Development of tools to predict crop yield: the EU-SPICY project

Anja Dieleman, Wageningen UR Greenhouse Horticulture

Smart tools for Prediction Improvement of Crop Yield (2008 – 2012)

Aim:

Develop tools to predict phenotypic response for complex traits under a range of environmental conditions

Objectives:

- Develop genotype-to-phenotype model
- Develop phenotyping tools:
 - Fluorescence sensor
 - Imaging sensor
- Find genes underlying physiological processes

<u>SPICY - partners</u>

Wageningen UR, The Netherlands

- Crop growth model, co-ordination
- QTL analysis tools, phenotyping experiments

INRA, France

- Populations, genomics
- VIB, Belgium
 - Genomics
- BioSS, United Kingdom
 - Image analysis
- BME, Hungary
 - Fluorescence sensor
- EEFC, Spain
 - Phenotyping experiments

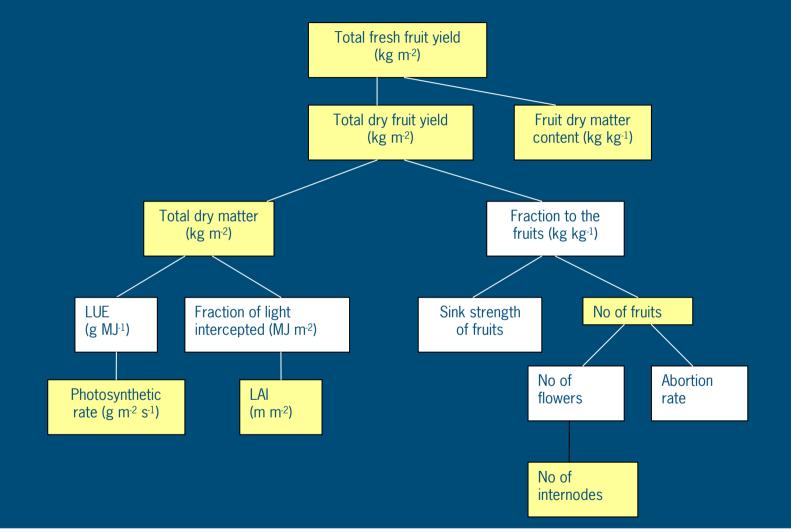
Budapest University of Technology and Economics

Genotype-to-phenotype model

Crop growth models

- Break-down of complex trait yield
- Modules for leaf area, morphology, photosynthesis, assimilate partitioning and fruit growth dynamics

QTL analysis


 Relate trait to regions in functional genome map to find position of QTL

Genotype-to-phenotype model

- Relate QTLs to model parameters
- Expected to be more specific and stable

Components contributing to yield in pepper

Phenotyping_

To use and validate models, large-scale phenotyping data in different environments are necessary

RIL population (INRA)

Yolo Wonder x CM 334

149 genotypes F6/F7

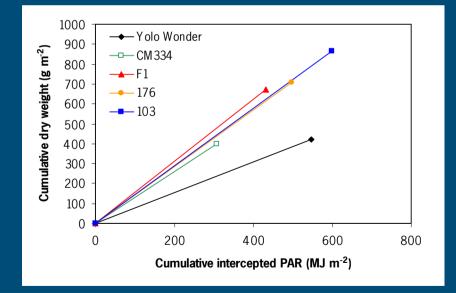
Phenotyping experiments

- 2 locations:
 - Wageningen, The Netherlands
 - Almeria, Spain
- 2 seasons:
 - Spring 2009
 - Autumn 2009
- Pruning strategy
- Measurements
 - Climate data
 - Organ weights (start, end)
 - No of internodes, fruits
 - Harvested fruits

Plant measurements

Genotype	Date of harvest	DW (g plant¹)	Leaf area (cm² plant¹)
Yolo Wonder	10 Dec	140.4	8198
CM334	6 Nov	132.7	5986
F1	23 Oct	223.9	10373
103	30 Nov	235.5	7836
176	20 Nov	288.1	13995

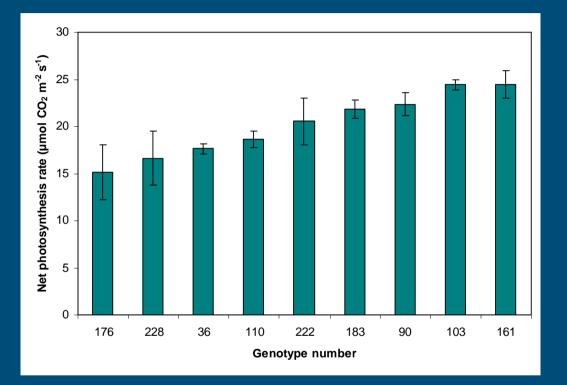
 Data analysis complicated by different moments of destructive harvest
 Link to processes in model



Analysis into components of crop yield

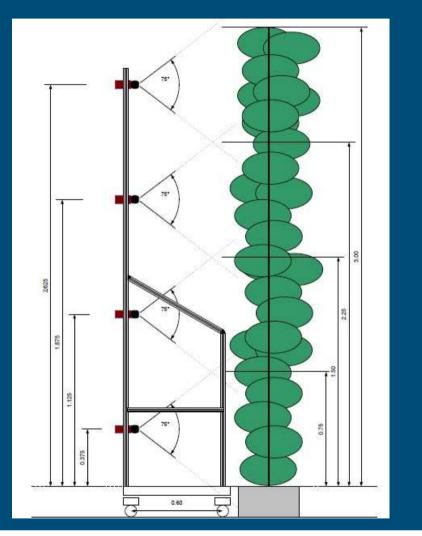
- Date ⇒ radiation sum
- Leaf area ⇒ LAI
- LAI ⇒ light interception

 $I = I_0 * (1 - e^{-k * LAI})$


■ Light interception and radiation sum ⇒ intercepted radiation sum

Genotype	LUE (g MJ ⁻¹)	
Yolo Wonder	0.79	
CM334	1.28	
F1	1.55	
103	1.43	
176	1.44	

Photosynthesis rate



Phenotyping by image analysis – SPY-SEE

Aim: fast phenotyping
Replace manual labour
Trolley with cameras

4 RGB camera's
4 infra-red camera's
4 range camera's

Pulled through canopy
Reconstruct plant structure and extract features in 3D

Fluorescence sensor

- Photosynthesis important component of yield
- Measurements time consuming
- Aim: use fluorescence as fast estimate for sub-proces of photosynthesis

Conclusions

- Genotype-to-phenotype model: possibilities to determine complex traits based on genetic information
- Necessary to know processes underlying complex trait
- Phenotyping: measure relevant processes, fast and automated
- Data analysis important disentangle climate, time and plant characteristics

Wageningen UR Greenhouse Horticulture

© Wageningen UR

