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Abstract In this paper the dynamics of the transcription-translation system forXlnR regulon in
Aspergillus niger is modeled. The simulations are based on Hill regulation functions and ordinary
differential equations. The response to a single trigger ofD-xylose to the system is considered,
stability analysis is performed and the effects of activating and repressive feedback are also con-
sidered. Simulation and systems analysis showed significant influence on metabolite expressions,
the effect of the combined activating and repressing feedback was significant on influencing the ex-
pression outputs. The responses for genes and proteins can be understood through modeling system
dynamics like we have shown.
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1 Introduction
The filamentous fungusA. niger is a main organism in the production of enzymes

and precursors for the food and chemical industries. Citricacid is one of the most well
known products. The xylanolytic activator genexlnR is a main controlling gene in the
XlnR regulon ofA. niger and is also one of the most studied parts of this organism. The
XlnR regulon is activated by D-xylose as a culturing media [1]. The current description
of this system is, however, based on static interpretation of the system. As the activity of
the organism shows dynamic properties a quantitative modelfor the behavior of theXlnR
regulon is hereby proposed.

The challenge with genetic network modeling is with determining a specific equation
formalism to represent the network structure. One of the suggested strategies of modeling
using differential equations is to fix the form of the equation [2]. Prior knowledge on
the network structure is essential to develop a quantitative model [3]. The descriptive
information on theXlnR regulon [1] enables us to hypothesize models for the interaction
in the different network components.

Modeling and simulation of theXlnR regulon is explored by using nonlinear differ-
ential equations and Hill functions for the transcription and linear reaction kinetics for
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the translation process. To ensure that detailed aspects ofthe system are captured, some
assumptions are incorporated in the modeling. Perturbation experiments are performed
by triggering the genetic network at steady state. A stability analysis is performed and the
effect of feedback in the system is explored.

2 Methodology
2.1 Regulation mechanism for theXlnR regulon

In Aspergillus niger transcription of genes encoding xylanolytic and cellulolytic en-
zymes take place [1]. Activation enables the degradation ofthe cellulose and hemicellu-
lose from the plant cell walls.XlnR is a zinc binuclear cluster protein consisting of about
875 amino acids, it is suspected thatXlnR binds as a monomer. TheXlnR gene is induced
in the presence of D-xylose as a culturing media and repressed by the presence ofCreA.

FB

D−xylose XlnR mRNA1 P1 TG TGmRNA TP

CreA
D1

D2
D3

D4

x1 z1 xi zi

PTM

k1d η1 kid ηi

Figure 1: TheXlnR regulon induced by D-xylose in the presence or absence ofCreA. P1 and
TP are the corresponding proteins from theXlnR gene and target genes respectively. mRNA1 and
TGmRNA are the transcription products from theXlnR gene and target genes respectively. FB is
the feedback protein.

Gene regulation can take place at different stages of the central dogma of molecular
biology (DNA→ RNA → Protein). These stages include among others transcription,
translation and PTMs of the associated protein. In Figure 1 ascheme of the activities
in the XlnR regulon is given. TheXlnR gene is induced by D-xylose. At induction the
XlnR gene produces mRNA which is translated in proteins. These proteins then activate
the target genes (TG). For theXlnR regulon, the number of target genes are estimated
to be in the order of 20 to 40. In Figure 1 all target genes are represented by TG. After
transcription and translation of the target genes, proteins are obtained (TP). Protein from
post-translational modifications (PTM) can be involved in the regulation of theXlnR gene
trough a feedback loop. At each step in transcription and translation mRNA and proteins
can be degraded and/or used for other processes (D1-D4).

2.2 Transcription model
Commonly, hyperbolic functions and the sigmoid class of functions are used to repre-

sent the kinetics of gene regulation [4]. Such functions mimic the nonlinearity in gene reg-
ulation, by assuming that a critical amount of protein buildup have to be reached before
a gene can be considered regulated or repressed. The most common forms of functions
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used for modeling gene transcription are the Hill functions[5][6]. Let z = [z1, . . . ,zn]
T

represent the concentrations of the translated proteins corresponding to the genes 1, . . . ,n;
wheren the number of involved genes, then the activating and repressing functions are
given by

Ψ(zi,θi) =





ψ+(zi,θi) =
zh

i

θ h
i + zh

i

Activator.

