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Bibliographic abstract:

In this thesis opportunities for prediction of cross performance in a plant breeding program are

investigated. For this research 20 SSD-line populations from crosses between European two-row spring

barley lines were evaluated for four quantitative agronomic traits in seven environments, divided over two

years. The midparent value appeared to be a good predictor of average offspring performance and useful

in practical breeding. However, for most crosses the midparent value for grain yield overestimated the

offspring average. The relatedness between parents was expected to predict the variance among the

offspring. However, predictions using genetic distances based on pedigree data, morphological trait data,

and AFLP-marker data, performed poorly. A genetic distance based on AFLP-markers associated with

the trait variation among the parents gave a somewhat better prediction. The correlation between the

parental responses to different environments appeared to be a reasonable predictor of grain yield among

the offspring. Other variance predictors based on parental differences for agronomic trait data or early

generation (F4) variance among the offspring, mainly predicted variance resulting from segregating major

genes. These genes are often fixed in practical breeding programmes and therefore not very relevant. Grain

yield data from small three-row plots in an early generation evaluation did not correspond with large plot

yield data due to interplot competition.

Keywords: additive main effects and multiplicative interaction, coefficient of coancestry, coefficient of

parentage, cross prediction, early generation selection, genetic map, genetic similarity, genotype-by-

environment interaction, Hordeum vulgare, marker selection, progeny variance, segregation analysis,

stability
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General introduction

1
General introduction

A plant breeding programme generally consists of the creation of novel genetic variation, the

subsequent selection of new cultivars and the propagation and maintenance of these cultivars.

In many breeding programmes the genetic variation is created by crossing genetically divergent

parents. The choice of these parent combinations is very important. It decides on which part of

the initially available genetic variation new cultivars will be based and which genes will be

(re)combined by crossing. It can be regarded as the first selection step. The resulting genetic

variation is the determining factor for the offspring performance, which is defined as the level

of compliance of the offspring with preset breeding goals.

In many cases the offspring performance is assessed directly by the performance of a

hybrid (e.g. in maize, cabbage or tomato), a population (e.g. in rye), or a clone. For clones

performance as a cultivar (e.g. in potato or rose) can be distinguished from performance as a

cultivar parent (e.g. in ryegrass). In some cases offspring performance is assessed indirectly,

after several generations of inbreeding, in a segregating population. Then the population

performance is evaluated by the probability of selecting a recombinant inbred line that performs

well, either as a cultivar (e.g. in wheat, barley or lettuce) or as a hybrid parent. The recurrent

nature of the breeding process is demonstrated by the fact that an important element of the

offspring performance is its performance as a parent in the next breeding cycle. The effects of

the environment on the offspring performance can be quite large. The relevant influences for

plant breeders are captured in the concept of genotype by environment interaction. It describes

the change in the differences between genotypes when going from one environment to the other.

Breeders cope with this interaction by breeding different cultivars for different environments or

by breeding cultivars that combine good performance with high stability over the different

environments.

The choice of parent combinations in a breeding programme is based on the breeder’s

knowledge of the performance of the individual parents including their performance as a parent

in earlier breeding cycles. Many traits are considered simultaneously, of which some are based

on single genes, while others have a complex polygenic basis. Usually parent combinations are

chosen in such a way that weaknesses of one parent are compensated for by the other parent and

vice versa. A second consideration is the degree of heterosis expressed by a hybrid, or the degree

of transgression expressed by a segregating offspring population. The decision of the breeder on

which parent combinations will be chosen depends on his expectation about the offspring

performance. In view of the large resources allocated to making crosses and evaluating offspring
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Chapter 1

performance, a good cross prediction is of prime importance. The final choice of parent

combinations is often made on the basis of implicit expert knowledge, often referred to as the

‘breeder’s eye’. However, the decision is usually supported by predictions of offspring

performance based on explicit information. These cross predictions can be classified by the type

of information that is used:

A. predictions based on known genes for the relevant traits, including the parental

genotypes, i.e., the allele constitution of the potential parents.

B. predictions based on information about the candidate parents that can be obtained before

using them as a crossing parent, e.g. geographic origin, pedigree, and trait data. These

traits may range from agronomical and morphological traits to biochemical (e.g.

isozymes and storage proteins) and molecular traits (e.g. DNA-based markers, like RFLP,

RAPD and AFLP).

C. predictions based on ‘past parent performance’ of the candidate parent, often obtained

by testcrosses

D. predictions based on a relatively inexpensive assessment of a limited offspring

population of the candidate cross. From this experiment population parameters like mean

and variance can be predicted. These predictions are only applied in the case of

subsequent selection within the offspring population, e.g. in selffertilising crops like

barley, wheat and lettuce and in crossfertilising, clonally propagated crops like potato

and strawberry.

The four classes are briefly discussed in the following paragraphs. If necessary, we take into

account a subclassification that can be made on the basis of the predicted breeding behaviour,

e.g. mean offspring performance, heterosis, or genetic variance among the offspring.

For most monogenic traits, e.g. many disease resistances, and some oligogenic traits, e.g.

flower colour in several ornamental species, the underlying genes are known. For other traits,

which are mainly polygenic and quantitative, i.e., measured at an ordinal or a continuous scale,

a QTL-analysis (Quantitative Trait Loci: Lander and Botstein, 1989; Jansen, 1992) can shed

some light on the genetics underlying the traits and the parental genotypes. Van Berloo and Stam

(1998) present an example of a QTL-based cross prediction for flowering time in Arabidopsis

thaliana. However, usually only part of the genetic variation can be explained by QTL due to

simplifying assumptions in the QTL-model and noise in the data. Besides, the prediction of

offspring performance on the basis of genetic markers linked to QTL can be seriously hampered

by epistasis, also known as ‘genetic background effects’, and lack of linkage disequilibrium

between markers and QTL across a set of potential parents. Therefore, the results of a QTL

analysis based on one cross cannot always be extrapolated to other crosses. These are probably
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General introduction

the main reasons why in many cases a QTL-based prediction of offspring performance for

complex traits is still insufficiently accurate and/or too expensive.

In the case that the genetics of the traits and the parental genotypes are largely unknown

other methods of cross prediction can support the breeder’s choice of parent combinations. They

are classified above as B, C and D. These methods of cross prediction mainly arise from

quantitative genetic theory. They are largely based on the relationship between parents and

offspring, either inferred empirically or based on genetic theory. These types of cross prediction

are usually performed for one or more quantitative polygenic traits. Examples of such traits are:

yield, partial resistance, concentrations of desired and undesired substances in the harvested

product (protein, oil, sugar, starch, nitrate). But also combining abilities (established by test

crosses), indices (e.g. financial yield) and other derived statistics (e.g. stability parameters (Jinks

and Pooni, 1980; Lin and Binns, 1991)) can be considered as quantitative traits.

The mean offspring performance can be predicted before making crosses with the

candidate parents (B). This prediction is often based on the midparent performance, i.e., the

average performance of the parents (Bos and Caligari, 1995). A typical example is the situation

in which a breeder is trying to combine parents with complementary strengths and weaknesses.

The aim is a descendant without undesired levels of performance for any of its traits. In cases

where midparent performance predicts poorly, components or associated characters may be

observed on the parents and successfully applied in mean prediction. An example is presented

by Neele (1990) for tuber yield in potato. Bos & Sparnaaij (1993) present a prediction method

based on analysis of trait components.

Prediction methods based on parent data before making crosses with the candidate

parents (B) may also concern heterosis and genetic variance among the offspring. Both these

types of breeding behaviour are related to F1 heterozygosity. Heterosis is a direct result of

number of heterozygous loci in the F1 and their dominance effects. Genetic variance in an inbred

offspring population is an indirect result of the number of heterozygous loci in the F1 and their

additive effects. The number of heterozygous loci in the F1 is assumed to be associated with the

relatedness of the parents. Therefore, many authors have used parental relationship measures to

predict heterosis or genetic variance (brief overviews by Cowen and Frey, 1987b; Loiselle et al.,

1991; Stuber, 1992; Charcosset and Essioux, 1994). These parental relationship measures can

be established using three sources of information from the parents: geographic origin, pedigree

and trait data, as mentioned above. The expected association between relatedness and heterosis

or genetic variance is based on the assumption that the average effect of each heterozygous locus

in the F1 is more or less equal for the different parent combinations. Deviations of this

assumption, as well as other sources of error, make results quite variable. Several studies on

genetic variance prediction in selffertilising crops report a relatively inaccurate estimation of this

aspect of breeding behaviour. This may be caused by a small number of crosses, a small number
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of lines per cross, a small-scale evaluation in a rather early generation (e.g. F3-F4), or a

combination of these factors (Moser and Lee, 1984; Manjarrez-Sandoval et al., 1997; Burkhamer

et al., 1998).

The prediction of offspring performance may be improved by information about the ‘past

parent performance’ of the candidate parent (C). The general combining ability (gca) of a parent

can be determined by the evaluation of a set of test crosses with that parent. This approach is

often used in breeding programmes for maize hybrids and for potato or strawberry clones. An

example of this method is presented by Neele et al. (1991) for potato tuber yield.

For heterosis prediction Bernardo (1994) proposes to use a limited sample of predictor

hybrids descending from the candidate parents. He also proposes the use of parental relationship

measures to estimate the genetic covariance matrix between the observed hybrids and the ones

to be predicted. Combining the predictor hybrid data with the estimated covariance matrix, he

derives best linear unbiased predictors (BLUPs) using a mixed model. Instead of a mixed model

Charcosset et al. (1998) use a factorial regression model for which the parental relationship

matrix is transformed into a limited set of regressor variables. Both approaches appear to predict

well, especially in the case of unrelated parents, when tested on maize forage yield data

(Charcosset et al., 1998). Both procedures also involve a gca-component, thus combining the gca

and heterosis prediction.

If selection within an offspring population is necessary to obtain a new cultivar or

cultivar parent, a breeder can also directly assess the offspring of a potential parent combination

(D). A limited offspring population in an early generation and/or a relatively inexpensive

assessment method may provide an indication which parent combinations should be chosen to

proceed to a more extensive crossing and/or selection programme. Examples of this procedure

for the prediction of offspring mean and variance are presented by Jinks and Pooni (1980) using

F3-lines of tobacco and by Caligari and Brown (1986) using second year clones of potato.

Progeny variance can also be predicted on the basis of heterosis in the F1. To combine predicted

mean and variance of a segregating population Jinks and Pooni (1976) propose to estimate the

proportion of offspring genotypes that would exceed an arbitrary threshold, assuming a normal

distribution of trait values. Crosses are selected on the basis of this parameter. This combined

measure of performance of a cross was used by Van Ooijen (1989b) in a study to assess its

predictive value when mean and variance estimates are based on small plots in early generations

of spring wheat. Another combined selection parameter may be the expected value of the best

performing offspring genotype in a population of a certain size, again assuming a normal

distribution.

