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Abstract 
 

This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-

stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a 

variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS 

proteins are able to counteract the antiviral RNA silencing response in their plant host and 

insect vector, and even in mammalian cells, that are non-hosts for these viruses. Whereas 

Rice hoja blanca virus NS3 has been shown to bind size specific dsRNA, most tospovirus 

NSs proteins, in contrast, bind dsRNA size-independently and thus are able to interfere at two 

different stages in the RNA silencing pathway: RNA-induced silencing complex assembly and 

in Dicer cleavage. In addition to the interaction with the antiviral small interfering (si)RNA 

pathway both RSS proteins were able to interfere with the micro (mi)RNA pathway, which is 

important for host gene regulation. This is probably due to the structural similarities among 

the dsRNA molecules (siRNA and miRNA/miRNA* duplexes). Computer prediction supports 

the idea that the miRNA pathway (or at least certain miRNA/miRNA* duplexes) could 

potentially act as antiviral response in insects and plants, as recently reported for mammals. 

Furthermore, the ability of NS3 to trans-complement HIV-1 for the proposed HIV-1 RSS, the 

Tat protein, and restore virus production at wild type virus levels, supports the recent 

observation that at least certain mammalian-infecting viruses are restricted by small dsRNA 

molecules and highlights the use of well characterized plant RSS proteins as tool to study 

viral counter defense in a variety of eukaryotic systems. 
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The discovery of RNA silencing as the plant’s innat e immune system against viruses 

The plant’s innate immune system against viruses is very different from that against fungi and 

bacteria. The basal antiviral defense relies on the recognition and sequence-specific 

breakdown of (double-stranded, ds) viral RNA rather than targeting the pathogen’s proteins. 

This recently disclosed defense system, which is generally referred to as antiviral RNA 

silencing or RNA interference (RNAi) will be discussed as well as the strategy how viruses 

may counteract this innate defense system. 

Unlike fungal and bacterial pathogens, viruses are exclusively intracellular parasites, 

multiplying in either the cytoplasm or the nucleus of host cells. As a consequence, the 

interplay between host defense systems and the virus is a strictly intracellular event. Since 

only the mid 90’s plant molecular biologists and virologists have become aware that the plant 

possesses a sequence-specific RNA breakdown mechanism, often referred to as post-

transcriptional gene silencing (PTGS) or RNA silencing, and that this mechanism acts as the 

major innate immune system against viruses. The discovery of this defense system occurred 

accidentally, by encountering unexpected results during attempts to obtain virus-resistant 

plants through genetic engineering approaches. In the 80’s several groups were investigating 

whether transgenic forms of virus resistance could be obtained according to the concept of 

“pathogen-derived resistance” (PDR). This concept was first described by Grumet et al. 

(1987), who proposed the possibility to exploit pathogen-derived genes as a means to obtain 

resistance in a variety of host-parasite systems. It was suggested that deliberate expression 

of such genes in altered form, level or developmental stage, could interfere with pathogen 

replication resulting in specific host resistance. Among possible targets for PDR-mediated 

virus resistance, the most broadly exploited viral genes were those coding for the coat protein 

(CP), replicase and movement protein (Baulcombe, 1996, Powell et al., 1990, Prins & 

Goldbach, 1996). Following the demonstration that expression of a viral CP confers a level of 

resistance to the pathogen (Powell et al., 1989), it was observed in control experiments that 

non-translatable CP transgenes conferred similar levels of resistance as the functional gene. 

For years this phenomenon was referred to as RNA-mediated resistance, and only in 1993 

William Dougherty and co-workers (Lindbo et al., 1993) linked this phenomenon to “co-

suppression” in plants and “quelling” in fungi (Cogoni & Macino, 1999a, Cogoni & Macino, 

1999b) which involve sequence-specific degradation of transcripts from both transgenes and 

their homologous endogenous counterparts. In turn, co-suppression was discovered when 

transgenic petunia plants with additional copies of endogenous genes involved in flower 

pigmentation, became completely white due to a dramatic decrease in expression level of the 

respective genes (Napoli et al., 1990, van der Krol et al., 1990). Identification of (induced) 

RNA silencing as the principle mechanism of transgenic resistance to viruses has – in 

retrospective – been a major break-through. Rapidly, multiple publications appeared providing 

evidence that RNA silencing is a naturally occurring, ancient mechanism having a major 

function in regulating gene expression, transposon behavior, and viral infections (Carthew & 

Sontheimer, 2009). Moreover, RNA silencing occurs not only in plants and fungi, but has later 
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been found also in invertebrate (Fire et al., 1998) and vertebrate animals, including humans 

(Carthew & Sontheimer, 2009, Elbashir et al., 2001, Hammond et al., 2000, Zamore et al., 

2000). 

A crucial discovery was the finding of short, virus-derived dsRNA molecules in infected host 

plants, explaining the sequence specificity of the RNA breakdown mechanism (Hamilton & 

Baulcombe, 1999). These short dsRNA species are commonly referred to as small interfering 

RNAs (siRNAs). 

Next to the discovery of virus-specific siRNAs, it was demonstrated that plants that are 

deficient in essential RNA silencing genes, show enhanced viral pathogenicity (Dalmay et al., 

2001, Morel et al., 2002, Mourrain et al., 2000). These findings, and the fact that all tested 

plant viruses encode proteins that interfere with, and suppress the RNA silencing pathway, 

supported the idea that RNA silencing acts as innate antiviral defense system in plants. The 

viral proteins antagonizing RNA silencing, often already known as “virulence factors”, are 

commonly referred to as RNA silencing suppressor (RSS) proteins (Brigneti et al., 1998, 

Kasschau & Carrington, 1998). 

 

Current views of RNA silencing as antiviral mechani sm in plants 

With increasing insights, it was found that RNA silencing is not one single RNA breakdown 

pathway but encompasses several pathways among two major ones, the siRNA and the 

microRNA (miRNA) pathway. The former includes the antiviral defense branch of the system, 

while the miRNA pathway is primarily involved in regulating (host) gene expression.       

Figure 1-1 presents a simplified scheme of the RNA silencing pathways in the plant (most 

data have been obtained from Arabidopsis). As visualized in the scheme, RNA silencing 

starts with the recognition of long dsRNA by a type III endonuclease, called Dicer-like protein 

(DCL) in plants (the term Dicer was coined for a similar enzyme in the fruit fly Drosophila 

melanogaster (Bernstein et al., 2001)). It will be obvious that in particular RNA viruses are 

excellent targets to provoke (antiviral) RNA silencing: they replicate through (partially) dsRNA 

intermediates, while also the single-stranded (ss) genome contains extensive secondary 

structure. For viruses with a DNA genome, like the caulimo- and geminiviruses, the viral 

transcripts are the targets for RNA silencing, induced by secondary structures (e.g. the 35S 

RNA transcript of cauliflower mosaic virus, CaMV) and/or by overlapping sense-antisense 

transcripts (Chellappan et al., 2004, Du et al., 2007, Moissiard & Voinnet, 2006, Molnar et al., 

2005, Sharp & Zamore, 2000). 

 

The siRNA pathway  

The siRNA pathway represents the antiviral branch of RNA silencing and this process takes 

place entirely in the cytoplasm (Covey et al., 1997, Ratcliff et al., 1997) (Figure 1-1). It is 

known that plants encode different DCLs. In Arabidopsis DCL-4 is the most important one in 

the antiviral siRNA pathway against positive stranded RNA viruses while DCL-3 is needed for 

long-distance silencing and all 4 DCLs (DCL-1 to -4) are required for the antiviral defense 
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against DNA viruses like Cauliflower mosaic virus (CaMV) (Moissiard & Voinnet, 2006). When 

DCL-4 is inactivated, its function is partly replaced by DCL-2 (Gasciolli et al., 2005). 

DCL-4 cleaves the viral dsRNA target molecules into small viral specific dsRNA molecules 

(siRNA) of 21-26 nucleotides (nt) in length with 2 nt overhangs at their 3´ends (Dunoyer et al., 

2005, Gasciolli et al., 2005, Hamilton et al., 2002). After cleavage by DCL, the 21 nt siRNAs 

are incorporated into the RNA induced silencing complex (RISC), which harbors a member of 

the Argonaut (AGO) protein family, a key molecule of RISC (Hall, 2005). After unwinding and 

degradation of the passenger siRNA strand (or siRNA*), the guide siRNA strand is used to 

identify complementary single stranded viral RNA sequences. After duplex formation between 

the guide siRNA strand and viral ssRNA, RISC (more specifically the AGO protein) facilitates 

target cleavage of the viral ssRNA molecule, resulting in sequence-specific RNA degradation 

of the viral RNA (Tomari & Zamore, 2005). A special feature of the silencing pathway in 

plants, fungi and C.elegans is the possibility to amplify the silencing signal, in order to extend 

silencing along the target gene, using a host encoded RNA-dependent RNA polymerase 

(hRdRp). The hRdRp is able to produce new dsRNA molecules in an either primer-dependent 

or -independent manner; those can again enter the siRNA pathway, resulting in secondary 

siRNA molecules (Baulcombe, 2004, Cogoni & Macino, 1999a, Sijen et al., 2001, Vaistij et al., 

2002) (Fig. 1-1). 

RNA silencing is not only induced within the infected cell; plants are able to pre-program not 

yet infected cells by spreading the silencing signal beyond the site of initiation. This feature is 

called systemic silencing and can be divided in short-distance spread (10-15 cells) and 

phloem-dependent long-distance transport. Recent results in Arabidopsis have indicated that 

DCL-4 is essential for the short distance silencing, indicating 21 nt siRNA as mobile silencing 

signal. More experiments using transgenic plants and chemically designed siRNA molecules, 

indicates that the DCL-4 produced 21 nt siRNA molecules move to the surrounding cells in a 

complex without Argonaut and that the host encoded RNA dependent RNA polymerase 6 

(RDR6) is not needed. More experiments are needed to answer the question if the siRNAs 

move as duplex or single stranded RNA and if the movement occurs via plasmodesmata 

(Dunoyer et al. 2010). 

The long-distance silencing is suggested to rely on the activity of DCL-3, producing 24 nt 

siRNA molecules (Voinnet, 2005b, Yoo et al., 2004); although recent results point to the  

DCL-4 produced 21 nt siRNAs (Dunoyer et al. 2010). Further analysis is required to resolve 

the precise mechanism for both short-distance and long-distance systemic silencing. 

 

The miRNA pathway 

The miRNA pathway has no primary function in antiviral defense; it rather represents a gene 

expression regulation mechanism, shared with animals, to down-regulate genes. 

Comparison of the siRNA and miRNA pathway (Figure 1-1) reveals a high degree of 

similarity. Both start with the processing of longer dsRNA substrates into small dsRNA 

species, of which the guide strands are incorporated into RISC (often denoted siRISC or 
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miRISC, respectively) and searching for complementary ssRNA molecules. A fundamental 

difference is that whilst the siRNA pathway occurs entirely in the cytoplasm, the miRNA 

pathway starts in the nucleus. The miRNAs are endogenous RNA species, encoded by host 

genes. Chromosomal miRNA genes are transcribed mostly by RNA polymerase II to deliver 

primary miRNAs (pri-miRNAs) that are folded into partly double stranded stem-loop structures 

and become a substrate for DCL-1 to generate precursor miRNAs (pre-miRNAs). Cleavage of 

pre-miRNAs, again performed by DCL-1, generates mature 21-22 nt miRNA/ miRNA* which, 

unlike siRNAs, are not completely double-stranded (Bartel, 2004, Voinnet, 2009). The 

miRNA/miRNA* duplexes are then exported from the nucleus by the nuclear export receptor 

HASTY (the Arabidopsis ortholog of the insect/mammalian EXPORTIN5/ MSN5). In the 

cytoplasm, the miRNA/miRNA*s are incorporated into RISC, unwound and used as guide to 

find perfectly or partly complementary ssRNA sequences, resulting in degradation and/or 

translational inhibition of target mRNAs. These target mRNAs often encode transcription 

factors that, in turn, are in charge of regulating multiple genes (Chen, 2005). Most miRNAs 

are expressed in a tissue-specific manner and some are able to down-regulate the expression 

of key RNA-silencing proteins, like DCL and AGO. The complementary miRNA target 

sequences in the host mRNAs can be present in the coding sequence, in the 3’ untranslated 

region (UTR) or even in the 5`UTR (Voinnet, 2009). 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 1-1:  Schematic representation of the siRNA and miRNA pathway in plants and the inhibitory action (indicated “stop”) by some selected viral RSS proteins (tombusviral P19, 
auriusviral P14, potyviral HC-Pro and cucumoviral 2b). RISC, RNA induced silencing complex; DCL, Dicer-like protein; Ago, Argonaut protein; vRdRp, viral RNA-dependent RNA 
polymerase; hRdRp, host-encoded RNA-dependent RNA-polymerase; RSS, RNA silencing suppressor. 
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Other RNA silencing mechanisms 

Next to the antiviral siRNA and the miRNA pathway, several other pathways have been 

found, either especially in the plant or in other organisms, like C.elegans and zebrafish. 

In plants, the transacting siRNAs (ta-siRNA) and the natural siRNAs or cis-acting siRNAs are 

two additional endogenous siRNA molecules.  

Transacting-siRNAs derive from TAS-gene transcripts, which are initially targeted by a miRNA 

molecule (Allen et al., 2005) and subsequently cleaved, followed by transformation of one of 

the resulting two strands into dsRNA by RDR6 and SGS3 (suppressor of gene silencing 3) 

and cleavage by DCL4 (Peragine et al., 2004, Yoshikawa et al., 2005). These RDR6-derived 

21 nt ta-siRNAs guide the cleavage of their target RNA (Vazquez et al., 2004) in a complex 

with AGO1 (Baumberger & Baulcombe, 2005). 

The natural siRNAs (nat-siRNAs) on the other hand derive from pairs of natural cis-antisense 

transcripts, cleaved by DCL2 into 24 nt nat-siRNAs. The resulting cleavage of their transcript 

and guide sequence can again generate, this time, 21 nt nat-siRNAs by DCL1. The nat-

siRNAs are believed to be activated by abiotic or biotic stress and function as plant adaptive 

protection mechanism (Borsani et al., 2005, Katiyar-Agarwal & Jin, 2007).  

Besides post transcriptional gene silencing, siRNAs also play a key role in transcriptional 

gene silencing (TGS). This process is active in the nucleus and involves heterochromatic 

siRNAs that often derive from repeat elements (24 nt repeat associated; ra-siRNA) like 

transposons or centromeric repeats and are dependent on DCL3, RDR2 (Chan et al., 2005) 

and most times DNA-dependent RNA polymerase IV (Pol IV) (Herr, 2005, Onodera et al., 

2005). Incorporation of these in complex with AGO4 and other proteins, enables this complex 

to direct methyltransferases to homologous DNA loci, resulting in RNA-directed DNA 

methylation (RdDM) or histone modification (Kanno et al., 2005, Pontier et al., 2005). This 

activity, propably, mainly serves to protect the genome against damage caused by 

transposons (Xie et al., 2004, Zilberman et al., 2004). 

Next to plants, endogenous siRNAs have been well characterized in C. elegans, shown to be 

dependent on the activity of the host encoded RdRp (Ruby et al., 2006, Sijen et al., 2007). 

Although lacking a RdRp, endogenous encoded siRNAs (endo-siRNAs) have recently been 

found in mouse (Tam et al., 2008, Watanabe et al., 2008b) and Drosophila somatic cells, 

(Chung et al., 2008, Czech et al., 2008, Ghildiyal et al., 2008, Kawamura et al., 2008, 

Okamura et al., 2008a, Okamura et al., 2008b), corresponding to transposons, structured 

cellular transcripts and overlapping transcripts. Most endo-siRNAs map to transposons, of 

which the long terminal repeat (LTR) retrotransposons are predominant compared to the non-

LTR retrotransposons and DBA transposons. The endo-siRNAs distributed evenly throughout 

the entire transposon, lacking any hot-spot, demonstrated by mapping of the endo-siRNAs to 

the transposons (Tam et al., 2008, Watanabe et al., 2008a, Watanabe et al., 2008b, Yang & 

Kazazian, 2006). Experiments have determined Dicer-2 and AGO-2 as key components of 

the endo-siRNA pathway in Drosophila (Ghildiyal et al., 2008, Kawamura et al., 2008), as also 

observed for the antiviral siRNA pathway.  
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Most of the RNA silencing pathways are Dicer dependent, however in germlines Dicer 

independent small dsRNAs have been found, silencing selfish DNA elements (e.g. 

transposons) and maintaining the germline DNA integrity. These 24-30 nt small dsRNA 

molecules, referred to as PIWI interacting RNA (piRNA), silence transposons by directing 

DNA methylation and are associated with PIWI-class Argonaut proteins, only expressed in 

germline cells. Recent studies suggest that both endo-siRNAs and piRNA act in germline 

cells, with piRNAs being the predominant pathway (reviewed by Aravin & Hannon, 2008).  

 

RNA silencing components  

To get better insights into the dynamics and the preposition of the (key)-compounds of the 

different RNA silencing pathways, in vitro systems were developed. One of the first and most 

successful was the preparation and use of extracts from cultured Drosophila cells or their 

embryos. Only recently some crystal structures of some of the key-components with their 

target molecules (like Argonaut with a siRNA molecule or Giardia Dicer) have been described 

(Wang et al., 2008a, Wang et al., 2008b, Yuan et al., 2006). 

 

Dicer and partners  

The Dicer protein was first isolated from Drosophila and identified as a member of the Type III 

RNase (Bernstein et al., 2001, Hammond et al., 2000). RNase III-like enzymes can be divided 

into three classes (Figure 1-2) (Lamontagne et al., 2001), but all share a homologous 

ribonuclease domain (known as RNase III domain) and produce duplex RNA fragments with a 

characteristic terminal-end structure that consists of a 5`-phosphate group and two nucleotide 

overhang at the 3`-end (Ji, 2008, Zhang et al., 2004). Members of class 1 RNase only contain 

a single RNase III domain and a joined dsRNA-binding domain (dsRBD). Members of class 2 

and 3, represented by Drosha and Dicer enzymes, respectively, contain two RNase III 

domains whereas most of the class 3 Dicers additionally contain a N-terminal RNA helicase 

domain and a PIWI/Argonaut/Zilli (PAZ) domain, features that are shared with the Argonaut 

proteins.  
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Figure 1-2:  Schematic overview and domain structures of representatives of the three classes of RNase III 
like enzymes (Aliyari & Ding, 2009). DCR, Dicer. 
 

Meanwhile, Dicer proteins or Dicer-like proteins (DCLs) have been identified in almost all 

eukaryotes, although large differences are observed in the levels of Dicer among organisms. 

Whereas Drosophila encodes Dicer-1 and Dicer-2, Arabidopsis encodes 4 different DCL 

proteins which are at least partly linked to the miRNA or (antiviral) siRNA pathway 

(Baulcombe, 2005, Lee et al., 2004c, Tomari & Zamore, 2005). In contrast, C.elegans and 

mammals only encode 1 Dicer which acts in the siRNA and the miRNA pathway.  

Although Dicer theoretically cleaves any dsRNA molecule into small dsRNA, the recognition 

of various dsRNA substrates and size of produced molecules differs. In Arabidopsis for 

example, DCL-1 processes the primary miRNA (pri-miRNA) into miRNA/miRNA* duplexes. 

DCL-2, -3 and -4 produce siRNA molecules sized 22 nt, 24 nt and 21 nt, respectively 

(Henderson et al., 2006, Qi et al., 2005). The proposed model for Giardia Dicer in which its 

two RNase III domains form an intra-molecular dimer connected to the PAZ domain, which 

anchors the end of the dsRNA, explains this size specificity. The size of siRNA molecules 

produced is thereby determined by the distance between the RNase III domains and the PAZ 

domain (MacRae & Doudna, 2007, MacRae et al., 2007).  

In invertebrates and vertebrates, the biogenesis of miRNA relies on another RNase III –like 

enzyme, called Drosha (Lee et al., 2003). The maturation of, for example insect miRNAs, 

occurs in a step wise manner, slightly different from the miRNA pathway in plants. In 

Drosophila precursor (pre)-miRNAs, resulting from Drosha cleavage of pri-miRNA (Han et al., 

2004, Lee et al., 2004b), are exported from the nucleus to the cytoplasm by exportin 5 (Lund 

& Dahlberg, 2006). There, Dicer-1 cleavage into the 22 nts miRNA/miRNA* occurs (Kim, 

2005, Lee et al., 2004c). While Dicer-1 requires ATP for its activity, Dicer 2 preferentially acts 

in an ATP-dependent manner (Jiang et al., 2005, Liu et al., 2003). Uploading of 

miRNA/miRNA* into RISC and subsequent target cleavage or translational inhibition occurs in 

a similar fashion as previously described for plants. Whereas Drosha requires a binding 

partner, for functional activity, called Pasha (DGCR8 in humans), a protein that contains 

tandem dsRBDs (Denli et al., 2004, Han et al., 2006, Landthaler et al., 2004), Dicer proteins 

also have binding partners containing tandem dsRBD, like Loquacious (Loq) in Drosophila 

(Forstemann et al., 2005), hyponastic leaves 1 (HYL-1) in Arabidopsis (Kurihara et al., 2006) 

and TAR RNA-binding protein (TRBP) in humans (Haase et al., 2005), but these are 

expendable for Dicer activity. 

 

 Argonaut proteins 

The silencing induced complex incorporates all type of small dsRNA molecules to trigger 

sequence specific gene silencing. One of the key proteins in these complexes is Argonaut 

(AGO) that interacts with siRNAs, miRNAs and piRNAs (Hock & Meister, 2008). Like Dicer, 

AGO contains a PAZ domain that binds RNA in a sequence-independent manner and 

recognizes the ss siRNA at the 3`-end (Lingel & Izaurralde, 2004, Lingel et al., 2003). Next to 
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the PAZ domain, a MID domain binds the uploaded small RNA via its 5`- phosphate-group in 

concert with the C-terminal RNase H-like PIWI domain (Hutvagner & Simard, 2008). The 

guide RNA strand uploaded and bound by AGO allows the complex to be directed to ss RNA 

target sequences with complementarities to the RNA guide strand. Different silencing events 

may occur depending on the formed complex and degree of base pairing (Okamura et al., 

2004). In case of extensive base pairing between target RNA and RNA guide strand and 

subject the incorporated AGO protein harbors slicer activity, target cleavage (slicing) occurs 

at the central position by the RNase H like activity of AGO. In Drosophila all AGO proteins 

contain slicer activity but AGO1 primarily binds miRNA/miRNA*s, being a weak slicer (Miyoshi 

et al., 2005, Rand et al., 2005). Among the four human AGO proteins, three do not exhibit 

slicer activity (Meister et al., 2004).  

In case of partial complementarities of the RNA guide strand to its target, as observed for 

nearly all animal miRNAs, mostly translational inhibition is induced. The translationally 

arrested RNA targets sequester in the majority in cytoplasmic bodies, called Processing 

bodies (P-bodies), most probably induced by the interaction between the AGO protein and i.e. 

GW182 proteins. GW182 proteins interact with essential proteins of the translation machinery, 

like PABPC1, and are therefore thought to cause translational inhibition (reviewed by Eulalio 

et al., 2008). 

Bound guide strands can also direct the silencing induced complex to nascent transcripts 

where subsequent DNA or histone modification leads to transcriptional gene silencing (TGS) 

(Baumberger & Baulcombe, 2005, Qi et al., 2006). 

Most organisms encode more than one AGO protein and their interaction with different 

proteins leads to the formation of several RISC with distinct functions. An antiviral role of AGO 

proteins has first been reported in 2002 for AGO1 in A.thaliana and AGO2 in Drosophila (Li et 

al., 2002; Morel et al., 2002). Whereas in A.thaliana AGO1 is involved in the miRNA pathway, 

AGO1 mutants are also hypersensitive to CMV infections and CMV-specific siRNAs are found 

in a complex with AGO1 (Morel et al., 2002). Other plant AGO proteins involved in antiviral 

RNA silencing, have not been identified yet, most likely due to the possibility to replace each 

other (like the DCLs) and/or virus-specificity like in the case of CMV. 

During a Flock house virus (FHV) infection of Drosophila viral specific siRNAs are mostly, if 

not all, loaded into AGO2 (van Rij et al. 2006; Aliyari et al. 2008). The observed rescue of a 

B2 (RNA silencing suppressor, RSS) deficient FHV infection in AGO2 silenced Drosophila 

supports the antiviral role of AGO2 (Li et al., 2002).  

 

Is antiviral RNAi restricted to plants and insects?  

After the ground-breaking work of Andrew Fire and Craig Mello (Fire et al., 1998) on their 

RNA silencing discovery in nematodes, increasing evidence indicated that RNA silencing is 

an ancient gene regulation mechanism occurring in almost every eukaryotic organism, from 

algae and plants to insects and humans (Sontheimer & Carthew, 2005, Tomari & Zamore, 

2005, Voinnet, 2005a). The mechanism shared between all these organisms is the miRNA 
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pathway, whereas the antiviral siRNA pathway may be shared only among plants and 

invertebrates and probably not by mammals. For insects, the existence of a separate antiviral 

siRNA branch within RNA silencing has been well established, and insect-infecting viruses, in 

turn, have been shown to encode RNA silencing suppressor (RSS) proteins (e.g. protein B2 

of FHV, (Li et al., 2002)) to combat this antiviral response. In infected mammalian cells, virus-

derived siRNAs have sofar not convincingly been detected in high concentrations 

(Parameswaran et al., 2010, Pfeffer et al., 2004), but antiviral RNA can be readily induced 

upon transfection with dsRNA (hairpin RNA) containing viral sequences (Haasnoot et al., 

2007, Lopez-Fraga et al., 2008, Marques & Carthew, 2007). Whilst a separate antiviral siRNA 

branch may be absent in mammals there is increasing evidence that also mammalian e.g. 

human viruses encounter antiviral RNA silencing and this may exclusively occur through the 

miRNA pathway, strengthening the idea of human viruses encoding RSS proteins too 

(Berkhout & Jeang, 2007, Grassmann & Jeang, 2008, Murakami et al., 2009, Triboulet & 

Benkirane, 2007).  

 

Viral suppressors of RNA silencing 

During a compatible interaction between a virus and its host plant, infected plant tissues 

contain significant amounts of virus-derived siRNAs, indicating that the invading virus is 

actively targeted by the antiviral silencing machinery. Plant viruses would not exist if they had 

not generated an efficient strategy to counteract this antiviral RNA silencing. Indeed, they do 

so by encoding RSS proteins that are able to suppress RNA silencing (Table 1-1).  

 



 

                                                                                                                                                 

  

Table 1-1:  List of identified RNA silencing suppressor (RSS) proteins, their activity to suppress the siRNA pathway and their other known functions 
 

Virus sort Virus genus Virus RNAi suppressor Activi ty Other function Reference 

Plant-virus 

Aureusvirus Pothos latent virus P14 dsRNA binding (long & short)  1 

Carmoviruses Turnip crinkle virus p38 (CP)  Coat protein 2-4 

Cucumovirus Cucumber mosaic virus 2b Ago binding, dsRNA binding (siRNA) Movement 5-9 

Closterovirus 
Beet yellow virus, Citrus tristeza 

virus 
P21, (P20, P23, CP) dsRNA binding (siRNA) Replication enhancer 2,10-12 

Comoviruses Cowpea mosaic virus S protein (small CP)  Coat protein 13 

Crinivirus Sweet potato chlorotic stunt virus P22 (RNase 3) 
 

RNaseIII 
 

14(Kreuze et 

al., 2005) 

Dianthovirus Red clover necrotic mosaic virus P88, p27 DCL interaction Replication 15 

Hordeivirus Barley Stripe mosaic virus γ b (Cysteine-rich protein) dsRNA binding (siRNA) 
Replication enhancer, movement, 

virulence 
2, 16 

Pecluvirus Peanut clump virus P15 (Cysteine-rich protein) dsRNA binding (siRNA) Movement 2 

Poleovirus Beet western yellows virus, P0 Ago1 (degrade Ago1, direct interaction)  17 

Potex virus Potato virus X P25  Helicase and Movement protein 18 

Potyvirus Tabacco etch potyvirus, P1/Hc-Pro 
dsRNA binding (siRNA and miRNA), 

Preventing RISC assembly 

Movement, polyprotein processing, aphid 

transmission 
2, 5, 10, 19-21 

Sobemovirus 

 
Rice yellow mottle virus P1 dsRNA binding (siRNA) Movement 22 

Tombus virus Carnation italian ringspot virus P19 dsRNA binding (siRNA and miRNA)  22-24 

Tobamovirus Tobacco mosaic virus P126 (part of replication complex)  Replication 22, 25 

Tobravirus Tobacco rattle virus 16K Cysteine rich protein  26 

Tymovirus Turnip yellow mosaic virus P69, P7b, P50 (MP)  Movement protein 27 

+ ssRNA 

Vitivirus Grapevine virus A P10   28 

- ssRNA Tospovirus Tomato spotted wilt virus NSs dsRNA binding  29, 30 



       

  

Virus sort Virus genus Virus RNAi suppressor Activi ty Other function Reference 

Tenuivirus Rice Hoja blanca virus NS3 dsRNA binding (siRNA&miRNA)  29, 30 

dsRNA Phytoreovirus Rice dwarf virus Pns10   32 

Begomovirus Tomato leaf curl virus C2 DNA binding, NLS  22, 33, 34 

Begomovirus African cassava mosaic virus AC4 miRNA binding Transcriptional activator 35-37 DNA 

Curtovirus Beet curly top virus L2 Protein binding  38 

Vertebrates/ invertebrate virus 

Nodavirus Flock house virus & NoV B2 dsRNA binding  39, 40 
+ ssRNA 

Hepacivirus Hepatitis C virus Core protein   41 

Lentivirus HIV-1 tat  Transcription, inhibitor of PKR 42 
ss RNA 

Spumavirus PVF-1 Tas   43 

Ebolavirus Ebola virus VP35 dsRNA binding Interferon antagonist (PKR) 44 

Orthomyxovirus Influenza A virus NS1 dsRNA binding 
Interferon antagonist (PKR), Poly (A) 

binding, inhibitor of mRNA export 
45-48 - ss RNA 

Orthobunyavirus La Crosse virus NSs  Interferon antagonist 49, 50 

dsRNA Orthoreovirus  Σ3 dsRNA binding  51 

Adenovirus Adenovirus VA1 RNAs Dicer binding, exportin 5 saturation Translation, PKR inhibitor 52, 53 
dsDNA 

Poxvirus Vaccinia virus E3L dsRNA binding interferon inhibitor 47, 54 
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Among the first viral RSS proteins identified was HC-Pro of potyviruses, a multifunctional 

protein involved in aphid-mediated virus transmission, genome amplification, polyprotein 

processing and viral long-distance movement (Anandalakshmi et al., 1998, Beclin et al., 1998, 

Brigneti et al., 1998, Kasschau & Carrington, 1998). This protein was already known as 

“virulence factor”, because of a causal linkage between HC-Pro expression and severity of 

disease symptoms (Atreya et al., 1992, Atreya & Pirone, 1993). The latter is now readily 

explained in view of its function to suppress the host’s antiviral RNA silencing. The RSS and 

proteolytic activity are independent, separable properties within HC-Pro, in contrast to 

genome amplification and long-distance movement functions, which seem to be related to the 

RSS activity (Kasschau & Carrington, 2001). At least part of these activities can be explained 

by the affinity of HC-Pro for siRNAs and its interference with their methylation, reducing 

siRNA stability (Ebhardt et al., 2005, Lakatos et al., 2006, Li et al., 2005). Transgenic 

suppressor assays in Arabidopsis or Nicotiana spp. Identified an increasing number of plant 

viral RSS proteins(Li & Ding, 2006, Roth et al., 2004). These include positive-, negative- and 

dsRNA viruses as well as the geminiviruses, which have an ssDNA genome. Most viruses 

encode only one RSS protein which acts on a single step in the siRNA pathway, resulting in 

partial suppression (Li & Ding, 2006). The situation for geminiviruses is more complicated 

though, as among their different viral species the RSS activity appears to reside in different 

proteins (Bisaro, 2006, Voinnet et al., 1999). The closterovirus citrus tristeza virus is also 

unique in coding for three proteins involved in RSS action (Lu et al., 2004, Satyanarayana et 

al., 2002). 

RNA silencing is an ancient cellular mechanism shared by most living organisms (Diaz-

Pendon & Ding, 2008, Li & Ding, 2006). It is obvious that viruses and antiviral RNA silencing 

will have co-evolved over a very long period, and hence viral RSS proteins are expected to 

form one or more clusters of similar proteins containing conserved sequence motifs. This is, 

surprisingly, not the case: viral RSS proteins are extremely variable among viruses and differ 

in their genomic position, molecular size and amino acid sequence. The best example is 

presented by the situation within the family Tombusviridae in which, depending on the 

species, the RSS function resides in the viral coat protein (CP), the viral polymerase, or in a 

separate viral protein (Figure 1-3, see also Merai et al., 2006, Merai et al., 2005, Takeda et 

al., 2005). The general picture that emerges after comparison of different plant viruses is that 

their encoded RSS activity is often part of a multifunctional protein.  
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Figure 1-3: Schematic representation of the genome organization of 4 different species belonging to the 
Tombusviridae. Open reading frames (ORFs) are indicated as open bars. Grey ORFs represent the identified 
RNA silencing suppressor (RSS) proteins and list their additional functional activity. PoLV, Pothos latent virus 
(genus Aureusvirus); TCV, Turnip crinkle virus (genus Carmovirus); RCNMV, Red clover necrotic mosaic virus 
(genus Dianthovirus); CymRSV, Cymbidium ringspot virus (genus Tombusvirus); CP, coat protein; MP, 
movement protein; Repl, replicase; DCL, Dicer like protein. (Drawing after Takeda et al., 2005). 
 

