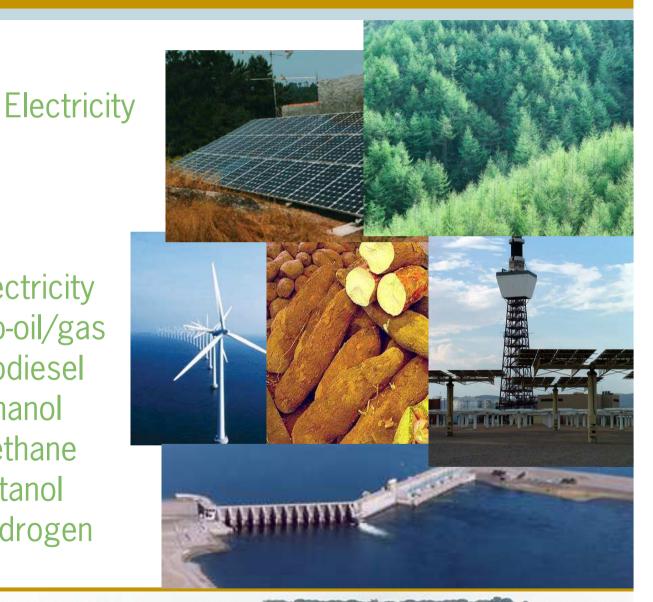
Non thermal production of pure hydrogen from biomass: HYVOLUTION

H₂ Expo, Hamburg October 22-23, 2008

Disadvantages of fossil fuels

- Net increase of [CO₂]
 - Global climate change
- Security of supply
 - Geopolitical issues
 - Increasing price
- Pollution
- Exhaustible

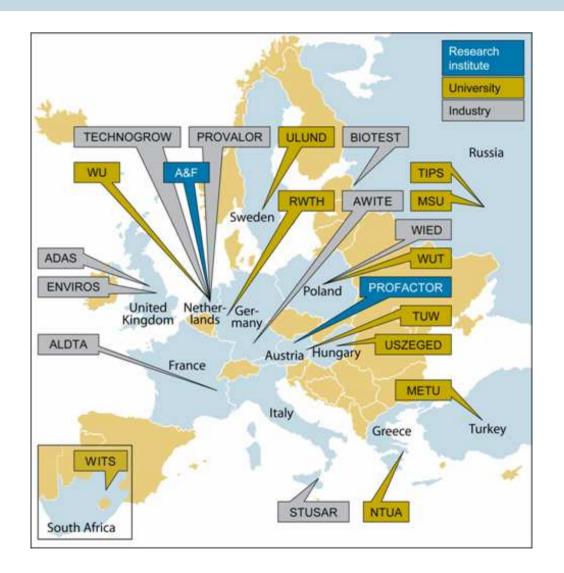


Sources of renewable energy

- Hydropower
- Wind
- Solar
- Geothermal

• Biomass

Electricity Bio-oil/gas **Biodiesel** Ethanol Methane **Butanol** Hydrogen



HYVOLUTION: European FP6 project

- non-thermal production of pure hydrogen from biomass
- 22 partners from 13 countries
- from January 2006 until January 2011
- 14 M€ budget
- 10 M€ EU grant