Many approaches to predict the offspring performance of a certain parent combination

can be applied for different traits in different crops. Ideas behind these approaches can often be

extended to crops with different modes of reproduction.
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Objectives and outline of present study

The subject of the present study is the choice of parent combinations in an inbred crop using

predictions of offspring mean and variance. The first objective is the comparison of several

existing methods of mean and variance prediction. A second objective is the investigation of

their usefulness for practical breeding. A third objective is the investigation of several

modifications that are proposed to improve the usefulness of variance prediction. Among them

is the use of a relatively new source of parental relationship information: AFLP-markers (Vos

et al., 1995).

For this study several agronomic traits, like grain yield and plant height, are observed in

parents and offspring populations of European two-row spring barley (Hordeum vulgare L.).

Barley is chosen as a model crop, because of several considerations: 1) it is diploid and self-

fertilising, which simplifies some of the assumptions that have to be made in the genetic models;

2) it has a short generation length, so several generations per year could be raised, if necessary;

3) it has often been used in applied genetical studies, so much genetic information is available;

4) it is an important agricultural crop, with the fifth largest cultivated area in the world. The

parent lines were chosen to represent the population of parents employed in commercial barley

breeding programs in Northwest Europe over the last 20 years. They are rather closely related,

primarily as a result of breeding for malting quality and regional adaptation. Genetically distant

material is mainly used to introduce disease resistances by backcrossing procedures and it is not

expected to have significantly contributed to other traits.

In several previous studies the number of crosses and the number of environments used

do not allow general conclusions to be drawn with respect to the predictability of cross

performance (Cowen and Frey, 1987b; Moser and Lee, 1984; Helms et al., 1997; Manjarrez-

Sandoval et al., 1997; Burkhamer et al., 1998). Further it is mentioned that inaccuracy of mean

and variance estimates hampers the drawing of clear conclusions. In order to remove these

drawbacks in the present study we aimed to control, within the limits of experimental feasibility,

several factors that influence the reliability of the correlation between predicted and observed

cross performance. First, we use a relatively high number crosses. These 20 crosses are derived

from 18 different parent combinations plus two randomly chosen reciprocals. The parent

combinations are based on a partial diallel crossing design using 18 parents (n=18; s=2;

Kempthorne and Curnow, 1961). Second, each cross is represented by 48 recombinant inbred

lines (RILs) produced by single seed descent (SSD). This enables reliable between RIL variance

estimates, provided the individual RIL performance is estimated accurately. Third, single seed

descent is extended until the F5 generation so as to achieve a high level of homogeneity within

the lines. Fourth, large plots, similar to the ones in commercial breeding programs, are used. In

combination with incomplete block designs these decrease the error variance. Fifth, for the sake
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of generalisation and in order to investigate genotype by environment interaction, the RILs have

been evaluated in seven environments, distributed over two years. Thanks to the kind support

of three Dutch breeding companies (Cebeco, Lelystad; VanderHave, Rilland; Zelder, Ottersum)

we could add three locations to the two university sites in Wageningen (Unifarm) and

Swifterbant (Ir. A.P. Minderhoudhoeve).

In chapter 2 AFLP-markers (Vos et al., 1995) are investigated as a source of parental

relationship information. AFLP-based genetic similarity estimates are compared with parental

relationship measures based on pedigree and morphological trait data. A bootstrap procedure is

presented that approximates the inaccuracy of the correlation coefficient between two

relationship measures. Further, we discuss the usefulness of AFLP-based genetic similarities for

cultivar identification and for assessment of genetic diversity.

In chapter 4 the AFLP-based genetic distances are tested for their usefulness in variance

prediction. Their predictive value is compared with that of parental relationship measures based

on pedigree, agronomic and morphological trait data. Combinations of these relationship

measures are also examined for their association with progeny variance. We investigate the

effect of ‘major genes’ on the variance predictions.

The unconditional use of all AFLP-markers in genetic distance estimation may cause a

lack of representation of the relevant genes for a trait. Map information can be used to weight

markers for marker density in a genetic distance calculation. This is expected to remove

overrepresentation of chromosome regions with a high marker density. Another approach is the

use of only those markers that show a strong association with a trait in the parent population.

Variance prediction based on the resulting genetic distance estimates is examined in chapter 5.

Progeny variance and mean for yield are also predicted on the basis of early generation

(F4) offspring evaluation in small plots. This is described in chapter 3. The prediction of mean

RIL performance by midparent values is also examined. Effects of ‘major genes’ and interplot

competition are discussed, as well as the influence of genotype by environment interaction.

Genotype by environment interaction for yield is further investigated in chapter 6.

Several stability parameters are calculated for parents and offspring. The usefulness of

midparent values to predict mean RIL stability statistics is discussed. A biplot representing part

of the nonadditivity is used to demonstrate the relationship between parents and offspring.

Further, we use the correlation between the parental environment-specific response vectors

(Habgood, 1977) to predict progeny variance for yield. The environment-specific responses are

the residuals from an analysis of variance using a model with additive genotype and environment

effects.

Finally, in chapter 7 the main results are discussed with regard to applications in practical

plant breeding and with regard to topics for further research.
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2

Association between relationship measures based on AFLP-markers, pedigree data and

morphological traits in barley 1

Johan W. Schut, XiaoQuan Qi, Piet Stam

Abstract

Thirty one barley lines were used to investigate the agreement of three relationship measures:

genetic similarities based on 681 AFLP-markers, coefficients of coancestry based on pedigree

data and generalised distance based on 25 morphological characters (morphological distance).

Bootstrap analysis was used to estimate the accuracy of the correlation estimates. AFLP-based

genetic similarities showed a poor-to-moderate correlation with coefficients of coancestry within

the core set of twenty five European two-row spring barleys. Morphological distance was not

significantly correlated with either genetic similarity or coefficient of coancestry. The precision

of all correlation coefficient estimates, however, was low. Inclusion of two European winter

barleys, two North American two-row spring barleys, and two North American six-row spring

barleys in the AFLP-analysis resulted in a much stronger correlation between genetic similarity

and coefficient of coancestry. This suggests good opportunities for the use of AFLP-markers to

assess genetic diversity by distinguishing between the major ecotypes of barley. Besides, each

of the eight primer combinations used in the AFLP-analysis was able to identify all 31 lines

uniquely, showing the usefulness of AFLPs for cultivar identification. Because of the inaccuracy

of the investigated relationship measures, resulting in low values of the correlation coefficient

estimates, prediction of the breeding behaviour of parent combinations may be improved by the

use of a combination of relationship measures, thus decreasing the effect of their individual

independent errors.

Key words: bootstrap analysis, coefficient of coancestry, cultivar identification, genetic

similarity, Hordeum vulgare

Introduction

1published in: Theor Appl Genet (1997) 95:1161-1168
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Chapter 2

Knowledge about relationships between genotypes that may be used in new crosses and about

genetic diversity in available germplasm is very useful for plant breeders. It supports their

decisions on the selection of crossing combinations from large sets of parent genotypes and is

helpful when they want to widen the genetic basis of a breeding program. The selection of

crossing combinations is supported by prediction of the performance of offspring resulting from

crossing combinations between inbred parents. Cowen & Frey (1987b) distinguished three types

of breeding behaviour that can be predicted: heterosis, transgressive segregation and genetic

variance among offspring. However, higher transgressive segregation fractions are a direct result

of higher genetic variances among offspring, taking into account the difference between the

performances of the parents. Therefore, they do not have to be considered as separate phenom-

ena. On the other hand, heterosis and genetic variance are a direct and an indirect result of

heterozygous loci in the F1 and their effects. The degree of relationship between two parent

genotypes is mainly expected to predict the number of heterozygous loci in their hybrid.

Knowledge about genotype relationships is usually based on three sources of information:

(1) geographic information about the origin of genotypes, (2) pedigree information and (3)

information about plant characteristics. Geographic information is helpful in most cases. It is

specifically used when other information on genotypes is not available or very sparse. This is

often the case for gene-bank material. Pedigrees of varieties and breeding lines are often well

documented. They trace back to landraces and wild accessions. However, pedigrees sometimes

contain erroneous or incomplete information. Plant characteristics are the only source of

relationship information that is, or can be made available, for any set of genotypes. Such

characteristics can be divided into four arbitrary groups: agronomic characters, morphological

characters (used to distinguish between varieties), biochemical characters (e.g. storage proteins,

isozymes) and molecular (DNA) markers. Differences between genotypes with regard to any of

these characteristics are either indirect or direct representations of differences at the DNA level

and are therefore expected to provide information about genetic relationships.

A range of measures is available to quantify relationship information. For pedigree

information Malécot (1948) presented the coefficient of coancestry (ƒ), also known as kinship

coefficient or coefficient of parentage. For agronomic and morphological traits measured at a

continuous or ordinal scale one can use multivariate statistical techniques and construct a p-

dimensional space, where p is the number of traits. The Euclidean distance between the points

representing the genotypes may be used as a measure of relatedness (Goodman, 1972). Gener-

alised distance is an extension of Euclidean distance correcting for correlation between traits

(Mahalanobis, 1936). Plant characteristics, like isozymes and molecular markers, are scored as

binary data. A commonly used similarity measure was presented by Dice (1945). Nei and Li
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(1979) demonstrated the usefulness of this genetic similarity for isozyme and molecular-marker

data.

In winter wheat Cox et al. (1985b) found a poor correlation between coefficient of

coancestry and genetic distance based on storage protein data. Genetic distance based on

combined isozyme and morphological data showed a moderate correlation with pedigree based

distance in soybean (Cox et al., 1985a). However, Souza and Sorrells (1991a,b) concluded that

distance measures based on quantitative and qualitative morphological characters (the latter

including isozyme characters) in oats did not correspond very well with pedigree data. The

introduction of molecular markers like RFLP (restriction fragment length polymorphism;

Botstein et al., 1980) and RAPD (random amplified polymorphic DNA; Williams et al., 1990)

created the opportunity to assess genetic relationships directly at the DNA level. A priori,

similarities at the DNA level are expected to be in better agreement with pedigree information

than similarities based on morphological traits or gene products, whose expression can be

influenced by the environment and/or epistatic interactions. However, results based on RFLP-

and RAPD-markers are quite variable in this respect. Tinker et al. (1993) showed a moderate

correlation between RAPD-based genetic distance and coefficient of coancestry when consider-

ing 27 Canadian spring barley lines. Graner et al. (1994) used RFLP data to estimate genetic

distances between 48 European barley varieties. They found poor-to-moderate correlations

between marker-based distance and coefficient of coancestry. Correlations were higher in spring

barley than in winter barley. Autrique et al. (1996) obtained a moderate correlation between

RFLP-based genetic distance and distance based on sixteen agronomic and morphological traits

in durum wheat. Correlations between these two relationship measures and coefficient of

coancestry were poor.