Viral RSS proteins not only have different motifs and sequences, also their mode of action 

differs. Some RSS proteins act by sequestering dsRNA molecules, either size-specifically like 

tombusviral P19 (exclusively binding siRNAs) or non-specifically like aureusviral P14 (also 

binding longer dsRNAs) (Lakatos et al., 2006, Merai et al., 2006, Merai et al., 2005). Others 

bind protein factors of the RNA silencing pathway, like cucumber mosaic virus (CMV) protein 

2b. While most RSS proteins interfere with only a single step in the RNA silencing pathway 

some are able to block at different points, e.g. CMV protein 2b which is able to both sequester 

siRNAs and to interact with AGO within the RISC complex (Goto et al., 2007, Zhang et al., 

2006).  

RSS proteins encoded by different virus families often share no homology at the amino acid 

sequence level, even if they have a similar mode of action (Lakatos et al., 2006, Merai et al., 

2006). So far not a single sequence motif characteristic for (a subclass of) RSS proteins has 

been identified. This is surprising as RNA silencing is generally regarded to be an ancient 

mechanism. One explanation for this could be that the long-lasting evolutionary interplay with 

the plant’s antiviral RNA silencing mechanism has driven viruses to continuously change and 

adapt their suppressor protein sequences (and their coding sequences) to keep ahead of the 

host defense system. The RNA silencing’s selective pressure would then act as a major 

evolutionary driving force resulting in extreme speciation. This would also explain the 

overwhelming excess of RNA virus species versus DNA virus species within the plant 

kingdom. A similar situation may have occurred in bacteria where the great majority of phages 

have DNA genomes, targets for the (DNA-based) restriction/modification system in bacteria. 
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Another explanation might be that RSS genes have been introduced into viral genomes 

through multiple independent evolutionary events. An argument in favor of this alternative is 

the observation that RSS genes often overlap with another viral gene, including in some 

cases the polymerase gene. In evolutionary terms it is believed that overlapping genes are 

created by overprinting, meaning that an existing coding sequence is translated in a different 

reading frame (Ding et al., 1995, Keese & Gibbs, 1992). According to this scenario, the lack of 

sequence homology between different RSS proteins would be explained by multiple 

independent introductions into viral genomes. A third explanation is the idea of convergence, 

in which viral proteins with different functions have independently evolved to encompass for 

RSS activity. 

Next to plant viral encoded RSS proteins, insect viruses have also been found to encode RSS 

proteins (Table 1-1). The first one identified was the B2 protein of FHV (Li et al., 2002). This 

RSS acts as dimer by binding dsRNA, both long and short, and is able to inhibit Dicer 

cleavage in vitro (Chao et al., 2005, Lingel & Sattler, 2005). Drosophila infection with a B2-

deficient FHV results in the generation of siRNAs that predominantly originate from both + 

and – strands in the 5’-terminal region of the RNA genome. The interaction of B2 with the viral 

replicase additionally supports the idea that B2 exerts its RSS activity by binding to viral 

dsRNA, produced as replicative intermediates, and avoids their cleavage by Dicer (Aliyari & 

Ding, 2009). Next to “true” insect viruses, like FHV, Drosophila C virus (DCV) and Cricket 

paralysis virus (CrPV), viruses infecting both insects and mammals encode RSS proteins too 

(Nayak et al., 2010, van Rij et al., 2006). The Nodamura virus (NoV), for example, encodes 

the B2 protein, which acts similar to the FHV B2 RSS protein in both insect and mammalian 

cells (Li et al., 2004, Sullivan & Ganem, 2005). 

More recently, a number of RSS proteins have been identified in mammalian viruses, e.g. 

NS1 of Influenza A virus, VP35 of Ebola virus, Tat of Human immunodeficiency virus type 1 

(HIV-1), Core and E2 of Hepatitis C virus (HCV) and the non-coding VA RNAs of adenovirus 

(Bennasser et al., 2005, Bucher et al., 2004, Haasnoot et al., 2007, Ji et al., 2008, Li et al., 

2004, Lu & Cullen, 2004, Wang et al., 2006b). However, for most of them, their activity as 

RSS is still under debate, due to contradictory results, and their functional relevance being 

disputed (Kok & Jin, 2006, Lin & Cullen, 2007). Most of these RSS proteins encoded by 

mammalian infecting viruses are also known to antagonize the interferon pathway through 

their ability to bind long dsRNA, resulting in difficulties to discriminate between their interferon 

antagonistic function and possible RSS activity. 

 

Possible interactions between viruses and the miRNA pathway 

During a viral infection process the viral RSS protein also, besides the antiviral siRNA 

pathway, interferes with the miRNA pathway. Since both pathways share similar key 

molecules, nearly all tested RSS proteins with affinity to siRNA molecules equally bind 

miRNA/miRNA* duplexes in vitro, as shown for e.g. tombusviral P19 (Dunoyer et al., 2004, 

Silhavy et al., 2002). Transgenic Arabidopsis plants expressing viral RSS proteins, like 



     General Introduction  
       

                                                                                                                                            - 17 - 

tombusviral P19, potyviral Hc-Pro and CMV 2b (Chapman et al., 2004, Dunoyer et al., 2004) 

show drastic effects on phenotype, reminiscent of virus disease symptoms, and support the 

idea of RSS interference on the miRNA pathway in vivo. However, transgenic flies 

constitutively expressing several RSS proteins did not show similar observations            

(Berry et al., 2009). 

Whereas viral siRNAs from mammalian infecting viruses (Pfeffer et al., 2004) have sofar only 

been detected in low concentrations for specific viruses (Parameswaran et al. 2010), and the 

functional relevance of RSS proteins for these viruses is debated (Lin & Cullen, 2007), 

mammalian-infecting DNA viruses replicating in the nucleus are shown to encode their own 

miRNAs. The first one reported is from the Epstein-Barr (EBV) gamma-herpes virus (Pfeffer 

et al., 2004), but meanwhile up to 23 have been identified for this virus and other viruses of 

the herpes family, a.o. simian polyomaviruses and human adenovirus (Cai & Cullen, 2006, 

Cai et al., 2006, Grundhoff et al., 2006). Propably, the miRNA biogenesis in mammals 

recognizes the viral nuclear transcripts from these viruses and process them. Although not 

much is known on the function of these miRNAs they are proposed to target and regulate viral 

gene expression and host gene expression, similar to the viral siRNAs of CaMV, another 

nuclear-replicating circular dsDNA plant virus (Shivaprasad et al., 2008). 

Host encoded miRNAs may act antiviral by either directly targeting the viral genome/transcript 

or indirectly. Indirect antiviral activity could result in e.g. regulating the expression of host 

proteins essential for virus infection or antiviral host response. For several mammalian 

encoded miRNAs an antiviral effect has been demonstrated (reviewed by Umbach & Cullen, 

2009). The possibility of mammalian viruses to counter defend this by a RSS remains to be 

investigated. 

 

Viral immune evasion by membrane associated replicat ion complexes 

Next to RNA silencing suppression, viruses have also evolved other strategies to evade the 

antiviral innate immune system, i.e. RNA silencing. A common strategy found by all positive 

ss RNA viruses (mammalian, insect and plant infecting) is the replication in membrane 

associated vesicles. These membranes can arise from different host organelles, dependent 

on the investigated virus. Most RNA replication complexes have been associated with 

endoplasmatic reticulum membranes, as observed for picorna-, flavi-, arteri- and bromo-

viruses. However, mitochondrial (nodavirus), endosomal and lysosomal (togavirus) as well as 

peroxisomal and chloraplastal (tombusvirus) membranes are used, too. For some viruses, 

specific non-structural proteins have been identified, targeting the RNA replication complex to 

the membranes of specific organelles, acting either as polytopic or monotopically integral by 

their hydrophobic domains. Some of these proteins induce membrane invaginations or 

vesicles in transient expression systems, even in the absence of viral replication or other viral 

proteins. Replicating in membrane associated vesicles does not only create a protective 

environment for the viral RNA molecules against host defense mechanism, but also results in 

a more efficient replication by increasing the local concentration of necessary viral and/or host 
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proteins (reviewed by Salonen et al., 2005). Double stranded RNA viruses, like rotavirus, use 

a similar strategy. Thier transcription occurs in the double-layered viral particle and synthesis 

of new negative strand RNA molecules takes place during entering of synthesized plus strand 

RNA molecules into the newly assembled virion core (Carter, 2009). Negative strand RNA 

viruses on the other hand are believed to protect their RNA by packaging into 

ribonucleoprotein (RNP) complexes (Weber et al., 2006).  

 

RNA silencing suppressor proteins of insect transmi tted negative strand RNA plant 

viruses  

Plant viruses also replicating in their insect vectors, such as the rhabdo-, tospo- and 

tenuiviruses (Falk & Tsai, 1998, Jackson et al., 2005, Wijkamp et al., 1993), need to 

counteract RNA silencing in two very distinct types of organisms. It is to be expected that this 

may be achieved by specifying an RSS protein which blocks a step in the RNA silencing 

mechanism that is conserved between plants and insects.  

The Rice hoja blanca virus (RHBV) belongs to the genus tenuivirus infects rice and is 

transmitted by leaf hoppers (Ramirez et al., 1993, Ramirez et al., 1992). Its genome consists 

of 4 RNA segments (Figure 1-4) (Ramirez et al., 1992). Whereas RNA1 is of entire negative 

polarity and encodes the RNA dependent RNA polymerase (RdRp). RNA2 to 4 are 

ambisense and each contains 2 non-overlapping ORFs on opposite strands (Ramirez et al., 

1992). RNA 2 codes for a nonstructural (NS2) protein of unknown function on the viral strand 

and on the viral complementary strand for a large protein (vcNS2) with similarities to the 

glycoprotein precursor gene of Uukuniemi phlebovirus (family Bunyaviridae) (De Miranda et 

al., 1996, Estabrook et al., 1996). RNA 3 codes for the nucleocapsid protein (N) and a non-

structural (NS3) protein (de Miranda et al., 1994). RNA4 encodes two nonstructural proteins 

(vcNS4 and NS4) (Ramirez et al., 1993) of which vcNS4 has recently been demonstrated as 

viral cell-to-cell movement protein in Rice stripe virus (Xiong et al., 2009). 

Tomato spotted wilt virus (TSWV) is the type species of the Tospovirus genus within the 

arthropod-born Bunyaviridae, a family of primarily animal-infecting viruses. Tospoviruses have 

a broad host range of more than 1000 different plant species worldwide, including many 

economically important agricultural crops. They are transmitted by thrips (Thysanoptera: 

family Thripidae) in a propagative manner, with Frankliniella occidentalis Pergande (Western 

flower thrips) and Thrips tabaci (onion thrips) as main vectors (Falk & Tsai, 1998, Wijkamp et 

al., 1993).  

It has a tripartite genome organization, which is similar to RHBV (Figure 1-4) with an 

ambisense nature. The L RNA is of entire negative polarity and encodes the RdRp (de Haan 

et al., 1991). The Glycoproteins (Gn and Gc) and movement protein (NSm) are encoded on 

the ambisense M RNA (Kormelink et al., 1992, Storms et al., 1995). The S RNA contains of 

the nucleocapsid ORF (N) and the NSs ORF (de Haan et al., 1990).  

Tenuiviruses are classified in a floating genus, and although membrane bound virus particles 

have never been observed for these viruses, they share many structural (genomic and 
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protein) similarities to members of the Bunyaviridae (Espinoza et al., 1993, Ramirez & 

Haenni, 1994). For TSWV tospovirus and RHBV tenuivirus, this has supported in the 

identification of a RSS gene at analogous positions in the viral genomes of TSWV and RHBV, 

i.e. the 52.5 kDa NSs and the 23 kDa NS3 respectively (Bucher et al., 2003). The abundant 

presence of GFP specific siRNAs during suppression of GFP silencing with RHBV NS3 

versus a lack of these during suppression with TSWV NSs (Bucher et al., 2003), though, 

supported the idea that both RSS proteins exhibit a different mode of action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1-4: Schematic representation of the Rice hoja blanca virus (RHBV) and tomato spotted wilt virus 
(TSWV) genome. The RHBV RNA genome consists of a negative-stranded RNA 1 and 3 ambisense genome 
segments (RNA2-4). The TSWV RNA genome is tripartite with a negative-stranded L-RNA and ambisense M- 
and S-RNA. The RNA silencing suppressor (RSS) proteins, NS3 of RHBV and NSs of TSWV are indicated as 
grey boxes. NS, non-structural protein; vc, viral complementary; RSS, RNA silencing suppressor; N, 
nucleocapsid protein; NSm, movement protein; Gn/Gc, Glycoproteins. 
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Outline of the thesis  

At the onset of this thesis, only limited information about the interaction between RSS proteins 

and different silencing pathways was available. For RHBV NS3, biochemical analysis had 

revealed a high affinity for siRNA and miRNA/miRNA* molecules, which implied that NS3 

could possibly interfere on two distinct RNA silencing pathways. Next to the RSS activity in 

plants, NS3 was also shown to have similar activities in insect cell reporter-based assays 

(Hemmes et al., 2007). Hardly any information was available on the mode of action of TSWV 

NSs at the start of this thesis. The reported results, showed RSS activity of TSWV NSs in 

plants and insect cells (Bucher et al., 2003, Garcia et al., 2006, Takeda et al., 2002). 

The focus of this thesis research was to further analyze if and how NS3 and tospovirus NSs 

would interfere in different RNA silencing pathways and if this was limited to plant and insect 

cell systems. Chapter 2  describes an alanine scanning mutagenesis resulting in the 

identification of amino acids important for RSS activity of NS3 and their importance on the 

reported siRNA affinity. Mutants having lost their RSS activity in plants were further 

investigated for their affinity to siRNAs. Small interfering RNA molecules are key molecules of 

the RNA silencing pathway and thereby conserved in all eukaryotes. Therefore, chapter 3  

shows the functionality of NS3 as RSS protein in non-host mammalian cells. The importance 

of siRNA binding in this was confirmed by testing a NS3 mutant from chapter 2, which lacked 

RSS activity in plants and the affinity for siRNAs. Mammals trigger an interferon pathway in 

response to viral infections. On the other hand they contain a functional RNA silencing 

pathway and at least some mammalian viruses encode a protein with RSS activity. In  

chapter 4 , it was investigated whether the production of a mammalian-infecting virus, HIV-1, 

is indeed being inhibited by RNA silencing and if the proposed RSS protein, HIV-1 Tat, is 

needed to counteract this response. A Tat-negative HIV-1 mutant was trans-complementated 

with NS3, resulting in virus titers compared to those from wildtype HIV-1. To rule out NS3 

interference on the interferon pathway its antagonistic properties in an interferon-induced 

reporter assay was analyzed. NS3 was previously shown to additionally bind miRNA/miRNA* 

duplexes in vitro and a possible antiviral activity of the miRNA pathway, at least in mammals, 

has been proposed. Therefore the interference of NS3 on other small dsRNA silencing 

pathways with structural similarities to siRNAs, in specific the miRNA and endo-siRNA 

pathways, was investigated in mammalian cells (Chapter 4) , plants and insects (Chapter 5) . 

Transient transfection and reporter-based assays were used for this investigation. Chapter 6  

describes experiments to investigate the mode of action of the TSWV NS3 analogue, NSs 

and those from several other tospoviruses. Their affinity to different dsRNA molecules, in vitro 

and their silencing suppressor activity on e.g. Dicer cleavage and miRNA-based reporter 

assays was determined. The results are discussed in light of evolutionary divergence and 

genetic relationship between the plant infecting Tospovirus and the animal-infecting species 

belonging also to the Bunyaviridae. 
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Finally, chapter 7  is a general discussion linking and evaluating the results of the 

experimental chapters to literature data regarding the current view on RSS proteins on 

different RNA silencing pathways. The potential effects during a natural viral infection are 

assessed and evolutionary events resulting in different mode of actions of rather related RSS 

proteins are highlighted. 
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Abstract 

The NS3 protein of Rice hoja blanca tenuivirus represents a viral suppressor of RNA silencing 

that sequesters small interfering (si)RNAs in vitro. To determine whether this siRNA binding 

property is the critical determinant for the suppressor activity of NS3, an alanine substitution 

analysis was performed and the resulting mutant proteins were tested for both siRNA binding 

ability and RNA silencing suppressor activity in plants. Alanine substitutions of lysine residues 

at position 173 - 175 resulted in mutant proteins that lost both their affinity for siRNAs and 

their RNA silencing suppressor activity in planta. This indicates that siRNA binding of NS3 is 

indeed essential for the suppressor function of NS3 and that residues at position 173-175 are 

involved in the siRNA binding and suppressor activities. 

 

 

 

 

 

 

 

 

__________________________________________________________________________ 

This chapter has been published in a slightly modified version as 

Hemmes, H., Kaaij, L., Lohuis, D., Prins, M., Goldba ch, R. & Schnettler, E.  (2009). 

Binding of siRNA molecules is crucial for RNAi suppressor activity of Rice hoja blanca virus 

NS3 in plants. J Gen Virol 90, 1762-1766.        
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Introduction 

As a response to antiviral RNA silencing, plant viruses encode antagonistic proteins, often 

referred to as RSS proteins, which counteract or evade this host defense mechanism 

(reviewed by Ding & Voinnet, 2007, Voinnet, 2005a). A typical suppressor action adopted by 

plant viruses is the binding to dsRNA molecules, either in a size specific manner to 21-26 nt 

siRNA or in a non-size specific manner (Lakatos et al., 2006, Merai et al., 2006). The 21 nt 

siRNA molecules play important roles in different RNA silencing pathways (Brodersen & 

Voinnet, 2006, Vaucheret, 2006). One strand of the siRNA duplex is incorporated in RISC to 

guide the sequence specific recognition of complementary targets, resulting in cleavage 

(Tomari & Zamore, 2005). By sequestering siRNAs, a considerable number of viral RSS 

remove these molecules from the RNA silencing pathway, thereby preventing RISC assembly 

(Lakatos et al., 2006) and probably the systemic silencing signal (Dunoyer et al. 2010).  

RHBV is a member of the floating genus Tenuivirus, that infects rice and is propagatively 

transmitted by an insect vector, the plant hopper Tagosodes orizicolus (Ramirez et al., 1993, 

Ramirez et al., 1992). The virus has an ambisense RNA genome which is divided in 4 

segments (Figure 1-4). As RHBV replication takes place in both plants and the insect vector 

(Falk & Tsai, 1998), a relatively unique feature among plant viruses, it likely induces antiviral 

RNA silencing in both. 

The RSS protein (NS3) of RHBV (Bucher et al., 2003) inhibits antiviral RNA silencing in both 

plant and insect cells and efficiently binds 21 nt siRNA in vitro (Hemmes et al., 2007). As 

siRNAs are key molecules of the antiviral RNA silencing pathway in plants and insects, it is 

likely that binding siRNAs in vivo is the crucial biochemical activity of this protein to suppress 

RNA silencing in these different organisms. If this would be the case, loss of RSS activity 

should coincide with loss of binding affinity to siRNA molecules. To test this, an alanine point 

mutagenesis approach within the NS3 sequence was performed and the resulting mutant 

proteins were monitored for RSS activity in plants and siRNA binding capacity in vitro.  

 

Results 

Identification of RNA binding domains in the NS3 pr otein 

A sequence alignment, using the computer program ClustalX, of the available tenuiviral NS3 

proteins (Rice stripe virus (RSV), Maize stripe virus (MStV), RHBV, Echinochloa hoja blanca 

virus (EHBV), Urochloa hoja blanca virus (UHBV), Rice grassy stunt virus (RGSV)) and a 

prediction of RNA-binding residues of RHBV NS3 was made, using the online prediction tool 

BindN, to identify regions or sequence motifs potentially important for RNA binding         

(Figure 2-1). 

To check the usability of the RNA binding residue prediction by BindN, known RNA binding 

RSS proteins, like DCV 1A, were analyzed too. Since the program well predicted the 

experimentally identified residues essential for RNA binding in DCV 1A (data not shown, Rij et 

al., 2007), the predictions for NS3 were used for mutational analysis of NS3. 
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Figure 2-1: Analysis of the tenuiviral NS3 proteins. (A) Sequence alignment of six NS3-orthologs from rice 
stripe virus (RSV; NS3), maize stripe virus (MStV; p3), rice hoja blanca virus (RHBV; NS3), echinochloa hoja 
blanca virus (EHBV; pv3), urochloa hoja blanca virus (UHBV; pv3) and rice grassy stunt virus (RGSV; p5), 
using the ClustalX computer program. Amino acid identity: identical amino acids, conserved substitutions and 
semi-conserved substitutions are indicated by asterisk (*), double dots (:) and dots (.), respectively. (B) 
Surface probability plot and hydrophilicity plot of the RHBV NS3 protein, determined with the Protean 
(DNASTAR) computer program. (C) Prediction of RNA-binding residues in the RHBV NS3 sequence, using 
the BindN program. Predicted binding residues are labeled in red with “+” and non-binding residues are 
labeled in green with “-“. The confidence of the prediction ranges from low (0) to high (9). (D) RNA silencing 
suppression assay on N. benthamiana leaves. GFP expression was visualized 5 days post-infiltration, in 
leaves co-infiltrated with Agrobacterium tumefaciens harboring binary vectors encoding mGFP and NS3, MBP, 
MBP-NS3, MBP-NS3∆1 (∆1) or MBP-NS3∆2 (∆2), respectively. (E) Detection of MBP-NS3∆1 and MBP-
NS3∆2 expression by western blot analysis, using a MBP specific antibody, in leaf samples co-infiltrated with 
the NS1 protein of influenza A virus. As positive control bacterial purified MBP-NS3 was used. MBP, maltose 
binding protein; NS, non-structural; mGFP, modified green fluorescent protein. 

Region 1

Region 2
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A common feature of amino acids interacting with RNA molecules in a broad range of proteins 

is that they are polar and positively charged (Haasnoot et al., 2007, Hartman et al., 2004, van 

Rij et al., 2006, Wang et al., 1999). Several conserved areas were found in the alignment of 

which only a few matched with the requirement to be conserved, surface exposed, containing 

positively charged residues (K, R, H) (Figure 2-1 A and B) and reaching a high score in RNA 

binding prediction (Figure 2-1C). One of these regions (residues 106-114; region 1) located 

centrally in the protein, the other (residues 167-176; region 2) near the C-terminus. Region 2 

contained a marked cluster of three positively charged lysine (at positions 173-175).  

 

Single alanine substitutions in region 1 and 2 do no t effect RSS activity 

To further fine map essential amino acids within region 1 and 2 required for RSS activity 

single alanine substitutions were made. Based on surface probability, conservation and 

positive charge, five single amino acid substitutions were made in region 1 (E110A, L111A, 

K112A, P113A and R114A) and three in region 2 (K173A, K174A and K175A) using standard 

PCR technology. Single point mutations at positions 111 and 114 (L111A and R114A, 

respectively) repeatedly failed to yield a stable mutant, hence in total six single alanine 

mutants were tested for loss of RSS activity and siRNA binding. Five days post infiltration wild 

type levels of GFP were scored for all mutants in three independent repetitions, indicating that 

no single residue in region 1 or 2 was critical for RSS activity in planta (Figure 2-2A, upper 

panel). Northern blot analysis showing increased GFP specific mRNA underscored their 

suppression activity (Figure 2-2A, central panel).  

GFP specific siRNAs, extracted and enriched as described previously (Bucher et al., 2003), 

were present in each sample and taking the loading control into account, no significant 

differences in siRNA concentration were detected compared to the positive control (wt NS3) 

(Figure 2-2A, lower panel).  

In line with these results, all single alanine substitution mutants retained a high affinity for 

siRNA molecules, represented by a low dissociation constant (Kd): E110A, 133±9.2 nM; 

K112A, 2.8±0.3 nM; P113A, 136±8.3 nM; K173A, 7.7±2.0 nM; K174A, 12.4±3.2 nM; K175A, 

10.0±2.1 nM (calculated from three independent electrophoretic mobility shift assays (EMSA, 

data not shown)). As controls MBP-NS3 (Kd 4.7±0.5 nM; see Figure 3A) and MBP were used. 

MBP showed no binding to siRNAs at all tested concentrations (data not shown).  
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Figure 2-2:  Testing alanine substitution mutants of Rice hoja blanca virus NS3 for demonstrating RNA 
silencing suppressor activity in N. benthamiana. (A) Agrobacterium harboring vectors encoding mGFP were 
co-infiltrated in N.benthamiana leaves with MBP (negative control), wt NS3 or one of the NS3 mutated 
constructs, respectively. Upper panel: GFP expression in infiltrated leaves 5 days post-infiltration. The 
corresponding GFP mRNA and siRNAs levels were detected by northern blot analysis of the total RNA, using 
a DIG-labeled DNA probe and are presented in the middle and lower panel respectively. As loading control, 
ethidium bromide-stained RNA was used. KAA, K173/A174/A175, AKA, A173/K174/A175, AAK, 
A173/A174/K175, AAA, A173/A174/A175. (B) For better comparison the various NS3 constructs and controls 
were co-infiltrated in different patches within a single leaf and GFP expression visualized by UV 5 days post 
infiltration. MBP, maltose binding protein; NS, non-structural; mGFP, modified green fluorescent protein; wt, 
wild type; siRNA, small interfering RNA; mRNA, messenger RNA. 
 

Triple lysines in region 2 are important for siRNA binding and RSS activity of NS3  

As single mutations proved insufficient to destroy the RNA binding ability of NS3, as also 

reported in other cases (Wang et al., 1999) and clustered basic amino acids have previously 

been shown to be important for the suppressor activity of Influenza A virus NS1, tombusvirus 

P19 protein and DCV 1A (Bucher et al., 2004, Chu et al., 2000, Haasnoot et al., 2007, van Rij 

et al., 2006, Vargason et al., 2003, Wang et al., 1999), double and triple alanine substitutions 

were considered. NS3 encompasses a cluster of positively charged residues in region 2, i.e. 3 

conserved lysines on positions 173-175 (Figure 2-1A) with high similarity to DCV 1A protein. 

The latter was shown to simultaneously lose its RSS activity and affinity to long dsRNA after a 

double mutation in the cluster of basic residues (K73A/K74A) (van Rij et al., 2006). For this 

reason, double and triple alanine substitutions were introduced into region 2 of NS3 by PCR, 

resulting in four possible mutant proteins (A173/A174/K175; AAK, K173/A174/A175A; KAA, 

A173/K174/A175; AKA, A173/A174/A175; AAA). Testing these mutants for RSS activity in N. 

benthamiana leaves, revealed that double mutant AAK and triple mutant AAA, but not the two 

other double mutants (KAA and AKA), were defective in RSS, as revealed by lack of GFP 

expression (Figure 2-2A upper panel and Figure 2-2B) and absence of GFP mRNA        

(Figure 2-2A central panel).  
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Regarding siRNA binding ability, mutants KAA and AKA showed a Kd in the order of wild type 

protein (56.9±8.3 nM and 10.8±1.2 nM, respectively; Figure 2-3B, C and F) while mutants 

AAK and AAA completely lost their siRNA binding capacity (Kd >> 750nM, Figure 2-3D, E and 

F). 

 

Discussion 

In all, the presented data unequivocally demonstrate that siRNA binding capacity, which can 

be disrupted with double and triple mutations in a triple lysine motif in region 2, is essential for 

NS3 RSS activity in plants. Prediction of the secondary structure, using the online tool 

PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/), revealed only a small and similar change for all 

four mutants (data not shown). Hence, it is very likely that the triple K motif at positions 173 -

175 is specifically involved in siRNA binding, rather than that gross alterations in the NS3 

folding would have crippled the protein upon the amino acid substitutions. Since for other 

dsRNA-binding viral RSS proteins clustered positively charged amino acids have been found 

to be important for their activity (Bucher et al., 2004, Chu et al., 2000, Haasnoot et al., 2007, 

van Rij et al., 2006, Wang et al., 1999), it is tempting to assume that the triple K motif 

represents a key part of the siRNA binding domain. Solving the crystal structure of the NS3 

protein may confirm this notion.  

Single alanine substitutions of the investigated residues, either in region 1 or 2, showed no 

effect on RSS activity in the infiltrated N. benthamiana leaves and the binding affinity for 

siRNA did not show any drastic decrease by these alterations either. This is consistent with 

observations for other RSS proteins, known to act through dsRNA binding, including NS1 of 

Influenza A virus (Bucher et al., 2004, Wang et al., 1999), VP35 of Ebola virus (Haasnoot et 

al., 2007) and DCV 1A (van Rij et al., 2006), which all required at least a double mutation to 

remove their RSS activity. 

It has to be noticed that, based on the results of the EMSA, the Kd for siRNAs of NS3 proteins 

with single alanine substitutions or AKA and KAA ranged in the order of 3-130 nM, which is 

higher than that of wild type NS3 (4.7±0.5 nM). However, even a protein with a Kd of 130 nM 

is considered to have a significant affinity for the target molecule. These results, together with 

the fact that these mutants still significantly suppress RNA silencing in plants, may indicate 

that the Kd of plant pre-RISC (or RISC loading) complexes for siRNAs is higher than 130 nM. 

Alternatively, in the chosen experimental setup the NS3 mutant proteins may have 

accumulated to high levels compared to RISC (loading), making proteins with a relatively low 

affinity sufficiently strong RSSs. In this context, it would be interesting to see how these 

mutations behave in the context of a virus background in natural infections, but at present this 

is not possible due to the lack of a reverse genetics system for tenuiviruses. The mutational 

analysis has also revealed at least one additional region (denoted region 1, Fig.2-1) that may 

be involved in the functionality of NS3. Deletion of this region also caused loss of suppressor 

activity in planta.  
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Figure 2-3:  Affinity of MBP-NS3 mutants for siRNA duplexes.  
A dilution series (0.01-3770 nM) of bacterial expressed and purified N-terminally fused NS3 mutated protein, 
K173/A174/A175; KAA (B), A173/K174/A175; AKA (C), A173/A174/K175; AAK (D) or A173/A174/A175; AAA 
(E), was incubated with 100 pM of 32P-labelled 21 nt siRNA duplexes in binding buffer (100 mM NaCl, 20 mM 
Tris-HCl pH 7.4, 1 mM DTT, 2.5 mM MgCl2, 10% (vol/vol) glycerol) for 20 minutes, then resolved onto a 5% 
native acrylamide gel. The gel was exposed overnight to a phosphor screen and scanned by a Molecular 
Dynamics Typhoon Phosphor imager (Amersham Biosciences). Bands were quantified using Genius Image 
Analyser software (Syngene). As control wild type MBP-NS3 was used (A). The Kd was determined for the 
MBP-NS3 (mutant) proteins by plotting the bound RNA fraction as function of the MBP-NS3 (mutant) 
concentration. The Kd of the different MBP-NS3 (mutant) proteins represents the protein concentration where 
50% of the siRNA was bound (F). MBP, maltose binding protein; NS, non-structural; Kd, dissociation constant. 
 

 

Several RSS proteins that act by binding to dsRNA molecules, like tombusvirus P19 (Lakatos 

et al., 2004), Beet yellows virus P21 (Ye & Patel, 2005), FHV B2 (Lingel et al., 2005) or NoV 

B2 (Korber et al., 2009), have been shown to dimerise or even oligomerise. The NS3 ortholog 

p5 of RGSV has been shown to homodimerise through the N-terminal domain (Chomchan et 

al., 2003). Another NS3 ortholog of Rice stripe tenuivirus has recently been identified as RSS 

protein in plants (Xiong et al., 2009) and observed to oligomerize in infected plants and insect 

cells (Takahashi et al., 2003). By gel-filtration analysis the RHBV NS3 has been observed to 

bind siRNA molecules as dimer (Hemmes et al., 2007). Based on these observations, it is 

tempting to speculate that region 1 could be required for oligomerization. However, the 

identification of other conserved amino acids and regions within NS3 predicted with high 

surface probability does not rule out the involvement of more residues for RSS activity and 

dimer formation. To give a final answer, the crystal structure of NS3 has to be solved. 

However, attempts (in collaboration with the University of Frankfurt) to purify large amounts of 
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NS3 for this purpose, sofar has failed due to instability and insolubility of bacterial produced 

(fusion-) NS3 proteins.  

As previously mentioned, siRNAs are not only key molecules of the RNA silencing pathway in 

plants and insects, but in a variety of other organisms as well. If siRNA binding is the crucial 

biochemical activity of NS3, it would be expected to act as RSS protein even in non-host 

organisms with a functional RNA silencing pathway. Whether NS3 would exhibit RSS activity 

in e.g. animal cells, remains to be investigated. 
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Materials and methods 

Plasmid constructs 

The coding sequence of RHBV NS3 was amplified by PCR and cloned into the pQE30 vector 

(Qiagen) as BamHI-KpnI fragment. To create the bacterial expression vector, NS3 was cut 

out of the pQE30 by BamHI and PstI and cloned in frame with the MBP coding sequence into 

the pMal-c2x vector (NEB). 

PCR reactions were used to introduce deletions or alanine substitutions (single or multiple) in 

NS3, either in region 1 (amino acids 106-114) or region 2 (amino acids 167-176). To this end, 

a region specific primer (region 1 or region 2) was combined with a primer harboring the 

specific mutation (Table 2-1). The NS3 mutants obtained were verified by sequencing 

analysis for the presence of alanine substitutions. 

 

Table 2-1: Primers and templates used for construction of mutated versions of the RHBV NS3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Codons for alanine are indicated in bold . 

