwikkelen van een verzameling SVs in 
kip,  een  relatief  nieuwe  genetische  merker  in  de  dierwetenschappen.  In 
hoofdstuk 6 evalueer en bediscussieer ik de resultaten van onze bio-informatica 
aanpak om kosteneffectief aan kwalitatief goede merkers te komen. Ik ga in op 
de  exponentieel  groeiende  hoeveelheid  sequentie  data  in  publieke  databases 
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door  de  voortschrijdende  ontwikkelingen  van  nieuwe  sequentie  analyse 
technieken welke als gevolg hebben dat data minder uniform is geworden. Ook 
kijk ik terug op onze SNP detectie resultaten en onze aanpak waarbij gebruik 
werd gemaakt van NGS. Vervolgens geef ik mijn mening over het belang van 
de detectie van structurele variatie in dierlijke genomen en welke methoden er 
overwogen  kunnen  worden.  Tenslotte  bediscussieer  ik  wat  in  de  nabije 
toekomst  kan  worden  verwacht  als  de  ontwikkeling  van  efficiënte  bio-
informatica  analyses  en  het  tempo  waarin  sequentie  analyse  technologieën 
blijven opduiken gelijke tred houden. 
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Begin 2004 kreeg ik de kans, op detacherings basis, voor een periode van twee 
keer twee jaar als bio-informaticus te gaan werken bij de leerstoelgroep fokkerij 
en  genetica.  Daarvoor  had  ik  in  de  rol  van  analist  en  bio-informaticus  al 
ervaring opgedaan in  het  hanteren en analyseren van micro-array resultaten. 
Toenmalige  collega's  zagen mijn  vertrek  naar  Wageningen als  een  definitief 
afscheid, zelf had ik toen nog de intentie terug te keren. Wat me aantrok tot de 
vakgroep in Wageningen was mijn vermoeden dat de bio-informatica daar al 
verder was dan in Lelystad en omdat er mogelijkheden waren een promotie-
traject in te gaan. Ondanks een moeizame start waarin een mogelijk hoofdstuk 
van mijn proefschrift verloren ging en ik vastgesteld had dat de bio-informatica 
veel minder ver was dan ik vermoedde braken de betere jaren van het promotie-
traject aan. Er kwam sequentie data...eerst uit het publieke domein maar daarna 
kregen we ook toegang tot de nieuwste generatie sequentie analyse apparatuur. 
Bovendien werd wat geld door de groepen in Lelystad en Wageningen bijeen 
gelegd zodat ik naar eigen inzicht een computercluster kon bouwen waarbij ik 
Pieter Kroon (proceskunde) nogmaals wil bedanken voor het regelen van een 
locatie. Nu aan de voorwaarden “data” en “rekenkracht” was voldaan, konden 
we  los.  Met  inzet  van  Arun  Kommadath  (toen  masters  student  nu  AIO  in 
Lelystad) en Marisol del Rosario (toen stagiaire nu collega aan de andere kant 
van de loopbrug) hebben we de identificatie van sequentie variatie in publieke 
varkens genoom sequencing data volledig weten te automatiseren. Helaas heeft 
de pijplijn na het verschijnen van de publicatie niet meer kunnen draaien door 
toedoen van de  stroom Next  Generation  Sequencing (NGS)  data  maar  toch 
bedankt voor jullie inzet. Dat ik het voorrecht had als één van de eersten in 
Nederland  met  NGS data  te  werken,  kwam door  een  samenwerking  tussen 
Martien Groenen en Johan de Dunnen waar ik beiden voor wil bedanken. De 
aard, omvang en complexiteit van de data was aanleiding kennis te maken met 
de  Huygens-supercomputer  in  Nederland.  NBIC  deed  me  het  idee  van  het 
gebruik  van  de  supercomputer  faciliteiten  aan  de  hand  en  NCF  en  SARA 
maakten het financieel en praktisch mogelijk.
Maar met alleen wat stukken hardware heb je nog geen op maat gesneden data 
analyse pijplijn in handen. Daarvoor is een besturingssysteem nodig die aan de 
ene kant de hardware efficiënt aanstuurt en aan de andere kant de gebruiker bij 
voorkeur alle vrijheid geeft  software te ontwikkelen en geen geheimen kent. 
Linux  voldoet  aan  deze  criteria  waarvoor  ik  de  ontwikkelaars  oneindig 
dankbaar ben, want zonder dit besturingssysteem had ik dit werk niet willen en 

173



Dankwoord

kunnen doen. Het idee om met linux aan de slag te gaan, inclusief installatie 
CDs en een beschrijving over hoe je een netwerk opzet kreeg ik in 1998 van 
Victor Huisman. Victor, wellicht dat je toen geen vermoeden had van waar je 
me toe hebt aangezet, maar het idee op zich was goed. En mocht je nog vragen 
hebben over linux...
En dan nu weer even terug naar Zodiac want naast die 1152 pixels horizontaal 
en 864 pixels verticaal was er op Zodiac natuurlijk ook nog de groep. Schoof ik 
mijn  stoel  even  opzij  dan  zag  ik  bijvoorbeeld  de  achterkant  van  1024x768 
pixels van het scherm van mijn kamergenoot Haisheng Nie. Ondanks dat we 
vrijwel  dagelijks  in  Area  51  (room with  the  deadly  force)  zaten,  zagen  we 
elkaar  door  de  opstelling  van  de  monitoren  weinig.  Tot  interessante  en  bij 
vlagen  humoristische  conversaties  kwam het  gelukkig  zeer  regelmatig.  Wel 
moet ik me verontschuldigen voor de storende aanloop die ik had van collega's 
met vragen over hun en vooral mijn scripts.
Ook was er een keer een dag waarop we als groep leerden hoe zinloos geweld 
en hoe belangrijk een stapel dozen kan zijn. Voor diegenen die mij nog steeds 
als  één van de  mede-schuldigen van het  zinloze  geweld zien:”SORRY”het  waren 