Recently AFLP, a PCR-based molecular marker technology was introduced by Vos et al.

(1995). Using PCR-amplification genomic restriction fragments are selectively multiplied to

adequate detection levels producing reproducible DNA-fingerprint patterns. The fast and reliable

production of many marker data points is an advantage of AFLP over RFLP and RAPD.

The aim of the present study is to investigate the agreement of AFLP based genetic

similarities, coefficients of coancestry and generalised distance based on morphological

characters. Special attention will be paid to the precision of the correlation estimates. We will

discuss, in brief, the usefulness of AFLPs for variety identification as well as opportunities for

the prediction of breeding behaviour of crosses and the assessment of genetic diversity.
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Materials and methods

Plant materials

Thirty one barley (Hordeum vulgare L.) lines were used in this study. The core set consisted of

25 European two-row spring barley varieties and breeding lines. They were chosen to represent

parent populations employed in commercial spring barley breeding programs in Northwest

Europe over the last 20 years. Firstly, relationship measures were compared for this core set.

Secondly, a set of six cultivars consisting of two European winter barleys (one two-row; one six-

row) and four North American spring barleys (two two-row; two six-row) were added as

representatives of some other major barley groups. This offered an opportunity to investigate

possibilities for the assessment of genetic diversity using AFLPs. Names and details of the 31

lines are presented in Table 2.1.

AFLP analysis

DNA extraction followed the CTAB-method described by Van der Beek et al. (1993).

The AFLP-technique is described by Vos et al. (1995): DNA-restriction uses the enzyme

combination EcoRI/MseI. After adapter ligation DNA-fragments are amplified using PCR.

Primer annealing is targeted at the adapter and restriction site sequence. Three-nucleotide

extensions on both EcoRI and MseI primers cause selective amplification of fragments. The

AFLP-analysis followed the protocol described by Van Eck et al. (1995) with modifications by

Qi and Lindhout (1997).

Primer combinations were chosen that produce a high number of unambiguous poly-

morphisms in a wide range of barley germplasms (Qi and Lindhout, 1997). The eight primer

combinations that were used are presented in Table 2.2.

Genetic-similarity estimation

AFLP-bands were scored as present (1), absent (0) or as a missing observation (−1) for the

different genotypes. Often several AFLP-markers within a primer combination show pleiotropic

behaviour or very close linkage (Qi and Lindhout, 1997). Likewise, in our set of genotypes

polymorphic markers with identical polymorphism patterns were found within primer combina-

tions. We also found markers within primer combinations that seemed to be allelic. In all of

these cases a second marker does not add any new independent information to a genetic-

similarity estimate. Therefore these redundant polymorphic markers within primer combinations

were discarded before calculating genetic similarities.
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Table 2.1. Genotypes used in AFLP analysis, their pedigree, country of origin, type (2=two-row;

6=six-row; s=spring barley; w=winter barley), the possibility to trace the pedigree to original

ancestors (x-mark means: more than 75% of the pedigree can be traced to original ancestors) and

the availability of morphological trait data (x-mark means: data available). The dashed line

divides the core set of European two-row spring barleys from the rest

Genotype Pedigree Country of

origin

2-row/

6-row

type

spring/

winter

type

>75%

known

pedigree

morphological

trait data

available

Apex Aramir x (CEB-6711 x (Julia(3) x (Volla x

L-100))

the Netherlands 2 s x

Aramir Volla x Emir the Netherlands 2 s x

Baronesse 5238/8-74 x 754465 Germany 2 s x

Bonaire E-77040-8107 x (CEB-8188 x Apex) the Netherlands 2 s x x

CEB-9079 Robin x (CEB-8498 x Efron) the Netherlands 2 s x x

CEB-9186 CEB-8187 x Golf the Netherlands 2 s x x

Drossel (FLO-1625/56 x Union) x Ingrid Germany 2 s x x

Forester CSBM2 x Sherpa UK 2 s x

GEI-119 Aramir-EI x Goldmarker(3) the Netherlands 2 s x

Georgie Vada x Zephyr UK 2 s x x

Gunhild (Algerian x Lone) x MGH-63199 Denmark 2 s x x

IVP9211327 (GEI-119 x Gunhild) x (Prisma x Apex) the Netherlands 2 s x

IVP9211510 (Prisma x Apex) x (GEI-119 x Gunhild) the Netherlands 2 s x

Karat K-1443-70 x I-2931170 Czech Republic 2 s x x

Kenia Binder x Gull Denmark 2 s x

Midas ((Proctor x Wong) x mildew-res.A) x

mutant of Maythorpe

UK 2 s x x

Nudinka Emir x Weihenstephan 1606 Nackt Germany 2 s

Porthos Lignee-207 x Emir France 2 s x

Prisma (Trumpf x Cambrinus) x Piccolo the Netherlands 2 s x x

Proctor Kenia x Plumage Archer UK 2 s x

Riff (VDH-240-79 x Karat) x Apex the Netherlands 2 s x x

Triangel ((Mazurka x Ofir) x SVP-6045-66/25) x

((Villa x (Agio x Piroline)) x Carlsberg)

the Netherlands 2 s x x

Vada Hord.laevigatum x Gull the Netherlands 2 s x

Yriba (Maris Yak x (Rika x Baladi-16-133)) x

Rika

France 2 s x x

ZE-87-3414 Efron x (Aramir-EJ x Iraq-10922) the Netherlands 2 s x x

Franka ((Vogelsanger Gold x Senta) x (Dura x

Dea)) x Vogelsanger Gold

Germany 6 w x

Harrington Klages x ((Gazelle x Betzes) x Centennial) Canada 2 s x

Igri (Malta x Carlsberg 1427) x Ingrid Germany 2 w

Morex Cree x Bonanza USA 6 s x

Steptoe Wash.Sel.3564 x Unitan USA 6 s

TR-306 (Abee x TR451) x WM 793-1776 Canada 2 s x
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Table 2.2. Primer combinations used in AFLP analysis

Number E+3/M+3 nucleotide extensions

E33M54 E+AAG/M+CCT
E33M61 E+AAG/M+CTG
E35M54 E+ACA/M+CCT
E35M61 E+ACA/M+CTG
E38M50 E+ACT/M+CAT
E38M59 E+ACT/M+CTA
E38M60 E+ACT/M+CTC
E38M62 E+ACT/M+CTT

The genetic similarities (gs) are calculated following Nei and Li (1979) :

where Nij is the number of bands present in both genotypes i and j, Ni is the number of bands

present in genotype i and Nj is the number of bands present in genotype j. In the case of a missing

observation for a marker in genotype i and/or j, this marker was not included in the calculation

of gsij. The accuracy of gs-estimates as influenced by sampling and missing marker data was

assessed by taking bootstrap samples (Efron & Tibshirani, 1993) from all 681 markers, including

polymorphic as well as monomorphic markers. Bootstrap standard-deviation estimates were

based on 1000 samples.

Principal-coordinate analysis (Gower, 1966) was used to obtain a graphic representation

of the relationship structure of the thirty one genotypes. Computations were performed using the

MDS-procedure in SAS (SAS Institute Inc., 1992).

Pedigree analysis

Pedigrees of the genotypes were gathered from several sources in literature (Baum et al., 1985;

Arias et al., 1983) and from personal communication with breeders and researchers. The

coefficient of coancestry ƒ between two genotypes, as defined by Malécot (1948), was

calculated. This is the probability that a random allele at a random locus in one genotype is

identical by descent to a random allele at the same locus in the other genotype (Cox et al,

1985b). A FORTRAN-program obtained from Van Hintum (CGN, CPRO-DLO, Wageningen)

was used to calculate ƒ. The underlying assumptions are given by Van Hintum and Haalman

(1994): (1) a genotype receives half its genes from each parent; (2) parents involved in crosses

are homozygous and homogeneous; (3) ancestors for which no pedigree is available are
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unrelated; (4) if selections are made from a cultivar, this cultivar is assumed to be the variable

offspring of a cross between two unrelated lines. A selection from the cultivar is one of the

offspring lines; if the cultivar itself is said to be used as a parent in a cross, then in fact one of

the offspring lines has been used.

Genotypes often lacked some pedigree information. For only 23 genotypes (Table 2.1),

of which 19 were core set genotypes, more than 75 % of the pedigree could be traced back to

original ancestors, e.g. landraces. The ƒ-value of a combination of 2 of these 23 genotypes was

defined as ‘well known’ (fwk) or complete (Graner et al., 1994). Also the ƒ-values of two

combinations between a parent and its offspring line were defined as ‘well known’, despite the

fact that 75% or less of the parent pedigree could be traced back to original ancestors. Due to

the direct relationship in this type of combination, the lack of pedigree information about the

parent genotype does not have a strong effect on the ƒ-value.

Morphological trait analysis

Out of 34 morphological traits in barley described by the international union for the protection

of new varieties of plants (UPOV, 1981), we had at our disposal data on 25 traits in only 18 lines

(Table 2.1) from the core set of 25 European two-row spring barleys. These data were obtained

at our Wageningen site in 1994 in the presence of the relevant UPOV reference cultivars using

one-row plots and two replicates. The data were confirmed by a similar trial in 1996. The traits

are listed in Table 2.3.

The observed data were standardised per trait and a principal components analysis was

performed. The principal components having an eigenvalue greater than an arbitrary value

K=1.0, were used to calculate the generalised distances (morphological distance, md) between

the lines (Goodman, 1972).

Bootstrap analysis of correlation coefficients

Simple (r) and rank (rs) correlation coefficients between genetic similarities (gs), coefficients

of coancestry (ƒ) and morphological distances (md) were calculated. To test whether correlations

were significant we used a bootstrap procedure (Efron and Tibshirani, 1993) to estimate 95%-

confidence intervals for r. Bootstrap samples were produced by sampling with replacement from

the set of genotypes (Schut, 1997). Then the gs-, ƒ-, and md-matrices were constructed with rows

and columns based on the genotype bootstrap sample. Due to resampling of the same genotype,

some matrix cells contained a similarity or a distance between a genotype and itself. The

contents of these cells were discarded before the calculation of the bootstrap correlation

coefficient. For each correlation coefficient a 95%-confidence interval was constructed based

13



Chapter 2

on 2000 bootstrap samples. The BCa method (Efron and Tibshirani, 1993) was used to correct

for bias and unequal variance to obtain a higher accuracy of the interval estimation.