ψ−(zi,θi) =
θ h

i

θ h
i + zh

i

Repressor.
(1)

whereψ−(zi,θi) = 1−ψ+(zi,θi), with the gene specific half-saturation parameterθi and
the positive numberh. The regulation mechanism for each target genei is captured by
the functionΨ(zi,θi) in (1). According to Hasper et al., [7] there is evidence thatal-
though most zinc binuclear cluster proteins bind as a dimer,it seems thatXlnR binds as
a monomer - therefore, a Hill coefficient withh = 1 is used. Given the availability of
structural prior knowledge and that the master regulator activates the target genes, the
nonlinear system is given by

Σnls =





ẋ1 = ρ1− k1dx1+ b1u1

ẋ2 = ρ2+ k2s
k21z1

1+ k21z1
− k2dx2

... x(0) = x0

ẋn = ρn + kns
kn1z1

1+ kn1z1
− kndxn

(2)

whereρi - Basal (leaky) transcription rate for genei, ki1 - effective affinity constant for
gene 1 activating genei (i = 2, . . . ,n), kis - synthesis parameter for genei, kid - first order
degradation rate (or consumption rate) for genei, θi1 - gene 1 activated transcription
rate constant for genei, x0 - vector of initial mRNA concentration,zi - concentration of
translated protein from genei, b= [b1, . . . ,bn]

T - input matrix andu= [u1, . . . ,un]
T - input

vector (gene triggering compounds).

2.3 Translation model
Next a system of linear differential equations (3) to model the protein abundance

(translation process) is considered.

ż1 = r1x1−η1z1; ż2 = r2x2−η2z2; . . . ; żn = rnxn −ηnzn; zi(0) = zi0 (3)

whereri - translation rate for genei, ηi - degradation rate for proteini andxi - mRNA
concentration for genei. Thezi’s are represented by the TP’s in scheme 1. At steady state
the difference between the response rate and degradation rate balances out, i.e. ˙x1 ≈ ẋ2 ≈
. . .≈ ẋn ≈ 0. By setting ˙xi = 0 for all i in (2), we have

x̃1 =
1

k1d
(ρ1+ b1u1); x̃i =

1
kid

(
ρi + kis

ki1z1

1+ ki1z1

)
i ≥ 2 (4)
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2.4 System stability
The interesting case to analyze is the systems behavior in the absence of the inhibitor,
CreA. Let us denote the equilibrium concentrations of mRNA and protein quantities by
x̃ = [x̃1, . . . , x̃n]

T andz̃= [z̃1, . . . , z̃n]
T respectively. Using (3) the steady states lead to the

relationships ˜xi = ηiz̃i/ri for all i. The stability of each steady state (from (2) and (3)) can
be analyzed using Hopf Bifurcation. LetF : R2n → R2n be a set of functions (withF =
(F1, . . . ,F2n)) that capture the system dynamics. In this case we haveF1 = ẋ1, . . . ,Fn = ẋn,
andFn+1 = ż1, . . . ,F2n = żn in (2) and (3) respectively. The Jacobian matrix is given by

Jn(·) :=




∂F1/∂x1 . . . ∂F1/∂ zn
...

. . .
...

∂F2n/∂x1 . . . ∂F2n/∂ zn



∣∣[x̃ z̃]

(5)

This Jacobian matrix is then used to assess the regulon stability and to identify which
parameters dictate the transcript abundance. Let us first consider a case of three genes,
n = 3. The Jacobian is given byJ3(·) = ∂F/∂ [x z]∣∣[x̃ z̃]

wherex = [x1,x2,x3]
T and

z= [z1,z2,z3]
T . Using expressions (2) and (3) in (5) we obtain

J3(·) =




−k1d 0 0 0 0 0
0 −k2d 0 ϕ24 0 0
0 0 −k3d ϕ34 0 0
r1 0 0 −η1 0 0
0 r2 0 0 −η2 0
0 0 r3 0 0 −η3




(6)

where

ϕi4 =
kiski1

1+ ki1z̃1

(
1− 1

1+ ki1z̃1

)
; for i = 2,3 (7)

A similar generalized expression forϕi,n+1 can be obtained given a regulon withn tran-
scripts. The characteristic polynomial obtained fromJ3(·) is given by

