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Abstract 

Introduction 

Despite international organisations providing much focus over the past 10 years, 

malaria is still killing vast numbers of Africans, especially children. It is agreed that 

malaria can only be successfully controlled by using different control tools 

simultaneously in the spirit of integrated vector management (IVM), and that 

African communities will need to become more directly involved in mosquito control 

(Chapter 2). Using mosquito control tools in a way that requires almost no technical 

equipment or knowledge will open them up to the rural communities that are best 

placed to deploy them. In addition, widespread insecticide resistance is reducing 

the ability of insecticide-based tools to control mosquitoes. For these reasons, 

biological control and other natural mosquito control methods are being researched 

by many institutions. Several potential natural control tools are readily available in 

sub-Saharan Africa. If these tools prove effective and become operational, then it is 

possible that they will be sustainable because communities can intentionally produce 

the biological agents themselves, bringing a source of money to rural communities. 

This would be especially important in areas where infrastructure is poorly developed, 

and repeat applications of chemical control tools are not easily made. This thesis 

was designed to test the feasibility and effectiveness of a variety of natural products 

against both larval and adult malaria vector mosquitoes using low-tech methods in 

laboratory and field trials.  

 

Part I: Flora 

Azadirachta indica A. Juss (Meliaceae) (the neem tree) was chosen due to the 

already proved mosquitocidal properties, and its ready availability in Africa. We 

wanted to use neem in a way that could easily be deployed in resource-poor rural 
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areas. Laboratory studies were conducted to examine the larvicidal and pupicidal 

properties of a crude aqueous extract of neem wood against the principle African 

malaria vector, Anopheles gambiae Giles s.s. (Diptera: Culicidae) (Chapter 3). The 

results indicate that even a relatively low dose of 0.15 grams of dried neem wood in 

1 litre of water was able to inhibit the emergence of 90% of mosquito adults when 

larvae were exposed during their first three larval instars. Even for the fourth (last) 

larval instar, just 0.6 g/l was required to prevent 90% emergence. Furthermore, 

neem-exposed larvae exhibited significantly increased development times when 

compared to the controls. Pupae were also killed by the aqueous neem extracts, 

and were subject to neem-induced emergence abnormalities, but the 

concentrations required to kill pupae were much higher than for larvae and not 

likely to be used operationally. High performance liquid chromatography (HPLC) 

analysis identified several polar constituents in the aqueous neem extracts 

including nimbin and salannin. However, azadirachtin was not present in significant 

amounts. The effect of this extract on the oviposition behaviour of adult female An. 

gambiae s.s. mosquitoes was then monitored (Chapter 4). The oviposition results 

show that when using 0.1 g/l of the crude aqueous neem extract, significantly more 

mosquitoes laid their eggs when compared to mosquitoes exposed to the control 

treatment. For the doses 10x and 100x higher, the same proportion of mosquitoes 

laid their eggs as in the control, indicating that even at much higher doses than 

required for successful larval control, female oviposition will not be detrimentally 

affected. 

 

Part II: Fish 

Larvivorous fish have previously been shown to effectively control mosquito 

numbers. Therefore, a census was carried out to examine the current status of fish 

farming in western Kenya (Chapter 5). Working with the Kenyan Fisheries 

Department we found that while fish farming is a favoured activity, 30% of the 261 
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ponds found did not contain fish. These “abandoned” ponds had significantly more 

An. gambiae s.l., Anopheles funestus Giles and culicine mosquitoes when 

compared to the ponds that still contained fish. Furthermore, An. gambiae s.l. was 

proportionally more abundant in the abandoned ponds when compared to the other 

mosquito types. Surprisingly, vegetation did not significantly affect mosquito 

distribution. Following our study, demand for fish to restock abandoned ponds 

increased by 67% when compared to the previous year. The overwhelming 

majority of fish being farmed in our census area were fish of the tilapiine subfamily. 

Given this finding, we set up a small-scale field experiment to study the larvivorous 

potential of the tilapiine fish Oreochromis niloticus L. (Perciformes: Cichlidae) 

(Chapter 6). Taking daily measurements of mosquito numbers, we found that 

immediately after fish introduction, the density of mosquitoes in the treated ponds 

dropped in comparison to the increase in the control pond. After 15 weeks, 

anopheline numbers had decreased by >94% in the ponds containing the fish, and 

we found that fish were able to sustainably control mosquitoes for at least 6 

months, when our study finished. It is concluded that this type of fish could be an 

effective and sustainable way to control mosquito numbers in rural western Kenya. 

Furthermore, this fish provides a source of much needed income and protein to 

rural African communities. 

 

Part III: Fungi 

For the control of mosquito adults using natural products, entomopathogenic fungi 

hold the most promise. In this thesis the entomopathogenic fungi Beauveria 

bassiana and Metarhizium anisopliae were separately suspended in mineral oil and 

applied to polyester netting. A laboratory experiment was then conducted to 

investigate the fungal susceptibility of insecticide-susceptible and insecticide-

resistant strains of An. gambiae s.s.. In addition, fungal conidial viability was tested 

at various time points after application onto polyester netting (Chapter 7). Whilst 
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both mosquito strains were susceptible to both species of fungal infection, the 

pyrethroid-resistant An. gambiae s.s. VKPER strain was significantly more 

susceptible than the insecticide-susceptible SKK strain, dying more quickly. 

Conidial viability was significantly lower for both species after application onto the 

polyester netting when compared to the viability in suspension. However, the ability 

of the treated netting to infect and kill mosquitoes was not significantly diminished 

over the one week trial period. Given the finding that fungal-treated polyester 

netting could infect and kill mosquitoes, an experimental hut field trial was 

conducted in Benin, West Africa, to investigate the effect of fungal treatment on 

blood feeding behaviour and survival of wild insecticide-resistant mosquitoes. 

Benin was chosen due to the presence of multi-insecticide-resistant mosquito 

populations that are threatening the effectiveness of current vector control. We 

used fungal-treated netting to infect mosquitoes entering the hut windows, and 

either an untreated or insecticide-treated bednet was placed into each hut to 

examine how the entomopathogenic fungi would work with current control tools 

(Chapter 8). Only enough Culex quinquefasciatus Say (Diptera: Culicidae) 

mosquitoes were collected from the huts for accurate analysis. Our study was the 

first to monitor the effect of entomopathogenic fungi on blood feeding of wild 

mosquitoes. We found that the B. bassiana treatments caused significant and 

instantaneous reductions in blood feeding. No significant effect of the fungi on 

mosquito mortality was found. Conidial viability of B. bassiana and M. anisopliae 

was found to decrease rapidly under field conditions.   

 

Conclusions 

This thesis used several different experimental techniques to examine the potential 

of three natural products to control mosquitoes. For the flora, it was found that even 

a small amount of neem wood in water would control mosquitoes (Chapter 3), and 

at this and higher doses, the oviposition behaviour was not adversely affected 
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(Chapter 4). Neem trees are readily available in many areas of Africa, and 

promising field trials indicate that the use of this tree species should be 

incorporated into malaria control trials.  

This thesis reports that edible native African fish can be effective at controlling 

mosquitoes (Chapter 6), but if fish farming is abandoned and the ponds not filled 

in, then they can allow large numbers of the most effective malaria vectors to breed 

(Chapter 5). Fish have been successfully used for malaria vector control in many 

countries and this could be rolled out across appropriate areas of Africa, as long as 

it is accompanied with adequate education about the dangers of abandoned 

ponds.  

We found that insecticide-resistant mosquitoes were more susceptible to fungal 

infection than the insecticide-susceptible strain. Under field conditions fungi were 

able to prevent blood feeding but did not cause significant mortality in the wild-

caught mosquitoes. Although entomopathogenic fungi produce high levels of 

mortality in laboratory settings, (Chapter 7), their use under field conditions still has 

a long way to go and is not yet at the operational stage. Although the results found 

in this thesis are encouraging for the use of fungi in African situations (Chapter 8), 

further work should be carried out to maximise fungal persistence under field 

conditions.  

The current emphasis is on IVM for malaria control (Chapter 2), and focus is 

turning to biological control tools that can help manage insecticide-resistant 

populations. With this in mind, the natural products investigated in this thesis have 

produced encouraging results that show they have the potential to be integrated 

into malaria control strategies. Furthermore, flora and fish are readily available in 

the areas where they are most required, and could be used almost immediately to 

help reduce mosquito numbers and correspondingly, malaria disease transmission.  
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1.1 Malaria: disease dynamics and transmission 

Malaria is a predictable, preventable and treatable disease that worldwide still kills 

one child almost every 30 seconds. It is one of the most important tropical parasitic 

diseases in the world and is caused by obligate intracellular protistan parasites. 

Five species of these Plasmodium parasites infect humans. These are P. vivax, P. 

ovale, P. malariae, P. knowlesi and P. falciparum (Knell 1991, White 2008). The 

latter is the most severe form and can lead to coma and death within a few days for 

particularly susceptible people. Other symptoms include fever, chills, anaemia, 

splenomegaly, vomiting and diarrhoea. Human malaria is transmitted by Anopheles 

spp. (Diptera: Culicidae) mosquitoes.  

Although malaria transmission is centred on the tropics, it can also be found in sub-

tropical areas (Figure 1.1) and globally it is estimated that half of the world’s 

population is at risk of malaria (Hay et al. 2004, World Health Organisation 2009). 

The threat and burden of malaria is not equally distributed; there is a 

disproportionate burden of disease in the most resource-poor countries, especially 

 

Figure 1.1. Global distribution of malaria (Source WHO, www.who.org)  
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in sub-Saharan Africa. Even within African countries malaria is disproportionately 

distributed between rural and urban communities (see section 1.2). The 

entomological inoculation rate (EIR) is the number of mosquito bites infected with 

malaria that any one person is expected to receive in one day and is a measure for 

actual transmission rates. The EIR varies between different areas mainly due to 

differences in the local climate, and the capacity and species distribution of the 

local mosquito vectors. For example, annual estimates of EIR range from 3.6 

infected bites per person per year in Mali to 814 bites per person per year in 

Equatorial Guinea (Kelly-Hope and McKenzie 2009). 

It is estimated that in 2008 there were 243 million cases of malaria and 863,000 

deaths (World Health Organisation 2009). Although malaria is endemic in 108 

countries, 99% of the population at risk in the African region live in 35 high-burden 

countries. It is estimated that 85% of all cases and 89% of all deaths caused by 

malaria in 2008 occurred in Africa (World Health Organisation 2009). Mostly, 

children under the age of five, pregnant women, and non-immune individuals are at 

risk of dying of malaria. Children under the age of five are more likely to die of 

malaria because they have not built up an adequate immune response. Pregnant 

women are not only more likely to get infected with malaria than those who are not 

pregnant; they are also more liable to have severe malaria. Amongst other non-

lethal effects in pregnant women, malaria infections can cause both the mother and 

foetus to die (Lagerberg 2008). This risk is especially true for those experiencing 

their first pregnancy.  

As well as the physical toll of malaria, this parasitic disease also imposes a 

financial burden. Poor levels of investment and weak economic growth in some 

areas of Africa have been blamed in part on the presence of malaria (Hay et al. 

2000, Sachs and Malaney 2002) with gross domestic product being five times 

lower in countries that have malaria when compared to non-malarious countries 

(Gallup and Sachs 2001). On a more personal scale, people infected with malaria 

can lose time at work if they themselves are ill or if they need to take a child to the 
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health centre. As well as losing money from lost time at work, in some areas they 

still need to pay for malaria prevention, treatment and when necessary, funerals. 

The World Health Organisation (WHO) recommends that all suspected malaria 

cases be diagnosed either using rapid diagnostic tests or microscopy of blood 

films. However, in the 18 countries that reported on this in 2008, just 22% of people 

were undergoing diagnostic testing (World Health Organisation 2009). Similarly, 

WHO recommends that all confirmed cases of uncomplicated P. falciparum malaria 

are treated with artemisinin-based combination therapy (ACT) (other species of 

malaria parasites require different treatment regimes). Although the policy in many 

countries is to use ACTs, unfortunately, not all these countries have managed to 

deploy their use. Five ACTs are recommended to treat uncomplicated P. 

falciparum malaria and they are being used in 77 of the 81 countries where this 

species is endemic (World Health Organisation 2009). However, just five countries 

reported distributing enough ACTs to treat all reported malaria cases in 2008 

(World Health Organisation 2009). Even in countries where the policy is to use 

ACTs, in reality the old drugs like chloroquine are still being used (Tipke et al. 

2009). As with many other anti-malarial drugs, resistance to artemisinin derivatives 

has already emerged on the Thai-Cambodian border (Wongsrichanalai and 

Meshnick 2008) and the failure rate of ACTs is rising in this area (World Health 

Organisation 2009). A major cause of parasite resistance to artemisinins is 

continued artemisinin monotherapy in many countries. Although WHO has called 

for this practise to stop, currently just 44 countries have banned the use of 

artemisinin monotherapies (World Health Organisation 2009). Despite the low 

coverage rates and emerging resistance, there is evidence that ACTs have been 

effective in lowering death rates and parasite reservoirs in a number of African 

countries (Okell et al. 2008, Barnes et al. 2009).  

There is strong political will within the global community to tackle, and in some 

places eradicate, malaria. By the end of 2010 the aim of the United Nations (UN) 

(through the Millennium Development Goals (MDG)), the World Health Assembly 
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(WHA) and WHO is that 80% of people at risk of malaria will be sleeping under an 

insecticide-treated bednet (ITN), have access to appropriate antimalarial medicine 

and/or have indoor residual spraying (IRS) where logistically possible. The final 

goal is that 80% of pregnant women in moderate and high transmission areas will 

have access to intermittent preventive treatment (World Health Organisation 2009). 

In line with these goals, it is hoped that the number of malaria cases and deaths 

recorded at the end of 2010 will be <50% of the number recorded in 2000 (World 

Health Organisation 2009). Although ITN, ACT and IRS coverage is still below 

target levels (Geissbuhler et al. 2009, Matovu et al. 2009, World Health 

Organisation 2009), it appears that malaria is being successfully controlled in many 

countries, with large (>50%) reductions in malaria cases in 38 countries, although 

29 of these were outside Africa. African countries with high transmission rates that 

achieved this reduction included Eritrea, Rwanda, Zambia and São Tomé and 

Principle (World Health Organisation 2009).  

 

1.2 A comparison of urban and rural African communities with 

reference to malaria 

There is a disproportionate malarial disease burden among African communities. 

People living in rural Africa on the whole suffer more health problems than those in 

urban environments (Hay et al. 2005). Rural communities have to cope with higher 

infant and child mortality rates and lower nutritional levels (Hay et al. 2005). 

Similarly, in general, people living in urban areas are on the whole better off than 

rural communities (Matovu et al. 2009). In terms of health care provision, urban 

communities have better access to health facilities (Noor et al. 2003, Hay et al. 

2005), were twice as likely to have modern medicines in their home when 

compared to rural communities (Tipke et al. 2009) and were much more likely to 

own an ITN (Matovu et al. 2009). A recent study showed that for rural households 

just 10% of children under the age of five slept under an ITN compared to 47% of 
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urban children (Matovu et al. 2009). 

In addition, rural houses have more malaria vectors in them than urban houses, 

with the risk of the most efficient African malaria vector, Anopheles gambiae Giles 

sensu lato, being present in an urban house 89% lower than in a rural house (Kirby 

et al. 2008). This may be due to the finding that mud brick houses and those with 

open eaves and thatch roofs had more mosquitoes in them when compared to 

concrete houses and those with closed eaves or metal roofs (Kirby et al. 2008). 

This is unsurprising as mud houses with open eaves offer more access points to 

mosquitoes than concrete houses with closed eaves. Mud houses are typically 

found in rural resource-poor African communities and less so in urban areas. 

Another reason for more mosquitoes being found in rural areas is that there are 

more anopheline-friendly larval habitats in rural compared to urban areas. Given 

the higher abundance of malaria vectors in rural areas (Kirby et al. 2008), and the 

lack of access to health care (Hay et al. 2005), it is no surprise that rural areas 

typically have higher EIRs (Hay et al. 2005, Kelly-Hope and McKenzie 2009).  

In many malaria endemic areas in Africa, people simply cannot afford to pay for 

malaria prevention, diagnosis and treatment. A study in Burkina Faso found that as 

the level of poverty increased, the likelihood of finding modern medicines in the 

home decreased (Tipke et al. 2009). Just 52 of the 108 countries endemic for 

malaria have a policy to offer free ACTs to children <5 years old (World Health 

Organisation 2009). Even when something is policy it does not always mean that 

the medicines are available at the rural level in all areas of the country. And even if 

the medicines are in every health facility in the country, rural communities in 

general have less access to health facilities (and consequently ACTs (see 

Mutabingwa (2005)) than those in urban areas; one meta-analysis found that the 

median distance to the nearest health facility was 47.6 km for rural people (Hay et 

al. 2005). In Burkina Faso as distance increased from the health facility, the 

likelihood of finding modern medicine in the house decreased (Tipke et al. 2009).  
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1.3 The malaria parasite life cycle     

The lifecycle of the Plasmodium parasite can be seen in Figure 1.2. Starting from 

the left of this figure and moving in a clockwise direction, when a female Anopheles 

mosquito takes a blood meal from an infected human she may ingest the male and 

female gametocytes (as well as the asexual merozoites and schizonts). Inside her 

gut the male gametocytes undergo a process called exflagellation. This will only 

take place if certain conditions are present. These include a drop in temperature, 

an increase in pH and the presence of xanthurenic acid (previously called the 

gametocyte activating factor) (Billker et al. 1998). Exflagellation is a nuclear 

division that produces eight haploid motile male gametes and occurs 8-15 minutes 

after the blood meal is ingested. Meanwhile, the female gametocyte develops into 

the macrogamete. When the male and female gametes fuse they form a zygote; 

this matures into an ookinete within a few hours (Knell 1991).  

The ookinete is an invasive stage that passes through the gut wall causing 

localised cell death in the mosquito (Han et al. 2000). When it contacts the basal 

lamina of the midgut the ookinete develops into an oocyst, which remains fixed at 

the point of development under the basal lamina. The oocyst (stage 1 of sporogony 

in Figure 1.2) is a spherical body in which the sporozoites are produced. The 

sporozoites (typically 9-16.5 m in length and 0.4-2.7 m in width) bud off from the 

central sporoblastoid body of the oocyst (Menard et al. 1997) around 6-9 days post 

infection (Sherman 1998). Sporozoite maturation is dependent on temperature and 

when the sporozoites are finally mature, the oocyst bursts releasing thousands of 

sporozoites into the haemolymph of the mosquito. These travel until they contact 

and invade the mosquito salivary glands. The median and distal lateral lobes of the 

glands are the areas preferentially invaded. Sporozoites enter the space between 

the basal lamina and the basal plasma membrane before invading the cells. Inside 

the cells they are either found within vacuoles or free in the cytoplasm. They then 

enter the secretory cavity (invading only the apical plasma membrane) and are 

again either free in the cytoplasm or surrounded by a vacuole (Sherman 1998). 
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Figure 1.2. Plasmodium lifecycle (from Knell 1991) 

 

Malaria sporozoites invade the salivary glands so that they can be ‘injected’ into 

the vertebrate host when the mosquito takes a blood meal. It has been suggested 

that the sporozoites alter the normal salivary functions of the mosquito, thus 

enhancing the efficiency of their transmission (Beier et al. 1992). Only a small 
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number penetrate the secretory duct and are injected into the human host. These 

are then carried in the blood stream and locate and bind to the hepatocytes (liver 

cells) within a matter of minutes (Nussenzweig and Nussenzweig 1985). 

Sporozoites can either enter hepatocytes by formation of a parasitophorous 

vacuole or by disrupting the cell membrane and becoming free in the cytosol (Mota 

et al. 2001). There is evidence (both in vitro and in vivo) that sporozoites can 

transverse several hepatocytes before replicating (Mota et al. 2001). Inside the 

hepatocytes they undergo the exo-erythrocytic (hepatic schizogony) stage of the 

life cycle. At this stage, P. vivax parasites are able to form hypnozoites that remain 

dormant in the hepatocytes for a period of time. 

Tens of thousands of merozoites are released from each liver schizont and they 

locate and invade erythrocytes (red blood cells) (Krettli and Miller 2001). The 

erythrocytic schizogony stage is a form of asexual amplification, and it is this stage 

that is symptomatic. After an unspecified period of time some of the schizonts will 

produce the sexual forms of the parasite (female and male gametocytes); these 

circulate in the blood until a female mosquito ingests them and the cycle begins 

again. 

 

1.4 The anopheline mosquito life cycle 

Adult female Anopheles mosquitoes come into contact with humans because they 

require a blood meal in order to produce eggs; this usually happens at night (Wanji 

et al. 2003) and can happen either indoors or outdoors depending on the mosquito 

species (Service 1978). Different Anopheles species have differing tastes, with An. 

gambiae s.s. being highly attracted to humans as a source of blood (Costantini et 

al. 1999, Wanji et al. 2003), whereas some other species, such as Anopheles 

arabiensis Patton prefer to feed on livestock (Bøgh et al. 2001, Rowland et al. 

2001, Mahande et al. 2007a). Mosquitoes that feed more on livestock than humans 

are less efficient malaria vectors (Takken et al. 1999). Female mosquitoes are 
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attracted to their hosts due to the heat, carbon dioxide and body odours emitted 

(Takken and Knols 1999, Mukabana et al. 2004). The mosquito injects her 

proboscis into the human flesh and draws up blood, almost like a hypodermic 

needle. The blood meal must be sufficiently large to initiate the cascade of 

hormonal reactions to allow egg production. Therefore, mosquito abdomens are 

capable of extensive expansion owing to the membranous areas between each set 

of tergites and sternites. Anopheline females are also capable of excreting the 

plasma from the blood whilst feeding so that they can concentrate the more 

nutritious red and white blood cells (Clements 1992). 

After the blood meal the females rest to allow digestion to occur, An. gambiae s.s. 

usually rest indoors whereas other mosquito species can rest outdoors (Lines et al. 

1986). For successful egg development the ovarian follicles must be in the resting 

phase when the mosquito takes a blood meal. Egg maturation is dependent on 

temperature and in tropical Africa usually occurs around three days after the blood 

meal. At this point she will try and find a suitable water body into which to lay her 

eggs. Oviposition occurs at night (McCrae 1983) and female mosquitoes can 

detect competitors (Munga et al. 2006), bacteria (Lindh et al. 2008) and botanical 

products (Howard et al. Under Review) in the water (Chapter 4). After oviposition 

the female will take another blood meal and so the egg maturation cycle continues. 

The process of taking a blood meal, egg maturation and oviposition is called the 

gonotrophic cycle (GC). An anopheline mosquito in tropical Africa usually requires 

a blood meal every three days. Parasite development in the mosquito (called the 

parasite extrinsic incubation period (EIP)) can be calculated using the equation: 

N (days) = 111/(T – tmin)  

where T is the mean temperature and tmin is taken as 16°C (Detinova 1962). 

Therefore at 27°C the EIP would be 10 days. So, a mosquito must take several 

blood meals within this period where she will not be infectious (able to spread 

malaria). Similarly, the mosquito must be relatively old before she can transmit 

malaria. Female mosquitoes can live for over three weeks (Olayemi and Ande 
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2009), the conditions most conducive to long female survival are reported to be 

found in dry, lowland deforested areas (Afrane et al. 2007). 

Anopheline eggs are boat-shaped (Figure 1.3), around 1 mm long and do not 

survive desiccation. Batches of 50-100 eggs can be laid, with larger females laying 

more eggs (Lyimo and Takken 1993). These eggs are laid singly and have air 

floats. When the temperature is 25-30ºC the eggs usually hatch after 2-3 days, with 

the larval head emerging from the anterior pole (Soumare and Ndiaye 2005). 

Mosquito larvae have four instar stages and have to moult between each instar. 

The first instar larvae are usually just 1-2 mm long and the final instar larvae can 

measure up to 10 mm in length. Whilst the larvae are aquatic, there is some 

evidence that they can survive in moist mud (Miller et al. 2007). Anopheline 

mosquito larvae lie parallel to the water surface and are surface filter feeders, using 

brush-like structures to move food towards their mouthparts (Merritt et al. 1992). 

They breathe atmospheric air through two spiracles located on the eighth segment 

of their abdomen. The time required for full larval development is dependent on 

temperature and density (Gimnig et al. 2002), but in tropical areas can take 1-2 

weeks. However, not all mosquitoes complete the aquatic phase of the life cycle 

(Afrane et al. 2007, Olayemi and Ande 2009). Death rates at this stage can be very 

high, with mortalities as high as 93% recorded for An. arabiensis larvae and pupae 

in Kenya (Service 1977). After completing the fourth larval instar stage the 

mosquitoes moult into pupae. Mosquito pupae are aquatic and “comma” shaped. 

They do not feed and Anopheles pupae have relatively short and almost conical 

respiratory trumpets. They spend most of their time at the water surface but will 

readily dive to the bottom when they detect a shadow on the water or movement. In 

tropical areas the pupal stage of the lifecycle usually lasts two days. 

When the adult mosquito emerges from the pupal skin, the dorsal surface of the 

cephalothorax splits and the adult mosquito pushes itself out. Once emerged, adult 

mosquitoes rest for about an hour to let their wings and cuticle harden. 
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Figure 1.3. Mosquito developmental stages (courtesy of Mrs C. Whitehorn, 
LSHTM) 
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They then find sugar/nectar to replenish their energy (Clements 1992) and their 

next priority is to mate. Males usually form mating swarms at dusk. Females fly into 

these swarms and are recognised by their different wing beat frequency. Males 

choose to mate with larger females (Okanda et al. 2002). A pair then drops out of 

the swarm and mates. Females mate only once in their lifetime, storing sperm in 

their spermatheca held in place by the mating plug (Rogers et al. 2009). 

Whilst adult females will feed on both blood and sugar/nectar, adult male 

Anopheles only feed on sugar/nectar. Adult Anopheles usually rest with their body 

at an angle to the surface with their proboscis and abdomen in a straight line. It is 

in this way that they can easily be distinguished from the culicine Culex and Aedes 

mosquitoes. Other distinguishing features of adult Anopheles include the four dark 

and pale spots along the leading edge of the wing (not seen in the schematic 

Figure 1.3), and the female palps being the same length as the proboscis (Gillies 

and Coetzee 1987).  

 

1.5 Anopheline mosquito ecology 

The An. gambiae s.l. species complex is the most efficient malaria vector system 

found in Africa (White et al. 1972, Lindsay et al. 1998). This species complex has 

seven sibling species, the most common and best known are An. gambiae s.s., 

and An. arabiensis. As mentioned in section 1.4 above, An. gambiae s.s. is highly 

anthropophilic (prefers to feed on humans) and therefore, is an extremely efficient 

malaria vector. An. arabiensis is more zoophilic (prefers to feed on livestock) 

making this species a less efficient vector. An. arabiensis is better adapted to arid 

areas than An. gambiae s.s. (White 1974, Lindsay et al. 1998), however, there is 

considerable overlap in their ranges (Gillies and Coetzee 1987, Coetzee et al. 

2000). Anopheles funestus Giles is another species complex (Gillies and Coetzee 

1987) that can contribute significantly to malaria transmission in Africa due to its 

anthropophilic nature. A recent review found that EIR rates were twice as high in 
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areas where An. gambiae s.l. and An. funestus were found together when 

compared to areas where An. gambiae s.l. was found alone (Kelly-Hope and 

McKenzie 2009). Where An. arabiensis extends malaria transmission into arid 

areas, it is thought that An. funestus extends malaria transmission in time, by 

extending the transmission season in rural areas by being more abundant at the 

end of the rainy season and the start of the dry season (Kelly-Hope and McKenzie 

2009). 

Whilst adult mosquitoes are free flying and many different species can often be 

found in the same areas (Minakawa et al. 2002, Kirby et al. 2008), their choice of 

larval habitats is more species specific. An. gambiae s.s. are known to avoid 

ovipositing in water that contains competitors (Munga et al. 2006) and a study in 

western Kenyan fishponds found that An. gambiae s.l. and An. funestus 

mosquitoes, although using similar types of water bodies to lay their eggs, were 

tending to avoid ovipositing in the same fishpond as the other species (Howard and 

Omlin 2008) (Chapter 5). This said, overlap of different species in larval breeding 

sites can often be found (Gimnig et al. 2001, Howard et al. 2007) (Chapter 6) and 

even within species the larval habitats can be varied.  

In general, anopheline larvae can be found in non-organically polluted, usually 

natural, water bodies. The biotic and abiotic factors necessary for mosquitoes to 

colonise water bodies have been studied, however, different factors have proven 

more important in different settings. One study found that typical breeding sites for 

An. gambiae s.s. included small non-permanent habitats with algae and little or no 

vegetation (Gimnig et al. 2001). Another study, although agreeing that vegetation 

was not important, found that the abundance of An. gambiae s.s. larvae was not 

significantly associated with a number of other variables including algae (Minakawa 

et al. 1999). In Kenya An. arabiensis were associated with small non-permanent 

habitats with little or no vegetation (Gimnig et al. 2001). However, An. arabiensis 

are regularly found breeding in rice fields (large semi-permanent habitats), where 

there is vegetation. An. arabiensis breeding in rice fields have been associated 
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with a number of variables including low turbidity (clear water), dissolved oxygen 

and water depth (Mwangangi et al. 2007), while in wells in Senegal, important 

characteristics appear to be relatively shallow water (<0.5 m) that is warm and 

clear (Robert et al. 1998). An. funestus larvae have been associated with relatively 

large semi-permanent habitats with vegetation and algae (Gimnig et al. 2001), 

although another study found no significant relationship with vegetation (Howard 

and Omlin 2008) (Chapter 5). 

An. gambiae s.l. is increasingly being reported to colonise man-made water bodies. 

A study in western Kenya found that 87.5% of anopheline positive larval habitats 

were man-made, and many more Anopheles were found in these brick making 

sites than in the nearby swamps (Carlson et al. 2004). Other man-made habitats 

found to contain anopheline larvae include fishponds (Howard et al. 2007, Howard 

and Omlin 2008) (Chapters 5 & 6), swimming pools (Impoinvil et al. 2008) and 

burrow pits (Mutuku et al. 2006b). Agricultural land use is also associated with 

significantly more An. gambiae s.l. habitats when compared to land used for non-

agricultural purposes (Mutuku et al. 2009). Mosquito distribution is also dependent 

on the availability of blood hosts for the adults, and An. gambiae s.s. larvae are 

more commonly found closer to human habitations than to animal sheds 

(Minakawa et al. 2002). Clearly, human activity is greatly influencing the distribution 

of anopheline, and especially An. gambiae s.l., larvae. 

 

1.6 The concept behind mosquito/vector control 

The vectorial capacity equation (MacDonald 1957) is used to estimate the capacity 

of a mosquito population to transmit malaria in terms of the potential number of 

secondary inoculations originating per day from an infective person. This equation 

is expressed as: 

C = ma2pn / -lnp 
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where m is the number of vectors per host, a is the number of blood meals taken 

on humans per vector per day, p is the daily survival rate for the vectors and n is 

the rate of parasite development in the mosquitoes (the EIP). Of all these 

parameters, the most important are considered to be the daily human biting rate 

and the daily vector survival. This is because the daily human biting rate is squared 

in the equation and the daily vector survival is raised to the power of the parasite 

development rate. Therefore, even small reductions in these two parameters can 

have large effects on the vectorial capacity of the local mosquito population 

(Garrett-Jones 1964). Once the longevity of the mosquito is decreased below the 

minimum time for the EIP of the malaria parasite inside the mosquito, then malaria 

transmission can be interrupted.  

The ways to tackle these two parameters are to reduce the human-vector contact 

(by screening, bednets, and repellents) and to kill the mosquitoes. ITNs are able to 

do both these things and this is why their use is the mainstay of many major 

malaria control programmes. Because some insecticides can be repellent, IRS can 

also be used to reduce these two parameters, although IRS reduces the human-

vector contact to a lesser extent (more on these methods in sections 1.7.1 & 

1.7.2). Although the main focus of vector control campaigns is the adult female 

mosquitoes, the effectiveness of adult control can be reduced because adult 

mosquitoes are highly mobile and can choose to avoid coming into contact with the 

control methods (Killeen et al. 2002). Also behavioural changes resulting from 

selective pressure, such as earlier feeding in some populations, mean that they do 

not contact the insecticides on ITNs because they feed before the people have 

gone to bed (Pates and Curtis 2005).  

Whilst reducing the number of mosquitoes using larval control can also be 

important, this causes less of a reduction in the vectorial capacity equation than 

reducing the human biting rate and daily survival rate of the adult mosquitoes. 

Larval control in Africa has also been considered to be too labour intensive 

because the main malaria vector, An. gambiae s.l., can be found in a variety of 
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water bodies as small as individual cow hoof prints (Minakawa et al. 1999). Another 

problem with larval control is that adult female mosquitoes do not oviposit 

indiscriminately, avoiding competitors (Munga et al. 2006) and predators (Angelon 

and Petranka 2002, Blaustein et al. 2005). For these and other reasons larval 

control has not been used on a large scale to tackle malaria transmission in Africa. 

However, recent work has indicated that targeted larval control campaigns could be 

effective. Along with the variety of other breeding habitats, African anopheline 

mosquitoes tend to breed in man-made pits of water (Carlson et al. 2004, Fillinger 

et al. 2004, Howard and Omlin 2008) (Chapter 5). These pits are thought to be 

much more productive than the numerous smaller water bodies because it has 

been found that An. gambiae s.l. pupal occurrence is positively correlated with both 

habitat size (Minakawa et al. 2005) and habitat stability (Mutuku et al. 2006b). 

Another positive factor for larval control is that mosquito larvae cannot disperse 

from the water body into which the female mosquitoes laid the eggs.  

It will never be possible to treat every single anopheline mosquito habitat with a 

larval control tool, however, targeting these relatively large, man-made and 

productive habitats (Mutuku et al. 2006b) could help reduce the density of 

mosquitoes in a given area (Killeen et al. 2002). A study in western Kenya found 

that more than 90% of adult anopheline mosquitoes caught inside houses were 

caught within 300 metres of the nearest larval habitats, and that An. gambiae s.s. 

were more likely to be found in water bodies close to human habitations than close 

to animal sheds (Minakawa et al. 2002). The location of water bodies close to 

human habitations are usually well known, especially if they are man-made. Even if 

the location of relatively large water bodies are not known, new tools such as 

geographical information systems exist to identify such habitats (Mushinzimana et 

al. 2006) and larval control trials in Africa have already proved successful (Fillinger 

et al. 2003, Geissbuhler et al. 2009). These factors make the inclusion of larval 

control into malaria control programmes a viable option. 
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1.7 Current vector control methods used 

1.7.1 Insecticide-treated nets (ITN)  

Sir Ronald Ross, the man who finally completed the malaria-mosquito-man puzzle, 

slept under a bednet in the late 19th century as protection from nocturnal mosquito 

bites (Gibson 1998). Bednets are still used to protect against mosquitoes, however, 

they are now treated with pyrethroid insecticides giving them a dual function. Firstly 

their physical barrier, enhanced by the irritant properties of the insecticide, reduces 

blood feeding from humans. The second function is the reduction of the mosquito 

population density (Bayoh et al. 2010), average mosquito age (Magesa et al. 1991, 

Vulule et al. 1996) and in some areas species composition (Lindblade et al. 2006, 

Bayoh et al. 2010) due to the insecticide treatment. Disease reduction is achieved 

through personal protection against biting insects and reduction in the transmission 

intensity. The transmission intensity decreases because the number of infectious 

mosquitoes is reduced due to their inability to feed from gametocyte positive 

people, and a reduced number of mosquitoes that live long enough for the malaria 

parasite to complete its (EIP) lifecycle. ITNs are seen as a targeted use of 

insecticides because the sleeping person attracts the mosquitoes to the insecticide.  

Treated nets are efficient at reducing malaria mortality and morbidity in high and 

low transmission areas (Abdulla et al. 2001, Maxwell et al. 2002, ter Kuile et al. 

2003). As well as the personal protection afforded by ITNs, if a large proportion of 

the community uses ITNs then a decrease of the vector population can be 

expected (Curtis et al. 2003). This ‘mass effect’ has been seen in areas such as 

Tanzania (Magesa et al. 1991) but was not seen in The Gambia despite high 

coverage, thought to be because the intervention and control village mosquitoes 

shared breeding sites (Lindsay et al. 1993b). 

ITNs have their limitations. Net treatment is important, Lines et al. (1987) showed 

that an untreated net can be more dangerous than no net due to the deflection of 

biting to another person in the same room. In Tanzania a recent study found that 
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most nets were not treated with insecticide, partly due to misconceptions about the 

effect of the insecticide on human health (Matovu et al. 2009). ITNs should be 

treated at least every 6-12 months or after every 3 washes (Gonzalez et al. 2002). 

In many areas this is not carried out (Matovu et al. 2009) and this lack of re-

treatment is not always linked to cost. In a voucher scheme where 80% of the cost 

was subsidised only 1% of vouchers were used (Armstrong Schellenberg et al. 

2002).  

Long-lasting ITNs have been developed to counter some of the limitations of 

traditional ITNs. Long-lasting nets have been manufactured in such a way that they 

do not require further insecticide treatment and remain effective under field 

conditions for around 5 years. Although many have been developed, only a handful 

are recommended for use by WHO (World Health Organisation 2009). Long-lasting 

ITNs have been shown to be more cost effective than traditional ITNs in a variety of 

countries where both types of nets were either given out or highly subsidised 

(Yukich et al. 2008). However, long-lasting ITNs are more expensive than 

traditional ITNs so in areas where people have to buy nets, they are not reaching 

the resource-poor rural communities (Matovu et al. 2009) that most need them. To 

try to prevent this imbalance, WHO released a press statement in 2007 saying that 

“WHO recommends that insecticidal nets be long-lasting, and distributed either free 

or highly subsidized and used by all community members” (World Health 

Organisation 2007). 

Many countries in Africa and other areas have followed the WHO recommendation 

and now have a policy of providing treated nets to all age groups that are at risk of 

malaria, whereas previously just pregnant women and children were targeted 

(World Health Organisation 2009). However, despite the WHO/WHA/MDG goal 

that 80% of people at risk of malaria should be sleeping under a treated net by 

2010, WHO estimates that in Africa only Mali and São Tomé and Principle have so 

far achieved this target (World Health Organisation 2009). The 2009 World Malaria 

Report estimates that in 2008, on average just 31% of African households owned a 
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treated net and 24% of children under the age of 5 were using them (World Health 

Organisation 2009).  

Sixty-eight countries are currently distributing treated nets for free (World Health 

Organisation 2009). However, even handing out ITNs cannot guarantee wide scale 

coverage because there is some evidence that within a few years of ITN 

distribution these nets are not being used. In Sierra Leone 2-3 years after a mass 

distribution campaign household ITN ownership had reduced by 37%; in Togo the 

decline was 13% (World Health Organisation 2009). In Ethiopia one study found 

that although ITN ownership was 91%, only 65% had used the net the previous 

night (Baume et al. 2009). There are several reasons why people do not use 

treated nets. Firstly, bednet use can be seasonal. When mosquito populations 

decrease people tend to stop using bednets, however, the mosquitoes left are 

usually old and more likely to be infectious (Lines et al. 1991). Bednets can also be 

hot and stuffy to sleep under and some houses are not large enough for their use 

(Majori et al. 1987). Also, people can (mis)use bednets for a variety of other 

activities such as for fishing nets (Minakawa et al. 2008) and even wedding 

dresses (Odeke 2002). Furthermore, even when being used, ITNs can have 

reduced efficacy because nets can get holes in them (Tami et al. 2004), negating 

the protective value of the physical barrier (Irish et al. 2008). Although less so for 

long-lasting nets, insecticides can wear off under field conditions and a study 

looking at long-lasting nets used in the field for 7 years found that they were no 

longer able to protect against blood feeding (Malima et al. 2008). Growing 

insecticide resistance is also threatening the usefulness of treated nets in some 

areas (N'Guessan et al. 2007) (more on this in section 1.9.1). In spite of these 

problems, even the poorest families in malaria endemic areas consider treated nets 

a priority (Armstrong Schellenberg et al. 2002).  
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1.7.2 Indoor residual spraying (IRS) 

When mosquitoes enter a house to blood feed they tend to rest on the walls or 

ceiling immediately before and after feeding. The aim of IRS is to leave long-lasting 

residual insecticide on the ceiling and walls of houses so as to increase the risk of 

a mosquito being killed each time it enters the house. This reduces the chance of 

an infected mosquito living long enough for the malaria sporozoites to mature. 

When the WHO initiated the Global Malaria Eradication Campaign in 1955, IRS 

with dichlorodiphenyltrichloroethane (DDT) was the mainstay of this campaign. 

Despite malaria being successfully eradicated from areas including North America 

and Europe, many places in Africa were not targeted due to the lack of health 

infrastructure and high intensity transmission; just three African countries joined the 

campaign. Less than 20 years later, the emphasis was officially shifted from 

eradication to vector control (Hemingway and Ranson 2000). The main reasons for 

this were the occurrence of DDT-resistant mosquitoes (Curtis and Lines 2000), the 

cost of the campaign (Litsios 2000) and growing public dissatisfaction with DDT 

(see section 1.9.2). 

Currently IRS is the primary vector control intervention in 45 countries and in 2008, 

it protected 59 million people (World Health Organisation 2009). There are 12 

insecticides that can be used for IRS (World Health Organisation 2009), however, 

these only encompass three different toxic modes of action (van den Berg 2009). 

Lambdacyhalothrin has been used in Angola (Somandjinga et al. 2009) and 

Uganda (Bukirwa et al. 2009) but insecticide resistance is threatening the efficacy 

of IRS with lambdacyhalothrin in Benin (N'Guessan et al. 2007). Carbamate is 

used in Mozambique (Yukich et al. 2005) and other insecticides such as 

chlorfenapyr are being tested for their potential use (N'Guessan et al. 2009). 