Table 2.3. Twenty five morphological traits (UPOV, 1981) used to calculate morphological

distances

Number Trait

1 Plant: growth habit

2 Lower leaves: hairiness of leaf sheaths

3 Flag leaf: attitude

4 Flag leaf: anthocyanin colouration of auricles

5 Flag leaf: intensity of anthocyanin colouration of auricles

6 Flag leaf: glaucosity of leaf sheath

7 Time of ear emergence (first spikelet visible in 50% of ears)

8 Awns: anthocyanin colouration of the tips

9 Awns: intensity of anthocyanin colouration of the tips

10 Ear: glaucosity

11 Ear: attitude

14 Ear: shape

15 Ear: density

16 Awn: length compared to ear

18 Rachis: length of first segment

19 Rachis: curvature of first segment

20 Rachis: humping of segments (in mid-third of ear)

22 Sterile spikelet: attitude

23 Sterile spikelet: length of lemma

24 Sterile spikelet: shape of tip

25 Median spikelet: length of glume and awn relative to grain

28 Grain: anthocyanin colouration of nerves of lemma

29 Grain: spiculation of inner lateral nerves of lemma

30 Grain: hairiness of ventral furrow

31 Grain: disposition of lodicules

Results

Genetic-similarity estimation

In total 681 markers were used to estimate genetic similarities and 43.3 % of them showed

polymorphism in the complete set of 31 genotypes. Restricting the set to 25 European two-row

spring barleys yielded a smaller percentage of polymorphic markers: 37.9 %. However, each of

the eight primer combination sets of markers could discriminate all thirty one barley genotypes. 
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Genetic similarities among all genotypes ranged from 0.857 to 0.978 with mean 0.919.

Within the group of European two-row spring barleys the average gs was 0.932 ranging from

0.901 to 0.978.

Principal-coordinate analysis resulted in a three-dimensional graphic representation of

the relationships between the genotypes (Figure 2.1). The correlation coefficient between genetic

similarities and Euclidean distances in the graph was −0.86.

Figure 2.1. Relationships between 31 barley lines visualised by principal-coordinate analysis

using AFLP based genetic similarities. ▪=two-row spring type; ▴=six-row spring type; ▫=two-

row winter type; △=six-row winter type. North American lines are underlined. PC1, PC2 and

PC3: first, second and third principal coordinates.
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Pedigree analysis

Coefficients of coancestry that were defined as ‘well known’ (ƒwk), ranged from 0 to 0.623 with

mean 0.132. Within the core set of European two-row spring barleys, ƒwk had an average of 0.176

ranging from 0.039 to 0.623.

Morphological trait analysis

After standardisation and principal component analysis, the first ten principal components,

explaining about 87% of the variation, were used to calculate morphological distances (md)

between the genotypes. The md-values ranged from 1.88 to 5.86 with mean 4.32.

Comparison of relationship measures

Simple (r) and rank (rs) correlation coefficients between genetic similarity (gs) and ‘well known’

coefficient of coancestry (ƒwk) were 0.404 (r) and 0.393 (rs) within the core set of European two-

row spring barleys (19 lines). The bootstrap 95%-confidence interval for r was [0.134, 0.642],

indicating that r deviates significantly from 0. Including the six other barley lines from the core

set, which had less-complete pedigrees, resulted in correlation coefficients 0.389 (r) , with

bootstrap 95%-confidence interval [0.135,0.600] and 0.334 (rs).

The correlation between gs and ƒwk for the total set of barley genotypes (23 lines)

including the North American and the winter barleys, is much higher. The value of r is 0.652

with bootstrap 95%-confidence interval [0.401,0.803] and the value of rs is 0.711. 

The relationship between gs and ƒ can also be assessed by comparing the principal

coordinate graph (Figure 2.1), based on the gs estimates, with the genotype pedigrees, in a more

qualitative manner. The first observation that can be made is the clear separation of four of the

six North American and winter barleys. Only the Canadian two-row spring variety Harrington

and the German two-row winter variety Igri are positioned relatively close to the European two-

row spring barleys. Harrington's pedigree, containing several European two-row spring barleys,

confirms its position in the graph. Igri is more or less positioned in between the six-row winter

variety Franka and a group of European two-row spring barleys. This is consistent with Igri's

origin, i.e., a cross between a six-row winter barley hybrid and a two-row spring barley named

Ingrid. The latter is also a parent of the cultivar Drossel which is positioned relatively close to

Igri. Offspring of Emir, a Dutch two-row spring barley which was frequently used as a parent,

appears to be concentrated in the front part of the graph: Aramir, Nudinka and Porthos. The

Vada-, Aramir- and Isaria/Union/Volla/Trumpf-groups, as distinguished for the European two-

row spring barleys by Melchinger et al. (1994), seem to emerge here as well. Furthermore,

parent-offspring combinations are not very distant in the graph: Vada-Georgie, Kenia-Proctor,

Aramir-Apex. However, the combination Apex-Riff seems to be rather distant. This picture may
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be confirmed by the above average morphological distance of 4.59 between Apex and Riff and

by personal communication with Dutch breeders who emphasised the clear agronomic differ-

ences between the two cultivars. It seems that selection against Apex-traits took place during the

selection of Riff.

Simple (r) and rank (rs) correlation coefficients between genetic similarity (gs) and

morphological distance (md) were −0.124 and −0.142 within the core set of European two-row

spring barleys for which morphological trait data were available (18 lines). The bootstrap 95%-

confidence interval for r was [−0.362, 0.123], indicating no significant correlation between gs

and md.

Correlation coefficients between ƒwk and md could only be based on the thirteen lines that

had 'well known' pedigrees, as well as morphological trait data, available. The value of r was

−0.117 and the value of rs was −0.189. From the bootstrap 95%-confidence interval for r

[−0.363, 0.198] it was concluded that there was no significant correlation between ƒwk and md.

Discussion

The degree of AFLP polymorphism does not appear to be very large in the set of barley geno-

types we used. However, each primer combination set of markers could discriminate all geno-

types. This may be a result of the choice of primer combinations which yield high numbers of

unambiguous polymorphisms. It is not likely that a set of AFLP markers based on a randomly

chosen primer combination will always be able to discriminate barley genotypes similarly well.

Although it does not have any direct effect on correlation estimates between genetic

similarity (gs) and other relationship measures (ƒ, md), it was decided to include monomorphic

markers in the genetic-similarity estimation. One advantage of doing so is that the addition of

extra genotypes in which a band of a so-far monomorphic marker is absent, making it a poly-

morphic marker, does not change 'existing' gs-estimates. If monomorphic markers are excluded,

such an addition will result in a change of 'existing' gs-estimates. Similarly, by ignoring the

simultaneous absence of a band in two genotypes, the addition of extra genotypes that have

bands in 'new' positions will not change 'existing' gs-estimates.

The values of the correlation coefficients between genetic similarity and coefficient of

coancestry are significant but not very high. This is in agreement with the poor-to-moderate

correlations that were found between RFLP-based and RAPD-based gs-estimates and ƒ (Graner

et al., 1994; Tinker et al., 1993). One of the causes for this poor relationship may be inaccuracy

in gs- and ƒ-estimates.

The accuracy of gs-estimates depends on the number of markers, their distribution over

the genome and the independent information (Messmer et al., 1993) provided by the AFLP-
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markers. For the last reason, redundant markers with identical or allelic patterns within primer

combinations have been discarded. Bootstrap analysis by sampling from all 681 markers resulted

in standard deviation estimates for gs ranging from 0.006 to 0.012. An extra source of inaccuracy

may be errors in scoring AFLP-bands. We tried to prevent part of these errors by scoring a data

point as missing in case of doubt. The lack of information due to missing observations is

included in the bootstrap standard-deviation estimates.

The assumptions underlying the calculation of coefficient of coancestry may cause quite

some inaccuracy in ƒ-estimation (Messmer et al., 1993). The assumption that original ancestors

are equally unrelated with ƒ=0 will probably not hold. It is quite likely that some pairs of

ancestors, e.g. genotypes descending from the same region, are more related than others. Also

the assumption that a genotype receives half of its genes from each parent is very doubtful. As

a result of natural or breeder's selection during the inbreeding phase, alleles of one parent may

have had the advantage over alleles of the other parent. As a result of this the estimated

coefficients of coancestry may show substantial deviations from the true ƒ-values.

The absence of a significant relationship between morphological distance (md) and gs-

or ƒ-estimates within the European two-row spring barleys may be a result of inadequate

representation of genetic relationships by the observed morphological traits. Reasons for this

could be: the limited number of traits observed, the limited variation for these traits, the number

of underlying genes for these traits, which may also be limited, and possible epistatic

interactions among these genes. Also the distribution of the underlying genes over the genome

may be quite irregular. Finally, most data were measured on the rather coarse ordinal UPOV-

scales (UPOV, 1981), which may have caused some inaccuracies in the md estimates. The poor

within-group correlation can be said to agree with the results of Souza and Sorrells (1991b) in

oats. The moderate correlation between gs and distance based on agronomic and morphological

traits found by Autrique et al. (1996) in durum wheat is a result of the wider range of genotypes

under investigation, representing more than one ecotype and resulting in much more variation

among distance estimates. Also most of the observed traits were measured on a continuous scale,

probably resulting in a higher accuracy of the distance estimates.

The accuracy of the correlation coefficient (r) estimates cannot be assessed straight-

forwardly, because the usual assumptions of independent samples of data-pairs from a bivariate

normal distribution do not hold. The data-pairs, consisting of relationship measures, are de-

pendent and have a non-normal distribution. In our case they are based on a genotype sample

from the population of European two-row spring barleys. To avoid complex analytical

approaches, bootstrap sampling from the genotypes can be used to approximate the proper

confidence intervals for r. Inaccuracy appears to be larger than one would expect on the basis

of the usual, but false, distributional assumptions. The addition of genotypes that did not have
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'well known' pedigrees slightly decreased r, showing the effect of inaccuracy of ƒ due to

incomplete pedigree information. 

Including genotypes from other barley groups, e.g. European winter barleys and North

American spring barleys, resulted in a much larger estimate of r. The main reason for this bias

is the simultaneous study of within- and between-group (gs,ƒ) pairs. The higher value of r shows

that AFLP-based gs-estimates can be used to distinguish between major groups of barley and

suggests that genetic diversity in barley may very well be assessed with AFLPs.

The prediction of breeding behaviour of offspring from parent combinations may be

improved by the simultaneous use of AFLP-based genetic similarities and coefficients of

coancestry. A preliminary standardisation could be helpful in this respect to take account of the

differing gs and ƒ ranges. The combination of the gs and ƒ estimates is expected to decrease the

effect of their independent inaccuracies. The weights given to both relationship measures may

depend on the number of markers and maybe the approximate inaccuracy of ƒ (Cox et al.,

1985a). However, the expected improvement of a combined measure can be made ineffective

if gs- or ƒ-estimates are biased (Souza and Sorrells, 1991b). Whether morphological distances

have any predictive value on breeding behaviour remains questionable.