λ (J3(·)) =
3

∏
i=1

(λ + kid)(λ +ηi) (8)

whereλ (J3(·)) = |J3(·)|. Basing on (8), conditions can be established on the parameters
to ensure global stability. The formulations of the Jacobian matrix and the eigenvalue
spectra can be extended to ann-dimensional system. The generalization for the eigenvalue
spectra can be shown to be

λ (Jn(·)) =
n

∏
i=1

(λ + kid)(λ +ηi) (9)

for n ∈ Z+. Note thatλ (Jn(·)) is independent of the translation rate parametersri, and
the gene synthesis coefficientkis and the terms in the expression (7). Clearly, from (9) the
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system is globally stable (Tr(Jn(·)) < 0 and|Jn(·)| > 0 for all x,z). The system stability
behavior is dictated by how fast the translation and transcription processes proceed (i.e.
magnitudes ofkid and ηi). In metabolic terms this equates to demand and supply of
essential components in and out of the cell.

According to Aro et al., [8]; de Vries et al., [9]; Hasper et al., [10] theA. niger gene:
eglA, eglB, eglC, cbhA, cbhB, xlnB, xlnC and xlnD contain binding sequences (GGC-
TAAA) to XlnR protein as well as binding sequences toCreA, a repressor protein acting
in the presence of monomeric sugars (i.e., glucose) as a self-regulating mechanism. This
property ensures that most target genes have similar expression dynamics in time. An
example is considered to investigate the time evolution of gene activity and protein abun-
dance in theXlnR regulon.

Example. Consider a regulon network of three genes given a perturbation u(t) =
u(0)(1/(β + eKt)), whereu(t) ≡ [D-xylose] andβ > 0, to trigger the system; with
K = 0.3 andu(0) = 50 mM as the initial D-xylose concentration. The parametersused
for the simulation are:b1 = 1, ρ1 = 2e−3, ρ2 = 2.5e−3, ρ3 = 1e−3, k1d = 0.5,
k2d = 0.4, k3d = 0.3, k2s = 5, k3s = 6, k21= 0.1, k31= 0.1, r1 = r2 = r3 = 0.5, η1 = 1,
η2 = 1 andη3 = 1. The phase plots for the mRNA and protein availability are shown
in Figure 2.

In Figure 2 both the gene expressions in plot (A) and protein abundance plot (B) show
similar behavioral dynamics. Moreover, with the chosen input pattern of D-xylose the
target genes show phase plots similar in patterns but with variations that are dictated by
individual gene or protein kinetic parameters. A relaxation time ofτR1 = 1/k1d ≈ 2 hours
is noticed for the master regulator and for the target genes,τR1 < τR2,τR3. The relaxation
time is an approximation for the time required for the systemto relax into steady state.
This represents the time it takes a system to react to an external disturbance (D-xylose).

2.5 Feedback in the network
So far we have only considered a case of no feedback in the network. Next, we consider a
feedback into the network and study the system dynamics whensome target gene products
are involved in the regulation of the master regulator,XlnR. Assume that the PTMs have
some kind of time delay (τ) associated with each of them. Competitive feedback effects
were modeled at the promoter sites of theXlnR regulator gene. In the modeling and
simulation a fixed number of promoter sites for gene regulation was assumed. Next the
effect of having an activating and repressing feedback are analyzed.

2.5.1 Activating and repressing feedback

We hypothesize that the target proteins (TP’s) and PTMs in the feedback loop in scheme 1
only act on the regulator geneXlnR. Therefore, only the equation forx1 has to be modified
accordingly. The adapted equation is given by

ẋ1(t) = ρ1− k1dx1(t)+
[
b1u1(t)

+ kls

( 1
1+ k jL ∑ j∈S1

z j(t − τ)
klL ∑l∈S2

zl(t − τ)
1+ klL ∑l∈S2

zl(t − τ)

)]
H (10)
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whereH = 1/(1+ kACA(t)) is the repressor Hill function andCA - quantitative activity
state forCreA, kA - inverse of the Hill constant ofCreA. The setsS1 = { j | j = 1, . . . ,m}
andS2 = {l | l = m+ 1, . . . ,n− 1} whereS1

⋃
S2 = {1, . . . ,n− 1} i.e. collection of all

the target proteins in the regulon. All the supposed repressing and activating proteins are
lumped in the setsS1 andS2, respectively. The effect of the D-xylose and the feedback
loop is modeled as additive. Equation (10) also specifies thebuild up of proteins and re-
pression or activation of theXlnR gene through the feedback loop. Through the sequence
of PTMs the protein availability in the feedback loop is delayed. All the other components
representative of the target genes in the network models (2)and (3) remain unchanged.