Despite some controversy over the accumulation of DDT in the environment (more 

on this in section 1.9.2) and the effect on non-target organisms, DDT is still used 

for IRS in South Africa, Mozambique (Yukich et al. 2005) and other countries 

(Sadasivaiah et al. 2007, van den Berg 2009) to great effect. 
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IRS had a huge impact on mosquito populations and malaria transmission during 

the eradication campaign of the 1950-60s. This is exemplified by Sri Lanka which 

saw malaria cases fall from 2.8 million during the 1934/35 epidemic to just 17 

cases in 1963 (Curtis and Lines 2000). Of the great entomological achievements, 

IRS in South Africa managed to drive the main malaria vector An. funestus back to 

the Mozambique border (Hargreaves et al. 2000). Even now IRS is able to control 

malaria, especially in areas of unstable malaria transmission (Pluess et al. 2010). 

In Uganda, IRS with the pyrethroid lambdacyhalothrin was able to significantly 

reduce both the numbers of people diagnosed with clinical malaria, and the 

number of blood slides found to contain malaria parasites in the first four months 

after spraying (Bukirwa et al. 2009). Unfortunately, this study found that the 

beneficial effects of the spraying wore off, and a year after spraying the proportion 

of positive blood smears was not significantly different from pre-spraying levels 

(Bukirwa et al. 2009). It is known that the residual effects of the insecticides wear 

off and for this reason IRS is usually carried out every 6 months or so. This can 

impose logistical problems as an IRS campaign can be both expensive and 

logistically demanding because IRS should be carried out using specific equipment 

used by trained people. Successful IRS campaigns require wide-scale coverage to 

be effective; if a high percentage of the houses have been sprayed then very few 

mosquitoes will avoid a lethal dose. In addition, IRS has benefits other than 

affecting mosquito populations. House spraying in Zimbabwe was able to reduce 

the odds of a failure of chloroquine treatment fourfold but this effect was not seen 

after spraying was stopped (Mharakurwa et al. 2004), and other household insect 

pests are killed. 

When pyrethroid spraying was directly compared to ITNs there was no significant 

difference between the two methods with respect to vector control, but the ITNs 

used just 1/6 of the insecticide that IRS used, and ITNs were greatly preferred by 

the villagers (Curtis et al. 1998). For this and for the logistical reasons, IRS is not 

as cost effective as the use of ITNs (Yukich et al. 2008), however, they have 

slightly different functions; ITNs are used to protect specific people whereas IRS is 
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used to protect communities and respond to epidemics.  

 

1.7.3 Bacillus thuringiensis var. israelensis (Bti) 

As discussed in section 1.6 above, there is an argument for targeting vector 

control at mosquito larvae as well as at the adults. Examples of effective larval 

control tools that are currently not in widespread use will be reviewed in detail in 

Chapter 2.  

One larval control tool that has received much attention in recent times is Bti, a 

Gram positive bacterium that can be used to target specifically the larvae of 

mosquitoes and some flies (e.g. Simulium the vector of the river blindness 

parasite). The mode of action of Bti requires oral ingestion by the mosquito larvae. 

Bti bacteria produce δ-endotoxins in parallel with spore formation during the 

stationary phase of the cell cycle. These toxins form crystalline inclusion bodies 

around the spores that are produced during sporulation. The crystals are toxic to 

mosquito larvae because the alkaline nature of the mosquito digestive tract 

dissolves the δ-endotoxin crystals. Mosquito enzymes then cleave the pro-toxins to 

create toxins. These activated toxins bind to the cell membranes of the mosquito’s 

gut, forming pores and disrupting cellular osmotic balance leading to cell rupture 

and death. Mosquito pupae do not feed and as such are not susceptible to Bti. Due 

to the specificity of Bti, non-target organisms within water bodies are not adversely 

affected, so Bti can be used in conjunction with biological control agents in an 

integrated vector management (IVM) strategy (see section 1.7.4 below) (Hurst et 

al. 2007, Lacey 2007).  

Although Bti has been shown to be highly effective at reducing mosquito numbers 

in the field (Fillinger et al. 2003, Kahindi et al. 2008) and can reduce the risk of 

malaria infection (Geissbuhler et al. 2009) it has poor residual activity under field 

conditions. In western Kenya successful recolonisation of treated areas was 

evident 2-3 days after treatment (Fillinger et al. 2003) and in The Gambia 
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standardized field trials showed that weekly retreatment was necessary to achieve 

a constant suppression of mosquito larval development (Majambere et al. 2007).  

Furthermore, the persistence and efficacy of Bti in a water body depends on 

several bioenvironmental factors such as the levels of organic pollution, the 

presence of vegetation and formulation used (Mittal 2003). Formulation is important 

because Anopheles larvae feed at the surface, formulations that delay or prevent 

Bti settling at the bottom of the water body can be effective for longer periods. Bti is 

also inactivated by ultra violet (UV) light which reduces the longevity of action in the 

field. For these reasons frequent repeat applications are required (Gunasekaran et 

al. 2004, Majambere et al. 2007).  

Weekly retreatments of a product that is already expensive to produce raises the 

cost of effective larval mosquito control, but Bti has previously been produced in a 

cheap and sustainable way in a resource-poor area of Peru. Whole coconuts were 

inoculated with 7.8 x 105 spores of Bti and after 48-96 hours the coconuts were 

thrown into nearby ponds. Bti persisted in these ponds for 15-25 days and was 

able to successfully control Anopheles larvae (Ventosilla et al. 1990). Despite this 

encouraging work 20 years ago, there appears to have been no trials of this 

method in Africa, maybe because it is difficult to inject a coconut! Waste products 

that are found in resource-poor tropical countries can be used to grow Bti 

(Prabakaran et al. 2008) and it is hoped that this will bring the cost of this mosquito 

control product down. Bti is commercially available from many companies and its 

specificity to mosquitoes and other flies means that it cannot be sold on the black 

market as an agricultural insecticide to target agricultural pests. 

 

1.7.4 Integrated vector management (IVM) 

It is widely accepted that malaria control will only be successful if an integrated 

approach is taken, focussing on both vector control and chemotherapy (treating the 

human parasitic infection with ACTs) (World Health Organisation 2009). In addition, 
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it is becoming increasingly apparent that malaria transmission cannot be stopped 

by one single vector control method. IVM “integrates all available resources to 

achieve a maximum impact on vector borne disease” and was formally adopted by 

WHO in 2004 (World Health Organisation 2004b). It is thought that IVM will 

improve efficiency, cost-effectiveness and the sustainability of disease control. 

Similarly, because many different techniques are to be used in conjunction, the 

selection pressure of drug or insecticide resistance is reduced. More in-depth 

aspects and examples of IVM are discussed in Chapter 2. 

Almost one hundred years ago the mainstay of mosquito control was 

environmental management (Utzinger et al. 2001), house modification (Lindsay et 

al. 2002) and, where appropriate, biological control with organisms such as fish 

(Austen 1919). Many of these vector control methods were used successfully 

before being discarded in favour of DDT and the synthetic pyrethroids (World 

Health Organisation 1982). These “old” mosquito control methods are as applicable 

today as they were 100 years ago, and in many cases the technologies involved 

have not changed. They have all proved to be effective (for more on this see 

Chapter 2) and could complement the use of ITNs and IRS in IVM schemes where 

locally appropriate. In addition, these methods do not use insecticides and so 

should not compound the problems discussed in section 1.9 below.  

 

1.8 New malaria control tools in development 

1.8.1 Entomopathogenic fungi 

The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana can 

be used to target mosquito adults (Scholte et al. 2003a, Achonduh and Tondje 

2008) and larvae (Clark et al. 1968, Scholte et al. 2004b). The conidia of these 

fungi, once germinated, directly penetrate the adult mosquito cuticle then produce 

compounds that can cause insect death (Gillespie and Clayton 1989). For 
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mosquito larvae the fungal conidia are either ingested through the mouth or enter 

the siphon. Here they can cause a physical blockage by vegetative growth of the 

fungi, and the release of midgut toxins causes damage and death to the larvae 

(Bukhari et al. 2010). Very little work using these fungi against mosquito larvae has 

been carried out in the last 20 years. The only exception being one recently 

published article by Bukhari et al. (2010) that showed no differences between the 

susceptibility of An. gambiae s.s. and Anopheles stephensi Liston to M. anisopliae 

and B. bassiana, however, B. bassiana was found to be less effective at killing the 

mosquito larvae when compared to M. anisopliae (Bukhari et al. 2010).  

Work using these fungi against mosquito adults is at a more advanced stage. Both 

M. anisopliae and B. bassiana have been shown to significantly reduce the 

longevity of adult mosquitoes using a variety of different experimental procedures 

in the laboratory (Scholte et al. 2003b, Farenhorst et al. 2008, Mnyone et al. 

2009b) and field (Scholte et al. 2005, Lwetoijera et al. 2010). As well as causing 

mosquito mortality, interesting pre-lethal effects have also been reported. After 

exposure to M. anisopliae, fewer An. gambiae s.s. took a subsequent blood meal 

when compared to the control group (Scholte et al. 2006). Fungus-exposed 

mosquitoes also laid less eggs per GC resulting in a lower life time fecundity 

(Scholte et al. 2006). Similarly, in An. stephensi mosquitoes infected with B. 

bassiana, the fungus interfered with the ability of the mosquito to take a blood meal 

(Blanford et al. 2005). In this same study it was shown that B. bassiana inhibited 

the development of malaria parasites within the mosquito, reducing the sporozoite 

rate. It was hypothesised that fungal exposure could reduce the risk of malaria 

transmission by a factor of about 80 due to the reduction in sporozoite rate and 

increased mortality of the fungal-exposed mosquitoes (Blanford et al. 2005). 

Questions still remain about fungal longevity and viability under tropical conditions. 

In Tanzania, M. anisopliae in suspension did not lose viability whereas when the 

fungus was impregnated onto black cotton cloths and exposed to the ambient heat 

and humidity, the viability had reduced to 63% three weeks after application 
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(Scholte et al. 2005). This inability of entomopathogenic fungi to withstand tropical 

temperatures has also been found in several laboratory studies (Rangel et al. 

2005, Lekimme et al. 2008, Darbro and Thomas 2009). Although the use of 

entomopathogenic fungi in the laboratory has produced some encouraging results, 

further work must be carried out in the field before this malaria control tool can 

become operational.  

Chapters 7 & 8 of this thesis examine the use of entomopathogenic fungi against 

insecticide-resistant mosquitoes both in the laboratory and under field conditions in 

Benin, West Africa. 

 

1.8.2 Vaccines 

A 1973 paper described how irradiated malaria sporozoites were able to elicit an 

immune response in humans by causing an antibody response to the 

circumsporozoite protein (Clyde et al. 1973). Despite this early success, the 

development of a malaria vaccine has been hampered mainly because, unlike 

viruses that have relatively simple protein shells, malaria parasites have several 

different life stages, all with different proteins on the parasite surface. Protistan 

parasites are also much larger than viruses, making it more difficult for the immune 

system to overcome them. Because of the different life stages of the malaria 

parasite, many different antigens were targeted for vaccine research. These 

included targeting the pre-erythrocytic/asymptomatic life stage, the 

erythrocytic/symptomatic stage and sexual stage inside the mosquito. Details of all 

the different types of malaria vaccines developed can be found in a recent review 

by Chattopadhyay and Kumar (2009). Currently the RTS,S vaccine is the most 

advanced malaria vaccine candidate and is in phase III trials in Africa (Ballou 

2009). This vaccine is aimed at protecting small children and targets the 

circumsporozoite protein of the sporozoite (the life stage of the parasite injected 

into humans by the mosquito), and so this vaccine aims to attack the malaria 
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parasites in the pre-symptomatic stage.  

Vast sums of money have been ploughed into research looking for an effective 

malaria vaccine. The problem seems to be that the more technical the question, 

the longer it takes to solve and the more money it costs. Vaccine research has 

been ongoing for more than 35 years and yet the best estimates are that we are 

still years away from having a usable vaccine (Chattopadhyay and Kumar 2009, 

Greenwood and Targett 2009). Despite this, undoubtedly, a vaccine for malaria 

would be a great tool to have in the control arsenal, especially if the goals of global 

malaria eradication are to be achieved (Greenwood and Targett 2009).  

 

1.9 What are the problems with the current vector control 

methods? 

Although the present vector control methods are showing great successes, as 

discussed above, they are not infallible. Along with the specific problems 

mentioned in section 1.7, there are other reasons why there is growing focus on 

the more natural and low-tech control methods. 

 

1.9.1 Insecticide resistance 

Insecticide resistance refers to the ability of an insect to tolerate doses of an 

insecticide that would prove lethal to the majority of individuals in a normal 

population of the same species. Inheritable resistance traits develop by selective 

pressure exerted on a mosquito population. As well as reducing the capacity to 

repel and kill mosquitoes, there is also evidence that insecticides can select for 

certain behaviourally resistant traits such as earlier mosquito feeding times and 

earlier exiting from houses with treated nets (Mathenge et al. 2001, Pates and 

Curtis 2005). The short generation time and prolific progeny characteristic of the 
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mosquito lifecycle is well suited for quick development of resistance, and over 50 

species of Anopheles are reported to be resistant to insecticides (Hemingway and 

Ranson 2000). Resistance usually arises independently in each species and may 

not be found in all vectors in a malarious area.  

Because pyrethroids are the only insecticide class that has World Health 

Organisation Pesticides Evaluation Scheme (WHOPES) approval for use on ITNs, 

pyrethroid resistance in an area can seriously hamper vector control activities 

(N'Guessan et al. 2007). There are several known types of pyrethroid resistance. 

The knockdown resistance (kdr) mechanism, which causes site insensitivity 

(Enayati et al. 2003), was first reported in West African mosquitoes in the early 

1990s (Martinez-Torres et al. 1998). Resistance can also be caused by increased 

detoxification of the insecticide which is caused by elevated glutathione-S-

transferase (Brengues et al. 2003) or mixed function oxidase activity (Vulule et al. 

1999). Unfortunately for vector control schemes, resistance to one pyrethroid can 

confer cross-resistance to the other pyrethroids and a variety of other insecticides 

used for IRS including DDT (Chandre et al. 1999b, Brooke et al. 2001, Brengues et 

al. 2003, Enayati et al. 2003).  

Part of the problem of adult mosquito insecticide resistance is the presence of sub-

lethal doses of agricultural insecticides in the aquatic larval habitats. In this way it is 

thought that insecticide resistance in mosquitoes was mainly selected for by 

agricultural insecticides (Lines 1988, Diabate et al. 2002, Akogbeto et al. 2005, 

Corbel et al. 2007, Yadouleton et al. 2009). Domestic use of volatile pyrethroids 

can also select for pyrethroid resistance (Kang et al. 1995, Diabate et al. 2002). 

Extensive use of IRS during the eradication campaign in the 1950-60s caused DDT 

resistance to occur (Curtis and Lines 2000) and there is also evidence that ITNs 

themselves select for resistance. Some evidence suggests they select for the kdr 

allele (Fanello et al. 1999, Kolaczinski et al. 2000). However, ITNs are not thought 

to select for pyrethroid resistance when the kdr mutation is rare and heterozygous 

(Kang et al. 1995, Corbel et al. 2004). There is also evidence that ITN use selects 
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for higher levels of oxidases and esterases in mosquitoes (Vulule et al. 1999).  

The problem of insecticide resistance is increasing, however, despite this 

widespread and almost global problem (Chandre et al. 1999b, Vulule et al. 1999, 

Hargreaves et al. 2000, Baleta 2009), in some instances insecticides can still be 

effective against insecticide-resistant mosquitoes. In Côte d’Ivoire, the kdr allelic 

frequency almost doubled to 92.5% after just one year of ITN use, however, child 

malaria morbidity halved (Chandre et al. 1999a). Furthermore, when 80% of the 

population in an area of pyrethroid resistance were protected with ITNs, the ITNs 

were able to significantly reduce the prevalence of malaria in children, with a 56% 

protective efficacy against malaria (Henry et al. 2005).  

This ongoing protective effect in resistant areas is probably because resistance 

reduces the irritability of the pyrethroids allowing the mosquito longer net-contact 

time. Thus, even though for resistant mosquitoes the lethal dose may be higher, 

the increased net-contact means this dose is likely to be reached. Being less 

irritated, resistant mosquitoes are also more likely to find a way into the net and get 

trapped inside. However, this reduced irritancy does mean that treated ITNs in 

some areas are no longer able to protect against blood feeding (Guillet et al. 2001, 

Asidi et al. 2004, N'Guessan et al. 2007).  

 

1.9.2 Insecticide accumulation in the environment 

Whilst in the past little regard was paid to the environmental cost of disease 

control, this is increasingly becoming a priority. The 2001 Stockholm Convention on 

Persistent Organic Pollutants succeeded in banning several pesticides but DDT 

won a reprieve (Sadasivaiah et al. 2007); the use of DDT for specific activities like 

malaria control was allowed but subject to very strict regulations. The reason why 

these pesticides were banned, and the use of DDT was restricted, was because 

chemicals can build up in the oceans, air, soil, food chain, fresh water supplies 

(Mansour 2009, Ogata et al. 2009, van den Berg 2009), and adversely affect non-
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target organisms (including humans) (Eskenazi et al. 2009). Further, DDT can 

spread to areas where it has not been used because it is very volatile in the warm, 

tropical areas where it is used. It then gets transported in the air and is deposited in 

high altitude areas where, being colder, it is less volatile and more likely to remain 

(van den Berg 2009). In short, chemical insecticides like DDT can cause 

environmental devastation if their use is left unchecked. The environmental 

accumulation and correct disposal of pesticides has been affected by poor or 

inappropriate storage facilities, a lack of trained staff and lack of adequate 

government monitoring (Haylamichael and Dalvie 2009). The fact that the 

agricultural sector uses the same pesticides as disease control does has further 

accentuated these problems. 

DDT, the insecticide used in the 1950s eradication campaign and still in use today, 

can accumulate in human breast milk (Azeredo et al. 2008, Sereda et al. 2009). In 

South Africa it is thought that this is directly due to contact with DDT used for IRS 

for malaria control. A recent study examined whether DDT in breast milk was 

higher in women exposed to IRS compared to women who were not exposed to 

IRS, but who ate the same food. It was found that the IRS-exposed women had 

much higher levels of DDT in their breast milk when compared to non-exposed 

women. DDT levels in the food, bovine milk and drinking water sources were not 

high enough to be considered as additional causes of this difference (Sereda et al. 

2009). This accumulation in human tissues can cause problems; DDT in breast 

milk in Brazil resulted in 8.7% of children examined being exposed to higher daily 

levels of DDT than WHO recommends (Azeredo et al. 2008). DDT has also been 

linked to breast cancer, diabetes, impaired neurodevelopment in children and even 

spontaneous abortion (Eskenazi et al. 2009, van den Berg 2009). Given this 

evidence, the fact that DDT is still allowed for use for malaria control is testament 

to its cost-effective mosquito killing ability, and to the fact that the tool cupboard for 

malaria control is not as full as we would like. Although pyrethroid insecticides are 

not as harmful as DDT (they are, after all, the only insecticide class permitted for 

use on ITNs), they can also accumulate in the environment (Yanez et al. 2002) and 
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in human breast milk (Sereda et al. 2009). 

 

1.10 Why should we be focussing on different malaria control 

techniques? 

As can be seen in the preceding sections, there are several problems with current 

malaria control techniques. Although increasing, ITN coverage still falls well short 

of the WHA/WHO/MDG goals in many countries (World Health Organisation 2009). 

In areas where ITNs are on the ground, they are not being used properly for a 

variety of reasons. Some cultures find them unacceptable, or their houses are not 

big enough (Majori et al. 1987), some ITNs are being misused (Minakawa et al. 

2008), or not being used due to a misconception about the amount of mosquitoes 

around (Baume et al. 2009). In some areas political instability means people do not 

sleep in a bed in their own home (Medlock et al. 2007), and so would have little 

chance to use an ITN. IRS is logistically demanding and can be expensive (Yukich 

et al. 2008), and the insecticides used can accumulate in human tissue (Sereda et 

al. 2009). The insecticides used on ITNs are safer for humans but mosquitoes are 

becoming resistant (Hargreaves et al. 2000). Bti can be effective but is expensive 

and requires frequent repeat applications (Majambere et al. 2007).  

Furthermore, rural African communities are in general poorer (Matovu et al. 2009), 

less healthy (Hay et al. 2005), with less access to health facilities (Noor et al. 

2003), and more contact with malaria vectors (Kirby et al. 2008) leading to a higher 

malaria burden (Kelly-Hope and McKenzie 2009) when compared to urban 

communities. Rural communities are the most in need but in many instances they 

are the hardest to reach. In resource-poor rural areas of sub-Saharan Africa there 

are many logistical difficulties facing organisations trying to improve ITN coverage 

or involved in IRS campaigns. Many of the roads are poor and during the wet 

season may become impossible to use. The lack of decent roads impedes efficient 

delivery of mosquito control tools. Another problem of the lack of infrastructure is 
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that due to the lack of piped water sources for rural African communities, many 

need to keep water sources for domestic use; these water bodies are sources of 

malaria vectors (Mutuku et al. 2006a, Imbahale et al. 2010).  

So what are the alternatives to achieve effective malaria control, or even 

elimination? It seems that many people are focussing on entomopathogenic fungi 

(section 1.8.1) and the malaria vaccine (section 1.8.2). Undoubtedly, when these 

tools become operational they will be great additions to the control arsenal, 

especially if the goals of global malaria eradication are to be achieved (Greenwood 

and Targett 2009). However, at present neither can be used for large-scale malaria 

control. 

So what now? What can we use whilst waiting for ITN/IRS/IVM coverage to 

increase and for the vaccine to be successfully developed and rolled out? Given 

that many communities in Africa are not presently being protected by the available 

tools (ITN, IRS, Bti) and given the unavailability of advanced tools (vaccine, 

transgenic refractory mosquitoes, sterile male mosquitoes) for malaria control in 

the immediate future, much work is focussed on developing and rediscovering 

malaria control tools that are affordable to the poorest people and available now. It 

is important to investigate ways in which the local communities can control 

mosquitoes using locally available materials because involving local communities 

should allow for more successful and sustainable malaria control (Mukabana et al. 

2006). There are many vector control techniques that can be relatively easily and 

cheaply implemented by the people most at risk from malaria. These include house 

modification (Kirby et al. 2009), environmental management (Keiser et al. 2005), 

biological control (Mohamed 2003), the use of plants as larvicides (Kihampa et al. 

2009) and repellents (Waka et al. 2004), and zooprophylaxis (Mahande et al. 

2007b). Each of these methods will be discussed in greater detail in Chapter 2. 

 



Chapter 1 

48 

1.11 Problem definition, research objective and thesis outline 

Despite effective tools being available for successful malaria control, certain 

logistical issues are impeding the roll out of IVM strategies involving ITNs and IRS. 

Even without these logistical issues, ITNs and IRS are not infallible and problems 

such as insecticide resistance are threatening to undermine their use. Before the 

advent of synthetic insecticides, malaria was controlled with a variety of natural 

control methods. Although these methods were rarely as effective as the current 

methods that utilise insecticides, they were still able to impact on mosquito 

populations. 

There is a disproportionate malaria burden in Africa. Not only are rural communities 

more at risk, they are also less equipped to deal with this burden. In general they 

have less protection (ITNs) less access to health facilities and less money. There 

are several low-tech malaria control techniques that lend themselves for use in 

resource-poor rural areas. Many of them utilise free and readily available natural 

resources (many plants), can self replicate (larvivorous fish) or that may already be 

part of the household (animals for zooprophylaxis). While these methods may not 

be better than the current insecticide-based tools in use, they are better than 

nothing, and could be utilised until the vaccine has been licensed and ITN and IRS 

coverage is 100%. Furthermore, the focus of IVM is to use many tools 

simultaneously.  

Focus is turning to natural control tools partly as a result of environmental 

accumulation of insecticides, and partly due to insecticide resistance. In addition, 

biodegradable substances are being investigated because more emphasis is being 

placed on keeping ecosystems stable and avoiding environmental pollution. This is 

especially important because insecticides can affect mosquito predators more 

adversely than the mosquitoes themselves, because mosquitoes tend to colonise 

areas faster than their natural enemies (Service 1978). In addition, the WHA 

resolution 50.13 calls for the development and adoption of viable alternative 
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methods of controlling vector-borne diseases to thereby reduce the reliance on 

insecticides (World Health Organisation 2004b).  

Research into readily available, natural, and potentially sustainable malaria control 

tools is required so that resource-poor rural communities can take ownership of the 

problem of malaria control. In addition, with WHO recommending the use of IVM for 

malaria control, the long proven techniques of biological control should be given 

more focus so that they can slot into the IVM arsenal. 

 

 

The research objective was to examine the feasibility and effectiveness of the use 

of three natural products (flora, fish and fungi) for malaria vector control. These 

products are introduced in section 1.8.1 above (fungi), section 2.3.2 (fish) and 

section 2.3.3 (flora) below. With a view to these products ultimately being applied 

in the field, possibly by rural African communities using relatively low-tech 

methods, a series of experiments both in the laboratory and in the field against all 

mosquito life stages were carried out to examine effects on mortality and 

behaviour. 

The three products were chosen because they are important for many reasons, 

many of which will be discussed in the following chapters. In addition, the simple 

way in which neem and fish will be tested in this thesis lends itself to field 

deployment, and could easily be used by communities in resource-poor rural areas. 

Furthermore, due to their natural characteristics, the products tested in this thesis 

can be used to decrease reliance on insecticides. Insecticides still have a major 

role to play in malaria control, but alternatives are required to reduce the selection 

pressure of insecticide resistance, and manage it when it arises. In addition, these 

tools could potentially offer an alternative to existing control methods and/or 

replace those when they become obsolete or ineffective.  
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Chapter 2 contains a review of the malaria control techniques currently available to 

rural African communities, places these tools in the context of an IVM strategy and 

discusses the role of communities in mosquito control. 

In Chapter 3, all immature stages of An. gambiae s.s. were used to investigate 

what concentration of crude aqueous Azadirachta indica A. Juss (Meliaceae) (the 

neem tree) extract would inhibit the emergence of adult mosquitoes.  

In Chapter 4, aqueous neem extracts were used to investigate whether the 

oviposition behaviour of An. gambiae s.s. would be significantly altered, and 

whether this behaviour was affected by the dose of neem used. 

Chapter 5 presents the results of a fishpond census carried out in Kenya to identify 

whether fishponds are a major source of mosquitoes, and which characteristics 

were favourable to mosquito colonisation. 

Chapter 6 reports on the findings from a small-scale intervention trial carried out in 

Kenya and run over nine months. In this trial, the edible fish Oreochromis niloticus 

L. (Perciformes: Cichlidae) was tested for its ability to control wild mosquito larvae 

and pupae in fishponds. 

In Chapter 7, an application method that could be directly used in the field for the 

delivery of entomopathogenic fungi was tested against insecticide-resistant and 

insecticide-susceptible An. gambiae s.s. strains. 

Chapter 8 reports the findings from an experimental hut trial carried out in Benin to 

investigate whether two species of entomopathogenic fungi could be effective 

against wild multi-insecticide-resistant mosquitoes. 

Finally, in Chapter 9 the results of all the preceding chapters are summarized and 

discussed, conclusions are drawn and recommendations made for future research. 
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2.1 Abstract 

Insecticide-treated nets have been at the centre of malaria control efforts for some 

time, but coverage and use in some African countries is still disappointingly low. 

Furthermore, insecticide resistance in malaria vectors is threatening to render such 

insecticide-based mosquito control tools ineffective. In response to this, the World 

Health Organisation promotes the use of integrated vector management (IVM) 

programmes for malaria control. The premise of IVM is that different control tools 

are used simultaneously to try and reduce disease transmission. Within these 

programmes there is a place for the long-established mosquito control tools that 

were almost completely discarded at the advent of the synthetic insecticides. The 

wide-scale use of environmental management, house modification and larvivorous 

fish has proven to be effective at reducing mosquito numbers and malaria burden, 

and these methods could be readily incorporated into IVM programmes. In 

addition, botanical larvicides, botanical repellents, and zooprophylaxis have shown 

some promise in small-scale trials. This review focuses on experimental findings 

relating to these six mosquito control tools, and details parameters that can be 

used to decide which tool is locally appropriate. These methods were chosen 

because they are readily available to rural African communities and have the 

capacity to be locally produced, which could lead to their sustainable use for 

mosquito control. The incorporation of these tools into an IVM strategy is then 

discussed and the need for more IVM trials is highlighted. Community involvement 

is important because a successful and long-lasting IVM programme will require 

rural African communities to monitor and evaluate mosquito breeding, and respond 

with locally appropriate mosquito control tools. The role of communities in IVM 

strategies is considered and reasons why communities do not currently employ 

mosquito control tactics are discussed. With adequate education and training, 

communities can be shown that many mosquito control tools are to be found in 

their own environment and these tools can be used for mosquito control relatively 

easily. Whilst discussing underused malaria control tools, this review is designed to 
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complement other IVM reviews and does not advocate relocating resources away 

from current malaria control methods.  

 

2.2 Introduction 

Chapter 1 introduced many of the important components of malaria including the 

disease dynamics and the life cycles of both the parasite and mosquito vector. In 

addition, the mosquito control methods currently used were highlighted, along with 

the problems that insecticide-based mosquito control can pose. Finally, Chapter 1 

also introduced the concept of using low-tech and natural products for mosquito 

control. The rest of this thesis will focus on these natural alternatives. 

The reason adult mosquitoes have been targeted was explained in section 1.6, 

together with the thinking behind the growing movement towards larval control in 

Africa. In addition, section 1.7.4 briefly introduced the main topic of Chapter 2, 

namely integrated vector management (IVM). IVM integrates the available 

resources and methods to achieve a maximum impact on vector borne disease, 

essentially attacking the problem from different perspectives at once (i.e. using 

adult and larval mosquito control and human chemotherapy). IVM was formally 

adopted by the World Health Organisation (WHO) in 2004 (World Health 

Organisation 2004b) as a strategy to improve the efficiency, effectiveness and 

ecological soundness of vector control. Hence IVM would decrease the reliance on 

chemical insecticides. Similarly, when different techniques are used in conjunction, 

the selection pressure of drug or insecticide resistance could be reduced. The 

emphasis of IVM is on examining and analyzing the local situation, utilising the 

appropriate mosquito control tools, and making decisions at decentralized levels; 

IVM cannot be implemented by the health sector alone, but requires collaboration 

with other public and private sectors, and the active participation of communities. 

Although the theory behind IVM is fairly simple, there are complex issues involved 

with decentralization, participation and implementation that have still not been 
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addressed in most African countries (van den Berg and Takken 2007, Beier et al. 

2008, van den Berg and Takken 2008).  

Section 1.10 argued that several natural alternatives for mosquito control exist that 

could be incorporated into IVM trials and programmes. Mosquitoes have been 

controlled for hundreds of years but many successful methods (e.g. environmental 

management, larval control, house modification), although discarded at the advent 

of synthetic insecticides in the 1940s (World Health Organisation 1982), have all 

proved to be effective in specific settings (Rowland et al. 2001, Awad and Shimaila 

2003, Keiser et al. 2005, Ghosh and Dash 2007, Dugassa et al. 2009, Kirby et al. 

2009) and could complement the use of insecticide-treated bednets (ITN) and 

indoor residual spraying (IRS) in IVM schemes. WHO emphasized that IVM should 

be evidence-based (World Health Organisation 2004b) but an inability to tease out 

the contributions of the “minor players” in IVM trials could lead to useful tools being 

overlooked or neglected and may be a reason why so few IVM trials have so far 

been reported. Other reasons include time and cost (Beier et al. 2008).  

These simpler technologies are also cheap and can potentially be sustainable. 

Crucially, many of them can be produced in resource-poor rural areas of Africa 

where they are most needed. This is important because as discussed in section 

1.2, when compared to urban communities, rural African communities are in 

general poorer (Matovu et al. 2009), less healthy (Hay et al. 2005), with less 

access to health facilities (Noor et al. 2003) and have more contact with malaria 

vectors (Kirby et al. 2008) leading to a higher malaria burden (Kelly-Hope and 

McKenzie 2009). Yet, rural communities would seem to have more options for 

vector control than their urban counterparts in terms of the use of plant and fish 

products, or the management of agricultural land and domestic animals. It is 

therefore important to investigate ways in which rural African communities can 

contribute to vector control using locally available materials, because involving 

local communities should allow for more successful and sustainable malaria control 

(Mukabana et al. 2006).  
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This chapter reviews the available evidence on malaria vector control tools that in 

the most part are readily available to rural African communities. The tools 

discussed also have the capacity to be locally produced and sustainable, and most 

are environmentally friendly. The methods are divided into those that affect the 

mosquito population size (via larval control) and those that reduce the human-

vector contact. The ways these tools could be incorporated into an IVM strategy 

are outlined, and the problem of evidence-based decision making for vector control 

methods is addressed. Finally the role of communities in IVM strategies is 

discussed, and some of the outstanding issues that need to be addressed are 

highlighted. 

 

2.3 Methods that reduce the number of mosquitoes 

2.3.1 Environmental management 

Two types of environmental management are environmental modification and 

environmental manipulation. The former refers to permanent changes that prevent 

mosquito breeding; in the latter the breeding sites are temporarily made 

unfavourable to mosquito populations (World Health Organisation 1982). 

Environmental management not only reduces the number of mosquitoes, but in 

addition the resulting extended periods needed to search for oviposition sites may 

affect the longevity of the adult mosquitoes by depleting their energy reserves and 

exposing them to more risks (Gu et al. 2006).  

Managing water to control mosquitoes was first used thousands of years ago 

(Konradsen et al. 2004) and a systematic review of 16 trials that used 

environmental modification showed that the risk ratio of malaria was reduced by 

88% (Keiser et al. 2005). In addition, environmental management can be long-

lasting and cost-effective (World Health Organisation 1982). In the Roan Antelope 

copper mine in Zambia, an IVM programme with extensive environmental 
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modification was implemented in 1929. River banks were cleared, swamps were 

drained and man-made obstructions were removed in an attempt to disrupt the 

breeding of both Anopheles gambiae and Anopheles funestus. House screening 

and targeted chemoprophylaxis with quinine was also used. Not long after these 

measures were taken, large reductions in overall mortality rates were reported. In 

addition, the baseline rate of splenomegaly in children <15 years of age dropped 

from 36% to 6% five years after programme implementation, while splenomegaly 

remained at 45% in children living outside the intervention area. Furthermore, 

annual malaria incidence halved in the first year of the programme (Utzinger et al. 

2001). Similarly, in an area of low malaria transmission in Ethiopia, environmental 

modification resulted in fewer mosquito-positive habitats and the numbers of 

anopheline larvae found were greatly reduced. The numbers of adult Anopheles 

arabiensis collected from houses was also reduced by 49% when compared to the 

pre-intervention data and after controlling for the reduction in the control village 

(Yohannes et al. 2005).  

A specific example of environmental manipulation is intermittent irrigation. This is 

mainly carried out in rice fields and refers to temporarily draining the water and 

allowing the field to dry completely. Intermittent irrigation is only applicable in areas 

with specific soil and climate characteristics, and can reduce methane emissions 

from rice fields, help conserve water and significantly lower malaria vector 

abundance (Keiser et al. 2002). Direct effects on malaria morbidity have also been 

seen; in India splenomegaly (baseline 48%) and parasite (baseline 42%) rates 

were reduced to 4% and 0% respectively four years after intermittent irrigation was 

started (Knipe and Russell 1942). To test this method in Africa, Mutero et al. (2000) 

compared different water regimes and found that the intermittently irrigated plots of 

land had the lowest number of natural mosquito predators and the highest 

numbers of 1st instar larval An. arabiensis. However, when comparing the ratio of 

4th instar to 1st instar larval mosquitoes, they found very low survival levels for the 

mosquitoes within the intermittent irrigation regime, and no significant effect on the 

rice yield when compared to control plots (Mutero et al. 2000).  
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Several parameters should be considered before the implementation of 

environmental management (Table 2.1). For example, knowledge about the 

vector’s preference to breed in certain types of habitats, and information on the 

availability of such habitats near people’s houses are crucial for planning and 

targeting environmental management practices. Moreover, certain wetland areas 

need to be preserved because they are integral to local water cycles. Clearing 

vegetation from streams and drains can keep the water flowing, reducing stagnant 

areas, and in Tanzania clearing drains was able to significantly reduce the 

prevalence of malaria (Castro et al. 2009). Although beneficial for mosquito control, 

this form of environmental manipulation can have complicated effects because 

clearing vegetation could change the ecological conditions of a water body and 

may open it up to colonisation by other types of mosquitoes that were previously 

unable or unwilling to breed there due to the dense covering of weeds. Similarly, 

drainage of swamps could lead to increased anopheline breeding because the 

swamps tend to house many natural mosquito predators (Carlson et al. 2004). The 

destruction of this ecosystem would favour the mosquitoes because they tend to 

colonise new or temporary water sources before their natural predators do (Service 

1978). 

Although environmental management can be tailored to different ecosystems and 

different vector breeding preferences (Keiser et al. 2005), total removal of water 

bodies is not desirable in many areas because people need sources of water to 

live and work; one Kenyan respondent even said “better the presence of 

mosquitoes than the absence of such water pits” (Mutuku et al. 2006a). Fifty-six 

percent of respondents in Kenya felt that the aquatic habitats where mosquitoes 

could breed were important to their lives (Imbahale et al. 2010). Nevertheless, it is 

possible to manage water bodies thereby minimising the risk of mosquitoes 

breeding. Groups of water bodies such as brick making pits are regularly found in 

close proximity to each other in areas such as western Kenya (Figure 2.1). All of 

these pits are a potential breeding habitat for local malaria vectors (Carlson et al. 

2004).   In   such   situations,   practical   and   locally   acceptable   solutions   of  



 

 

58 Table 2.1. Parameters that could be used in local decision making when selecting vector control methods 
 
 

Control method  Important parameters
 

Environmental                           Vector breeding preference and significance of dry season refugia 
Management   Habitat characteristics (size, number, stability and vector productivity) 

Distance to human habitations 
Practical considerations (local requirement for water bodies for domestic or irrigation 
        purposes, knowledge of water management) 
Ecosystem and climate (e.g. soil type, likelihood of drained bodies re-flooding) 
Ecosystem effects (e.g. on insect mosquito predators) 

 
Larvivorous fish   Vector breeding preference  

Habitat characteristics (size, number, stability and vector productivity) 
Distance to human habitations 
Lack of alternative options (e.g. environmental management) 
Practical considerations (availability of immature fish, market for mature fish and  
        knowledge of fish husbandry) 
Suitability of water body for fish (depth, water type, stability) 

    History of chemical larviciding 
Ecosystem effects (on insect mosquito predators, vegetation, indigenous fish) 

 
Botanical larvicides  Vector breeding preference  

Habitat characteristics (size, number, stability and productivity) 
    Distance to human habitations 

Lack of alternative options (environmental management or larvivorous fish) 
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Availability of local plants with larvicidal properties 
Ecosystem effects (e.g. on insect mosquito predators, indigenous fish) 

                                    Effects on domestic animals, human health 
 
House Modification  Type of house construction (open eaves/door/windows) 
    Permanence of house 
    Proximity to vector breeding habitat 

Practical considerations (e.g. availability and cost of materials, knowledge of  
        carpentry skills) 
Vector behaviour (endo- or exophilic biting, time of biting, anthropo- or zoophilic, 
        resting behaviour) 
Human behaviour and attitudes 

 
Botanical repellents  Type of house construction (open eaves/door/windows) 

Proximity to vector breeding habitat 
Lack of alternative options (house modification or chemical repellents) 
Practical considerations (availability of repellent plants, their repellent effect) 
Vector behaviour (endo- or exophilic biting, time of biting, anthropo- or zoophilic, 
        resting behaviour) 
Human behaviour and attitudes (e.g. outside at night, compliance) 
Human health effects 

 
Zooprophylaxis   Proximity to vector breeding habitat 

Practical considerations (availability of cattle and insecticides) 
Vector behaviour (endo- or exophilic biting, time of biting, anthropo- or zoophilic) 

    Distance of cattle from human habitations; alternate hosts 
    Prevalent zoonotic diseases 
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Figure 2.1. A group of brick making pits in western Kenya, each one is a potential 

mosquito breeding site  

environmental management should be developed with active involvement of 

communities. For instance, in circumstances where the water is required, these pits 

could be merged to form one large pit which should be easier to treat. However, it 

is important to note that these large water bodies would need to be treated with 

another control tool because larger pools of water are more stable and can be 

more productive in terms of mosquito pupae and adults (Mutuku et al. 2006b). 

A knowledge, attitudes and practices survey in western Kenya found that while 

24% of respondents knew that draining stagnant water could help control 

mosquitoes, just 1% of them practiced this (Imbahale et al. 2010). In other areas of 

Kenya, communities reported using many different methods of environmental 

management to try and control mosquitoes (Kibe et al. 2006, Ng'ang'a et al. 2008). 

However, the main reasons given by those not using environmental management 
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were the lack of time, perceived absence of mosquitoes and a perceived lack of 

effectiveness (Ng'ang'a et al. 2008). This is discussed in more detail in section 2.6. 

 

2.3.2 Larvivorous Fish  

The deployment of larvivorous fish in appropriate water bodies has been used in 

mosquito control for over 100 years (Bay 1967) and can have a large impact on 

malaria incidence. The larvivorous fish Gambusia affinis (the mosquito fish) and 

Poecila reticulata (guppy) were introduced into ponds and wells in rural India and 

malaria declined from 73,270 cases reported in 2001 before fish introduction, to 

497 cases in 2005. This reduction was attributed to the fish because 

considerations for the local silk worm industry meant that spraying with insecticides 

could not be carried out (Ghosh and Dash 2007). Despite the successes of these 

“mosquito fish”, it is important to prioritize the use of native fish for their larvivorous 

properties because the introduction of non-native fish can disturb ecosystems 

(World Health Organisation 2002). Oreochromis spilurus spilurus (the Sabaki 

tilapia) is a native African fish that was introduced into water storage containers in 

Somalia over a two year trial period. At the end of the trial the number of 

mosquitoes caught per room had decreased from 2.3 to zero in the intervention 

area; in the control area the values were 3.6 and 8.9 mosquitoes per room at the 

beginning and end of the trial respectively (Alio et al. 1985). A similar study found 

that the number of mosquito larvae per water storage container was reduced by a 

mean of 52.8% after fish introduction (Mohamed 2003). Following this trial 83% of 

the community said they would accept the use of fish in their personal water 

storage tanks to control mosquitoes (Mohamed 2003). In Ethiopia local people had 

heard about the larvivorous properties of O. spilurus spilurus from their Somali 

neighbours and had taken the initiative to buy these fish to stock their water 

storage containers specifically to control mosquitoes (Teklehaimanot et al. 1993). 