Conclusion

The AFLP fingerprint technique can be used for cultivar identification in barley. One primer

combination may often be sufficient to identify lines uniquely.

Genetic similarities (gs), based on AFLP markers, show a poor-to-moderate correlation

with pedigree based coefficients of coancestry (ƒ) within the group of European two-row spring

barleys. This poor relationship may be caused by inappropriate assumptions in the calculation

of ƒ as well as marker sampling error and biased representation of genomic differences revealed

by AFLPs. Morphological distances (md) show no significant relationship with gs or ƒ. This may

be caused by biased and insufficient representation of the genome using morphological traits.

The inaccuracy of the correlation coefficients between relationship measures, e.g. gs, ƒ and md,

can be assessed using bootstrap sampling of genotypes.

The clear distinction between major barley groups, based on gs-estimates, suggests

opportunities for the use AFLP markers in the assessment of genetic diversity. For the prediction

of breeding behaviour of parent combinations simultaneous use of several relationship measures

(gs, ƒ) in a combined index, as proposed by Cox et al. (1985a), may probably improve results

if large biases in the gs- and ƒ-estimates are absent. This improvement will be a result of the

decreased effect of the individual inaccuracies.
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Cross and line prediction in barley using F4 small-plot yield trials 2

Johan W. Schut, C. Johan Dourleijn and Izak Bos

Abstract

Twenty crosses of European two-row barley were used to investigate the usefulness of F4 yield

testing in small plots. We examined opportunities for selection between and within crosses. F2-

derived F4 lines were tested at two locations in 1994 and the 48 descending recombinant inbred

lines (RILs) per cross were tested for yield at two locations in 1995 and four locations in 1996.

To rank crosses we used the cross prediction method proposed by Jinks and Pooni (1976, 1980),

which uses a predicted mean and variance to estimate the probability that a line exceeds an

arbitrary threshold yield. Correlation between F4 population mean and RIL mean was poor. This

was mainly due the effect of intergenotypic competition between the small plots. Correlation

between RIL mean and midparent value based on large plots was stronger, but the difference

between RIL mean and midparent value varied significantly among crosses. This is probably a

result of segregation distortion for ‘major genes’ and epistatic effects. The yield variance of F4

populations was moderately correlated with RIL variance. This can be mainly attributed to the

presence or absence of segregating major genes in the different crosses. Cross prediction

performed poorly, which is mainly due to the inadequate prediction of RIL mean by midparent

values and RIL variance by F4 variance. Considering selection within crosses, we found that the

yield of individual F4 lines did not accurately predict the yield of the related RILs. F4 yields

were biased due to intergenotypic competition between the small plots. Also inaccuracies due

to the small plot size contributed to the lack of prediction precision. In some crosses a significant

relationship between F4 yield and RIL yield was established on the basis of variation caused by

‘major gene’ segregation. In most cases this variation can be assessed visually. So we conclude

that there is hardly any perspective for a laborious early generation small plot yield assessment

in practical barley breeding, neither for selection within crosses nor for selection between

crosses.

2submitted for publication
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Introduction

In a breeding programme of a self-fertilising crop selection between crossing populations can

be distinguished from selection within these populations. Part of the selection between crosses

is already done before the actual crosses are made, by choosing only the most promising parent

combinations. Final selection between crosses and selection within crosses are both performed

during and/or after the inbreeding phase. In order to focus within-cross selection on the most

promising crosses, Jinks and Pooni (1976) proposed a cross prediction method for selection

between crosses, based on statistics derived from basic generations, i.e., F1, F2, B1, and B2

(Mather and Vines, 1952) or based on a triple test cross design, involving crosses of the F2 with

both parents and the F1 (Kearsey and Jinks, 1968). Later they suggested prediction on the basis

of F3-lines which reduces the amount of crossing labour and trait evaluation (Jinks and Pooni,

1980). This prediction is based on the mean performance of the F3-lines and the variance among

them, assuming a normal distribution of the quantitative trait values. Crosses are ranked on the

basis of the estimated probability of a line exceeding an arbitrarily chosen threshold, e.g. the

performance of the best parent. After selection of the top-ranking crosses a line or pedigree

selection method (Bos and Caligari, 1995) can be used to select within these crosses.

There are several reasons why selection in the early generations of inbreeding may be

less effective than selection in advanced generations. Firstly, dominance, as well as epistasis

involving dominance effects, has an adverse effect on the contrasts between genotypes.

Secondly, in cereals like wheat and barley, the agronomic performance of a genotype can only

be assessed by growing the material in plots. Intergenotypic competition within these plots

appeared to be an important factor in decreasing the effectiveness of selection for yield in

monoculture (Van Ooijen, 1989a,b). In addition, the small plot size in early generations, due to

the large number of lines under investigation and the limited amount of available seed per line,

results in interline competition between plots. This also substantially decreases the effectiveness

of selection (Van Oeveren, 1992). Finally, genotype by environment interaction may cause

undesirable crosses and/or lines being selected, as the number of early generation test locations

and years is small, usually one or two locations and one or two years. This limited number of

environments is also a result of large numbers of lines and few available seeds per line, and

furthermore time pressure is limiting the number of test years.

These disturbing factors apply to the effectiveness of selecting promising lines within

crosses, as well as to the power of assessing differences between crosses, in early generations.
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However, several authors report reasonable results of cross prediction for yield in wheat (Snape,

1982) and barley (Tapsell and Thomas, 1983) by the use of the triple test cross design. The

suggested use of F3- or doubled haploid lines (Jinks and Pooni, 1980) appears to be an efficient

alternative for the triple test cross design (Snape, 1982; Caligari et al., 1985; Choo, 1988).

Instead of estimating genetic parameters, Thomas (1987) shows that it is also possible to assess

the expected number of desired genotypes per cross by simply counting the number of desired

genotypes in the F3-generation. All of the mentioned authors, except Thomas (1987), derive

statistics from basic generations tested in a chosen environment to predict cross performance

observed in the same environment. However, the agreement between cross predictions based on

early generation yield data from one environment and observed cross performance in another

environment appears to be rather poor (Caligari et al., 1985; Thomas, 1987).

Within crosses the effectiveness of early generation selection for yield is questionable

(Knott, 1979). Correlations between early and later generations are moderate (DePauw and

Shebeski, 1973) or change from year to year due to genotype by environment interaction (Briggs

and Shebeski, 1971). Sneep (1977) recommends unreplicated early generation trials with a high

density of standard varieties (1:3). Only the central row of three-row plots should be harvested

to avoid competition effects. However, Spitters (1979) argues that harvesting all three rows gives

more reliable yield estimates as the enlarged precision due to the increased harvested area

compensates for the inaccuracy due to interplot competition.

In this study we try to generalise the predictive value of early generation yield assessment

by using a set of crosses larger than the sets used in earlier studies mentioned above. To

investigate the effectiveness of cross prediction and within-cross selection, we used eighteen

crosses of European two-row spring barley plus two reciprocals. Special attention is paid to the

effect of segregating ‘major genes’. We will discuss the effects of interplot competition and

genotype by environment interaction. Finally we will deliberate on the perspectives of early

generation yield testing for practical breeding.

Material and methods

Plant materials

Eighteen spring barley (Hordeum vulgare L.) lines (Table 3.1a) were used as parents in a partial

diallel crossing design (n=18, s=2; Kempthorne and Curnow, 1961) to produce 18 F2-

populations (Table 3.1b). For two parental combinations reciprocal crosses were made,

increasing the total number of crossing populations to 20. The parent lines were chosen to

represent the germplasm employed in commercial two-row barley breeding programmes in
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Table 3.1. Plant materials

a. Parent lines, their country of origin and year of release

genotype country of origin year of release genotype country of origin year of release

Apex the Netherlands 1983 Gunhild Denmark 1980

Baronesse Germany 1989 Karat Czech Republic 1981

Bonaire the Netherlands 1992 Midas United Kingdom 1970

CEB-9079 the Netherlands - Porthos France 1975

CEB-9186 the Netherlands - Prisma the Netherlands 1985

Drossel Germany 1971 Riff the Netherlands 1993

Forester United Kingdom 1990 Triangel the Netherlands 1990

GEI-119 the Netherlands - Yriba France 1981

Georgie United Kingdom 1975 ZE-87-3414 the Netherlands -

b. Crosses and their parents. R=reciprocal combination

cross mother father cross mother father

1 Riff Drossel 11 Karat Yriba

2 Baronesse Forester 12(R2) Gunhild GEI-119

3 Baronesse Bonaire 13 Gunhild CEB-9186

4 Apex Riff 14 Bonaire Porthos

5 Porthos Yriba 15 CEB-9186 ZE-87-3414

6 Midas Forester 16 ZE-87-3414 CEB-9079

7 GEI-119 Midas 17(R2) GEI-119 Gunhild

8(R1) Prisma Apex 18 Triangel Georgie

9 Prisma Karat 19(R1) Apex Prisma

10 Triangel Drossel 20 Georgie CEB-9079

Northwest Europe over the last 20 years. Sixty F2-plants per cross were used to produce 60 F2-

derived F4-lines. These 1200 F4-lines were used to obtain early generation yield data. From the

same F2-plants 60 F5-plants per cross were derived via single seed descent. Out of these F5-

plants we took a random sample of 48 plants per cross to produce, by one generation of

multiplication, 48 F5-derived F7-lines per cross . These recombinant inbred lines, 960 RILs in

total, were used to obtain estimates for final cross performance.

F4-trials 1994

The 1200 F4-lines were tested in 1994 at two clay-soil locations in the Netherlands (Lelystad:

94-1a, and Wageningen: 94-2a) in three-row plots of 1.5 m length. A few F4-lines were planted

in only one or two rows due to lack of seed. The other rows were filled with the standard cultivar

Magda. The distance between rows was 20.8 cm. The 18 parent lines plus two extra lines

(Magda and Vada) were added as standards. Every F4-line occurred only once per location;

standards were replicated six times, adding up to a total of 1320 plots per location. F4-lines were

randomised according to a partially balanced incomplete block design with 10 plots per block,

treating locations as replicates. One standard was added to every block, increasing the number
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Table 3.2. Field trial description. p=present in trial

trial location year plot size (m2)

(width × length (m) ) 

sowing date standards F4 RIL

94-1a Lelystad 1994 0.94 (0.625 × 1.5) 31 May p p

94-2a Wageningen 1994 0.94 (0.625 × 1.5)   1 June p p

94-1b Lelystad 1994 8.55 (1.5 × 5.7) 22 April p

94-2b Wageningen 1994 8.55 (1.5 × 5.7) 28 April p

95-1 Swifterbant 1995 9.0 (1.5 × 6.0) 15 May p p

95-2 Wageningen 1995 9.0 (1.5 × 6.0) 11 May p p

96-1 Swifterbant 1996 9.0 (1.5 × 6.0)   1 April p p

96-2 Wageningen 1996 9.0 (1.5 × 6.0) 19 March p p

96-3 Lelystad 1996 5.32 (1.4 × 3.8) 18 April p p

96-4 Rilland 1996 3.6 (1.5 × 2.4) 19 March p p

96-5 Ottersum 1996 4.65 (1.5 × 3.1) 18 March p p

of plots per block to 11. Due to late ripening of F3-lines in the greenhouse, we sowed on 31 May

in Lelystad and on 1 June in Wageningen. Although these dates were extremely late for Dutch

conditions, crop development was generally normal as a result of cool weather during the first

six weeks after planting. The three-row plots were harvested and the observed grain yield data

were converted to kilogram per hectare.