 

Binary vectors containing the NS3 gene and its mutant derivatives were generated by 

gateway cloning following the manufacturers’ protocol. The attB recombination sides were 

introduced by PCR to the MBP-NS3 coding sequence, using the bacterial expression vectors 

as template. pDonor207 (Invitrogen) was used as backbone of the Entry vector and the 

pK2GW7 (Karimi et al., 2002) as destination vector. 

 

 

 

MBP-NS3 K174A5`atg tgc cgc cgc gct agg aga tct gta taa 3`A173/A174/A175 (AAA)13

MBP-NS3 K174A5`atg ttt cgc cgc gct agg aga tct gta taa 3`A173/A174/K175 (AAK)12

MBP-NS3 K175A5`atg tgc ctt cgc gct agg aga tct gta taa 3`A173/K174/A175 (AKA)11

MBP-NS3 K175A5`atg tgc cgc ctt gct agg aga tct gta taa 3`K173/A174/A175 (KAA)10

MBP-NS3 wildtype5`atg tgc ctt ctt gct agg aga tct gta taa 3`K175A9

MBP-NS3 wildtype5`atg ttt cgc ctt gct agg aga tct gta taa 3`K174A8

MBP-NS3 wildtype5`atg ttt ctt cgcgct agg aga tct gta taa 3`K173A7

MBP-NS3 wildtype5`ctt ctt ccc gct gag cac ttc aaa g 3`26

MBP-NS3 wildtype5`gga tat ttg atg gct tca aat aag 3`Region specific primer

TemplateRegion 2 (amino acids 167-176)

MBP-NS3 wildtype5`ccg agc ctt tag ttc aac aaa ata 3`P113A5

MBP-NS3 wildtype5`ccg agg cgc tag ttc aac aaa ata 3`K112A4

MBP-NS3 wildtype5`ccg agg ctt tgc ttc aac aaa ata 3`L111A3

MBP-NS3 wildtype5`ccg agg ctt tag tgc aac aaa ata ctc 3`E110A2

MBP-NS3 wildtype5`act ata tgt tga aac caa aca agt cag agg 3`11

MBP-NS3 wildtype5`cag cca tca aca aaa tgc tg 3`Region specific primer

TemplateRegion 1 (amino acids 106-114)

MBP-NS3 K174A5`atg tgc cgc cgc gct agg aga tct gta taa 3`A173/A174/A175 (AAA)13

MBP-NS3 K174A5`atg ttt cgc cgc gct agg aga tct gta taa 3`A173/A174/K175 (AAK)12

MBP-NS3 K175A5`atg tgc ctt cgc gct agg aga tct gta taa 3`A173/K174/A175 (AKA)11

MBP-NS3 K175A5`atg tgc cgc ctt gct agg aga tct gta taa 3`K173/A174/A175 (KAA)10

MBP-NS3 wildtype5`atg tgc ctt ctt gct agg aga tct gta taa 3`K175A9

MBP-NS3 wildtype5`atg ttt cgc ctt gct agg aga tct gta taa 3`K174A8

MBP-NS3 wildtype5`atg ttt ctt cgcgct agg aga tct gta taa 3`K173A7

MBP-NS3 wildtype5`ctt ctt ccc gct gag cac ttc aaa g 3`26

MBP-NS3 wildtype5`gga tat ttg atg gct tca aat aag 3`Region specific primer

TemplateRegion 2 (amino acids 167-176)

MBP-NS3 wildtype5`ccg agc ctt tag ttc aac aaa ata 3`P113A5

MBP-NS3 wildtype5`ccg agg cgc tag ttc aac aaa ata 3`K112A4

MBP-NS3 wildtype5`ccg agg ctt tgc ttc aac aaa ata 3`L111A3

MBP-NS3 wildtype5`ccg agg ctt tag tgc aac aaa ata ctc 3`E110A2

MBP-NS3 wildtype5`act ata tgt tga aac caa aca agt cag agg 3`11

MBP-NS3 wildtype5`cag cca tca aca aaa tgc tg 3`Region specific primer

TemplateRegion 1 (amino acids 106-114)
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Agrobacterium tumefaciens transient transformation assay (ATTA) and expression 

analysis 

Agrobacterium infiltration was performed as previously described (Bucher et al., 2003). For 

RNA silencing suppressor assays, N. benthamiana leaves were co-infiltrated with 

Agrobacterium (at an OD600=0.5) harboring binary vectors encoding mGFP and the 

suppressor construct of interest. The GFP expression in the leaves was visualized 5 days 

post infiltration with a hand-held UV lamp and a Canon Power shot A710IS digital camera, 

using the high fluorescent program. 

Expression of NS3 was detected by western blot analysis. A leaf disc of the infiltrated leaves 

was collected, grinded in 25 µl PBS and 25 µl 2x SDS-loading buffer, heated for 5 minutes at 

95°C and centrifuged for 3 minutes at 14000 rpm. Th e proteins were separated by a SDS-

Page gel, transferred to Immobilion-P (Millipore) by semi-dry blotting and the MBP-NS3 

protein was detected by a MBP-specific primary antibody (BioLabs), followed by an alkaline 

phosphatase conjugated secondary antibody. The protein was visualized with NBT-BCIP as 

substrate (Roche) according to manufacturers’ protocol. 

 

Northern blot analysis 

RNA was isolated from Agrobacterium infiltrated leaves as previously described by Bucher 

(Bucher et al., 2004). To this end, seven µg of total RNA mixed with formaldehyde loading 

buffer and heated for 5 minutes at 70°C, was separa ted on a 1 % agarose gel. The RNA was 

transferred onto Hybond N (Pharmacia-Biotech), followed by UV-cross linking. 

For the siRNA blot, RNA was enriched for small RNAs as described (Hamilton & Baulcombe, 

2004) and five µg of this fraction was resolved on a 20%, 0.5x TBE denaturing acrylamide gel. 

Following separation, the RNA was electroblotted onto Hybond-N+ (Pharmacia-Biotech) and 

crosslinked by UV-light. Hybridization of both blots (mRNA and siRNA) was performed 

overnight at 48°C in modified church buffer with mG FP-specific Dig-labeled DNA probe. The 

blots were washed briefly three times with 2x SSC and three times for 15 minutes with 2xSSC 

and 0.2% SDS at 48°C. 

The labeled probe was detected by western blot analysis using a Dig-specific antibody 

conjugated to alkaline phosphatase in blocking buffer (maleic acid buffer + 1% blocking 

reagent) and CSPD as substrate (Roche) according to the manufacturers’ recommendations. 

 

Recombinant protein expression and electrophoretic mobility shift assay (EMSA) 

The wild type and mutant MBP-NS3 proteins were expressed in BL21 DE3 cells and purified 

according to manufacturers’ protocol and as previously described by Hemmes et al. (2007). 

Purification was checked by SDS-page gel followed by commassie brilliant blue staining. 

Protein concentrations of the eluted fractions were determined by the Bradford assay 

(Biorad). 

EMSA was at least performed in triplicate with 100 pM 32P-labelled 21 nt siRNA molecules 

and bacterial expressed MBP-NS3 (mutant) proteins, as previously described (Lakatos et al. 
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2006; Hemmes et al., 2007). Complexes were separated on an 8% native acrylamide gel and 

after drying exposed overnight to a phosphor screen. The screen was scanned using a 

Molecular Dynamics Typhoon Phosphor imager (Amersham Biosciences) and a 

representative picture was shown. Visual bands were quantified using Genius Image Analyser 

software (Syngene) and the Kd was determined by plotting the bound RNA fraction as a 

function of the protein concentration. 
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The NS3 protein of Rice hoja blanca virus suppresse s 
RNA silencing in mammalian cells 

 

 

 

 

 

Abstract 

The NS3 protein of the tenuivirus Rice hoja blanca virus has previously been shown to 

represent the viral RNA silencing suppressor protein and is active in both plant and insect 

cells by binding siRNAs in vitro. Using firefly luciferase-based silencing assays it is shown that 

NS3 is also active in mammalian cells. This activity is independent of the used inducer 

molecule. Using either synthetic siRNAs or a short hairpin RNA construct, NS3 was able to 

significantly suppress the RNA-mediated silencing of luciferase expression in both monkey 

(Vero) and human (HEK293) cells. These results support the proposed mode of action of NS3 

to act by sequestering siRNAs, the key molecules of the RNA silencing pathway conserved in 

all eukaryotes. The possible applications of this protein in modulating RNA silencing and 

investigating the proposed antiviral RNA silencing response in mammalian cell systems are 

discussed. 

 

 

 

 

 

 

 

 

 

__________________________________________________________________________ 

This chapter has been published in a slightly modified version as 

Schnettler, E., Hemmes, H., Goldbach, R. & Prins, M.  (2008). The NS3 protein of rice hoja 

blanca virus suppresses RNA silencing in mammalian cells. J Gen Virol 89, 336-40. 
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Introduction 

RNA silencing is a conserved eukaryotic gene regulation mechanism comprising 

endonucleoytic cleavage of long dsRNA into siRNA molecules of 21-26 nt by Dicer (Bernstein 

et al., 2001). After incorporation of the siRNAs in RISC, present in the cytoplasm, they are 

unwound and the retained (guide) strand is used for sequence-specific recognition and 

degradation of RNA targets (reviewed by Sontheimer, 2005). Although most eukaryotes 

encode a functional RNA silencing pathway with conserved parts, there are differences 

between the kingdoms (Dykxhoorn et al., 2003). Over time, different biological processes 

involving this mechanism have been identified (reviewed by Herr, 2005; Sontheimer, 2005, 

Tomari, 2005, Voinnet, 2005). 

In plants, nematodes and insects, RNA silencing has been demonstrated to serve as an 

innate antiviral defense response, but RNA silencing has not been confirmed to operate as 

such in mammalian cells (Li et al., 2002, Voinnet, 2001, Zambon et al., 2006). To counteract 

this antiviral response, many plant and insect viruses encode proteins that interfere with the 

RNA silencing pathway, so called RSS proteins. These proteins, have been identified and 

characterized in negative and positive stranded RNA viruses as well as DNA viruses 

(reviewed in the introduction & by Lecellier & Voinnet, 2004). Similar to these RSS proteins of 

plant and insect viruses, some proteins of human-infecting viruses have also been 

demonstrated to act like this. The NS1 protein of human Influenza A virus was shown to act 

as RSS protein in plants and insect cells (Bucher et al., 2004, Li et al., 2004). Next to the 

cross-kingdom activity by human infecting viruses, some intra-species RNA silencing 

suppression was demonstrated too. The HIV-1 Tat protein or the core and E2 protein of HCV, 

for example, show RSS activity in cultured human cells (Bennasser et al., 2005, Ji et al., 

2008). A considerable number of viruses are able to infect hosts belonging to two different 

kingdoms such as insects and mammals or plants and insects. Until now, only limited 

information is available on the question if their RSS proteins are active in both organisms and 

how they act. The Nodamura virus infects insects and mammals and encodes an RSS protein 

(B2) which has been demonstrated to be active in mammalian cells (Sullivan & Ganem, 

2005). Moreover, the crystal structure has shown that it binds dsRNA molecules, a key 

molecule of the RNA silencing pathway and thereby inhibits Dicer cleavage (Korber et al., 

2009, Sullivan & Ganem, 2005). RHBV is another virus capable of infecting and replicating in 

two different kingdoms, i.e. plants (rice) and its insect vector (plant hopper, Tagosodes 

orizicolus) (Falk & Tsai, 1998) and likely induces antiviral RNA silencing in both. The RSS 

protein of RHBV, NS3, has been shown to act in plants (Bucher et al., 2003) and more 

recently in cultured insect cells (Hemmes et al., 2007). NS3 exhibits a high affinity for 21 nt 

siRNAs (Hemmes et al., 2007) and this binding capacity is crucial for its RSS activity in 

plants, as shown in chapter 2.  

In mammalian cells, RNA silencing can be induced by endogenous or exogenous dsRNA 

molecules. A single Dicer enzyme processes these long dsRNA molecules into 21 nt siRNAs 

(Bernstein et al., 2001), with similar biochemical properties (2 nt 3`-overhang and 
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5`phosphorylated) as those from plants and insects. The results of chapter 2 supported the 

idea that the RSS activity of NS3 solely relies on siRNA binding. If this is true, NS3 should 

also be operational in other organisms encoding a functional RNA silencing pathway, like 

mammalian cells. To test this hypothesis, a RSS assay was established in mammalian cells 

using different silencing molecules and the RSS capability of NS3 and the NS3 mutant lacking 

the RSS activity in plants and siRNA binding affinity (AAA; Chapter 2) was analyzed.  

 

Results 

Establishment of a reporter gene RNA silencing assay  in mammalian cells 

Prior to the analysis of NS3 RSS activity in mammalian cells, wt NS3 or NS3 mutant 

(K173A/K174A/K175A; AAA) (as described in chapter 2) were N-terminally fused to MBP and 

cloned in a mammalian expression vector. Their expression in mammalian Vero cells was 

verified by western blot analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1:  A) Western blot analysis of MBP, MBP-NS3 or MBP-NS3 mutant (MBP-NS3m) expressed in Vero 
cells B) Concentration dependent short hairpin induced silencing. Plasmids encoding for Renilla luciferase 
(Rluc), Firefly luciferase (Fluc) and different concentrations of either unspecific (sh-scrambled) or specific 
(shFluc) short hairpin RNA were co-transfected in Vero cells. C) Suppression of short hairpin RNA-induced 
Fluc silencing by tombusvirus P19. Vero cells were co-transfected with expression plasmids encoding Rluc, 
Fluc, a non-specific (sh-scrambled) or specific (shFluc) Fluc short hairpin RNA and either MBP or tombusviral 
P19. MBP, maltose binding protein; NS, non-structural. 
 

As negative control, pEF5/V5-based expression plasmid encoding the MBP alone was 

included (Figure 3-1A). Next a mammalian cell reporter gene RNA silencing assay was 

developed based on the Firefly luciferase (Fluc). To this end, Vero and Human Embryonic 

Kidney (HEK)293 cells were co-transfected with plasmids encoding Fluc and a short hairpin 

(sh)RNA construct (Paddison et al., 2002) specifically targeting Fluc (shFluc) or a non-specific 

(scrambled) shRNA. To ensure comparability, a Renilla luciferase (Rluc) expression vector 

(pRL-CMV; Promega) was used as an internal control. The Dual luciferase assay (DLR; 
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Promega) determined 48 hours post transfection (hpt) the luciferase expression levels. Cells 

co-transfected with Fluc- and shFluc-encoding plasmids showed a drastic decrease in Fluc 

expression levels, which was not observed in cells expressing scrambled shRNA           

(Figure 3-1B, data not shown). This decrease was dependent on the amount of the RNA 

silencing inducer (Figure 3-1B), and enabled a maximum silencing of approximately 80% of 

the original Fluc expression level. Addition of more RNA silencing inducer plasmid did not 

support a further increase in the silencing of Fluc expression (data not shown). 

To validate the assay, Vero cells were co-transfected with Fluc, shFluc or scrambled shRNA 

and the tombusvirus P19 siRNA-binding RSS-encoding plasmid, demonstrated to be active in 

plant and mammalian cells (Dunoyer et al., 2004, Lakatos et al., 2004). To observe the most 

optimal RNA silencing suppression of P19, a sh-construct concentration was chosen not 

oversaturating the RNA silencing pathway and giving a silencing of approximately 60% at 48 

hours post transfection (hpt). Using this set-up the observed luminescence in Fluc silenced 

cells additionally expressing P19 was significantly higher than in cells expressing MBP, 

whereas non-silenced cells did not show any differences, irrespective of the presence or 

absence of P19 (Figure 3-1C). These results demonstrated that the designed experimental 

set-up could be used to determine RSS activity in mammalian cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3-2:  Effect of NS3 expression on short hairpin RNA induced silencing.  
HEK293 (dashed) or Vero (solid) cells were co-transfected with Firefly luciferase (Fluc), a nonspecific (sh-
scrambled) or specific (shFluc) Fluc shRNA, and either MBP, MBP-NS3 mutant (NS3m) or NS3 (A), either N-
terminally MBP-tagged or untagged (*). Each treatment was performed in duplicate in at least two independent 
assays and the Fluc activity was normalized to Renilla luciferase (Rluc) for each of these treatments. Western 
blot confirmation of NS3 expression within the samples analyzed in panel A (B). Immunological detection of β-
actin served as loading control. MBP, maltose binding protein; NS, non-structural. 
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RHBV NS3 suppresses siRNA and shRNA induced silencin g in mammalian cells 

Next the RSS activity of NS3 in Vero cells (Figure 3-2A) was tested. Similar as to the results 

with P19, a significant and reproducible (partial) recovery of luminescence was observed in 

the presence of wildtype NS3, either tagged or untagged, but not with NS3mutant (expressed 

at similar levels as wt NS3; Figure 3-2B), indicating that this protein was able to suppress 

RNA silencing in mammalian cells. Using HEK293 cells instead of Vero cells, similar results 

were obtained for NS3 (Figure 3-2B) and P19 (data not shown), respectively. 

Since NS3 has been proposed to exhibit its RSS activity by sequestering siRNAs (Chapter 2), 

instead of shRNAs, also synthetic siRNAs were used to test for specific gene silencing in 

cultured mammalian cells. Whereas shRNAs homologous to Fluc yielded a maximal silencing 

effect of 80%, siRNAs achieved over 95% of silencing (Figure 3-3 A). This is in agreement 

with earlier reports that have described siRNAs as more potent RNA silencing inducers 

(Paddison et al., 2002). Furthermore, a concentration-dependent decrease in the Fluc 

expression was detected in cells transfected with Fluc plasmid DNA and Fluc-specific siRNAs 

(siLuc), compared to cells transfected with Fluc and unspecific (scrambled) siRNAs (data not 

shown).  

Having demonstrated sequence specific silencing using synthetic siRNAs (Figure 3-3A), 

timing of NS3 action was investigated. As it proved impossible to suppress silencing at the 

highest siRNAs concentrations, optimal conditions for measuring RNA silencing suppression 

were determined. RNA silencing was not suppressed in cells in which the NS3 plasmid was 

co-transfected with the Fluc plasmid and siluc (Figure 3-3B). However, a significant increase 

in Fluc expression was observed in cells initially transfected with the NS3 plasmid and 

sequentially transfected after 24 hours with Fluc and siLuc (Figure 3-3C). The combined 

presence of proteins from a pre-transfected encoding plasmid and siRNA in transfected cells 

was verified by an YFP-expressing plasmid and transfection of rhodamine labeled siRNAs, 

revealing exclusively double transfected cells at a transfection efficiency of approximately 

60% (Figure 3-4). As already observed for the short hairpin induced silencing experiments, no 

Fluc increase could be detected in the presence of NS3m (Figure 3-3B). This indicated that 

the NS3 protein was able to suppress siRNA induced silencing but only when being present 

before the accumulation (or transfection) of siRNAs, as similarly reported for the B2 RSS 

protein of FHV in insect cells (Li et al., 2004).  

 

RHBV NS3 does not inhibit Dicer cleavage in vitro 

Although, Dicer action is most probably not needed if siRNAs are used as inducer molecules 

it can not be ruled out that NS3 additionally acts by inhibition of Dicer needed during RNA-

hairpin transfection. The well established in vitro Drosophila Dicer cleavage assay (Bernstein 

et al., 2001) was used to investigate the effect of NS3 on the Dicer cleavage of a radio 

labeled 114 nt dsRNA substrate into 21 nt siRNA molecules (Merai et al., 2006). Data 

obtained showed no inhibition of Dicer cleavage in the presence of bacterial produced MBP-

NS3 protein, even at high concentrations (Figure 3-3D). These results suggested that the 
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RSS activity of NS3 is most likely limited to sequestering of siRNAs in mammalian cells. This 

idea is being supported by the observation of an increase in the silenced status of luciferase, 

in the presence of equal amounts of the NS3 encoding plasmid, but increasing amounts of 

siluc (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3-3:  A) siRNA or short hairpin (sh) RNA based silencing in Vero cells co-transfected with either specific 
(luc) or unspecific (scrambled) RNA silencing inducer, together with Firefly luciferase (Fluc) and Renilla 
luciferase (Rluc) plasmids. B) Effect of NS3 co-transfection on siluc-induced Fluc silencing. Vero cells were 
co-transfected with vectors encoding Fluc, Rluc and either MBP or MBP-NS3 as well as siRNA specific (siluc) 
or unspecific (si-scrambled) for Fluc. C) Effect of NS3 pre-transfection (24 hrs) on siluc-induced Fluc silencing. 
Vero cells were transfected with Fluc and Rluc expression vectors, together with siRNA either specific against 
Fluc (siluc) or unspecific (si-scrambled). Fluc activity was normalized to Rluc activity independently for each 
treatment. The relative luciferase activity was obtained from at least two independent assays, whereas each 
assay was performed in duplicate. D) Effect of NS3 on Dicer cleavage in vitro. Radioactively labeled dsRNA 
(lane 7) was cleaved into siRNAs by Dicer from Drosophila embryo extract in the absence (lane 6) or 
increasing presence of bacterial purified MBP-NS3 protein (lane 1 to 5). siRNAs were included as control (lane 
8). MBP, maltose binding protein; NS, non-structural; dsRNA, double stranded RNA. 
 

 

Discussion 

Here it has been shown that NS3 is able to suppress induced RNA silencing in (non-host) 

mammalian cells, like earlier demonstrated in its natural host plant and insect cells (Bucher et 

al., 2003, Hemmes et al., 2007). For this suppressor activity, NS3 strongly depends on its 

high affinity for 21 nt siRNA as already observed for plants (Chapter 2), independent of the 
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used inducer molecules. The majority of RSS proteins studied so far bind either long or short 

dsRNA (Lakatos et al., 2006, Merai et al., 2006), both representing conserved molecules of 

the RNA silencing pathway in all eukaryotic organisms.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3-4:  Transfection efficiency of DNA plasmids and siRNAs in human embryonic kidney (HEK) 293 cells 
after co-transfection (left panel) or pre-transfection (right panel). Cells were transfected with yellow fluorescent 
protein (YFP) plasmid and either co- (left panel) or 24 hours later transfected (right panel) with rhodamine 
labeled siRNAs. After twenty four hours, fluorescent cells were monitored by a Zeiss laser scanning 
microscope LSM510. A) rhodamine detection, B) YFP detection, C) merge of A, B and D) bright field image.  
 

Inactivating such essential molecules within the RNA silencing pathway offers a RSS protein 

the possibility to be active in different host organisms and possibly reduces the chance of 

these different hosts to evade the RNA silencing suppression. On the other hand, it implies 

that relatively high amounts of RSSs are possibly needed in the cytoplasm of cells to reach a 

good level of suppression when compared to a presumed suppressor protein that would 

inhibit specific proteins of the RNA silencing machinery by direct interaction. Alterations in the 

host protein that interacts with the latter type of RSS protein, though, may easily result in loss 

of RNA silencing suppression and hence avirulence. Whereas the virus benefits from 

encoding a RSS protein, a highly active RSS protein results in a pathogenic virus that not only 

kills its host and/or vector rapidly, but also would reduce its survival and dissemination. 

Regarding the fact that RHBV is facing antiviral RNA silencing in both plant and insect hosts, 

it is not surprising that NS3 interferes with a conserved element of the RNA silencing pathway 

present in both hosts and not with a specific protein of one host. This hypothesis is in line with 

the observation that the NS3 RSS activity is also exhibited in mammalian cells. As the effects 

of synthetic siRNAs and a shRNA construct were similar, it is tempting to assume that NS3 

acts downstream of both RNA silencing inducer molecules or on the inducer molecule itself. 

This is in agreement with data from previous studies in vitro and in plants, which 

demonstrated that the biochemical activity of NS3 most likely and entirely relies on the 

binding to siRNA molecules (Hemmes et al., 2007). It is possible that NS3, due to its higher 

affinity for siRNA, may extract siRNAs from the intermediate RISC complexes (R1 and RLC), 

where the siRNAs are still double stranded. However, ss siRNAs present in mature, pre-
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assembled RISC complexes can not be dissociated by NS3; consequently NS3 can not 

compete for ss siRNA in these complexes (Hemmes et al., 2007) and only shows RSS activity 

if expressed 24 hours prior siRNA induced silencing (Figure 3-3A & B). 

Using plant, insect or mammalian cell-based assays, a number of innate immunity 

suppressors, like interferon antagonists encoded by mammalian viruses, have been 

demonstrated to have RSS activity. Some of the best studied examples so far are NS1 of 

Influenza A virus (Bucher et al., 2004, Li et al., 2004), VP35 of Ebola virus, E3L of Vaccinia 

virus, tat of HIV-1, NSs of La Crosse virus, Tas of Primate foamy virus-1, core and E2 of HCV 

and NoV B2 (Haasnoot et al., 2007, Schutz & Sarnow, 2006, Soldan et al., 2005). 

Furthermore, it has been shown that the interferon antagonists VP35, NS1 and E3L are RSS 

proteins in human cells that are capable of restoring the production of a HIV-1 strain defective 

in the Tat gene (Haasnoot et al., 2007). 

These results indicate that RNA silencing, like the interferon pathway, may be an important 

innate antiviral defense response in mammals, and that mammalian viruses, similar to plant 

and insect viruses, need to counteract this response in order to replicate. Although not 

studied into great detail, the RSS proteins from mammalian viruses seem to bind longer 

dsRNAs with a higher affinity than siRNAs (Hemmes, 2007). Besides serving as RNA 

silencing inducers, long cytoplasmic dsRNAs induce the replication-dependent antiviral 

interferon pathway in mammalian cells (Kato et al., 2005, Marques et al., 2006). It is therefore 

difficult to separate these two pathways as well as to unravel the effect of long dsRNA binding 

proteins with respect to both pathways. However, using a protein like NS3, exclusively binding 

siRNAs, provides a promising strategy to distinct between these two and study the possible 

presence of an antiviral RNA silencing pathway in mammalian cells. The use of NS3 could 

also give information about the relative importance of each antiviral pathway, by determining 

its complementing effect on replication level of viruses defective in their innate antiviral 

suppressor protein. Next to the possibility to reveal novel aspects of the virus-host interaction, 

the in trans complementation of viruses defective in their own innate antiviral suppressor 

genes opens the chance of virus particle production in plants, mammalian and insect cells, for 

example, for attenuated vaccine strains. Until now, a problem faced during the production 

cycle of attenuated viruses, most probably having defects in their innate antiviral suppressor 

genes, are the low virus titers reached in culture. In insect cells it was shown that virus titers 

can be increased by complementation, using either the virus’ own suppressor protein or even 

cross-kingdom suppressor proteins (Li et al., 2004). Recent results have shown that this is 

also possible by using cell lines stably expressing an RSS protein, such as Tat of HIV-1 (de 

Vries et al., 2008). A main drawback of using mammalian encoded RSS proteins, like VP35 

and NS1, may in this case be the risk of wildtype rescuing due to recombination. The use of 

NS3 based producer cell lines would avoid such drawbacks and improve the biosafety of such 

an approach. Further research is needed to confirm the potential application of NS3 in 

mammalian virus research and production strategies.  
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Materials and methods 

Plasmid construction 

The mammalian expression plasmids, MBP, MBP-NS3 and MBP-NS3 mutant were generated 

using the described Entry clones (Chapter 2), the pEF5/v5 (Invitrogen) destination vector and 

LR clonase according to the manufacturers’ protocol of the gateway technology.  

The P19 of Carnation italian ring spot virus (CIRV) and NS3 (RHBV) open reading frames 

were cloned into the mammalian expression vector pEF5-v5-dest containing the human EF1α 

promoter using gateway technology. The expression plasmid of shLuc has been described by 

Paddison et al. (2002) and the scambled shRNA by Konstantinova et al. (2006). 

The bacterial expression vector of MBP-NS3 has been described in chapter 2. 

 

Cell culture and transfection 

Human embryonic kidney (HEK293) cells or African green monkey kidney Vero cells were 

grown as a monolayer in DMEM (Gibco, BRL) supplemented with 10% fetal calf serum (FCS) 

(Gibco), streptomycin (100ug/ml) and penicillin (100U/ml) at 37°C and 5% CO 2. To reach a 

confluence of 60-70% at the time of transfection, cells were trypsinated 24 hours pre-

transfection and seeded in a 24-well plate at a concentration of 2.2*105 or 1.1*105 cells per 

well, respectively. Transfections were performed using Lipofectamine 2000 (Invitrogen) 

according to the manufacturers’ instructions. 

For the RNA silencing suppressor assays using short hairpin constructs as inducer 

molecules, cells were transfected with luciferase expression plasmids, i.e. 100 ng Firefly 

luciferase (GL3; Promega) and 2 ng Renilla luciferase (pRL-VMV; Promega), and 4 ng of 

short hairpin encoding plasmids, either non-specific or Firefly luciferase specific (pShh1-Ff1; 

Paddison et al., 2002). Next to this, cells were also co-transfected with 450 ng of the RNA 

silencing suppressor expressing plasmid (MBP, MBP-NS3, MBP-NS3mutant, P19 or NS3). 

For the siRNA based suppressor assays, cells were transfected with 450 ng suppressor 

expression plasmids (MBP, MBP-NS3 or MBP-NS3mutant) and dependent on the 

experimental set-up directly or 24 hours later with 100 ng Firefly luciferase expression 

plasmid, 2 ng Renilla luciferase expression plasmid and 0.15 ng siRNA molecules, either 

Firefly luciferase specific (Qiagen) or unspecific (Eurogentec). 

To determine transfection efficiencies, HEK293 cells seeded on coverslips were transfected 

with 450 ng yellow fluorescent protein (YFP)-expression plasmid and either co- or sub-

transfected 24 hours later with 150 ng rhodamine labeled siRNA molecules. Fluorescence 

was determined 24 hours later with a Zeiss laser scanning microscope (LSM510), using the 

multitrack setting and the corresponding lasers and filters. 
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Luciferase assays and expression analysis  

Cells were lysed 2 days post (2nd) transfection and luciferase expression was determined 

using the Dual luciferase reporter assay (Promega), according to manufacturers’ protocol. 

Expression of MBP-tagged proteins was analyzed by western blot analysis. Lysate prepared 

for the Dual luciferase assay was resolved on a SDS-page gel. Proteins were semi-dry 

transferred to Immobilion-P (Millipore) and MBP-tagged proteins subsequently detected using 

a MBP-specific rat primary and goat alkaline phosphotase conjugated secondary antibody. To 

verify for protein loading, an internal control protein, β-actin, was detected by a specific 

monoclonal primary antibody, followed by a secondary antibody conjugated to alkaline 

phosphotase. The protein-IgG complexes were visualized with NBT-BCIP as substrate 

(Roche) according to the manufacturers’ protocol. 

 

dsRNA preparation 

Double stranded RNA was generated by T7 RNA polymerase (Promega) based in vitro 

transcription with α-32P-CTP (Perkin Elmer) using gel purified PCR products (GE Healthcare) 

as template. The promoter sequence for T7 RNA polymerase was introduced by PCR at each 

end of the eGFP specific PCR product using primers T7-dsRNA 114nt F (5` gta ata cga ctc 

act ata ggg ggc gtg cag tgc tttc agc cgc 3`) and T7-dsRNA 114nt RV (5`gta ata cga ctc act ata 

ggg gcc gtc gtc ctt gaa gaa gat gg 3`). After PCR amplification and T7 transcription, RNA 

transcript molecules were incubated at 70oC for 10 minutes and left at room temperature to 

anneal (slowly cooled down to room temperature). Remaining single stranded RNA and DNA 

template were removed by treatment with DNase I and RNase A. The resulting dsRNA was 

gel purified from an 8% native 0.5x TBE acrylamide gel. Annealing and labeling of 21 nt 

siRNA molecules was performed as described by Haley (Haley et al., 2003). 

 

Recombinant protein expression and Dicer cleavage a ssay 

The RHBV NS3 protein was expressed in BL21 DE3 cells according to the manufacturers’ 

protocol and purified as previously described (Chapter 2).  

The Drosophila embryo extract used for Dicer cleavage assays was prepared as previously 

described (Haley et al., 2003). A typical Dicer cleavage reaction was performed in 10 µl and 

contained 2 µl Drosophila embryo extract, 125 pmol 114nt dsRNA and various concentrations 

of bacterial expressed and purified MBP-NS3, and left to incubate for 60 minutes at 25oC 

(Haley et al., 2003), in buffer lacking KCL. Samples were deproteinized, purified by 

phenol/chlorophorm, precipitated by ethanol and the resulting RNA resolved on a 12% 

denaturing polyacrylamide gel in 0.5X TBE. After electrophoresis, the gel was dried, exposed 

overnight to a phosphor screen and subsequently scanned by Molecular Dynamics Typhoon 

Phosphorimager (Amersham Biosciences).  
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Chapter  4 

 

The NS3 protein of Rice hoja blanca virus 
complements the RNA silencing suppressor function 

of HIV-1 Tat 
 

 

 

 

Abstract 

The question whether RNA interference or RNA silencing serves as antiviral mechanism in 

mammalian cells remains controversial. The antiviral interferon response cannot easily be 

distinguished from a possible antiviral RNA silencing pathway due to the involvement of 

double stranded RNA as common inducer molecule. The NS3 protein of Rice hoja blanca 

virus is an RNA silencing suppressor (RSS) that exclusively binds small double stranded RNA 

molecules. Here, it is demonstrated that this plant viral RSS lacks interferon antagonistic 

activity, yet is able to substitute the RSS function of the Tat protein of human 

immunodeficiency virus type 1. An NS3 mutant that is deficient in RNA binding and its 

associated RSS activity is inactive in this complementation assay. This cross-kingdom RNA 

silencing suppression in mammalian cells by a plant viral RSS indicates the significance of 

the antiviral RNA silencing response in mammalian cells and the usefulness of well defined 

RSS proteins. 
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Introduction 

RNA silencing serves as an antiviral response in plants, insects and invertebrates (Ding & 

Voinnet, 2007, Galiana-Arnoux et al., 2006, van Rij et al., 2006, Voinnet, 2001, Wang et al., 

2006a). RNA silencing is induced by dsRNA viral replication intermediates and extended 

secondary structures in viral RNA (Voinnet, 2005a). These dsRNA molecules are recognized 

by Dicer proteins and processed into siRNAs, which guide RISC to inactivate a target RNA in 

a sequence-specific manner (Sontheimer, 2005). To counteract this antiviral response, plant 

and insect viruses encode RSS proteins (Voinnet, 2005a). Most plant viral RSS proteins have 

dsRNA binding domains for short dsRNAs (Lakatos et al., 2006, Merai et al., 2006, Voinnet, 

2005a) or longer dsRNAs (Deleris et al., 2006, Merai et al., 2005). Other plant viral RSS 

proteins interfere with protein components of the RNA silencing machinery (Deleris et al., 

2006, Levy et al., 2008).  