The larvivorous potential of Oreochromis niloticus (the Nile tilapia) has been 

confirmed in the laboratory  (Asimeng and Mutinga 1993, Kusumawathie et al. 
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2006) and Chapter 6 of this thesis describes the first field deployment of this fish 

species specifically for malaria vector control.  

Other native African fish known to be larvivorous include Aphanius dispar (the 

Arabian killifish) which is native to Ethiopia and is able to withstand polluted water 

(Chandra et al. 2008). As such it should be a good contender for the control of 

Culex quinquefasciatus mosquitoes, the vectors of filariasis in East Africa. It has 

also been used for the successful control of several Anopheles species; An. 

gambiae and An. arabiensis breeding was suppressed by 97% in a number of 

different breeding habitats in Djibouti (Louis and Albert 1988). Similarly, Anopheles 

culicifacies adanensis mosquitoes were successfully controlled in the port city of 

Assab in Ethiopia, with the fish equally effective at controlling mosquito numbers in 

wells, cisterns and barrels (Fletcher et al. 1992). Nothobranchius guentheri is 

native to East Africa (Chandra et al. 2008) and has eggs that are drought resistant, 

which would allow its use in rice fields that are intermittently irrigated or other areas 

where water is not constant all year round. 

Louca et al. (2009) conducted a study in The Gambia that sampled native fish from 

the river floodplain and screened their stomach contents. Only one fish 

(Ctenopoma kingsleyae) was found to have eaten an anopheline larva. When 

tested in semi-field experiments, Tilapia guineensis (Guinean tilapia) and Epiplatys 

spilargyreius ate all late stage culicine and anopheline larvae after 24 hours. In 

addition, T. guineensis caused a 96% reduction in early stage mosquitoes after 12 

days while E. spilargyreius caused a 69% reduction (Louca et al. 2009). While both 

tested fish species were clearly highly larvivorous under experimental conditions, 

the lack of mosquitoes in their stomachs under natural conditions caused some 

concern as to whether these fish could be successfully used for mosquito control in 

natural habitats where there would be a wide prey choice (Louca et al. 2009). This 

is a concern for all fish types; when farming fish they should not be overfed 

because this will reduce the amount of mosquitoes and natural vegetation (where 

larval mosquitoes hide) that they eat. 



Malaria vector control options 

63 

C
h

ap
ter 2 

Advantages of using larvivorous fish are that they are generally self-sustaining and 

so ponds only have to be treated once. In rural sub-Saharan Africa where many 

roads are of poor quality this is a great benefit. Also, fish survival does not depend 

on the presence of mosquito larvae whereas other biological control agents often 

depend on the mosquito population not being entirely eliminated (Wright et al. 

1972). Furthermore, fish can physiologically affect some Anopheles larvae, causing 

significantly prolonged developmental times and emergence as smaller adults 

(Bond et al. 2005). In Asia, stocking fish in rice paddies has also been shown to 

increase rice yield while at the same time reducing mosquito numbers and 

decreasing malaria transmission (Wu et al. 1991). Fish can also be more cost-

effective than traditional larvicides; P. reticulata turned out to be more cost-effective 

than the organophosphate insecticide temephos when applied in the field in Sri 

Lanka, with the costs of temephos application 2.67 times higher than the cost of 

the fish (Kusumawathie et al. 2008). Of course, as with other mosquito control 

tools, parameters need to be considered when deciding whether or not to use 

larvivorous fish (Table 2.1). One disadvantage is that larvivorous fish can only be 

used under certain conditions conducive to their survival, and different fish species 

have different requirements (Trewavas 1983). They can also be difficult to 

transport, and the effect abandoned fish ponds have on mosquito abundance is 

described in Chapter 5 of this thesis. 

Effective and sustainable use of fish for vector control in Africa will require a certain 

element of fish husbandry. This requirement for fish husbandry should not pose a 

problem because small-scale fish farming has been continuously practiced in rural 

western Kenya for almost 50 years (Lockhart et al. 1969) and is still a favoured 

community activity today with people building and stocking new ponds (Figure 2.2). 

The 2005 Abuja Declaration on Sustainable Fisheries and Aquaculture in Africa 

called for the development of fish farming throughout Africa and it is conceivable 

that five years after this declaration many rural communities in Africa now possess 

the required skills to successfully rear and keep fish that can also be used for 

mosquito control. Unlike some other mosquito control methods, there is the added 
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impetus for people to keep fish because fish farming can provide a source of 

income and protein for people living in rural areas.  

 

Figure 2.2. A community group in western Kenya stocking a fishpond with the 
edible larvivorous fish Oreochromis niloticus 

 

2.3.3 Botanical larvicides 

Plants naturally produce compounds to protect themselves from herbivorous 

insects. Due to this phenomenon plants contain compounds that can either prevent 

the insects feeding, slow down their growth rate, disrupt the moulting process or 

even cause death (Schoonhoven et al. 2005). Because of this, many plant species 

have been tested for their potential deleterious effects against mosquitoes; most 

notably for any larvicidal effects. Hundreds of plants have been screened and 

tested for their effects on mosquitoes; good comprehensive reviews on this subject 

have been written by Sukumar et al. (1991) and Shaalan et al. (2005).  
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Much of this research has taken place in India and Indian plants that have been 

shown to be mosquitocidal include Atlantia monophylla (Sivagnaname and 

Kalyanasundaram 2004),  Solanum villosum (the hairy nightshade) (Chowdhury et 

al. 2008) and Pelargonium citrosa (Jeyabalan et al. 2003). Perhaps the best known 

and most thoroughly tested plant for mosquito control is Azadirachta indica (the 

neem tree) (Figure 2.3). The mosquitocidal effects of this tree have been 

determined both in the laboratory (Ziba 1995, Okumu et al. 2007) and field (Rao et 

al. 1992, Nagpal et al. 1995, Awad and Shimaila 2003) and the leaves (Siddiqui et 

al. 2003), fruit/seed (Batra et al. 1998, Gianotti et al. 2008) and wood (Ziba 1995) 

of this tree can all be used to kill mosquitoes. Field studies have also shown neem 

to be effective; when used as a larvicide bi-weekly in western Niger, crushed seeds 

caused a 49% reduction in the number of adult female An. gambiae s.l. (Gianotti et 

al. 2008). In addition, the larvicidal use of neem can reduce adult mosquito 

longevity (Nathan et al. 2005, Okumu et al. 2007). Neem trees already grow well in 

many areas of sub-Saharan Africa, they are popular shade trees (Gianotti et al. 

2008), and they are also already used as a mosquito repellent in countries 

including Tanzania (Kweka et al. 2008), Kenya (Seyoum et al. 2002b) and Ethiopia 

(Karunamoorthi et al. 2009), and to treat malaria episodes in Kenya (Kibe et al. 

2006). Chapters 3 & 4 of this thesis examine the larvivorous potential of crude 

aqueous neem extracts, and the effects these extracts have on adult female 

oviposition. 

Other African plants that have been shown to be larvivorous include seventeen 

Tanzanian plants that were screened for their larvicidal action against An. gambiae 

s.s. (Kihampa et al. 2009). In addition, three plants from Burkina Faso were able to 

kill field-caught An. gambiae and An. arabiensis larvae, with the eggs being more 

susceptible than larvae (Bassole et al. 2003). Another larvivorous native African 

plant is Ricinus communis, the castor oil plant. When collected from Sudan, 

aqueous extracts of this plant were able to kill the larvae of both An. arabiensis and 

Cx. quinquefasciatus, with An. arabiensis being more susceptible (Elimam et al. 

2009).  Unfortunately,  this  plant  also  caused  an  oviposition  deterrence  effect, 
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Figure 2.3. The neem tree (Azadirachta indica) is a popular shade tree and grows 
in many areas of sub-Saharan Africa; parts of this tree have been shown to have 
lethal effects to mosquito larvae 

 

meaning that the adult mosquitoes selectively avoided laying their eggs in water 

that contained extracts of this plant (Elimam et al. 2009).  

Much of the work investigating the use of plants as mosquito larvicides has used 

sophisticated methods to prepare extracts which, whilst producing encouraging 

results (Nathan et al. 2005), are impractical to produce and use in rural Africa 

where the lack of infrastructure requires more simple methods to be used. 

Furthermore, the extraction methods used can affect the bioactivity of the 

phytocompounds because polar solvents will extract polar molecules (Shaalan et 

al. 2005). Therefore, the results obtained with sophisticated extracts may not be 
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matched when the plants are simply placed into mosquito breeding sites. Simply 

placing whole plant parts into breeding sites is of added benefit because whole 

plants have many active and synergistic compounds meaning mosquitoes are less 

likely to build up a physiological resistance (Isman et al. 1996). However, as well as 

the inherent differences in phytochemical activity from the same plant produced in 

different areas (Schmutterer 1995), when these phytochemicals are placed into 

natural mosquito breeding sites their bioactivity may be further attenuated by the 

environmental characteristics of the water body and the effect of the UV light from 

the sun (Schmutterer 1995).  

Although many plants have been shown to have larvicidal properties 

experimentally, African communities are not routinely using plants for larval control 

even though, as with the repellent plants discussed in section 2.4.2 below, many 

of these plants can be grown where they are needed and could provide sustainable 

and relatively cheap mosquito control. Unlike botanical repellents used against 

adult mosquitoes, and the use of plants to kill food pests such as the cowpea 

beetle (Boeke et al. 2004a), there is no wide-scale use of botanical products to kill 

larval mosquitoes in traditional ethnobotanical practices. This may be because 

many people do not know where mosquito larvae can be found or what they look 

like (Mutuku et al. 2006a, Imbahale et al. 2010). As well as the ability to identify 

mosquito larvae and where they can be found, other parameters must be 

considered before the implementation of botanical larval control measures (Table 

2.1). 

 

2.4 Methods that reduce human-vector contact 

2.4.1 House modification 

In rural Africa, houses tend to be made of mud bricks with open eaves and thatch 

roofs, and these houses have more mosquitoes in them when compared to 
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concrete houses with closed eaves or metal roofs (Kirby et al. 2008). With some 

effort and investment these traditional African houses, that may not even have a 

closable door, can be modified to prevent mosquito entry. Forms of house 

modification include closing the eaves (Figure 2.4) and/or installing ceilings, and 

using curtains/screens to close off doors and windows. Closing eaves and ceilings 

are particularly important because trials in The Gambia and São Tomé have 

showed that eaves are important house entry points for An. gambiae s.l. but not for 

culicine mosquitoes (Charlwood et al. 2003, Njie et al. 2009). This is because An. 

gambiae will fly towards host odours and on contact with a vertical surface will fly 

upwards (Snow 1987), thus the overhanging roof directs mosquitoes towards and 

into the open eaves. 

In Kenya, local people were encouraged to weave ceiling mats using readily 

available papyrus and sisal. These mats were then placed into certain houses 

closing off the open eaves and roof spaces. There was an 84% and 87% reduction 

in the odds of An. gambiae s.l. and An. funestus respectively being present in the 

modified houses when compared to the control, unmodified houses (Atieli et al. 

2009). Similarly, an experimental hut study conducted in The Gambia compared 

mud-closed eaves and four different types of ceilings, to an unmodified control hut. 

They found that all types of ceilings significantly reduced An. gambiae entry with 

the plastic insect-screen causing an 80% reduction when compared to the control 

(Lindsay et al. 2003). In refugee shelters in Uganda, ceilings made of ITNs were 

able to significantly reduce the number of mosquitoes inside the screened shelters 

when compared to unscreened shelters. The authors estimated that inside a 

screened shelter 1 person in 1177 received a bite from an anopheline mosquito; in 

unscreened shelters anophelines bit 1 person in 125 (Medlock et al. 2007).  

Screening windows and doorways are also important forms of house modification. 

Kirby et al. (2009) conducted a randomised control trial in The Gambia comparing 

houses where windows and doors were screened with netting and the eaves had 

been filled in (full screening), with houses where netting ceilings had been installed 
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(screened ceilings). They found that either screening method reduced An. gambiae 

s.s. house entry by about a half when compared to unscreened control houses. 

The estimated entomological inoculation rates (EIR) showed that the screened 

ceilings had half the EIR compared to the control houses, whereas the EIR in the 

fully screened houses was a third of the controls. Also, children living in screened 

houses had significantly higher haemoglobin levels when compared to children 

from the control houses, and significantly fewer cases of anaemia (Kirby et al. 

2009). When offered, the vast majority of people chose the more complete house 

modification because it was more able to reduce the entry of other pests, improved 

the attractiveness of their house and improved their privacy (Kirby et al. 2009). 

House modification is becoming more utilised although this varies from area to 

area. While only 3% of people in a survey in rural Kenya had screened 

doors/windows  (Ng'ang'a et al. 2008),  80%  of  monitored  households  in  Dar es  

 

Figure 2.4. Closing off the eaves of a traditional rural house can prevent mosquito 
entry 
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Salaam had installed window screening and almost 80% had either a ceiling or 

closed eaves or both (Ogoma et al. 2009). It appears that houses become 

progressively more mosquito-proof with increasing income. One of the challenges 

is to break this association through mosquito-proofing rural houses. Where house 

modification has not been taken up, the reasons given by various African 

communities for not already closing the eaves of their houses included the high 

cost of procuring the materials (Ogoma et al. 2009), the extra effort required 

(Lindsay et al. 2003) and the need for air circulation to combat the high daytime 

temperatures (Atieli et al. 2009). A study in Tanzania asked people who had not 

modified their houses how much they expected to pay, in general people tended to 

overestimate the cost of house modifications (Ogoma et al. 2009).  

In The Gambia, full house screening with locally available netting was estimated to 

cost US$11.11 per person treated (Kirby et al. 2009), while ceilings had an 

estimated cost of £0.36-0.59/person/year (Lindsay et al. 2003). Papyrus mats were 

made in Kenya from locally available materials and sold for US$1 each for use as 

ceilings, with several mats being needed for each ceiling depending on house size 

(Atieli et al. 2009). This relatively high initial cost is a disadvantage of house 

modification, as is the reduced air flow, but on the plus side maintenance should be 

cheap and simple and the effects are long-lasting. House modification could be 

especially worthwhile and economically viable if there are a large number of people 

sleeping within one house where each of those people cannot afford ITNs; money 

spent on window screening in Tanzania was almost the same per person as that 

spent on ITNs (Ogoma et al. 2009). House modification can also directly impact 

malaria incidence. A review of eight studies showed that house modification 

reduced the risk of malaria by 79.5% (Keiser et al. 2005). Another benefit of house 

modification is that it can protect the whole household. This is especially important 

in refugee situations where it is not possible for everyone to have an individual ITN 

(Medlock et al. 2007).  
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2.4.2 Botanical repellents  

Various plants can be used to repel mosquitoes from entering houses. Although 

normally the most commonly deployed method (Seyoum et al. 2002b), it is not just 

burning plants that can cause repellency. In Kenya some communities place whole 

plants or tree branches in their houses (Seyoum et al. 2002b), and a field study 

found that live potted plants could significantly repel An. gambiae s.l. but not An. 

funestus (Seyoum et al. 2003). In Eritrea hanging the fresh leaves of Ocimum 

forskolei (sweet basil) around the bed led to a 53% reduction in the numbers of An. 

arabiensis found in the house (Waka et al. 2004). A questionnaire in Ethiopia 

identified several different ways people used the repellent plants, such as spraying 

aqueous solutions or laying the leaves on the floor (Karunamoorthi et al. 2009) and 

it has been reported from Nigeria that farmers place leaves on their roof to repel 

mosquitoes (Oladepo et al. 2010). 

In Kenya and Tanzania a range of plants are traditionally used to repel mosquitoes 

from houses including Ocimum spp. (wild basils), Eucalyptus globules (the blue 

gum tree), Tagetes minuta (the Mexican marigold) and Lantana camara (wild sage) 

(Figure 2.5) (Seyoum et al. 2002b, Kweka et al. 2008). Lantana camara is a shrub 

that grows in many places in Africa. Live L. camara plants have been shown to 

repel An. gambiae s.l. mosquitoes from house entry (Seyoum et al. 2003). 

Similarly, 42% and 29% repellency of An. gambiae s.s. was seen when the leaves 

or seeds respectively were thermally expelled (heated on thin metal plates over 

charcoal); in contrast, when the leaves and seeds were directly burned no 

significant repellent effects were seen (Seyoum et al. 2002b). Laboratory 

evaluations were undertaken to test whether certain Ethiopian plants were really 

effective at repelling mosquitoes. Of those tested, burning the roots of Silene 

macroserene was found to be the most repellent, driving 94% of An. arabiensis 

mosquitoes away. The least repellent plant tested, Olea europaea (the olive tree), 

was still able to drive away 80% of the mosquitoes (Karunamoorthi et al. 2008). In 

the laboratory, Ocimum suave caused 81% of An. gambiae s.s. and 89% of An. 
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arabiensis to be repelled from seeking a blood meal in a tunnel test setup (Kweka 

et al. 2008). Ocimum kilimandscharicum (camphor scented basil) produced similar 

levels of repellence and both plant species were also effective at repelling the 

nuisance mosquito Cx. quinquefasciatus (Kweka et al. 2008). Semi-field studies 

using Ocimum spp. found that when burned alone, both Oc. suave and Oc. 

kilimandscharicum caused 26-28% and significant repellency of An. gambiae s.s.. 

When they were thermally expelled this repellency was increased to around 50% 

for both plants. However, when the two plants were thermally expelled together or 

in combination with L. camara, the repellency was just 15% and 4.6% respectively, 

neither result being significantly different from the control (Seyoum et al. 2002b). 

Plants have also been shown to effectively repel wild mosquitoes in field trials. A 

field study evaluating four plants in Eritrea compared two methods; directly burning 

the plants and thermal expulsion (Dugassa et al. 2009).  They  found  that  different 

 

Figure 2.5. Lantana camara is a ubiquitous shrub commonly used as a mosquito 
repellent in Africa countries 
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plants were more effective at repelling An. arabiensis than Anopheles pharoensis 

and vice versa. For all plant types and both application methods there was 

significant mosquito repellency when compared to just burning charcoal. When the 

plants were directly burned there was 65-73% repellency of An. arabiensis and 66-

73% repellency of An. pharoensis. Thermal expulsion repelled 72-79% of both 

types of mosquito but this was not significantly different from the directly burning 

results (Dugassa et al. 2009). In Kenya, Corymbia citriodora (lemon scented gum 

tree), Oc. suave and Oc. kilimandscharicum were thermally expelled in mud-

walled, grass-thatched houses. All three plants significantly repelled An. gambiae 

s.l., and even showed a degree of residual activity; the level of An. gambiae s.l. 

repellency found was similar to that caused by a commercially available slow-

burning mosquito coil (Seyoum et al. 2003). Despite these encouraging results with 

An. gambiae s.l., only Oc. kilimandscharicum was able to significantly repel An. 

funestus (Seyoum et al. 2003).  

Repellent plants are regularly used by African communities. In Burkina Faso plants 

are burnt in both the bedroom and living areas to repel mosquitoes (Yamamoto et 

al. 2009). In The Gambia, burning churai (perfumed woods mainly from the tree 

Daniellia oliveri (the African copaiba balsam tree)) can significantly reduce the 

presence of mosquitoes within a house, with a 44% decrease in the odds ratio 

compared to houses that did not burn churai (Kirby et al. 2008). However, the 

burning of churai had no impact of the incidence of malaria in children (Snow et al. 

1987). A knowledge and usage questionnaire in northern Ethiopia identified fifteen 

local plants regularly used to protect against insects/mosquitoes (Karunamoorthi et 

al. 2009). Even though 44% of the respondents were illiterate, 97% of the people 

questioned were able to identify the plants considered most useful for repelling 

mosquitoes (Karunamoorthi et al. 2009), indicating that ethnobotanical knowledge 

is not limited by a lack of formal education. People came from varying socio-

economic backgrounds but those earning the least money per month were 

significantly more likely to use plants as repellents when compared to those on 

higher incomes (Karunamoorthi et al. 2009).  
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Indigenous repellent plants can be found for free in many areas of Africa. They can 

be grown relatively easily allowing their sustainable use for mosquito control. In 

addition, they could be cultivated and sold, bringing in a source of income to some 

industrious people. The use of repellent plants can protect all inhabitants of the 

house, and can even be used to protect people outdoors. As with the other tools 

reviewed in this paper, there are certain parameters that should dictate whether or 

not to use botanical repellents (Table 2.1). Disadvantages include the need for 

frequent applications and almost no residual effect. Also, wind and rain could 

decrease the effectiveness, and the repellent properties of the plants may differ 

from plant to plant as with the larvicidal properties (see section 2.3.3 above). 

Finally, the use of repellents possibly reduces the perceived urgency of other, 

perhaps more effective, measures of self protection such as house screening or 

the use of ITNs. 

 

2.4.3 Zooprophylaxis  

Zooprophylaxis is defined as “the use of wild or domestic animals, which are not 

the reservoir hosts of a given disease, to divert the blood-seeking mosquito vectors 

from the human hosts of that disease” (World Health Organisation 1982). 

Zooprophylaxis can be passive or active. In passive zooprophylaxis the effect 

comes from animals that are already kept by a household (Figure 2.6); active 

zooprophylaxis refers to the active deployment of animals or a change in the way in 

which they are kept specifically for a zooprophylactic effect. The success of 

zooprophylaxis in an area depends on the selectivity of the local mosquito species 

and the level of zoophily (preference for biting animals). For example An. 

arabiensis is an important malaria vector in many African countries and is strongly 

zoophilic, and more specifically, more attracted to cattle than other domestic 

animals (Mahande et al. 2007a). Whereas, An. gambiae s.s. is widely regarded as 

the most efficient malaria vector in sub-Saharan Africa because it is highly 

anthropophilic (preference for biting humans) (Costantini et al. 1999).  
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Figure 2.6. Cattle are regularly kept close to homesteads and under some 
circumstances can be used to protect humans from mosquito bites 

 

Studies in Tanzania (Mahande et al. 2007a) and Kenya (Kaburi et al. 2009) have 

shown protective effects of using cattle for zooprophylaxis. In Tanzania, human 

blood indices (HBI) of An. arabiensis were lower when collected from houses with 

cattle than from houses without cattle (Mahande et al. 2007a). In Kenya, 

households with less than five cattle and that owned a bednet had increased 

protection from mosquito bites, although they found that the level of protection 

decreased as the number of cattle increased (Kaburi et al. 2009). Zooprophylactic 

successes have also been reported when the cows had been treated with 

insecticide. Pyrethroid-treatment of cattle is already widely used in Africa and other 

areas of the world for the control of vector-borne diseases. If an insecticide-treated 

cow is used for zooprophylaxis then humans can be protected because the 



Chapter 2 

76 

mosquitoes that come into contact with the cow will not be diverted onto humans 

(Hewitt and Rowland 1999, Habtewold et al. 2004) but will die of the insecticide 

(Rowland et al. 2001). In Tanzania, cattle treated with deltamethrin were able to 

increase the mortality of An. arabiensis (Mahande et al. 2007b), and in a trial in 

Asia, the zoophilic vectors Anopheles stephensi and An. culicifacies were more 

than 46% less abundant in villages where cattle had been treated with deltamethrin 

(Rowland et al. 2001). In addition, this community-randomized trial showed that 

treating cattle with deltamethrin substantially decreased the incidence of malaria 

caused by Plasmodium falciparum and/or Plasmodium vivax (Rowland et al. 2001). 

Unfortunately, failure of zooprophylaxis has been reported in areas where the main 

malaria vectors are anthropophilic (Bøgh et al. 2002, Kirby et al. 2008) and 

zoophilic (Seyoum et al. 2002a, Habtewold et al. 2004). In addition to these 

recorded failures, other disadvantages of zooprophylaxis are that for mosquito 

populations with a high searching-related vector mortality rate, the expected 

beneficial effect of zooprophylaxis could be reversed because the number of 

mosquitoes in an area could actually be increased by the cattle providing more 

blood meals. Also, more adult mosquitoes could survive the duration of the parasite 

extrinsic incubation period (EIP) and therefore become infectious (Saul 2003). 

Finally, when the mosquito breeding sites are situated far from human and animal 

habitations it is thought that the animals may actually attract the mosquitoes to the 

humans (Saul 2003). 

Successes and failures of zooprophylaxis have been reported and it appears that it 

is most effective when the cattle are treated with insecticide. One major drawback 

for the use of zooprophylaxis in Africa is the dependence on the biting preference 

of the local vector species. The highly anthropophilic nature of An. gambiae s.s. 

rules out effective zooprophylaxis in many areas of sub-Saharan Africa. Evidence 

on key parameters (Table 2.1) and a strong linkage between research and 

extension will be critical for future implementation of zooprophylaxis 
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2.5 How to combine methods in the context of IVM? 

So far, six types of methods that could be adopted by rural communities to 

supplement mainstream malaria control interventions have been outlined. 

Mathematical models have predicted that combinations of some of these methods 

would be much more effective than the individual effects (Saul 2003, Yakob and 

Yan 2009). For instance, zooprophylaxis is expected to be more effective when the 

number of mosquito breeding sites is reduced through environmental management 

(Saul 2003). As well as the hypothesised effects, these methods have already 

proved effective in field trials in specific settings. When fish were used with IRS, 

early detection and prompt treatment in India, malaria was successfully controlled 

(Singh et al. 2006). Furthermore, when fish were combined with a microbial 

larvicide the fast but not prolonged effect of the microbial larvicide at reducing 

mosquito numbers was complemented by the slow but sustained effect of the fish 

(Hurst et al. 2006). Environmental management has been used successfully in IVM 

programmes that combine mosquito control methods in Zambia (Utzinger et al. 

2001, Chanda et al. 2008), Kenya and Tanzania (Mukabana et al. 2006) and India 

(Rajagopalan and Panicker 1985). In addition, zooprophylaxis appears to have an 

additive effect when used with long lasting ITNs (Kaburi et al. 2009). The World 

Health Assembly resolution WHA 50.13 calls on Member States to “support the 

development and adoption of viable alternative methods of controlling vector-borne 

diseases and thereby reduce reliance on insecticides” (World Health Organisation 

2004b). Despite this, some of the methods discussed above have not been the 

subject of recent IVM trials even though they all have benefits that could be 

exploited for mosquito control.  

IVM trials should look to examine three categories of evidence; evidence about the 

effects of an IVM strategy, evidence about the effectiveness of individual methods, 

and evidence about the parameters that determine the effectiveness of each 

method. The first two categories demand large scale trials, which have been 

scarce. There have been various studies reporting the effects of combinations of 
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methods, but in most cases the study design did not allow for teasing out the effect 

of each method to determine whether there has been an additive or synergistic 

effect. Moreover, the measured effectiveness could be location-specific due to the 

influence of local parameters. IVM trials using a range of techniques need to be 

carried out so that the relative importance of various mosquito control tools and the 

incremental effect of methods when used in combination can be verified. In 

addition, they need to look beyond the entomological outcomes and report on the 

impact on malaria transmission, morbidity and mortality. When deciding which 

control methods to use locally or to test in IVM trials, evidence on the parameters 

that determine the effectiveness of each tool (Table 2.1) should be considered with 

reference to the local situation (World Health Organisation 2004b). For example, 

local knowledge about preferred breeding habitats, population dynamics and 

behaviour of the vector provides evidence to aid decision making on vector control, 

even though the effect on disease may never be established locally. In addition, 

the methods discussed above may suit certain African communities more than 

others. For instance nomadic tribes tend to have many cattle but are less likely to 

invest in permanent house modification since they move and rebuild their houses 

relatively frequently. In the same vein, lake-side communities tend to be fishermen 

and may prefer to use larvivorous fish. In addition to this, communities judge 

mosquito control tools on how effective they can be in the short term (Ng'ang'a et 

al. 2008). Therefore, methods like environmental management that have more of a 

long term effect should be combined with methods that reduce mosquito biting in 

the short term.  

All of the above methods can be combined with most other mosquito control 

techniques (like ITNs, IRS etc), however, there are some methods that are 

incompatible. For instance larvivorous fish can be adversely affected by some 

chemical larvicides. Gambusia affinis is highly susceptible to a range of chemical 

insecticides and herbicides (Walton 2007). In Sri Lanka the insecticide fenthion is 

regularly sprayed for mosquito control. Even after the first application of fenthion 

the condition of O. niloticus fish had decreased by around 20% when compared to 
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pre-treatment levels; subsequent insecticide exposure further reduced the 

condition of the fish (Jayasundara and Pathiratne 2008). Similarly, the swimming 

speed of the rainbowfish Melanotaenia duboulayi was significantly reduced after 

exposure to the insecticides temephos and pirimiphos-methyl, but not after 

exposure to Bacillus thuringiensis var. israelensis (Bti) (Hurst et al. 2007). Fish are 

also not always compatible with natural predator conservation because they are 

likely to eat the aquatic invertebrates (el Safi et al. 1985, Louca et al. 2009). 

Natural predator conservation may also not be very compatible with environmental 

management because if the number of water bodies is decreased then necessarily 

this will impact the aquatic predator populations, especially if older and more stable 

habitats like swamps are targeted (Carlson et al. 2004). Neem has been shown to 

adversely affect many species of fish including G. affinis (El-Shazly and El-

Sharnoubi 2000, Awad 2003). Other plant-derived larvicides could also be 

incompatible with fish, chemical and microbial larviciding and/or natural predator 

conservation, however, more research needs to be carried out to examine this. 

Despite these restrictions, the tools discussed in this review have many benefits 

that are discussed individually in the sections above. An additional benefit is that 

most of the methods do not require insecticides and as such they could be of 

particular use in areas where insecticide resistance is rendering tools such as ITNs 

ineffective (N'Guessan et al. 2007). In addition, these methods could play an 

important role in areas where there are low levels of malaria transmission and 

where elimination is a distinct possibility (Beier et al. 2008).  

 

2.6 The role of communities in IVM 

For mosquito control to be sustainable it must be economically and ecologically 

feasible and interventions should be culturally acceptable (Ng'ang'a et al. 2008). 

Successful IVM programmes will require involvement from several sectors ranging 

from the ministerial level to the community level (van den Berg and Takken 2007, 
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Beier et al. 2008, Chanda et al. 2008) because the principle of IVM is that effective 

control will cease to be the preserve of the health sector and community 

participation will be required. Most malaria vectors are closely associated with 

human habitation and, as a consequence, many of the risk factors of malaria 

disease are located within people’s own sphere of influence. The health sector or 

programme implementers lack ready access to this peridomestic environment and 

this is why communities have an important role to play in the development of IVM 

strategies; they can assume responsibility and take control of their environment in 

order to reduce malaria risk factors. In addition, it is thought that community 

participation will allow more accurate and timely targeting of control interventions 

(van den Berg et al. 2007). Community participation is also important because their 

actions can lead to an increased likelihood of disease transmission (van den Berg 

and Takken 2007, Mutuku et al. 2009). Nevertheless, it is not always easy to 

motivate people into action for a number of perfectly valid reasons.  

In general, communities do not employ mosquito control methods for three 

reasons. Firstly, they don’t have the time or money available and need to be doing 

things that will give greater (usually economic) returns (Kibe et al. 2006). In other 

words, the people who are most at risk of malaria have competing interests for their 

time and money, and cannot always prioritise mosquito control (Rajagopalan and 

Panicker 1985, Ng'ang'a et al. 2008). A survey in Kenya found that 77% of people 

said they lacked the time to regularly drain mosquito breeding sites and 68% said 

they were unable to afford mosquito control tools (Ng'ang'a et al. 2008). In addition, 

people with little money generally only have access to the most basic malaria 

control tools; a survey in Ethiopia found that people with less money were 

significantly more likely to use plants as repellents (Karunamoorthi et al. 2009). 

Mosquito control is more likely to be sustainable if it is linked to socioeconomic 

growth (Rajagopalan and Panicker 1985, Kibe et al. 2006) and many of the 

methods discussed in this review have the potential to be farmed where 

appropriate and could become economically viable.  
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The second reason is a lack of adequate knowledge about what to do and how to 

do it (Kibe et al. 2006, Mukabana et al. 2006), although this varies from area to 

area. In some areas of Kenya and Tanzania, communities were trying to combat 

malaria themselves but they did not have access to the correct information 

(Mukabana et al. 2006). However, in another area of Kenya just 6.5% of people 

said they lacked the know-how to implement mosquito control tools (Ng'ang'a et al. 

2008). Many communities in Africa know that malaria is transmitted through 

mosquito bites (Kibe et al. 2006, Ng'ang'a et al. 2008, Imbahale et al. 2010, 

Oladepo et al. 2010), and 83% of respondents in a cross sectional survey were 

able to identify mosquito breeding habitats (Ng'ang'a et al. 2008). People also 

know that mosquitoes breed in man-made habitats, and they were aware of their 

own role in habitat creation (Mutuku et al. 2006a, Oladepo et al. 2010). However, 

whilst knowing where mosquito larvae breed, many people do not know what they 

look like (Mutuku et al. 2006a, Imbahale et al. 2010). Where community members 

have been taught the specifics of Anopheles mosquito ecology and biology, such 

as where to find them and what they look like, they have been very interested 

(Mukabana et al. 2006). Nevertheless, a recent survey in Tanzania carried out to 

assess the ability of trained community representatives to correctly identify 

mosquito breeding habitats found that they located just 97 of the 230 anopheline-

positive habitats (the rest were found by the assessor). Furthermore, the 

community representative correctly identified just 29 of these 97 habitats as being 

anopheline-positive (Chaki et al. 2009). Any successful IVM strategy will require 

community-targeted education if communities are to be directly involved in the 

evaluation and monitoring of the mosquito situation and in control tool deployment. 

Even basic training would allow identification of the more prolific mosquito breeding 

habitats and would in turn allow targeted mosquito control activities. Nevertheless, 

results from Tanzania indicate that even after training, surveys should be 

conducted to verify how efficiently community members can correctly identify 

mosquito habitats (Chaki et al. 2009). 

The third reason communities do not use mosquito control tools is a general lack of 
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incentive because communities feel that they need outside assistance (Mutuku et 

al. 2006a). In an area of Kenya, public health officers and the local administration 

had previously enforced measures of environmental management that the 

communities then carried out for fear of legal reprisal. It appears that in this area, 

the community is unwilling to participate in environmental management without 

legal enforcement (Ng'ang'a et al. 2008). Similarly, in another area of Kenya, 

communities felt that assistance from government or donors was a prerequisite for 

them to participate in environmental management (Mutuku et al. 2006a). Another 

study found that younger respondents were more likely to believe it is up to the 

community to do mosquito control, with older respondents feeling it was the 

government’s job (Imbahale et al. 2010). This study also compared rural and urban 

attitudes and found that those in the urban area were significantly more likely to 

feel that the government should take the lead in mosquito control (Imbahale et al. 

2010). In Malindi, a town in Kenya, community representatives feel that the 

Municipal Council is mandated to conduct vector control because they collect taxes 

(Kibe et al. 2006). In Nigeria, farmers felt that the government should enforce 

policies and deploy people to promote environmental sanitation (Oladepo et al. 

2010) and in Tanzania, community members wanted financial incentives before 

participating in environmental management (Castro et al. 2009). Incentives are not 

always the answer, as will be seen in Chapter 5. This lack of motivation and 

ownership is a problem when decentralising decision making for mosquito control 

because communities are used to being told what to do by authoritative figures and 

are used to control activities happening without their direct involvement.  

Despite these reasons, communities can see the benefit of these mosquito control 

tools. In Tanzania, communities wanted environmental management to be added 

to the national priority interventions as a component of IVM (Mukabana et al. 

2006). A Kenyan community widely advocated larviciding, although they also 

recognised the financial constraints involved (Mutuku et al. 2006a), and members 

of another Kenyan community regularly carry out vector control activities, although 

this contribution is decreasing since funding was withdrawn (Kibe et al. 2006). 
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Furthermore, 93% of community members were willing to participate in mosquito 

control in western Kenya (Imbahale et al. 2010). In addition, community-based 

mosquito control programmes have been successfully implemented in many 

African countries. In Dar es Salaam, Tanzania, a community-based larval control 

programme has been operating for a number of years (Fillinger et al. 2008, Chaki 

et al. 2009). In Cameroon, an IVM trial found that “the implementation, acceptability 

and ownership of the programme was undoubtedly enhanced by using community-

based vector team members rather than house-holders having to allow strangers to 

enter their houses” (Matthews et al. 2009). Finally, Zambia has successfully 

implemented a country-wide IVM programme that trained community members in 

specific mosquito control techniques. Community awareness was stimulated by 

enhanced advocacy, social mobilization and the availability of legislation and the 

programme has resulted in lower malaria incidences in all districts (Chanda et al. 

2008).  

Effective communication, education and training strategies are required to provide 

communities with the correct information to be able to accurately assess and act 

upon the threat of mosquito breeding in their peridomestic environment. Several 

strategies have been developed and used to increase people’s knowledge and 

motivation with the aim of changing their behaviour. Mass media reach a wide 

audience but rely on simple messages that do not easily change people’s 

behaviour. The strategy of Information, Education and Communication (IEC) uses 

a combination of informational, educational and motivational interventions to 

change people’s attitudes and behaviours but, despite having demonstrated an 

effect on knowledge and attitudes, the impact on behaviour has been less clear.  

Communication for Behavioural Impact (COMBI) is a campaign-like strategy that 

has demonstrated a more clear impact on human behaviours in relation to vector-

borne disease, including malaria (World Health Organisation 2004a). This strategy 

aims to achieve some specific behavioural changes using public relations, 

advertising, and interpersonal communication.  
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A step further from changing people’s behaviour is the strategy to empower people 

to take more control over their lives to contribute to improving their situation. It has 

been suggested that empowerment can only take place when two basic conditions 

are met (Bartlett 2008); the necessary means, or enabling factors, should be in 

place, and a process of analysis and decision making for subsequent action should 

be adopted. Hence, empowered people are able to purposely adapt their behaviour 

to prevailing circumstances. An example of a strategy of empowerment is the 

Farmer Field School. In many areas of the world, farmers attend these schools that 

teach them in an informal setting all about integrated pest management (IPM) and 

agricultural practices (van den Berg and Knols 2006). In Sri Lanka, IVM was 

integrated into the Farmer Field School curriculum which led to farmers making 

locally appropriate vector control decisions involving many different control 

methods (van den Berg et al. 2007). Farmers have a vested interest in mosquito 

control because not only do they create more mosquito breeding grounds by their 

activities (Chaki et al. 2009, Mutuku et al. 2009), but mosquito numbers and 

malaria incidence can peak at agriculturally important times which can reduce the 

available work force. Furthermore, in the rural areas of sub-Saharan Africa where 

the climate and geography are favourable for malaria transmission, most families 

are farmers (Ng'ang'a et al. 2008) and they have skills that lend themselves to use 

for mosquito control (such as water management) and some of the control 

techniques discussed above (fish and plants) could be cultivated on a small-scale 

in the areas required. 

The methods discussed in this review further lend themselves to community 

deployment because of their relative ease of access. For instance, the methods 

with a biological component (zooprophylaxis, fish, and plants) are already in situ in 

many areas. Cattle are kept by many rural African communities as forms of 

transport, providers of milk and as a measure of their wealth. Fish farming is 

widespread (FAO Inland Water Resources and Aquaculture Service 2003, 

WorldFish Center 2005) and many of the plants identified as larvicides or repellents 

can easily be found. The selection of these methods and the way they are used 
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needs to be adapted by people to their local situation according to certain 

parameters (Table 2.1) as opposed to ITNs which are applicable (almost) 

everywhere. Communities need to be educated, empowered and trained so that 

they realise that many mosquito control tools can be found in their own 

environment, and can be used for mosquito control relatively easily. 

 

2.7 Conclusions 

This review highlights often overlooked methods that could be used in an IVM 

setting and/or by communities. IVM programmes need to be sustainable, 

economically viable and community focussed and the control methods outlined in 

this review could help IVM programmes fulfil these requirements. Due to their 

relative ease of use and, in some parts, biological nature, the above mentioned 

techniques could be implemented directly by communities to help themselves to 

control mosquitoes and reduce disease transmission. To our mind, the best 

scenario is one in which these mosquito control tools can be produced by local 

communities in the setting where they are needed, negating the burden of poor 

infrastructure. This would mean that not only will there be sustainable vector 

control, but also a source of income to those people in the resource-poor areas. 

Hopefully, this will in turn allow them to afford other control tools such as ITNs and 

anti-malarial drugs. 

Lots of research funding is addressing the problem of malaria with high-tech 

solutions. However, solutions such as vaccines and genetically modified/sterile 

mosquitoes are unlikely to become operational within the next few years (Ballou 

2009, Catteruccia et al. 2009, Greenwood and Targett 2009, Townson 2009). 

Whilst these high-tech solutions are badly needed, methods such as those 

discussed above are already available. These methods have proven to be effective 

in specific settings, and we have specified parameters to assist in decision making 

as to whether a method is likely to be effective in a particular setting. For all of the 
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methods discussed here, more research is urgently needed on the parameters that 

determine the effectiveness in the field. In the spirit of IVM and utilising all available 

mosquito control tools that are deemed locally appropriate, many of the above 

methods could be incorporated into IVM programmes. While these methods may 

not be as effective as the current insecticide-based tools in use (ITNs, IRS), and 

should not compete with ITNs and IRS for funding, with adequate education and 

awareness creation stakeholders in malaria control may decide to complement the 

more effective mosquito control tools with the methods discussed in this review. 
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3.1 Abstract    

Azadirachta indica A. Juss (the neem tree) is a source of limonoid insect growth 

regulators and grows well in many places in sub-Saharan Africa. We explored the 

potential of using neem wood and bark chippings in malaria vector control by 

evaluating their aqueous extracts as a larvicide and growth disruptor of Anopheles 

gambiae s.s. (Diptera: Culicidae) under laboratory conditions. Immature stages of 

the mosquito were tested using WHO guidelines. Fifty percent inhibition of adult 

emergence (IE50) of all larval instars was obtained with less than 0.4 g of neem 

chippings in one litre of distilled water. For pupae, significant mortality occurred at 5 

g/l. Inhibition of pupation was seen with some larvae staying as LIVs for nine days 

before dying. In addition to growth retardation, reduced reaction by larvae to visual 

and mechanical stimuli observed at higher neem concentrations may make them 

more susceptible to natural predators. There were no significant differences in the 

sex ratio of emerged adults or wing length of females when compared to the 

controls. High Performance Liquid Chromatography of aqueous extracts revealed a 

series of constituents of varying polarity, including the limonoids nimbin and 

salannin which were quantified. Azadirachtin was not detected and the observed 

activities are attributed to other constituents of the chippings. Such larvicides can 

be particularly effective where larval habitats are relatively large and readily 

identifiable. Aqueous extracts of neem wood chippings can be produced locally 

and their use has the potential to be a low-tech component of integrated malaria 

vector control schemes in sub-Saharan Africa. 