Standard trials 1994

In 1994 the 18 parent lines plus the two extra lines (Magda and Vada) were also tested in large

plots (10 rows; 1.5 x 5.7 m) at the same locations as the F4 (Lelystad: 94-1b, and Wageningen:

94-2b). We used two replicates per location and we applied a randomised complete block design.

Sowing dates are presented in Table 3.2. Observed traits were plant height (cm), thousand kernel

weight (g) and yield (kg/ha). Standard trials, as well as all other trials mentioned in Table 3.2,

were kept free from diseases.

RIL-trials 1995 and 1996

The 960 recombinant inbred lines (RILs) were tested in 1995 at two locations (Swifterbant: 95-1,

and Wageningen: 95-2). Again, the 18 parent lines and cultivars Magda and Vada were added

as standards. Each location included two replicates. Each standard occurred six times per

replicate, adding up to a total of 2160 (2 x 1080) plots per location. In 1996 the RILs were tested

at five locations in the Netherlands: two 'complete' locations (Swifterbant: 96-1, and

Wageningen: 96-2), containing all 960 lines, and three 'partial' locations (Lelystad: 96-3, Rilland:

96-4, and Ottersum: 96-5), each containing one third of the lines (i.e., 16 lines) of each cross.

The 'complete' locations involved two replicates and six times 20 standards per replicate, just

as the 1995-trials. The 'partial' locations involved two replicates with the 20 standards occurring
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twice per replicate, adding up to a total of 720 (2 x 360) plots per location. All genotypes were

randomised according to a partially balanced incomplete block design with eight plots per block.

The constraint that two genotypes do not occur more than once together in the same block,

extended over all year by location combinations. Due to lack of seed of some lines, we filled

empty plots with the additional standard cultivar Reggae. Sowing dates and plot sizes are

presented in Table 3.2.

Observed traits were grain yield (kg/ha), thousand kernel weight (g; 0% moisture), plant

height (cm) and flowering time (°C.days). Flowering time was defined as the temperature sum

from emergence to decimal stage 49 (Zadoks et al. ,1974). Grain dry matter content at harvest

was measured on a 100g-sample. Lodging was scored on a scale from 0 (no lodging) to 5 (severe

lodging) around decimal stage 69 (Zadoks et al., 1974), except for trial 95-2. In this trial lodging

was observed at stage 83 as there was hardly any lodging in earlier stages. Potentially useful

covariates were observed wherever it seemed relevant: weed cover (%); bird damage (0-2);

percentage of clay in dry matter content samples; secondary tillering (0-2).

 

Statistical analysis

F4-trials

The F4-yield data were analysed using average information REML (Gilmour et al., 1995). The

linear mixed model included fixed effects for location, standards, crosses, standard by location

interaction and cross by location interaction. Also strips of adjacent incomplete blocks were

included as fixed effects, nested within the location effects. The block effects were assumed

random, as well as the line within cross effects. Whenever a hypothesis considered the specific

1200 lines that were present in the trial, the line effects were assumed to be fixed. Finally, error

variances were allowed to be different at the two locations.

Standard trials and RIL-trials

Standard trial data were analysed per trait using a linear model including fixed effects for

standards, locations and standard by location interaction. We used average height of the two

adjacent plots as a covariate in the analysis of the yield data.

RIL-trial data were analysed per trait (yield, thousand kernel weight, plant height,

flowering time and lodging) using average information REML (Gilmour et al., 1995). Analysis

of the plot data was performed per year by location combination (environment), because an

overall analysis appeared not feasible due to computational limitations. The linear mixed model

included fixed effects for standards, crosses and strips of adjacent incomplete blocks. The block

effects were assumed random, as well as the line within cross effects. In the analysis of residuals

and whenever a hypothesis considered the specific lines that were present in the trial, the line
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effects were assumed to be fixed. Several concomitant variables (sowing date difference because

of rain during sowing, weed cover, bird damage, average plant height of the two adjacent plots,

dry matter content of grains at harvest, percentage of clay in yield samples, secondary tillering,

harvest date difference because of rain during harvest) were included, if significant (F-test;

α=0.05), to decrease error variance in the analysis of thousand kernel weight (tkw) and yield

data. For the analysis of lodging data we fitted a proportional odds model (McCullagh and

Nelder, 1989).

To overcome computational limitations we performed a combined analysis over years

and locations (environments) by using the least squares means for the lines as input data for an

analysis of variance. The linear mixed model included fixed effects for standards, crosses,

standard by environment interaction and cross by environment interaction. The line effect was

assumed fixed or random depending on the hypothesis, as mentioned for the analysis of

individual environments. Between line variances were estimated per cross.

Residual analysis was performed for each environment to trace outliers among the data.

These observations were excluded from the final analyses. Observations for standard cultivars

were considered to be outliers if the absolute value of their standardised residual was greater

than 2.80 (P<0.005). For line observations we looked for a combination of a high absolute value

of the standardised residual and an extreme trait value compared to the other lines from the same

cross. These within-cross outliers among the lines were traced using least squares means for

yield, thousand kernel weight, plant height, and flowering time from the variance analyses per

environment. Tests for within-cross outliers were performed for each cross separately. Per trait

a t-test and one of its robust versions (Rousseeuw and Van Zomeren, 1990) were used to find

univariate outliers among the line means per trait. However, some within-cross outliers can only

be distinguished by a multivariate test (Barnett and Lewis, 1994), taking into account

observations for several traits from one environment or observations for one trait from several

environments. We used Wilks’ test for multivariate outliers (1963) and one of its robust

versions, based on the minimum volume ellipsoid estimator (Rousseeuw and Van Zomeren,

1990). These tests are multivariate versions of the univariate tests for outliers. In the case of

severely skewed data, even after the deletion of an outlying observation, the robust tests became

unreliable and were not used. Finally, we defined a combined probability for Type 1-error:

Pc=1−(1−Pr)(1−Pcr)  where Pr follows from the standardised residual of the observation and Pcr

from the smallest P of the univariate or multivariate tests for within-cross outliers. A Pc-value

less than 0.06 was then used as an indicator to find and remove the outlying observations.

Segregation analysis
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On the basis of parent information we expected several crosses to segregate for ‘major genes’,

e.g. the denso gene (Haahr and Von Wettstein, 1976) and the ert-g gene (Thomas et al., 1984).

Thomas (1987) suggested to investigate the effect of these ‘major genes’ on the effectiveness

of cross prediction in more detail. To find out which lines obtained which ‘major gene’ allele,

we used an approach based on mixture models (McLachlan and Basford, 1988). The model

assumes a mixture of two multivariate normal distributions with mean vectors μ1 and μ2, equal

variance-covariance matrices Σ and unknown proportions p1 and p2. We used robust M-

estimators for estimation of μ1 and μ2 and Σ, as proposed by Maronna (1976) using Huber’s

(1964) ψ-function in the weights. The model was fitted using the idea for an iterative EM-

algorithm described by Jansen (1993). The algorithm was implemented in SAS-IML (SAS

Institute Inc., 1989). The existence in a cross of a segregating ‘major gene’ was accepted on the

basis of a likelihood ratio test (α=0.05), in which the unimodal model (H0: no ‘major gene’

segregating) was tested against the bimodal model (H1: ‘major gene’ segregating). Critical values

for the likelihood ratio were obtained by Monte Carlo sampling from a multivariate normal

distribution with a variance-covariance matrix based on the observed data. When a bimodal

model was accepted, we refer to this as a 'major gene' segregating in the cross. Once a ‘major

gene’ was accepted, this factor was used as a covariate in the mixture model, while looking for

additional ‘major genes’ . This procedure was repeated until no further ‘major genes’ were

detected.

The least squares means for the lines were used as input, while fitting the mixture model

for each cross separately. Plant height, flowering time, lodging, thousand kernel weight and yield

means from the combined analysis over environments were used one by one in a univariate

mixture model. But we also used these means in combination in a multivariate mixture model.

The third way of tracing segregating ‘major genes’, involved the combined use of least squares

means from the different ‘complete’ environments (95-1, 95-2, 96-1, 96-2) for one trait at a time

(plant height, flowering time, thousand kernel weight or yield) in a multivariate mixture model.

With the use of the postulated ‘major genes’, the genetic variance between lines could

be divided into two parts: variance caused by the hypothesised ‘major genes’ and variance

resulting from the segregation of other -‘minor’- genes. The latter variance is therefore called

‘minor gene’ variance. ‘Minor gene’ variance estimation is performed by using the segregating

‘major genes’ and their interactions as explanatory variables in the analysis of variance. In the

analysis over environments we included the effect of ‘major gene’ by environment interaction.

The postulated ‘major genes’ based on RIL data were also used in the analysis of the F4-lines,

by assuming that the RIL and the F4-line descending from the same F2-parent, had the same

'major gene' genotype. Because 12 of the 60 F2-plants per cross were not advanced to recombi-

nant inbred lines, we could not assign them a ‘major gene’ genotype. In the ‘minor gene’
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Table 3.3. Field trials characterised by average trait values, observed over 20 crossing

populations and 20 standards and root mean square errors (root mse) obtained by variance

analysis. tkw = thousand kernel weight. †=average over 20 standards

trial mean root mse

plant

length

(cm)

flowering

time

(°C.days)

lodg-

ing  

(0-5)

tkw

(g)

yield

(kg/ha)

plant

length

(cm)

flowering

time

(°C.days)

tkw

(g)

yield

(kg/ha)

94-1a 2430 504

94-2a 3147 463

94-1b† 93 48.1 7081 4.4 1.6 347

94-2b† 81 49.8 5683 4.0 1.0 235

95-1 81 618 0.6 5452 3.1 9.7 229

95-2 77 593 1.5 46.4 6048 3.1 11.4 1.5 220

96-1 90 690 3.1 44.2 3.4 9.6 2.2

96-2 80 643 2.7 48.0 9127 3.3 8.6 1.6 293

96-3 94 1.5 7404 2.8 301

96-4 87 2.8 9813 3.3 453

96-5 89 0.7 9067 2.9 261

variance analysis the F4-lines descending from these F2-plants were treated fixed instead of

random. In this way they did not contribute to the estimated 'minor gene' variance.