Mammalian cells possess a functional RNA silencing pathway that can be instructed to 

become antiviral upon transfection with siRNAs or constructs that express shRNAs against 

viral sequences (reviewed by Haasnoot et al., 2007, Marques & Carthew, 2007). However, 

the potential role of RNA silencing as a natural antiviral defense mechanism, in mammalian 

cells, remains controversial. The hallmark of antiviral RNA silencing, that is virus-derived 

siRNAs, could not be identified in infected cells (Pfeffer et al., 2004). However, such 

molecules were described more recently for several endogenous and exogenous viruses, 

including HIV-1 (Bennasser et al., 2005, Soifer et al., 2005, Yang & Kazazian, 2006, 

Parameswaran et al., 2010), yet the significance of these findings is still being debated (Lin 

and Cullen, 2007). 

Next to the siRNA pathway, another similar pathway plays an important role in most, if not all, 

eukaryotes and which regulates gene expression at the post transcriptional level. Host 

encoded small RNA molecules, called miRNAs are crucial for this pathway (Bartel et al., 

2004; Carrington & Ambros, 2003; Herr et al., 2005). MicroRNAs arise from polymerase II 

transcribed miRNA genes that fold into stem loop structures called pri-miRNAs. The nuclear 

protein Drosha cleaves these into pre-miRNAs of approximately 70 nt, in a complex with a 

dsRNA binding partner called DGCR8, in humans (Lee et al., 2003; Han et al., 2004). 

Following export to the cytoplasm by exportin 5 (Lund et al., 2004), pre-miRNAs are further 

processed by Dicer into 21-24 nucleotide mature miRNA/miRNA* duplexes. One strand of 

these duplex molecules, like with siRNAs, is incorporated into miRISC and subsequently 

assists in the sensing of (partly) complementary target sequences that become cleaved or 

translationally arrested (Bartel et al., 2004). There is accumulating evidence that mammalian 

cells use miRNAs to control viruses (Berkhout & Jeang, 2007). HIV-1 is inhibited by miR-17 

and -20a due to down-regulation of histone acetylase PCAF, a co-factor of the transactivator 

of transcription (Tat) protein (Triboulet et al., 2007). MicroRNAs may also regulate 

components of the antiviral interferon (IFN) pathway and thus provide a possible link between 

the RNA silencing and IFN pathways (reviewed by Sonkoly et al., 2008). These combined 
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findings support the idea that RNA silencing, either siRNA or miRNA based, is part of the 

innate immune system in mammals. 

Consistent with this idea, an increasing number of mammalian viruses have been shown to 

encode an RSS protein, e.g. the HCV core and envelope protein 2 (Ji et al., 2008, Wang et 

al., 2006b), Vaccinia virus E3L (Li et al., 2004), Ebola virus VP35 (de Vries & Berkhout, 

2008), PFV Tas (Lecellier et al., 2005), Influenza A virus NS1 (Bucher et al., 2004, Haasnoot 

et al., 2007, Li et al., 2004) and HIV-1 Tat (Bennasser et al., 2005). These RSS proteins 

suppress RNA silencing-mediated down-regulation of a reporter gene construct. NS1 and 

VP35 can also trans-complement the production of a Tat-negative HIV-1 variant (Haasnoot et 

al., 2007). HIV-1 Tat and HCV core were proposed to block Dicer activity (Bennasser et al., 

2005, Chen et al., 2008), while NS1, E3L and VP35 most likely act by sequestering dsRNA 

(Bucher et al., 2004, Haasnoot et al., 2007, Li et al., 2004). Furthermore, stable expression of 

mammalian RSS proteins have been shown to increase viral replication (de Vries et al., 

2008). 

Intriguingly, most identified RSS proteins of mammalian viruses also possess antagonistic 

properties against the extracellular (Toll-like receptor-mediated) or intracellular (PKR, IFN, 

RIG-I, MDA-5 mediated) defense pathway, and these activities usually map to the RNA-

binding domain that is also implicated in the RNA silencing function (Bucher et al., 2004, 

Wang et al., 1999, Wang et al., 2000). To distinguish between IFN and RNA silencing 

pathways and to determine if HIV-1 production is restricted by RNA silencing in mammalian 

cells, here the NS3 protein of RHBV was used that binds exclusively to small dsRNAs 

(Hemmes et al., 2007), needing this binding for its RSS activity (Chapter 2) and exhibits RSS 

activity in mammalian cells (chapter 3). Consistent with this property, it is confirmed that this 

plant virus protein lacks IFN antagonistic activity and yet is able to rescue a Tat-minus HIV-1 

reporter virus. 

 

Results 

The plant virus NS3 protein complements Tat  

Recently, the Ebola virus VP35 protein has been shown to complement a Tat-minus HIV-1 

variant in which the Tet-system for doxycycline (dox)-inducible gene expression replaces the 

transcription function of Tat (Haasnoot et al., 2007). Now this system is used (Figure 4-1 A) to 

test whether the Tat RSS function can be complemented by the RHBV NS3 protein, which 

exclusively binds short dsRNA molecules (Hemmes et al., 2007) and is therefore not 

expected to modulate the IFN pathway. Prior to this, the expression of the constructed NS3 

vectors (Chapter 2) in HEK293T cells was verified. To this end, both NS3 and the NS3 mutant 

(NS3m, AAA), lacking RNA binding and RSS activity in plants and mammalian cells (Chapters 

2 & 3), were expressed as a fusion protein of 66 kDa with MBP. The MBP domain (43 kDa) 

was included as control (Figure 4-1B).  

 

 



Chapter 4   

 - 50 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Plant viral RNA silencing suppressor protein NS3 complements HIV-1 Tat 
Schematic representation of the HIV-rtTA genome (taken of Haasnoot et al., 2007). The Tat-TAR dependent 
transcription was inactivated by mutations in the TAR region (as indicated) and a frameshift mutation at codon 
20 of the tat gene. Transcription was established by the insertion of the rtTA gene instead of the nef gene and 
8 tetO sites in the LTR promoter. Addition of doxycicline (dox) results in the binding of rtTA to the tetO sides, 
starting transcription and viral replication (A). Lysates of HEK293T cells, transfected with expression plasmids 
for GFP, MBP-NS3, MBP-NS3m or MBP (900 ng), were analyzed for protein expression by western blot 
analysis, using a rabbit polyclonal antiserum against MBP. Immunological detection of β-actin served as 
loading control (B). HEK293T cells were co-transfected with HIV-rtTA-Tatwt and HIV-rtTA-Tatfs (100 ng) in 
combination with increasing amounts (10, 100, 600 and 900 ng) of NS3 or Tat expression plasmids. The 
vector expressing MBP (900 ng) was used as negative control. HIV-1 production was determined two days 
post transfection by detecting CA-p24 in the supernatant using ELISA. The mean of at least three independent 
experiments is shown with standard error (C). ELISA, enzyme-linked immunosorbent assay; GFP, green 
fluorescent protein; HIV-1, human immunodeficiency virus type 1; MBP, maltose binding protein; NS3, non 
structural protein 3; NS3m, NS3 mutant protein; RSS, RNA silencing suppressor; Tat, transactivator of 
transcription  
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After co-transfection of increasing amounts of NS3 expression plasmid with the Tat-negative 

HIV-1 (HIV-rtTA-Tatfs) construct in HEK293T cells, the effect of NS3 on HIV-1 production was 

monitored. Strikingly, the RHBV NS3 protein was able to rescue virus production in trans to 

approximately the same extent as HIV-1 Tat (Figure 4-1C). The reason that more NS3 than 

Tat vector is needed could be due to differences in the RSS mechanism (siRNA binding 

versus Dicer blocking) or the proteins’ intracellular localization/stability/concentration, but this 

was not investigated further. Given the established role of NS3 in counteracting antiviral RNA 

silencing (Bucher et al., 2003, Hemmes et al., 2007) and the fact that binding of only small 

dsRNA is essential for its biochemical activity (Chapter 2), this result indicated that HIV-1 

production is restricted by the RNA silencing mechanism. 

 

NS3 exhibits no IFN antagonistic activity  

To formally rule out that the Tat-complementing property of NS3 was based on IFN pathway 

modulation, this effect was probed in mammalian cells (HEK293T) using a Fluc reporter 

construct under control of an IFN-β inducible promoter and Rluc as internal control (Figure 

2A). As a positive control, Fluc expression as a measure of IFN production was induced by 

poly I:C, and this stimulatory effect was significantly reduced in the presence of the IFN-

antagonistic VP35 protein of Ebola virus (Cardenas et al., 2006). As expected, the RHBV NS3 

protein exhibited no IFN antagonistic activity, yielding the same Fluc expression as the 

negative control (empty vector). We also tested the HIV-rtTA-Tatwt and HIV-rtTA-Tatfs 

constructs for their ability to induce IFN in this assay. No such activity was measured (results 

not shown). Next, the possible involvement of the PKR component of the IFN pathway was 

tested by performing NS3-complementation in the presence of 2-aminopurine (2-AP), a 

specific PKR inhibitor (Lu & Cullen, 2004). NS3 maintained Tat-complementation activity with 

2-AP (Figure 4-2B), confirming that PKR was not involved. Thus, Tat inactivation and NS3 

complementation do not have an impact on the IFN pathway. 
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Figure 4-2: NS3 has no interferon and PKR antagonistic properties  
Effect of NS3 on interferon inducible construct. HEK293T cells were co-transfected with expression vectors 
encoding firefly luciferase under control of an IFN-β inducible promoter, renilla luciferase and VP35, NS3 (10, 
100, 400 ng) or pBluescript (c), either in the presence (+) or absence (-) of poly I:C. Luciferase expression was 
measured 3 days post transfection. Shown is relative luciferase expression corrected for the internal renilla 
control (firefly/renilla). The mean of at least three independent experiments is shown with standard error (A). 
Effect of 2-AP on NS3 trans-complementation. HEK293T cells were co-transfected with HIV-rtTA-Tat(wt) and 
HIV-rtTA-Tat(fs) in combination with increasing amounts (300, 600 and 900 ng) of NS3 or Tat expression 
plasmids. The PKR inhibitor 2-AP (final concentration of 2,5 mM) was added 4 hours post transfection. HIV-1 
production was determined two days post transfection by detecting CA-p24 in the supernatant using ELISA. 
The mean of three independent experiments is shown with standard error (B). HEK, human embryonic kidney; 
IFN, interferon; NS3, non structural protein 3; PKR, protein kinase R; ELISA, enzyme-linked immunosorbent 
assay; HIV-1, human immunodeficiency virus type 1; Tat, transactivator of transcription; 2-AP, 2-
amminopurine 
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NS3 requires dsRNA binding capacity for HIV-1 comple mentation and interferes with 

miRNA patway 

Having demonstrated that NS3 was able to complement for Tat, it was tested whether NS3 

required its RNA-binding domain for HIV-1 trans-complementation. Therefore, the NS3 

mutant (NS3m, AAA) was used, known to be defective in siRNA binding (Figure 4-3A; 

Chapter 2), suppression of antiviral RNA silencing in plants (Chapter 2) and siRNA-mediated 

silencing in mammalian cells (Chapter 3). As the anti-HIV effect of the RNA silencing pathway 

might utilize miRNAs (Triboulet et al., 2007), the NS3m was tested for its ability to bind 

miRNA/miRNA* duplexes using an electrophoretic mobility shift assay (EMSA) (Figure 4-3B). 

In comparison to wild type NS3, known to bind miRNA/miRNA* and siRNA duplexes at high 

affinity (Figure 4-3C & D) (Hemmes et al., 2007), this NS3 mutant was unable to interact with 

miRNA/miRNA* molecules, even at the highest protein concentration (Figure 4-3B).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-3: NS3 mutant fails to bind siRNA and miRNA/miRNA* duplexes  
Different concentrations (0-3770 nM) of bacterially purified NS3 protein, wild-type or mutant (NS3m) protein, 
were incubated for 20 minutes at room temperature with 100 pM of 32P-labelled RNA molecules, either siRNA 
(panels A, C) or Arabidopsis thaliana miR171a (B, D). The RNA-protein complexes formed were separated on 
a native 5% polyacrylamide gel. A representative picture is shown from three independent experiments. MBP, 
maltose binding protein; miRNA, microRNA; NS3, non structural protein 3; siRNA, small interfering RNA; wt, 
wild type 
 

The NS3m was subsequently tested in the HIV-1 trans-complementation assay (Figure 4-4), 

after having confirmed that NS3m was expressed at levels comparable to wild type NS3 

(Figure 4-1A). Unlike wild-type NS3, NS3m was not able to restore virus production of HIV-

rtTA-Tatfs at any of the concentrations tested, 

Whether NS3 was able to block the miRNA pathway in human cells was determined by using 

a Fluc reporter containing multiple miR-30 target sites, for either the sense                   

(pCMV-luc-miR30-P) or antisense (pCMV-luc-miR30-AP) strand. This reporter is normally 

tested in co-transfection with an excess of miR-30-expression vector (Zeng et al., 2003), 

which might mask a subsequent RNA silencing suppression effect. HEK293T cells that 

express endogenous miR-30, where both strands can act as guide strands, (Zeng et al., 

2003) were co-transfected with NS3 and either pCMV-luc-miR30-P (Figure 4-5 A) or pCMV-

luc-miR30-AP (Figure 4-5B). Several controls were included. First, a control Fluc reporter with 

randomized miRNA target sites (pCMV-luc-random) (Figure 4-5C) was used. Second, NS3m 
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and MBP were co-transfected as controls for NS3 RSS activity. Luciferase expression was 

measured two days post transfection. A modest stimulatory effect of NS3 was observed on 

pCMV-luc-miR30-P (Figure 4-5A) and AP reporter (Figure 4-5B), but not on the pCMV-luc-

random control (Figure 4-5C), suggesting that NS3 was able to inhibit endogenous miRNA 

action in mammalian cells. HIV-1 Tat has earlier been proposed to interfere with Dicer 

cleavage (Benasser et al., 2005) and thus could also inhibit the miRNA pathway. To answer 

this question, the effect of HIV-1 tat expression in HEK293T cells on the luciferase based 

miRNA30 sensor constructs was analyzed, in analogy to NS3 (Figure 4-5). Like for NS3, 

higher expression levels for luciferase were observed from pCMV-luc-miR30-P in the 

presence of HIV1 tat (Figure 4-5A), but not with pCMV-luc-random (Figure 4-5C) as control. 

Furthermore, the stimulatory effect of HIV-1 Tat was significantly higher compared to that for 

NS3, most likely due to similar reasons (localization/stability/concentration or differences in 

RSS activity) that explains the higher amounts of NS3 vector needed in the complementation 

assays (Figure 4-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: dsRNA binding of NS3 is required for HIV-1 Tat complementation 
HEK293T cells were transfected with HIV-rtTA-Tatwt or HIV-rtTA-Tatfs in combination with Tat, NS3, NS3 
mutant (NS3m) or pBluescript (-) (900 ng). CA-p24 in the culture supernatant was measured at 2 days post 
transfection. The mean of at least three independent experiments is shown with standard error. dsRNA, 
double stranded RNA; HEK, human embryonic kidney; HIV-1, human immunodeficiency virus type 1; NS3, 
non structural protein 3; Tat, transactivator of transcription 
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Discussion 
In this study, it has been demonstrated that a plant viral RSS protein that lacks interferon 

antagonistic properties can functionally replace the HIV-1 Tat RSS function and that this 

complementation is based on the sequestration of small dsRNA. These results further 

corroborate the RSS function of HIV-1 Tat (Bennasser et al., 2005, Haasnoot et al., 2007), 

which has been questioned by others (Lin & Cullen, 2007), and strongly support the idea that 

HIV-1 is being targeted by antiviral RNA silencing. Although cross-kingdom suppression of 

RNA silencing has been reported for a number of viral RSS proteins (Dunoyer et al., 2004, 

Chapter 3), this is the first report of cross-kingdom RSS activity in a mammalian viral 

complementation assay. The results are also in line with the observation that knockdown of 

the RNA silencing pathway by means of Drosha or Dicer silencing enhances HIV-1 replication 

(Triboulet et al., 2007). The ongoing debate about the physiological relevance of RNA 

silencing as antiviral mechanism is spurred in part because of the presence of the antiviral 

IFN pathway (reviewed by Gantier & Williams, 2007). The results presented here demonstrate 

that a plant virus encoded RSS protein with a well defined biochemical activity can be used as 

powerful tool to dissect the contribution of the antiviral RNA silencing pathway in mammalian 

systems in the presence of the IFN pathway. Of note, other eukaryotes do also encode an 

alternative innate immune response next to the RNA silencing pathway (Arbouzova & Zeidler, 

2006, Dangl & Jones, 2001). Taken together, it has been demonstrated that HIV-1 production 

is limited by endogenous small dsRNAs that viral RSS function can counteract this restriction 

and that HIV-1 Tat can interfere with the miRNA pathway. RHBV NS3 has been shown to 

interfere with the siRNA pathway in plants (Bucher et al., 2004; Chapter 2) and both, siRNA 

(Chapter 3) and miRNA pathway (Figure 4-5), in non-host mammalian cells, due to its RNA 

binding activity. For these reasons, it is likely that NS3 also interferes with the siRNA and 

miRNA pathway in its vector and host organism. 
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Figure 4-5: NS3 and Tat inhibit endogenous miRNA action 
HEK293T cells were co-transfected with expression vectors encoding pCMV-luc-miR30-P (A), pCMV-luc-
miR30-AP (B) or pCMV-luc-random (C), in combination with MBP, MBP-NS3, MBP-NS3m or HIV-1 Tat (600 
ng). Luciferase expression was measured 2 days post transfection and relative luciferase expression 
(firefly/renilla) was determined. The luciferase level measured with NS3m was set at 1.0. HEK, human 
embryonic kidney; MBP, maltose binding protein; miRNA, microRNA; NS3, non structural protein 3; NS3m, 
mutant protein; Tat, transactivator of transcription 
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Materials and methods 

Plasmid constructs 

Mammalian expression plasmids for MBP, MBP-NS3, MBP-NS3m, VP35, Tat, HIV-rtTA-Tatwt 

and HIV-rtTA-Tatfs were described previously (Haasnoot et al., 2007, chapter 3). Micro RNA 

based firefly luciferase sensor constructs have been described previously (Zeng et al., 2003). 

The bacterial expression vectors of MBP-NS3 and MBP-NS3mutant have been described in 

chapter 2.  

 

Cell culture and transfection 

Human embryonic kidney (HEK293T) cells were grown as a monolayer in DMEM (Gibco, 

BRL) supplemented with 10% fetal calf serum (FCS) (Hyclone), streptomycin (100ug/ml) and 

penicillin (100U/ml) at 37°C and 5% CO 2. To reach a confluence of 60-70% at the time of 

transfection, cells were trypsinated 24 hours pre-transfection and seeded in a 24-wells plate 

at a concentration of 1.5*105 cells per well. Transfections were performed using 

Lipofectamine 2000 (Invitrogen) according to the manufacturers’ instructions. 

For the IFN assay, cells were co-transfected with 500 ng of a Fluc –expression plasmid under 

control of an IFN beta-inducible promoter, IFNB-luc, 2 ng of an Rluc expression plasmid, 100 

ng poly I:C and 400 ng of pBluescript (Stratagene) or plasmids encoding either MBP-NS3, 

MBP-NS3mutant or VP35. Cells were lysed 3 days post transfection and luciferase 

expression was determined using the Dual luciferase reporter assay (Promega), according to 

manufacturers’ protocol. 

For the miRNA sensor construct assay, cells were co-transfected with 25 ng Fluc expression 

plasmid, harboring either target sites for sense or antisense of human miRNA-30 (pCMV-luc-

miR30-P or pCMV-luc-miR30-AP) or random miRNA target sites (pCMV-luc-random) (Zeng et 

al., 2003), 0.5 ng of a Rluc expression plasmid and constructs encoding MBP-NS3, MBP-

NS3m or MBP. Forty-eight hours post transfection, cells were lysed and assayed for 

luciferase expression by the Dual luciferase assay (Promega). 

For the PKR inhibitor, 2-AP, assay cells were co-transfected with either HIV-rtTA-Tatwt or HIV-

rtTA-Tatfs in combination with increasing amounts (300, 600 and 900 ng) of NS3 or Tat 

expression plasmids. Four hours post transfection, 2-AP (final concentration of 2,5 mM) was 

added to the transfected cells. Two days post transfection, HIV-1 production was determined 

by ELISA detection of CA-p24 present in the supernatant.  

The HIV-1 Tat complementation assay was performed as previously described (Haasnoot et 

al., 2007). 

 

Recombinant protein expression and electrophoretic mobility shift assay (EMSA) 

Wild type and mutant MBP-NS3 protein were expressed in BL21 DE3 cells and purified as 

described by Hemmes (Hemmes et al., 2007). EMSA, either with radioactively labeled siRNA 

or miRNA molecules, was performed in triplicate as previously described (Lakatos et al., 

2006). After overnight exposure to a phosphor screen results were visualized after scanning 
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by a Molecular Dynamics Typhoon Phosphor imager (Amersham Biosciences) and a 

representative picture was shown. 

Protein expression in transfected HEK293T cells was detected by western blot analysis using 

a rabbit polyclonal antiserum specific for MBP (BioLabs). As loading control β-actin was 

detected with a mouse monoclonal antibody, after stripping of the blot. For visualization, goat 

alkaline phosphatase–conjugated secondary antibodies (Dako/Sigma) and NBT-BCIP 

substrate (Roche) were used according to the manufacturer`s recommendations. 
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Chapter  5 

 

Rice hoja blanca virus NS3 interferes with the miRN A-
mediated pathway in different organisms 

 

 

 

 

Abstract  

The NS3 protein of Rice Hoja blanca tenuivirus acts as RNA silencing suppressor protein on 

the siRNA pathway in plant, insect and mammalian cells. The protein exhibits a high affinity 

for small double stranded RNA molecules (siRNA and miRNA/miRNA*) in vitro and requires 

this binding property for its suppressor activity. Whereas NS3 interferes with the siRNA 

pathway in host and non-host cells, here the interference of NS3 on the miRNA pathway in 

plants and insects was investigated. It is shown that in plants, NS3 was able to suppress 

silencing of an eGFP sensor construct, containing target sites for miRNA-1. The appearance 

of a leaf curling phenotype of Arabidopsis transgenically expressing NS3 supported the idea 

of NS3 interference in endogenous miRNA-mediated host gene regulation in plants. In insect 

cells, NS3 was able to do so likewise, this time using a Firefly luciferase based-sensor 

construct. Mutant NS3, lacking affinity for siRNAs and miRNA/miRNA*s, was not able to 

suppress silencing of these sensor constructs in plant and insect cells. In addition to an earlier 

observed suppression of a miRNA-sensor in non-host mammalian cells, the results indicate 

that NS3 interferes in the miRNA pathway of all eukaryotes, by sequestering miRNA/miRNA* 

molecules. The possible importance of this activity during a natural infection in plants and 

insects is discussed.  
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Introduction  

RNA silencing involves a sequence specific RNA degradation through the use of homologous 

small, non-coding RNA molecules. Sofar, three major types of small dsRNA have been 

identified, i.e. siRNA, miRNA and piRNA, and their diverging roles in different processes of 

eukaryotes characterized. siRNAs (21 nt) act in the antiviral defense in plants and insects 

(Hamilton & Baulcombe, 1999, Li et al., 2002), and derive from cleavage of long dsRNA by 

DCL proteins or Dicer in plants respectively insects (Bernstein et al., 2001, Deleris et al., 

2006, Hamilton & Baulcombe, 1999). The long dsRNA substrate originates from viral 

replicative intermediates or secondary folding structures in the (viral) RNA (Moissiard & 

Voinnet, 2006, Molnar et al., 2005). After synthesis, one strand of the siRNA molecules is 

incorporated into RISC and used to guide the sensing of complementary (viral) RNA 

molecules, which in turn become degraded (Hammond et al., 2000, Nykanen et al., 2001). 

Recently, a subclass of siRNA molecules have been discovered in Drosophila and 

mammalian cells, endo-siRNAs (Chung et al., 2008, Czech et al., 2008, Ghildiyal et al., 2008, 

Kawamura et al., 2008, Okamura et al., 2008a, Okamura et al., 2008b, Tam et al., 2008, 

Watanabe et al., 2008b). They are similarly sized as viral siRNAs and derive from inverted 

repeat (IR), multiple repeat or highly structured transgenes by the action of Dicer-2 or Dicer in 

insects and mammalian cells respectively. Endo-siRNAs contribute to the silencing of 

transposable elements (TE) and some endogenes in both gonads and somatic tissue (Chung 

et al., 2008, Czech et al., 2008, Ghildiyal et al., 2008, Kawamura et al., 2008, Okamura et al., 

2008a, Okamura et al., 2008b, Tam et al., 2008, Watanabe et al., 2008b). 

Host encoded gene transcripts, folding into imperfect stem-loop structures and cleaved 

through the activity of DCL-1 or Drosha/ Dicer-1 in plants respectively insects result into 

miRNA molecules (~22 nts). After incorporation of one strand into RISC, the miRISC complex 

guides translational repression or cleavage of target mRNA to regulate host gene expression 

(Bartel, 2004, Voinnet, 2009, Wang et al., 2008b).  

Most plant and insects viruses counteract the antiviral RNA silencing response by encoding 

RSS proteins, able to interfere with this pathway (Alvarado & Scholthof, 2009, Li & Ding, 

2006). A common strategy of RSS proteins is the binding and thereby sequestering of either 

small or long dsRNA (Lakatos et al., 2006, Merai et al., 2006). Alternatively, some RSS 

proteins interact with proteins of the RNA silencing pathway, like AGO or DCL/ Dicer, or even 

interact at several steps of the pathway, i.e. sequester dsRNA molecules and interact with 

e.g. AGO (Bortolamiol et al., 2008, Pfeffer et al., 2002, Zhang et al., 2006). Next to their 

action on the siRNA pathway, some plant and insect virus encoded RSS can interfere with the 

miRNA pathway as well. Examples are potyviral HC-Pro, tombusviral P19 and poleroviral P0 

and the observed developmental defects in transgenic Arabidopsis expressing these RSS 

proteins (Chapman et al., 2004, Dunoyer et al., 2004). On the other hand, none of these RSS 

proteins interfere on the miRNA pathway in Drosophila (Berry et al., 2009). Recently, several 

plant and insect virus encoded RSS proteins, like FHV B2, DCV 1A and tombusvirus P19, 
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have been reported to hinder the endo-siRNA pathway in Drosophila and thereby impair 

transposon silencing by endo-siRNAs (Berry et al., 2009). 

RHBV is an ambisense negative stranded RNA virus, infecting plants and transmitted by plant 

hoppers (Ramirez et al., 1993, Ramirez et al., 1992). The virus replicates in its plant host and 

insect vector and most probably encounters antiviral RNA silencing in both organisms. The 

NS3 protein acts as RSS protein in plants, insects and even mammalian non-host cells 

(Bucher et al., 2003, Hemmes et al., 2007, Chapter 3). The protein exhibits high affinity for 

siRNA and miRNA/miRNA* molecules in vitro (Hemmes et al., 2007) and this binding is 

crucial for RSS activity of NS3 in plant and mammalian cells (Chapters 2 & 3). To test for 

interference of NS3 on the miRNA pathway in host and vector cells, the effect of NS3 on 

miRNA-induced silencing was analyzed in plants and insect cells. . 

 

Results 

RHBV NS3 interferes with the miRNA pathway in plants  

To analyze the effect of NS3 on miRNA-mediated silencing in plants a reporter based miRNA 

sensor assay was developed. To this end, the coding sequence of eGFP was fused with the 

3´UTR of the par6 gene harboring target sites for miRNA-1, resulting in sensor construct 

eGFP-3`UTR (Figure 5-1A). Co-expression of the eGFP-3’UTR sensor and pri-miRNA1 

constructs in leaves of RDR6 silenced N. benthamiana plants by Agrobacterium infiltration, 

resulted in silencing of this sensor construct. Northern blot detection using a DIG labeled PCR 

product of pri-miRNA1 verified the expression, processing and functionality of the pri-miRNA 

(Figure 5-1C middle). During Agrobacterium infiltration, the host encoded RdRp (Arabidopsis 

thaliana RDR6 homolog) converts (aberrant) sense RNA into dsRNA, which triggers silencing 

(Dalmay et al., 2000, Parizotto et al., 2004). Plants silenced in RDR6 lack this pathway of 

silencing induction. As a consequence, similar levels of fluorescence were observed after 

infiltration of these plants with the eGFP-3`UTR sensor construct in the presence and 

absence of the NS3 RSS protein (Figure 5-1B upper panel). As expected, Northern blot 

detection of eGFP RNA showed only low levels of eGFP specific siRNAs (Figure 5-1C). Upon 

co-infiltration with the pri-miRNA1 construct, but not with MBP as negative control, 

fluorescence from the eGFP-miRNA-1 sensor disappeared due to silencing, and 

demonstrated the functionality of this miRNA-induced silencing assay (Figure 5-1B). The 

additional co-expression of MBP-NS3 restored the fluorescence completely and suggested 

that the NS3 RSS activity also acted on the miRNA induced silencing pathway in plants. 

Furthermore, MBP-NS3m was not able to suppress the silencing of the eGFP-sensor 

construct and demonstrated that the binding of NS3 to small dsRNA was required for this 

RSS activity (Figure 5-1 B).  

Having shown that NS3, but not the mutant, interfered with the miRNA induced silencing 

pathway in plants, we next tested if NS3 also interfered with the endogenous miRNA pathway 

in plants. To this end, Arabidopsis plants were transformed to constitutively express NS3. 

After selection, transgenic Arabidopsis plants expressing NS3 showed leaf curling and long 
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petals absent from wild type plants (Figure 5-1D, Hemmes, 2007), indicating a developmental 

defect likely caused by a possible interference of NS3 with the endogenous miRNA pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-1:  RHBV NS3 interference on the miRNA mediated pathway in plants 
Schematic representation of the miRNA mediated sensor construct (A). 
Agrobacterium harboring vectors for eGFP-3`UTR and MBP, MBP-NS3 or MBP-NS3m were co-infiltrated in 
RDR6 silenced N.benthamiana leaves and eGFP fluorescence visualized 5 days post infiltration. Silencing 
was induced by co-infiltration of pri-miRNA-1, eGFP-3`UTR and MBP, MBP-NS3 or MBP-NS3m (B). The 
processed miRNA-1 (C, upper) and eGFP specific siRNAs (C, bottom) were visualized by northern blot 
analysis using a corresponding DIG-labeled PCR product as probe. Ethidium bromide stained ribosomal RNA 
or t-RNA was used as loading control.  
Developmental defects caused by RHBV NS3 expression in transgenic Arabidopsis plants in comparison to 
wild type plants (D). Arabidopsis thaliana Col-0 plants were transformed by the floral dip method (Clough & 
Bent, 1998) using Agrobacterium harboring a translatable NS3 construct. Seed from primary transformants 
was grown at standard greenhouse conditions under selection for kanamycin resistance. eGFP, enhanced 
green fluorescent protein; MBP, maltose binding protein; NS3, non-structural protein 3; NS3(m), (mutant of) 
non-structural protein 3; RDR6, RNA dependent RNA polymerase 6; pri-miRNA1, primary miRNA1; RHBV, 
rice hoja blanca virus. 
 