 

3.2 Introduction 

Due, in part, to rising drug resistance of the parasite, vector control is considered 

the most feasible way of controlling malaria in Africa today (Trape et al. 2002). 

Current vector control methods target the adult mosquitoes aimed at reducing the 
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vectorial capacity in an area (MacDonald 1957, Garrett-Jones 1964). However, the 

effectiveness of these control methods can be reduced by behavioural changes of 

the adult mosquitoes (Pates and Curtis 2005). Larval control is an often overlooked 

control method that can be extremely useful either by itself or in an integrated 

vector management (IVM) programme (World Health Organisation 2004b) 

(Chapter 2).  

Killeen et al. (2002) suggest that the limitations of larval control in sub-Saharan 

Africa are ‘practical rather than functional’, and that due to the limited mobility of 

immature mosquito stages they can be effectively controlled. Several studies have 

shown that relatively large water bodies harbour mosquito larvae in western Kenya 

(Lockhart et al. 1969, Fillinger et al. 2004, Mutuku et al. 2006b, Howard et al. 2007, 

Howard and Omlin 2008) (Chapters 5 & 6) and, presumably, also elsewhere in 

Africa where rural populations are increasingly putting more pressure on the land. 

Although these mostly man-made habitats have been found to be more productive 

in terms of pupal production than the “traditional” Anopheles gambiae Giles sensu 

stricto (Diptera: Culicidae) habitats (such as hoof prints and tyre ruts) (Mutuku et al. 

2006b), larval control is widely considered to be too labour intensive in sub-

Saharan Africa. However, new tools exist to easily identify such habitats 

(Mushinzimana et al. 2006) that can facilitate targeted larval control.   

Concerns about chemical insecticides and their persistence in the environment, as 

well as development of physiological resistance in the insects, have stimulated the 

search for eco-friendly larvicides. This is in line with section 2.4 of the 1997 World 

Health Assembly resolution 50.13. Azadirachta indica A. Juss (the neem tree) has 

well known insecticidal (Raghunatha Rao et al. 1988, Wandscheer et al. 2004) and 

insect growth regulatory (IGR) constituents (Sukumar et al. 1991, Batra et al. 1998, 

Copping and Menn 2000) and has been used for centuries in India (Schmutterer 

1995).  

Despite the many investigations into the mosquitocidal properties of neem leaves 

and fruit (Rao et al. 1992, Nagpal et al. 1995, Batra et al. 1998, Mulla and Su 1999, 
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Awad and Shimaila 2003, Siddiqui et al. 2003, Wandscheer et al. 2004), little work 

has been done using the wood/bark, with only one brief report on its effect on An. 

gambiae larvae (Ziba 1995). Neem grows well in arid tropical and subtropical areas 

but does not do well at altitudes >1,000 m (Schmutterer 1995).  

We are searching for an effective, long lasting and natural insecticide that can be 

cheaply implemented in rural African settings. This paper reports the results of a 

crude aqueous extract of A. indica wood and bark chippings as a larvicide and 

growth regulator of An. gambiae s.s. Kisumu strain mosquitoes under a controlled 

laboratory setting.  

 

3.3 Materials and Methods  

3.3.1 Mosquitoes  

The Kisumu strain of An. gambiae s.s. was used. This strain has been maintained 

as a colony at the Kenya Medical Research Institute (KEMRI), Kisumu for 14 years. 

All four larval instars (hereafter called LI, LII, LIII, and LIV as appropriate) plus 

pupae were used in the experiments because phytochemicals can affect different 

life stages to varying degrees (Sukumar et al. 1991). For the LIV used, specifically 

early stage LIV larvae were used and the pupae were less than 24 hours old when 

tested.  

 

3.3.2 Preparation of aqueous insecticidal extracts  

Wood and bark from neem trees collected from Mbita Point in western Kenya were 

fed into a basic wood chipping machine to produce wood chippings (roughly 1 x 3 x 

0.2 cm; see photo on page 87 (not to scale)) which were left to dry in the shade. 

These chippings were soaked in distilled water for five days and then removed by 

filtration, leaving the aqueous extract into which the neem phytochemicals had 
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leached. The different concentrations were made by serial dilution using the filtrate. 

New neem extracts were made for each replicate. Distilled water was used for the 

controls. Bacillus thuringiensis var. israelensis (Bti) from VectoBac® DT tablets 

(Valent, Libertyville, IL) at a concentration of 520 International Toxic Units (ITU) per 

500 ml distilled water was used for comparison in the first set of experiments.  

 

3.3.3 Experiment one  

Five hundred ml of the treated water was placed in 1 litre white plastic bowls (water 

depth of 2.5 cm). Twenty-five mosquitoes of the same instar for the five immature 

stages (LI-LIV plus pupae) were exposed to each of the water types (control, 

different neem concentrations and Bti) in six replicates. The neem concentrations 

used corresponded to 100, 10, 1, and 0.1 grams neem wood per litre water. All 

bowls were covered with netting. The larvae were fed on ‘AniCare’ fish food every 

24 hours. The mosquitoes were checked at 6, 12, 24, 48 hours, and thereafter 

every 24 hours until all the mosquitoes had either died or emerged. Emerged 

adults were sexed and removed. The larvae and pupae were checked by 

disturbing the surface of the water, any not returning to the surface were 

considered dead and removed (World Health Organisation 1981). The dead 

mosquitoes exposed to neem were then examined under a dissecting microscope 

to identify any morphological abnormalities.  

Probit analysis of the experiment one data was used to work out neem 

concentration ranges for each larval instar that would allow accurate calculation of 

concentrations that gave 50% and 90% inhibition of adult emergence (IE50 and IE90 

respectively) (World Health Organisation 2005). These neem concentrations were 

used in experiment two (described in section 3.3.4 below). The concentrations 

ranged from 0.0125 g/l to 0.8 g/l for LI, LII and LIII. For LIV, the 0.2 and 0.8 g/l 

concentrations were substituted by 0.4 g/l and 1.6 g/l respectively. For pupae, the 

range was 5 to 180 g/l. 
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3.3.4 Experiment two  

WHO guidelines for testing insect growth regulators were followed with slight 

modifications (World Health Organisation 2005). Specifically, this entailed exposing 

immature mosquitoes to a range of concentrations of aqueous neem extracts and 

control water in cups. The modifications included checking the cups every 24 hours 

and 500 ml cups (water depth 5.5 cm) were used to allow sufficient room for any 

emerging adults. Also, more food was given to prevent cannibalism (Koenraadt and 

Takken 2003). As in experiment one, 25 larvae of each immature stage were 

exposed to each water type and the cups were covered with netting. Each 

treatment was replicated five times. We found very high control mortality when 

pupae were exposed to distilled water. We therefore ran five replicates with the 

purified water ‘Dasani TM’. We used the purified water for both the control water and 

we soaked neem in it, so that neem remained the only variable in the experiment.  

During all experiments the mosquitoes were kept under a natural 12L: 12D light-

dark cycle and the mean (±SE) temperature was 28°C (± 0.12) with mean (±SE) 

daily minimum and maximum temperatures of 26.1°C (± 0.17) and 31.5°C (± 0.14), 

respectively. One wing each from a random selection of emerged females was 

measured from the tip (excluding fringe scales) to the axillary incision in order to 

see if the neem affected adult mosquito size. 

 

3.3.5 High Performance Liquid Chromatography (HPLC)   

HPLC analysis was carried out to demonstrate the solubilisation of the compounds, 

to quantify certain constituents against known standards and to see if the amount 

of these (both known and unknown) varied with concentration of the aqueous 

neem extract. Extracts (five replicate samples each) representing four 

concentrations of the aqueous neem used in the bioassays were analyzed. They 

were made during the same serial dilutions but were not used in the bioassays. 

These samples were filtered, lyophilized (freeze dried) and dissolved in 1 ml 
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methanol. Fifty micro litres of this was then analyzed by HPLC. Analytical HPLC 

was performed on a Beckman System Gold Programmable Model 126 (Beckman 

Coulter International, Griesheim, Germany), using a Beckman reverse phase C18 

column (5 µm x 4.6 mm x 25 cm) and eluted isocratically with acetonitrile and water 

(40:60). The flow rate was 1 ml/min and eluting constituents were monitored by a 

diode array detector module 168 at 214 nm.  

To isolate standards (azadirachtin (AZA), nimbin, and salannin) with which to 

identify and quantify some of the peaks of the HPLC profiles, 5 g of neem seed 

cake powder (NCP) was suspended in 100 ml methanol at room temperature and 

stirred overnight. It was then filtered and evaporated to dryness in a rotary 

evaporator at 40oC at reduced pressure (~337 mmHg). The residue was 

suspended in 100 ml water and extracted twice with 100 ml chloroform; the 

aqueous portions were discarded. The chloroform extracts were pooled and 

concentrated to dryness, again in a rotary evaporator at 40oC under reduced 

pressure. The crude chloroform residue was then fractionated in a silica gel column 

using a hexane/ethyl acetate gradient. Column chromatography was performed on 

silica gel 60 (0.040-0.065 mm, 230-440 Mesh ASTM) and the fractions monitored 

by thin layer chromatography on a pre-coated silica gel 60 F254 plate (0.2 mm 

thickness) (Merck, Dermstadt, Germany). The ethyl acetate fractions contained the 

limonoids (including AZA, nimbin and salannin). Mass Spectrometry confirmed this. 

 

3.3.6 Statistical analysis  

3.3.6.1 Experiment one  

As explained in section 3.3.3, the bioassay data from experiment one was 

analysed using probit analysis in SAS 9.1 (SAS Institute Inc. 2004) to enable the 

concentrations to be used in experiment two to be determined (data not shown). In 

addition, the development time of the mosquitoes was measured as the mean 

emergence time for the adults for each concentration. After determining equal or 



Chapter 3 

96 

unequal variance, two-sample t-tests were used to analyze the difference in 

development times between the control and neem treatments. For pupae, single 

factor ANOVA was used. Where a significant effect was seen, the Tukey multiple 

comparison test was carried out. Pupal mortality was analyzed using chi-square 

tests. Where the abnormalities were found in both the neem-exposed and control 

mosquitoes, they were analyzed using the Fishers exact test due to the low 

frequency of the abnormalities in the controls.  

 

3.3.6.2 Experiment two  

Due to the fact that the experiment two bioassay data didn’t fit either the probit or 

logit models, we used the Weibull model of percentage mortality against the 

aqueous neem extract concentration. To avoid overflow of logarithm operation, we 

used Weibull transformation of Y=LnLn (100.1/ (100.1-P)) on percentage mortality, 

P, and Log-transformation of X=Ln (C+0.0001) on aqueous neem extract 

concentration, C. The transformation of P and C yielded a linear relationship 

Y=a+bX and we subjected this to linear regression analysis (Seber and Wild 1989, 

Collett 2003). The IE50 and IE90 were computed via inverse prediction of linear 

regression and the 95% confidence interval (95% CI) was obtained verses inverse 

transformation. All data transformation and analysis was done using SPSS 14.0 

(SPSS Inc 2005). In addition, the sex ratio of emerged mosquitoes was analyzed 

using the chi-square test. Pupal mortality was also analyzed using chi-square tests. 

Single factor ANOVA analysis was used to investigate the effect of the neem 

concentrations on the size of the emerged adult females. Statistical analyses were 

carried out at the 5% significance level. 
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3.4 Results  

3.4.1 Experiment one 

3.4.1.1 Development time  

Apart from one LIV in the 1 g/l concentration, only the 0.1 g/l neem allowed 

emergence of adults when larvae were exposed. When compared to the control 

development time for each larval instar, there were significant increases in 

development time for LI, LII and LIII instars exposed to 0.1 g/l (Table 3.1). For 

pupae there was a significant effect of the treatment on the development time of 

the mosquitoes (F=3.19, df=5,55, P<0.05). Tukey multiple comparison analysis 

showed that the development time of Bti-exposed mosquitoes was significantly 

longer than for those exposed to 100 g/l neem (attributable to the fast mortality of 

pupae at this neem concentration with few adults emerging), but not significantly 

different from any other treatments (data not shown).  

 

Table 3.1. Mean ±SE development times (in hours) of An. gambiae s.s. larval 
instars successfully emerging as adults after being exposed to 0.1 g/l neem extract 
or the control 

 

Instar Con. (N) Neem (N)   Control    Neem  t-stat df p 

 

LI     59     23     171.7 ± 2.3 218.1 ± 4.0 10.44 80   <0.0001 

LII     69     34     146.1 ± 2.0 175.8 ± 2.4 9.05 101 <0.0001 

LIII     67     28     120.4 ± 2.1 146.6 ± 3.1 6.93 93 <0.0001 

LIV     85     64       97.4 ± 1.6   94.5 ± 2.1 1.11 147  =0.27 

Con. = Control 
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3.4.1.2 Inhibition of pupation  

At the neem concentration of 1 g/l larvae exposed as LI produced no pupae. For LII 

and LIII, two and fourteen dead pupae respectively were found; no live pupae were 

seen at any checkpoints. For LIV some live pupae were found, but only 0.8% 

(1/124) of the LIV exposed to 1 g/l emerged successfully as an adult. At 10 g/l 

larvae exposed as LI, LII, LIII, or LIV produced no live or dead pupae.   

 

3.4.1.3 Pupal mortality 

Significant mortality was seen at 10 g/l (χ2=45.93, df=1, p<0.0001) but not at 1 g/l 

(χ2=0.22, df=1, p=0.64) when compared to the control.  

 

3.4.1.4 Abnormalities seen 

A number of abnormalities were seen in the dead mosquitoes, albeit at low 

frequencies. Of these, three types occurred in only the neem-exposed mosquitoes. 

The most frequently occurring of these, seen in Figure 3.1, was only found in 

pupae (21 of the 500 exposed) and was similar to that reported by Vasuki and 

Rajavel (1992). These pupae all had abnormally large amounts of fluid in their 

abdomens. Also their whole bodies were outside of the pupal case. However, it did 

not look like they were trying to emerge as the head, thorax and abdomen were 

tucked together in a straight line, with the legs close in to the abdomen (Figure 

3.1). The second most frequent abnormality was a dark band across the thorax or 

abdomen occurring in 49 of the 1,999 neem-exposed larvae. Finally, we found 

tracheal tube coloration in seven dead larvae. There were three other abnormalities 

that also affected some control mosquitoes. The most frequently occurring was 

what looked like rectal prolapse as described by Raghunatha Rao et al. (1988). 

Significantly more neem-exposed larvae (25/1,999) had this abnormality when 

compared to the controls (1/497) (p<0.05). The other two abnormalities were black 

anal papillae (1/497 control; 18/1,999 neem-exposed; p=0.33) and exuviate still 
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attached (3/497 controls; 17/1,999 neem-exposed; p=0.78), the latter being 

previously described as a neem-induced abnormality (Raghunatha Rao et al. 

1988).  

 

Figure 3.1. Neem-induced abnormality causing death in pupae; the scale bar 
represents 1 mm 

 

3.4.2 Experiment two 

3.4.2.1 Bioassay data analysis  

The linear regressions on the transformed data yielded very significant results, 

implying that the data fitted the Weibull model well. The slope (on the Log-scale) of 

the regression equation was greatest for LI larvae and least for pupae. Similarly, 

the IE50 and IE90 values were lower for LI and highest for pupae (Table 3.2).  
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Table 3.2. IE50, IE90 results (g/l) and other related parameters from the analyses (using the Weibull model) of the 
mortality obtained from exposing different stages of An. gambiae s.s. to a range of neem concentrations in aqueous 
extracts from wood and bark chippings 

 

 

Life  N      Adjusted   df    F    p      Slope (95% CI) IE50 (95% CI)   IE90 (95% CI) 

stage  R2 

 

LI 625 0.66 1, 18 37.34 <0.0001      1.11 (0.73, 1.49) 0.07  (0.01, 0.47)   0.12  (0.02, 0.80) 

LII 625 0.81 1, 23 107.67 <0.0001      0.81 (0.65, 0.98) 0.11  (0.02, 0.58)   0.15  (0.03, 0.79) 

LIII 625 0.87 1, 23 158.54 <0.0001      0.94 (0.79, 1.10) 0.18  (0.05, 0.68)   0.14  (0.04, 0.56) 

LIV 625 0.78 1, 23 94.08 <0.0001      0.80 (0.63, 0.97) 0.40  (0.05, 3.27)  0.63  (0.07, 5.35) 

Pupae 625 0.89 1, 23 189.95 <0.0001      0.27 (0.23, 0.31)   58.16 (3.97, 850.98)  61.57 (3.8,989.8) 
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3.4.2.2 Emerged sex ratio  

There were no significant differences between the sex ratios of emerged adults of 

the neem-exposed and control mosquitoes for any of the larval instars tested (data 

not shown). For pupae there was a small significant difference (χ2=11.5, df=4, 

p<0.05) with the controls producing more females.  

 

3.4.2.3 Elongation of larval development time 

For all larval instars at a range of neem concentrations the LIV instar stage was 

prolonged for an unusually long time in some individuals (Table 3.3). The affected 

larvae were unable to moult into pupae and died as LIVs. 

 

3.4.2.4 Inhibition of pupation 

Just 0.8% (1/125) of the LI exposed to 0.2 g/l led to successful adult emergence. 

Pupation was completely prevented at 0.8 g/l for LI. For LII larvae some dead 

pupae were found at 0.8 g/l. Only one LIII larva produced a live pupa at 0.8 g/l 

which died the next day. At 1.6 g/l no live pupae were produced from LIV larvae, 

however, 39% (49/125) of the larvae exposed as LIVs died as pupae at this 

concentration. 

 

3.4.2.5 Pupal mortality  

The control mortality when using distilled water was 42% (106/250 died). The five 

replicates with the purified water ‘Dasani ™’ produced only 8/125 (6%) control 

mortality. When using the ‘Dasani TM’ water, significant pupal mortality was seen at 

5 g/l aqueous neem extract (χ2=53.6, df=1, p<0.0001), the lowest concentration 

tested. 
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Table 3.3. Number (N) and larval stage where developmental arrest and 
subsequent mortality took place at different concentrations of neem extracts 

 

Larval  Neem     Arrested and N Min. time in        Day of death 
stage     (g/l)         died as   that instar (days)  

 

LI 0.2  LIV  4 6 – 9   14 – 15 

LII 0.8  LIII  1 6   10  

LII 0.8  LIV  1 6   11  

LIII 0.2  LIV  1 7   9  

LIII 0.8  LIV  5 7 – 9   9 – 11  

LIII 1  LIV  1 8   12  

LIII 10  LIV  1 7   9  

LIV 1  LIV  2 8   8 

LIV 1.6  LIV  3 9   9 

 
Table 3.4. HPLC results showing mean ± SE quantities (in mg/g) of nimbin and 
salannin in aqueous neem extracts of different concentrations 

 

Neem (g/l)  N  Nimbin (mg/g)  Salannin (mg/g) 

 

0.0125   5   a   a  

0.2   5   a   a  

5   5  0.0095 ± 0.006  0.0071 ± 0.003  

180   5  0.045±0.02  0.014±0.004 

a = the amounts present were too small for quantification 
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3.4.2.6 Wing lengths 

Despite the larvae in the higher neem concentrations being visually smaller in size 

than those in the controls, there was no significant reflection of this effect on the 

wing length (and therefore their body size (Briegel 1990)) of the emerged adult 

females for any of the instars tested (n = 276; data not shown).  

 

3.4.2.7 HPLC 

Nimbin and salannin were found in our aqueous extracts. The peak that had the 

same retention time value as AZA was isolated by repeated semi-preparative 

HPLC runs. The pooled sample was then examined by Mass Spectroscopy and 

compared with AZA isolated from NCP (solid probe spectrum). However, it did not 

correspond to that of AZA isolated from NCP. Thus, AZA was not present in our 

samples in significant amounts. In addition to the less polar nimbin and salannin, 

HPLC profiles of the aqueous extracts showed a series of more polar compounds 

had dissolved. For the highest concentration tested (180 g/l) there were up to a 

minimum of 20 distinct peaks (Figure 3.2). The profiles for each of the five samples 

at the different concentrations look similar indicating that for each batch of water 

made, a similar group of neem wood constituents had leached out into the water, 

and for each concentration, in comparable quantities. By comparison with authentic 

samples of nimbin and salannin, we were able to quantify the level of these 

compounds (in mg of compound per gram of sample) in our profiles obtained from 

higher concentrations (Table 3.4). However, for the two lowest concentrations no 

distinct peaks corresponding to these compounds could be discerned at the 

concentrations analyzed and therefore no quantification was possible. 

 

3.5 Discussion 

Our results show that the IE90 for LI, LII and LIII An. gambiae s.s. is around 0.15 

grams of neem wood per litre water; for LIV it is 0.63 g/l. The higher susceptibility 
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Figure 3.2. High Performance Liquid Chromatography (HPLC) profile of 180 g/l 
crude aqueous neem wood extract 

 

of the younger larval instars is in line with previous work (Mulla and Su 1999, 

Nathan et al. 2005). However, the exposure time for the younger instars was 

longer. Also, the overlapping confidence intervals in our data show that there is no 

significant difference between the larval instars exposed to neem with respect to 

their susceptibility to the neem extract. The IE90 for pupae, on the other hand, was 

much higher at 61 g/l and significant mortality was seen at 5 g/l. Despite this, even 

for 180 g/l the highest mortality seen was 88%; there was always some 

emergence. Aqueous extracts of neem wood chippings at relatively low doses 

could therefore be used to control larval populations of An. gambiae s.s. but at the 

doses used for this, we would not expect pupae to be significantly affected.  
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We observed, but did not specifically study or quantify, several behavioural and 

physiological effects of the neem that could make the larvae more susceptible to 

natural predators in the wild. Firstly, the larvae exposed to 1 g/l neem and above 

were less responsive to visual and mechanical stimuli. Secondly, the neem-

exposed larvae seemed to move sluggishly as previously reported (Nathan et al. 

2005) and were more likely to spend time at the surface of the water and in the 

middle of the bowls rather than trying to hide at the bottom or at the sides. Finally, 

the increase in development time would mean they would be exposed to predators 

for longer periods, thus increasing their chances of being predated (Tuno et al. 

2005).  

Limonoids from neem seed kernels have well known antifeedant effects against 

different insects (Schmutterer 1995), however, this mode of action is difficult to 

assess in aquatic organisms. We noticed that larvae in the higher neem doses 

were smaller than the controls, indicating that they were consuming fewer 

nutrients; we did not measure this. However, we found no significant effect of the 

neem on the size of emerged females. Thus, if the phytochemical blend of neem 

wood chippings was working as an antifeedant then the effect was slight. Both the 

elongation of the larval stage and inhibition of pupation observed in this study have 

been reported previously (Mulla and Su 1999, Ndung'u et al. 2004, Okumu et al. 

2007). These effects could have been because the mosquitoes had not attained 

the critical mass needed for pupation (Clements 1992). Alternatively, disruption of 

their normal development by the growth-disrupting effects of neem limonoids may 

be the underlying factor. 

HPLC analyses of our aqueous extracts showed the presence of constituents of 

different polarity including the relatively less polar nimbin and salannin. 

Interestingly, nimbin does not usually dissolve significantly in water but was present 

in prominent amounts in our samples. The presence of other constituents may 

promote the solubility of the less polar constituents in the aqueous medium to 

provide a blend of different compounds. A major benefit of crude raw materials 
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rather than extracts with limited profiles of constituents is the possibility of 

synergistic or additive effects between some of these compounds (Isman et al. 

1996, Bekele and Hassanali 2001, Ndung'u et al. 2004). Crude extracts of whole 

plant tissue are also easier to use in resource-poor rural settings. 

There are many active compounds in neem (Schmutterer 1995, Mulla and Su 

1999) with up to 100 different limonoids (Isman et al. 1996). Therefore, since we 

did not detect AZA in our samples the inhibition of larval growth and 

metamorphosis observed must be due to other compounds. Both salannin and 

nimbin have been found to inhibit ecdysone 20-monooxygenase (an enzyme 

important for moulting) (Mitchell et al. 1997), albeit with much less effect than AZA. 

In addition, the absence of AZA may explain why our IE50s were slightly higher than 

those found in other studies (Mulla and Su 1999, Nathan et al. 2005, Okumu et al. 

2007).  

Several other studies have shown the effectiveness of neem-based pesticides 

against mosquito larvae. However, the only previous work with neem wood/bark 

and An. gambiae was carried out by Ziba (1995) on LIII and LIV larvae. Ziba tested 

the leaves, bark and seeds and assumed by association that AZA was the primary 

active agent and present in all the parts of the tree. No analyses of the extracts 

were carried out to demonstrate if AZA was present. Ziba’s results showed that the 

bark and leaves caused 87% mortality of An. gambiae larvae after 24 hours 

exposure to 1:10 dilutions of 100% w/v (Ziba 1995). For LIII we also found 87% 

mortality after 24 hours for 100 g/l; for LIV it was 59%.  

A frequent concern is how neem products will affect humans if placed into their 

water sources. A review on the toxicological effects of neem-based products on 

mammals, including humans, showed that the aqueous extracts were less toxic 

than other neem extracts, and they quoted an acceptable daily intake of aqueous 

neem leaf extract as 0.3 mg/kg body weight/day. These authors concluded that “if 

applied with care the use of … aqueous neem-based products should not be 

discouraged” (Boeke et al. 2004b). A separate study also concluded that “no 
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ecological hazard is likely to result” from the use of the neem-based pesticides 

(Goktepe et al. 2004).  

What sets this work apart from other work involving phytochemicals against 

mosquito larvae is that although other more sophisticated extracts may produce 

encouraging results (Nathan et al. 2005), they are impractical to produce and 

therefore be used by the resource-poor people in rural Africa. The aqueous extract 

is more applicable to rural situations where malaria causes the greatest burden. 

The neem tree is already well known and grows all over Africa, excluded only by 

altitudes of over 1,000 m (Schmutterer 1995). At these high altitudes, other 

Meliaceae species such as the shrub Turraea mombassana Hiern ex. C.DC. could 

be used (Ndung'u et al. 2004). In addition, neem would be much more affordable 

than other larvicides (e.g. Bti which is far too expensive), especially if grown in the 

country needed rather than imported, therefore also providing local income. 

Other benefits of neem are that it is biodegradable, relatively safe to the 

environment and easy to apply. The blend of active and synergistic compounds 

found in neem means that it is less likely that the mosquitoes will build up 

physiological resistance (Isman et al. 1996). Awad and Shimaila (2003) used the 

selective pressure of neem oil for five generations and found no change in the 

susceptibility of anopheline mosquitoes. They also found no resistance in the field 

after using it biweekly for three months. Therefore, neem chippings could be used 

as an additional component of a rotational IVM strategy to reduce resistance in the 

target population. Also, neem used as a larvicide has been shown to reduce adult 

mosquito longevity (Nathan et al. 2005, Okumu et al. 2007). 

The focus of the present study on need wood chippings rather than leaves may 

raise questions. This is because the leaves are easier to harvest, especially at an 

earlier stage of the tree development, and they are more able to regenerate. On 

the other hand, against An. gambiae the leaves and bark have been found to be 

equally effective (Ziba 1995). Also, compared to the wood/bark there has already 

been extensive work done on the leaves. We used the wood of the tree as neem 
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trees react well to pruning, re-growing quickly (Office of International Affairs 1992) 

making wood chippings continuously available for this purpose. We also expect 

that it would take more time for the active ingredients to leach from the wood (when 

compared to the leaves), thus providing a controlled-release mechanism for 

delivering active ingredients into treated anopheline pools and prolonging the effect 

of the insecticide. 

In summation, in the present study we evaluated aqueous extracts of the wood and 

bark of neem trees and showed that it has the potential to be a good source of 

control agents for An. gambiae s.s. larvae. Aqueous neem extract also has the 

potential to be a low-tech control method that could be produced in Africa and 

integrated into vector control schemes. Neem is locally available in Africa, it is 

biodegradable and its application is relatively simple. 
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4.1 Abstract 

Mosquito larval control is being given more focus due to adult insecticide 

resistance and the necessity to use several control techniques together in 

integrated vector management (IVM) programmes. Botanical products are thought 

to be able to provide effective, sustainable and cheap mosquito larval control tools. 

However, bio-larvicides like Azadirachta indica (neem) have been found to repel 

adult mosquitoes from laying their eggs in the treated larval habitats. A larval 

control tool cannot be sustainable and effective at controlling successive 

generations if it prevents female mosquitoes from exposing their progeny to the 

control tool, especially when non-treated oviposition sites are available. In the 

laboratory we examined the response of Anopheles gambiae s.s. mosquitoes 

towards varying doses of crude aqueous neem extracts. This simple extract was 

used because it is more likely to provide sustainable control in the field than refined 

extracts requiring complex equipment and infrastructure. We used non-choice 

oviposition tests to measure the proportion of mosquitoes laying on the first or 

second night, or not laying at all, when compared to the control. For each individual 

mosquito, the number of eggs laid and/or retained in the ovary was counted to 

determine the relationship between wing length and egg production. The results 

show that larger females produced larger egg batches. We also found that at a 

dose of 0.1 gram of neem wood in 1 litre of water, a concentration we have 

previously found to be effective at controlling mosquito larvae, significantly more 

mosquitoes laid eggs when compared to the control. Previous work has also found 

that low doses of mosquito repellents can actually attract mosquitoes. At the higher 

doses no significant repellency was found. The finding that raw neem does not 

repel mosquitoes from laying their eggs when used in a simple application method 

is of interest because the premise of IVM programmes is that communities will be 

more involved in mosquito control. As such, simple application methods of raw 

botanical products that require almost no infrastructure are likely to be given more 

prominence. At all doses tested, our results indicate that the mosquitoes will 
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expose successive generations to the control tool, making the use of simple 

aqueous neem extracts effective and potentially sustainable. Field trials should be 

carried out to monitor whether the behavioural response of wild mosquitoes will be 

similar. 

 

4.2 Introduction 

Malaria is arguably the most important tropical parasitic disease in the world. 

Transmission is centred on the tropics and globally it is estimated that half of the 

world’s population is at risk (Hay et al. 2004, World Health Organisation 2009). 

Almost one million people were estimated to have died from malaria in 2008, and 

there were over 240 million cases (World Health Organisation 2009). Human 

malaria is transmitted by female Anopheles spp. (Diptera: Culicidae) mosquitoes 

when they take a blood meal.  

The process of taking a blood meal, egg maturation and oviposition (egg laying) in 

mosquitoes is called the gonotrophic cycle (GC); females can have multiple GCs in 

their lifetime. Once eggs are mature, Anopheles gambiae Giles mosquitoes have a 

peak of flight activity at dusk, thought to be associated with oviposition-site 

selection (Jones and Gubbins 1978); oviposition itself occurs at night (McCrae 

1983) over a two-to-four hour period (Fritz et al. 2008). In the field, An. gambiae 

are exposed to various different biotic and abiotic factors in natural (Gimnig et al. 

2001, Minakawa et al. 2004) and man-made habitats (Mutuku et al. 2006b, Howard 

and Omlin 2008) (Chapter 5). Ovipositing mosquitoes can discriminate between 

these different biotic and abiotic factors using visual, semiochemical and 

physicochemical cues (Takken and Knols 1999). Mosquito larvae (McCrae 1984, 

Munga et al. 2006), competitors (Munga et al. 2006), predators (Angelon and 

Petranka 2002, Blaustein et al. 2005), botanical extracts (Dhar et al. 1996, Elimam 

et al. 2009) and some types of bacteria (Huang et al. 2006) can repel mosquitoes 

from ovipositing, whilst other types of bacteria (Lindh et al. 2008), fungi 
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(Sivagnaname et al. 2001) and low levels of conspecific larvae (Sumba et al. 2008) 

can attract ovipositing mosquitoes.  

Due to widespread insecticide resistance in adult mosquitoes (Hemingway and 

Ranson 2000), attention has been refocused towards the pre-insecticide era 

control tools including larval control and environmental management (Killeen et al. 

2002, World Health Organisation 2009). These methods are getting more focus 

because the World Health Organisation recommends that malaria be tackled using 

integrated vector management (IVM) which uses all available control techniques 

that are locally appropriate and sustainable (World Health Organisation 2004b). 

Non-chemical larval control can either use natural predators (Ghosh and Dash 

2007, Howard et al. 2007) (Chapter 6), entomopathogenic fungi (Bukhari et al. 

2010) or botanical larvicides (Shaalan et al. 2005). However, for whichever method 

is to be used, it is important to determine whether mosquitoes will continue to 

oviposit in treated larval habitats. This is because if a treatment repels mosquitoes 

from ovipositing then it will not be able to control successive generations of 

mosquitoes; if a treatment does not repel mosquitoes then the females will still 

expose their progeny to the larval control tool. 

One botanical larvicide that has received much attention recently is derived from 

Azadirachta indica A. Juss (Meliaceae) (the neem tree). Extracts of different parts 

of this tree have been effective at killing mosquito larvae both in the laboratory 

(Okumu et al. 2007, Howard et al. 2009) (Chapter 3) and field (Awad and Shimaila 

2003, Gianotti et al. 2008). Furthermore, this tree grows in many African countries 

and could potentially be a sustainable component of IVM programmes (Chapter 2). 

However, in the laboratory neem has been found to be an oviposition deterrent for 

mosquitoes (Dhar et al. 1996). A study with Anopheles stephensi Liston and 

Anopheles culicifacies Giles using a range of neem extracts found that 7 day old 

gravid mosquitoes exposed to neem volatiles for 90 minutes exhibited oviposition 

suppression, with neem-exposed females retaining significantly more eggs than 

control mosquitoes (Dhar et al. 1996). Females that were exposed to neem-derived 
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volatiles immediately after mating and were left exposed to these volatiles for 

several days did not fully develop eggs either in that or successive GCs (Dhar et al. 

1996). Similarly, when neem was fed to An. stephensi mosquitoes either before or 

during a blood meal, egg maturation and oviposition were adversely affected 

(Lucantoni et al. 2006).  

Previously we have shown that a dose equivalent to 0.1 grams of neem wood per 

litre of water causes a significant increase in larval An. gambiae Giles s.s. 

development time, and was also able to cause significant levels of mortality 

(Howard et al. 2009) (Chapter 3). In this study, we used An. gambiae s.s. 

mosquitoes in non-choice experiments to test whether the 0.1 g/l and other doses 

of crude aqueous extracts of A. indica (neem) affected mosquito oviposition 

behaviour.  

 

4.3 Materials and Methods 

4.3.1 Preparation of aqueous insecticidal extracts  

Neem extracts were prepared as previously described (Howard et al. 2009) 

(Chapter 3). Briefly, wood and bark from neem trees collected from Mbita Point in 

western Kenya were fed into a basic wood chipping machine to produce wood 

chippings (roughly 1 x 3 x 0.2 cm), which were left to dry in the shade. These dry 

chippings were then soaked in distilled water for five days after which time the 

water was filtered, removing the neem chippings and leaving just the aqueous 

extract into which the neem phytochemicals had leached. This simple method was 

used because it is more likely to provide sustainable control in the field than refined 

extracts requiring complex equipment and infrastructure. The different 

concentrations used in the oviposition experiments (equivalent to 0.1, 1 and 10 

grams neem wood per litre water) were made by serial dilution from a stock 

solution. Distilled water was used for the controls. 
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4.3.2 Mosquitoes  

The Kisumu strain of An. gambiae s.s. was used. This strain has been maintained 

as a colony at the Kenya Medical Research Institute (KEMRI), Kisumu, for 17 

years. After standard rearing, pupae were separated and placed into an adult cage 

for emergence. The following day any live pupae that had not emerged during the 

night were removed from the cage to ensure all adults were the same age. Both 

male and female adults were kept in the cage to allow mating to occur. Anopheles 

gambiae s.s. host seeking peaks at day 4 post emergence (Takken et al. 1998), so 

once adults were four days old, females were blood fed on a live rabbit for 30 

minutes. One hour after feeding, female mosquitoes that had ingested a full blood 

meal were moved to a new cage along with a number of male mosquitoes to allow 

unmated females to mate. Mating can increase the chance of egg maturation 

(Klowden and Russell 2004) and females mating after a blood meal are as likely to 

oviposit as those that mate before a blood meal (Chambers and Klowden 2001).  

Two days after the first blood feed, female mosquitoes were again allowed to feed 

from a live rabbit because sometimes anophelines require multiple blood meals to 

develop their first batch of eggs (Clements 1992, Briegel and Horler 1993, Takken 

et al. 1998) and host seeking is still peaking at day 6 post emergence (Takken et 

al. 1998). One hour after this second feed, females that had blood fed or that were 

already semi-gravid from the first feed were further separated into another cage. 

Males were also placed into the new cage. These mosquitoes were left for a further 

three days before the females were used in the oviposition experiments. Although 

leaving mosquitoes that had first fed five days previously without an oviposition site 

may seem a long time, previous research has shown that retention of mature eggs 

by An. gambiae females until an oviposition site is available does not adversely 

affect oviposition (Chambers and Klowden 2001). 

Throughout this whole process mosquitoes had access to 10% sugar solution 

soaked in cotton wool that was placed onto the roof of the cage and refreshed 

daily. 
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4.3.3 Oviposition experiment 

Non-choice experiments were carried out to investigate the effect of the water 

treatment on whether mosquitoes chose to lay their eggs and if so, if the mosquito 

laid at the first opportunity or waited until it became obvious no other option was 

available. Standard (30 x 30 x 30 cm) wire frame cages covered in cotton netting 

were used for the experiments. The wooden bottoms of these cages were painted 

black because more An. gambiae s.l. eggs are laid over dark than light areas 

(McCrae 1984). For the oviposition sites, 40 ml of neem-treated or control water 

was soaked onto cotton wool in a Petri dish. A 90 mm filter paper was then placed 

on top of this wet cotton wool. At 5pm a single gravid female mosquito and one 

Petri dish were randomly allocated to each cage. Cotton wool soaked in 10% sugar 

solution was placed onto the roof of each cage and refreshed daily. The 

mosquitoes were exposed to a natural dusk and left in a natural 12:12 hr L:D cycle. 

The mean (±SE) maximum and minimum temperatures during the study were 30ºC 

(±0.10) and 25ºC (±0.11) respectively; the mean (±SE) humidity was 80% RH 

(±0.11). 

The next morning, any mosquitoes that had died or were stuck to the filter paper 

were removed from the experiment. For mosquitoes continuing with the 

experiment, Petri dishes were removed from the cages and the number of eggs on 

each was counted using a dissection microscope. The Petri dishes were then put 

back into the cages. Mosquitoes were left in the cage to allow them to oviposit 

during the second night of the experiment. The following morning any mosquitoes 

that had died or were stuck to the filter paper were removed from the experiment. 

The Petri dishes were removed and the number of eggs counted again using a 

dissection microscope. Mosquitoes were removed for dissections as described in 

section 4.3.4 below. Thirty replicates were carried out per water treatment (not 

including mosquitoes failing to complete the experiment). 

 



Chapter 4 

116 

4.3.4 Mosquito dissections 

The morning after the second experimental night, mosquitoes were individually 

removed from the cages, knocked down in the freezer for 5-10 minutes and then 

dissected. Dissections were carried out on glass slides using hypodermic needles 

under a dissection microscope. Firstly, a dry dissection was carried out and one 

wing was randomly selected and removed from each mosquito and placed on a 

separate glass slide. Wings were measured from the tip (excluding fringe scales) to 

the axillary incision using a compound microscope and ocular micrometer.  

For the wet ovary dissections, 0.85 g AnalaR salt (NaCl) was put into 100 ml 

distilled water to make a saline solution. A few drops of this saline solution were 

used to aid mosquito ovary removal. Ovaries were then gently opened and the 

number of eggs remaining inside was counted using a dissection microscope. 

 

4.3.5 Statistical analysis 

Although all mosquitoes had taken at least one blood meal, a previous study has 

found that around 15% of blood fed An. gambiae s.s. do not mature eggs (Hogg 

1996). Therefore, as well as the 9.7% (14/144) mosquitoes that died or stuck to the 

filter paper, the 5.5% (8/144) mosquitoes that had not developed eggs were also 

discarded from both types of analyses.  

 

4.3.5.1 Effect of neem on oviposition 

The purpose of this study was to see if neem treatments would cause the 

mosquitoes to retain their eggs either for oviposition on the second night or in their 

ovaries at the end of the experiment. Therefore, we were interested in looking at 

whether the treatments had caused the number of mosquitoes that laid/retained 

their eggs to vary, rather than examine the number of eggs laid in each treatment. 

To analyse whether the number of mosquitoes laying or retaining eggs significantly 
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differed between the four water treatments, we coded the mosquitoes as having 

laid (1st or 2nd night) or retained eggs, and analysed the coded data using chi-

square tests.  

 

4.3.5.2 The relationship between wing length and egg 

production 

After testing to see if the data sets (wing lengths and total number of eggs 

produced (laid plus retained) per mosquito) were normally distributed, single factor 

ANOVA was used to test for any significant differences in the number of eggs 

produced by females exposed to each treatment. Similarly, single factor ANOVA 

was used to test for any differences in the wing length of females exposed to each 

treatment. No significant differences were found so the data were pooled and the 

correlation between wing length and number of eggs produced was analysed using 

simple linear regression. To see if there was a significant difference between the 

numbers of eggs that small and large mosquitoes produced, a two-sample t-test 

assuming equal variances was carried out. Analyses were carried out in SPSS 

17.0 (SPSS Inc 2008) with α set at 0.05. 