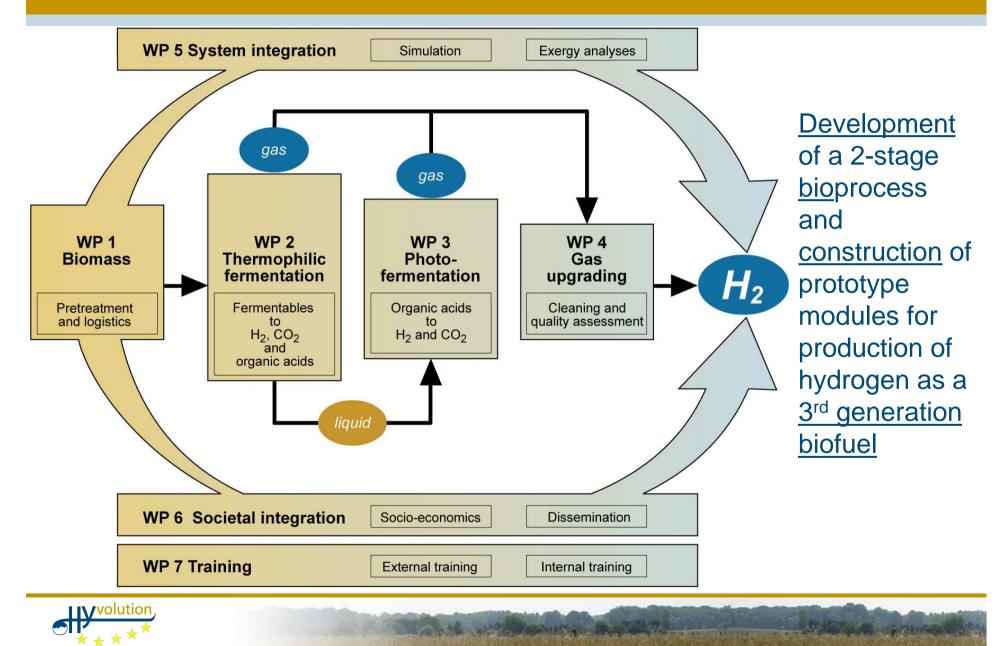
HYVOLUTION: the partners

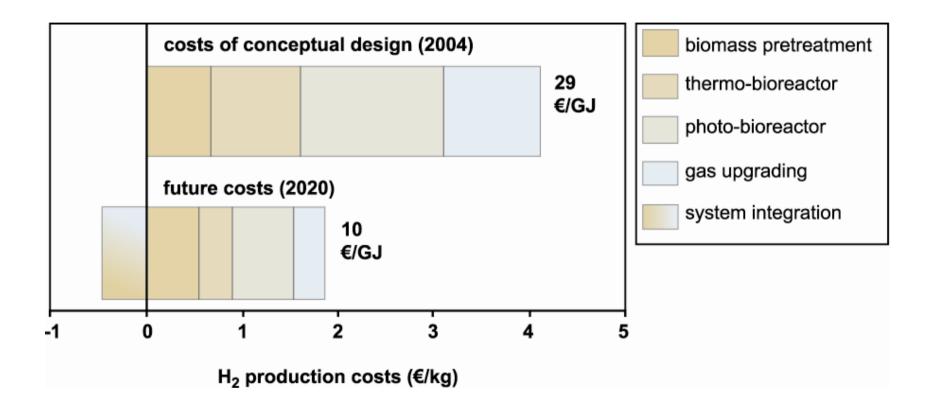
Constitution of Party of Constant

AND ALL AND PROMINENT

HYVOLUTION: the partners

A&F Agrotechnology & Food Innovations	NL
ADAS	UK
AL DTA Air Liquide – Division des Techniques Avancées	FR
AWITE Awite Bioenergie,	GE
BIOTEST Bioreactors and membrane systems	
ENVIROS Ltd	UK
METU Middle East Technical University	ΤU
MSU Moscow Lomonosov State University	RU
NTUA National Technical University of Athens	GR
PROFACTOR Produktionsforschungs GmbH	AT
PROVALOR B.V.	NL
RWTH Rheinisch-Westfälische Technische Hochschule Aachen	GE
STUSAR Studio Sardo	IT
TECHNOGROW B.V.	NL
TIPS A.V. Topchiev Institute of Petrochemical Synthesis	RU
TUW Vienna University of Technology	AT
ULUND Lunds universitet	SE
U-SZEGED University of Szeged	HU
WIED Wiedemann Polska	PL
WITS University of the Witwatersrand	SA
WU Wageningen University	NL
WUT Politechnika Warszawska	PL


ALL DESCRIPTION OF THE


The aim of HYVOLUTION is to deliver prototypes of process modules which are needed to produce hydrogen of high quality in a bioprocess which is fed by multiple feedstocks

HYVOLUTION: the whole chain!