Since the presence ofCreA is a strong repressor that inhibits theXlnR gene activity
by blocking the promoter binding site, we chose to model thisinfluence by considering a
switch function withH ∈ {0,1}. HereH = 0 andH = 1 meansCreA is present and absent
respectively. In absence ofCreA the protein products from the target genes are involved in
regulating the activity of the master regulator. These protein products may either inhibit
or activate theXlnR gene.
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Figure 2: (A): The simulated trajectory for D-xylose consumption. (B): Expressions profiles
for genes, (C): Proteins abundance plots. (D): Phase plot for gene expression showing variation of
mRNA concentrations of theXlnR gene and the other target genes (xi). (E): Corresponding protein
abundance phase plot.
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In practice, quantifying the feedback effect of each individual gene in a network is
far from trivial. In fact, it is interesting to assess the joint effect of the feedback of the
target genes on the single master regulator. In genetic networks the effects of PTMs can
be either activating, repressing or non at all. This range ofregulation possibilities is
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Figure 3: (A) The simulated trajectory for D-xylose. (B) Gene expression profiles with solid
lines (−) showing the expression profiles for the genes in the absenceof CreA. The correspond-
ing dotted lines (· · · ) show the simulated effect of competitive feedback. (C) Protein abundance
profiles (solid lines).

considered and modeled in (10). Considering feedback loopsenable better understanding
of any fluctuations in the protein availability. For both activating and repressing feedback
loops with time delay, we definitively specifiedxi(t) = 0 andzi(t) = 0 for t < 0 and for
all i = 1, . . . ,n andτ = 1 hour.

A comparison of the metabolite expression dynamics for the network with and without
feedback loops is shown in Figure 3. The same parameter values in theExample above
were used for the simulation with the extra parameters from (10) beingk jL = 1 andklL = 1
and the lumped synthesis parameter from (10) chosen askls = 1. Figure 3 indicates the
enhanced metabolite expression as a result of incorporating a feedback loop in the model.
Using the adapted model (10), the computed entry in the(1,n+ i)-th cell (i = j, l for all
values of j and l) of the Jacobian matrix (5) is given by (11) and/or (12) depending on
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which proteins are involved in the feedback loop regulation.

∂F1

∂ z j
∣∣ j∈S1

= − k jLklLkls ∑l∈S2
zl(t − τ)

(
k jL ∑ j∈S1

z j(t − τ)+1
)2(

klL ∑l∈S2
zl(t − τ)+1

) < 0 (11)

∂F1

∂ zl
∣∣l∈S2

=
klLkls(

k jL ∑ j∈S1
z j(t − τ)+1

)(
klL ∑l∈S2

zl(t − τ)+1
)2 > 0 (12)

The expressions (11) and (12) have the potential to yield oscillatory behavior in the
metabolite response profiles. The oscillatory behavior (when it exists) is purely governed
by the values of the system mechanistic parameters.

2.5.2 XlnR gene promoter activity

The competitive effect of the activators and repressors forthe promoter binding sites
were also simulated. The effect of which transcription factor, TF (activator or repressor)
wins occupancy of a promoter binding site depends partly on the strength of the synthesis
parameterkls (see Figure 4). The promoter is most active (activity around50−80%) when
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Figure 4:Plot of theXlnR promoter region activity,ΓA , ΓR. The termΓAΓR - is the combined
affect of competitive binding to promoter region by activators and repressors. Plots (i) and (ii)
show the influence of weak (kls = 1) and strong (kls = 5) synthesis parameters respectively.

the regulon is fully active. This corresponds to the time window at which the network is
fully responsive to the external perturbation. Let us definethe promoter activities by (13)
and extracts of the denominator functions by (14)

ΓA =
klL ∑l∈S2

zl(t − τ)
1+ klL ∑l∈S2

zl(t − τ)
; ΓR =

1
1+ k jL ∑ j∈S1

z j(t − τ)
(13)

PA = klL ∑
l∈S2

zl(t − τ); PR = k jL ∑
j∈S1

z j(t − τ) (14)

For the sake of illustrations, two target genes were considered (i.e. values ofj = 1 and
l = 2) in the simulation with one as an activator and the other as arepressor (we used
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k jL = klL = 1). Extending the model with lumped feedback regulatory effects further
complicates the analysis. We consider the setsS1 andS2 of unit elements. We observe
that the activator has a tendency of occupying most of the promoter sites at any given time
(see Figure 4).