 

4.4 Results and Discussion 

4.4.1 Effect of neem on oviposition 

There were no significant differences in the total number of eggs produced (laid 

plus retained) (F=2.39, df=3,118, p=0.07) between mosquitoes exposed to the four 

treatment types, indicating that when fully gravid mosquitoes are exposed to neem, 

the exposure does not significantly affect egg production (i.e. by making 

mosquitoes reabsorb eggs (Clements 1992)).  

We found that mosquitoes either laid all of their eggs on one night, or retained all of 
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their eggs. Only 4.1% (5/122) of mosquitoes laid their eggs over a number of 

nights, and these were distributed between the four treatment groups. In addition, 

most of the mosquitoes that were going to lay their eggs did so on the first night 

(Figure 4.1), just 10.7% (13/122) of the mosquitoes laid their eggs on the second 

night. Of these, only one was exposed to the control treatment and four mosquitoes 

came from each of the neem treatments. However, there was no significant 

difference between the four water treatments with respect to the day mosquitoes 

laid their eggs (χ2=1.1, df=3, p=0.77). 

Sixty percent of the mosquitoes exposed to control water laid their eggs on the first 

night, and a further 6.7% laid on the second night. This left 33.3% of the 

mosquitoes with eggs retained in their ovaries (Figure 4.1). Chambers and 

Klowden (2001) had a similar finding with just two-thirds of their An. gambiae s.s. 

females ovipositing their eggs in two consecutive nights. For the lowest neem 

concentration of 0.1 g/l, 75.8% of the mosquitoes laid eggs on the first night, a 

further 13.8% laid on the second night and just 10.4% of mosquitoes retained eggs 

in the ovaries (Figure 4.1). When comparing mosquitoes that laid eggs with those 

that retained their eggs, significantly more mosquitoes laid their eggs when 

exposed to the low neem dose of 0.1 g/l when compared to the control-exposed 

mosquitoes (χ2=4.5, df=1, p=0.033). For both the 1 g/l (χ2=0.0, df=1, p=1.0) and 10 

g/l (χ2=0.5, df=1, p=0.458) there were no significant differences in the number of 

mosquitoes either laying or retaining their eggs when compared to the control 

mosquitoes. This lack of repellent effect in the higher doses may be due to the lack 

of detectable azadirachtin in these crude aqueous neem extracts (Howard et al. 

2009) (Chapter 3). 

The fact that more eggs were laid in the 0.1 g/l might be explained by two 

mechanisms. Firstly, previous work comparing An. gambiae s.l. oviposition in 

distilled and natural field water has found that more eggs are laid in the natural 

water (McCrae 1984, Sumba et al. 2004, Sumba et al. 2008) because this water 

contains bacteria. We appreciate that using such a simple neem phytochemical 
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extraction method would allow some bacteria to be in the extracts because our 

neem wood was not sterile before being soaked in water. The second possible 

explanation is that low doses of aqueous neem wood extract act as oviposition 

attractants for An. gambiae s.s. mosquitoes. In agreement with this, previous 

findings have shown that low doses of mosquito repellents can actually act as 

attractants (Skinner et al. 1980, Mehr et al. 1990). These factors could individually 

be responsible, or there may be an element of interaction between the two. 

 

Figure 4.1. Proportional breakdown of mosquitoes laying eggs on the first (black) or 
second (grey) nights, and those retaining eggs in the ovaries (white) after being 
exposed to control water (N=30) or aqueous neem extracts at concentrations of 0.1 
g/l (N=29), 1 g/l (N=30) or 10 g/l (N=33) 
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That the 0.1 g/l neem extract enhanced mosquito oviposition is encouraging. In a 

previous study we used the same type of neem-treated water and the same 

mosquito strain and found that at 0.1 g/l, larvae exposed during the first three 

instars had significantly increased development times when compared to larvae 

reared in control water (Howard et al. 2009) (Chapter 3). In addition, the 

concentration that inhibited 90% of adult emergence (IE90) was around 0.15 g/l for 

early instar mosquito larvae (Howard et al. 2009) (Chapter 3). These oviposition 

results show that if neem wood was applied to water bodies at a concentration of 

around 0.1 g/l then not only would mosquito larvae take significantly longer to 

develop into adults, with significantly fewer surviving to adulthood (Howard et al. 

2009) (Chapter 3), but the oviposition behaviour of the adult mosquitoes would be 

significantly enhanced, so successive generations of mosquitoes would keep being 

exposed to the botanical larvicide. In addition, ovipositing An. gambiae s.s. adults 

have been shown to exhibit a memory (Sumba et al. 2004) because they prefer to 

oviposit in the same water type in which they were reared, when compared to 

water in which another An. gambiae s.s. strain was reared (Ogbunugafor and 

Sumba 2008). This preference for “known” water has even been found when 

mosquito repellents were placed in water (Kaur et al. 2003); Aedes aegypti L. 

mosquitoes reared in water containing citronella and neem exhibited reduced 

repellence towards ovipositing in the treated water than mosquitoes reared in clean 

water (Kaur et al. 2003). Our results suggest that at 0.1 g/l, An. gambiae s.s. larvae 

can be considerably controlled (Howard et al. 2009) (Chapter 3) and females will 

still oviposit in the water. Given previous findings about mosquito memory (Kaur et 

al. 2003, Sumba et al. 2004, Ogbunugafor and Sumba 2008), any mosquitoes 

emerging from the neem-treated water may preferentially return to oviposit in that 

water, exposing their progeny to the control measure. 

Previously, neem has been shown to repel mosquito oviposition. Dhar et al. (1996) 

used short exposures to show that gravid 7 day old Anopheles mosquitoes laid 

significantly more eggs in the control water when compared to mosquitoes exposed 

to broken neem seed kernels, purified neem oil and neem volatile fractions (Dhar et 
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al. 1996). Our results show no repellency caused by neem exposure and in fact the 

opposite was found for 0.1 g/l. It is promising that repellent properties were not 

found in our study when a simple application method was used. The expectation is 

that community involvement in mosquito control will increase as IVM programmes 

spread across Africa (World Health Organisation 2004b, van den Berg and Takken 

2007) (Chapter 2). Communities are more likely to use mosquito control methods 

that require the least sophisticated equipment and infrastructure, and this will be 

especially true in resource-poor rural areas. Therefore, the finding that when raw 

neem wood is placed into water at a relatively low dose the proportion of 

mosquitoes ovipositing is enhanced is encouraging. In addition, no repellent effects 

were seen even at a dose 100 times that required for successful mosquito control 

(Howard et al. 2009) (Chapter 3). If this simple application of the control tool is to 

be used by rural communities, then the dose may not always be controlled. This 

could lead to overtly high doses being used, but our evidence suggests that even 

these very high doses will not adversely affect mosquito oviposition behaviour. 

However, these laboratory results need to be verified in the field, because it is 

possible that the oviposition response to neem is different in natural water bodies 

that produce a range of volatile signals. 

 

4.4.2 The relationship between wing length and egg production 

Whilst neem has been shown to affect egg development in mosquitoes when given 

before or with the blood meal (Lucantoni et al. 2006), the mosquitoes in our 

experiment had developed their eggs before being exposed to neem.  As a result, 

we found no significant difference between the number of eggs produced by 

mosquitoes in the four treatment groups (F=2.39, df=3,118, p=0.07). In addition, 

there were no significant differences between the wing lengths of mosquitoes 

exposed to the four treatments (F=0.05, df=3,118, p=0.98), so the data were 

pooled for the purpose of examining the relationship between wing length and egg 

development.  
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The mean (±SE) wing length was 3.09 mm (±0.01), and the mean (±SE) number of 

eggs produced was 53.6 (±2.9). The number of eggs produced by individual 

mosquitoes was significantly (n=122; adjusted r2=0.25; p<0.0001) and positively 

correlated in a linear fashion with wing length (Figure 4.2). Thus, 25% of the 

variation in the number of eggs produced is explained by the mosquito wing length. 

This positive correlation between wing length and the number of eggs produced 

has previously been found in laboratory colonies (Briegel 1990, Takken et al. 1998) 

and wild caught mosquitoes from Tanzania (Lyimo and Takken 1993), The Gambia 

(Hogg 1996) and Mali (Yaro et al. 2006). 

We also found that providing two blood meals was sufficient to get even small 

mosquitoes to mature eggs. It has been previously suggested that An. gambiae 

females with wing lengths shorter than 3 mm are unable to start oogenesis after 

the first blood meal (Briegel 1990, Lyimo and Takken 1993). In our study, 27% 

(33/122) of mosquitoes that produced eggs had wings shorter than 3 mm (Figure 

4.2). 

Wing length is used as a measure of mosquito body size. Larger An. gambiae 

females have been shown to have higher levels of lipid, protein and carbohydrate 

at eclosion (Briegel 1990). They also take larger blood meals (Briegel 1990), are 

better able to utilize the meal (Takken et al. 1998) and are therefore able to 

produce more (Briegel 1990, Lyimo and Takken 1993, Hogg 1996, Takken et al. 

1998) and larger (Takken et al. 1998) eggs. In addition, larger blood meals lead to 

a higher protein content per egg (Briegel 1990). Larger female mosquitoes 

therefore have a higher reproductive efficiency (fecundity) than smaller 

mosquitoes. In agreement with this, when mosquitoes from our study were 

categorised as being small (wing length <3.15 mm) or large (wing length ≥3.15 

mm), there was a significant difference in the mean number of eggs that each 

group produced (t=6.26, df=120, p<0.0001) with small females producing a mean 

(±SE) of 40.7 (±2.9) eggs compared to 72.9 (±4.7) for large females. As well as 

producing more eggs, larger females also tend to live longer, host seek more 
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(Takken et al. 1998) and require fewer blood meals to become fully gravid (Lyimo 

and Takken 1993).  

 

Figure 4.2. Number of eggs produced (laid plus retained) per mosquito in relation 
to wing length in An. gambiae s.s. mosquitoes. Line represents linear regression 
(adjusted r2=0.25; p<0.0001) 
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5.1 Abstract 

Fishponds become abandoned due to lack of access to young fish and technical 

support, and faster economic returns from other activities. Certain conditions found 

in abandoned fishponds, such as absence of fish and presence of aquatic 

vegetation, are conducive to the proliferation of malaria vectors. We therefore 

conducted a district-wide fishpond census to determine the maintenance status of, 

and mosquito populations in, fishponds in Kisii Central District in western Kenya. 

261 fishponds were found; 186 active (fish present) and 75 abandoned (fish 

absent). Vegetation was not significantly associated with the distribution of 

Anopheles gambiae s.l., Anopheles funestus or culicines (Diptera: Culicidae) in 

active or abandoned ponds. The presence of fish, however, correlated significantly 

with the distribution of all mosquito species, with significantly higher mosquito 

densities in abandoned fishponds. Anopheles gambiae s.l. was the most abundant 

mosquito species found in both active and abandoned ponds, being proportionally 

more abundant in the abandoned ponds when compared to other mosquito 

species. The relative proportion of An. funestus increased with altitude. Following 

the census the demand for fish to re-stock abandoned ponds rose by 67% when 

compared to the same time period in the previous year. This study highlights the 

potential public health problems associated with the abandonment of small-scale 

fish farming in the highlands of western Kenya.  

 

5.2 Introduction  

In sub-Saharan Africa, where most of the global malaria burden is borne, the main 

vectors are Anopheles gambiae Giles s.l. and Anopheles funestus Giles (Diptera: 

Culicidae). Although classically the larval habitats of An. gambiae s.l. are thought to 

be small, temporary, sunlit pools with algae (Gillies and Coetzee 1987, Gimnig et 

al. 2001), these species of mosquito have also been found in relatively large, 
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permanent, man-made water bodies in western Kenya (Lockhart et al. 1969, 

Fillinger et al. 2004, Mutuku et al. 2006b).  

Small-scale fish farming has been continuously practiced in western Kenya for 

almost 50 years. Lockhart et al. (1969) found in 1959 that the 1,000 ponds they 

surveyed in the whole of western Kenya were well maintained, but by 1961 they 

found many fish ponds abandoned with over-grown edges and “only given the 

minimum amount of maintenance”. This abandonment they attributed to “bad 

farming methods” which were producing smaller than anticipated yields, and 

because fish farming required more work than the farmers had expected. In 

addition, nowadays fishponds become abandoned for several other reasons, 

including the farmers switching their resources to invest in cash crops such as tea 

and coffee, demoralisation due to poaching, and lack of access to extension 

services from the Fisheries Department (FD) (for example help with harvesting and 

advice concerning pond construction and maintenance). Also, when the farmers 

harvest the ponds they remove all the fish including the small fry, in order to sell or 

eat them, which means that ponds become ‘abandoned’ for a while even if the 

farmers want to carry on fish farming.  

Fish farming is still a favoured community activity in western Kenya today with new 

ponds being constructed and stocked (see Figure 2.2). It is promoted as a way to 

relieve the pressure on catches from Lake Victoria and as a source of income and 

protein for people living in rural areas (Government of Kenya 2002a, FAO Inland 

Water Resources and Aquaculture Service 2003). However, little attention is paid 

to possible dangers of abandoned fishponds in enhancing malaria transmission.  

If a water body does not contain fish it is more likely to harbour mosquitoes than a 

water body stocked with fish (Petranka and Fakhoury 1991, Fletcher et al. 1992) 

with higher mosquito numbers in the fish-absent when compared to the fish-

present areas (Wu et al. 1991, Prasad et al. 1993, Ritchie and Laidlaw-Bell 1994, 

Takagi et al. 1995). In addition, it has recently been found that An. gambiae s.l. 

pupal occurrence is positively correlated with both habitat size (Minakawa et al. 
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2005) and habitat stability (Mutuku et al. 2006b) in western Kenya. Most fishponds 

in western Kenya are large and contain water throughout the year and thus it would 

be expected that the pupal output from them would be very high.  

Considering the above-mentioned issues, there is a possible danger that fishponds 

without fish and where the vegetation has been allowed to grow could harbour 

large numbers of malaria vectors. Therefore, we conducted a district-wide census 

to identify the number and maintenance status of fishponds in the Kisii Central 

District in western Kenya. The numbers of mosquito immatures found in these 

fishponds were counted to obtain a better understanding about the role of these 

numerous large permanent water bodies in the production of disease vectors 

during the dry season.  

 

5.3 Materials and Methods 

5.3.1 Study area 

The census was carried out in the Kisii Central District of the Nyanza Province in 

western Kenya (Figure 5.1). This rural district is a highland area divided into seven 

administrative divisions covering a total area of 649 km2 with altitudes of 1,400-

2,200 m above sea level. Rainfall averages over 1,500 mm annually with two wet 

seasons (February to June and September to November). Mean annual maximum 

temperatures are 27ºC and 24ºC in the low and highland areas of the district 

respectively; the mean annual minimum temperatures are 16ºC and 14ºC in the 

low and highland areas respectively (Government of Kenya 2002a). The population 

density in the district is one of the highest in Kenya with a mean of 750 people per 

km2 reaching a maximum of over 1,000 people per km2 in some divisions. Malaria 

in this district is endemic but highly seasonal. Anopheles gambiae s.l. and An. 

funestus are the main malaria vectors in Kisii Central District. 
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Figure 5.1. Map showing the location of each division in Kisii Central District, and 
the location of this district within Kenya 

 

5.3.2 Fishpond census 

A fishpond census was carried out in all divisions of Kisii Central District from the 

5th January to the 6th February 2004 in collaboration with the Kenyan FD. The area 

including Kisii town (number 4 in Figure 5.1 and hereafter called Municipality) is 

part of Kiogoro, Mosocho and Suneka divisions but was treated separately.  

The fishponds were classified as ‘active’ or ‘abandoned’ depending on the 

presence or absence of fish, respectively. The FD officer assessed whether the 

ponds contained fish by throwing a handful of fish food into the water and waiting 

to see whether fish rose to the surface, if no fish came to the surface after 10 

minutes the pond was deemed to be without fish. The FD officer also visually 

identified the type of fish in active ponds as ‘tilapiine’, ‘catfish’ or ‘other’. In some 
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cases the FD officer had recently had contact with the farmers and so already 

knew which fish type was in the pond. The ponds were further classified as well 

maintained (WM) if the banks were clear (A in Figure 5.2) and there was less than 

10% vegetation coverage; not well maintained (NWM) indicated that the banks 

were not cleared of vegetation (B in Figure 5.2) and/or vegetation coverage of the 

pond was more than 10%.  

Entomological assessments were carried out by taking five larval dips (2.5 litres 

total volume) randomly from the periphery of each pond, with at least one dip from 

each side. Anophelines and culicines were distinguished and the anopheline 

mosquitoes were identified to species level using a morphological key (Gillies and 

Coetzee 1987). The surface area of the ponds was measured and the owners of 

the ponds were educated by the FD officer about fishpond maintenance and the 

associated risk of mosquitoes breeding in abandoned fishponds.  

 

5.3.3 Statistical analysis 

After testing for equal/unequal variance, two-sample Student’s t-tests were carried 

out to investigate the differences between WM and NWM fishponds within the 

active and abandoned pond classes for each mosquito type. Two-sample t-tests 

were also used to analyse any differences within each mosquito type between the 

active and abandoned pond types. Chi-square tests were used to investigate the 

differences between the active and abandoned ponds with respect to the number 

of ponds containing mosquitoes of any type, An. gambiae s.l., An. funestus, 

culicines, and the number of WM ponds. Within each pond type differences 

between the mosquito types were analysed using one-way ANOVA analysis. 

Statistical analysis was carried out at the 5% significance level using the SAS 9.1 

software (SAS Institute Inc. 2004). 
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Figure 5.2. Photographs showing the clear banks of a well maintained fishpond (A) 
and the overgrown banks of a not well maintained fishpond (B) 

 

5.4 Results 

5.4.1 Differences between WM and NWM ponds 

Of the 186 active ponds found, 148 (80%) were WM, whereas just 13 (17%) of the 

75 abandoned ponds were WM (Table 5.1); this difference was highly significant 

(χ2=87.60, df=1, p<0.0001). The observed mean surface area of the WM and NWM 

ponds was not significantly different (t=1.10, df=184, p=0.27 for active; t=0.8, 

df=73, p=0.42 for abandoned ponds). Within the active ponds the proportion of An. 

gambiae s.l. in the NWM ponds decreases when compared to the WM ponds, with 

corresponding increases in the proportions of An. funestus and culicines. Within 

both the active and abandoned fishpond classes there were no significant 

differences for any of the mosquito types when comparing the WM and NWM 

ponds (Table 5.2). As such the active WM and NWM and the abandoned WM and 

NWM data were pooled for further analysis.  

A B
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Table 5.1. Number (N) and surface area (mean ± SE) of the different pond types 
and the relative mosquito abundance (%) 

 

Pond Veg. N Area (m2)   An. gam.%   An.fun.%     Culicines% 

 

Active WM 148 130.0 ± 7.58      54.7  28.7  16.6 

 NWM 38 148.9 ± 16.78      32.7  42.5  24.8 

 Total 186 133.9 ± 6.94      48.1  32.9  19.0 

Aband. WM 13 118.2 ± 22.64      65.2  21.7  13.1 

 NWM 62 143.2 ± 11.03      60.7  23.8  15.5 

 Total 75 138.9 ± 9.93      61.7  23.4  14.9  

Veg. = Vegetation; An. gam. = An. gambiae s.l.; An. fun = An. funestus; Aband. = 
Abandoned; WM = Well Maintained; NWM = Not Well Maintained 

 

Table 5.2. Mean ± SE relative immature mosquito population densities in well 
maintained (WM) and not well maintained (NWM) fishponds 

 

Pond Mosquito type       WM        NWM t-stat  df p 

 

Active    An. gambiae s.l.   1.68 ± 0.21     1.66 ± 0.47 0.04 184    =0.97 

   An. funestus     0.88 ± 0.13     2.16 ± 0.64 1.96 40      =0.06 

   Culicines     0.51 ± 0.10     1.26 ± 0.59 1.28 39      =0.21 

Aband.   An. gambiae s.l.   15.69 ± 3.03     11.18 ± 3.74 0.94 53      =0.35 

  An. funestus      5.23 ± 3.77     4.39 ± 0.78 0.22 13      =0.83 

 Culicines      3.15 ± 1.14     2.85 ± 0.92 0.20 30      =0.84 
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5.4.2 Differences between active and abandoned ponds 

There was no significant difference between active and abandoned ponds with 

respect to the number of ponds containing mosquitoes of any type (χ2=2.62, df=1, 

p=0.11). However, when looking at individual mosquitoes species, significantly 

more abandoned ponds contained An. gambiae s.l. (χ2=13.83, df=1, p<0.0002), 

An. funestus (χ2=5.68, df=1, p<0.02) and culicines (χ2=6.65, df=1, p<0.01). In 

addition, the proportion of An. gambiae s.l. was higher in the abandoned ponds 

(Table 5.1). The mean number of An. gambiae s.l. found in the abandoned 

fishponds was also an order of magnitude higher than the mean number found in 

active fishponds and there were larger numbers of An. funestus and culicines in 

abandoned when compared to active fishponds. These differences were all 

statistically highly significant (Table 5.3), however, there was no significant 

difference between the mean surface areas of the active and abandoned fishponds 

(t=0.43, df=259, p=0.67). 

 

5.4.3 Differences between mosquito types within the pond types  

The ANOVA results showed a significant effect of the mosquito species on the 

number of mosquito immatures in both the active (F=8.92, df=2,555, p<0.0002) 

and abandoned (F=6.20, df=2,222, p<0.003) ponds. Therefore, Student-Newman-

Keuls (SNK) multiple comparison analysis was carried out to investigate which 

species were significantly different within each pond type (Table 5.3).  

 

5.4.4 Fish type  

In the 151 active fishponds (122 WM, 29 NWM) where the fish types were 

identified, 147 (97%) contained tilapiine fish (121 WM, 26 NWM). Of the WM ponds 

with tilapiine fish, 27% had no mosquitoes in five dips compared to 12% of the 

NWM ponds. This was not significant using the Fisher’s exact test (p=0.13).  
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Table 5.3. Mean ±SE immature mosquito population densities in active and 
abandoned fishponds after pooling the WM and NWM data 

    

Mosquito type      Active  Abandoned     t-stat df p 

 

An. gambiae s.l.  1.67 ± 0.19  A 11.96 ± 3.1  A 3.27 75 <0.002 

An. funestus  1.14 ± 0.17  B 4.54 ± 0.90  B 3.70 79 <0.0004 

Culicines  0.66 ± 0.14  C 2.90 ± 0.78  B 2.83 79 <0.006 

The same letters in a column indicate no significant difference as calculated by 
SNK multiple comparison analysis; there is no relationship between the letters 
within the rows. 

 

5.4.5 Levels of fishpond abandonment in the different divisions 

A mean of 32 fishponds per division were found (23 active; 9 abandoned) (Table 

5.4). In all divisions there were more active than abandoned fishponds. Suneka 

division had the highest rate of abandonment. There was no correlation between 

the percent active and abandoned ponds that were NWM within the divisions. 

Because the pond numbers in the different divisions varied widely and in some 

divisions were very low, no statistical tests were carried out between the different 

divisions. 

 

5.4.6 Mosquito types per division 

The proportion breakdown of the different mosquito types per division can be seen 

in Figure 5.3. In the abandoned ponds An. gambiae s.l. predominated especially in 

Municipality, Mosocho, Suneka and Marani, while in both the active and 

abandoned ponds the relative proportion of An. funestus was high in Keumbu, 

Masaba and Kiamokama and to a lesser extent in Kiogoro.  
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Table 5.4. Divisional breakdown of the number of fishponds found and the 
proportion of active and abandoned fishponds not well maintained 

 

Division               Pond type (N)                   NWM                

Name        Area (km2)   Active   Aband.           Total Active   Aband.        

 

Municipality 29 18 8 (30.8%)  26 38.9%     75.0% 

Mosocho 105 10 7 (41.2%)  17 20.0%     57.1%  

Suneka  126 33 24 (42.1%)  57 18.2%     79.2% 

Marani  124 37 5 (11.9%)  42 10.8%     100% 

Kiogoro  61 46 11 (19.3%)  57 17.4%     90.9% 

Keumbu 71 13 8 (38.1%)  21 23.1%     100% 

Masaba  90 11 3 (21.4%)  14 45.5%     66.7% 

Kiamokama 72 18 9 (33.3%)  27 16.7%     88.9% 

NWM = Not well maintained; Aband. = Abandoned 

 

5.4.7 Community response to the census 

Following the census the FD reported that the demand for both fish and help with 

renovating and restocking abandoned fishponds rose. For the first six months of 

2004 there was a 67% increase in the demand for fish when compared to the same 

time period of 2003.  

 

5.5 Discussion 

As in previous studies (Petranka and Fakhoury 1991, Fletcher et al. 1992) we 

found   that   more  fish-absent  (abandoned)  than  fish-present  (active)  fishponds  
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Figure 5.3. Proportional breakdown of mosquito types per division in active (A) and 
abandoned (B) fishponds 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
A: Active Fishponds Culicine A. funestus A. gambiae s.l.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Division

B: Abandoned Fishponds



Fishpond census 

139 

C
h

ap
ter 5 

contained mosquitoes, although this difference was not significant when all the 

different mosquito types were combined. However, when the mosquito types were 

considered separately, significantly more abandoned ponds contained mosquitoes 

of each type. This may be because An. gambiae s.s. avoids ovipositing in water 

that contains competitors (Munga et al. 2006). In this respect An. funestus may be 

seen as a competitor by An. gambiae s.l., and it is also possible that a similar 

mechanism exists in An. funestus.  

Our results indicate that fish significantly influence the distribution of anophelines 

and culicines in the study area. This phenomenon has also been found in previous 

studies in other geographical locations (Wu et al. 1991, Prasad et al. 1993, Ritchie 

and Laidlaw-Bell 1994). Fish can influence mosquito numbers both directly and 

indirectly. Larvivorous fish directly control mosquito numbers through predation 

(Asimeng and Mutinga 1993). In over 80% of the active fishponds the fish type was 

successfully identified, and in these cases, 97% of the fish belonged to the tilapiine 

sub-family. Although not identified in this study, the main tilapiine fish species 

farmed in the study area are Oreochromis niloticus (Perciformes: Cichlidae) and 

Tilapia zillii (Perciformes: Cichlidae). Under laboratory conditions both of these 

species have been shown to eat mosquito larvae, with one individual fish eating on 

average 300 mosquito larvae in just 15 minutes (Asimeng and Mutinga 1993), 

while in the field O. niloticus has been shown to eat both mosquito eggs and larvae 

(el Safi et al. 1985). We have also demonstrated the ability of O. niloticus to control 

mosquito numbers in WM fishponds under field conditions in Kisii Central District; 

we found that the fish caused >94% reduction in malaria vectors in only 15 weeks 

(Howard et al. 2007) (Chapter 6). Fish indirectly influence mosquito numbers by 

causing ovipositing mosquitoes to selectively avoid fish-containing water bodies 

(Petranka and Fakhoury 1991, Ritchie and Laidlaw-Bell 1994, Angelon and 

Petranka 2002). Although to our knowledge this has not been proven to occur in 

our study area.  

Previous work has shown no relationship between vegetation and either An. 
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gambiae s.l. (Minakawa et al. 1999) or culicines (Minakawa et al. 1999, Fillinger et 

al. 2004), and this was also found in this study. Despite the previously published 

positive association of An. funestus and aquatic vegetation (Lockhart et al. 1969, 

Gimnig et al. 2001) we found that vegetation did not significantly influence the 

distribution of An. funestus in this study.  

Ndenga et al. (2006), in a study carried out at the same time as ours, concluded 

that An. gambiae s.s. predominated in the highland areas while An. funestus 

predominated in a lowland area of western Kenya. They did, however, observe that 

in the lowland area there were more An. funestus favourable breeding habitats. 

Their highland area was Marani division (Kisii Central District) and they found 

79.1% of the malaria vectors were An. gambiae s.s. (with all An. gambiae s.l. 

identified as An. gambiae s.s.). In Marani division we found An. gambiae s.l. 

constituted 63.9% and 73.4% of the active and abandoned fishpond mosquitoes, 

respectively, and in both types of fishpond it was certainly the predominant 

mosquito species. Marani, however, is a relatively low-lying part of Kisii Central 

District (Government of Kenya 2002a). In Kiogoro, Keumbu, Masaba and 

Kiamokama, which are located at a higher altitude than the other divisions, we 

found the proportion of An. funestus to be relatively high, which is likely to be an 

effect of altitude as this observation was made in both the active and abandoned 

fishponds. A study in Tanzania showed that An. funestus predominated in highland 

when compared to lowland areas throughout the year, with the reverse true for An. 

gambiae s.l. (Maxwell et al. 2003). This possible association of An. funestus with 

altitude is interesting and should be investigated further. 

There was much variation in the rates of abandonment of fishponds between the 

divisions. Kiamokama is rural and does not have good access to the market or FD 

extension services which may be why the rate of abandonment is higher than 

average. In contrast Kiogoro has easy access to the market and extension services 

and its rate of abandonment is below average. Municipality, which has good 

access to the market and FD extension services, also has a high level of 



Fishpond census 

141 

C
h

ap
ter 5 

abandonment and this may be because in the town there are many other income 

generating opportunities which have a quicker return than fish farming. Suneka, 

Mosocho and Keumbu have the highest rates of abandonment. In all of these three 

divisions some incentives were offered to start fish farming and this support has 

subsequently been withdrawn.  

Kisii Central District was reported to have 554 fishponds in the year 2000 

(Government of Kenya 2002a). The number of fishponds we found in this study 

was lower than anticipated possibly due to difficulties in accessibility. Kisii Central 

District is a mainly rural district with many areas inaccessible by vehicle. The 

topography is hilly and there are lots of trees, so fishponds could not easily be 

visually identified. Since the census finished, we have had much information 

regarding newly constructed and stocked fishponds, and about existing ponds that 

we missed during the census, indicating that at present fishpond numbers in the 

district are much higher than reported here. 

 There were certain other limitations of this study, namely that it represents the 

situation at just one time point during the dry season. A comparative study during 

the wet season would be interesting to see if the dynamics of the different mosquito 

species changed at all, especially as we have found that mosquito numbers in 

fishponds decrease in the wet season (Howard et al. 2007) (Chapter 6). Also, 

information about the larval instar and pupal numbers would have been interesting 

to see if there was any difference between the active and abandoned ponds with 

respect to the instars present. Similarly, information about productivity of the 

fishponds in the form of adult mosquito emergence could have provided much 

information on the actual public health risk involved. Many of these issues were not 

undertaken due to the time constraints involved in trying to conduct a single time 

point census over such a large area where movement via roads is slow.  

One of the main points from the 2005 Abuja Declaration on Sustainable Fisheries 

and Aquaculture in Africa is to develop aquaculture, and aquaculture worldwide 

has increased exponentially (FAO Inland Water Resources and Aquaculture 
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Service 2003, Keiser and Utzinger 2005). Our findings indicate that aquaculture 

development should be accompanied by adequate public health education so that 

fish farmers know the potential risks of abandoning their ponds. The main problem 

at present is the lack of information and knowledge that the farmers have about 

these risks. We are working with the FD towards reactivating the abandoned 

fishponds in this area and the FD are educating the fish farmers they come into 

contact with about the dangers of abandoned ponds.  

Our data indicate that fishponds could be of considerable public health relevance if 

abandoned, particularly because the human population in Kisii Central District is 

around 750 people per km2. As these fishponds contain water throughout the year 

this is potentially a year-round problem. This study suggests that for effective 

mosquito control, and associated malaria prevention, all fishponds should be 

stocked with larvivorous fish. With new fishponds continually being constructed in 

the area we think that this is an important issue to address. Therefore we 

recommend the following: 

 Public health officers and the FD should create wider awareness about the 

problem of abandoned fishponds among the fish farmers. 

 Draining the water from abandoned ponds is not enough for mosquito control 

because in this area of Kenya there is abundant rainfall that will gather in any 

depression in the ground. Therefore abandoned ponds should be filled in. 

 Fish should not be over-fed by their owners, because then they do not eat the 

mosquitoes and vegetation in the pond.  
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6.1 Abstract 

Biological control methods are once again being given much research focus for 

malaria vector control. This is largely due to the emerging threat of strong forms of 

resistance to pesticides. Larvivorous fish have been used for over 100 years in 

mosquito control and many species have proved effective. In the western Kenyan 

highlands, the larvivorous fish Oreochromis niloticus L. (Perciformes: Cichlidae) 

(formerly Tilapia nilotica) is commonly farmed and eaten but has not been tested 

previously in the field for malaria mosquito control. This fish was introduced into 

abandoned fishponds at an altitude of 1,880 m and the effect measured over six 

months on the numbers of mosquito immatures. For comparison an untreated 

control pond was used. During this time, all ponds were regularly cleared of 

emergent vegetation and fish re-stocking was not needed. Significant 

autocorrelation was removed from the time series data, and t-tests were used to 

investigate within a pond and within a mosquito type any differences before and 

after the introduction of O. niloticus. Mulla’s formula was also used on the raw data 

to calculate the percentage reduction of the mosquito larvae. After O. niloticus 

introduction, mosquito densities immediately dropped in the treated ponds but 

increased in the control pond. This increase was apparently due to climatic factors. 

Mulla’s formula was applied which corrects for that natural tendency to increase. 

The results showed that after 15 weeks the fish caused a more than 94% reduction 

in both Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae) in the 

treated ponds, and more than 75% reduction in culicine mosquitoes. There was a 

highly significant reduction in An. gambiae s.l. numbers when compared to pre-

treatment levels. This study reports the first field trial data using O. niloticus for 

malaria mosquito control and shows that this species, already a popular food fish in 

western Kenya, is an apparently sustainable mosquito control tool which also offers 

a source of protein and income to people in rural areas. There should be no 

problem with acceptance of this malaria control method since the local 

communities already farm this fish species.  
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6.2 Introduction 

Mosquito control relies heavily on synthetic pyrethroids. Concern about the threat 

of strong forms of resistance (Hargreaves et al. 2000) has stimulated renewed 

interest in alternative control methods including biological control and biopesticides. 

At present these methods are only operational against mosquito immatures 

(Fletcher et al. 1992, Takagi et al. 1995, Kay et al. 2002, Mittal 2003), the best 

known being the use of Bacillus thuringiensis var. israelensis  (Bti). Bti is effective 

against mosquito larvae (Mittal 2003) but cannot control the pupal stage, frequent 

repeat applications are needed (Gunasekaran et al. 2004) and it is expensive. 

Another biocontrol method, the use of larvivorous fish in appropriate water bodies, 

has been used in mosquito control for over 100 years (Bay 1967) and can also be 

effective (Fletcher et al. 1992, Asimeng and Mutinga 1993, Prasad et al. 1993, 

Mohamed 2003). However, larvivorous fish offer advantages when compared to 

Bti. Fish feed on mosquito pupae and are generally self-sustaining, so in most 

cases do not require repeat applications. One disadvantage is that larvivorous fish 

can only be used under certain conditions conducive to their survival. 

Almost 200 fish species are known to feed on mosquito larvae (Jenkins 1964). 

Oreochromis niloticus L. (Perciformes: Cichlidae) (formerly Tilapia nilotica) is a 

native African fish possessing mosquito control properties known since 1917 

(Austen 1919). To our knowledge though, no field data has been published on its 

use for mosquito control. Under laboratory conditions this fish species has been 

shown to be larvivorous (Kusumawathie et al. 2006) with a ‘marked interest in 

mosquito larvae’ (Asimeng and Mutinga 1993). The fry actively pursue mosquito 

immatures (Trewavas 1983), however, when the fish are greater than 150 mm in 

length they prefer eating macrophytes (el Safi et al. 1985). Therefore, larger fish 

eat the plant material in which the mosquito immatures hide, allowing the fry to find 

them. This fish species, commonly farmed by people in western Kenya as a source 

of protein and income, is a prolific breeder spawning every few weeks. 
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This study reports the first field trial using O. niloticus for mosquito control.  

Previously we found that abandoned (fish absent) fishponds had alarmingly high 

mosquito larval densities when compared to fishponds still containing fish (Howard 

and Omlin 2008) (Chapter 5). We therefore investigated the long-term impact on 

mosquito densities of introducing O. niloticus into abandoned fishponds. 

 

6.3 Materials and Methods 

6.3.1 Study area 

The study area was in Kisii Central District of western Kenya. The intervention site 

is 0042 S, 3446 E, at an elevation of 1,880 m above sea level with a population 

density of >1,000 people per km2 (Government of Kenya 2002a). Malaria in the 

area is endemic but highly seasonal with >2,000 paediatric cases annually in the 

district hospital (Hay et al. 2002). The primary malaria vectors in the area are 

Anopheles gambiae Giles s.l. and Anopheles funestus Giles. Rainfall averages 

over 1,500 mm annually with two wet seasons (February to June and September to 

November) and the mean annual maximum and minimum temperatures are 24°C 

and 14°C respectively (Government of Kenya 2002a). Climate data for the study 

period was obtained from the Kenya Agricultural Research Institute and is shown in 

Figure 6.1.  

 

6.3.2 Field intervention  

The site has three abandoned fishponds within 150 m of each other. Pond A (104 

m2 surface area) served as the untreated control and ponds C (128 m2) and D (72 

m2) were assigned for stocking with O. niloticus; each pond had a depth of 30 cm. 

These fishponds had been re-constructed under the instruction of an officer from 

the  Kenyan  Fisheries Department (FD).  Entomological assessments were carried  
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Figure 6.1. Mean monthly temperature and total monthly rainfall for the study area 

 

out by taking five larval dips (2.5 litres total volume) randomly from the edges of 

each pond, with at least one dip from each side. These assessments were carried 

out 5-7 days a week and began on the 1st October 2003. Anophelines and culicines 

were distinguished, with anophelines identified to species level using a 

morphological key (Gillies and Coetzee 1987). On the 14th January 2004, one-to-

two month old O. niloticus from the local FD hatchery in Kisii town were stocked in 

ponds C and D at a rate of two fish per m2 pond surface area. FD representatives 

instructed the fishpond owners on fish husbandry and pond maintenance. The 

three ponds were cleared of vegetation on a weekly basis and treated identically 

during the nine month study period. The fish were neither harvested nor the ponds 

restocked. 
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6.3.3 Statistical analysis  

Analysis was carried out on the data 15 weeks before and 15 weeks after fish 

introduction into ponds C and D. We used the one-lag autoregression model to 

determine the autocorrelation of the time series data. Significant autocorrelation 

was removed along with the deterministic drift term. We then used paired t-tests to 

see if the two treated ponds were significantly different before fish introduction. If 

there was no difference the data from the ponds were pooled. We also used t-tests 

to investigate within the pond and within the mosquito type any differences before 

and after fish introduction. All tests were carried out at the 5% significance level.  

Using the raw data, the percentage reduction of mosquito immatures in ponds C 

and D after fish introduction was calculated using Mulla’s formula: 

   % reduction = 100 – ((C1/T1)(T2/C2))100 

where C1 is the average number of larvae pre-treatment in the control pond, T1 is 

the average number of larvae pre-treatment in the treated ponds, T2 is the average 

number of larvae post-treatment in the treated ponds, and C2 is the average 

number of larvae post-treatment in the control pond (Mulla et al. 1971). This 

formula corrects for any changes seen in the control pond that would presumably 

also have occurred in the treated ponds in the absence of the intervention.  

 

6.4 Results 

The An. gambiae s.l. numbers in ponds A, C and D for 15 weeks prior to and 41 

weeks after O. niloticus introduction into ponds C and D are presented in Figure 

6.2. Ten days after fish introduction, no mosquitoes were found in pond C and a 

clear difference can be seen between ponds A and C for the next six months. Pond 

D shows a similar pattern.  

The mean immature mosquito densities before autocorrelation removal are 
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Figure 6.2. An. gambiae s.l. numbers in the control (pond A) and treated (ponds C and D) ponds before and after fish 
introduction 
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presented in Table 6.1, along with the % reduction as calculated using Mulla’s 

formula (Mulla et al. 1971). It can be seen that after fish introduction, the numbers 

of all mosquito types increased in the control pond, and decreased in the treated 

ponds. High percentage reductions were found for An. gambiae s.l. and An. 

funestus. For culicines it was lower but the reduction was still >75%.  

Significant autocorrelation was detected in all ponds for all mosquito species 

except for culicines in pond C. However, the first two data points for culicines in 

pond C were removed from the analysis in order to use the same number of data 

points as ponds A and D. No significant differences between ponds C and D for An. 

gambiae s.l. or An. funestus before fish introduction were found so the data were 

pooled. After autocorrelation removal, when comparing within a pond the pre- and 

post-intervention data, fish introduction caused highly significant reductions of An. 

gambiae s.l. in the treated ponds (t=3.81, df=127, p<0.0002) and culicines in pond 

C (t=4.16, df=128, p<0.0001), and a significant reduction of culicines in pond D 

(t=1.97, df=162, p<0.05).  

Table 6.1. Mean ±SE immature mosquito densities before and after O. niloticus 
introduction into ponds C and D 

 

  Pond A           Pond C          Pond D      

Mosquito Before  After    Before      After    % Red.   Before After % Red. 

 

An. gambiae   4.5±0.6  14.1±0.9  11.4±0.7  1.5±0.3   95.8      5.4±0.4  1.0±0.2  94.1 

An. funestus   0.1±0.1   2.5±0.5   0.6±0.1     0.4±0.1   98.3     0.6±0.1  0.6±0.1  97.5 

Culicines        2.4±0.4   4.5±0.4   2.8±0.5     0.7±0.2   86.7      1.3±0.2  0.6±0.1  75.4 

Pond A was the control pond, ponds C and D were stocked with fish; ‘Before’ = the 
15 weeks before fish introduction into ponds C and D;  ‘After’ = the 15 weeks after 
fish introduction into ponds C and D; % Red. = Percentage reduction was corrected 
for natural increases in the control pond using Mulla’s formula (Mulla et al. 1971). 
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An. funestus numbers in the treated ponds decreased but not significantly (t=1.13, 

df=129, p=0.26). In the control pond the mosquito numbers increased for all 

species. 

In view of the high An. gambiae s.l. densities in pond A, we introduced O. niloticus 

into this pond once the experiment was complete. These densities dropped from 

105 mosquitoes in five dips just before fish introduction, to one mosquito in five 

dips two weeks later and remained low for the next three months (Figure 6.2). 