MBP-NS3 functions as RNA silencing suppressor protei n in insect cells 

Having shown that RHBV NS3 interacts with the miRNA pathway in plants it is likely that, due 

to the conserved nature of the miRNA pathway in eukaryotes, similar activities would be 

observed in insects. For easier detection and comparison with the plant based experiments, 

NS3 or NS3 mutant were first N-terminally fused to MBP, cloned in insect pIB-based 

expression vectors and their expression was verified in Drosophila melangogaster Schneider-

2 (S2) cells (Figure 5-2A). Earlier, NS3 showed RSS activity on dsRNA induced silencing in 

insect cells. However, this was based on a visual, non-quantitative assay using GFP as 

reporter protein (Hemmes et al., 2007). To further substantiate these findings and to assure 

that the tagged MBP-NS3 had maintained its RSS activity in insect cells, a shRNA-mediated 

silencing assay of a Fluc reporter gene was developed for insect cells to allow easy 
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quantification. To this end, S2 cells were co-transfected with inducible plasmids encoding Fluc 

and Rluc, the latter as internal control, and shRNA constructs specifically targeting Fluc 

(shFluc) or a non-specific (scrambled) shRNA. Cells co-transfected with MBP, Fluc and 

shFluc showed a drastic decrease in Fluc expression dependent on the shFluc amount, not 

observed with sh-scrambled (Figure 2B). In the additional presence of MBP-NS3 or Carnation 

Italian ringspot virus (CIRV) P19, as a positive control (Berry et al., 2009) Fluc expression 

was reproducibly restored by 17% or 33% respectively (Figure 5-2C). Similar to what was 

earlier observed in plants and mammalian cells (Chapters 2 & 3); NS3m was not able to 

suppress the silenced status of Fluc (Figure 5-2C). Altogether, these data clearly 

demonstrated that the tagged MBP-NS3 protein was functional, but NS3m not, as RSS 

protein on the induced siRNA silencing pathway in insect cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5-2:  MBP-NS3 RNA silencing suppressor activity on the siRNA pathway in insect cells.  
Expression of MBP, MBP-NS3 and MBP-NS3m in transfected S2 cells 48 hours post transfection (hpt) was 
verified by western blot analysis using a MBP-specific antibody (A). S2 cells were co-transfected with pMT-
Fluc, -Rluc, two different concentrations of a non-specific (sh-scrambled) or specific (shFluc) Fluc short hairpin 
RNA (B) and either pIB-MBP, -MBP-NS3, -MBP-NS3m or - Carnation Italian ringspot virus (CIRV) P19. 
Luciferase expression was induced by 5 µM CuSO4 at 48 hpt, and the relative luciferase expression 
(Firefly/Renilla) was determined 72 hpt. The mean of at least two independent experiments is shown with 
standard error. The luciferase expression level measured with MBP was set at 1.0 (panel C). Fluc, Firefly 
luciferase; Rluc, Renilla luciferase; MBP, maltose binding protein; NS3, non-stuctural protein 3; NS3(m), 
(mutant of) non-structural protein 3; S2, Drosophila melangogaster Schneider-2; RHBV, rice hoja blanca virus. 
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The RNA silencing suppressor protein, RHBV NS3 acts o n the induced miRNA pathway 

in insects 

Having demonstrated MBP-NS3 RSS activity in insect cells, the effect on the miRNA 

mediated silencing pathway in insect cells was analyzed. Due to the conserved nature of the 

miRNA pathway in all eukaryotes, and having observed the interference of NS3 with the 

miRNA pathway in plants, it was likely that NS3 would similarly do so in insect cells. To test 

this a similar assay as used in plants was designed, however this time using Fluc as reporter 

gene flanked with a 3`UTR of par6 (together denoted Fluc-3`UTR) containing the target sites 

for miRNA1. As internal control pMT-Rluc was used and to ensure sequence specific 

silencing of the sensor construct by miRNA1, a copy of pri-miRNA12 was cloned in the insect 

pMT expression vector to be used as negative control. Expression of these constructs was 

induced 48 hpt and luciferase activity was determined 72 hpt. As expected, a concentration 

dependent decrease in Fluc expression was observed in cells co-transfected with MBP, Fluc-

3`UTR and miRNA1, but not when miRNA12 was used instead (Figure 5-3A). Having 

demonstrated a dosage dependent, sequence specific silencing by miRNA1 the effect of 

additional NS3 expression was investigated. A significant and reproducible increase in Fluc 

expression was observed in the presence of NS3, similar to CIRV P19 (Figure 5-3B). As 

expected, the presence of NS3m did not increase Fluc expression levels (Figure 5-3B). To 

analyze whether the observed RSS activity of NS3 on the miRNA pathway was concentration 

dependent, the experiments were repeated but this time different concentrations (50ng and 

200 ng) of either NS3 or MBP, as negative control, were applied. Co-transfection with Fluc-

3`UTR, miRNA1 and NS3 (Figure 5-3C), but not when MBP was used instead, resulted in a 

concentration dependent increase of Fluc expression.  

 

Interference with the endogenous siRNA pathway in i nsects 

Endo-siRNA molecules are biochemically similar to siRNAs and it is likely that NS3 also 

exhibits a high affinity for these molecules, as already observed for several other RSS 

proteins (Berry et al., 2009).  

To analyze whether NS3 also interfered on the endo-siRNA pathway in insect cells a Fluc-

based reporter assay was designed based on the endogenous siRNA 2.1 (esi2.1)         

(Figure 5-4A), known to be highly expressed in Drosophila S2 cells (Czech et al., 2008). Co-

transfection of S2 cells with two different concentrations of Fluc-sensor construct, containing 

two targets sides of esi2.1, and a Rluc construct as internal control, resulted in a 

concentration dependent reduction of Fluc expression (80% and 70%) compared to a non-

functional sensor construct, i.e. Fluc fused to an inverted esi2.1 target site (Figure 5-4B). 

Having established a functional endo-siRNA-mediated RNA silencing assay, the effect of NS3 

on this assay was analyzed. Surprisingly, cells co-transfected with the Fluc-esi2.1 sensor 

construct and NS3, showed no increase in Fluc. Similar results were observed for CIRV P19 

(Figure 5-4C), previously reported to suppress endo-siRNA silencing in flies transgenically 

expressing these RSS proteins (Berry et al., 2009). 
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Figure 5-3:  RHBV NS3 suppression of miRNA mediated silencing in insect cells.  
To measure the effect of NS3 on the miRNA mediated silencing pathway, S2 cells were co-transfected with a 
pMT-Renilla luciferase (Rluc), pMT-Firefly luciferase (Fluc)-3`UTR (sensor construct), and different 
concentrations of a specific (miRNA1) or unspecific (miRNA12) primary miRNA (A) in concert with either pIB-
MBP, -MBP-NS3, -MBP-NS3m or - Carnation Italian ringspot virus (CIRV) P19. After induction at 48 hpt, 
relative luciferase expression (Firefly/Renilla) was determined 72 hpt and the mean of at least four 
independent experiments is shown with standard error (B).  
The concentration dependent suppressor activity of NS3 was determined by transfecting S2 cells (as in B) with 
MBP or MBP-NS3 encoding plasmids at the amount of 50ng and 200 ng. Values were normalized for each 
concentration of MBP and the relative suppression was plotted (C). MBP, maltose binding protein; NS3, non-
structural protein 3; NS3(m), (mutant of) non-structural protein 3; S2, Drosophila melangogaster Schneider-2; 
RHBV, rice hoja blanca virus. 
 

 

Discussion 

The tenuivirus NS3 RSS protein binds siRNA and miRNA/miRNA* molecules in vitro and this 

capacity is crucial for its RSS activity in plants and mammalian cells. Earlier, NS3 RSS activity 

on the siRNA-induced silencing has been demonstrated in a broad range of host and non-

host organisms (Hemmes et al., 2007, Chapter 2-4). Here, it is shown that NS3 is also able to 

suppress miRNA-induced gene silencing in both plant and insect cells. In addition to the 
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recent proof for such activity in non-host, mammalian cells (Chapter 4), RHBV NS3 

demonstrated to suppress si- and miRNA induced RNA silencing in host and non-host cell 

systems. Suppression of these pathways is likely accomplished by sequestration of si- and 

miRNA/miRNA* molecules. In light of the fact that RHBV multiplies in both its plant host and 

insect vector (Ramirez et al., 1993, Ramirez et al., 1992) it is not surprising that the NS3 RSS 

protein is able to counteract the antiviral siRNA-induced silencing pathway in both cell types. 

The observation that NS3 is similarly able to do so in non-host mammalian cells (Chapter 2) 

only supports the highly conserved nature of this pathway in all eukaryotic organisms. Hence, 

the capacity of NS3 to additionally interfere in the miRNA-induced silencing pathway is most 

likely an aberrancy and solely due to the strong structural similarities between siRNA and 

miRNA/miRNA*. This also supports the idea that NS3 does not interfere with specific 

miRNA/miRNA* duplexes but more randomly (Chapter 4, Figure 5-1 and 5-3), which is being 

supported by the appearance of morphological defects in Arabidopsis thaliana, transgenically 

expressing NS3 (Figure 5-1D, Hemmes, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-4:  Effect of RHBV NS3 on endogenous siRNA mediated pathway in insect cells  
S2 cells were co-transfected with two different concentrations (B) of the inducible constructs encoding Fluc-
esi2.1 or Fluc-non target (Fluc-inverted esi2.1) (A), Renilla luciferase (Rluc) and constructs constitutively 
expressing different RSS proteins (MBP, MBP-NS3 or CIRV-P19). Expression of luciferases was induced 2 
days post transfection (dpt) and the relative luciferase (Firefly/Renilla) was measured 3 d.p.t. The mean of at 
least two independent assays is shown with standard error, normalized to cells transfected with the non-target 
Fluc construct (C). Fluc, Firefly luciferase; MBP, maltose binding protein; NS3, non-structural protein 3; hpt, 
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Whereas in plants and insects an antiviral function of the miRNA pathway has not yet been 

established, the interference of mammalian infecting viruses with the miRNA pathway has 

been widely accepted (Berkhout & Jeang, 2007). MicroRNA-17 and -20a inhibit HIV-1 by 

down-regulation of histone acetylase PCAF, a co-factor of the Tat protein. The Tat protein 

interferes with the miRNA pathway during an infection and thereby overcomes this down-

regulation of PCAF, resulting in a successful viral replication (Triboulet et al., 2007). Although 

little information is available about rice encoded miRNA molecules and their targets, 

computational analysis with the miRanda program revealed a possible interaction between 

OS-miR528 and the messenger RNA of the nucleocapsid protein of RHBV (Hemmes, 2007). 

In this context, it would be interesting to see if knockdown of the miRNA pathway in rice would 

result in higher virus titers. If so, it would strongly suggest that NS3 suppression of the miRNA 

pathway fulfils a need to support virus replication in rice.  

Delphacid planthoppers transmit tenuiviruses in a propagative manner. In several cases 

replication of the virus in the vector has been studied, transovarial passage observed, and a 

deleterious effect of the virus on the vector (fecundity, nymph viability and longevity) been 

demonstrated (Falk & Tsai, 1998, Galvez, 1968, Jennings, 1971, Nault, 1988, Okuyama, 

1968, Tsai, 1982). Although speculative, it is possible that the observed deleterious effects in 

the insect vector could be due to NS3 interference on the miRNA pathway.  

RHBV NS3 is the first RSS protein reported to interact with the miRNA pathway in insect 

cells. Recently several viral RSS proteins have been tested for their interaction with the 

miRNA pathway in Drosophila, but the outcome was negative (Berry et al., 2009). However, 

here we have observed concentration dependent RSS activity for RHBV NS3 protein on 

miRNA-induced silencing, and such dosage effect could also explain the contradictory results 

observed with tombusvirus P19 protein (Figure 5-3 B, Berry et al., 2009). Besides, the 

observed differences in results for e.g. P19 could also be due to a divergence in amino acid 

sequence of the used strains, experimental set up, i. e. transgenic flies versus cell culture, 

and detection methods. This is further supported by the fact that several times negative 

results were observed regarding the suppressor activity of NS3 on the miRNA mediated 

silencing pathway in insects (Figure 5-5 A), likely due to a lower expression of NS3 in these 

experiments (Figure 5-5 B).  

Likewise, the failure of NS3 to suppress endo-siRNA induced silencing in insect cells may 

have been due to relatively low levels of NS3 expression during the assay, combined with 

relatively high levels of endo-siRNA esi2.1. After all, endo-siRNA molecules and antiviral 

siRNAs are structural highly similar and like with the interference on the miRNA, a similar 

effect would hence be expected on the endo-siRNA pathway. This idea is further supported 

by the fact that CIRV P19 could also not suppress the endo-siRNA induced silencing in 

cultured S2 cells (Figure 5-4 C), while it has been reported a potent RSS protein on the endo-

siRNA pathway in transgenic flies (Berry et al., 2009). If this also applies to NS3 remains to 

be investigated. 
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Whether the interaction with NS3 and the miRNA- and possibly endo-siRNA pathway occurs 

during a natural viral infection and the biological relevance of this interaction remains to be 

investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5:  Suppression of miRNA mediated silencing in insect cells depends on RHBV NS3 concentration.  
The effect of NS3 on the miRNA mediated silencing was determined by co-transfection of S2 cells with pMT-
Renilla, pMT-Firefly-3`UTR, a specific (miRNA1) or unspecific (miRNA12) primary miRNA and either pIB-MBP 
or -MBP-NS3. After induction, the relative luciferase expression (Firefly/Renilla) was determined 72 hours post 
transfection (hpt) and the mean of one experiment in duplo is shown with standard error (A). To correlate the 
presence or absence of suppressor activity of NS3, determined in A, a western blot analysis with a MBP 
specific polyclonal antibody was performed using the cell extract of panel A. As loading control, commasie 
brilliant blue staining and Bradford assays was used (B). MBP, maltose binding protein; NS3, non-structural 
protein 3; NS3(m), (mutant of) non-structural protein 3; S2, Drosophila melangogaster Schneider-2; RHBV, 
rice hoja blanca virus. 
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Materials and Methods 

Plasmid constructs 

Agrobacterium expression plasmids for MBP, MBP-NS3 and MBP-NS3m as well as the 

inducible insect expression vectors for Firefly and Renilla luciferase were described 

previously (Chapter 2, van Rij et al., 2006). The 3`UTR of the par6 gene was PCR amplified 

from the existing insect expression plasmid (Eulalio et al., 2007) to introduce SstII and XbaI 

sites and allow feasible cloning behind the eGFP coding sequence. This reporter (eGFP-

3`UTR) was cloned into the binary expression vector pK2GW7 (Karimi et al., 2002) using 

Gateway technology. In a similar fashion the par 6 gene 3’UTR was cloned behind the Firefly 

luciferase coding sequence (Fluc-3`UTR) in pMT-Fluc (van Rij et al., 2006). The binary vector 

expressing primary-miRNA-1 was PCR amplified using the previously described insect 

expression vector (Eulalio et al., 2007) as template, followed by Gateway technology 

recombination with the binary pK2GW7 vector (Karimi et al., 2002). 

The insect expression vectors of MBP, MBP-NS3, MBP-NS3m and CIRV P19 were 

constructed by Gateway technology using the already described Entry vectors (Chapter 3) 

into pIB-GW (Invitrogen). Expression vectors encoding short hairpin RNA were constructed by 

annealing previously reported (Wakiyama et al., 2005) DNA oligos either against Firefly 

luciferase or eGFP and cloning them as KpnI and XbaI fragment in pMT-B (Invitrogen). 

Inducible expression vectors encoding pri-miRNA1 or pri-miR12 were excised and 

subsequently cloned as either NotI-XbaI or KpnI-XbaI fragment from the existing vectors (tub-

miRNA1and pAc-miR12, (Eulalio et al., 2007)) into pMT-B (Invitrogen). 

Sensor vectors for the endo-siRNA assay were constructed using DNA oligos described by 

Czech (Czech et al., 2008) and cloned as MluI fragment behind the Firefly luciferase coding 

sequence of pMT-Fluc (van Rij et al., 2006). 

 

Agrobacterium tumefaciens transient transformation assay (ATTA)  

Agrobacterium infiltration was performed as previously described (Bucher et al., 2003). RDR6 

silenced N. benthamiana leaves (Schwach et al., 2005) were co-infiltrated with Agrobacterium 

(at an OD600=0.1) harbouring binary vectors encoding eGFP-3`UTR, pri-miRNA1 and either 

MBP, MBP-NS3 or MBP-NS3m. The eGFP expression in the leaves was visualized 5 days 

post infiltration with a Leica binocular microscope (Type S) and the GFP plus Fluorescence 

module 10446143. 

 

Northern blot analysis 

RNA extraction was performed as described previously (Bucher et al., 2004) and for the small 

RNA detection (miRNA/miRNA* and siRNAs), five µg RNA enriched for small RNAs as 

described previously (Hamilton & Baulcombe, 1999) was separated on a 20%, 0.5x TBE 

denaturing acrylamide gel. Following separation, the RNA was electroblotted onto Hybond-N+ 

(Pharmacia-Biotech) and crosslinked by UV-light. Hybridization was performed overnight at 

48°C in modified church buffer (0.36 M Na 2HPO4, 0.14 M NaH2PO4, 7% SDS and 1 mM 
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EDTA) with either an eGFP or pri-miRNA1 specific DIG-labelled DNA probe. The blots were 

washed briefly for three times with 2x SSC and three times for 15 minutes with 2xSSC and 

0.2% SDS at 48°C. The labelled probe was detected by Western blot analysis using a DIG-

specific antibody conjugated to alkaline phosphatase in blocking buffer (maleic acid buffer + 

1% blocking reagent) and CSPD substrate (Roche) according to the manufacturer’s 

recommendations. 

 

Cell culture and transfection 

Schneider (S)-2 cells were grown in Schneider medium (Invitrogen) supplemented with 10% 

heat inactivated fetal calf serum (FCS) (Gibco) at 28°C. To reach a confluence of 60-70% at 

the time of transfection, cells were seeded 24 hours pre-transfection in a 96 well plate at a 

concentration of 5*104 cells per well. Transfections were performed using Cellfectine II 

(Invitrogen) according to the manufacturers’ instructions. 

For the shRNA suppressor assays, cells were co-transfected with luciferase-expressing 

plasmids,(15ng pMT-Fluc and 6ng pMT-Rluc) and 50 ng of sh-expressing vectors, either non-

specific or Fluc specific. Next to this, cells were additionally co-transfected with 100 ng of the 

RSS expressing plasmid (MBP, MBP-NS3, MBP-NS3m or CIRV P19). 

For the miRNA based suppressor assays, cells were co-transfected with 100 ng RSS 

expression plasmid (MBP, MBP-NS3, MBP-NS3m or CIRV P19), 12.5 ng pMT-Fluc-3`UTR, 3 

ng pMT-Rluc and 2.5 ng pMT-miRNA, either pri-miRNA1 or pri-miRNA12.  

For the endo-siRNA based assay, cells were co-transfected with 3.5 ng Fluc expression 

constructs (pMT-Fluc-esi2.1 or pMT-Fluc-non target), 2 ng pMT-Renilla luciferase and 190 ng 

RSS expressing construct (pIB-MBP, - MBP-NS3, or -CIRV P19).  

Expression of the inducible constructs was induced 48 hours post transfection by 5 µM 

CuSO4 and assayed 24 hours post induction. 

 

Luciferase assays and expression analysis  

Cells were lysed 72 hours post transfection and luciferase expression was determined using 

self made buffers for the Dual luciferase reporter assay (Dyer et al., 2000).  

Expression of MBP-tagged proteins was analysed by western blot analysis. Protein 

concentration of the lysate prepared for the Dual luciferase assay was determined by 

Bradford assay (Biorad), as described by the manufacturers’ procedures. Two µg total protein 

was resolved on a SDS-page gel, semi-dry transferred to Immobilon-P (Millipore) and MBP 

was subsequently detected using a MBP-specific rabbit primary- and goat alkaline 

phosphotase conjugated secondary antibody. Proteins were vizualized with NBT-BCIP as 

substrate (Roche) according to the manufacturers’ protocol. As loading control proteins were 

stained by commasie brilliant blue. 
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Chapter  6 

 

Diverging affinity of tospovirus RNA silencing 
suppressor proteins, NSs, for various RNA duplex 

molecules 
 

Abstract 

The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing 

mechanism in plants. Here the biochemical analysis of NSs proteins from different 

tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results 

showed that all tospoviral NSs proteins analyzed exhibited affinity to small double stranded 

RNA molecules, i.e. siRNAs and miRNA/miRNA* duplexes. Interestingly, the NSs proteins 

from Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV) and Groundnut 

ringspot virus (GRSV) also showed affinity to long dsRNA, whereas Tomato yellow ring virus 

(TYRV) NSs did not. The TSWV NSs protein was shown to be capable to inhibit Dicer-

mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of 

GFP-specific siRNAs during co-infiltration with an inverted repeat-GFP RNA construct in 

Nicotiana benthamiana. In vivo interference of TSWV NSs on the miRNA pathway was shown 

by suppression of an eGFP miRNA-sensor construct. The ability to stabilize miRNA/miRNA* 

by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and 

detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All 

together, these data suggest that tospoviruses interfere in the RNA silencing pathway by 

sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their 

respective RNA induced silencing complexes. The observed affinity to long dsRNA for only a 

subset of the tospoviruses studied is discussed in light of evolutional divergence and their 

ancestral relation to the animal-infecting members of the Bunyaviridae. 
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Introduction 

Over recent years, RNA silencing has become known as one of the major defense 

mechanisms acting against viruses in plants and insects (Ding & Voinnet, 2007, Galiana-

Arnoux et al., 2006, Galiana-Arnoux & Imler, 2006, van Rij et al., 2006). During a virus 

infection double stranded (ds)RNA molecules arise as replicative intermediates or due to the 

formation of secondary RNA structures. These are recognized by specific Dicer-like proteins 

(Dicer in insects and predominantly DCL4 in plants) and processed into 21 nt siRNA 

molecules (Bernstein et al., 2001, Deleris et al., 2006, Hamilton & Baulcombe, 1999). One 

strand of this molecule, the guide-strand, is incorporated in RISC and enables its to recognize 

and degrade complementary (viral) target RNA molecules through the action of the core AGO 

protein (Hammond et al., 2000, Nykanen et al., 2001). In plants, these 21 nt primary siRNAs 

have been shown to serve as primers for the host encoded RDR to convert RNA target 

sequences into new long dsRNAs. These in turn are processed into secondary siRNAs. In 

this way, silencing is not only being amplified but also spread along the entire RNA target 

sequence (transitive silencing) (Vaistij et al., 2002). 

Two other plant DCL proteins (DCL-2 and DCL-3) also play a role in processing dsRNA, but 

these generally lead to 22-26 nts sized siRNAs which are suggested to function in a range of 

other purposes unrelated to viral defence (Aliyari & Ding, 2009). DCL-1 produces miRNAs 

that are structurally similar to siRNA molecules, but originate after processing of long host 

encoded RNA transcripts called pri-miRNA, via pre-miRNA into miRNA/miRNA* duplexes. 

After unwinding of miRNA/miRNA* duplexes one strand is incorporated into RISC whereas 

the other strand, miRNA*, is rapidly degraded after cleavage by an AGO protein (Wang et al., 

2008). MicroRNAs are regulatory factors that are loaded into RISC to silence host encoded 

genes by either RNA degradation or translational inhibition of their target (Voinnet, 2009). In 

insects, Dicer-2 is required for the siRNA and Dicer-1 for the miRNA processing steps that are 

divided over multiple DCLs in plants (Aliyari & Ding, 2009). 

As a response to antiviral RNA silencing, many plant and insect viruses have been shown to 

express RSS proteins (Alvarado & Scholthof, 2009, Li & Ding, 2006). Most of these RSS 

proteins specifically bind either siRNAs or long dsRNA (Deleris et al., 2006, Lakatos et al., 

2006, Merai et al., 2006), whereas some RSS proteins, like the poleroviral p0 (Bortolamiol et 

al., 2008, Pfeffer et al., 2002, Zhang et al., 2006), interacts with key proteins of the RNA 

silencing pathway such as DCL or AGO. A few RSS proteins are able to interact at multiple 

points in the RNA silencing pathway. One such example is CMV 2b, which not only binds 

RNA molecules but also interacts with AGO (Goto et al., 2007, Zhang et al., 2006). Besides 

their interference in the antiviral siRNA pathway viral RSS proteins also effect the miRNA 

pathway, likely by sequestering miRNA/miRNA* duplexes, and thereby cause developmental 

defects in Arabidopsis after transgenic expression (Chapman et al., 2004, Dunoyer et al., 

2004).  

TSWV, is the type species of the Tospovirus genus within the family of arthropod-borne 

Bunyaviridae. In contrast to all other mammalian infecting members of the Bunyaviridae, 
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Tospoviruses specifically infect plants and are transmitted in a propagative manner by thrips 

(Falk & Tsai, 1998, Wijkamp et al., 1993). Tospoviruses are therefore a likely target of 

antiviral RNA silencing in both plant and insect hosts. Previously, the TSWV NSs protein has 

been shown to suppress RNA silencing in plants and insects (Bucher et al., 2003, Garcia et 

al., 2006, Reavy et al., 2004, Takeda et al., 2002). Accumulation of this protein, at least in 

plants coincides with increased virulence of the virus (Kormelink et al., 1991). It is 

hypothesized that the RSS mode of action of Tospovirus NSs proteins is accomplished by 

interacting with a component of the antiviral RNA silencing pathway that is shared between 

plants and insects, i.e. dsRNA. To test this hypothesis, the affinity of TSWV NSs to a range of 

dsRNA molecules of the si- and miRNA pathway was analyzed in vitro and verified by 

reporter-based assays in vivo. The analysis was broadened to other tospoviral NSs proteins 

in order to determine if the observed mode of action is a general feature for tospoviral NSs 

proteins. 

 

Results 

TSWV NSs binds long and short dsRNA in vitro 

Previous results showed that from the TSWV proteins tested, only the NSs protein was able 

to suppress RNA silencing in Agrobacterium-infiltration assays (Bucher et al., 2003, Takeda 

et al., 2002). Furthermore, silencing suppression by NSs revealed significantly lower levels of 

target siRNA in comparison to suppression by tombusviral P19 and RHBV NS3, both known 

to specifically bind only small dsRNAs (i.e. siRNAs) (Bucher et al., 2003, Hemmes et al., 

2007, Lakatos et al., 2006, Takeda et al., 2002). These results implied that TSWV NSs 

interferes in the RNA silencing pathway upstream of siRNA synthesis, e.g. by binding to long 

dsRNA and thereby preventing these from becoming processed into siRNAs by Dicer (like) 

proteins. 

To analyze whether TSWV NSs exerts its suppressor function by sequestering dsRNA, the 

affinity to various dsRNA molecules was analyzed. In vivo, NSs protein tends to form large 

insoluble aggregates (Kormelink et al., 1991), and earlier attempts to express and purify NSs 

from E. coli failed due to solubility problems. Thioredoxin has been reported to increase 

translation efficiency and solubility of eukaryotic proteins expressed in E.coli (LaVallie et al., 

1993). For these reasons and because N-terminal fusions to NSs were shown not to hamper 

RSS activity (data not shown), NSs was expressed in E. coli, fused at its N-terminus to his-

patched (HP-) Thioredoxin. After purification, the HP-thioredoxin-NSs fusion protein was 

incubated with radio-labelled 114 nt dsRNA or 21 nt siRNA molecules and subsequently 

analyzed by EMSA on native acryl-amide gels (Lakatos et al., 2004). These analyses 

revealed that upon increasing NSs concentration both siRNA (Figure 6-1A) and 114 nt dsRNA 

(Figure 6-1C) showed a retardation in electrophoretic mobility. Altogether this indicates that 

TSWV NSs was able to bind both siRNA and long dsRNA. As negative controls, dsRNA or 

siRNAs were incubated with purified HP-thioredoxin N-terminal fused to the inert MBP and in 

both cases, even at the highest concentrations tested, no complex formation was observed 
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(Figure 6-1B and 6-1D). While the mobility of siRNAs was still retarded when incubated in the 

presence of rather low concentration (14.8 nM) of NSs, only binding to 114 nt dsRNA was 

observed at significantly higher concentrations of NSs (237.5 nM). These results indicated a 

higher affinity of TSWV NSs for siRNA molecules compared to long dsRNA. 
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Figure 6-1: Affinity of TSWV NSs for 21 nt siRNAs and 114 nt dsRNA.  
Different concentrations of either bacterially purified HP-thioredoxin-NSs protein or insect cell extract infected 
with a recombinant baculovirus expressing NSs or GFP, were incubated for 20 minutes at room temperature 
with 100 pM of 32P-labelled siRNA (panels A, E) or 114 nt dsRNA (panels C, F). RNA-protein complexes were 
separated on a native polyacrylamide gel and a representative picture is shown from at least two independent 
experiments. As negative controls, RNA was incubated in the presence of elution buffer (panels A and C, first 
lane), GFP containing insect cell extracts (panel E and F, first lane) or HP-thioredoxin-MBP (panel B and D). In 
case of HP-thioredoxin-MBP (panel B and D), HP-thioredoxin-NSs was used as positive control. Expression of 
NSs in infected insect cell extracts was verified by western blot analysis using a NSs specific polyclonal 
antibody (panel G). TSWV, Tomato spotted wilt virus; NSs, non-structural protein of the S-segment: nt, 
nucleotide; dsRNA. Double stranded RNA; GFP, green fluorescent protein; siRNA, small-interfering RNA; HP-, 
His-patch-; MBP, maltose binding protein; Thio, Thioredoxin. 
 

To verify these results, experiments were repeated using native NSs protein produced from 

the eukaryotic baculovirus-insect cell expression system. Due to the lack of a tag for 

convenient purification purposes, entire insect cell extracts containing the expressed NSs 

were used. To determine the binding affinity of NSs, extracts were prepared and incubated 

with radio-labelled 21 nt siRNAs (Figure 6-1E) or long (114 nt) dsRNA molecules           

(Figure 6-1F). Western blot analysis demonstrated the expression and presence of NSs in the 

soluble fraction of the used insect cell extract (Figure 6-1G). The EMSA analyses          

(Figure 6-1E & F) showed that the NSs conatining insect cell extracts exhibited dsRNA affinity 

profiles similar to the results obtained with purified HP-thioredoxin NSs. Similar binding 

affinities were also observed with longer, 400 nt dsRNA molecules (data not shown). 

Although, complex formation with 114 nt dsRNA (and 400 nt dsRNA) was also observed in 

the negative control, insect cell extracts infected with a recombinant baculovirus expressing 

GFP (Figure 6-1F, asterisk), the complex clearly showed a different mobility from the NSs-

RNA complex. Due to the absence of this complex when using siRNA in EMSA (Figure 6-1E), 

the origin of this complex was not investigated further. 

To confirm the higher affinity of NSs for siRNAs versus long dsRNA, an in vitro affinity 

competition was performed. To this end, a fixed amount of baculovirus-infected cell extract 

was mixed with radio-labelled siRNAs in the presence of an increasing concentration of non-

labelled long dsRNA competitor (Figure 6-2A) and vice versa (Figure 6-2B). For easier 

comparison the percentage of bound versus unbound labelled RNA molecules was quantified 

and presented in a graph (Figure 6-2C). Results show that whereas the amount of siRNAs 

present in a NSs complex (approx. 91%) hardly changed upon addition of long dsRNA (Figure 

6-2A), in the reciprocal situation the amount of NSs-long dsRNA complexes readily reduced 

(from an approx. 100% bound status in the absence of siRNA competitor to an approx. 58% 

bound status at 100x molar excess of siRNA competitor) by the addition of siRNA competitors 

(Figure 2B & C). The latter was confirmed by an increased signal of unbound dsRNA      

(Figure 6-2) (from 0% to 90%). These results further supported a higher affinity of TSWV NSs 

for siRNA molecules over long dsRNA. As described earlier above (Figure 6-1F, asterisk) 

again a distinct mobility shift was observed when, as a negative control, the long dsRNA 

molecules were incubated with insect cell extracts infected with a recombinant baculovirus 

expressing GFP (Figure 6-2B). 
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Figure 6-2:  Competition experiments with recombinant baculovirus-NSs-infected cell extracts for siRNAs and  
114 nt dsRNA. 
Fixed concentrations of insect cell extracts infected with a baculovirus expressing TSWV NSs were incubated 
with 32P-labelled siRNA and increasing amounts (0, 100x, 200x, 250x, 300x molar excess) of unlabeled 114 nt 
dsRNA competitor molecules (panel A) or 32P-labelled 114 nt dsRNA and increasing amounts (0, 100x, 200x, 
250x, 300x molar excess) of unlabeled siRNA competitor molecules (panel B). Samples were loaded and 
resolved on a native acrylamide gel. As negative control, extracts from cells infected with a GFP expressing 
baculovirus were used. In case of 114 nt dsRNA, a lower retardation complex is formed for the negative 
control (*). The percentage of bound RNA was quantified by GeneTools (SynGene) and represented versus 
the concentration of competitor (114 nt dsRNA or 21 nt siRNA in case of the diamond or quadrat line 
respectively) concentration (panel C). TSWV, Tomato spotted wilt virus; NSs, non-structural protein of the S-
segment: nt, nucleotide; dsRNA. Double stranded RNA; GFP, green fluorescent protein; siRNA, small-
interfering RNA. 
 

TSWV NSs inhibits Dicer-mediated dsRNA processing 

Since TSWV NSs exhibited affinity to long dsRNA (Fig 1C & 1F), and lower levels of target 

siRNAs from silenced genes were observed in previous experiments (Bucher et al., 2003), it 

was tempting to assume that TSWV NSs prevents long dsRNA from becoming cleaved by 

DCL proteins. To test whether TSWV NSs indeed was able to interfere with Dicer-mediated 

dsRNA processing, Dicer cleavage assays using Drosophila embryo extracts were performed. 

As substrate 114 nt dsRNA was used and the production of 21 nt siRNAs was monitored in 
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the presence of increasing amounts of insect cell extracts containing recombinant 

baculovirus-expressed TSWV NSs. As a negative control, extract of insect cells infected with 

a recombinant baculovirus-GFP was included. Only when extracts harbouring TSWV NSs 

were added, the formation of siRNAs was significantly reduced (Figure 6-3A), indicating that 

TSWV NSs interfered with Dicer cleavage of dsRNA in vitro. For comparative purposes, the 

relative percentage of processed dsRNA was quantified for three independent Dicer cleavage 

reactions (Figure 6-3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-3:  Analysis of Dicer-mediated dsRNA cleavage in the presence of TSWV-NSs. 
Radioactively labelled dsRNA was cleaved into siRNA using Drosophila embryo extract in lysis buffer, but 
inhibited in the presence of TSWV NSs expressing baculovirus infected insect cell extracts. As controls, GFP 
expressing baculovirus-infected insect cell extracts were used as negative control and undiluted and 0.5x 
diluted (”0.5xGFP, 0.5x TSWV NSs”) extracts. A representative picture of at least two independent 
experiments is presented (panel A). The fraction of cleaved dsRNA was quantified by GeneTools (SynGene) 
and represented as relative percentage, by setting the amount of cleaved dsRNA in GFP extract as 100% 
(panel B), for undiluted (grey bars) and 0.5x diluted extracts (black bars; panel B). 
Agrobacterium strains harbouring vectors encoding IR-GFP were co-infiltrated in N. benthamiana leaves with 
MBP (negative control), TCV CP (positive control), CymRSV P19, TSWV NSs or TYRV NSs constructs. The 
corresponding GFP siRNAs levels were detected by northern blot analysis (panel C). Ethidium bromide-
stained RNA was used as loading control. To ensure silencing suppressor activity of the tested RSS proteins, 
their gene constructs were co-infiltrated with a GFP construct in N. benthamiana leaves and monitored for 
GFP expression 5 days post-infiltration (panel D). TSWV, Tomato spotted wilt virus; NSs, non-structural 
protein of the S-segment: nt, nucleotide; dsRNA. Double stranded RNA; GFP, green fluorescent protein; 
siRNA, small-interfering RNA; MBP, maltose binding protein; TCV CP, Turnip crinkle virus coat protein; 
CymRSV, Cymbidium ringspot virus; TYRV, Tomato yellow ring virus. 
 