To assess the effect of time delays in the transcription and translation processes, we
simulated some cases (Figure 5). The simulations were performed for specific cases of
τ = 1 hour andτ = 5 hours and the outputs compared.
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Figure 5: (A)-(B) Plots showing the effect of variation in time delay in the feedback loops
corresponding to the transcription and translation processes, respectively. The observed effect on
the responses is small except for the slight deviation at thepeak of the expression profiles.

3 Discussion
Additional simulations showed that the dynamics of the D-xylose input function con-

sidered in the examples has an important effect on the profiles of the individual metabolite
concentrations. This is particularly dictated by the valueof the parameters in the input
functionu(t). The larger the value of theK, the faster the consumption of D-xylose. This
depends on the chemical reactions taking place in any given cell, or the saturation levels
of the individual compounds in a cell.

Feedback affects the response of the output profiles for the metabolites seriously (Fig-
ure 3). Further simulations showed that variations of the time delay in the feedback loop
(τ = 1,2, . . . ,5 hours) have a small effect on the response (Figure 5). The investigations in
subsection 2.4 show that the network system dynamics exhibits no oscillatory behavior.
Nevertheless, many biological systems exhibit some delaysin transcription-translation
processes. These delays can be attributed to (i) material transportation mechanisms in
and out of the nucleus, (ii) binding of TFs, (iii) interaction of TFs and gene promoter
sites. Even after a perturbation, the system trajectories gradually settle to their respective
steady states. For a system with feedback, the steady statesare slightly changed. In both
cases the observed dynamics is as a result of the change in eigenvalues from the Jacobian
matrix (5) which is determined by the individual parameter values.
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The modeling approach used in this paper provides good information for understand-
ing network behavioral dynamics particularly for small-sized networks. This is illustrated
with theXlnR regulon network in which even the simplest of structures canyield interest-
ingly complex dynamics. The primary reason for limiting ourgoals to the modeling and
systems dynamics investigations is that experimental workis needed to obtain the basal
and other parameters. Having such information in advance would enhance the results.
Nevertheless, with parameter guesses, simulation studiesprovide good information into
the systems behavior.

According to Balsa-canto et al., [12], having powerful mathematical analytic tools
highlight the value for successful study of many biologicalsystems. However, such suc-
cess can mainly be attributed to the unrelenting endeavors for an in-depth understanding
of both computational methods and the biological problems of interest. For the case of
theA. niger regulon, work provides a basis for understanding the behavioral dynamics of
genes and proteins after network perturbation. This will form a basis for future wet-lab
experiments, particularly with the genes from theXlnR regulon.

4 Conclusions and outlook
The study shows that theXlnR regulon should be considered as a dynamic system instead
of a static system. The work provided insight into the dynamic properties of theXlnR reg-
ulon. By studying this system, it has also become clearer that the parameters that dictate
most of the dynamics in the regulation properties of the network are the transcription and
translation degradation rates.

The dynamics in the regulation properties of the network aredictated mainly by the
transcription and translation degradation rate parameters, and the D-xylose consumption
profile. This is an observation based on the modeling approach we considered. The
analysis of the network dynamics has provided useful information for futurein vitro ex-
perimental work. Particularly the potential for hypothesis testing basing on this work
and design of related perturbation experiments to generatetime course data. Thereafter,
techniques for the network structural identification and parameter estimation for theXlnR
regulon can be investigated.

The role played by feedback in the network dynamics was foundto influence the
expression dynamics of genes and proteins. This means that the effect of the feedback
should be considered in the model if there is sufficient supportive biological need. Just
like for most biological systems, this is no doubt an important piece of information for
the accurate modeling of biological network.
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