However, without a contemporary untreated control we cannot be sure this was 

solely because of the fish. 

 

6.5 Discussion 

Our field data demonstrates for the first time, that the introduction of O. niloticus 

into fishponds immediately and significantly reduces the numbers of An. gambiae 

s.l. and culicine larvae in treated ponds. Fifteen weeks after fish introduction, the 

impact on both anopheline species was a >94% reduction after correction for the 

natural increase expected. By contrast, Mohamed (2003) reported that 

Oreochromis spilurus spilurus introduced into water storage containers in Somalia 

showed a mean reduction of 52.8%, while Gambusia affinis produced a 87.8% 

decline in mosquito larvae in rice fields (Prasad et al. 1993). However, these 

results represent both different fish species and ecological settings.  

The large percentage reductions in the treated ponds, as calculated with the raw 

data using Mulla’s formula (Mulla et al. 1971), was a combined effect of the 

decrease of mosquito numbers in the treated ponds and the increase in the control 

pond. Fifteen weeks after fish introduction into ponds C and D there was an 

increase of all mosquito species in the control pond. This was most likely due to 

low rainfall leading to a reduction in the number of alternative oviposition sites. 

When the rainfall increased in April, the number of mosquitoes in the control pond
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decreased. This negative correlation of mosquito larval densities with rainfall has 

been previously found in Kenyan rice fields (Asimeng and Mutinga 1993).  

The decrease of the mosquito numbers in the treated ponds might be directly (by 

predation) and/or indirectly (by oviposition avoidance by mosquitoes) due to the 

fish. Evidence that the fish were directly responsible comes from observed minor 

peaks in the mosquito densities in ponds C (from 13th May) and D (from 8th June) 

that corresponded with the time when the fish were mature enough to start 

reproduction. When reproducing, neither male nor female O. niloticus feed 

(Trewavas 1983), which would explain the temporary peaks, contrary to the overall 

downward trend. A tendency of ovipositing mosquitoes to avoid ponds containing 

fish has previously been found with Anopheles punctipennis (Petranka and 

Fakhoury 1991), and culicine mosquitoes (Ritchie and Laidlaw-Bell 1994, Angelon 

and Petranka 2002). However, in a separate study of 261 fishponds we found no 

significant difference between the number of fish-present and fish-absent fishponds 

containing mosquito immatures (Howard and Omlin 2008) (Chapter 5). This 

suggests that mosquitoes do not avoid fish-containing water in this area.  

Given the already proven larvivorous behaviour of O. niloticus, the peaks of 

mosquitoes during fish reproduction, the findings in the separate study, and also 

taking into account the climatic relationship of the mosquito increase in the control 

pond, it seems likely that the fish are directly controlling the mosquito numbers in 

the treated ponds through predation. 

Anopheles funestus was not significantly decreased after fish introduction. The 

large percentage decrease calculated is a result of the 40-fold increase in the 

control pond, indicating a strong tendency for natural increase in the local 

population. The fish apparently ate enough An. funestus larvae to counterbalance 

this natural increase, but not enough to produce an overall reduction.  

The fact that we still recorded larvae in the treated ponds does not mean these 

ponds were still producing adult mosquitoes. From other sites in Kisii Central 
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District, we have noticed disproportionate numbers of first and second instar 

mosquito larvae in fishponds containing fish, indicating that fish are more likely to 

eat the older, larger instars. This was also found with other fish species in Somalia 

where after fish introduction only first and second instar larvae were present 

(Mohamed 2003), and in laboratory and field studies in China (Wu et al. 1991). 

In the year 2000, Kisii Central District was reported to have 554 fishponds in an 

area of 649 km2 (Government of Kenya 2002a) while the neighbouring district of 

Nyamira was reported to have 1,046 fishponds in 896 km2 (Government of Kenya 

2002b). It is likely that these are under-representations of the actual fishpond 

numbers in the two rural districts as the topography is hilly with poor road networks, 

which make locating fishponds difficult. Given the large size of the fishponds and 

the fact that they contain water all year round, they could be considered a fairly 

significant producer of malaria vectors in this area of western Kenya. Unfortunately 

our results do not show the proportion of the adult mosquito population that is 

produced by the fishponds, relative to the more classic An. gambiae s.l. immature 

habitats such as small transient pools of water (Gimnig et al. 2001) which are 

unsuitable for O. niloticus. As such we are unable to say how effective this control 

method would be in reducing the adult mosquito population in a given area. 

However, our results show that O. niloticus fish were so effective in reducing 

immature mosquito populations in the fishponds studied, that there is likely to be a 

noticeable effect on the adult mosquito population in the area. 

Benefits of larvivorous fish are that the mosquito larvae cannot build up a 

physiological resistance. Also, fish populations are generally self-sustaining and do 

not depend on the presence of larvae. By contrast survival of other biological 

control agents is often dependent on the mosquito population not being entirely 

eliminated (Wright et al. 1972). In addition some Anopheles larvae have 

significantly prolonged developmental times in the presence of fish and emerge as 

smaller adults (Bond et al. 2005). Smaller females, in turn, have significantly 

reduced host seeking (Takken et al. 1998) making them less efficient malaria 
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vectors. As well as protection from mosquito-borne diseases such as malaria, O. 

niloticus has additional benefits. The fish are relatively inexpensive and six months 

after stocking, the larger fish can be harvested providing a sustainable source of 

income and protein to rural farmers. This fish is already farmed and eaten in this 

region of Kenya so acceptance by both the local communities and the 

administrative sectors should pose no problem. 

Larval control has long been neglected. However, it can be an effective control tool 

due to the low mobility of larval mosquitoes (Killeen et al. 2002), especially where 

the principle breeding habitats are man-made (Carlson et al. 2004, Fillinger et al. 

2004, Mutuku et al. 2006b) and can be easily identified (Walker and Lynch 2007). 

To verify the findings in this study, in villages both with and without fish 

introductions, it is necessary to monitor adult mosquito densities and malaria 

incidence to confirm the use of O. niloticus as a malaria control tool. 

In conclusion, our results indicate that O. niloticus can dramatically reduce 

mosquito larval densities in fishponds for at least six months and that this reduction 

is directly through predation. The relative population density of An. gambiae s.l., a 

very efficient malaria vector, was reduced by 94% and this reduction was 

statistically highly significant. 
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7.1 Abstract  

Entomopathogenic fungi are being investigated as a new mosquito control tool 

because insecticide resistance is preventing successful mosquito control in many 

countries, and new methods are required that can target insecticide-resistant 

malaria vectors. Although laboratory studies have previously examined the effects 

of entomopathogenic fungi against adult mosquitoes, most application methods 

used cannot be readily deployed in the field. Because the fungi are themselves 

biological organisms that can be affected by the formulation they are suspended in 

and substrate onto which they are placed, it is important to test potential application 

methods that will not adversely affect them and which can also be used in the field. 

The two objectives of this study were to investigate any differences in fungal 

susceptibility between an insecticide-resistant and insecticide-susceptible strain of 

Anopheles gambiae Giles sensu stricto, and to test a potential field application 

method with respect to the viability and virulence of two fungal species. Pieces of 

white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or 

Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 

27±1°C, 65±10% RH and the viability of the fungal conidia was recorded at 

different time points. Tube bioassays were used to infect insecticide-resistant 

(VKPER) and insecticide-susceptible (SKK) strains of An. gambiae s.s., and 

survival analysis was used to determine effects of mosquito strain, fungus species 

or time since fungal treatment of the net. The insecticide-resistant VKPER strain 

was significantly more susceptible to fungal infection than the insecticide-

susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent 

than M. anisopliae for both mosquito strains, although this may be linked to the 

different viabilities of these fungal species. The viability of both fungal species 

decreased significantly one day after application onto polyester netting when 

compared to the viability of conidia remaining in suspension. That the insecticide-

resistant mosquito strain was susceptible to both species of fungus indicates that 

entomopathogenic fungi can be used in resistance management and integrated 

vector management programmes to target insecticide-resistant mosquitoes. 
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Although fungal viability significantly decreased when applied to the netting, the 

effectiveness of the fungal treatment at killing mosquitoes did not significantly 

deteriorate. Field trials over a longer trial period need to be carried out to verify 

whether polyester netting is a good candidate for operational use, and to see if wild 

insecticide-resistant mosquitoes are as susceptible to fungal infection as the 

VKPER strain. 

 

7.2 Introduction  

It is estimated that in 2008 there were 243 million cases of malaria and 863,000 

deaths (World Health Organisation 2009). Clearly, mosquito-borne diseases are 

still a major health risk, particularly in developing countries. Current mosquito 

control strategies depend heavily on insecticides but mosquito populations in 

various disease-endemic countries are developing resistance (Hemingway and 

Ranson 2000). Because pyrethroids are the only insecticide class that has World 

Health Organisation Pesticides Evaluation Scheme (WHOPES) approval for use on 

insecticide-treated nets, pyrethroid resistance can seriously hamper vector control 

activities. Not only does insecticide resistance reduce the capacity to repel and kill 

mosquitoes, there is also evidence that insecticides can select for certain 

behaviourally resistant traits, such as earlier mosquito feeding times and earlier 

exiting from houses with treated nets (Mathenge et al. 2001, Pates and Curtis 

2005). Furthermore, resistance to some insecticides can confer cross-resistance to 

other insecticides, notably the organochlorine DDT (Chandre et al. 1999b, Brooke 

et al. 2001, Brengues et al. 2003, Enayati et al. 2003). There is, therefore, an 

urgent need for alternative tools or strategies that can effectively control 

insecticide-resistant mosquito populations.  

At present biocontrol and biopesticide agents are only operational against 

mosquito larvae and pupae (Kay et al. 2002, Mittal 2003, Howard et al. 2007, 

Howard et al. 2009) (Chapters 3 & 6). However, it is the longevity of the adult 



Chapter 7 

160 

mosquito that has the greatest impact on the vectorial capacity, and hence 

transmission intensity, of a mosquito population (MacDonald 1957). Biocontrol 

agents that target the adult mosquitoes, and to which resistance cannot readily 

develop, would be useful tools for mosquito control. 

The hyphomycetous entomopathogenic fungi Metarhizium anisopliae and 

Beauveria bassiana have been used to target pest insects for over a century (Lord 

2005), and have recently been evaluated for mosquito control purposes (see Table 

7.1). These fungi infect mosquitoes through direct contact with the cuticle. The 

fungal conidia penetrate the mosquito cuticle and grow into the haemocoel where 

they produce a blend of organic compounds, causing internal mechanical damage, 

nutrient depletion and death (Gillespie and Clayton 1989). Lethal effects start to 

occur three to four days after infection (Scholte et al. 2003b, Scholte et al. 2003a, 

Achonduh and Tondje 2008, Farenhorst et al. 2008). These entomopathogenic 

fungi are effective at killing both insecticide-resistant and insecticide-susceptible 

mosquito populations (Farenhorst et al. 2009, Kikankie et al. 2010). Furthermore, 

M. anisopliae and B. bassiana kill mosquitoes in a slower manner than insecticides 

kill insecticide-susceptible mosquito populations (Scholte et al. 2003a, Kamala 

Kannan et al. 2008, Mnyone et al. 2009a). To prevent the evolution of resistance it 

is important to let organisms reproduce before they are killed, to allow more than 

just the individuals with resistance/tolerance genes to contribute to the next 

generation. It is therefore thought that resistance to fungi will not evolve readily and 

that they have the possibility to be “evolution-proof” (Thomas and Read 2007, 

Read et al. 2009). This late acting approach is possible in malaria control where 

the extrinsic incubation period (EIP) of the parasite is usually three to four 

gonotrophic cycle lengths (depending on temperature and female susceptibility to 

infection with Plasmodium). Ideally the fungi would kill the mosquito after 

reproduction had occurred but before she can transmit the malaria parasite. 

Previous studies have used many different combinations of formulation/substrate 

(Table 7.1) to demonstrate the effectiveness of entomopathogenic fungi to infect 
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and kill mosquitoes. However, many of the application methods previously used 

cannot be deployed easily in the field, either for small-scale tests or for operational 

vector control. Because fungal spores are biological entities that are affected by the 

application (formulation/substrate) methods used, it is important to test potential 

methods that can be used in the field. Many traditional rural African houses are 

built with open eaves to help air flow within the house. Trials in The Gambia and 

São Tomé have shown that eaves are important house entry points for Anopheles 

gambiae Giles s.l. (Charlwood et al. 2003, Njie et al. 2009). Rural African houses 

also tend to have open windows through which mosquitoes can enter. Eave 

curtains and insecticide-treated curtains have proven effective at decreasing the 

numbers of indoor-resting mosquitoes (Majori et al. 1987) and reducing child 

mortality (Diallo et al. 2004). Curtains have a smaller surface area than bednets, do 

not come into close contact with humans and would be hung where mosquitoes 

enter houses. Application of fungal spores onto curtains may, therefore, be an 

interesting application method for mosquito control in the field.  

There were two objectives of this study; the first was to compare the fungal 

susceptibility of an insecticide-resistant and insecticide-susceptible strain of 

Anopheles gambiae s.s.. The second objective was to test a potential application 

method that could be used in the field. Therefore, M. anisopliae and B. bassiana 

conidia were separately suspended in mineral oil and these suspensions were 

separately applied onto white polyester netting. We then used tube bioassays to 

test the potential of these nets to infect and kill An. gambiae s.s. SKK (an 

insecticide-susceptible strain) and An. gambiae s.s. VKPER (an insecticide-

resistant strain) mosquitoes at different time points after the nets had been treated 

with fungal conidia. In addition, fungal viability after application onto the polyester 

nets was measured. 
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Table 7.1. Different formulation/substrate application methods used to infect adult malaria vector mosquitoes with the 
entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in previous studies 

 

Fungus Formulation Substrate Mosquito species Lab or field Reference 

 

B. bassiana Dry conidia   An. albimanus  Laboratory (Clark et al. 1968) 

B. bassiana Dry conidia Agar plate An. gambiae s.s. Laboratory (Scholte et al. 2003a) 

B. bassiana Dry conidia Plastic tube An. gambiae s.s., Laboratory (Farenhorst et al. 2009) 

      An. funestus, An. arabiensis  (Kikankie et al. 2010) 

B. bassiana Dry conidia Tissue paper An. gambiae s.s. Laboratory (Achonduh and Tondje 2008) 

B. bassiana Ondina oil Cardboard An. gambiae s.s. Laboratory (Farenhorst and Knols 2010) 

B. bassiana Ondina oil Paper and net An. gambiae s.s.  Laboratory (Mnyone et al. 2009b) 

B. bassiana  Ondina/ShellSol Cage mesh An. stephensi  Laboratory (Blanford et al. 2005 & 2009) 

B. bassiana  Ondina/ShellSol Cardboard pot An. stephensi  Laboratory (Blanford et al. 2005) 

B. bassiana  Ondina/ShellSol Direct application   An. stephensi Laboratory (Blanford et al. 2005) 

B. bassiana ShellSol T Cardboard An. gambiae s.s. Laboratory (Farenhorst and Knols 2010) 

B. bassiana ShellSol T Proofing paper An. gambiae s.s. Laboratory (Farenhorst and Knols 2010) 

M. anisopliae Coconut oil Filter paper An. stephensi  Laboratory (Kamala Kannan et al. 2008) 
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M. anisopliae Dry conidia   An. stephensi  Laboratory (Kamala Kannan et al. 2008) 

M. anisopliae Dry conidia Agar plate An. gambiae s.s. Laboratory (Scholte et al. 2003a) 

M. anisopliae Dry conidia Plastic tube An. gambiae s.s. Laboratory (Scholte et al. 2003b) 

M. anisopliae Enerpar oil Proofing paper An. gam s.s., An. arab Laboratory (Mnyone et al. 2009a) 

M. anisopliae  Enerpar/Ondina Black cotton  An. arabiensis  Field  (Lwetoijera et al. 2010) 

M. anisopliae Ondina oil Paper and net An. gambiae s.s.  Laboratory (Mnyone et al. 2009b) 

M. anisopliae Ondina oil Cardboard An. gambiae s.s. Laboratory (Farenhorst and Knols 2010) 

M. anisopliae Ondina oil Clay pot An. gam s.s., An. fun Laboratory (Farenhorst et al. 2008) 

M. anisopliae  Ondina/ShellSol Cardboard pot An. stephensi  Laboratory (Blanford et al. 2005) 

M. anisopliae  Ondina/ShellSol Cage mesh An. stephensi  Laboratory (Blanford et al. 2009) 

M. anisopliae ShellSol T Cardboard An. gambiae s.s. Laboratory (Farenhorst and Knols 2010) 

M. anisopliae ShellSol T Proofing paper An. gambiae s.s. Laboratory (Farenhorst and Knols 2010) 

M. anisopliae Sunflower oil Cotton netting An. gambiae s.s. Laboratory (Scholte 2004) 

M. anisopliae Sunflower oil Filter paper An. gambiae s.s.  Laboratory (Scholte et al. 2003b) 

M. anisopliae Vegetable oil Black cotton  An. gambiae s.l.  Field  (Scholte et al. 2005) 

M. anisopliae Vegetable oil Mud walls An. gambiae s.s. Field  (Scholte 2004) 
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7.3 Materials and Methods 

7.3.1 Mosquitoes  

The two mosquito strains used in the bioassays were An. gambiae s.s. VKPER and 

An. gambiae s.s. SKK. The SKK strain is an insecticide-susceptible strain 

originating from Suakoko, Liberia and maintained as a laboratory colony at 

Wageningen University, The Netherlands, since 1989. The VKPER strain is a 

pyrethroid-resistant strain that was initially collected from the Kou Valley, Burkina 

Faso and then selected repeatedly to fix the pyrethroid knockdown resistance (kdr) 

gene. This gene causes target site insensitivity (Enayati et al. 2003) and was first 

reported in West African mosquitoes in the early 1990s (Martinez-Torres et al. 

1998). The VKPER strain has been maintained as a colony at the Centre de 

Recherche Entomologique de Cotonou (CREC) in Benin, West Africa, for several 

years. Eggs from this colony were shipped to Wageningen University, and a colony 

was started.  

Both mosquito strains were subject to standard rearing procedures using tap water 

in plastic trays (10 x 25 x 8 cm) and fed with ‘Tetramin ®’ fish food daily. Pupae 

were selected daily and adults were held in standard 30 x 30 x 30 cm gauze-

covered cages and fed on a 6% glucose solution ad libitum. The larval trays and 

adult cages were kept in climate chambers held at 27 ± 1°C, 80 ± 10% RH and a 

12:12 hr L:D photoperiod. 

 

7.3.2 Fungi 

We studied the effects of two species of entomopathogenic fungi. Metarhizium 

anisopliae var. anisopliae (Metsch.) Sorokin isolate ICIPE-30 was produced at 

Wageningen University, The Netherlands, using solid-state fermentation in aerated 

packed bed systems with glucose-impregnated hemp as a growth substrate. 

Beauveria bassiana (Balsamo) Vuillemin IMI391510 was grown in the laboratory of 
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Penn State University, USA, by initially growing the fungus in a liquid medium and 

then inoculating autoclaved barley flakes in mushroom spawn bags. 

Fungal conidia were dried at ambient temperature (<5% RH) and stored in the 

refrigerator until use. Dry conidia of M. anisopliae and B. bassiana were separately 

suspended in the synthetic isoparaffinic hydrocarbon solvent ShellSol T ™ (Shell, 

The Netherlands). ShellSol T was selected because the delivery system of fungal 

conidia suspended in this solvent has been shown to be significantly more virulent 

to An. gambiae s.s. mosquitoes when compared to conidia suspended in other oils 

(Farenhorst and Knols 2010). A Bürker-Türk haemocyte counter and light 

microscope (at x400) were used to determine accurate conidial concentrations per 

ml ShellSol T. Fresh suspensions were made for each experimental replicate. 

  

7.3.3 Net treatment 

The netting used was made of white 100% multifilament 150 denier warp-knitted 

polyester fibres with a mesh size of 12 holes per cm2 (Vestergaard Frandsen, 

Switzerland). Pieces 15 x 25 cm were used and dipped in the conidia/ShellSol T 

suspensions resulting in treatment densities of 7.2 x 1012 conidia per m2. Control 

netting was treated with ShellSol T only.  

Fungus-treated pieces of netting were held in a climate chamber at Wageningen 

University under constant conditions of 27 ± 1°C and 65 ± 10% RH, to simulate 

average climatic conditions of field settings. The viability of fungal conidia (see 

section 7.3.5 below) was scored at 1 and 7 days post-treatment, and mosquito 

bioassays (see section 7.3.4 below) were run 2 and 7 days post-treatment. 

 

7.3.4 Tube bioassays 

Separate pieces of control, M. anisopliae or B. bassiana-treated netting were 
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placed into a tube bioassay set up (8 cm diameter x 15 cm high; see Figure 1E in 

Farenhorst and Knols (2010)) such that the netting covered the inside of the tube. 

These were stored in a climate chamber at Wageningen University at 27 ± 1°C and 

65 ± 10% RH until testing. Tests were carried out in the climate chamber on day 2 

and day 7 after net treatment.  

For the bioassays, the tubes were sealed at both ends with cling film, a surface that 

mosquitoes do not like resting on. Twenty-five 3-5 day old non-blood fed female 

An. gambiae VKPER or SKK strain mosquitoes were introduced into each tube and 

exposed to the nets for 1 hr. Four replicates were performed per time point. After 

the exposure time the mosquitoes were placed into cups and had access to 6% 

glucose solution ad libitum. Every 24 hrs mosquitoes were recorded as being alive 

if they were still able to fly (World Health Organisation 1998). Mortality was scored 

until all the fungus-exposed mosquitoes had died.  

Dead mosquitoes were removed daily and checked for fungal infection. Cadavers 

were dipped in 70% ethanol, for external sterilization, and placed onto moist filter 

paper in Petri dishes that were then sealed with Parafilm and placed into a 27°C 

incubator in the dark. After three days it was possible to visually score the 

proportion of mosquitoes showing fungal infection based on the presence of 

sporulating fungal hyphae (M. anisopliae conidia are green (see bottom right photo 

on the thesis cover); B. bassiana conidia are white).  

 

7.3.5 Fungal viability 

As a measure for conidial viability, the germination of the conidia on a rich agar 

medium was counted. Either a drop of the conidial suspension or a 1 cm2 piece of 

the treated netting was placed onto Sabouraud Dextrose Agar (SDA) plates. The 

SDA plates had 0.001% benomyl added so that accurate germination could be 

recorded; benomyl is a fungicidal compound that restricts the hyphal growth 

without affecting germination (Milner et al. 1991). These plates were then 
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incubated at 27°C in the dark and germination was scored 24 hrs later using a light 

microscope at x400. A conidium was scored as germinated if the germ tube was at 

least twice the length of the conidium. A minimum of 300 conidia were counted per 

plate; four replicates of each fungus species/time point were carried out.  

 

7.3.6 Statistical analysis  

For the mosquito survival analysis, differences between the control and fungus-

exposed mosquito survival were investigated using Cox regression analysis in 

SPSS 17.0 (SPSS Inc 2008). Significant mosquito strain and fungus species 

effects were further investigated using Cox regression. Mortality rates were given 

as Hazard Ratios (HR), which give the average daily risk of dying. Chi-square tests 

were carried out to investigate the difference between the fungal viability in 

suspension and on treated nets using SAS 9.1 (SAS Institute Inc. 2004). Statistical 

analyses were carried out at the 5% significance level. 

 

7.4 Results 

7.4.1 Tube bioassays  

Both M. anisopliae and B. bassiana were pathogenic to both strains of An. 

gambiae s.s., with significantly increased mortality in all fungus-exposed/mosquito 

strain combinations (Table 7.2). Survival curves for all fungus-infected mosquitoes 

were significantly different from the respective controls for the mosquitoes exposed 

two days post net treatment and those exposed seven days after net treatment 

(Figure 7.1). Furthermore, B. bassiana was significantly more pathogenic than M. 

anisopliae both for SKK (day 2 HR=3.47, p<0.0001; day 7 HR=2.84, p<0.0001) and 

VKPER (day 2 HR=1.89, p<0.0001; day 7 HR=1.45, p<0.05).  

There was no significant difference between the control VKPER and control SKK  
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Figure 7.1. Effect of entomopathogenic fungal infection on mean cumulative 
proportional survival (±SE) of Anopheles gambiae s.s. SKK (dashed grey) and An. 
gambiae s.s. VKPER (solid black) mosquitoes after exposure to Metarhizium 
anisopliae-treated (squares), Beauveria bassiana-treated (triangles) or control 
(circles) netting 2 (top) or 7 (bottom) days after net treatment 
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Table 7.2. Survival analysis of two strains of Anopheles gambiae s.s. exposed to 
two species of entomopathogenic fungi; data show Cox regression Hazard Ratio 
(HR) outcomes (95% CI), statistical p-values are relative to the relevant control 

 

Fungus        Mosquito  2 days after treatment          7 days after treatment        

         Strain HR (95% CI)         p          HR (95% CI)       p 

 

M. anisopliae SKK       3.18 (2.31, 4.37)      <0.0001     2.60 (1.94, 3.48)     <0.0001 

          VKPER  17.10 (9.68, 30.20)  <0.0001   29.94 (12.72, 70.46)  <0.0001 

B. bassiana   SKK       11.01 (7.43, 16.32)   <0.0001   7.38 (5.21, 10.45)     <0.0001 

          VKPER  32.25 (17.63, 59.02) <0.0001 43.52 (18.02, 105.11) <0.0001 

SKK = the insecticide-susceptible An. gambiae s.s. SKK strain; VKPER = the 
insecticide-resistant An. gambiae s.s. VKPER strain 

 

mortalities (HR=1.63, p=0.053). However, the insecticide-resistant mosquito strain 

VKPER was significantly more susceptible to fungal infection when compared to 

the SKK strain after being exposed to the two (M. anisopliae HR=4.46, p<0.0001; 

B. bassiana HR=3.59, p<0.0001) and seven (M. anisopliae HR=2.54, p<0.0001; B. 

bassiana HR=2.33, p<0.0001) day old net treatments. The number of days since 

the fungal treatments were applied to the nets caused no significant differences in 

the mortality of either the SKK (HR=1.02, p=0.85) or VKPER (HR=0.83, p=0.09) 

mosquitoes. This indicates that despite the significant drop in fungal viability (see 

section 7.4.2), the efficacy of the fungal conidia in terms of mosquito pathogenicity 

was equally high seven days after net application. 

For both VKPER and SKK mosquitoes, >80% of the dead mosquitoes that were 

exposed to the fungus-treated netting showed evidence of fungal infection in the 

form of sporulation. Sporulation rates by themselves do not equate to fungal 

infection because sporulation varies with many things including fungal dose and 
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virulence of fungal isolate, age of the mosquito and presence of microbial 

competitors. Although not a perfect indicator for fungal infection, the sporulation of 

the M. anisopliae exposed mosquitoes could be of interest because the viability of 

the M. anisopliae used was so low. For the VKPER mosquitoes that were exposed 

to the 2 day old M. anisopliae treated netting (which had a viability of 13% the day 

before the bioassay), 82% (80/98) of the mosquitoes showed fungal sporulation. 

For the mosquitoes exposed to the seven day old M. anisopliae net (where the 

viability was 2%), 84% (59/70) of the mosquitoes showed infection. This was not 

significantly different from the numbers infected on day 2 (χ2=0.02, df=1, p=0.65) 

despite the significant decrease in the viability of the spores on the netting. 

 

7.4.2 Fungal viability 

The viabilities, expressed as the germination rate of fungal conidia, of B. bassiana 

and M. anisopliae in the ShellSol T suspensions were 77% and 36% respectively. 

When the treated polyester net was kept in a climate chamber held at 27 ± 1°C, 65 

± 10% RH for one day, the viabilities of B. bassiana and M. anisopliae were 71% 

and 13% respectively. These viabilities had both dropped significantly (B. bassiana 

χ2=5.21, df=1, p<0.03; M. anisopliae χ2=192.9, df=1, p<0.0001) when compared to 

the viabilities in suspension. The viabilities of the two fungal species after seven 

days in a climate chamber were 62% and 2% respectively, for B. bassiana and M. 

anisopliae. On top of the significant drop in viability one day after fungal spore 

application, seven days after net treatment there were significant losses in viability 

when compared to the day 1 viabilities for both fungal species (B. bassiana 

χ2=50.9, df=1, p<0.0001; M. anisopliae χ2=215.5, df=1, p<0.0001).  

 

7.5 Discussion 

For both species of fungus tested, the insecticide-resistant An. gambiae s.s. 
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VKPER strain was significantly more susceptible to fungal infection than the 

insecticide-susceptible An. gambiae s.s. SKK strain. The risk of dying was around 

2-4 times higher for VKPER depending on fungal species and age of treatment on 

the net. A previous study used colony and wild F1 An. arabiensis mosquitoes that 

were exposed to dry conidia of B. bassiana. They found no significant differences 

between the fungal susceptibility of the insecticide-resistant or insecticide-

susceptible strains (Kikankie et al. 2010). Another study using dry conidia looked at 

various Anopheles species with various types of insecticide resistance and also 

found no differences in fungal susceptibility between the insecticide-susceptible 

and insecticide-resistant strains (Farenhorst et al. 2009). The main difference 

between our and these previous studies is that in our study, mosquitoes were 

exposed to ShellSol T formulated conidia for 1 hr, whereas the two studies 

mentioned above exposed mosquitoes to dry conidia for 24 hrs (Farenhorst et al. 

2009, Kikankie et al. 2010). Dry conidia have been shown to kill mosquitoes faster 

than oil formulated conidia (Scholte et al. 2003b). It is therefore likely that the 

studies using the 24 hr exposure to dry conidia, whilst good for proving any 

fundamental principles requiring high fungal infection, caused the mosquitoes to 

receive such high doses of fungal infection that any subtle strain effects could not 

be detected. 

Beauveria bassiana was significantly more virulent than M. anisopliae for both 

mosquito strains. However, it is likely that the difference in virulence is linked to the 

differing viabilities of the B. bassiana and M. anisopliae on the treated nets used in 

this study, as this would lead to lower doses being received by the M. anisopliae-

exposed mosquitoes when compared to the mosquitoes exposed to B. bassiana. It 

is possible that batches of M. anisopliae with a higher viability would have similar 

results to B. bassiana because most other studies involving adult mosquitoes that 

have used these two fungal species have found no differences in their virulence. 

Blanford et al. (2005) tested a range of oil-formulated fungal isolates of B. bassiana 

and M. anisopliae against An. stephensi mosquitoes. One M. anisopliae isolate 

used did not prove virulent to mosquitoes, whilst the other had the same virulence 
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as the B. bassiana isolates (Blanford et al. 2005). Similarly, a study examining 

different application methods found similar virulence levels for oil-formulated M. 

anisopliae and B. bassiana when applied to both proofing paper and cardboard, 

and when different doses of each fungus were applied to proofing paper 

(Farenhorst and Knols 2010). When dry conidia were used, Scholte et al. (2003a) 

found that M. anisopliae was significantly more virulent to mosquitoes than B. 

bassiana after a three day exposure, although it is unclear what the respective 

viabilities of the conidia were. Another study using dry conidia found that the 

virulence of M. anisopliae and B. bassiana were similar for a range of mosquito 

species and strains (Farenhorst et al. 2009). 

Broadly speaking, previous fungal studies in the laboratory have used application 

methods that fall into three categories; dry conidia, using paper as a substrate and 

using substrates that can directly be used in the field. Of the latter type, studies 

have been carried out using mosquito cage mesh (Blanford et al. 2005, Blanford et 

al. 2009), clay pots (Farenhorst et al. 2008) and cotton netting (Scholte 2004). In 

addition to these laboratory studies, field studies in Tanzania have used black 

cotton cloths (Scholte et al. 2005, Lwetoijera et al. 2010) and direct application 

onto a mud wall (Scholte 2004). Of these studies, the fungal viabilities after 

application onto the substrates were measured for the cotton netting in the 

laboratory (Scholte 2004) and the black cotton cloths used in the field (Scholte et 

al. 2005). In the laboratory, the cotton netting was kept in aluminium foil in the 

same climate chambers as used in our study, and the viabilities of M. anisopliae 

were 100% in suspension, 94% one day after net treatment and 82% one week 

after net treatment (Scholte 2004). For the black cotton sheets used in Tanzania, 

the M. anisopliae viability decreased from 96% in suspension to 95% one day after 

sheet impregnation and 83% after a week (Scholte et al. 2005). These one day and 

one week drops in viability on cotton were much less than observed in this study on 

polyester netting with M. anisopliae, suggesting cotton may be a more suitable 

substrate for the application of entomopathogenic fungi. Although the M. anisopliae 

we used was of poor quality, with viability in suspension just 36%, the differences 
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between fungal viability on cotton and the viability on polyester could also be 

explained by inherent differences between cotton and polyester netting. Because 

polyester is a synthetic material, certain chemicals used in its manufacture could 

be harmful to the fungal conidia. Unfortunately, due to the different conidial 

viabilities, doses, exposure times and formulations used for this study and the 

cotton netting laboratory trial (Scholte 2004) it is not possible to directly compare 

the relative effect of each type of netting/fungus application method at killing 

mosquitoes in the laboratory. 

When looking at the viability data it appears that the polyester netting/ShellSol T 

application method would not be a very suitable method for the delivery of viable 

entomopathogenic fungal spores for mosquito control. However, the virulence data 

examining the direct effect on mosquito mortality tells a different story. Regardless 

of the time since net treatment with fungi, both fungal species caused significantly 

increased mortality to both mosquito strains used. The viability of the M. anisopliae-

treated nets was just 2% seven days after net treatment. However, the 

effectiveness of the fungal treatment at killing mosquitoes did not significantly 

deteriorate during the length of the trial and high infectivity rates were observed. 

The differences between the viability and virulence results may be due to the 

differing abilities of the fungal conidia to germinate on mosquito cuticles and 

benomyl-enriched agar. Whilst benomyl has been shown to not adversely affect the 

germination of M. anisopliae spores when compared to their germination in liquid 

medium (Milner et al. 1991), it would be no surprise that such a difference occurs 

because benomyl is a fungicide and insects are the natural hosts for these fungi. 

It is thought that the slow kill speed of entomopathogenic fungi could lead to them 

being evolution-proof against resistance (Read et al. 2009). This is because any 

resistance-related genes would be diluted by the genes of susceptible individuals 

passed onto the next generation before they have succumbed to the fungal 

infection (Read et al. 2009). For this to be an ethically acceptable strategy for 

malaria control, the fungi should kill the mosquitoes before the parasite has 
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completed its EIP inside the mosquito. The EIP of malaria parasites can be 

calculated using the equation: 

N (days) = 111/(T – tmin) 

where T is the mean temperature and tmin is taken as 16°C (Detinova 1962). Our 

experiments were carried out at 27°C; at this temperature the EIP would be 10 

days. If entomopathogenic fungi are used on window curtains or bednets, thus 

targeting host seeking mosquitoes, then a valid assumption would be that a 

mosquito acquires both fungal and malaria infections at the same time. Given an 

EIP of 10 days at our experimental temperature, our results show that for the 

VKPER strain mosquitoes, all mosquitoes would have been killed by B. bassiana 

by this time, and >90% by M. anisopliae. In other words, very few fungus-infected 

VKPER mosquitoes would have survived long enough to transmit malaria. For the 

less susceptible SKK strain, B. bassiana would have killed 90% and M. anisopliae 

just 50% of the mosquitoes by the time the mosquitoes became infectious with 

malaria. This slower speed of kill found with M. anisopliae infected SKK could allow 

more malaria transmission to occur, but it will also allow more mosquito 

reproduction, and thus less chance of resistance to fungal infection developing. 

 

7.6 Conclusions  

We show for the first time that insecticide-resistant An. gambiae s.s. VKPER are 

significantly more susceptible to both fungal species when compared to the 

insecticide-susceptible An. gambiae s.s. SKK. This indicates that 

entomopathogenic fungi could be used in resistance management and integrated 

vector management programmes to target insecticide-resistant mosquitoes, 

possibly leading to the conservation of insecticide-susceptible genes in a mosquito 

population. Field trials over a longer trial period need to be carried out to see if wild 

insecticide-resistant mosquitoes are as susceptible as the colony strain used in this 
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trial. 

This is the first published study to treat polyester netting with fungal spores. 

Although fungal viability significantly decreased when applied to polyester netting, 

the effectiveness of the fungal treatment at killing mosquitoes did not significantly 

deteriorate during the length of the trial. Following this laboratory trial, studies 

should be carried out to determine whether polyester netting would be an effective 

application method for entomopathogenic fungi in the field. 

 

7.7 Acknowledgements 

We would like to thank Nina Jenkins (Penn State University, USA) and Arjen 

Rinzema (Wageningen University, The Netherlands) for providing the Beauveria 

bassiana and Metarhizium anisopliae respectively. Gabriella Bukovinzkine’ Kiss 

and the Laboratory of Entomology insectary team are thanked for providing the An. 

gambiae s.s. SKK mosquitoes, and Raphael N’Guessan is thanked for providing 

the An. gambiae s.s. VKPER mosquitoes. Matt Thomas and Marcel Dicke are 

thanked for their comments on a previous version of this manuscript, as are two 

anonymous reviewers. This study was funded by the Adessium Foundation, The 

Netherlands, and a travel grant from the Royal Dutch Academy of Arts and 

Sciences (KNAW). 



 

176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

177 

 

 

Chapter 8 

 

 

The entomopathogenic fungus 
Beauveria bassiana reduces blood 

feeding in wild insecticide-
resistant mosquitoes          
in Benin, West Africa 

 

 

Annabel F.V. Howard, Raphael N’Guessan, Constantianus 

Koenraadt, Alex Asidi, Marit Farenhorst, Martin Akogbéto, 

Matthew Thomas, Bart Knols, Willem Takken 

 

 

 

Submitted in a slightly modified form 



Chapter 8 

178 

8.1 Abstract  

Mosquito-borne diseases are still a major health risk in many developing countries, 

and the emergence of multi-insecticide-resistant mosquitoes is threatening the 

future of vector control. Therefore, new tools that can manage resistant mosquitoes 

are required. Laboratory studies show that entomopathogenic fungi can kill 

insecticide-resistant malaria vectors but this needs to be verified in the field. The 

present study investigated whether these fungi will survive under field conditions 

and be effective against wild multi-insecticide-resistant West African mosquitoes. 

The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were 

separately applied to white polyester netting and used in combination with either a 

permethrin or untreated bednet in an experimental hut trial to examine the effects 

of the two species of fungi on the survival and behaviour of wild mosquitoes. In 

total, 1125 female mosquitoes were collected during the hut trial, mainly Culex 

quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles 

were collected to allow the effect the fungi may have on this malaria vector to be 

analysed. None of the treatment combinations caused significantly increased 

mortality of Cx. quinquefasciatus when compared to the control hut. The only 

significant behaviour modification found was a reduction in blood feeding by Cx. 

quinquefasciatus, caused by the permethrin and B. bassiana treatments, although 

no additive effect was seen in the B. bassiana and permethrin combination 

treatment. This is the first time that an entomopathogenic fungus has been shown 

to reduce blood feeding of wild mosquitoes. This behaviour modification indicates 

that B. bassiana could potentially be a new mosquito control tool effective at 

reducing disease transmission, although further field work specifically targeting 

malaria vectors should be carried out to verify this. In addition to the Culex findings, 

laboratory tests and field bioassays examining the behaviour and mortality of an 

insecticide-resistant strain of the malaria vector An. gambiae s.s. in response to 

fungal infection showed significant mortality in the field, and no behavioural 

deterrence. Conidial viability decreased under field conditions. 
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8.2 Introduction 

Current mosquito control for the prevention of malaria and other vector-borne 

diseases relies heavily on pyrethroid insecticides, most notably through the use of 

insecticide-treated nets (ITN) and indoor residual spraying (IRS) (World Health 

Organisation 2009). Unfortunately, the emergence of insecticide resistance in 

some geographical areas is threatening vector control efforts (N'Guessan et al. 

2007). It is widely accepted that the emergence of insecticide resistance in 

mosquitoes in Benin, as in many other areas of the world, was due to heavy 

pesticide use in agriculture (Lines 1988, Diabate et al. 2002, Akogbeto et al. 2005, 

Corbel et al. 2007, Yadouleton et al. 2009). However, the impact of this resistance 

is increasingly affecting the public health sector as well. It is therefore important to 

search for alternative tools that can be used to control insecticide-resistant 

mosquitoes.  

The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana can 

be used to target a wide range of insects (Lord 2005, Thomas and Read 2007) 

including adult mosquitoes (Scholte et al. 2003a, Achonduh and Tondje 2008). The 

conidia of these fungi, once germinated, directly penetrate the mosquito cuticle. 

Once inside the mosquito haemocoel, the fungi produce compounds and 

eventually kill the mosquitoes by a combination of nutrient depletion and internal 

mechanical damage (Gillespie and Clayton 1989). According to previous research, 

this starts leading to insect death approximately three-to-four days after infection 

(Scholte et al. 2003b, Scholte et al. 2003a, Farenhorst et al. 2008). This slow kill 

time is in contrast to fast acting insecticides currently in use. However, because the 

malaria parasite takes >10 days to develop within the mosquito, even a relatively 

modest speed of kill can prevent malaria transmission, as long as coverage (i.e. 

probability of fungal infection per feeding cycle) is high (Hancock 2009, Read et al. 

2009). Moreover, previous studies have revealed reductions in mosquito feeding 

propensity and fecundity (Scholte et al. 2006) due to fungal infection, and B. 

bassiana was shown to limit the development of malaria parasites in the mosquito 
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(Blanford et al. 2005). In addition, slow speed of kill potentially allows fungus-

infected mosquitoes to attain some of their life-time reproductive output, which 

could reduce selection pressure for resistance. Accordingly, in order to determine 

overall transmission blocking (and indeed, overall fitness costs of infection) it is 

important to evaluate not only the mortality rate but also sub- and pre-lethal 

consequences of infection.  

Metarhizium anisopliae and B. bassiana are effective at infecting and killing a 

range of insecticide-susceptible mosquitoes including many Anopheles (Scholte et 

al. 2004b, Kamala Kannan et al. 2008, Mnyone et al. 2009a), Culex (Scholte et al. 