Results

F4-trials 1994

In the small plot trials yield, averaged over the 20 F4-populations and 20 standards, was 2430

kg/ha in trial 94-1a and 3147 kg/ha in trial 94-2a (Table 3.3). Average yields per F4-population

are presented in Table 3.4. The grain size of F4-seed, produced by the F3-lines in the greenhouse,

was generally smaller than the grain size of the standards’ seed, produced in the field. As we

used a constant amount (weight) of seed for sowing, this caused large differences in plant

density, resulting in lower yields for the standards than for the F4-lines in trials 94-1a and 94-2a.

Estimated between-line standard deviations per F4-population for the combined locations are

presented in Table 3.5. Lack of seed, and planting and harvest errors, resulted in 35 missing

observations. Part of the plots in trial 94-1a were harvested later, due to rainy weather during

harvest. Some of these plots suffered from severe pre-harvest sprouting. Yield of these plots was

not observed, resulting in 13 extra missing observations. The effect of late harvest was included

in the analysis by treating the plots in question as if they were from a separate location. The

average yields for trial 94-1a in Table 3.3 were corrected for the effect of this late harvest.
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Table 3.4. Average yield (kg/ha) per cross. (F4: 94-1a, 94-2a; RILs: 95-1,..,96-5)

trial

cross 94-1a 94-2a 95-1 95-2 96-2 96-3 96-4 96-5

1 2909 4038 5500 6218 9291 7443 9770 8968 

2 3109 3814 5482 5999 9151 7788 9622 9102 

3 2964 3836 5582 6354 9370 7518 10096 9295 

4 3268 3952 5465 6211 9225 7479 9823 8850 

5 2156 3076 5459 6019 8765 7174 9134 8758 

6 2172 3463 4982 5870 8771 6652 9100 8727 

7 2721 3982 5722 6493 8847 7039 9765 9438 

8 2441 3106 5376 5766 8913 7544 9453 8899 

9 1573 3011 5466 6112 9121 7712 9960 9686 

10 2242 3922 5459 6265 9288 7270 9997 9442 

11 1850 2880 5155 5825 8703 6909 9329 8988 

12 3115 4205 5562 6342 9109 7270 9658 8845 

13 2248 3466 5298 6087 8979 7273 9606 9144 

14 2475 3516 5498 5897 9015 7237 9660 8721 

15 2154 2953 5080 5652 8868 7331 9521 8472 

16 2836 3094 5301 5579 8902 7377 9532 8776 

17 3511 4298 5561 6358 9075 6933 9666 8882 

18 2533 3588 5617 6111 9239 7324 10099 9140 

19 2620 3281 5282 5739 8799 7547 9502 8866 

20 2206 3440 5421 6285 9213 7274 9769 8867 

Standard trials 1994

In the standard trials yield, averaged over the 20 standards, was 7081 kg/ha in trial 94-1b and

5683 kg/ha in trial 94-2b (Table 3.3).

RIL-trials 1995 and 1996

In 1995 yield, averaged over the 20 RIL populations and 20 standards, was 5452 kg/ha in trial

95-1 (Swifterbant) and 6048 kg/ha in trial 95-2 (Wageningen). We found 30 yield outliers by

residual analysis, which were declared missing.

In 1996 average yields were higher, because of early sowing and cool weather during

grain filling. Yields were 9127 kg/ha in Wageningen (96-2), 7404 kg/ha in Lelystad (96-3), 9813

kg/ha in Rilland (96-4) and 9067 kg/ha in Ottersum (96-5). Due to severe hail storm damage, we

did not obtain yield data from Swifterbant (96-1). We could, however, sample spikes from this

location to observe thousand kernel weights. Part of the Wageningen plots were harvested later

due to rain. Severe pre-harvest sprouting in these plots resulted in 135 missing observations.

Strong contamination with clay caused another 77 missing observations at the Wageningen

location. By th use of residual analysis we found 11 yield outliers, which were declared missing.

Using within-cross residual analysis we also found five lines which consistently differed

from the rest of the crossing populations to which they belonged. Assuming that these lines were
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Table 3.5. Square root of between line variance for yield (kg/ha) per cross per environment

(RILs: 95-1,..,96-5) and over environments (F4: 94-1a,2a; RILs: all-95,96)

trial

cross 94-1a,2a 95-1 95-2 96-2 96-3 96-4 96-5 all-95,96

1 328 342 460 587 311 514 904 397

2 258 161 330 528 426 522 629 292

3 227 225 317 463 327 420 371 252

4 255 249 315 504 168 431 516 254

5 336 206 248 257 252 527 405 197

6 431 461 448 620 310 708 651 461

7 193 300 360 343 314 411 346 232

8 345 196 337 595 339 355 653 357

9 248 215 292 313 278 146 296 147

10 261 293 232 258 353 370 263 199

11 426 314 417 431 491 649 619 393

12 366 285 273 222 520 365 520 153

13 315 252 229 357 282 319 505 234

14 303 227 452 419 489 528 752 356

15 650 244 396 526 390 405 646 289

16 405 314 406 488 294 501 380 336

17 246 353 311 253 470 416 452 217

18 333 238 299 274 537 175 494 241

19 347 213 303 568 464 530 714 344

20 370 351 380 570 459 628 555 492

products of cross pollination in early generations or accidental exchanges of genotypes, we

treated them as additional standards in further analysis.

Average trait values and root mean square errors per environment are presented in Table

3.3. Average yields per cross are presented in Table 3.4. Square roots of the estimated between

line variances per cross are presented in Table 3.5.

Segregation analysis

As a result of segregation analysis we were able to postulate 0 to 4 segregating ‘major genes’ per

cross (Table 3.6). Whenever we expected segregation of the denso or the ert-g gene in a cross,

on the basis of the pedigrees of the parents, we were able to identify this segregation by visual

inspection of the distribution as well as by using the mixture model. Segregation ratios appeared

to be significantly distorted in 25 of the 43 postulated ‘major genes’ (χ²-test; α=0.05). Among

the genes with distorted segregation was the ert-g gene, of which the erect allele occurred with

a frequency of 0.30.

The postulated ‘major genes’ and their interactions explained 0 to 100 % of the ‘total’

yield variance, as well as 0 to 100% of the thousand kernel weight (tkw) variance, in the
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Table 3.6. Number of postulated segregating ‘major genes’ per cross and the relative change of

variance resulting from including them as explanatory variables in the analysis of variance over

environments. Known ‘major genes’ that are segregating, are specified: denso (Haahr and Von

Wettstein, 1976) and ert-g (Thomas et al., 1984). tkw=thousand kernel weight

cross number of

‘major genes’ 

known ‘major genes’ 

segregating

relative change in variance 

F4-yield RIL-yield RIL-tkw

1 2 denso -0.01 -0.34 -0.41 

2 4 denso -0.59 -0.57 -0.86 

3 1 0.00 -0.04 -0.42 

4 2 denso -0.24 -0.54 -1.00

5 0 0 0 0

6 3 denso, ert-g -0.18 -0.66 -0.71 

7 3 -0.23 -0.33 -0.44 

8 2 denso -0.11 -0.56 0.04 

9 0 0 0 0

10 2 0.05 -0.16 -0.64 

11 2 denso -0.01 -0.8 0.08 

12 3 ert-g -0.56 -0.25 -0.73 

13 2 -0.51 -0.34 -0.22 

14 4 -0.21 -0.30 -0.67 

15 3 -0.06 -0.19 -0.53 

16 1 denso -0.04 -0.37 -0.02 

17 3 ert-g -0.40 -0.36 -0.67 

18 2 0.00 -0.05 -0.04 

19 2 denso -0.68 -0.73 -0.06 

20 2 denso -0.28 -0.73 0.06

individual environments. Estimated over environments, ‘minor gene’ variances for yield or tkw

were usually smaller than ‘total’ variances (Table 3.6). In a few cases slightly larger ‘minor

gene’ variances were found. They result from crosses in which ‘major genes’ predominantly

explain line by environment interaction variance. As a result of the separation of this interaction,

the average line effect over environments can be estimated more accurately, leading to an

increased between line variance over environments.

Cross prediction. 1. Mean

Yield of recombinant inbred line (RIL) populations, averaged over environments, was only

moderately correlated (r=0.42) with yield of F4 populations (Table 3.7a). Midparent yield,

calculated as the mean yield of the two parents of a cross, and based on small plot yield data

from the same two trials as the F4, showed a similar correlation (r=0.45) with yield of the RIL

populations. However, midparent yield, based on earlier sown, large plots at the same locations,

showed a much higher correlation (r=0.70). This correlation is about equal to the correlation

between RIL population yield and midparent yield, based on large plots in the same environ-

32



F4-based yield prediction

Table 3.7. Correlation coefficients between yield of crosses, averaged over recombinant inbred

lines (RILs), and predictors based on F4 or parent data.

a. Yield (y) performance. y(cr)••=cross yield performance averaged over years i (i=1995, 1996) and locations

p (p=1,..,5); y(cr)ip=cross yield performance in year i at location p; y(cr)94a•=cross yield performance (F4) averaged

over trials 94-1a and 94-2a; y(mp)94a•= midparent yield averaged over trials 94-1a and 94-2a; y(mp)94b•=midparent

yield averaged over trials 94-1b and 94-2b; y(mp)••=midparent yield averaged over years i and locations p; y(mp)ip,

y(mp)iq, y(mp)jq=midparent yields in year i or j (i≠j) at location p or q (p≠q). †=correlation coefficients averaged

over all possible combinations of i, j, p and q (i≠j; p≠q)

average cross

yield

predictors of cross yield (y)

y(cr)94a• (F4) y(mp)94a• y(mp)94b• y(mp)•• y(mp)ip y(mp)iq y(mp)jq

y(cr)•• (RILs) 0.42 0.45 0.70 0.71 0.45†

y(cr)ip (RILs) 0.35† 0.36† 0.53† 0.54† 0.65† 0.37† 0.20†

b. Thousand kernel weight (k) per cross, averaged over RILs. n.a.=not available: thousand kernel

weight not observed in trials 94-1a and 94-2a. Further descriptions as in a. 

average cross

k

predictors of cross thousand kernel weight performance (k)

k(cr)94a• (F4) k(mp)94a• k(mp)94b• k(mp)•• k(mp)ip k(mp)iq k(mp)jq

k(cr)•• (RILs) n.a. n.a. 0.82 0.90 0.87†

k(cr)ip (RILs) n.a. n.a. 0.81† 0.89† 0.88† 0.85† 0.86†

ments as where the RILs were tested (r=0.71; Figure 3.1). Midparent values, based on a single

environment, showed only moderate correlations with RIL population yield (average r=0.45).