Target of HYVOLUTION

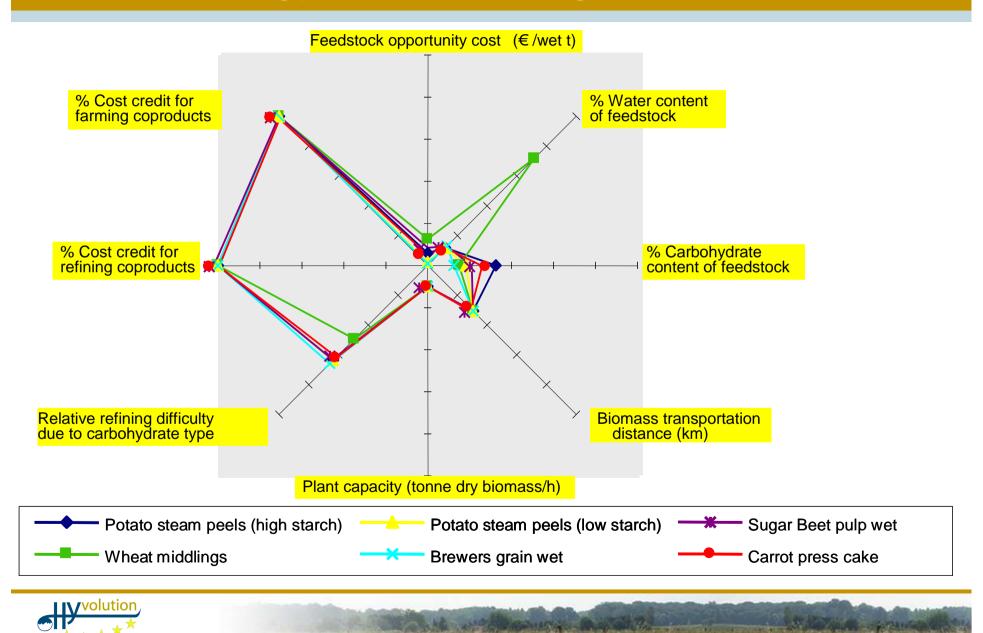
Production costs of hydrogen in a conceptual design deemed feasible and as envisaged for a hydrogen industry developed by HYVOLUTION

Potential biomass

- Residues from food processing:
- Sugar containing biomass:
- Starchy biomass:
- Lignocellulosic biomass:

potato steam peels, molasses, carrot press
cake, brewer's spent grain
sugar beet juice, sweet sorghum juice

potato, cereals, wheat grain, corn


wheat bran, barley straw, wheat straw, sweet sorghum or sugar cane bagasse, Miscanthus, corn stover

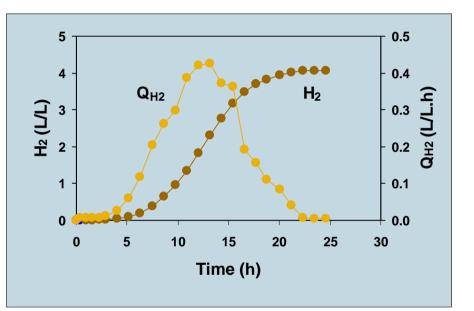
Hydrogen production potential from selected feedstocks in EU-25: \sim 4 Mt/year (\leq 10% of all selected biomass)

Methodology for selecting biomass

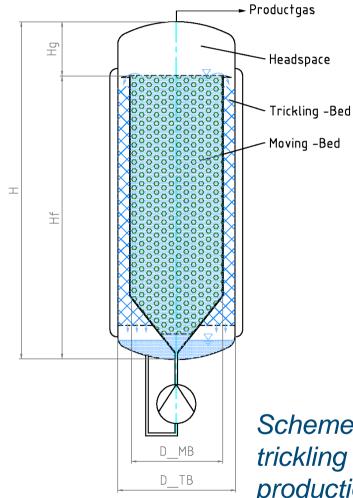
Miscanthus as energy crop

- Lignocellulose-rich feedstock
- Hydrolysate made by chemical (NaOH, NaAc) and enzymatic treatment (cellulase, ß-glucosidase)
- Approx 60% mobilisation efficiency

Potato steam peels as bioresidue


- Starch-rich feedstock
- Hydrolysates made by enzymatic treatment (amylase and glucoamylase)
- >95% mobilisation efficiency

Bioprocess issues


- Strain selection
 - Yield
 - Productivity
 - Feedstock adaptation
- Strain improvement
 - Genetic modification
 - Hydrogen metabolism
- Robust fermentations
 - Mixed cultures
- Bioreactor configuration
- Process control

Cumulative hydrogen production and volumetric hydrogen production by C. saccharolyticus during growth on hydrolysate of carrot press cake.