2003b, Scholte et al. 2004b) and Aedes (Scholte et al. 2007, de Paula et al. 2008) 

mosquito species. In addition, these fungi can cause significant mortality to 

insecticide-resistant Anopheles mosquitoes in the laboratory (Farenhorst et al. 

2009, Kikankie et al. 2010), with insecticide-resistant mosquitoes being significantly 

more susceptible to fungal infection when compared to insecticide-susceptible 

mosquitoes (Howard et al. 2010) (Chapter 7), leading to interesting possibilities 

with population dynamics and the conservation of insecticide-susceptible genes. 

Despite the encouraging results from the laboratory, only two studies have been 

published using these entomopathogenic fungi against mosquitoes in the field, and 

neither of these studies targeted insecticide-resistant mosquitoes (Scholte et al. 

2005, Lwetoijera et al. 2010). One study used extra-domiciliary odour-baited traps 

to target wild Anopheles arabiensis with M. anisopliae-treated black cotton eave 

baffles and panels (Lwetoijera et al. 2010). Another study in rural Tanzania 

impregnated cotton sheets with M. anisopliae that were suspended from the 

ceilings of houses so that resting mosquitoes would come into contact with the 

fungus (Scholte et al. 2005). Both of these field studies showed that fungal 

infections significantly shortened the life span of infected mosquitoes when 

compared to uninfected mosquitoes (Scholte et al. 2005, Lwetoijera et al. 2010), 

but neither study examined behavioural effects such as blood feeding.  

Because entomopathogenic fungi are themselves living organisms it is important to 
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test whether they will survive and be effective in field conditions where the 

temperature and humidity fluctuate. Also, due to proposed future application 

methods, it is important to test them alone and in the presence of existing control 

tools such as ITNs to monitor any potential additive or synergistic effects (Hancock 

2009). In addition, the increasing insecticide resistance in mosquitoes makes it vital 

to test entomopathogenic fungi against wild insecticide-resistant mosquitoes, 

especially given the recent findings that insecticide-resistant mosquitoes are more 

susceptible to fungal infection than insecticide-susceptible mosquitoes (Howard et 

al. 2010) (Chapter 7), and that fungal infection can restore part of the mosquito’s 

susceptibility to insecticides (Farenhorst et al. 2009).  

In this study, an experimental hut trial was conducted in Benin, West Africa, to 

assess whether wild multi-insecticide-resistant mosquitoes would be infected by M. 

anisopliae or B. bassiana when applied to window netting. These fungal treatments 

were evaluated in the presence of an untreated or permethrin-treated bednet. We 

examined mortality, effect on blood feeding and other behaviours such as 

deterrence and induced exophily. In addition, the virulence of these two species of 

entomopathogenic fungi towards a laboratory colony of the malaria vector 

Anopheles gambiae Giles s.s. was examined under field conditions, and the effect 

of field exposure on conidial viability was determined.  

 

8.3 Materials and Methods 

8.3.1 Mosquitoes 

The mosquitoes used in the behaviour experiments in the laboratory, and the cone 

bioassays in the field, were An. gambiae s.s. VKPER strain. This is a pyrethroid-

resistant strain that was initially collected from the Valley du Kou in Burkina Faso 

and then selected repeatedly to fix the kdr gene. This gene is linked to knockdown 

resistance to pyrethroids and DDT, and was first reported in West African 
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mosquitoes in the early 1990s (Martinez-Torres et al. 1998). The VKPER strain has 

been maintained as a colony at the Centre de Recherche Entomologique de 

Cotonou (CREC) in Benin for several years. For the laboratory experiments, eggs 

from this colony were brought to Wageningen University in The Netherlands and a 

colony was started. Mosquitoes were subject to standard rearing using tap water in 

plastic trays (10 x 25 x 8 cm) and fed with ‘Tetramin ®’ fish food daily. Pupae were 

selected daily and adults were held in standard 30 x 30 x 30 cm cages and fed on 

a 6% glucose solution ad libitum. The larval trays and adult cages were kept in 

climate chambers held at 27°C (±1), 80% RH (±10) and a 12:12 hr L:D 

photoperiod. 

At the field site (described in section 8.3.5 below) in Benin, West Africa, the wild 

An. gambiae population has been shown to be 100% An. gambiae s.s. Mopti 

cytotype (Corbel et al. 2007). Culex quinquefasciatus Say is also present and both 

species are resistant to pyrethroids, DDT and dieldrin (Corbel et al. 2007, 

N'Guessan et al. 2007, Irish et al. 2008, Yadouleton et al. 2010). Resistance 

mechanisms involve the kdr gene mutation, mixed function oxidase (MFO) and 

esterase levels that are higher than in reference susceptible strains (Corbel et al. 

2007). In addition, Cx. quinquefasciatus is resistant to carbosulfan and has 

elevated glutathione-S-transferase (GST) activity (Corbel et al. 2007).  

 

8.3.2 Fungi 

We examined the effect of two fungal species. Metarhizium anisopliae var. 

anisopliae (Metsch.) Sorokin isolate ICIPE-30 was produced using solid state 

fermentation with glucose-impregnated hemp in 200 ml aerated packed tubes at 

Wageningen University, The Netherlands. Beauveria bassiana (Balsamo) Vuillemin 

IMI 391510 was produced by initially growing the fungus in a liquid medium and 

then inoculating autoclaved barley flakes in mushroom spawn bags at Penn State 

University, USA. 
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After being dried at ambient temperature and then stored in the refrigerator, dry 

conidia of M. anisopliae and B. bassiana were separately suspended in the 

synthetic isoparaffinic hydrocarbon solvent ShellSol T ™ (Shell, The Netherlands). 

ShellSol T was selected because the delivery system of fungal conidia suspended 

in this solvent has been shown to be significantly more virulent to An. gambiae s.s. 

mosquitoes when compared to conidia suspended in other oils (Farenhorst and 

Knols 2010). A Bürker-Türk haemocyte counter and light microscope (at x400) 

were used to determine accurate conidial concentrations per ml ShellSol T. New 

suspensions were made for each experimental replicate.  

 

8.3.3 Net treatment with the fungal conidia 

The netting used was made of white 100% multifilament 150 denier warp-knitted 

polyester fibres with 12 holes per cm2 (Vestergaard Frandsen, Switzerland). This 

net was used to cover the windows in the experimental hut trials, for the behaviour 

experiments in the laboratory, and the cone bioassays in the field. In a preliminary 

study we found that around 50% of mosquitoes would pass the netting when a 

human host cue was provided on the other side (Hilhorst et al., unpublished data). 

In an effort to increase the proportion of mosquitoes passing through the netting, 

small slits were cut into the netting to facilitate mosquito passage (Figure 8.1). 

Obviously, in a proper control setting we would not advocate damaging the 

physical integrity of window or eave screens but for this experimental test, it was 

necessary to allow mosquitoes access to the huts in order to sample them post-

exposure. Netting was dipped into the fungal conidia/ShellSol T suspensions 

resulting in treatment densities of 7.2 x 1012 conidia per m2. Control netting was 

treated with ShellSol T only.  
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Figure 8.1. A close up of netting attached to the inside of an experimental hut 
window clearly showing the slits cut to facilitate mosquito passage through the 
netting; the scale bar (top right) represents 1 cm 

 

 

Figure 8.2. The behaviour experiment apparatus used whilst monitoring the 
movement of mosquitoes through the gap or slit netting in the laboratory. 
Mosquitoes were introduced into one half of the cylinder (A), they move in the 
direction indicated (B), crossing the card (C) until they reach the attractive odour 
sources (not shown but in position (D)) 

A 

C 

D 
B 
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8.3.4 Behaviour experiments in the laboratory 

To test the suitability of fungus-treated nets for infecting hut-entering mosquitoes, 

and to confirm that mosquitoes would be able to pass through the netting, 

behavioural assays were conducted in the laboratory at Wageningen University. 

The experimental set-up (Figure 8.2) contained a transparent plastic cylinder (15 

cm diameter x 50 cm length) with a separating piece of cardboard in the centre (C 

in Figure 8.2). A 1 cm slit was made lengthways in the centre part of the cardboard, 

representing the gaps of the windows in the experimental huts. The ends of the 

cylinder were sealed with wire netting to allow air to pass through. At one end, a 

heating element set between 33.5°C and 34.5°C, humid air and a worn nylon sock 

(not shown but in position D in Figure 8.2) were used to entice mosquitoes 

released at the other end of the cylinder (A in Figure 8.2) to pass through the 1 cm 

gap. A small amount of suction at the opposite end was used to move the odour 

through the cylinder. The test was carried out under a red light and started during 

the night so that the mosquitoes were more likely to initiate host seeking. 

In the first set of experiments in one of the cylinders, the 1 cm gap in the cardboard 

was left clear, while in the second cylinder untreated white polyester netting was 

placed over the gap. Six-to-nine day old non-blood fed female An. gambiae s.s. 

VKPER strain mosquitoes were selected immediately before the test based on a 

response to a human hand; mosquitoes of this age were used because host 

seeking peaks at 6 days post emergence (Takken et al. 1998). Twenty-five 

mosquitoes were placed into each tube at a time, such that they had to pass the 

gap or net to contact the heat and odour source. The test was run for 30 minutes; 

four replicates were carried out.  

In the second set of experiments both cylinders had the slit-cut netting covering the 

cardboard gap; one cylinder was the control and in the other, the net had been 

treated with B. bassiana 24 hours before the test began. Fifty 6-9 day old non-

blood fed female An. gambiae s.s. VKPER mosquitoes were selected per replicate, 

with two replicates run per cylinder. The tests were run for 1 hour, after which time 
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all mosquitoes that had passed/not passed the netting were removed and kept in 

cups and given access to 6% glucose solution ad libitum. After five days surviving 

mosquitoes were killed, dipped in 70% ethanol (to sterilize them externally) and 

placed onto moist filter paper in Petri dishes. These were then sealed with Parafilm 

and placed in a 27°C incubator in the dark. Three days later the proportion of the 

mosquitoes infected with the fungus was visually scored by checking the presence 

of sporulation/emerging hyphae. In this way, it was possible to determine the 

minimum proportion of the mosquitoes that had passed through the netting that 

had picked up a fungal infection. Similarly, we scored how many mosquitoes had 

contacted the netting, picked up an infection but had not passed through the net.  

 

8.3.5 Field study location and experimental hut design 

The experimental hut study was undertaken in Ladji village (6°23’23N, 2°25’56E) 

on the shore of Lake Nokoué in the northern outskirts of Cotonou, in Benin, West 

Africa. Concrete experimental huts have been built within this village (Figure 8.3) 

so that they more accurately represent the village dynamics with respect to 

mosquito house entry. These huts were of the typical West African design with 

corrugated iron roofs that do not have eaves (for a schematic representation see 

Hougard et al. (2007)). The ceilings of the huts were thick polyethylene sheeting. 

Mosquitoes can only enter the huts through four windows. These windows were 60 

cm long and consist of metal funnels that channel mosquitoes into a 2 cm gap. This 

means that once mosquitoes have entered the hut they are unlikely to leave via the 

windows. Mosquitoes wanting to leave the huts instead fly towards the large 

veranda trap which, being partial netting, is lighter than the hut interior. The huts 

are protected from ants by a water moat.  
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Figure 8.3. One of the experimental huts (on the right) used for the trial; these huts 
are located inside a village and houses can be seen on the left 

 

8.3.6 Pre-intervention mosquito entry 

The intention of the experimental hut trial was to use the window gaps of the 

experimental huts for the application of fungus-impregnated netting to target the 

entering mosquitoes with fungal spores. Therefore, before the field trial it was 

necessary to check whether wild mosquitoes would pass through the window 

netting. Three of the above-described huts had control netting attached to the 

inside of the funnelled windows such that every mosquito that entered the huts had 

to pass through the netting. In the other three huts, the windows were left 

uncovered. The netting and uncovered windows were then rotated between the 

huts. This preliminary trial was run for 17 nights from the 6th to the 25th April 2009.  
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8.3.7 Hut treatments 

By using treated netting across the opening of the funnel windows of the 

experimental huts (Figure 8.1) we ensured that all the mosquitoes entering the huts 

contacted the fungal spores. The fungus-treated netting was treated as described 

in section 8.3.3 above. The control window netting was treated with ShellSol T. 

Netting was treated and attached to the inside of the window openings in the huts 

on the same day. For each of the six replicates, new pieces of netting were 

impregnated with freshly made fungal suspensions. The fungus treatment 

amounted to 0.13 m2 per hut.  

The bednets used were white 100 denier polyester netting (SiamDutch Mosquito 

Netting Co., Thailand) measuring 2.11 m length x 1.63 m width x 1.84 m high with 

a total surface area of 17.2 m2. Each bednet had six holes cut (4 cm x 4 cm) as 

recommended by the World Health Organisation (WHO) (World Health 

Organisation 2006) to mimic worn bednets; this allows blood feeding behaviour to 

be monitored. Three nets were treated with permethrin 25EC (Syngenta, 

Switzerland) at 500 mg/m2 and three others were left untreated to serve as 

controls. Untreated nets were used because we wanted to test the effect of fungus 

alone and in combination with an insecticide to examine any potential additive or 

synergistic effects between the fungi and permethrin treatments. 

The six treatments (Table 8.1) were randomly allocated between six huts and then 

rotated weekly using a Latin square design such that each treatment spent one 

week in each hut. The hut trial was run for 36 nights between 27th April and 6th 

June 2009. A temperature and humidity gauge was left inside one of the huts for 

the duration of the trial. 

 

8.3.8 Hut trial procedure  

The study received ethical approval from the Ministry of Health, Cotonou, Republic 
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of Benin, in May 2008 (approval n° 10717/MSP/DG/SGM/DRS). Six adult males 

from Ladji village were then recruited as sleepers after they had provided their 

informed consent to participate in the study. Malaria treatment was offered to these 

sleepers if they developed malaria during the trial. To control for individual 

attractiveness (Lindsay et al. 1993a), the sleepers rotated between the huts nightly. 

During the evening the day after a new treatment had been placed in the huts, all 

the sleepers were individually asked a short series of questions to determine 

whether they had any health issues associated with the treatments. The 

questionnaire was carried out over six weeks such that all sleepers were 

questioned after sleeping under each treatment. 

The external window shutters on the huts were opened at 6pm and the sleepers 

entered the huts at 9pm. At 5am the following morning a curtain was unrolled to 

separate the veranda from the hut and at this time the sleepers collected all dead 

and alive mosquitoes using a mouth aspirator. The mosquitoes from the hut, 

veranda trap and those found inside the bednet were kept in separate cups. The 

collected mosquitoes were identified to sex/species and the females were recorded 

as dead/alive and blood fed/unfed. Live mosquitoes were then held in plastic cups, 

given access to honey solution and mortality was scored every 24 hours (World 

Health Organisation 1998). For logistical reasons the mosquitoes that arrived in the 

laboratory alive from the huts were only able to be kept for a maximum of 7 days, 

after which time they were killed.  

While monitoring the impact of the treatments on mosquito survival, a series of 

behavioural outcomes were also scored. When compared to mosquitoes collected 

from the control (Table 8.1; CC) hut it was possible to see whether any of the 

treatment combinations had caused blood feeding inhibition (smaller proportion of 

blood fed mosquitoes). Furthermore, if a treatment deters mosquitoes from 

entering the huts then the proportions that were blood fed may underestimate the 

full personal protective effect. This can be calculated using the following formula: 

% Personal Protection = 100(Bu – Bt)/Bu 
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where Bu is the total number of blood fed mosquitoes collected from the untreated 

control hut and Bt  is the total number of blood fed mosquitoes collected from the 

treated hut (World Health Organisation 2006). In addition, any effects on 

deterrence (fewer mosquitoes entering the huts) and/or induced exophily (more 

mosquitoes entering the veranda trap) were measured. 

 

8.3.9 Fungal viability in the field 

In Cotonou, Benin, pieces of netting were treated with fungal conidia as described 

in section 8.3.3 above and kept under ambient field conditions out of direct 

sunlight in a well ventilated storage shed to the side of the laboratory. Indoor 

conditions were chosen as it is proposed that entomopathogenic fungi will be used 

to target host seeking mosquitoes in people’s houses (Scholte et al. 2005). The 

same pieces of netting used for these viability measurements were used for the 

bioassays as described in section 8.3.10 below. Pieces of netting that had been 

held under field conditions in Cotonou, Benin for 2, 4, 7, 10, 13, 16 and 20 days 

were transported back to Wageningen University to score fungal viability. As a 

positive control, samples of the conidial suspensions that had been kept in the 

fridge were also transported back and tested. Forty-eight hours elapsed between 

removing the samples from the field conditions in Cotonou and putting them on 

agar plates in Wageningen University.   

As a measure for conidial viability, the germination of spores on a rich agar 

medium was counted. Either a drop of the conidial suspension or 1 cm2 of the 

treated netting was placed onto Sabouraud Dextrose Agar (SDA) plates. The SDA 

plates had 0.001% benomyl added so that accurate germination could be 

recorded; benomyl is a fungicide that restricts the hyphal growth without affecting 

germination (Milner et al. 1991). These plates were then incubated at 27°C in the 

dark and germination was scored 24 hrs later using a light microscope at x400. A 

conidium was scored as germinated if the germ tube was at least twice the length 
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of the conidium. A minimum of 300 conidia were counted per plate. To accurately 

measure the viability of the spores in the ShellSol T suspension, seven replicates 

were carried out. 

 

8.3.10 Cone bioassays with fungus-treated netting 

To test fungal efficacy after application and storage, WHO cone bioassays were 

carried out in the field 1, 3 and 5 days post net treatment, using nets treated and 

stored under field conditions as described above. The cones and netting were set 

up so that mosquitoes had no alternative but to rest with their tarsi on the netting. 

This was achieved by suspending the treated pieces of netting between pieces of 

plastic with holes in them such that the plastic kept the cones in place but the holes 

ensured that the mosquitoes had to rest on the netting.  

Ten-to-twelve 2-3 day old non-blood fed An. gambiae s.s. VKPER females were 

introduced into each of the four replicate cones per treatment (control, M. 

anisopliae, B. bassiana). Because there was no previously published record of 

WHO cone bioassays being used to infect mosquitoes using entomopathogenic 

fungi applied to netting, we estimated that an exposure time of 2 hours would allow 

the maximum chance of infection for the one day old fungal treatment, allowing us 

to examine any drop off in persistence on the nettings treated 3 or 5 days 

previously.  

After the exposure period, mosquitoes were held in cups in the laboratory in 

Cotonou and given access to honey solution. Mortality was scored every 24 hours. 

For logistical reasons mosquito mortality could only be monitored up to day seven 

post exposure.  
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8.3.11 Statistical analysis 

8.3.11.1 Behaviour experiments in the laboratory 

Due to differences between the replicates with respect to the initial mosquito 

responsiveness, the behaviour experiment data were analysed 10 minutes after the 

first mosquitoes had passed the gap/netting. This is because it was observed that 

after this time the vast majority of the mosquitoes that were going to respond to the 

odour had already responded. Data on mosquito passage was analysed using Chi-

square tests. Due to the low numbers of mosquitoes that did not become infected 

by the B. bassiana in experiment two, the Fishers exact test was used to analyse 

the difference in fungal infection rates between the mosquitoes which passed the 

net compared to those that did not pass.  

 

8.3.11.2 Hut trial data 

Blood feeding was analysed using binomial logistic regression. Statistical outcomes 

were given as Odds Ratios (OR) which gives the ratio of the odds of an event 

occurring in one group to the odds of it occurring in another group. The survival 

analyses of the mosquitoes collected from the huts were investigated using Cox 

regression analysis. Mortality rates were given as Hazard Ratios (HR), which give 

the average daily risk of dying relative to the control. Hut attractiveness, treatment 

deterrence, induced exophily and immediate mortality were separately analysed 

using single factor ANOVA analysis.  

 

8.2.11.3 Fungal viability in the field 

Although only a few data points were collected per fungal species, to investigate 

whether the viability of fungal conidia significantly deteriorated with time simple 

linear regression analysis was carried out. 
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8.3.11.4 Cone bioassays with fungus-treated netting 

The replicates were not significantly different from each other, so the data were 

pooled. For survival analysis, differences between the control and fungus-exposed 

mosquito survival rates were investigated using Cox regression analysis. 

Significant day and fungal species effects were further investigated using Cox 

regression. As with the hut trial data, mortality rates were given as Hazard Ratios 

(HR).  

All statistics were carried out in SPSS 17.0 (SPSS Inc 2008) with α at 0.05. 

 

8.4 Results 

8.4.1 Behaviour experiments in the laboratory 

In the first set of experiments, there was no significant difference between the 

numbers of An. gambiae s.s. VKPER mosquitoes that passed the gap (48/100) 

compared to those that passed the net with slits cut into it (45/100) (χ2=0.18, df=1, 

p=0.67). Similarly, in the second set of experiments there was no significant 

difference between the number of An. gambiae s.s. VKPER passing either the 

control (59/96) or B. bassiana (57/103) treated net (χ2=0.77, df=1, p=0.38), 

indicating that this malaria vector is not deterred by the entomopathogenic fungus. 

Of the mosquitoes that passed the treated net, 98% (56/57) showed infection with 

B. bassiana after death, while 89% (41/46) of mosquitoes that did not pass the 

netting showed B. bassiana infection; this difference was not significant (Fishers 

exact test; p=0.09).  

These results showed that our proposed protocol for the field work, where 

mosquitoes were expected to pass through screened windows, should allow 

mosquitoes to enter the huts through the slit netting leading to fungal infection. 
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8.4.2 Pre-intervention mosquito entry 

Over the 17 pre-intervention nights in the experimental huts, 1356 mosquitoes 

were collected. Of the 1073 females, 86.7% were Cx. quinquefasciatus and 13.3% 

An. gambiae s.l.. When compared to the number of mosquitoes entering the huts 

without the netting, the untreated slit window nets reduced culicine female entry by 

29% and anopheline female entry by 64%.  

 

8.4.3 Hut trial data 

During the hut trial the temperature and humidity ranges were 25.1 - 36.4°C and 69 

- >95%RH respectively inside the huts, with daily means (±SE) of 30.8°C (±0.23) 

and 84%RH (±1.33). For each week the maximum recorded temperature and 

humidity was above 34°C and 95% RH respectively. Out of the 216 questions 

asked to the sleepers during the trial, no adverse effects (such as respiratory 

difficulties, skin irritation or headaches etc.) due to the fungal treatments were 

reported. 

A total of 1955 mosquitoes were collected in the huts over 36 intervention nights; 

1018 Cx. quinquefasciatus females, 87 An. gambiae s.s. females, 20 Aedes 

aegypti L. females and 830 males of several different genera. Only seven An. 

gambiae s.l. females entered our control (CC) hut during the six-week hut trial. The 

64% reduced entry rate calculated during pre-intervention data collection (section 

8.4.2) indicates that only a predicted 19 An. gambiae s.l. would have entered the 

CC hut if there was no netting on the windows. This would still not have been 

enough to carry out adequate statistical analysis. Due to the low number of An. 

gambiae s.s. at the time of the study, only Cx. quinquefasciatus data were 

analysed and presented. 

Of the 1018 female Cx. quinquefasciatus collected during the experimental hut trial, 

22.5% (229/1018) had blood fed. The proportion of blood-fed Cx. quinquefasciatus 
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Table 8.1. Experimental hut data showing the effects on mortality and blood feeding in wild multi-insecticide-resistant 
Culex quinquefasciatus mosquitoes caused by fungal and insecticide treatment combinations; significant p-values are 
in bold 

 

Window Bednet        Code   N Mortality at 7      Blood fed %       BFI%     PP%     Blood fed  p 

treatment treatment  days % (95% CI)    (95% CI)          OR (95% CI) 

 

Control  Control         CC   207 53.6 (46.8,60.4)     30.4 (24.2,36.7)       -          -      -  - 

Control   Permethrin   CP   167 50.9 (43.3,58.2)     17.4 (11.6,23.1)     42.9     19.3      0.53 (0.3,0.9)      =0.012 

M. anisopliae Control         MC  177 50.8 (43.3,58.2)     31.6 (24.8,38.5)     -3.9      14.5      1.15 (0.7,1.8)        =0.54 

M. anisopliae  Permethrin   MP   127 52.8 (44.1,61.4)     15.0 (8.8,21.2)       50.8      38.7      0.58 (0.3,1.0)      =0.045 

B. bassiana  Control         BC   168 57.7 (50.3,65.2)     19.0 (13.1,25.0)     37.4      18.8      0.58 (0.4,0.9)      =0.032 

B. bassiana Permethrin   BP    172 54.1 (46.6,61.5)     17.4 (11.8,23.1)     42.7      16.9      0.53 (0.3,0.9)      =0.012 

BFI = Blood Feeding Inhibition; PP = Personal Protection; OR = Odds Ratio 
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was significantly lower in four treatment combinations when compared to the 

control treatment (Table 8.1). The level of blood feeding inhibition was similar for all 

three treatments that incorporated permethrin (CP, MP and BP). Of the fungus-only 

treatments, only the B. bassiana (BC) caused a significant reduction in the 

numbers of Cx. quinquefasciatus mosquitoes blood feeding (p=0.032; Table 8.1). 

Although the level of blood feeding inhibition was similar for the permethrin (CP) 

and B. bassiana (BC) treatments, the combined B. bassiana and permethrin (BP) 

treatment showed no additive or synergistic effects of these two individual 

treatments (Table 8.1). The logistic regression analysis found no significant effect 

of the day, indicating that the levels of blood feeding did not significantly vary 

during the trial.  

Culex quinquefasciatus mortality seven days after being collected from the huts 

was fairly similar for all six treatments (Table 8.1). Even when taking into account 

the variation between the replicates caused by doing the trial over a relatively long 

period of time, there was no significant impact of the M. anisopliae (HR=1.03, 

p=0.85), B. bassiana (HR=1.12, p=0.45) or permethrin ITN (HR=1.02, p=0.87) 

treatments on the mortality of mosquitoes when compared to the respective control 

treatments. Furthermore, there were no significant interactions between the fungal 

and insecticide treatments.  

There was also no significant difference between the numbers of mosquitoes found 

in the huts for the six treatment combinations (F=0.94, df=5,200, p=0.46) indicating 

no significant deterrence of any of the treatments. The six treatment combinations 

also all had similar levels of induced exophiliy (F=1.19, df=5,200, p=0.32), and 

immediate mortality (the numbers of mosquitoes that were collected dead from the 

huts) (F=0.35, df=5,200, p=0.88).  

 

8.4.4 Fungal viability in the field 

During the 20 day exposure of the treated pieces of netting to ambient field 
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conditions in Benin, the temperature range in the storage area where the nets were 

held was 24.9-38.6°C with humidity ranging from 70–>95%RH; daily means (±SE) 

were 30.0°C (±0.54) and 86%RH (±1.21). 

The mean (±SE) initial viabilities of B. bassiana and M. anisopliae in their ShellSol 

T suspensions were 64% (±4.70; 2381 spores counted) and 8.5% (±2.62; 2339 

spores counted), respectively. There was a steady and marked decrease in viability 

of the fungal conidia on the pieces of netting held under field conditions over time 

for both B. bassiana (Figure 8.4) (adjusted r2=0.67, p=0.015) and M. anisopliae 

(Figure 8.4) (adjusted r2=0.66, p=0.016) treated netting. After 16 days exposure to 

field conditions there were no viable conidia on the M. anisopliae treated netting, 

although this may be because the starting viability of the M. anisopliae used was 

just 8.5%, much lower than the viability of B. bassiana which was 64%. 

 

8.4.5 Cone bioassays with fungus-treated netting  

The mean (±SE) temperature and humidity during the bioassay exposure periods 

were 29.2°C (±0.44) and 90.6%RH (±1.52), with ranges of 27.2-32.1°C and 78-

>95%RH respectively.  

Both species of fungi tested were pathogenic to the An. gambiae s.s. VKPER strain 

mosquitoes (Figure 8.5). Significantly increased mortality for the B. bassiana-

exposed mosquitoes (when compared to the control mosquitoes), was seen when 

the treatment on the nets was 1, 3 and 5 days old (Table 8.2). For M. anisopliae-

exposed mosquitoes, mortality was only significantly higher than the control when 

the treated netting had been exposed to the field conditions for 1 and 3 days; the 

M. anisopliae-treated netting left in the ambient field conditions for 5 days was 

unable to kill significantly more mosquitoes than the control netting (Table 8.2), 

again possibly due to the poorer quality of this fungal species production batch as 

shown by the lower starting viability. 
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Figure 8.4. Percentage viability of spores of Beauveria bassiana (top) and 
Metarhizium anisopliae (bottom) on polyester netting exposed to field conditions for 
differing periods of time; lines represent the linear regression lines 
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Figure 8.5. Mean (±SE) survival of An. gambiae s.s. VKPER mosquitoes exposed 
in WHO cone bioassays to fungus-treated netting exposed to field conditions for 1 
(solid black), 3 (grey) and 5 (dashed black) days before testing. Control (open 
circles) mortality is compared to M. anisopliae (closed squares) and B. bassiana 
(closed triangles) induced mortality  
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Table 8.2. Survival analysis of An. gambiae s.s. VKPER mosquitoes exposed to 
two species of fungi in cone bioassays; data show Cox regression Hazard Ratio 
(HR) outcomes (95% CI), statistical p-values are relative to the relevant control 

 

Fungus Time since fungal HR (95% CI)   p 
  application (days) 

 

M. anisopliae  1  2.41 (1.86, 3.12)  <0.0001 

   3  2.14 (1.63, 2.82)  <0.0001 

   5  1.20 (0.90, 1.60)  =0.206 

B. bassiana  1  2.50 (1.94, 3.23)  <0.0001 

   3  2.24 (1.71, 2.93)  <0.0001 

   5  1.73 (1.32, 2.25)  <0.0001 

 

Despite being significantly different from the control for all the time points, the 

virulence of the B. bassiana-treated net held in field conditions significantly 

reduced with increased time in the field; mosquito mortality caused by the one day 

old fungal treatment on the net was significantly higher than the mortality caused 

by the 3 day old (HR=0.75, p=0.014) and 5 day old fungal treatments (HR=0.673, 

p<0.001). Similarly, for M. anisopliae the mosquito mortality seen from the Day 1 

net was significantly higher than that seen for the Day 3 (HR=0.75, p=0.017) and 

Day 5 nets (HR=0.50; p<0.0001). These results indicate a drop off of effectiveness 

with increasing time the fungal conidia spend exposed to ambient field conditions.  

 

8.5 Discussion 

Our study was the first to examine the effect of entomopathogenic fungi on wild 
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mosquito blood feeding in the field. In particular, the current study investigated 

more or less instantaneous impacts on feeding within a single feeding night (i.e. 

within a few hours of fungal exposure). The results show that B. bassiana 

treatments significantly reduced blood feeding, with B. bassiana alone able to 

inhibit 37% of blood feeding relative to the control. Permethrin was able to inhibit 

43% of blood feeding, much higher than a previous study in the same study village 

where another pyrethroid, alphacypermethrin, reduced Cx. quinquefasciatus blood 

feeding by 27% (Irish et al. 2008). Given the results, it is unknown why no additive 

effect was seen in the blood feeding inhibitions when the B. bassiana (BC) and 

permethrin (CP) treatments were combined into the B. bassiana and permethrin 

(BP) treatment. Preventing blood feeding is important in terms of disease control 

and the finding that entomopathogenic fungi can prevent blood feeding in wild 

mosquitoes so soon after they acquired a fungal infection is both unexpected and 

important, but further research specifically targeting malaria vectors is required to 

substantiate this. Because blood feeding was significantly affected so soon after 

acquiring a fungal infection it is suggested that future application techniques for 

fungi in the field should target host seeking mosquitoes. If the fungi are deployed 

as post-feeding resting targets (Farenhorst et al. 2008), then one of the main ways 

in which entomopathogenic fungi can help reduce disease transmission would be 

missed.  

Both of the fungal species used in our study have previously shown a propensity to 

reduce mosquito blood feeding under laboratory conditions. Anopheles gambiae 

s.s. exposed to oil-formulated M. anisopliae for 24 hours showed a reduced 

propensity to take subsequent blood meals when compared to uninfected 

mosquitoes; the proportion of mosquitoes taking a blood meal after fungal infection 

was reduced by 51% when compared to the control group (Scholte et al. 2006). 

This response may be linked to the down-regulation of genes controlling digestion 

in An. gambiae inoculated with B. bassiana (Aguilar et al. 2005) indicating that 

digestion and nutrient acquisition is not a priority for mosquitoes immediately after 

fungal infection. A different study using B. bassiana-infected Anopheles stephensi 
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Liston demonstrated that between days 8 and 14 post infection the fungus 

interfered with the ability of the mosquito to take a blood meal (Blanford et al. 

2005). Although these earlier studies looked at feeding over several days following 

infection, they found a similar level of blood feeding reduction as found in our 

study. Relatively rapid changes in feeding behaviour after infection with M. 

anisopliae or B. bassiana have also been reported in many other insect types (Roy 

et al. 2006). 

The mechanism behind the very rapid blood feeding inhibition observed in the 

current study is unknown but may be due to physiological and/or behavioural 

reasons. A mosquito may enter the huts several hours before blood feeding which 

would allow the fungus time to start germination and cuticle penetration. As far as 

we are aware no data have been published on the germination and penetration 

times on mosquito cuticles. However, in infected termites M. anisopliae germination 

occurred at 6 hours and penetration at 12 hours after infection; B. bassiana 

germination occurred between 6 and 12 hours post infection, with penetration 

between 12 and 24 hours post infection (Neves and Alves 2004). In this study, 

mosquitoes had to pass directly through the fungus-treated netting so some 

conidia could have got into the mosquito spiracles or at the base of the setae. This 

may decrease the fungal penetration time because the cuticle is thinner in these 

places (Neves and Alves 2004). Even during pre-penetration growth of the conidia 

the wax layer of the insect cuticle is degraded (Jarrold et al. 2007) and insects use 

both cellular and humoral immune responses against fungal infections starting as 

early as cuticle degradation (Gillespie et al. 2000). Therefore, if the germination 

and pre-penetration times on mosquito cuticles is similar to termites, then it is 

feasible that the immune system could have been activated during the short time 

the mosquitoes and sleepers were in the huts. Alternatively, the mosquito 

antennae may have become covered in conidia, interfering with their ability to 

detect the human host. In addition, termites have been shown to groom after fungal 

infection which successfully removes conidia (Yanagawa et al. 2009). This may 

also have taken place with our wild mosquitoes and could have interfered with their 
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host seeking. 

The concept of an evolution-proof malaria control tool is to use a tool to kill 

mosquitoes after reproduction has taken place, but before the mosquito becomes 

infectious with the malaria parasites, allowing “susceptible” genes to perpetuate in 

the gene pool (Read et al. 2009). It is thought that entomopathogenic fungi could 

be such a tool. However, for this to occur, mosquitoes have to keep feeding 

through the duration of the fungal infection. Our results indicate that at least for a 

proportion of wild Cx. quinquefasciatus this would not occur, and laboratory work 

has shown similar effects in malaria vectors (Blanford et al. 2005, Scholte et al. 

2006). Nevertheless, in many areas Culex mosquitoes are often more numerous 

than Anopheles and as such personal protection methods such as ITNs are often 

bought to prevent the nuisance biting as much as for any other reason. Failure to 

control these nuisance mosquitoes can reduce the uptake of ITNs for malaria 

control (Chandre et al. 1998, Kulkarni et al. 2007). Therefore tools that can reduce 

the biting of insecticide-resistant Culex mosquitoes are also required. 

Despite the encouraging finding that B. bassiana can prevent blood feeding, no 

significant mortality was found in wild caught Cx. quinquefasciatus mosquitoes 

collected from the huts. Although previous findings have found that Cx. 

quinquefasciatus is susceptible to M. anisopliae (Scholte et al. 2003b, Scholte et 

al. 2005) it is important to note that B. bassiana has not previously been tested 

against adult Cx. quinquefasciatus mosquitoes either in the laboratory or field. 

Even after discounting the M. anisopliae data due to the extremely low viability 

under the field conditions of our study, the B. bassiana viability was within the 

range that could be used in the field in the future, but did not significantly impact 

wild mosquito mortality. There are three main reasons why this may be the case.  

Firstly, the experimental method may have been ineffective at providing a 

sufficiently lethal dose to the wild mosquitoes, even though it was able to elicit a 

significant behaviour modification. Possible reasons for not being able to 

sufficiently infect wild mosquitoes include certain conditions affecting the conidia on 
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the netting, and the short contact time of the mosquitoes. It is unlikely that 

permethrin affected the conidia because it has been found not to be inhibitory to 

the various developmental stages of M. anisopliae (Mohamed et al. 1987), and 

viable conidia of Metarhizium flavoviridae stored in oil and lambdacyhalothrin were 

found long after the conidia stored in just oil had died (Sanyang et al. 2000). After 

as little as one week under field conditions dry conidia were seen to be released 

from the window netting in the huts. This quick evaporation of ShellSol T and 

release of conidia has also been found in Tanzania (Matt Kirby, Pers. Comm.) and 

may lead to a lack of conidial protection from the field conditions, and a decrease in 

the effective concentration. Using other oil formulations (Scholte et al. 2005) or 

encapsulation techniques may lead to higher conidial protection. Laboratory 

studies have shown that conidial viability is directly affected by the polyester netting 

(Howard et al. 2010) (Chapter 7), but even though the treated window netting 

proved effective at infecting mosquitoes in the laboratory, the ambient field 

conditions further negatively affected the conidia on the netting, as was evidenced 

by our viability and cone bioassay results. Temperature and humidity can adversely 

affect fungal conidia (Rangel et al. 2005, Lekimme et al. 2008, Darbro and Thomas 

2009), however, the climatic conditions were similar for the experimental hut and 

bioassay nettings, so similar adverse effects would be expected. Nevertheless, 

fungal spores used in the bioassays were able to infect mosquitoes causing 

significant mortality, but those applied in the huts could not.  

Scholte et al. (2005) found much higher levels of mortality in their field study where 

the An. gambiae s.l. mosquitoes were found resting on fungus-impregnated cotton 

cloths (Scholte et al. 2005). The short contact time with the hut fungal netting, 

although not an issue for An. gambiae s.s. mosquitoes in the behaviour 

experiments in the laboratory, could have caused problems because there appears 

to be a threshold number of conidia per unit surface area required for successful 

mosquito infection (Scholte et al. 2003b). This may be related to the up-regulated 

mosquito immune system being able to clear low-level fungal infections (Scholte et 

al. 2004a, Aguilar et al. 2005). If the proportion of viable conidia was decreased by 
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the polyester netting/field conditions then the wild Culex may not have been 

receiving enough viable conidia to initiate a successfully lethal fungal infection. We 

chose to target hut-entering mosquitoes as it was thought to be the most efficient 

use of the fungal conidia, and our laboratory studies confirmed that mosquitoes 

would pass through the netting, in the process picking up a fungal infection. Other 

proposed application methods in the field include cotton resting targets (Scholte et 

al. 2005), clay pots (Farenhorst et al. 2008), and odour baited stations (Lwetoijera 

et al. 2010), all of which will ensure longer contact times but would target resting 

mosquitoes post-feeding, and so may not affect blood feeding in the same way as 

the method used in this study.  

The second reason for the lack of fungus-induced mortality could be that even if a 

successful fungal infection was received by the entering mosquitoes, then it is 

possible that the mosquitoes died of natural causes before any significant toxic 

effects of fungal infections could be seen because control survival was poor and 

this may have masked any effects of the fungus. After holding the mosquitoes for 7 

days the control mortality was 54% and was not significantly different from the 

fungus and/or permethrin-exposed mosquitoes. The natural mortality could be quite 

high because the mosquitoes entering the huts were of an unknown age range, 

and insecticide resistance in Culex mosquitoes is known to be associated with 

fitness costs (Berticat et al. 2008) that can lead to reduced survival rates (Wang et 

al. 1998).  

Finally, the third possible reason for the lack of fungal-induced mortality is that the 

wild multi-insecticide-resistant Cx. quinquefasciatus mosquitoes in Benin may just 

not have been susceptible to fungal infection. As mentioned, Cx. quinquefasciatus 

adults have not been previously shown to be susceptible to B. bassiana either in 

the laboratory or field. A previous laboratory study comparing An. gambiae s.s. and 

Cx. quinquefasciatus found very few differences in susceptibility to M. anisopliae 

infection, with both male and female Cx. quinquefasciatus having significantly 

reduced life spans after continuous exposure to both dry and oil-formulated conidia 
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(Scholte et al. 2003b). However, Scholte (2004) speculates that wild Tanzanian 

insecticide-susceptible Cx. quinquefasciatus in the field had higher 

immunocompetence towards M. anisopliae infection than wild An. gambiae s.l. 

because the infection rates were 10% and 33% respectively. Wild Culex may be 

less susceptible to fungal infection due to interactions of their micro-flora 

(Indiragandhi et al. 2007), or because their insecticide resistance mechanisms 

protected them (McCarroll et al. 2000). 

Micro-flora interactions can protect insects from infection because the presence of 

mid-gut flora in An. gambiae has been shown to reduce malaria parasite infections 

by activating the immune system (Dong et al. 2009), and Pseudomonas bacteria 

found in insecticide-resistant diamond-back moths showed antagonistic activity 

against M. anisopliae and B. bassiana (Indiragandhi et al. 2007). The wild Culex 

mosquitoes in this study are likely to have gut flora that could possibly have 

affected fungal penetration and growth in a similar fashion. In addition, insecticide-

resistant Cx. quinquefasciatus in Sri Lanka were shown to adversely affect the 

development of the filarial worm Wuchereria bancrofti, thought to be due to 

elevated esterase activity (McCarroll et al. 2000). Serebrov et al. (2006) found that 

infection of greater wax moth caterpillars with M. anisopliae caused elevated levels 

of esterases and GST, presumably as part of the immune response. If elevated 

esterase and GST levels are also an important immune response to fungal 

infection in Cx. quinquefasciatus, this would explain the low susceptibility of the 

wild mosquitoes in this study; in effect their immune system is already activated 

because they naturally have higher levels of these enzymes (Corbel et al. 2007).  