Robert,Pieter en Koen. Verder moet ik de beleggers in “The Red Pool” helaas teleurstellen; 
het  fonds  bestaat  niet  meer  maar  bedankt  voor  jullie  kennis  (Jan)  en 
vertrouwen.
Collega's, met name die uit de green-room, bedankt voor de luchtige (zo luchtig 
als grond is wanneer je er met een tuinklauw goud doorheen bent geweest), 
verlichtende en informatieve gesprekken tijdens de pauzes. Het informatieve zat 
hem in de aard van de gesprekken, waaraan kon worden afgeleid welke dag van 
de week het was. Wat me tegenvalt is dat jullie het hot-swappen zijn verleerd en 
zelf praktiseer ik deze koffie-tap-techniek ook al maanden niet meer. Zou toch 
jammer zijn als dit verloren ging. Verder wil ik Richard, Bert, Tineke en Sylvia 
bedanken voor de geleverde bijgedragen aan de in-vitro validatie van de in-
silico voorspelde variatie. Het deed me goed wanneer jullie weer met resultaten 
kwamen die  bepaald niet  ruk waren.  Hendrik-Jan en Nikkie  wil  ik  bij  deze 
respectievelijk bedanken voor de leuke discussies en de kritische blik op mijn 
werk.  Het  lijkt  erop  dat  jullie  wèl  begrepen hebben wat  de  pinguïn  in  een 
computer  voor  je  kan  doen,  maar  om  als  moeder  je  kinderen  naar  linux 
distributies te gaan noemen....
Over mijn supervisie had ik niet te klagen. Mijn dageweekelijkse begeleider 
Martien is een ras-echt optimist en zij coaching kon ik wel gebruiken als ik 
mijn resultaten weer eens in een wel heel negatief licht had geplaatst. Daarnaast 
wil  ik  mijn  begeleider  op  afstand  (Mari)  bedanken  voor  zijn  visie  en 
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commentaar op mijn hoofdstukken. Ik heb het altijd als prettig ervaren met je in 
discussie  te  gaan  omdat  je  het  geheel  goed  overzag  en  vanuit  een  meer 
biologisch perspectief.
Ondanks  dat  ik  nogal  eens  een  andere  kijk  op  zaken  had,  heb  ik  de 
leerstoelgroep fokkerij en genetica als een goede voedingsbodem ervaren om 
me op te ontwikkelen. Naast een gezonde druk om te presteren hing er altijd de 
ontspannen sfeer  van  een  kerstmarkt.  Van het  sociale  programma buiten  de 
werktijden  heb  ik  helaas  niet  veel  meegekregen  omdat  de  zorgtaken  in  de 
avonduren thuis de afgelopen vier jaar er niet om logen. Met een dochter voor 
wie  de  op  fysiek  gebied  de  meest  vanzelfsprekende  ontwikkelingen  niet 
vanzelfsprekend waren, zijn mijn echtgenoot en ik jarenlang door diepe dalen 
gegaan.  Gelukkig  hebben  we  met  hulp  van  de  zorgverleners  van  Groot 
Klimmendaal  (waarvoor  heel  veel  dank)  sinds  afgelopen  voorjaar  een 
gezinsleven  waarin  niet  de  hele  dag  in  het  teken  staat  van  eetproblemen. 
Ondanks  de  moeilijke  vier  jaren  is  het  toch  gelukt  tijd  aan  onderzoek  te 
besteden  en  voldoende  resultaten  te  behalen  voor  het  samenstellen  van  dit 
proefschrift.  Dit  was  niet  gelukt  zonder  de  grenzeloze  steun  van  mijn 
echtgenote, Marleen. De pedagogische zorgvuldigheid en het geduld waarmee 
jij met onze kinderen, Indra en Jorim, omgaat heeft de sfeer binnen het gezin 
,ondanks  de  problemen,  altijd  goed  gehouden.  De  goede  sfeer  heeft  ervoor 
gezorgd  dat  ik  me  in  alle  uren  die  ik  had,  me  volledig  op  dit  werk  kon 
concentreren.
Het belang van het creëren van de goede omgeving om te kunnen presteren was 
me al vanuit mijn opvoeding bekend. Pa en ma wat hebben jullie beiden goed 
aangevoeld wat  Cor,  Lyanda en ik  nodig hadden in  onze school-  puber-  en 
studententijd om goed voorbereid, zelfstandig en succesvol verder te kunnen. 
Ook heb ik het altijd bijzonder gevonden dat Cor Lyanda en ik, zelfs als pubers, 
elkaar een rustige omgeving gunden om te studeren, waarvoor ik broer en zus 
bij deze wil bedanken.
In de avonduren van het afgelopen half jaar heb ik jou (Marleen) wellicht iets te 
veel met rust gelaten. Na een vrolijke begroeting bij thuiskomst van jou en de 
kinderen waren alleen het eten en het de kinderen in bad en naar bed brengen 
onze gezamenlijke activiteiten.  Dat  moesten we de komende tijd maar weer 
eens goed maken. 

Hinri
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