To verify whether the in vitro observed inhibition of Dicer cleavage by TSWV NSs also 

occurred in vivo, plants were co-infiltrated with Agrobacterium harbouring a plasmid encoding 

an inverted repeat of GFP (IR-GFP) and /or GFP and either TSWV NSs, Tomato yellow ring 

virus (TYRV) NSs or Cymbidium ring spot virus (CymRSV) P19, the latter as a negative 

control. Turnip crinkle virus (TCV) coat protein (CP), previously shown to bind long dsRNA 

and to inhibit Dicer cleavage (Merai et al., 2006), was used as a positive control. An 

Agrobacterium strain expressing the Maltose binding protein (MBP) was included as negative 
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control. The presence of green fluorescence (Figure 6-3D) during all co-infiltrations, except for 

the negative control MBP, indicated that all RSS proteins analyzed (TSWV NSs, TYRV NSs, 

CymRSV P19 and TCV CP) were able to inhibit RNA silencing induced by IR-GFP. To 

analyze whether this was due to inhibition of Dicer cleavage of the IR-GFP RNA, leaves were 

harvested three days post infiltration, RNA was isolated, enriched for small RNA and 

investigated by northern blot analysis for the presence of GFP siRNA (Bucher et al., 2003). 

Relative to the loading controls, GFP specific siRNAs were observed in significant lower 

amounts in samples from leaves co-infiltrated with TSWV NSs or TCV CP (Figure 6-3C), 

compared to those from leaves co-infiltrated with TYRV NSs, CymRSV P19 or MBP. These 

findings supported the idea that TSWV NSs, like TCV CP, was able to associate with long 

dsRNA and thereby inhibited Dicer cleavage of these long dsRNA. As CymRSV P19 is known 

to exclusively bind siRNAs and suppresses RNA silencing downstream of Dicer, the similar 

levels of GFP siRNAs observed for TYRV NSs and CymRSV P19 suggested that TYRV NSs 

was not able to inhibit Dicer cleavage of long dsRNA.  

 

Binding dsRNA is a common feature of tospoviral NSs proteins 

 The observation that TYRV NSs was not able to inhibit Dicer cleavage suggested a very low 

affinity of TYRV NSs for long dsRNA and is therefore distinct from TSWV NSs. To test 

whether the affinity for differently sized dsRNA molecules, as was demonstrated for TSWV 

NSs (Figure 1), is shared among other tospoviruses a comparative EMSA analysis was 

performed with several tospoviruses. To this end, infected plant extracts from a range of 

different Tospovirus species (TSWV, Groundnut ringspot virus (GRSV) and Impatiens 

necrotic spot virus (INSV) from the American clade and TYRV from the Eurasian clade 

(Hassani-Mehraban et al., 2005, Pappu et al., 2009) were incubated with radio-labelled 

molecules (siRNA or 114 nt dsRNA) and analyzed by EMSA (Merai et al., 2006). The results 

showed that NSs containing protein extracts of all tospoviruses were able to shift, and thus 

bind siRNA molecules (Figure 6-4A). Surprisingly, the extracts from INSV and GRSV showed 

an additional strong affinity for longer dsRNA molecules (Figure 6-4C), while the extract from 

TYRV NSs did not (Figure 6-4C). The latter was in agreement with the earlier observed lack 

of the indirect inhibition on Dicer cleavage by TYRV NSs (Figure 6-3C). Surprisingly, nearly 

no affinity to 114 nt dsRNA could be observed for TSWV NSs in this assay (Figure 6-4C), in 

contrast to previous results with E.coli and baculo-virus expressed TSWV NSs (Figure 6-1). 

As already mentioned for the baculovirus infected extract (Figure 6-1F, asterik) a lower 

complex was observed in case of TSWV and TYRV with 114 nt dsRNA. This retardation was 

not due to NSs since a similar retardation complex was being observed with uninfected plant 

extracts as negative control (Figure 6-4C, asterik) and therefore not further investigated.  

To quantify the affinity to longer and shorter dsRNA a serial dilution series of INSV- and 

GRSV-infected plant material was made and used in dsRNA binding assays. Results from 

this analysis showed that binding to long dsRNA was lost at dilutions of INSV- and GRSV-

infected plant extracts that contained ~0.25 µg total protein per 10 µl whereas binding to 21 nt 
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siRNA molecules was not observed below ~0.06 µg total protein per 10 µl (compare       

Figure 6-4E & F). This indicated a slightly higher affinity to siRNA molecules of GRSV NSs 

and INSV NSs (data not shown), as similarly observed for baculovirus and E.coli expressed 

TSWV NSs (Figure 6-1A-D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-4:  Affinity analysis of NSs from Tospovirus-infected plant extracts for dsRNA molecules.  
Electrophoretic mobility shift assays were performed using systemically infected N. benthamiana leaf extracts 
containing CymRSV, GRSV, INSV, TSWV or TYRV, incubated with radioactively labelled 21 nt siRNA and 
subsequently resolved onto a 8% native gel (A). Except for CymRSV the experiment was repeated with 
radioactively labelled 114 nt dsRNA and resolved on a 5% native gel (C). Uninfected plant extract (uninfected) 
and RNA only (-) were included as negative controls (panels A and C, first two lanes). Experiments of A and C 
were repeated using recombinant baculovirus-infected extract containing GRSV NSs, TYRV NSs, TSWV NSs 
or GFP (siRNAs panel B, 114 nt dsRNA panel D). Complexes formed in the negative controls (uninfected or 
GFP expressing) are indicated (*) (panel C, lane 2 and panel D, lane 1). A serial dilution of GRSV infected N. 
benthamiana extracts (2 µg -15.6 ng protein content) was tested for the affinity to 21 nt siRNA (panel E) or 114 
nt dsRNA (panel F). As negative control, the RNA duplex in extraction buffer was included (panels E and F, 
first lane). Western blot analysis was performed on excised and denatured siRNA-protein complexes as 
observed in panel A using either an antibody against TSWV NSs (G) or a monoclonal NSs antibody detecting 
Asian tospoviral NSs (H). The siRNA-protein complex of TSWV NSs expressed in Agrobacterium transient 
transformation assay (ATTA) infiltrated leaf extract (TSWV NSs ATTA) was used as positive control. As 
negative control gel slices of unbound siRNAs were used (unbound RNA complex). TSWV, Tomato spotted 
wilt virus; NSs, non-structural protein of the S-segment: nt, nucleotide; dsRNA, double stranded RNA; GFP, 
green fluorescent protein; siRNA, small-interfering RNA; TCV CP, Turnip crinkle virus coat protein; CymRSV, 
Cymbidium ringspot virus; TYRV, Tomato yellow ring virus; GRSV, Groundnut ringspot virus; INSV, Impatient 
necrotic spot virus. 
 

It was assumed that the tospoviral NSs proteins provided the dsRNA binding activity in the 

infected plant extract. Due to the lack of any NSs specific antibody (INSV) or the incapacity of 
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the present antibodies to detect native NSs proteins efficiently (GRSV, TSWV and TYRV), 

supershift and immuno-precipitation experiments (data not shown) showed negative results.  

Therefore, the presence of NSs in the retarded dsRNA complexes formed in tospoviral plant 

infected extract was demonstrated. TSWV-, GRSV-, TYRV- and CymRSV- (negative control) 

infected plant extracts and Agrobacterium infiltrated leave extract expressing TSWV NSs 

(positive control) were incubated with radiolabeled siRNA molecules, EMSA analyzed and 

shifted siRNA complexes excised from gel. These were subsequently resolved on SDS-

PAGE, using excised unbound siRNA molecules as negative control, and after western 

blotting screened for the presence of NSs. The mobility shifted siRNA complexes from  

TSWV-, GRSV- and TYRV-infected or TSWV-NSs agro-infiltrated extracts clearly showed the 

presence of NSs (Figure 6-4G & H) which was not detected in the unbound siRNA or 

CymRSV infected samples. This supports the hypothesis that the retarded complexes consist 

of the tospoviral NSs proteins that provide the dsRNA binding activity in the infected plant 

extracts.  

To further substantiate the observed differences in binding affinities of tospovirus NSs 

proteins to long dsRNA and to strengthen the idea that the NSs proteins were binding the 

dsRNA molecules, another expression system was used. EMSA analyses were performed 

using extracts from recombinant baculovirus-infected insect cells expressing NSs from 

TSWV, GRSV (American clade) and TYRV (Eurasian clade). As expected, all NSs extracts 

showed retardation of siRNA molecules (Figure 6-4B) but not of single stranded RNA 

molecules (data not shown). A retardation of long, either 114 nt or 400 nt dsRNA was again 

observed in the presence of NSs from TSWV and GRSV, but not with TYRV NSs containing 

extracts (Figure 6-4D, data not shown). This is in agreement at least with the results obtained 

with infected plant extract containing GRSV and TYRV NSs. In dilution series and competition 

EMSA analysis, baculovirus expressed GRSV NSs revealed again higher affinities for siRNA 

than for long dsRNA molecules (data not shown), as already observed in infected plant 

extract (Figure 6-4E & F) and for baculovirus expressed TSWV NSs (Figure 6-1 and 6-2). 

 

Tospoviral NSs proteins interfere with the miRNA pat hway  

The reported loss of leaf polarity and interference with the formation of plant reproduction 

organs after constitutive expression of plant viral RSS in Arabidopsis has been explained as a 

result from suppression of miRNA-mediated gene regulation (Chapman et al., 2004, Dunoyer 

et al., 2004). Since siRNAs and miRNA/miRNA* duplexes share structural similarities, it was 

not surprising that the RHBV NS3 and tombusvirus P19 RSS proteins, both able to bind 

siRNAs, exhibited similar affinity to miRNA/miRNA* duplexes (Dunoyer et al., 2004, Hemmes 

et al., 2007). To investigate whether the TSWV NSs protein was also able to interfere with 

miRNA-mediated gene regulation, the affinity to either miRNA/miRNA* duplexes or the longer 

pre-miRNA was analyzed using infected insect cell extracts containing baculovirus expressed 

TSWV NSs. EMSA assays with increasing amounts of NSs containing cell extracts showed 
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retardation of the miRNA/miRNA* duplex slightly lower than to that observed for siRNAs 

(Figure 6-5A and Figure 6-1A). For the pre-miRNA molecules no shift was observed even at  

the highest concentration of cell extracts used (Figure 6-5B), indicating that in this assay 

TSWV NSs only shows affinity for miRNA/miRNA* duplexes.  

The affinity of TSWV NSs for miRNA/miRNA* duplexes in vitro implied that NSs could 

potentially interfere with the miRNA pathway in plants by sequestering miRNA/miRNA* 

molecules. To test this hypothesis, a miRNA-based sensor construct encoding eGFP 

harbouring a 3´UTR with target sides for miRNA1 (eGFP-3`UTR) was agro-infiltrated in RDR6 

silenced N. benthamiana together with either TSWV NSs or the negative control MBP. Using 

the miRNA1 dependent sensor construct, instead of previous reported ones (Parizotto et al., 

2004), ensured that the observed miRNA/miRNA* duplex binding by NSs is not sequence 

specific for miRNA171 (chapter 5, Figure 5-1A).   

Normally, during Agrobacterium infiltration of this eGFP-miRNA1 sensor construct, the host 

encoded RDR6 converts functional RNA transcripts into dsRNA, resulting into silencing of 

eGFP and production of eGFP specific siRNAs (Figure 6-5D). In RDR6 knock down plants, no 

silencing of this construct occurs unless it is co-infiltrated with pri-miRNA1 (Dalmay et al., 

2000, Parizotto et al., 2004). As expected, in the absence of pri-miRNA1, RDR6 knock down 

plants showed similar eGFP fluorescence in the presence or absence of RSS protein (Figure 

6-5C upper panels), while a drastic decrease in eGFP fluorescence level was observed when 

these plants were co- infiltrated with eGFP-3`UTR and pri-miRNA1 (Figure 6-5C lower left 

panel). Enhanced GFP fluorescence was restored by the addition of TSWV NSs (Figure 6-5C 

lower right panel) and not when using MBP as negative control (Figure 6-5C lower left panel), 

demonstrating that TSWV NSs was able to suppress miRNA-induced silencing.  Whereas no 

eGFP specific siRNAs were observed in the absence of miRNA1 (Figure 6-5D left panel, lane 

2 & 3), only a slight amount of siRNAs was observed in the presence of miRNA1 (Figure 6-5D 

left panel, lane 4 & 5). In contrast, elevated levels of eGFP specific siRNAs were produced in 

case the sensor construct was infiltrated into wild type N. benthamiana plants (Figure 6-5D, 

lane 6 left panel). This strongly indicates that eGFP silencing was most likely the result of 

translational repression. 

Similar results were obtained in insect cells expressing TSWV NSs and a Firefly luciferase 

based miRNA1 sensor construct (Figure 6-5E). This organism- independent suppressor effect 

supported the idea that the observed interference with the miRNA pathway is possibly due to 

miRNA/miRNA* sequestering and not to a protein specific interaction.  
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Figure 6-5:  Analysis of TSWV NSs interference with the miRNA pathway. 
Electrophoretic mobility shift analysis of radioactively labelled miRNA171/miRNA171* duplex (panel A) or pre-
miRNA2b (panel B) in the presence of increasing amounts of recombinant baculovirus-TSWV NSs infected 
insect cell extracts. A representative picture of at least three independent repetitions is shown. TSWV NSs 
interference on the miRNA pathway in RDR6 knockdown N. benthamiana plants as visualized by eGFP 
fluorescence from an eGFP-miRNA sensor construct (eGFP-3`UTR) 5 days post co-infiltration (Panel C).  As 
controls, leaves were infiltrated with Agrobacterium harbouring vectors for eGFP-3`UTR and MBP (Panel C 
upper left) or eGFP-3`UTR and TSWV NSs (Panel C upper right). Silencing was induced by co-infiltration of 
pri-miRNA1 (Panel C lower left and right), and suppressed in the presence of TSWV NSs (Panel C, lower 
right). Levels of eGFP siRNA (D, left panel) and processed miRNA1 (Panel D right panel) were detected by 
northern blot hybridization. RNA of wildtype N. benthamiana plant infiltrated with Agrobacterium harbouring the 
eGFP-3`UTR sensor was used as positive control (Panel D, last lane top panel). Non-infiltrated N. 
benthamiana was used as negative control (Panel D, first lane top panel; wt). As loading control, RNA was 
stained by ethidium bromide. Suppression of miRNA1-induced silencing of a Firefly luciferase-miRNA1 sensor 
construct was investigated in insect cells (panel E). Drosophila S2 cells were co-transfected with a pMT-
Renilla luciferase (Rluc), pMT-Firefly luciferase (Fluc)-miRNA1 sensor construct, either specific (miRNA1) or 
unspecific (miRNA12) primary miRNA in concert with either pIB-MBP, -TSWV NSs or - Carnation Italian 
ringspot virus (CIRV) P19. After induction at 48 hours post transfection (hpt), relative luciferase expression 
(Firefly/Renilla) was determined 72 hpt and the mean of at least two independent experiments is shown with 
standard error. 
TSWV, Tomato spotted wilt virus; NSs, non-structural protein of the S-segment; (e)GFP, (enhanced) green 
fluorescent protein; MBP, maltose binding protein; mRNA, messenger RNA; miRNA, microRNA; pre-miRNA, 
precursor microRNA; hpt, hours post transfection; wt, wild type 
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To determine if the capacity to suppress the miRNA pathway was shared among tospoviral 

NSs proteins, the EMSA assays using miRNA/miRNA* duplex or pre-miRNA were repeated 

for the other tospoviruses. Next to the positive control CymRSV, miRNA/miRNA* retardation 

was only observed when infected plant extracts containing TYRV were used, and not with 

GRSV, INSV and TSWV (Figure 6-6A). In contrast, retardation of pre-miRNA complexes was 

only observed with infected leaf extracts containing GRSV and INSV and not with TSWV and 

TYRV (Figure 6B). Strikingly, no affinity to miRNA/miRNA* duplexes was observed for TSWV 

NSs when using crude extracts of virus-infected plants (Figure 6-6A), whereas a binding was 

observed when using recombinant baculovirus- TSWV NSs infected cell extracts (Figure 6-

6C) or plant extracts agro-infiltrated with TSWV NSs (data not shown, Figure 6-5A & 6-6C). 

Similar results were obtained for Agrobacterium-infiltrated leaf extracts and baculovirus-

infected cell extract of GRSV NSs and TYRV NSs (data not shown, Figure 6-6C).     

These results indicated that the NSs proteins of the tospoviruses analyzed interfered with the 

miRNA pathway. However their mode of action seemed to differ depending on the expression 

system used. To substantiate these findings with evidence from the natural situation, RNA 

was isolated from tospovirus-infected plant material and assayed for the presence of 

miRNA171c and miRNA171c* molecules. If the tospovirus NSs protein binds miRNA/miRNA* 

duplexes it would prevent RISC loading of the miRNA guide strand, the subsequent target 

cleavage in plants and degradation of the miRNA* strand (Chapman et al., 2004, Dunoyer et 

al., 2004). Detection of miRNA/miRNA* duplexes and specifically of the miRNA* strand in 

plants containing NSs thus would be indicative for direct association of the RSS with 

miRNA/miRNA* duplexes. Indeed, both miR171c and miRNA171c* were readily detected in 

RNA samples from TSWV and TYRV-infected plant material (Figure 6-6D), whereas in 

uninfected plants only the miR171c strand could be detected under the same conditions. The 

miRNA* strand was also readily detected in RNA samples of GRSV and INSV-infected plant 

material (Figure 6-6D). This indicates that their NSs proteins also interfere with the RISC 

loading step, most likely by sequestering the miRNA/miRNA* duplexes. This would assume 

that GRSV and INSV NSs exhibit affinity for miRNA/miRNA* duplexes in vivo, in contrast to 

the in vitro data with infected plant extract (Figure 6-6A). 

 

Discussion 

A common strategy employed by many plant viruses to counteract antiviral RNA silencing is 

by sequestering and inactivation of (antiviral) siRNAs through their viral RSS protein. Size-

selective binding of siRNAs has been described in literature for several plant viral 

suppressors like RHBV NS3, TEV HC-Pro, Beet yellows virus (BYV) P21, P19 of several 

tombusviruses, Peanut clump virus P15 and Barley stripe mosaic virus γB (Hemmes et al., 

2007, Lakatos et al., 2006, Merai et al., 2006). TSWV NSs has been described previously to 

act as RSS in plants and insect cells (Bucher et al., 2003, Garcia et al., 2006, Reavy et al., 

2004), however its mode of action remained unclear. Results shown in this work demonstrate 

that E.coli- and recombinant baculovirus-expressed TSWV NSs can bind both siRNA and 
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long dsRNA molecules. This enables TSWV to block antiviral RNA silencing at two stages, 

i.e. before and after Dicer-mediated dsRNA cleavage. Similar results were obtained for NSs 

from GRSV and INSV, two other tospovirus species that together with TSWV belong to the 

American clade of tospoviruses (Pappu et al., 2009) and share 49.7 – 82.2% amino acid 

sequence similarity. In contrast, the NSs protein of the more distantly related Eurasian clade 

tospovirus TYRV (15-22% protein similarity) (Hassani-Mehraban et al., 2005) only revealed 

affinity to small dsRNA molecules in all used extracts. The observed lack of TYRV NSs to 

bind long dsRNA is unclear. The same is true for the low affinity to long dsRNA binding in 

TSWV infected plant extract, which is in contrast to the results of baculovirus or E.coli 

expressed TSWV NSs. Considering the large quantities of dsRNA, at least, in infected plants, 

a significant part of NSs could be pre-loaded with dsRNA and a difference in the remaining 

soluble and free NSs protein levels within the infected-plant extract cannot be excluded. It is 

not known, if all used tospoviruses produce similar amounts of viral siRNAs during infections, 

possibly resulting in differences in NSs pre-loading. On the other hand, the fact that no Dicer 

inhibition could be observed for TYRV NSs, in contrast to TSWV NSs in an Agrobacterium-

infitration assay, strengthens the observation that TYRV NSs does not bind long dsRNA 

molecules in contrast to TSWV NSs. 

Whereas all tospovirus NSs proteins analyzed did exhibit a clear affinity for siRNAs, the 

EMSA assays showed a clear difference in siRNA-NSs complex mobility between those from 

GRSV, INSV and TSWV versus TYRV. However, this was only in case plant extracts were 

used and not with baculovirus-infected cell extract (Figure 6-4A). In plant extracts all tested 

tospovirus NSs proteins (GRSV, TSWV and TYRV) showed, in addition to the monomeric 

form,  higher molecular weight bands corresponding in size to dimers, trimers and multimers 

(data not shown). This was irrespective of (non-)denaturing conditions and independent of the 

presence of RNA. Similar multimers were observed under semi-denaturing conditions in 

recombinant baculovirus NSs-infected cell extracts, in the presence or absence of RNA (data 

not shown). Therefore, the discrepancy in stoichiometry of siRNA-RSS complexes between 

these two groups of tospoviruses observed only with NSs from plant extracts was likely not to 

be attributed to differences between oligomerization in plant versus insect cells. Instead, 

differences in post translational modification (e.g. phosphorylation) and/or interaction with 

host proteins or viral proteins may account for the observed differences of siRNA-NSs 

complex mobility. Predictions for post-translational modifications revealed several potential 

phosphorylation sides. To our knowledge no viral or host encoded interacting partner has yet 

been identified for tospovirus NSs.  
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Figure 6-6:  Affinity of Tospovirus NSs for duplex RNA molecules from the miRNA pathway.  
Electrophoretic mobility shift assay analysis using leaf extracts from N. benthamiana systemically infected with 
TSWV, TYRV, CymRSV, GRSV or INSV and incubated with radioactively labelled miRNA171/miRNA171* 
duplexes (panel A) or pre-miRNA2b (panel B).  Baculo-virus infected cell extract expressing GFP, TSWV NSs, 
TYRV NSs or GRSV NSs were incubated for 20 minutes with radioactively labelled miRNA171/miRNA171* 
and loaded on an 8% native gel (panel C). As negative controls, RNA was incubated with extracts from 
uninfected plants (Panel A first lane) or GFP expressing baculo-virus infected extract (Panel C second lane). 
Northern blot detection of miRNA171c and miRNA171c* (after stripping) in RNA samples from N. benthamiana 
leaves systemically infected with GRSV, TSWV, INSV and TYRV. (panel D). As negative control, RNA from 
uninfected leaves was included (panel D, first lane). 
TSWV, Tomato spotted wilt virus; NSs, non-structural protein of the S-segment; miRNA, microRNA; pre-
miRNA, precursor microRNA; CymRSV, Cymbidium ringspot virus; TYRV, Tomato yellow ring virus; GRSV, 
Groundnut ringspot virus; INSV, Impatient necrotic spot virus. 
 

The reason for the additional affinity to long dsRNA to counter defend against RNA silencing 

for TSWV, GRSV and INSV remains intriguing. The question remains if this affinity to long 

dsRNA molecules represents an ancestral activity, lost by TYRV NSs during time or newly 

gained by the American tospoviral clade. Recently, long dsRNA has been described to induce 

an antiviral response in Drosophila diverse of RNA silencing (Kemp & Imler, 2009). Thereby, 

it is tempting to speculate that tospoviruses from the American clade benefit from their long 

dsRNA affinity in order to counteract two different antiviral pathways in insects. If a similar 

antiviral response is present in the thrips insect vector is still unknown. Hitherto, a similar 

divergence in the affinity of RSS to longer and shorter dsRNAs has been only observed in 

one other well studied but completely unrelated family of viruses - the Tombusviridae (Merai 

et al., 2006, Merai et al., 2005).  

Although binding of TSWV NSs to longer dsRNA molecules has not or only to a low amount 

been observed in all used cell extracts, since it is nearly lacking in infected plant extracts, this 
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binding property is supported by its in vitro inhibitory effect on Dicer mediated processing of 

dsRNA molecules into siRNAs. A similar inhibitory effect on Dicer cleavage of an inverted 

repeat of GFP has also been observed in plants that transiently expressed TSWV NSs. 

Previous research reported that TSWV NSs is not able to suppress IR-induced RNA silencing 

(Takeda et al., 2002), suggesting a mode of action upstream of DCL in the RNA silencing 

pathway. However, in our hands analyses have consistently shown that TSWV NSs was 

perfectly capable to suppress IR-induced silencing in Agrobacterium infiltrated plants. 

Among plant viruses, binding of viral RSS proteins to longer dsRNA and subsequent inhibition 

of Dicer mediated dsRNA cleavage so far has only been observed for two members of the 

positive-stranded Tombusviridae, i.e. Turnip crinkle virus (TCV) CP and aureusvirus p14 

(Merai et al., 2006, Merai et al., 2005). This property, though, is more common to RSS 

proteins of insect and mammalian infecting viruses like Flock house virus B2, Drosophila C 

virus 1A and Ebola virus VP35, that all have been shown to exhibit a high affinity to long 

dsRNA (Kimberlin et al., 2009, Lingel et al., 2005, Merai et al., 2006, Merai et al., 2005, van 

Rij et al., 2006).  

Tospoviruses are the only plant-infecting members of the Bunyaviridae family and  are 

transmitted by thrips in which they also replicate (Wijkamp et al., 1993). As a result, 

tospoviruses are targeted by antiviral RNA silencing in plants as well as insects. By 

interacting with both long and short dsRNA molecules tospoviruses are able to interfere with 

multiple steps in the antiviral RNA silencing machinery, notably Dicer-mediated processes, 

assembly of active RISC complexes and possibly the amplification of the silencing signal in 

plants. The NSs protein of the animal-infecting bunyavirus La Crosse virus (LACV) has been 

shown to be an active suppressor of RNA silencing in human cells by interfering with siRNA 

mediated RNA silencing (Soldan et al., 2005). Recently, however, contradictory results have 

been published (Blakqori et al., 2007). Since vertebrates possess an effective antiviral 

defense system based on interferon induction that also involves dsRNA species, the antiviral 

activity of the ubiquitous RNA silencing machinery in vertebrate systems is still being debated. 

For the same reason, the biological relevance of RSS activity of some proteins from animal-

infecting viruses is being disputed, as many of these proteins also have been shown 

interferon antagonistic properties (Basler & Garcia-Sastre, 2002, Haller & Weber, 2009). 

Besides being an inducer of RNA silencing and a substrate for Dicer, long dsRNA molecules 

of cellular or viral origin also activate the dsRNA-dependent protein kinase (PKR), and 

thereby trigger the interferon-induced antiviral defence mechanism in mammals (Gantier & 

Williams, 2007). Sequestering long dsRNA molecules would therefore be an effective way for 

vertebrate viruses to simultaneously suppress antiviral RNA silencing and interferon 

induction. The capacity of NSs proteins of some Tospoviruses to bind long dsRNA could thus 

reflect a property inherited from a common ancestor shared between the plant- and 

mammalian-infecting bunyaviruses (de Haan et al., 1991, Kormelink et al., 1992). Whether 

this long dsRNA binding is redundant or still of biological relevance to tospovirus infections in 

plants or insects remains to be investigated. Comparison of mutated NSs proteins lacking 
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long dsRNA binding ability with wildtype NSs proteins could shed light on the question if 

siRNA binding is sufficient for the RSS activity of tospoviral NSs proteins. For this more 

information regarding the RNA binding domain(s) in the tospoviral NSs proteins would be 

required.    

The property of tospovirus NSs proteins to bind miRNA/miRNA* duplexes and thereby 

interfere in the regulation of host gene expression has previously been shown for a few other 

plant viral RSS proteins like potyviral HC-Pro and tombusviral P19 (Chapman et al., 2004, 

Dunoyer et al., 2004). The affinity of TSWV, like TYRV, for miRNA/miRNA* but not for pre-

miRNA molecules, as observed for GRSV and INSV, is somewhat intriguing in light of earlier 

mentioned similarities and differences between the NSs proteins studied and needs further 

analysis. The observed lack of affinity of TSWV, GRSV and INSV infected plant extracts for 

miRNA/miRNA* duplexes is likely due to reasons discussed for the observed low binding 

affinity of infected TSWV plant extract to long dsRNA; being that a significant part of NSs is 

already being loaded with (viral) dsRNA molecules arising during a viral infection. This is 

supported by the ability of all tested NSs proteins (TSWV, GRSV and TYRV) to bind 

miRNA/miRNA* duplexes in Agrobacterium-infiltrated plant extracts (data not shown) and 

baculovirus infected cell extracts (Figure 6-6C). The low amount of NSs-siRNA complexes 

observed for TSWV, INSV and GRSV infected plant extracts compared to baculovirus-NSs 

infected cell extracts (Figure 6-4A & B) and Agrobacterium-infiltrated plant extract (data not 

shown) strengthens this explanation. Furthermore, in light of the slightly lower affinity to 

miRNA/miRNA* duplexes (appr. 5% bound at lowest used concentration) compared to 

siRNAs (appr. 90% bound at lowest used concentration) in case of baculo-virus infected 

extract expressing TSWV NSs, it is maybe not that surprisingly that no miRNA/miRNA* 

retardation was observed for TSWV, GRSV and INSV infected plant extract. 

Despite these observations, the accumulation of miRNA171c/miRNA171c* duplexes in leaf 

material infected with any tospovirus strengthens the idea that all tospoviral NSs proteins 

stabilize the miRNA/miRNA* duplexes and prevent their uploading into RISC. This possibly 

occurs by sequestering and, thereby interfering with miRNA-mediated gene regulation in 

planta. Since miRNA171c is predicted to target transcripts for the SCARECROW-like 

transcription factor (Sunkar & Zhu, 2004, Xie et al., 2005) and a beneficial effect of this gene 

on virus replication is not evident,  it is tempting to speculate that NSs interference with the 

miRNA pathway is most likely due to the high structural similarity of miRNA/miRNA* 

molecules to antiviral siRNA molecules,. Further support for this idea comes from the 

observed silencing suppression effect of TSWV NSs on a “randomly” selected miRNA1 

sensor construct during Agrobacterium infiltrations on N. benthamiana leaves. Whereas the 

interference of plant viral RSS in the miRNA pathway might reflect an aberrancy due to 

structural similarities between siRNA and miRNA/miRNA*s, the interference by RSS proteins 

of human infecting viruses (e.g. HIV-1) with miRNA silencing  has been proposed as genuine 

to down or up-regulate genes involved in antiviral (defence) responses (Berkhout & Jeang, 

2007, Triboulet et al., 2007). This is elegantly exemplified by the higher expression level of 
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the miRNA regulated histone acetylase p300/ CBP-associated factor (PCAF) during HIV 

infections, a host factor that has been shown to be required as cofactor for the HIV 

transactivator of transcription (Tat) protein. Until recently, no such case has been reported for 

virus infections in plants and insects. In plants, interference of TCV CP with AGO1 has been 

reported, resulting in changes of miRNA levels that in turn create a virus-favourable 

environment in the plant (Azevedo et al., 2010). Whether this interaction is TCV specific or a 

global plant viral characteristic is not yet known. The here reported interaction of tospoviral 

NSs proteins with the miRNA pathway leaves the possibility that interference with the plant 

miRNA pathway could be a characteristic shared by all plant viruses. Whether this interaction 

with the NSs protein and the miRNA pathway occurs during tospovirus infections and results 

in a viral beneficial environment remains to be investigated.  
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Materials and Methods  

Plasmid constructs 

Agrobacterium expression plasmids for MBP, TSWV NSs, IR-GFP and GFP were described 

previously (Bucher et al., 2003, Hemmes et al., 2007, Merai et al., 2006).  

The coding sequence for Tomato yellow ring virus tomato strain (TYRV–t) NSs and 

Groundnut ring spot virus (GRSV) NSs was PCR amplified and cloned into the binary 

pK2GW7 (Karimi et al., 2002) vector using Gateway technology. Baculovirus expressing 

TSWV NSs or GFP have been described previously (Kaba et al., 2002, Kormelink et al., 

1991). Recombinant baculovirus expressing GRSV NSs and TYRV NSs were constructed by 

Gateway technology and the Bac-to-Bac system (Invitrogen) following the manufacturers` 

protocol. The insect expression vectors of TSWV NSs were constructed by Gateway 

technology into pIB-GW (Invitrogen) and the other expression vectors (MBP and CIRV P19) 

have been described previously (Chapter 5). The miRNA reporter constructs (eGFP-3`UTR 

and Fluc-par6), pri-miRNA1 and pri-miRNA12 expression plasmids have been decribed 

previously (Chapter 5). 