Reactor for thermophilic fermentation

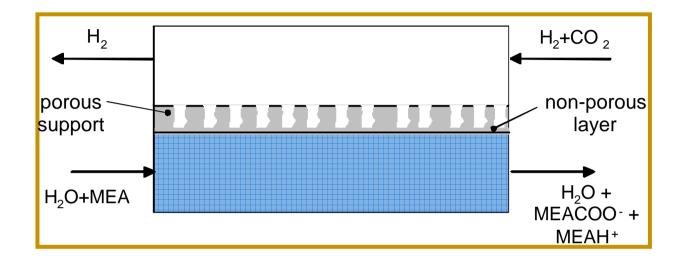
R&D issues:

- Material costs
- Pumps
- Low hydrogen
 pressure
- Ease of use
- Reactor volume
- Operation mode

Scheme of CMTB (combined moving and trickling bed) reactor for thermophilic hydrogen production from saccharides

AND DO THE REAL PROPERTY OF

Reactors for photofermentation


R&D issues:

- PE, glass, EFTE....
- Evaluation of energy costs of production
- Ease of use
- Reactor area
- Ground area
- Reactor volume
- Operation mode

Outdoor operation of a tubular reactor (65 L) and a panel reactor (112 L) for phototrophic hydrogen production from acetate and lactate

Gas upgrading using a membrane contactor

Advantages

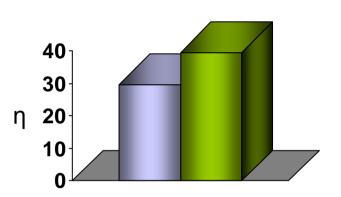
- No evaporation of the liquid carrier enables use of hazardous carriers
- No compression of the gas required
- Low energy demand for a liquid pump only
- Applicable for fluctuating gas flow rates and compositions
- Can be recycled after desorption

Development of sensor systems for process control

Process control requirements

- High concentration measurements (up to 100%)
- Commercial availability at low price
- Resistant to the main components (H₂, CO₂, H₂O, H₂S)
- Measurement of other components (O₂, CH₄)
- Low cross sensitivities

 CO_2 , CH_4 , O_2 : state of the art (infrared, electrochemically) H_2 and H_2S : no sensor fulfils all requirements


Development of a dilution device

Mass and energy balance and exergy efficiency

• Aim: maximize product output and minimize energy demand and cost

Feedstock		Wheat	Wheat
Sugar concentration	Kg/L	0.01	0.05
Stripping		No	CO ₂
Gas-upgrading		VSA	MEA
Feedstock	Kg/h	1212	970
Water	Kg/h	179000	56000
Strip-gas(CO2)	Kg/h	0	1710
H2 in raw gas	Mol/mol	65	34
Heat flow	kJ/s	5100	2570
Min. heat flow	kJ/s	3700	2200
Electric power	kJ/s	210	120
H ₂ losses	%	25	0

η= <u>chemical exergy gases</u> chemical exergy biomass

Conclusions: Increase sugar concentration, reduce water consumption, reduce energy demand, exploit process integration

Life cycle analysis

- Identification of environmental impacts
- Reference case H₂ production from natural gas
- Preliminary results:
 - Prevent use of strip gas
 - Replace NaOH by Ca(OH)₂
 - Recycle process water
 - Prevent addition of external nutrients

We gratefully acknowledge the support of the project by the European Union's 6th Framework Program on Sustainable Energy Systems (HYVOLUTION, Contract-No. 019825).

Hydrogen as the future bio-fuel

Thank you for your attention!