Whilst the fungi were unable to cause significant mortality in wild caught Cx. 

quinquefasciatus mosquitoes collected from the huts, significant mortality was 

found in An. gambiae s.s. mosquitoes infected in WHO cone bioassays carried out 

under field conditions. A laboratory study has shown that even though fungal 

viability significantly decreases when placed onto white polyester netting, and 

again a week after application, the effectiveness of the fungal treatments at killing 
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mosquitoes was not significantly affected (Howard et al. 2010) (Chapter 7). 

Ultimately for mosquito control what is important is not necessarily viability, but 

whether the fungi can still infect and kill mosquitoes in the field. The cone bioassay 

results show that these fungi were able to cause significant mortality to an 

insecticide-resistant strain of An. gambiae s.s. after the fungi had been held under 

field conditions. Even the M. anisopliae was able to cause significant mortality 

when the netting had been held for 3 days, a time when the estimated viability 

would have been 6%. This raises questions as to whether the exposure time and 

concentration of the conidia was high enough to cause infection despite so few 

being viable, or is it linked to the agar/fungicide method underreporting the 

viability?  

Fungal viability is a product of many variables including the production methods, 

the formulation used, the substrate treated and the climatic conditions, and viability 

is measured by plating conidia onto agar containing a fungicide. Whilst any of 

these variables can affect viability, our results showed that fungal viability 

decreased relatively rapidly when treated pieces of netting were left in ambient field 

conditions. Scholte et al. (2005) also found that the viability of M. anisopliae treated 

cotton sheets decreased from 96% in suspension to 63% three weeks after 

application in Tanzania. In addition, laboratory studies have also found relatively 

rapid losses in fungal viability after exposure to heat and humidity (Rangel et al. 

2005, Lekimme et al. 2008, Darbro and Thomas 2009, Howard et al. 2010) 

(Chapter 7).  

Not only did the viability on the netting decrease with increased time spent in the 

field, but the effectiveness of the fungal treatments to infect and kill malaria vectors 

also decreased with increasing exposure to ambient field conditions. More work 

needs to be carried out before the operational use of these fungi can become a 

reality. Questions still remain about the best application method, dose and the 

persistence of the fungal conidia under field conditions. Whilst our set up of 

polyester netting and ShellSol T proved effective under laboratory conditions 
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(Howard et al. 2010) (Chapter 7), it was evident that it was not an effective 

application method for use in tropical sub-Saharan African conditions. The major 

challenge in the use of entomopathogenic fungi for mosquito control is to translate 

the many successful and encouraging laboratory trials (Blanford et al. 2005, 

Scholte et al. 2006, Farenhorst et al. 2009, Howard et al. 2010) (Chapter 7) into 

field successes and develop an effective and sustainable field delivery system. 

Future research on fungal production methods, and testing new formulation and 

substrate combinations, should be carried out with a view to optimising these for 

eventual use in the field. 
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9.1 Introduction 

Malaria control is lagging behind expectations. African children are still dying of 

malaria every day and African communities need tools to tackle malaria now. Rural 

communities are the most at risk of malaria (Kirby et al. 2008, Kelly-Hope and 

McKenzie 2009), and have the least access to malaria control tools (Matovu et al. 

2009). Therefore, the research described in this thesis focussed on addressing 

mosquito control from a rural perspective. Using mosquito control tools in a way 

that requires almost no technical equipment or knowledge will open them up to the 

rural communities that are best placed to deploy them. Employing these tools in 

this way may not be the most efficient way to use them, but at least the technology 

required is available where the tools are most needed. Many African communities 

would probably rather use a less efficient tool now than wait years for a more 

efficient tool to become available to them, because mosquitoes do not need to be 

controlled completely, just to a point where disease transmission can no longer or 

rarely occurs. As discussed in Chapter 2, there are many tools available to African 

communities for mosquito control. The research objective of this thesis was to 

examine the feasibility and effectiveness of the use of three natural products (flora, 

fish and fungi) for malaria vector control.  

This thesis has answered many questions concerning the low-tech deployment of 

natural products and their potential use against insecticide-resistant mosquitoes. 

The use of these natural products for mosquito control is at varying stages of 

development; neem and fish should be operational and fungi could become 

operational in the future once certain issues are addressed. The chapters in this 

thesis describe many different experimental techniques that were used to examine 

different facets of these natural products. Laboratory and field studies have been 

used to examine the effect these products have on the mortality of larval (Chapters 

3 & 6) and adult (Chapters 7 & 8) mosquitoes, and behavioural modifications have 

also been examined in the laboratory (Chapter 4) and field (Chapter 8). In 

addition, a field census was used to determine the current state of fish farming in 
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western Kenya (Chapter 5). From this wide range of experimental techniques, 

many promising results were obtained. 

This chapter briefly explains why each of the natural products was chosen, what 

the main results of the thesis chapters were and puts the results in the context of 

malaria control. How the results compare to previous work has been discussed in 

detail in the preceding individual chapters. So as not to repeat the discussions 

made in the previous chapters, this final chapter focuses on giving 

recommendations for future work and drawing conclusions from the work 

undertaken. Finally, how the three F’s (flora, fish and fungi) can be brought 

together in IVM programmes is discussed. 

 

9.2 Part I: Flora 

For the flora part of the thesis, the neem tree was chosen. Neem was briefly 

introduced in section 2.3.3, and was chosen as a natural product to investigate in 

this thesis for several reasons. The first reason is that several studies have 

previously proved that neem can kill mosquito larvae (Nagpal et al. 1995, Awad 

and Shimaila 2003, Okumu et al. 2007), and field studies have shown that it is also 

effective in natural field conditions (Rao et al. 1992, Gianotti et al. 2008). Another 

reason is that it already grows in many areas in Africa and is well known; the 

Swahili name for neem is ‘mwarubaini’ because it is thought that it can be used to 

cure 40 diseases. Therefore communities are already sensitised to the usefulness 

of this tree. The focus of this thesis was on natural products that could one day be 

used by local communities to control mosquitoes. I therefore wanted to use neem, 

but in a way that could easily be deployed in resource-poor rural areas of sub-

Saharan Africa. For this reason it was decided to use crude aqueous extracts, 

essentially to see what would happen when neem wood was just soaked in water. 

Aqueous extracts were also used because they have been found to be less toxic to 

mammals than other neem extracts (Boeke et al. 2004b). This is important 
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because in many African countries, bodies of water that are potential mosquito 

breeding sites are also important for domestic water usage (Mutuku et al. 2006a, 

Imbahale et al. 2010), and therefore humans will invariably come into contact with 

larval mosquito control tools.  

An extensive study of the larvicidal properties of neem wood had not previously 

been undertaken. We therefore decided to expose all aquatic stages to crude 

aqueous neem extracts in a series of laboratory experiments. We found that neem 

was able to effectively control larvae of the most efficient malaria vector in Africa 

(Costantini et al. 1999), namely Anopheles gambiae Giles s.s., even at a relatively 

small dose. However, the dose required to control pupae was much higher and it is 

unlikely that this high dose would be used operationally just to target mosquito 

pupae (Howard et al. 2009) (Chapter 3). The study showed that neem wood 

placed into water leaches out phytochemicals that are able to kill mosquito larvae 

even though azadirachtin, thought to be the most active of neem’s liminoids 

(Schmutterer 1995), was not detected in the aqueous extracts. In addition, this 

thesis reports the effect the aqueous neem extract has on adult mosquito 

behaviour. Monitoring adult behaviour is important because previous work has 

indicated that neem can repel female mosquitoes from ovipositing (Dhar et al. 

1996). Our results showed that at a lethal dose for larvae, significantly more 

mosquitoes laid eggs when compared to control water-exposed mosquitoes. In 

addition, no significant repellent effects were seen even at doses 10x and 100x 

higher than the lethal dose for larvae (Howard et al. Under Review) (Chapter 4). 

Thus, mosquitoes were not prevented from exposing their progeny to the neem-

treated water at any of the doses tested.  

The results in this thesis can be seen as good news in the context of malaria 

control. The larval mortality (Howard et al. 2009) (Chapter 3) data proves that even 

wood of the neem tree (the part of the tree thought to contain the lowest 

concentration of active liminoids (Schmutterer 1995)) is able to control mosquito 

larvae at relatively low doses. Furthermore, this was achieved by simply placing the 
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wood into water, a method that requires almost no infrastructure and could easily 

be used in rural Africa. All doses used in the oviposition study (Howard et al. Under 

Review) (Chapter 4) allowed mosquitoes to still expose their progeny to the neem 

control tool. If this simple application of this control tool is to be used by rural 

communities, then the dose may not always be controlled. This could lead to 

overtly high doses being used, but our evidence suggests that even these very 

high doses will not adversely affect mosquito oviposition behaviour. 

Neem has been tested extensively in the laboratory for the control of malaria vector 

mosquitoes (Ziba 1995, Mulla and Su 1999, Nathan et al. 2005, Howard et al. 

2009) (Chapter 3), and field trials have been carried out using certain extracts 

(Nagpal et al. 1995, Awad and Shimaila 2003) and raw neem product (Gianotti et 

al. 2008). However, these studies only looked at entomological outcomes; the 

effect neem has on malaria transmission has not been tested yet. Field tests 

should be carried out to evaluate how the deployment of neem for mosquito control 

can directly impact malaria transmission. After this has happened, for the use of 

neem in general, there is no reason why the extracts already tested in field trials 

(Awad and Shimaila 2003, Gianotti et al. 2008) cannot be incorporated into 

integrated vector management (IVM) trials. If this happens, and it proves 

successful, the next stage would be to educate communities about the role that 

their popular shade tree could play in malaria control. Neem tree plantations could 

be planted in areas that are most at need of mosquito control, and this 

reforestation could help with issues like soil erosion. For the crude aqueous 

extracts of neem wood used in this thesis (Howard et al. 2009, Howard et al. Under 

Review) (Chapters 3 & 4), small scale field trials are required to see whether the 

extracts are able to effectively control mosquito larvae in the field; adult oviposition 

behaviour should also be monitored to see if the behaviour seen in the laboratory 

(Howard et al. Under Review) (Chapter 4) is replicated in the field because it may 

be that the oviposition response to neem is different in natural water bodies that 

produce a range of volatile signals. Although previous work has found that neem-

based pesticides do not significantly affect non-target organisms (Kreutzweiser 
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1997), it is still important to monitor non-target organisms, such as invertebrate 

mosquito predators, to verify that the use of neem does not adversely affect the 

ecosystem.  

In conclusion, even a simple aqueous extract of neem was able to control mosquito 

larvae at a relatively low dose (Chapter 3). That this ubiquitous tree is effective 

with such a simple application method is a promising result that paves the way for 

simple, cheap and potentially sustainable mosquito control that can be readily 

applied in the areas where it is most required. Furthermore, it was found that at the 

dose required for larval control, significantly more mosquitoes laid eggs when 

compared to the control. In addition, at higher doses mosquitoes were not 

significantly repelled from laying their eggs in the neem treated water (Chapter 4).  

 

9.3 Part II: Fish  

Fish were chosen as one of the natural products to be investigated in this thesis 

because fish farming is widespread in many African countries (FAO Inland Water 

Resources and Aquaculture Service 2003) and, as explained in section 2.3.2, 

many native fish are known to be larvivorous (el Safi et al. 1985, Louis and Albert 

1988). In addition, fish are in situ in many malaria-prone areas, and this method of 

malaria vector control is already potentially at the operational stage.  

For these reasons we conducted a fishpond census with the Kenyan Fisheries 

Department to examine the current status of fish farming in an area of western 

Kenya (Howard and Omlin 2008) (Chapter 5) to examine the effect that fish 

farming has on mosquito distribution and abundance. We found that fish farming 

was widespread and, as well as being a source of food and income, fish farming 

was able to control mosquito numbers in the field. Essentially fish farmers are 

already undertaking a form of mosquito control without knowing it. However, 

because they didn’t realise the links between fish farming and malaria 
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transmission, they were prone to leaving ponds that were not stocked with fish and 

this leads to higher malaria vector abundance (Howard and Omlin 2008) (Chapter 

5). Despite this, our results show that once the fish farmers were educated as to 

the risk these abandoned ponds posed, the demand for fish to restock them 

increased, highlighting the communities’ willingness to participate in malaria vector 

control (Howard and Omlin 2008) (Chapter 5).  

Furthermore, the census found that levels of abandonment were higher where 

incentives had been offered to start fish farming but then withdrawn. Clearly, 

incentives are not the way forward for sustainable mosquito control. A better 

method is education. Given the current status of fish farming, and the ability of 

Oreochromis niloticus L. (Perciformes: Cichlidae) to control mosquitoes (Howard et 

al. 2007) (Chapter 6), successful mosquito control could readily be implemented. 

However, if fish are to be actively used for malaria control, then the communities 

charged with maintaining the fishponds need to be sufficiently educated as to the 

role abandoned ponds have in mosquito proliferation. This education should 

address a range of issues as diverse as larval mosquito identification and ecology, 

and proper fish husbandry. Informal education of rural farmers via the Farmer Field 

School (section 2.6) has been a successful way to educate farmers about malaria 

transmission and the principles of IVM (van den Berg and Knols 2006, van den 

Berg et al. 2007) and I feel that a similar approach directed towards fish farmers 

would be of great benefit. 

This thesis demonstrates that the most popular fish type farmed in western Kenya, 

namely tilapiine fish, are able to control mosquitoes. This was found by both 

passive (Howard and Omlin 2008) (Chapter 5) and active (Howard et al. 2007) 

(Chapter 6) methods. Active deployment of this fish was able to reduce malaria 

vector numbers by >94% when compared to the control pond, and the suppression 

of mosquito breeding continued for a number of months. This demonstrates  that 

this edible fish can effectively and sustainably control malaria vectors (Howard et 

al. 2007) (Chapter 6). In the context of malaria control, the results from Chapters 5 
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& 6 are promising. Knowledge of fish husbandry is widespread, and there was a 

desire to restock ponds once farmers found out that abandoned ponds provided an 

ideal habitat for malaria vectors. In addition, communities are already familiar with 

O. niloticus because it is a popular food fish. Therefore, the deployment of this 

mosquito control tool should not have any issues with community acceptance. 

Furthermore, there should be a ready market for mature fish, which would allow 

this form of mosquito control to be driven by financial as well as 

entomological/health reasons. Crucially, this could lead to increased sustainability 

because malaria control tools that are linked to socioeconomic growth are more 

likely to be sustainable (Rajagopalan and Panicker 1985). It is for this economic 

reason that the deployment of O. niloticus is more appropriate for sustainable 

mosquito control than other larvivorous fish like the “mosquito-fish” Gambusia 

affinis Baird & Girard (Cyprinodontiformes: Poeciliidae). In addition, O. niloticus is a 

native African fish, and therefore should not be as destructive to African 

ecosystems as the non-native G. affinis. 

The effective use of larvivorous fish for mosquito control has been demonstrated in 

field trials in several countries using many different types of fish (Wu et al. 1991, 

Fletcher et al. 1992, Ghosh and Dash 2007, Howard et al. 2007) (Chapter 6). The 

next step is for this mosquito control tool to be directly integrated into IVM trials and 

operational strategies. Whilst this has already occurred in India to great effect, 

where malaria was successfully controlled (Singh et al. 2006), for unknown 

reasons African countries have not yet embraced this readily accessible and 

potentially sustainable mosquito control tool for use as part of their malaria control 

arsenal. Experimental evidence has been collected showing that the operational 

use of fish for malaria control is successful and could be implemented now (Ghosh 

and Dash 2007). However, when choosing whether to implement the use of 

larvivorous fish for mosquito control, many different location-specific parameters 

need to be carefully considered (Chapter 2). One particularly important parameter 

is which native fish species are present, because the introduction of non-native 

species into ecosystems can have devastating results (World Health Organisation 
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2002). Also, as with all malaria control tools, the implementation of larvivorous fish 

should be accompanied by adequate participatory education to make it more 

acceptable for communities, and potentially more sustainable. 

In conclusion, abandoned fish ponds lead to higher malaria vector abundance with 

the most dangerous vector, An. gambiae s.l., being proportionally more abundant 

in abandoned ponds. Despite this, encouraging results for future malaria control 

were found. Knowledge of fish husbandry and the practice of fish farming is 

widespread (Howard and Omlin 2008) (Chapter 5), and the main fish farmed has 

been found to be highly larvivorous in a field trial (Howard et al. 2007) (Chapter 6).  

The only real remaining barrier for the use of larvivorous fish for mosquito control in 

Africa is adequate education. This education should be directed towards allowing 

farmers to realise the danger that abandoned fish ponds pose, and ways to find 

and treat the most productive mosquito breeding sites. For those that are unfamiliar 

with fish farming, fish husbandry techniques should be taught because fish will only 

thrive under certain optimum conditions (Trewavas 1983). The use of larvivorous 

fish can and should be readily integrated into IVM strategies. 

 

9.4 Part III: Fungi 

The potential of entomopathogenic fungi for mosquito control was introduced in 

section 1.8.1, and the development of this tool is at a less advanced stage than 

neem and fish. Nevertheless, this natural product was investigated in this thesis 

because it is currently the most promising natural product for the control of adult 

mosquitoes. Adult mosquitoes are important to target because of the relationship of 

certain parameters in the vectorial capacity equation (MacDonald 1957, Garrett-

Jones 1964). Furthermore, widespread insecticide resistance is reducing the 

efficacy of current tools that target adult mosquitoes (N'Guessan et al. 2007). 

Because of the threat that insecticide-resistant mosquitoes pose, and the potential 

that fungi offer as a mosquito adulticide, we tested two species of 
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entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana) against 

insecticide-resistant mosquitoes. In the laboratory studies, the insecticide-resistant 

mosquito strain was compared to an insecticide-susceptible strain (Chapter 7), and 

in the field wild insecticide-resistant mosquitoes were targeted (Chapter 8). 

The laboratory work in this thesis was the first to use a fungal infection method 

subtle enough to explore individual strain effects between insecticide-resistant and 

insecticide-susceptible mosquitoes. The results showed that the insecticide-

resistant strain An. gambiae s.s. VKPER was significantly more susceptible to 

entomopathogenic fungi than the insecticide-susceptible strain An. gambiae s.s. 

SKK (Howard et al. 2010) (Chapter 7). The tendency to kill insecticide-resistant 

mosquitoes faster than insecticide-susceptible ones should be of benefit when 

tackling insecticide-resistance in the field, because fungal infection will quickly 

remove insecticide-resistance genes from the population while leaving the 

insecticide-susceptible mosquitoes to breed, which is important for keeping the 

fungus “evolution-proof” (Read et al. 2009). 

As well as exploring the effects of fungal infection in insecticide-resistant 

mosquitoes, this thesis focussed on assessing a potential application method that 

could be used for fungal conidial delivery in the field. This proposed application 

method was conidia suspended in ShellSol T and applied to white polyester 

netting. Whilst we found that this application method did not significantly alter the 

ability of conidia to infect and kill malaria vectors in the laboratory (Chapter 7), 

problems arose under field conditions (Chapter 8). In the laboratory, ShellSol T 

has previously been shown to be an effective delivery tool for fungal conidia 

(Farenhorst and Knols 2010), and this was also found in our laboratory study 

(Chapter 7). However, under field conditions the ShellSol T appeared to evaporate 

quickly and the fungal conidia were released from the netting. Furthermore, 

although the polyester netting was shown to adversely affect fungal viability in the 

laboratory this did not alter the effectiveness against mosquitoes (Howard et al. 

2010) (Chapter 7). However, in the field the ambient climatic conditions also 
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adversely affected fungal viability to a point where the effectiveness against 

mosquitoes was compromised (Chapter 8). Whilst these studies have shown that 

the use of ShellSol T and white polyester netting is not an appropriate delivery 

method of entomopathogenic fungi in the field, the more important message is that 

laboratory work is no substitute for field work. This is apparently true even when 

doing laboratory tests under conditions designed to mimic field conditions, as in 

this thesis.  

The field component of the fungal part of this thesis (Chapter 8) was the first time 

entomopathogenic fungi have been used against wild insecticide-resistant 

mosquitoes. It was also the first time fungi have been used in West Africa 

specifically to target mosquitoes, and the first time adult mosquitoes have been 

targeted with B. bassiana in the field. In fact, this study was the first time B. 

bassiana has been used to infect Culex quinquefasciatus Say either in the 

laboratory or field. In addition, it was the first study anywhere in the field to 

investigate and measure how entomopathogenic fungi affect the blood feeding of 

wild mosquitoes. This study also reports the first use of entomopathogenic fungi in 

a WHO cone bioassay set up. Given our conclusions following the laboratory work 

- that polyester netting could be used to infect mosquitoes with fungal conidia - we 

used this application method in the field in a World Health Organisation (WHO) 

recommended phase II experimental hut study (World Health Organisation 2006). 

Because there were not enough malaria vectors present in the study area during 

the trial, analysis was carried out on the nuisance mosquito Cx. quinquefasciatus. 

No significant effect on mosquito mortality was found, but B. bassiana was able to 

significantly reduce the blood feeding of Cx. quinquefasciatus when compared to 

the blood feeding in the control hut (Chapter 8). The WHO cone bioassays, carried 

out under ambient field conditions, found that entomopathogenic fungi applied on 

polyester netting could be used to infect and kill insecticide-resistant malaria 

vectors under field conditions.  

Given the present state of fungal research, it is only possible to talk about these 
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findings in the context of the potential for future malaria control, rather than actual 

ready deployment possibilities. Our (Howard et al. 2010) (Chapter 7) and previous 

laboratory findings (Farenhorst et al. 2009, Kikankie et al. 2010) have proven that 

fungi could be used to control insecticide-resistant malaria vectors, but, for 

unknown reasons, this was not found in the present study when exposing wild 

insecticide-resistant Cx. quinquefasciatus mosquitoes to fungal entomopathogens 

(Chapter 8). Our field results did show that fungi can be used to suppress 

mosquito blood feeding very soon after a fungal infection was acquired (Chapter 

8). This reduction of Culex blood feeding could play a role in malaria control 

because Culex are often implicated in the success or failure of malaria control 

campaigns because they are often more numerous than Anopheles, and as such, 

personal protection methods such as ITNs are often bought to prevent the 

nuisance biting as much as for any other reason (Chandre et al. 1998, Kulkarni et 

al. 2007). Furthermore, although not referring to malaria vectors, this instantaneous 

reduction in blood feeding is a very interesting finding, and if it can also be found in 

malaria vectors then the use of entomopathogenic fungi in malaria control 

programmes will become even more interesting, and their development will 

become more pressing. 

Many laboratory studies have been carried out using entomopathogenic fungi, and 

there is little doubt that fungal conidia can infect and kill malaria vectors under 

controlled laboratory conditions (Blanford et al. 2005, Farenhorst et al. 2009, 

Howard et al. 2010) (Chapter 7). However, only three field studies have been 

undertaken to date (Scholte et al. 2005, Lwetoijera et al. 2010) (Chapter 8), and 

none of these have directly monitored the effect of entomopathogenic fungi on 

malaria disease dynamics. The field studies so far undertaken have shown that 

whilst the fungal treatments have been effective at killing wild Anopheles 

mosquitoes (Scholte et al. 2005, Lwetoijera et al. 2010) and modifying the 

behaviour of wild Culex mosquitoes (Chapter 8), conidial viability decreases in a 

matter of just weeks (Scholte et al. 2005) (Chapter 8). Therefore, further field trials 

need to be undertaken specifically looking at maximising conidial viability under 



Summarizing discussion 

221 

C
h

ap
ter 9 

field conditions, and developing an application method that can withstand field 

conditions and effectively deliver fungal conidia for a long period of time. Once 

these issues have been addressed, field trials directly examining the effect 

entomopathogenic fungi have on malaria transmission have to be carried out. 

In conclusion, the results in this thesis show that insecticide-resistant An. gambiae 

s.s. mosquitoes are more susceptible to fungal infection than insecticide-

susceptible mosquitoes (Chapter 7). This leads to interesting possibilities involving 

population dynamics and the conservation of insecticide susceptibility genes. While 

the delivery method of ShellSol T and polyester netting worked well in the 

laboratory, it was unable to adequately protect conidial viability in the field. Not 

enough malaria vectors were collected to allow the impact of fungi to be analysed 

in the field, but analysis of Cx. quinquefasciatus showed no fungal-induced 

mortality (Chapter 8). This may be due to an inadequate experimental method or 

high natural mortality. It is interesting to note that no previous study has exposed 

Cx. quinquefasciatus mosquitoes to B. bassiana and, therefore, they may just be 

innately resistant to this fungal species. The instantaneous effect on blood feeding 

(Chapter 8) is interesting and should be further examined using wild malaria 

vectors. In terms of further work, the priority must be on field studies and work that 

prolongs the efficacy of conidial viability under natural field conditions, and that can 

effectively assess a robust method of delivering the fungi under tropical conditions. 

 

9.5 The 3 F’s together in the context of IVM 

Future work should be directed towards combining these and other methods in IVM 

trials with the view to measuring both entomological and malaria-case outcomes. 

How certain mosquito control tools can be combined in IVM programmes was 

discussed in Chapter 2. In this final chapter, more focus will be given to the 

combination of flora (specifically neem), fish and fungi. 
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The use of raw neem product to produce crude aqueous extracts in the field can be 

combined with many other types of mosquito control. It can be used with all forms 

of adult control, however, in terms of larval control more restrictions apply. Neem 

cannot be used in the same water bodies as larvivorous fish, because neem has 

been shown to adversely affect a range of fish species (Mondal et al. 2007, 

Winkaler et al. 2007) including the “mosquito fish” G. affinis (El-Shazly and El-

Sharnoubi 2000, Awad 2003). One mosquito control tool that neem should work 

well with is environmental management. The number of possible larval breeding 

sites can be reduced through environmental management, but some communities 

need these mosquito-friendly sources of water (Mutuku et al. 2006a, Imbahale et 

al. 2010). Under these circumstances, neem wood could be placed in cotton sacks 

(to allow the phytochemicals to leach out) in the remaining water bodies. This 

would provide larval control in these areas but, more importantly, if these water 

bodies were to dry out and then re-flood, the neem would still be there and the 

phytochemicals could leach out into the newly deposited water. This form of control 

is not possible with a range of other larval control tools and is a major benefit of the 

raw neem product approach. 

There are also some restrictions on the use of larvivorous fish. As mentioned 

above, they cannot be used in the same water body as neem. Furthermore, they 

cannot be successfully used in water bodies that are prone to dry out. Therefore, 

fish should be used for the larger and more permanent water bodies and neem can 

be used in the water bodies liable to drying and flooding. Also, as mentioned in 

section 2.5, fish are not compatible with the conservation of invertebrate mosquito 

predators (el Safi et al. 1985, Louca et al. 2009) or with the use of chemical 

insecticides (Walton 2007, Jayasundara and Pathiratne 2008). Despite these 

restrictions, larvivorous fish have been incorporated into successful IVM 

programmes, most notably in India where the use of larvivorous fish is a critical 

component of the Urban Malaria Scheme and the Enhanced Malaria Control 

Project (Chandra et al. 2008).  
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The deployment of entomopathogenic fungi for adult mosquito control, when 

operational, could be combined with almost all existing mosquito control tools. A 

recent model looking at the simultaneous application of entomopathogenic fungi 

and insecticide-treated bednets (ITN) predicts that in situations with low ITN 

coverage a synergistic effect of the fungal conidia and ITNs will be found; in 

situations of high malaria transmission intensity or insecticide resistance, and high 

ITN coverage, fungal applications are predicted to be very effective even at low 

fungal coverage (Hancock 2009). Furthermore, pyrethroid insecticides do not affect 

fungal conidia (Sanyang et al. 2000) and so entomopathogenic fungi could also be 

used in an IRS set-up. In theory, the use of fungi for adult mosquito control could 

also be combined with the use of neem and fish, because the latter two target the 

larvae, and fungi would be used to target adults. Tests need to be carried out 

combining fish and/or neem with fungi to see whether they will affect the use of 

entomopathogenic fungi for larval mosquito control (Bukhari et al. 2010). 

 

9.6 And finally.... 

A wide range of natural products were used in this thesis because the future of 

malaria control does not lie with one “silver-bullet” method. Many different methods 

need to be used simultaneously in IVM programmes. In that regard, all of the 

natural products tested in this thesis can be incorporated into IVM programmes. 

Furthermore, the products tested can be used to decrease reliance on insecticides, 

and therefore potentially increase the sustainability of the IVM programmes. In 

addition, the use of natural products could allow successful mosquito control in 

areas where high levels of insecticide resistance have been reported. Crucially, two 

of the products tested in this thesis (flora and fish) have the potential to bring 

sources of income to the rural communities that are at most risk from malaria, and 

where IVM programmes will initially be focussed. These two products have proved 

effective in field trials and could be implemented now.  
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Control programmes incorporating natural products that lead to successful 

mosquito suppression, along with an increase in the socioeconomic status of the 

community, not only have the potential to be more sustainable than some top-down 

insecticide-based control programmes, but they can also lead to an increased 

sense of understanding, ownership and empowerment among the community. This 

is important because eventually African communities will be charged with 

monitoring and implementing mosquito control. This process will be made easier if 

the control tools used are already familiar to the communities and are readily 

available, such as neem trees and larvivorous fish. However, for these tools to be 

used effectively, rural communities must be taught the importance of mosquito 

control, and how to use these techniques cheaply and effectively.  

The successful future of malaria control, and ultimately elimination, lies in 

engaging, empowering and entrusting rural communities with mosquito control in 

their environment using many methods in an IVM approach. For this to occur, 

cheap, readily accessible and effective mosquito control tools, such as those 

investigated in this thesis, need to be researched and developed. When the use of 

these tools becomes operational, the emphasis must be on bridging the knowledge 

gap between the scientific and rural communities that bear the brunt of the malaria 

burden. This is the real challenge of effective and sustainable malaria control. The 

message about effective mosquito control, backed up with scientific results, needs 

to be spread to the affected communities to fulfil the real purpose of scientific 

exploration. The status quo can only be changed when the communities are fully 

aware of the ways in which they themselves can help prevent mosquito breeding 

and malaria transmission, and when these communities are given the tools and 

knowledge for sustainable mosquito control and malaria prevention. Communities 

at risk of malaria need to be fully informed and educated about these things, 

because “education is the most powerful weapon which you can use to change the 

world” (Nelson Mandela). 
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Samenvatting 

Inleiding 

Ondanks veel aandacht in de afgelopen 10 jaar van internationale organisaties 

voor malaria, sterven nog steeds grote aantallen Afrikanen, vooral kinderen, aan 

deze ziekte. Het is duidelijk dat malaria slechts succesvol kan worden beheerst 

met behulp van verschillende controle-instrumenten toegepast door middel van 

geïntegreerd vector management (IVM), en dat de Afrikaanse gemeenschappen 

veel meer rechtstreeks betrokken moeten worden bij muggen-bestrijding 

(hoofdstuk 2). Het gebruik van middelen om muggen te bestrijden op een manier 

die weinig technische apparatuur of kennis vereist zal deze beschikbaar maken 

voor de landelijke gemeenschappen op de plek waar deze het meest effectief zijn. 

Wijdverspreide insecticidenresistentie vermindert de effectiviteit van op insecticide 

gebaseerde instrumenten voor muggenbestrijding. Om deze redenen, worden 

biologische bestrijding en andere natuurlijke muggenbestrijdingsmethoden 

onderzocht door veel verschillende instellingen. Verschillende potentiële natuurlijke 

beheersinstrumenten zijn voorhanden in sub-Sahara Afrika. Als deze instrumenten 

effectief ingezet worden, dan kan dit een duurzame oplossing zijn, omdat 

gemeenschappen de biologische agentia zelf kunnen produceren, waardoor een 

bron van inkomsten voor landelijke gemeenschappen ontstaat. Dit zou vooral 

belangrijk zijn in gebieden waar de infrastructuur slecht is ontwikkeld, en herhaald  

gebruik van chemische beheersinstrumenten niet gemakkelijk kan worden 

toegepast. Dit proefschrift was bedoeld om de haalbaarheid en de effectiviteit van 

een verscheidenheid aan natuurlijke producten tegen zowel de larven als tegen de 

volwassen malaria muggen te testen met behulp van low-tech methoden in het 

laboratorium en door middel van veldproeven. 



Samenvatting 

254 

Deel I: Flora 

Azadirachta indica A. Juss (Meliaceae) (de neem-boom) is gekozen vanwege de 

reeds bewezen mugdodende eigenschappen, en zijn beschikbaarheid in Afrika. 

We wilden de neem-boom gebruiken op een manier die gemakkelijk kan worden 

ingezet in plattelandsgebieden met weinig middelen. Laboratorium studies werden 

uitgevoerd om de larf en pop dodende eigenschappen van een waterig extract van 

ruw neemhout tegen de belangrijkste Afrikaanse malaria vector, Anopheles 

gambiae Giles s.s. (Diptera: Culicidae) te onderzoeken (hoofdstuk 3). De 

resultaten geven aan dat zelfs een relatief lage dosis van 0,15 gram gedroogd 

neemhout in 1 liter water in staat was de ontwikkeling van 90% van de 

muggenlarven tot volwassenen tegen te houden als muggenlarven werden 

blootgesteld tijdens hun eerste drie larvale stadia. Zelfs voor de vierde (laatste) 

instar larven was slechts 0,6 g / l nodig om de ontwikkeling van 90% van de 

muggenlarven tot volwassenen tegen te houden. Bovendien nam de 

ontwikkelingsduur van neem blootgestelde larven aanzienlijk toe in vergelijking met 

de controles. Poppen werden ook gedood door de waterige neem extracten en 

kregen neem geïnduceerde afwijkingen. De concentraties die nodig zijn om 

poppen te doden waren echter veel hoger dan voor de larven en zullen 

waarschijnlijk niet operationeel worden gebruikt. High-performance liquid 

chromatography (HPLC) analyse identificeerde verschillende polaire bestanddelen 

in de waterige neem extracten waaronder nimbin en salannin. Azadirachtine was 

echter niet in aanzienlijke hoeveelheden aanwezig. Het effect van dit extract op het 

ovipositiegedrag van een volwassen An. gambiae s.s. vrouw  werd vervolgens 

bestudeerd (hoofdstuk 4). De ovipositie resultaten tonen aan dat bij gebruik van 

0,1 g / l van het ruwe waterige neem-extract, aanzienlijk meer muggen hun eieren 

leggen vergeleken met de controle behandeling. Er was geen verschil tussen de 

controlegroep en de behandelingen met een 10- en een 100-voudige dosis  voor 

wat betreft het aantal muggen dat eieren legde. Hieruit blijkt dat zelfs bij veel 

hogere doseringen dan nodig voor een succesvolle bestrijding van larven, de 

ovipositie niet nadelig wordt beïnvloed.  
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Deel II: Vis  

Larf etende vissen zijn een bewezen methode om muggenaantallen te beheersen. 

Daarom werd een telling uitgevoerd om de huidige status van de visteelt in het 

westen van Kenia (hoofdstuk 5) te onderzoeken. Werkend met het Keniaanse 

Ministerie van Visserij merkten we dat, alhoewel het kweken van vis een favoriete 

activiteit is, 30% van de 261 gevonden vijvers geen vis bevatten. Deze "verlaten" 

vijvers hadden aanzienlijk meer An. gambiae s.l., Anopheles funestus Giles en 

culicine muggen in vergelijking tot de vijvers die nog wel vis bevatten. Anopheles. 

gambiae s.l. was verhoudingsgewijs meer aanwezig in de verlaten vijvers 

vergeleken met de andere soorten muggen. Verrassend genoeg had vegetatie 

geen significante invloed op de aanwezigheid van muggen. Na onze studie, steeg 

de vraag naar vis voor de vernieuwing van verlaten vijvers met 67% ten opzichte 

van het voorgaande jaar. De overgrote meerderheid van de gekweekte vis in ons 

telgebied waren vissen van de tilapiine onderfamilie. Daarom, stelden we een 

kleinschalig veldonderzoek in naar de larf etende capaciteit van de vis 

Oreochromis niloticus L. (Perciformes: Cichlidae) (hoofdstuk 6). Door dagelijkse 

tellingen van de mugaantallen, zagen we dat direct na introductie van de vis, de 

dichtheid van muggen in de behandelde vijvers daalde in tegenstelling tot een 

toename in de controle vijver. Na 15 weken waren de aantallen Anopheles gedaald 

met > 94% in de vijvers met de vis. Zo werden muggenaantallen duurzaam 

beheerst tijdens de zes maanden durende studie. Geconcludeerd wordt dat deze 

vissensoort een effectieve en duurzame manier biedt om muggenaantallen in het 

westen van Kenia te beheersen. Bovendien, vormt deze vis een bron van 

broodnodige inkomsten en eiwitten aan Afrikaanse plattelandsgemeenschappen. 

 

Deel III: Schimmels 

Voor de controle van de volwassen mug met behulp van natuurlijke producten zijn 
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entomopathogene schimmels het meest veelbelovend. In dit proefschrift worden de 

entomopathogene schimmels Beauveria bassiana en Metarhizium anisopliae 

afzonderlijk in een minerale olie suspensie gebracht en toegepast op polyester 

gaas. Vervolgens werd een laboratorium experiment uitgevoerd om de 

gevoeligheid voor schimmels van insecticidengevoelige en insecticidenresistente 

stammen van An. gambiae s.s. te onderzoeken. Daarnaast werd de 

levensvatbaarheid van schimmelsporen getest op verschillende tijdstippen na de 

toepassing op polyester gaas (hoofdstuk 7). Hoewel beide mug stammen gevoelig 

waren voor beide soorten schimmels,  was de pyrethroïde-resistente An. gambiae 

s.s. VKPER stam aanzienlijk gevoeliger dan de insecticide-gevoelige SKK stam, en 

stierf sneller. De levensvatbaarheid van schimmelsporen was significant lager voor 

beide soorten na toepassing op het polyester gaas, in vergelijking met de 

levensvatbaarheid in suspensie. Echter, het vermogen van de behandelde netten 

om muggen te infecteren en te doden was niet significant afgenomen tijdens de 

proefperiode van een week. Gezien de constatering dat met schimmel behandeld 

polyester gaas muggen kan infecteren en doden , werd een experimenteel 

veldonderzoek met hutten uitgevoerd in Benin, West-Afrika, teneinde het effect van 

de schimmelbehandeling op bloed eetgedrag en het voortbestaan van wilde 

insecticidenresistente muggen te onderzoeken. Benin werd gekozen vanwege de 

aanwezigheid van multi-insecticideresistente muggenpopulaties die een bedreiging 

vormen voor de effectiviteit van de huidige vector controle. We gebruikten een met 

schimmel behandeld net om muggen die in de hut kwamen te infecteren, in 

combinatie met of een onbehandelde of een met insecticide behandelde klamboe 

in elke hut om zo te onderzoeken hoe de entomopathogene schimmels werken met 

de huidige controle-instrumenten (hoofdstuk 8). Er werden alleen genoeg Culex 

quinquefasciatus Say (Diptera: Culicidae) muggen verzameld uit de hutten voor 

een nauwkeutige analyse. Onze studie is de eerste die het effect van 

entomopathogene schimmels op de bloedmaaltijd van wilde muggen bestudeerde. 

We vonden dat de B. bassiana behandelingen aanzienlijke en onmiddellijke 

vermindering van bloed voeden veroorzaakt. Er werd geen significant effect van de 
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schimmels op muggen mortaliteit gevonden. De spoorlevensvatbaarheid van B. 

bassiana en M. anisopliae bleek snel af te nemen onder veldomstandigheden. 

  

Conclusies  

Dit proefschrift beschrijft verschillende experimentele technieken om het potentieel 

van drie natuurlijke producten voor mugbeheersing te onderzoeken. Voor de flora, 

bleek dat zelfs een kleine hoeveelheid neemhout in het water mugpopulaties zou 

beheersen (hoofdstuk 3), en bij een hogere doses, werd het ovipositie gedrag niet 

nadelig beïnvloed (hoofdstuk 4). Neem bomen zijn verkrijgbaar in vele gebieden 

van Afrika, en uit veelbelovende veldproeven blijkt dat het gebruik van deze 

boomsoorten moet worden opgenomen in de bestrijding van malaria.  

Dit proefschrift rapporteert dat de eetbare inheemse Afrikaanse vissen effectief 

kunnen zijn voor het beheersen van mugpopulaties (hoofdstuk 6), maar als de 

vijvers voor het kweken van vis zijn verlaten, dan kunnen grote aantallen van de 

meest effectieve malariavectoren hier broeden (hoofdstuk 5). Vissen zijn met 

succes gebruikt voor malaria vector beheersing in vele landen en dit kan worden 

toegepast op geschikte terreinen in Afrika, zolang dit gepaard gaat met een 

adequate voorlichting over de gevaren van verlaten vijvers. 

We vonden dat insecticidenresistente muggen vatbaarder waren voor 

schimmelinfecties dan de insecticidengevoelige stam. Onder veldomstandigheden 

waren schimmels in staat om bloed voeden van muggen te voorkomen, maar 

veroorzaakten geen grote sterfte in gevangen wilde muggen. Hoewel 

entomopathogene schimmels een hoog niveau van sterfte veroorzaken in het 

laboratorium, (hoofdstuk 7), heeft het gebruik ervan onder veldomstandigheden 

nog een lange weg te gaan en is nog niet in de operationele fase. Hoewel de 

resultaten gevonden in dit proefschrift bemoedigend zijn voor het gebruik van 

schimmels in de Afrikaanse situaties (hoofdstuk 8), moet verder werk worden 

uitgevoerd om schimmelpersistentie onder veldomstandigheden te maximaliseren. 
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De huidige nadruk ligt op IVM voor de bestrijding van malaria (hoofdstuk 2), en de 

focus is gericht op de biologische beheersinstrumenten die kunnen helpen bij het 

beheren van insecticidenresistente populaties. Met dit in gedachten hebben de 

natuurlijke producten onderzocht in dit proefschrift bemoedigende resultaten 

opgeleverd die laten zien dat ze het potentieel hebben om te worden geïntegreerd 

in strategieën voor de bestrijding van malaria. Bovendien zijn de flora en vissen 

direct beschikbaar in de gebieden waar zij het meest nodig zijn, en kunnen vrijwel 

direct worden gebruikt om mugaantallen te helpen verminderen en daarmee de 

overdracht van malaria. 
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