 

Cell culture and transfection 

Schneider (S)-2 cells were grown, transfected and expression induced as described in 

chapter 5. Luciferase expression was determined using self made buffers for the Dual 

luciferase reporter assay (Dyer et al., 2000).  

 

Bacterial expression and purification of Thioredoxi n-TSWV NSs and -MBP 

The coding sequence of TSWV NSs or MBP was PCR amplified to introduce Gateway 

specific recombination sites and cloned into pDONR207 (Invitrogen). For expression and 

subsequent purification, the NSs or MBP coding sequence was cloned in frame with HP-

Thioredoxin, in pDest49-BAD (Invitrogen) by Gateway reaction. Proteins were expressed in 

DH10beta cells (Qiagen) according to the manufacturer’s recommendations. After induction 

for 6h at 37°C with 0.2% w/v L-arabinose, cells wer e harvested by centrifugation for 15 min at 

4000 rpm (Sorvall GSA rotor) at 4°C. Cells were lysed  by sonification on ice with 30 sec. 

intervals for 3 times 30 sec. in lysis buffer (50 mM K2PO4, 400 mM NaCl, 100 mM KCl, 10% 

(v/v) glycerol, 1% (v/v) Triton X-100 and EDTA-free protease inhibitor cocktail (Roche)). The 

soluble fraction was recovered by centrifugation at 4000 rpm (Sorvall GSA rotor) for 30 min at 

4°C. Recombinant protein was purified using a Talon  metal affinity resin column (Clontech) 

and eluted with 2.5 packed bed volumes (PBV) elution buffer (50 mM NaH2PO4, 300 mM 

NaCl, 200 mM imidazole, 10% (v/v) glycerol) after washing with 15 PBV lysis buffer. Protein 

fractions were instantly frozen in aliquots in liquid nitrogen and stored at -80°C until use. 

Protein concentrations of eluted fractions were determined using the standard procedure of 

the Bio-Rad protein assay according to the manufacturer’s recommendations and the 

purification process was analyzed by SDS-PAGE and subsequent staining with Commassie 

brilliant blue. 
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Preparation of virus-infected plant extracts, baculo virus-infected insect cell extracts 

and Agrobacterium-infiltrated leave extracts 

Groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV), Tomato yellow ring 

virus tomato strain (TYRV-t), Tomato spotted wilt virus (TSWV) and Cymbidium ring spot 

virus (CymRSV) were mechanically inoculated on Nicothiana benthamiana and extracts 

prepared from systemically infected leaves essentially as described previously (Merai et al., 

2006) with minor modifications. Virus accumulation was verified either by ELISA or NSs 

specific western blot analysis prior to preparation of virus-infected plant extracts. To prepare 

infected or Agrobacterium-infiltrated extracts, 0.6 g leaf tissue was ground in liquid nitrogen 

and resuspended in 1.5 ml buffer (20 mM Tris-HCl pH 7.5, 5 mM MgCl2, 50 mM KCl, 1 mM 

DTT). The total protein concentration was determined using the standard procedure of the 

Bio-Rad protein assay according to the manufacturer’s recommendations. Crude extracts 

were centrifuged twice at 14000 rpm for 15 min at 4°C. Extracts were immediately frozen in 

liquid nitrogen and stored at -80°C until use. 

TSWV NSs, TYRV NSss, GRSV NSs and GFP were expressed in Trichoplusia ni Hi5 cells, 

using baculovirus expression vectors expressing the genes under control of the polyhedrin 

promoter.  

Hi5 cells were infected with baculoviruses at a multiplicity of infection (MOI) 10 and incubated 

for 48 hours at 28°C. Cells were detached, harveste d by low speed centrifugation (1500 rpm) 

and washed with PBS prior to lysis by sonification during 3 intervals of 30 sec. in lysis buffer 

(100 mM NaCl, 20 mM Tris 7.4, 2 mM MgCl2, 1 mM DTT, 10% (v/v) glycerol). The infection 

was monitored either by GFP-fluorescence or SDS-PAGE and Western immunoblot analysis 

for TSWV NSs. The total protein concentration was determined by the Bio-Rad protein assay 

according to the manufacturer’s protocol. 

 

Expression analysis 

Expression of different NSs proteins was monitored by western immunoblot analysis. 

Samples of the extracts were mixed with 2x SDS-loading buffer, heated for 5 minutes at 95°C 

and centrifuged for 3 minutes at 14000 rpm. For complex formation 2 x SDS-loading buffers 

was used lacking the β-mercaptoethanol and samples were loaded on the gel without 

previous heating. Crosslinking was performed either directly or after 30 min incubation of the 

extract with siRNA molecules by the addition of 0.25% paraformaldehyde, incubation for 30 

min at room temperature followed by the addition of 2x SDS-loading buffer and 10 min at 65 

degree. For the reversion, samples were treated in the same way, but incubated for 10 min at 

95 degree. Proteins were separated by SDS-PAGE and transferred to Immobilion-P 

(Millipore) by semi-dry blotting.  TSWV and GRSV NSs protein were detected using a NSs-

specific polyclonal antibody. TYRV NSs protein was detected using a monoclonal antibody 

(kindly provided by Dr. S-D. Yeh). Protein-antibody complexes were detected by an alkaline 

phosphatase conjugated secondary antibody, and visualized with NBT-BCIP as substrate 

(Roche) according to the manufacturer’s recommendations. 
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dsRNA preparation 

A 114 nt dsRNA molecule was generated by T7 RNA polymerase (Promega) transcription on 

a gel purified (High Pure PCR purification kit, Roche) eGFP template in the presence of 

alpha32P-CTP (Perkin Elmer). The latter template was provided with T7 RNA polymerase 

promoter sequences at both ends by PCR amplification using DNA oligos T7_dsRNA114 F (5’ 

GTA ATA CGA CTC ACT ATA GGG GGC GTG CAG TGC TTC AGC CGC 3’)  and T7_ds114 

R (5’ GTA ATA CGA CTC ACT ATA GGG GCC GTC GTC CTT GAA GAA GAT GG 3’). 

Precursor miRNA 2b was generated by T7 RNA polymerase transcription in the presence of 

alpha 32P-CTP (Perkin Elmer) on a template obtained after annealing of two long primers: 5’ 

GTA ATA CGA CTC ACT ATA GGC GTT GCG AGG AGT TTC GAC CGA CAC TAT ACT 

TAT AAC AAC TGT TGT ACA GTG ACG GTG AAA CTT CTG TCA ACT TC 3’ and 5’ GAA 

GTT GAC AGA AGT TTC ACC GTC ACT GTA CAA CAG TTG TTA TAA GTA TAG TGT 

CGG TCG AAA CTC CTC GCA ACG CCT ATA GTG AGT CGT ATT AC 3’. Following T7 

transcription, reaction mixtures were incubated at 70°C for 10 min and cooled down to room 

temperature. Template DNA was removed by treatment with DNase I and dsRNA was gel 

purified from an 8% PAGE, 0.5x TBE native gel. Labelling of custom made RNA oligos 

targeting the GFP sequence or corresponding to the A. thaliana microRNA 171a sequence 

was performed by end labeling of the GFP siRNA guide strand or miRNA171a strand using 

gamma 32P-ATP (Perkin Elmer) and T4 polynucleotide kinase. These radio-labelled strands 

were annealed to the RNA oligo corresponding to the respective GFP siRNA passenger or 

miRNA171* strand and PAGE purified essentially as described previously (Haley et al., 2003). 

 

Electrophoretic mobility shift assay and Western blo t analysis 

In a binding reaction, radio-labelled RNA (0.5 nM) was incubated with ~2 µg total protein from 

virus-infected leaf or cell extracts per 10 µl reaction and incubated for 20 min. at room 

temperature as previously described (Hemmes et al., 2007, Merai et al., 2006). As controls, 

RNA was loaded without plant extracts, with healthy plant extracts or GFP-expressing 

baculovirus-infected insect cell extracts. The same reaction was performed with serial 

dilutions of the bacterial expressed HP-Thioredoxin-NSs or -MBP proteins. The complexes 

were separated on a 0.5x TBE native PAGE gel.  For 114 nt dsRNA and pre-miRNA 2b a 5% 

gel was used and an 8% gel for siRNA and miRNA/miRNA* molecules. Following 

electrophoresis gels were dried, overnight exposed to a phosphor screen and scanned 

(Molecular Dynamics Typhoon Phosphor imager, Amersham Biosciences). A representative 

picture of at least three independent experiments was shown. 

To determine the presence of NSs in the RNA–protein complex, the excised gel slices were 

grinded in 2x SDS-loading buffer and PBS. After denaturation, the solution was loaded on a 

SDS-PAGE, blotted and a western blot analysis was performed using either polyclonal TSWV 

NSs or monoclonal antibody detecting Asian tospoviral NSs (supplied by Dr. S.D. Yeh). 
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Dicer cleavage reactions 

Drosophila embryo extract preparation was described previously (Haley et al., 2003). In Dicer-

mediated cleavage reactions embryo extracts were incubated for 3 hrs at 25°C in reaction 

mixtures as described previously (Haley et al., 2003) where KCl was omitted from the reaction 

mixture. In a typical 10 µl reaction 2 µl Drosophila embryo extract, 0.5 ng dsRNA and 2 µg 

virus-infected extract were mixed. Samples were deproteinized and RNA was analyzed on a 

12% denaturing gel. After electrophoresis gels were dried, exposed to a phosphor screen and 

scanned (Molecular Dynamics Typhoon Phosphorimager, Amersham Biosciences).  

 

Agrobacterium tumefaciens transient transformation assay (ATTA)  

Agrobacterium infiltration was performed as previously described (Bucher et al., 2003). N. 

benthamiana leaves were co-infiltrated with Agrobacterium (at an OD600=0.25) harboring 

binary vectors encoding IR-GFP, GFP and different constructs coding for MBP, CymRSV 

P19, TCV CP, TYRV NSs, TSWV NSs or GRSV NSs. Expression of GFP in the leaves was 

monitored 3 days post infiltration (dpi) with a hand-handled UV lamp and photos taken with a 

Canon Power shot A710IS digital camera, using the high fluorescent setting. For the miRNA 

based sensor constructs, experiments were performed as previously described (Chapter 5).    

 

Northern blot analysis 

RNA extraction was performed as described previously (Bucher et al., 2004), and 7 µg of total 

RNA was mixed with formaldehyde loading buffer, heated for 5 minutes at 70°C and 

separated on an 1% agarose gel. The RNA was transferred onto a Hybond-N membrane 

(Pharmacia-Biotech) followed by UV-cross linking. 

 For the miRNA1 and siRNA detection, 5 µg RNA enriched for small RNAs (Hamilton & 

Baulcombe, 1999) was separated on a 20%, 0.5x TBE denaturing acrylamide gel. Following 

separation, the RNA was electro-blotted onto Hybond-N+ (Pharmacia-Biotech) and cross-

linked by UV-light. Hybridization was performed overnight at 48°C in modified church buffer 

(0.36 M Na2HPO4, 0.14 M NaH2PO4, 7% (w/v) SDS, 1 mM EDTA) with either a eGFP or 

miRNA1 specific DIG-labeled DNA probe. The blots were washed briefly for three times with 

2x SSC and three times for 15 minutes with 2x SSC supplemented with 0.2% (w/v) SDS at 

48°C. The labeled probe was detected by Western blo t analysis using a DIG-specific antibody 

conjugated to alkaline phosphatase in blocking buffer (maleic acid buffer + 1% blocking 

reagent) and CSPD as substrate (Roche) according to the manufacturer’s recommendations. 

For the detection of miRNA171 in tospoviral-infected extracts 5-15 µg small RNA was loaded 

onto an 12%, 1x TBE denaturing gel, electro-blotted onto Hybond-N+ (Pharmacia-Biotech) 

and hybridized overnight at 50°C in hybridization b uffer (1 mM EDTA, 0.36 M Na2HPO4, 0.14 

M NaH2PO4, 7% (w/v) SDS) using locked nucleic acid probes (2 µg). Probes specific for 

miRNA171c or miRNA171c* were labeled using polynucleotide kinase and gamma32P-ATP. 

Following hybridization, blots were washed briefly with 2x SSC, 0.2% (w/v) SDS, 2x 20 min 

with 2x SSC, 0.2% (w/v) SDS and 1x 20 min with 1x SSC, 0.1% (w/v) SDS at 50°C. Blots 
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were exposed to a phosphor screen and scanned (Molecular Dynamics Typhoon 

Phosphorimager, Amersham Biosciences). Stripping of blots was performed at 85°C using 

200 ml buffer containing 1 mM EDTA and 0.1% (w/v) SDS for 15 min and used for 

subsequent hybridization experiments. 
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Over recent years it has become clear that RNA silencing is present in a variety of organisms 

and involved in a number of essential cellular processes. These include developmental gene 

regulation, silencing of transposons and antiviral responses. To counteract antiviral RNA 

silencing, viruses have evolved RSS proteins, which specifically interfere with the established 

antiviral RNA silencing pathways in plants and insects. A large proportion of plant and insect 

viruses have been found to encode at least for one RSS protein (reviewed by Csorba et al. 

2010). In this thesis the interaction between the RSS proteins of the tenuivirus RHBV and the 

tospovirus TSWV, respectively NS3 and NSs, with distinct RNA silencing pathways in 

different organisms are investigated. Using in vitro RNA affinity studies and various reporter-

based RNA silencing assays for distinct RNA silencing pathways (notably the siRNA pathway, 

the miRNA pathway and the endo-siRNA pathway), the targets of RHBV NS3 and tospovirus 

NSs interference have been identified. Figure 7-1 summarize this. Moreover, the results 

obtained with the plant-infecting tospovirus (Bunyaviridae) will be discussed in this chapter in 

light of the evolutionary relation between plant- and animal-infecting viruses within the family 

Bunyaviridae, and the possible role of the RNA silencing response as antiviral defense in 

vertebrates, more specifically mammals. 

 

Tenuiviral NS3 and tospoviral NSs proteins act as RSS by binding dsRNA  

The RHBV NS3 and TSWV NSs exhibit RSS activity due to their affinity to small dsRNA 

molecules, i.e. siRNA and miRNA/miRNA* duplexes (Chapter 2, 4, 6: Hemmes et al. 2007), 

and for TSWV to some extent also to long dsRNA. Since long and short RNA duplex 

molecules play highly conserved key roles in the RNA silencing pathways in different 

organisms (Deleris et al., 2006, Gasciolli et al., 2005, Lee et al., 2004a) both viruses are 

potentially capable to counteract antiviral RNA silencing both in plants and the insect vector in 

which they replicate (Falk & Tsai, 1998, Ramirez et al., 1993, Ramirez et al., 1992, Wijkamp 

et al., 1993). This has been observed using transient reporter based assays for their 

respective RSS proteins in both types of organisms (Bucher et al., 2003, Hemmes et al., 

2007, Reavy et al., 2004, Chapter 5 & 6). 

Recent reports suggest that siRNAs can act as systemic signal molecule in plants (Dunoyer & 

Voinnet, 2009) and in insects (Fragkoudis et al., 2009). This potentially enables NS3 and NSs 

to interfere at three different steps in the RNA silencing pathway by sequestering a single key 

molecule: siRNA. These effects include local silencing in the infected cell, systemic silencing 

and primer dependent amplification of the silencing signal (Baulcombe, 2004, Cogoni & 

Macino, 1999a, Dunoyer & Voinnet, 2009, Sijen et al., 2001, Vaistij et al., 2002).  

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1:  Schematic representation of the siRNA and miRNA pathway in plants and the interference (indicated by “stop”) of rice hoja blanca virus NS3 and tomato spotted wilt virus 
NSs with these pathways. Question marks indicate possible points of interference. 
RISC, RNA induced silencing complex; DCL, Dicer-like protein; Ago, Argonaut protein; vRdRp, viral RNA-dependent RNA polymerase; hRdRp, host-encoded RNA-dependent RNA-
polymerase; NS3; non structural protein 3; NSs, non structural protein - S RNA segment encoded. 
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Whereas RHBV NS3 and tospoviral NSs have not yet been reported to suppress systemic 

silencing, the tenuivirus RSV NS3 protein has been shown to efficiently suppress systemic 

and local RNA silencing. The 173KKR175 region in RSV NS3 (Xiong et al., 2009) is thereby 

critical and coincides with the position of a highly conserved triple lysine cluster in most other 

tenuivirus NS3 proteins, including RHBV. For RHBV, this region had earlier been shown to be 

required for small dsRNA (siRNA and miRNA/miRNA*) binding and crucial for its local RSS 

activity (Chapters 2-5). RSV NS3 is the only tenuivirus not encoding this triple lysine cluster, 

but instead contains two lysines and an arginine (173KKR175) (Xiong et al., 2009). These 

provide again three polar amino acids predicted to be a canonical RNA binding domain 

(online tool BindN). In analogy to RSV, RHBV NS3 is also expected to suppress systemic 

silencing and amplification of the silencing signal, due to its siRNA binding capacity. The 

ability to suppress systemic silencing is important for a successful viral infection, as previously 

demonstrated and described for the RSS proteins of several plant viruses like P25 of PVX 

and 2b of CMV unrelated to tenuivirus and tospovirus (Voinnet et al., 2000, Ye et al., 2009).   

In contrast to NS3, TSWV NSs showed affinity to both long and short dsRNA molecules 

(Chapter 6). This enables the protein to interfere at an additional distinct step of the antiviral 

RNA silencing pathway: Dicer cleavage of long dsRNA into siRNA and like NS3, preventing 

siRNA incorporation into RISC and interfering with the systemic, transitive and local RNA 

silencing. Such a size-independent RNA binding has hitherto only been reported for two other 

plant viral RSS proteins, CP (P38) of TCV and P14 of Aureusvirus (Merai et al., 2006).  

Tospoviruses, like TSWV, belong to the family Bunyaviridae and represent the only genus 

within this family containing members that infect plants instead of mammals. It is not clear 

why TSWV and some other tospoviruses (GRSV and INSV) bind both long and short dsRNA 

whereas another tospovirus strain, TYRV, only revealed affinity to siRNAs (Chapter 6). In 

mammals, long dsRNA is not only a potential Dicer substrate but also activates the protein-K 

response (PKR), resulting in IFN production and an activated antiviral state in the cell 

(reviewed by Gantier & Williams, 2007). Recent results have suggested a similar role of 

dsRNA in Drosophila, interacting with Dicer to not only induce the RNA silencing response but 

also other antiviral innate immune responses like the JAK-STAT pathway, mediated via the 

Vago protein (reviewed by Kemp & Imler, 2009). Tospoviruses thereby might benefit from 

their long dsRNA affinity and counteract two different antiviral pathways in insects (RNA 

silencing and e.g. Jak-STAT). The fact that all tested tospovirus NSs proteins revealed a 

higher affinity to siRNA molecules than to long dsRNA raised the question of a biological 

relevance of long dsRNA binding during a natural infection in plants and insects. This 

relevance is supported by out-competition of long dsRNA by siRNA molecules in in vitro 

competition experiments (Chapter 6). It is possible that the affinity to long dsRNA is a remnant 

activity derived from a viral ancestor, where binding of long dsRNA possibly had another 

biological function.  

A growing number of RSS proteins and their modes of action have been identified over the 

last years (Csorba et al., 2009) and the picture emerges that most of these, like RHBV NS3, 
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act by size-specific siRNA binding (Merai et al., 2006). A small proportion of the RSS proteins 

acts by specific interactions with proteins of the RNA silencing pathway, like CMV 2b that 

interacts with AGO1 and AGO4,  polerovirus P0 that induces degradation of AGO1 or TCV 

CP interacting with AGO1 through its GW domains (Azevedo et al., 2010, Csorba et al., 2010, 

Gonzalez et al., 2010). Mostly, however, these protein interactions are properties in addition 

to the binding of dsRNA molecules (e.g. siRNA in case of CMV 2b) and not essential for the 

local RSS activity, as recently shown for CMV 2b (Gonzalez et al., 2010). Although 

speculative, it is possible that protein-protein interactions are needed for additional roles of 

the RSS protein during viral infection, like interactions with other antiviral pathways (e.g. 

salicylic acid) (Ji & Ding, 2001). Besides, viruses that rely for their RSS protein activity solely 

on protein-protein interactions may faster generate host escape mutants. However, despite 

overlapping functions no sequence homology between RSS proteins of different virus families 

was found. Although often similar amino acids (polar and positive) play an important role in 

binding, the mechanism and requirements to bind to the dsRNA can be rather different. For 

those RSS proteins with a known crystal structure, i.e. tombusviral P19 and closteroviral P21 

binding occurs in a different fashion, i.e. P19 acts as a dimer whereas P21 forms octomeric 

rings. Furthermore, both proteins recognize different parts of the dsRNA molecule: P19 

requires the typical two nucleotide single stranded overhangs of siRNAs, whereas P21 

requires an overall alpha-helical structure of dsRNA (Vargason et al., 2003, Ye & Patel, 

2005). Even RSS proteins within the same taxon, e.g. those from the Tombusviridae, appear 

to have adopted different strategies to suppress RNA silencing (Figure 1-3). A similar 

observation has been made for the tospoviral NSs proteins, which have shown affinity to long 

and short dsRNA in case of TSWV, GRSV and INSV but only a size-specific, siRNA binding 

for TYRV (Chapter 6). This discrepancy in RSS activity, even for closely related viruses is 

unexpected but interesting in light of the fact that on the one hand the RNA silencing pathway 

is considered to be evolutionary ancient and on the other hand these viruses have an 

ancestral relation to the animal-infecting bunyaviruses. 

This brings up the question of how RSS proteins have evolved; by independent (convergent) 

evolution or by co-evolution? Like many proteins encoded by the condensed small genomes 

of plant viruses, RSS proteins are often multifunctional proteins and may already harbor an 

affinity to nucleic acids as a requirement for functions in e.g. viral replication, movement or 

encapsulation. In such a case only slight adaptations may lead to the involvement of a RSS 

protein that acts by binding dsRNAs (reviewed by Li & Ding, 2006). This would be called 

independent (convergent) evolution of RSS proteins. In case of RHBV NS3 thus far no 

additional functions have been reported, whereas for the TSWV NSs protein it has been 

speculated that it acts as poly-A-binding protein (PABP) analogue during viral infection (van 

Knippenberg, 2005). Overall, the data obtained on tospoviruses seem to support the idea that 

RSS proteins arose by co-evolution. Tospoviruses represent the only plant infecting genus 

within the family of animal-infecting Bunyaviridea.  



Chapter 7   

 - 102 - 

All their members have membrane-bound viral particles with two glycoproteins. Their viral 

RNA genomes are all tripartite and share significant sequence homologies between the viral 

RdRps and glycoproteins, which suggest that these viruses likely evolved  from an ancestral 

virus originally replicating in mammals or (vector) insects (de Haan et al., 1991, Kormelink et 

al., 1991). In light of the fact that long dsRNA can also induce antiviral pathways distinct of 

RNA silencing (Gantier & Williams, 2007, Kemp & Imler, 2009) in mammals and possibly 

even in insects, the affinity to long dsRNA observed for the NSs protein of only a subset of the 

tospoviruses may reflect an ancient relic retained in some members, but lost in others.  

 

Do NSs proteins of mammal-infecting viruses of Bunyaviridae act as RNA silencing 

suppressor in their vertebrate and insect hosts?  

The presence of RSS activity for tospoviral NSs proteins raised the question whether animal 

infecting counterparts from the Bunyaviridae would also encode RSS proteins. Most of these 

viruses are arthropod-borne and transmitted by mosquitoes, ticks and phlebotomine flies, and 

replicate in both the mammalian host and insect vector. As a consequence, they encounter 

(at least) antiviral RNA silencing in the insect vector and the antiviral interferon response in 

mammals upon infection. Until now, no RSS proteins have been identified in arboviruses, 

although several viral proteins have shown interference with the innate immune response in 

mammals (e.g. JAK-STAT and IFN pathway) (reviewed by Fragkoudis et al., 2009; Fros et al., 

2010 In Press).  

Members of only two of the four genera of animal-infecting Bunyaviridae encode a paralogue 

of the NSs protein (Orthobunya- and Phlebo-virus) while only those of the phleboviruses are 

coded at a genomic position (Figure 7-2) analogous to those from the tospoviruses. However, 

plant based RSS assays of representatives, i.e. Rift valley fever virus (RVFV) (Phlebovirus), 

La Crosse virus (LACV) or Bunyamwera virus (Orthobunyavirus) did not reveal any RNA 

silencing suppressor activity for their NSs protein paralogues. Since their expression could 

not be verified due to the lack of corresponding antibodies (data not shown; Bucher, 2006), 

these data still have to be regarded as preliminary.  
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Figure 7-2:  Schematic overview of the viral S-RNA segments of the type species of the five genera of the 
Bunyaviridae. 
The RNA silencing suppressor (RSS) protein, NSs of Tomato spotted wilt virus (TSWV) is indicated as grey 
box. NS, non-structural protein; N, nucleocapsid protein; RVFV, Rift valley fever virus; LACV, La Crosse virus. 
 

 

While for LACV and Bunyamwera NSs no significant RSS activity was observed in insect 

cells, using either short hairpin or in vitro transcribed long dsRNA as inducer, an overall 

reduction in reporter protein expression appeared (Figure 7-3). This is possibly due to a NSs 

induced host shutoff. Earlier published results on RSS activity assays for RVFV NSs using 

various cell systems (plant, insects and mammals) showed similar results. In which NSs was 

only demonstrated to act as “true” IFN antagonist by suppressing type I interferon induction, 

via modulation of the basal host transcriptional machinery (Blakqori et al., 2007, Bucher, 

2006, Garcia et al., 2006). Surprisingly, a strong RSS activity of RVFV NSs was observed if 

shRNA was used as an inducer molecule, but lacking in case of in vitro transcribed dsRNA 

(Figure 7-3). In agreement with earlier reports, this suggested that the RSS activity was 

merely an effect of down regulation of host transcription. 

In contrast, the NSs protein of the shrimp infecting Mourilyan virus (MoV), a recently 

discovered and as yet unclassified virus with strong structural similarities to the Bunyaviridae, 

tested positive for RSS activity in insects cells similar to TSWV-NSs (Figure 7-3).  
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Figure 7-3:  RNA silencing suppressor activity of bunya virus(-like) NSs proteins in insect cells 
To measure the effect of different NSs proteins (TSWV, MoV, Bunyamwera, LACV and RVFV) of viruses 
established or tentatively belonging to the Bunyaviridae, on the siRNA pathway, S2 cells were co-transfected 
with a pMT-Renilla, pMT-Firefly (Fluc), and either specific (shFluc) or unspecific (sh-scrambled) short hairpin 
RNA (panel A) in concert with either pIB-MBP, -RHBV NS3, TSWV NSs, MoV NSs, Bunyamwera NSs, LACV 
NSs, RVFV NSs or DCV 1A. After induction at 48 hpt, relative luciferase expression (Firefly/Renilla) was 
determined 72 hpt and the mean of at least two independent experiments is shown with standard error (panel 
A). The effect on dsRNA induced silencing was determined by repeating experiments from panel A, but this 
time adding in vitro transcribed dsRNA as inducer molecule, either specific (dsFluc) or unspecific (ds-
scrambled) to the medium at 48 hpt. Expression was induced 55 hpt, relative luciferase expression 
(Firefly/Renilla) was determined 72 hpt and the mean of at least two independent experiments is shown with 
standard error bars (panel B). TSWV, Tomato spotted wilt virus; MoV, Mourilyan virus; LACV, La Crosse virus; 
RVFV, Rift valley fever virus; NSs, non-structural protein encoded by the s-RNA segment; MBP, maltose 
binding protein; RHBV, rice hoja blanca virus; hpt, hours post transfection; DCV, Drosophila C virus; dsRNA, 
double stranded RNA; hpt, hours post transfection 
 

Collectively, these results did not only show the sensitivity of many commonly used reporter 

based assays, but additionally stressed the importance to be cautious while interpreting 

results from such assays. This is being strengthened by the initial report on RSS activity of 

LACV NSs during siRNA-induced silencing in mammalian cells that recently became disputed 

due to a study that only reported interferon antagonistic activity (Blakqori et al., 2007). In light 
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of this observation it is interesting to note that seemingly contradictory results have been 

observed for RHBV NS3 on the miRNA pathway in insect cells (Chapter 5), but which finally 

appeared to be due to a concentration dependent effect. This concentration dependency 

likely explains also the observed lack of RSS activity of RHBV NS3 and tombusvirus P19 

when (an excess amount of) in vitro transcribed dsRNA was used as inducer instead of 

plasmid encoded shRNA (data not shown). The sensitivity and contradictory results observed 

with reporter based assays, stresses the importance of experiments in a viral context to 

resolve the RSS activity of bunyaviral NSs proteins. Attempts are currently made on this point 

(in collaboration with Prof. Dr. R. Elliot, St. Andrews, UK) to exchange Bunyamwera NSs for 

RHBV NS3 or TSWV NSs, but these experiments have thus far not been successful. 

 

Antiviral RNA silencing and suppression in mammals 

A hallmark of antiviral RNA silencing in plants and insects is the accumulation of virus-derived 

siRNAs (Hamilton & Baulcombe, 1999, Li et al., 2002). These molecules have not yet been 

identified in mammalian cells infected with a wide range of human viruses (Pfeffer et al., 

2004). Recently such molecules were described in low concentrations for several 

endogenous and exogenous viruses using deep sequencing (Bennasser et al., 2005, 

Parameswaran et al., 2010, Soifer et al., 2005, Yang & Kazazian, 2006), but the significance  

and biological activity of these findings is still being debated (Lin & Cullen, 2007).  

Accumulating evidence exists in support of antiviral RNA silencing in mammalian cells, but 

most probably not involving siRNA molecules. In case of HIV-1, a positive effect of 

knockdown of specific RNA silencing proteins (e.g. Dicer and Drosha) on the virus production 

has been demonstrated (Triboulet et al., 2007). The observed trans-complementation of   

HIV-1 Tat protein by NS3, but not the NS3 mutant, regarding virus production support the 

targeting of HIV-1 by the RNA silencing pathway. The fact that NS3 and HIV-1 Tat could also 

interfere with the miRNA pathway in mammalian cells (Chapter 4) supports a possible role of 

the miRNA pathway in antiviral defense. This idea is more and more supported by 

experimental evidence reported over the years. Firstly, virus-associated (VA) RNAs encoded 

by the adenovirus DNA genome are exported out of the nucleus and compete with pre-

miRNAs for Exportin-5 dependent nuclear transport (Lu & Cullen, 2004). In addition, their 

subsequent cleavage by Dicer into small dsRNA molecules, and uploading into RISC leads to 

oversaturation of RISC and interference in the RNA silencing pathway (Andersson et al., 

2005). Next to this, VA1 RNA also inhibits PKR activation by binding to it. As such VA RNAs 

function dually in two different pathways (Mathews & Shenk, 1991). Interestingly, the 

significant decrease in replication of mutant adenoviruses lacking these RNAs could be 

restored in trans by two other small RNAs coded by Eppstein-Barr-virus, strengthening the 

importance of structure rather than sequence of these VA RNAs (Bhat & Thimmappaya, 

1983).  Secondly, HIV-1 is indirectly inhibited by the expression of certain miRNAs cluster that 

down-regulate host proteins regarded as essential for a successful viral life cycle. On this 

point differences in miRNA expression patterns have been observed in HIV-1 infected cells 
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compared to non-infected cells (Triboulet et al., 2007, Yeung et al., 2005). Application of 

specific miRNA inhibitors to these cells reversed HIV-1 latency (Zhang, 2009).  Until now, 

similar antiviral effects of cellular miRNAs, either directly targeting viral RNA or indirectly by 

down regulating important host proteins have only been reported for viruses able to 

persistently infect mammalian cells (e.g. retroviruses and herpes viruses) (reviewed by 

Ouellet & Provost 2010). The question if miRNAs also target other viruses, including plant and 

insect viruses, still remains to be answered. Computer prediction has identified several viral 

RNAs with potential human miRNAs binding sides, e.g. miR-507 and miR-136 targeting 

Influenza A virus Polymerase B2 and hemaglutinin genes, respectively (Scaria et al., 2006). 

Another potential of the miRNA pathway could be the possibility of a systemic (antiviral) signal 

in mammals. Recent studies on this point have revealed the secretion of miRNAs, either viral 

or host encoded, via exosomes and multivesicular bodies (Bennasser et al., 2005, Gibbings 

et al., 2009, Jopling et al., 2005, Omoto et al., 2004, Pegtel et al. 2010).   

Evidence against the idea of antiviral miRNA activity comes from HCV which depends on the 

presence of the liver specific miR-122 for successful viral replication but also from HIV-1 

which has been shown to encode several miRNAs itself (Bennasser et al., 2005, Jopling et 

al., 2005, Omoto et al., 2004). Although it does not rule out the possibility of an antiviral 

miRNA pathway, in both cases the virus would not benefit from suppression of the miRNA 

pathway by viral encoded RSS proteins. More detailed experiments show that the HIV-1 

encoded miRNAs suppress the Nef function, resulting in a lower HIV-1 virulence (Bennasser 

et al., 2005). This, together with the differences in host encoded miRNA expression profile in 

HIV-1 infected cells, would indicate that miRNAs are an important regulator for a persistent 

infection of HIV-1. The low expression of the proposed RSS, Tat,  in persistently infected cells 

supports this (Triboulet & Benkirane, 2007, Triboulet et al., 2007, Yeung et al., 2005). Other 

viruses producing persistent infections and belonging to the Herpesvirus group have been 

reported to encode several viral miRNAs, possibly targeting cellular and viral RNA, which are 

suggest to play also a role in their persistent infections (reviewed by Ouellet & Provost 2010). 

Overall it is likely that mammalian viruses have to cope with multiple (antiviral) pathways 

(innate immune response by IFN, siRNA and miRNA-mediated pathway), some which have a 

primary antiviral function while others due to e.g. structural similarities overlap and side 

effects appear to end up antiviral too.  

Recent studies suggest links between the IFN response and the RNA silencing machinery, 

specifically with the miRNA pathway. In one study, host miRNAs were shown to positively 

regulate IFN-beta production (Witwer et al., 2010) whereas IFN-beta induction in HCV-

infected cells triggered the expression of host miRNAs that negatively-regulated viral 

replication (Pedersen et al., 2007). In a second study, IFN-induced RNA editing enzymes 

(ADARs) altered the miRNA target-specificity (Ohman, 2007). In a third study, several 

proteins were identified to have an important role in the RNA silencing pathway, e.g. TAR 

binding protein (TRBP) interacting with Dicer, have also been described as IFN-effector 

(Bennasser et al., 2006, Gatignol et al., 2005). A similar interaction has recently been 
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reported in insects between Dicer and Vago, a protein that is involved in the induction of an 

antiviral state (Kemp & Imler, 2009). Regarding the interplay between miRNA pathway and 

IFN response it may not be surprising that many RSS proteins from mammalian viruses are 

reported to antagonize both. Thus, it seems that the miRNA pathway or at least some 

miRNA/miRNA* duplexes have the potential to act antiviral, but how this acts precisely 

remains enigmatic. It is unknown whether the biological relevance of this interplay occurs for 

all mammalian infecting viruses or only for a hand full.  

 

Are there antiviral miRNAs in plants and insects? 

Whereas the idea of an antiviral miRNA pathway or at least miRNAs acting antiviral against 

mammalian virus infections is slowly becoming accepted, nothing is known on antiviral 

miRNA activity against plant and insect viruses. RHBV NS3 was shown to harbor a similar 

high affinity for miRNA/miRNA* duplexes as for siRNAs and interfered with miRNA regulatory 

pathway in plants, insect and mammalian cells (Chapters 3, 4 & 5). Whether these 

interactions are a specific response to counteract antiviral miRNAs or are just due to 

structural similarities between siRNA and miRNA/miRNA* duplexes is still not known. Several 

findings support interplay between the miRNA pathway and the antiviral 21 nt siRNA pathway 

in plants, giving a possible advantage for viruses to interfere with the miRNA pathway. 

For example, in healthy plants AGO1 is normally loaded with mature miRNAs, however in 

virus infected plants it is known as important factor for the antiviral RNA silencing response. 

The observed interaction between two RSS proteins (CMV 2b and polerovirus P0) and plant 

AGO1 (Csorba et al., 2010 ,Gonzalez et al. 2010) further supports this interplay between 

siRNA and miRNA pathway. In addition, some findings point to a possible antiviral activity of 

the miRNA pathway or at least some miRNA molecules itself. Computer analysis revealed the 

presence of several 20-25 nt long sequences, probably expressed as miRNA molecules, in 

Arabidopsis with complementarities to plant viral genomes as potential interactive sequences. 

Several rice miRNAs, shown to be DCL1 dependent and detected by Northern blot analysis in 

different rice tissues, have been predicted to target parts of the RHBV RNA (Hemmes, 2007, 

Liu et al., 2005), i.e. the miRanda program (Enright et al., 2003) showed a possible target for 

the miR-528 in the nucleocapsid (N) gene of RHBV. If this viral sequence is targeted in vivo 

during a natural RHBV infection of rice, miRNA/miRNA* duplex binding by NS3 could prevent 

the RHBV N-gene transcript from becoming translationally arrested or degraded. After all a 

translational arrest would lead to lower expression of the N gene, and thereby in a decrease 

of viral replication activity, because RNA polymerases of negative strand RNA viruses are 

dependent on the concentration of nucleocapsid proteins (Meyer et al., 2002). Targeting the 

RHBV N gene would thus enable rice plants to resist RHBV infections. Until now, no miRNAs 

in planthoppers have been published. Whether antiviral miRNA activity against RHBV in 

plants and insects exists, thus still remains to be analyzed.  

The same applies to the analyses on tospovirus NSs protein, which was shown to potentially 

interfere with the miRNA pathway in plants and insect cells (Chapter 6). Due to limited reports 
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on identified miRNAs in tomato only a few possible hits between tomato miRNAs and TSWV 

RNA transcripts could be predicted (Gu et al., 2010, Pilcher et al., 2007; Sanger miBase). 

One prediction identified the Sly-miR399 to target the TSWV movement protein transcript 

(NSm). This miRNA was of special interest because of its high degree of complementarities at 

the 5` end (seed region) with the NSm target (energy < -20 kCal/Mol) and expression, in A. 

thaliana, in all tissues  and in tomato at least in the roots and leaves (Gu et al., 2010, Sunkar 

& Zhu, 2004, Zhang et al., 2008). Targeting the NSm transcript could block viral spread and 

thereby diminish or localize viral infection (Kormelink et al., 1992, Prins et al., 1997, Storms et 

al., 1995). Another hit of interest is Sly-miR169c and as predicted target the TSWV 

glycoprotein precursor transcript (5`end seed region & energy < 20 kCal/Mol). Although 

targeting the glycoprotein precursor transcript would not abrogate nor decrease viral infection 

and spread, it would result in a lower titer of mature virus particles and as a consequence to 

lower transmission rates. Research in A. thaliana showed the expression of the homologues 

miRNA molecule (Ath-miR169) in seeds, stem and flowers of 4 week old plants and 

seedlings, but nearly undetectable in leaves (Moxon et al., 2008, Reinhart et al., 2002). 

Whether the same expression profile applies to tomato is unknown, although recent data 

reports expression of miRNA 169 in roots of tomato and at least miRNA 169g is expressed in 

the leaves (Gu et al., 2010). Similarly to the situation for plant hoppers, the same applies to 

the thrips, insect vector of TSWV, for which no information on miRNAs is yet available 

(Sanger miBase).  

Besides a direct antiviral role of miRNAs during RHBV or TSWV infection, additional indirect 

effects of miRNAs via host gene regulation, important for virus replication are possible. To 

date there is no evidence to substantiate or disprove this assumption. However, if so, RHBV 

and TSWV would benefit from binding siRNA and miRNA/miRNA* duplexes in multiple ways. 

The fact that for RHBV NS3 the same amino acids are important for binding siRNA and 

miRNA/miRNA* duplexes (Chapter 2) and required to maintain RSS activity would suggest 

that NS3 interferes in the same way with several RNA silencing pathways during viral 

infection. This is in contrast to several other RSS proteins, where a more distinct interaction 

with several (antiviral) RNA silencing pathways has been reported, e.g. for potyvirus Hc-Pro.  

 

Interplay between other small dsRNA pathways and vi ral infections in plants?  

For most RSS proteins, no interacting is known with other RNA silencing pathways or if 

established, the resulting effect on viral infection is lacking. In case of CMV 2b interactions 

with AGO1, AGO4 and siRNAs, involved in different RNA silencing pathways, have been 

demonstrated, but for which only the interaction with siRNAs was important for its RSS 

activity on local silencing (Gonzalez et al. 2010). The NLS in CMV 2b is not important for the 

local RSS activity but could be related to induction of severe viral symptoms in plants 

(Gonzalez et al. 2010). This observation could possibly be explained by the fact that DCL3-

dependent 24 nt siRNAs, in combination with AGO4 and normally important in host DNA 

methylation, are located in the nucleus and CMV 2b needs nuclear localization to interact with 
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AGO4. These AGO4/DCL3 dependent 24 nt siRNAs, have been shown to inhibit viral 

transduction in case of R-gene mediated plant disease resistance, affecting viruses not 

carrying an avirulent gene and linking RNA silencing and R-gene mediated responses 

(Bhattacharjee et al., 2009). These findings, give a possible explanation for the interaction of 

RSS proteins and different RNA silencing pathways, distinct of the known antiviral 21 nt 

siRNA pathway.  

Whether RHBV NS3 or TSWV NSs also interfere with other pathways, besides the 21 nt 

siRNA and miRNA pathway and whether there is an effect of this possible interaction on the 

viral infection, is not known. However, RSV NS3 has been reported to encode a NLS and at 

the same 173KKR175 region as is predicted for RNA binding (Xiong et al., 2009). For RHBV 

NS3, although predicted, no nuclear localization was observed in mammalian and insect cells 

(data not shown), but no information is present for a natural viral infection in plants. 

 

Do endo-siRNAs act antiviral? 

The endogenous siRNA pathway has been reported in insect and mammalian cells to be 

important in silencing of transposons in non-germline cells (Chung et al., 2008, Czech et al., 

2008, Ghildiyal et al., 2008, Kawamura et al., 2008, Okamura et al., 2008a, Tam et al., 2008, 

Watanabe et al., 2008a, Watanabe et al., 2008b). Endo-siRNAs have the same biochemical 

properties as viral siRNAs molecules. Therefore it was not surprising that in Drosophila, either 

for homologous (FHV B2) or heterologous (tombusvirus P19) proteins RSS activity has been 

observed on the endo-siRNA pathway (Berry et al., 2009). However, no RSS activity on the 

endo-siRNA pathway could be observed for RHBV NS3 (Chapter 5), even though high 

binding affinity to endo-siRNAs was anticipated. It is likely that these analyses turned out to 

be negative in light of the fact that the concentration of endo-siRNAs in the assays performed 

was relatively high while NS3 expression may have been relatively low to cope with these 

endo-siRNA amounts. Since tombusvirus P19 (positive control) also revealed a lack of RSS 

activity in the assay performed with RHBV NS3, the presence of RSS activity on endo-siRNAs 

can not be excluded yet. Until now, no antiviral activity has been linked to the endo-siRNA 

pathway and it is likely that the interaction between RSS and endo-siRNAs is due to the high 

structural similarities between viral- and endo-siRNAs. Next to their role in the cytoplasm, 

endo-siRNAs have recently been shown to be involved in TGS in the nucleus resulting in 

heterochromatin formation in somatic tissue in Drosophila. FHV-B2 and nuclear localized 

tombus-virus P19 interfered with this TGS by binding either the precursor molecules of endo-

siRNAs (FHV-B2) or mature endo-siRNAs (tombusvirus P19) (Fagegaltier et al., 2009). It is 

not yet known if TGS in insects or plants has a potential antiviral activity for viruses replicating 

in the cytoplasm like TSWV and RHBV. The observed interaction of CMV, which replicates in 

the cytoplasm, with parts of the TGS machinery (AGO 4) leading to abolishment of DNA 

methylation (Gonzalez et al. 2010), suggests a possible role in antiviral defense, either direct 

or indirect (e.g. affecting host gene expression). A direct antiviral effect would make sense for 

DNA viruses replicating in the nucleus like the insect baculoviruses. Small dsRNA derived 



Chapter 7   

 - 110 - 

from overlapping baculovirus gene transcripts could theoretically act antiviral, either in the 

cytoplasm or exported back into the nucleus targeting the baculovirus DNA genome in a 

similar way as reported for the endo-siRNAs and the heterochromatin formation. No antiviral 

RNA silencing response, either post transcriptional or transcriptional, has yet been reported 

for baculovirus infection in insects. In plants antiviral activity of, resulting in TGS has been 

reported (reviewed by Raja et al. 2010). 

Whether the endo-siRNAs have a potential to play a role in antiviral defense in mammalian 

cells remains to be elucidated. In light of this it is interesting to note that during retrovirus 

infections integration of the viral genome into the host genome occurs. As retro-transposon 

elements are suggested to originate from retrovirus infections and silenced by endo-siRNAs, 

an antiviral activity of the endo-siRNA pathway is not unlikely. 

 

Concluding remarks and outlook 

During this course of the work described in this thesis, the mode of action of the RSS proteins 

NS3 and NSs from two plant-infecting negative stranded RNA viruses, RHBV and TSWV 

respectively have been investigated by means of biochemical analysis and reporter-based 

assays. In conclusion, both RSS proteins, RHBV NS3 and tospovirus NSs, interact in a 

similar way with different RNA silencing pathways in several organisms by interaction with 

dsRNA, key molecules of all these pathways (Chapter 2 - 6). Interestingly, NSs proteins of 

different tosposvirus species showed slight divergence in affinities for dsRNA molecules, 

pointing to co-evolution of these RSS proteins (Chapter 6).  

This information about the mode of action of RSS proteins and their point of interference in 

the RNA silencing pathways could give more detailed insight into the different small dsRNA 

pathways in the hosts. Furthermore, detailed information about the RNA silencing pathways 

can be extrapolated to use them in other applications, e.g. transgenic virus resistant 

organisms using engineered dsRNA molecules and detailed information between    

vector/host - virus interaction. Biochemically well-characterized RSS proteins could be further 

used as tools to gather more information about RNA silencing pathways in other organisms 

(e.g. humans) as described for RHBV NS3 (Chapter 4). Another application could be the 

increase in e.g. protein or virus particle production normally restricted by RNA silencing in 

different organisms. The information presented in this thesis, that both RSS proteins bind 

dsRNA molecules in vitro and at least for RHBV NS3 this affinity was crucial for its RSS 

activity represent important insight in their mode of action as RSS proteins (Chapters 2 - 6). 

To give a final answer about their activity and interaction with the vector/host pathways during 

a natural infection more research is needed. This section will focus on the direct follow up 

experiments resulting from the findings obtained during this thesis research. One of the major 

questions would be to determine the relevance of the reported results in real life: in virus 

infection and transmission in nature.   

First, the observed in vitro binding affinity of NS3 and NSs to the different RNA molecules 

should be proven during a natural infection to support their biological relevance.  Comparison 
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of the bound RNA in insect vector versus plant host can even give information if the RNA 

silencing response targets the same part of the virus in insects and plants. Information would 

be obtained to answer the question what is the source (secondary structures in genomic/ 

transcript RNA or dsRNA replication intermediates) and frequency of viral siRNAs of negative 

stranded RNA viruses in insects and plants. By using mutant viruses lacking the 

corresponding RSS protein (NS3 or NSs) during this analysis, the importance of the RSS 

protein and their biological activity would be further elucidated. These results could be placed 

in the overall picture of RNA silencing (induction), using data already known for other RNA 

viruses (Aliyari et al., 2008, Yan et al., 2010).   

Second, the observed interference of NS3 and NSs with the (induced-) miRNA pathway in 

plants and insects should be first confirmed in whole organisms and later during a natural viral 

infection to understand the biological relevance.  

At the moment the relevance of the interaction between RSS proteins and the miRNA 

pathway is undecided. Therefore, the efficiency of RHBV and TSWV viral infections in plants 

and insects deficient in the miRNA pathway (i.e. knockdown of Dicer-1, Drosha or DCL-1) 

compared to wildtype should be determined. To investigate the relevance of the predicted 

antiviral activity of certain miRNAs (e.g. Os-miR-528 for RHBV and Sly-miR-399 or Sly-miR- 

169c for TSWV), specific miRNAs inhibitors could be applied and the effect on either transient 

expressed viral RNA transcript level or RSS negative virus could be observed in e.g. 

protoplasts.  

Third, more biochemical analysis of NS3 and NSs is needed to point out the importance of 

certain interaction with the host/vector, regarding the outcome of the infection. Attempts have 

been made to characterize domains important for the reported RSS activity and at least for 

NS3 a triple lysine cluster has been shown to be important for small dsRNA binding and RSS 

activity (Chapters 2 - 4). More analysis should be performed to determine other possible 

host/vector and viral interaction partners, e.g. by co-immunoprecipitation and mass 

spectrometry. For domain characterization either unbiased alanine scan mutation analysis 

could be performed or directed mutagenesis after solving the crystal structure of NS3 and 

NSs. 

In conclusion, it is clear that the research of RNA silencing and silencing suppression is a still 

growing field and will be the focus of many further research projects. It becomes obvious that 

the different RNA silencing pathways are connected and interference with one will influence 

the others (Azevedo et al., 2010). In light of this, the mode of action of RSS proteins should 

be investigated in a broader context than only in the well established antiviral 21 nt siRNA 

pathway.  The results shown in this thesis pointing to an antiviral response by the miRNA 

pathway in insects and plants are novel and contribute to our understanding of antiviral 

responses in general.  
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Summary 
 

The research described in this thesis focuses on the mode of action of RNA silencing 

suppressor (RSS) proteins encoded by negative-strand RNA plant viruses. RNA silencing is 

an important antiviral defense mechanism in plants and insects acting by sequence specific 

RNA degradation. A characteristic of RNA silencing is the recognition of double stranded 

(ds)RNA and its processing into small dsRNA of 21-30 (nt) nucleotides by enzymes of the 

Dicer family. These small RNA molecules are subsequently incorporated into the RNA 

induced silencing complex (RISC) and guide this complex to complementary target RNAs that 

are subsequently cleaved or inactivated by the Argonaut proteins in RISC. As counter 

defense, plant and insect viruses encode RSS proteins that interfere with the RNA silencing 

pathway. In the last years a wide range of RSS proteins have been identified and for some of 

these proteins the mode of action has been determined. At the onset of this thesis research, 

little was known on RSS proteins of negative-stranded RNA viruses. Negative-strand RNA 

viruses are unique in the ability to replicate in their insect vector as well as plant host and 

thereby are likely to encounter antiviral RNA silencing in two distinct organisms. RNA 

silencing has been discovered throughout eukaryotic life, including yeast, plants, insects and 

mammals. Next to antiviral defense, RNA silencing is involved in a range of other processes, 

such as gene regulation during development and genome protection against transposons. 

Key molecules of these pathways are always small RNAs and proteins of the Dicer and 

Argonaut class, supplemented by several co-factors. 

At the start of this thesis research, RSS proteins of two plant infecting negative-stranded RNA 

viruses, in casu NS3 from Rice hoja blanca tenuivirus (RHBV) and NSs from Tomato spotted 

wilt tospovirus (TSWV) had been identified. Little was known on their mode of action in the 

antiviral RNA silencing pathway. Even less was known on a possible interaction with other 

RNA silencing pathways and the biological relevance of this. The high affinity of RHBV NS3 to 

21 nt small interfering (si)RNAs in vitro suggested that NS3 exerted its RSS activity in plants 

and insects by sequestering siRNA molecules. Chapter 1 summarizes the state of the art of 

antiviral RNA silencing and the counteracting activity of RSS proteins.  

Chapter 2 of this thesis describes the importance of siRNA binding for RSS activity of RHBV 

NS3 in plants. Alignments with NS3 orthologs from other tenuiviruses, resulted in the 

identification of two conserved regions, predicted to be possibly involved in RNA binding. 

Whereas deletion of these regions resulted in abrogation of RSS activity in plants, single 

alanine substitutions in these regions did not affect RSS activity nor siRNA binding. Further 

analysis revealed that substitution of a triple lysine (K173-K175) cluster in the carboxy-

terminal conserved region of NS3 resulted in loss of siRNA binding and concomitantly of RSS 

activity. These results demonstrated the requirement of siRNA binding for NS3 RSS activity in 

plants. Small interfering RNAs are conserved key molecules of the RNA silencing pathway in 

all eukaryotes. Therefore, it was hypothesized that if NS3 acts as RSS solely by binding 

siRNA molecules, it would be able to show RSS activity even in non-host mammalian cells. In 
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chapter 3 it was shown that wild type NS3, but not NS3 mutant (mutated in the triple lysines 

K173-K175), was indeed able to act as RSS in mammalian cells when using either short 

hairpin RNA or synthetic siRNA molecules as RNA silencing inducer. However, in the case of 

siRNA-induced silencing, suppression could only be achieved upon a priori delivery of NS3. 

Altogether, this strengthened the idea that NS3 exerted its RSS activity by sequestering 

siRNAs. 

In mammals, long dsRNA molecules induce the interferon response considered as major 

antiviral innate immune response. Because of this, the (additional) presence of an antiviral 

RNA silencing pathway in mammals has been an issue of strong debate over the last years. 

The biological relevance of RSS activity with proteins of several mammalian-infecting viruses 

(e.g. Tat of HIV-1), that earlier were already shown to contain interferon antagonistic 

properties, has not been widely accepted. Since NS3 was able to suppress RNA silencing in 

mammalian cells, it was questioned whether this protein could be used as a tool to investigate 

the presence of antiviral RNA silencing against mammalian viruses. Prior to this it was first 

shown (Chapter 4) that NS3 indeed did not have interferon antagonistic activities. In a 

following experiment a Tat-negative HIV-1 mutant, normally showing reduced virus titers due 

to the lack of Tat (a transcription activator of HIV-1 and protein with RSS activity), was 

successfully trans-complemented with NS3, but not with the NS3 mutant. Meanwhile, reports 

verified interplay between viral infections (e.g. HIV-1) and the miRNA pathway, a branch of 

the RNA silencing pathway involved in host gene regulation. This suggested a possible role of 

miRNAs in antiviral defense, at least in mammals. NS3, but not NS3 mutant, exhibited an 

affinity to miRNA/miRNA* similar as to siRNAs (Chapter 4), probably due to structural 

similarities of these molecules. Using a miRNA-based reporter assay both NS3 and HIV-1 Tat 

were demonstrated to interfere on the endogenous miRNA pathway in mammalian cells. In 

addition to the successful trans-complementation of a Tat-negative HIV-1 mutant with NS3, 

this demonstrated that HIV-1 is being targeted by antiviral small dsRNA molecules (i.e. siRNA 

or miRNA/miRNA*). The biological relevance of Tat’s RSS activity is thus likely explained to 

counteract this antiviral RNA silencing response.  

Chapter 5, verifies the in vivo RSS activity of NS3 on the miRNA pathway in plant and insect 

cells using miRNA-based sensor constructs. The observation that NS3 mutant was not able to 

suppress siRNA- and miRNA-mediated silencing proved again the importance of the small 

dsRNA binding affinity of NS3 in RSS activity. The appearance of a leaf curling phenotype of 

Arabidopsis transgenically expressing NS3 was, thus, likely due to NS3 interference in 

endogenous miRNA-mediated host gene regulation. The question, if this interaction with the 

miRNA pathway is a side effect, due to structural similarities with the antiviral 21 nt siRNA 

molecules or intended is not yet known.   

In Chapter 6, the mode of action of the TSWV RSS protein, NSs, on different RNA silencing 

pathways was analyzed in order to determine if the observed properties of NS3 generally 

applied to the RSS protein of other negative-strand RNA plant viruses. In contrast to NS3, 

TSWV NSs exhibited a size-independent binding of dsRNA molecules, i.e. it bound small and 
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long RNA duplex molecules. Its ability to bind long dsRNA was further supported by (partial) 

inhibition of Dicer-cleavage of dsRNA into siRNA, in vitro and in planta. NSs protein of a few 

other tospoviruses belonging to the American clade also showed the size-independent 

affinity. In contrast, only siRNA-specific binding was observed for Tomato yellow ring virus, a 

tospovirus belonging to the Eurasian clade. For TSWV NSs an additional binding and 

interference with the miRNA pathway was demonstrated in planta and in insect cells. Since 

tospoviruses are the plant-infecting members of the Bunyaviridae family, whose members 

primarily infect mammals, the binding affinity to long dsRNA by tospoviral NSs proteins most 

likely reflects an ancestral relation to the animal-infecting members of the Bunyaviridae. 

In chapter 7 all findings of this thesis are discussed in light of the current knowledge on other 

RSS proteins, their interference in different RNA silencing pathways and the potential of 

these, besides the antiviral 21 nt siRNA pathway, to act antiviral during a natural infection of 

the plant and insect vector host. 
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Samenvatting 
 

Het in dit proefschrift beschreven onderzoek richt zich op de werking van RNA-silencing- 

suppressor (RSS)-eiwitten van min-streng RNA-plantenvirussen. RNA-silencing is een 

sequentie-specifiek RNA-afbraakmechanisme, dat voor verschillende doeleinden wordt 

gebruikt. Bij planten en insecten is één van de belangrijkste hiervan de inzet als antiviraal 

afweermechanisme. RNA-silencing wordt geïnduceerd door lang, dubbelstrengs (ds) RNA. 

Deze RNA-moleculen worden door het enzym Dicer of “Dicer-like” (DCL) in kleine stukjes van 

21 nucleotiden (nt) geknipt, de zogenaamde “small interfering RNAs” (siRNAs). Deze siRNA-

moleculen worden opgenomen in een “RNA-induced silencing complex” (RISC), dat 

vervolgens in staat is (virale) RNA-moleculen met complementariteit aan de siRNA-sequentie 

te detecteren en deze aansluitend af te breken. Op deze wijze kunnen planten en insecten 

virusinfecties te lijf gaan en de eventuele schade als gevolg daarvan beperken. Echter, 

planten- en insectenvirussen coderen, als reactie hierop, voor RSS-eiwitten die dit proces 

remmen. De laatste jaren is, van voornamelijk plus-streng RNA-plantenvirussen een groot 

aantal RSS-eiwitten geïdentificeerd en van enkele is het werkingsmechanisme verder 

ontrafeld.  

Tot nu toe is RNA-silencing in elk onderzocht eukaryotisch organisme geconstateerd (bv gist, 

plant, insect, mens), alwaar het een belangrijke rol speelt in diverse cellulaire processen zoals 

genregulatie en het in actie komt als afweersysteem tegen transposons, mobiele DNA-

elementen. Het mechanisme van RNA-silencing kent een aantal verschillende 

verschijningsvormen, die sommige aspecten met elkaar delen. Hiertoe behoren ondermeer 

het gebruik van korte, meestal dubbel-strengs, RNA-moleculen. In Hoofdstuk 1 is een 

overzicht van RNA-silencing gegeven met nadruk op de rol in antivirale afweer en de 

interactie met (plant-) virale RSS-eiwitten.   

Voorafgaand aan het hier beschreven onderzoek waren de RSS-eiwitten van twee min-streng 

RNA-plantenvirussen geïdentificeerd, nl. het NSs-eiwit van het tomatenbronsvlekkenvirus 

(Engels: “Tomato spotted wilt virus” ((TSWV)) en het NS3-eiwit van het “Rice hoja blanca 

virus” (RHBV), maar er was slechts weinig bekend over hun werkingsmechanisme. Deze 

virussen zijn vrij uniek onder plantenvirussen, omdat ze zich zowel in planten als insecten 

(vector) kunnen vermeerderen. Hierdoor dienen ze zich te verweren tegen RNA-silencing in 

twee fundamenteel verschillende organismen. De vraag naar het werkingsmechanisme van 

deze RSS-eiwitten in planten en dieren stond daarom centraal. Vooraf was alleen van RHBV 

NS3 bekend dat dit eiwit in vitro affiniteit had voor kleine (21 nt) dsRNA-moleculen en 

hoogstwaarschijnlijk in vivo door binding van deze moleculen via de siRNA-route met de 

afweer in planten en insecten interfereert. Of het NS3 eiwit daarnaast ook met andere RNA-

silencing-routes interfereerde en over het belang daarvan voor virusinfectie, was niets 

bekend. 
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Het belang van de binding van siRNAs door NS3 voor RSS-activiteit in planten, is in 

hoofdstuk 2 verder onderzocht. Met behulp van computeranalyses van een aantal tenuivirus 

NS3-orthologen werden twee geconserveerde gebieden in het RSS-eiwit geïdentificeerd, die 

mogelijk een rol spelen in RNA binding. Terwijl het vervangen in deze gebieden van enkele 

aminozuren door alanine geen effect had, resulteerden deleties van beide gebieden, dan wel 

een vervanging van drie lysines (K173-K175) door alanines in het verlies van siRNA-binding 

en gelijktijdig verlies van RSS-activiteit in planten. Hiermee was het belang van siRNA binding 

voor de NS3 RSS-activiteit in planten duidelijk aangetoond. 

Vanwege de geconserveerdheid van siRNA-moleculen werd verwacht dat NS3 ook in staat 

zou zijn om deze moleculen in andere eukaryoten te binden, zoals bijv. zoogdiercellen, ook al 

zijn deze geen natuurlijke gastheer van RHBV. In hoofdstuk 3 is aangetoond dat NS3, maar 

niet de NS3-mutant (met alaninevervangingen van K173-K175), RNA silencing in 

zoogdiercellen kan tegengaan wanneer silencing werd geïnduceerd door zogenaamde “short 

hairpin” (sh-) of synthetische siRNA-moleculen. Opvallend was dat de RSS-activiteit bij de 

inductie door siRNA-moleculen alleen werd waargenomen wanneer NS3 van tevoren tot 

expressie werd gebracht. Tezamen met voorgaande resultaten onderstreepte dit het belang 

van siRNA-binding voor de RSS-functionaliteit van NS3.  

Terwijl RNA silencing algemeen wordt geaccepteerd als hét antiviraal afweersysteem in 

planten en insecten, staat de rol van dit proces bij zoogdieren nog steeds ter discussie. Bij 

zoogdieren wordt de interferon-geïnduceerde antivirale afweer gezien als voornaamste initiële 

reactie tegen virusinfecties. Deze afweer wordt echter, net als bij RNA silencing, door lange 

dsRNA-moleculen geïnduceerd en dat bemoeilijkt het beantwoorden van de vraag of RNA-

silencing, naast de interferon-geïnduceerde afweer, actief is als antiviraal afweersysteem in 

zoogdieren. Antwoord op deze vraag zou tevens uitsluitsel kunnen geven over de biologische 

relevantie van eerder geïdentificeerde RSS-eiwitten van zoogdiervirussen    (bijv. Tat van 

HIV-1), omdat vele van deze eiwitten voorheen al geïdentificeerd waren als 

interferonantagonisten. Vanwege de RSS-activiteit van NS3 in zoogdiercellen en de 

afwezigheid van affiniteit voor lange dsRNA-moleculen is onderzocht of NS3 gebruikt zou 

kunnen worden om de aanwezigheid van antiviraal RNA silencing in zoogdieren aan te tonen. 

In hoofdstuk 4 werd geverifieerd dat NS3 geen interferon-antagonistische activiteiten 

vertoond. Tevens werd vastgesteld dat het wild-type NS3, maar niet de NS3-mutant, in staat 

is om de lage virustiter van een Tat-negatieve HIV-1 mutant terug te brengen tot op het 

niveau van het wild-type virus. Hiermee werd bewezen dat NS3 in staat is tot 

transcomplementatie van HIV-1 Tat en dat hiervoor binding met kleine dsRNA-moleculen 

essentieel is. Ondertussen werden interacties tussen virussen en de miRNA-route 

gerapporteerd, wat de mogelijkheid van een antivirale functie van miRNA-moleculen 

openlaat. Met behulp van biochemische analyses werd aangetoond dat het NS3-eiwit, maar 

niet de NS3-mutant (K173-K175), een vergelijkbare affiniteit voor zowel miRNA/miRNA*-

duplexes in vitro als voor siRNA moleculen heeft. Dit is hoogstwaarschijnlijk vanwege de 

grote structurele overeenkomsten tussen beide moleculen. Door gebruik te maken van 
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miRNA-sensorconstructen kon RSS-activiteit van zowel NS3 als van HIV-1 Tat op de 

endogene miRNA-route in zoogdiercellen worden aangetoond (hoofdstuk 4). Tezamen 

versterkten deze resultaten het beeld dat HIV-1 doelwit is van antivirale RNA-silencing, 

waarbij kleine dsRNA-moleculen (siRNAs of miRNA/miRNA*s) een rol spelen en dat de RSS-

activiteit van HIV-1 Tat nodig is als verweer hiertegen.  

In hoofdstuk 5 is de in vivo RSS-activiteit van NS3 op de miRNA-route in planten en insecten 

aangetoond met behulp van miRNA-sensorconstructen. De afwezigheid van RSS-activiteit 

van de NS3 mutant tijdens alle analyses ondersteunde nogmaals de conclusie dat binding 

van kleine dsRNA-moleculen (siRNA en miRNA/miRNA*) belangrijk is voor de RSS-activiteit 

van NS3. Deze resultaten suggereerden tevens dat de aanwezigheid van misvormde 

bladeren (verkrulling) in transgene Arabidopsis-planten die NS3 tot expressie brengen, 

hoogstwaarschijnlijk het gevolg is van interferentie van NS3 op de endogene miRNA-route in 

planten.  

In hoofdstuk 6 is de RSS-activiteit van het TSWV NSs-eiwit bestudeerd om te bekijken of de 

resultaten van NS3 algemeen van toepassing zijn op RSS-eiwitten van min-streng RNA-

plantenvirussen. In tegenstelling tot NS3 bond TSWV NSs zowel korte als lange dsRNA-

moleculen, en dus niet lengtespecifiek. De affiniteit voor lange dsRNA-moleculen werd verder 

ondersteund door de in vitro en in vivo (planten) vastgestelde (gedeeltelijke) remming van de 

Dicer-knip van lange dsRNA- in kleine siRNA-moleculen door NSs. Een lengte-onafhankelijke 

binding van dsRNA door NSs werd tevens voor een aantal andere tospovirusen (van het 

Amerikaanse cluster van deze groep) aangetoond, maar niet voor het Tomato yellow ring 

virus NSs (Euraziatische cluster). Deze laatste bond, net als NS3, alleen kleine dsRNA-

moleculen. Voor het TSWV NSs werd tevens een interactie met de miRNA-weg in planten en 

insecten aangetoond.  

De binding van lange dsRNA-moleculen door NSs van een aantal tospovirussen is 

hoogstwaarschijnlijk terug te voeren op de relatie van deze plantenvirussen met de zoogdier-

infecterende Bunyaviridae.  

In hoofdstuk 7 zijn de behaalde resultaten vergeleken met het werkingsmechanisme van 

andere inmiddels gekarakteriseerde RSS-eiwitten en zijn de interacties met overige RNA-

silencing-routes, naast de antivirale siRNA-route, besproken in het kader van een additionele 

antivirale afweer tijdens een natuurlijke infectie in plant en insect met deze min-streng 

virussen. 
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