For thousand kernel weight correlations between midparent values and RIL averages were higher

(Table 3.7b).

Figure 3.1 shows that the difference between midparent yield and cross yield seems to

vary among crosses. In most crosses the average yield of the RILs is not as high as predicted by

midparent values, while for some other crosses midparent values and average yield of RILs seem

to be equal. A nonparametric Friedman test, using environments as blocks, showed significant

variation among crosses for the difference between midparent value and average yield of RILs

(P=0.003). For thousand kernel weight the RIL average of each cross seems to be equal to the

midparent value of that cross.

Cross prediction. 2. Variance

Yield variance between F4-lines in a cross showed a reasonable correlation (r=0.62; Table 3.8a;

Figure 3.2a) with yield variance between recombinant inbred lines, estimated over environments.

‘Minor gene’ yield variance between F4-lines showed a weaker relationship (r=0.41; Table 3.8b; 

Figure 3.2b) with ‘minor gene’ yield variance between RILs. The extremely large yield variance
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Figure 3.1. Yield of crosses (RIL-populations) and mean yield of their parents, both averaged

over 6 environments in 1995 and 1996. The line represents the 1:1 ratio.

between F4-lines of cross 15 (see Table 3.5) was not used in the correlation coefficient

estimation as some of the F4-lines hardly produced any seed due to late flowering. This was the

result of late sowing in combination with the segregation of a photoperiod response gene and a

late flowering parent (CEB-9186). The average correlation between RIL yield variance from a

single environment and RIL yield variance estimated over the other environments is moderate

(r=0.50; Table 3.8a) and decreases to 0.25 (Table 3.8b) when the effect of ‘major genes’ is

removed. Correlations between RIL variances for thousand kernel weight are much higher

(Table 3.8a), but they also decrease after elimination of ‘major gene’ effects (Table 3.8b).

The poor correlation between yield variance between F4-lines and thousand kernel

weight variance between RILs (r=0.32; Table 3.8a) increases to 0.46 (Table 3.8b) when only

‘minor gene’ variance is considered.

Cross prediction. 3. Combining mean and variance 

Cross performance was predicted by the estimated probability that a line from a certain cross

yields more than an arbitrary threshold. The threshold was defined as the average of three high

yielding standard cultivars: Riff, Baronesse and Triangel. The probability was calculated on the

basis of a predicted mean, a predicted variance and on the assumption that line yields of a cross

are normally distributed. For the RILs we observed that the standard deviation for yield,

averaged 
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Figure 3.2. F4-line yield variance per cross, analysed over trials 94-1a and 94-2a, and recombi-

nant inbred line (RIL) yield variance per cross, analysed over 6 environments in 1995 and 1996.

Cross 15 not included.

a. Between line variances for F4-lines (V(y)-F4) and RILs (V(y)-RILs)

b. ‘Minor gene’ between line variances for F4-lines (mgV(y)-F4) and RILs (mgV(y)-RILs)

35



Chapter 3

Table 3.8. Correlation coefficients among ‘between line’ variances of crosses, based on F4-lines

or recombinant inbred lines (RILs), for yield (y) and thousand kernel weight (tkw).

a. Variances (V) including the effect of segregating ‘major genes’. V(y)••=’between RIL’ variance for

yield analysed over years i (i=1995, 1996) and locations p (p=1,..,5); V(y)ip, V(y)jq=’between RIL’ variance for yield

in year i or j at location p or q; V(tkw)••=’between RIL’ variance for thousand kernel weight analysed over years i

(i=1995, 1996) and locations p (p=1, 2); V(tkw)ip, V(tkw)jq=’between RIL’ variance for thousand kernel weight

in year i or j at location p or q; V(y)94a•=’between F4-line’ variance for yield analysed over trials 94-1a and 94-2a;

‡=’between F4-line’ variance of cross 15 not included; †=correlation coefficients averaged over all possible

combinations of i, j, p and q (ip≠jq); #=same as for †, except for restrictions on i,j,p and q; ##=same as for #, but

V(y/tkw)•• (in r(var(y/tkw)ip,var(y/tkw)••)) analysed over all year by location combinations without ip

V(y)94a•

(F4)‡

V(y)••

(RILs)

V(y)jq

(RILs)

V(tkw)••

(RILs)

V(tkw)jq

(RILs)

V(y)•• (RILs) 0.62

V(y)ip (RILs) 0.42 0.50## 0.34†

V(tkw)•• (RILs) 0.32 0.40 0.43

V(tkw)ip (RILs) 0.33 0.35 0.35# 0.84##
0.78†

b. ‘Minor gene’ variances (mgV). Further descriptions as in a.

mgV(y)94a•

(F4)‡

mgV(y)••

(RILs)

mgV(y)jq

(RILs)

mgV(tkw)••

(RILs)

mgV(tkw)jq

(RILs)

mgV(y)•• (RILs) 0.41

mgV(y)ip (RILs) 0.24 0.25## 0.12†

mgV(tkw)•• (RILs) 0.46 0.49 0.33

mgV(tkw)ip (RILs) 0.36 0.39 0.25# 0.66##
0.56†

over crosses, varied over environments (Table 3.5). We established a linear relationship between

yield (yij) in environment j, averaged over standards i' (18 parents, Magda, and Vada), and the

RIL standard deviation for yield (√V(y)ij), averaged over crosses i, in the same environment:

  (R²= 0.99)

We could then calculate the predicted RIL variance for cross i in environment j as:

 

where V(yF4)i is the variance for yield between F2-derived F4 lines for cross i (Table 3.5), which

is approximately half the additive genetic variance (Jinks and Pooni, 1980). The calculated cross

predictions were compared with the observed cross performance, i.e., the observed frequency

of recombinant inbred lines (RILs) outyielding the given threshold (Table 3.9). Correlations
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between observed and predicted cross performance were virtually absent when using a predicted

mean based on the small plot trials in 1994, either midparent value or F4-population yield. Also

directly observed frequencies of F4-lines outperforming the average of the three standards in the

small plot trial, as proposed by Thomas (1987), did not show any relationship with the observed

frequencies in later generations. The use of a predicted mean based on midparent values of large

plot trials in six environments increased the average rank correlations between observed and

predicted cross performance to 0.22.

Table 3.9. Spearman rank correlation coefficients between predicted and observed cross

performance. Cross performance is defined as the probability (P) of a line yield (y) exceeding

a certain threshold yield (y(th)). The threshold yield is calculated as the average of the standards

Riff, Baronesse and Triangel. Whenever predictions are based on data from 1995 or 1996 trials,

they are compared with observations from the same environment or set of environments. Cross

15 is not used in the correlation coefficient estimation. P(obs)=observed probability; y(RIL)••=line yield

averaged over years i (i=1995, 1996) and locations p (p=1,..,5); y(RIL)ip=line yield in year i at location p;

y(F4)94a•=F4-line yield averaged over trials 94-1a and 94-2a; y(th)ip, y(th)••, y(th)94a•=threshold yield, based on

the same trials as the line yields y(RIL)ip, y(RIL)••, and y(F4)94a•, respectively; †=correlation coefficients averaged

over all years i and locations p. Further descriptions for predictors of mean as in Table 3.7, and for predictors of

variance as in Table 3.8.

predictor of

mean
y(mp)94a• y(cr)94a• y(mp)•• y(cr)•• y(mp)•• y(cr)••

P(obs)

y(F4)94a•

>

y(th)94a•
predictor of

variance
V(y)94a• V(y)94a• V(y)94a• V(y)94a• V(y)•• V(y)••

P(obs)

y(RIL)•• >

y(th)••

0.00 0.14 0.22 0.48 0.46 0.80 -0.07

P(obs)

y(RIL)ip >

y(th)ip

0.10† 0.12† 0.22† 0.34† 0.22† 0.35† 0.09†

Line prediction

Observed over all crosses, the correlation between yields of an F4-line and a recombinant inbred

line (RIL), derived from the same F2-plant, appeared to be rather weak and generally negative

(Table 3.10). It also appeared that the magnitude and direction of this correlation varied

significantly among crosses. Rank correlations between RIL plant height and F4 yield were

generally positive (rs=0.16), while correlations between RIL plant height and RIL yield were

generally negative (rs=−0.39). Overall rank correlations between RIL flowering time and F4-

37



Chapter 3

Table 3.10. Spearman rank correlation coefficients (rs) between yield of an individual F4-line

(y(F4)••), and yield of the recombinant inbred line (y(RIL)••), derived from the same F2-parent

as the F4-line. Correlations between yield residuals (y’), i.e., the part of yield variation that

cannot be explained by segregation of ‘major genes’ , are also presented. F4-line yields are

averaged over trials 94-1a and 94-2a. RIL yields are averaged over all trials in 1995 and 1996.

*=0.10<P<0.05; ***=P<0.01

cross rs(y(F4)••,y(RIL)••)
rs(y’(F4)••,y’(RIL)••) 

no ‘major gene’ effects

1 0.02 0.24

2 0.08 0.09

3 0.04 0.05

4 -0.28* -0.03

5 0.11 0.11

6 -0.02 -0.12

7 0.05 0.05

8 0.12 0.23

9 0.00 0.00

10 0.05 0.09

11 -0.04 -0.14

12 -0.09 0.17

13 -0.27* 0.04

14 -0.25* -0.25*

15 -0.08 -0.08

16 -0.26* -0.25*

17 -0.21 0.06

18 0.00 0.09

19 -0.25* 0.05

20 -0.44*** -0.08

all crosses -0.09*** 0.01

yield were somewhat negative (rs=−0.09), while correlations between RIL flowering time and

RIL yield were generally positive (rs=0.25). After removal of 'major gene' effects yield of F4-

lines showed no significant correlation with yield of related RILs, when considered over all

crosses. By looking at individual crosses we observed a general tendency towards more positive

correlations than when including 'major gene' effects, but correlations were generally poor. The

correlation of yield with RIL plant height moved towards zero after removal of the 'major gene'

effects, with rs=0.06 for F4-lines and rs=−0.21 for RILs. This was even more the case for the

correlation of yield with RIL flowering time, with rs=−0.03 for F4-lines and rs=0.02 for RILs.
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Discussion

Although the early generation small plot yield trials had rather high CVs (0.21 for 94-1a and 0.15

for 94-2a), average yield of F4-populations corresponded well with midparent values derived

from the same trial (r=0.87). The correlation of these F4-population yields with midparent

values, based on the large plot yields grown in the same year, was moderate (r=0.52).

Correlation with yield of RIL populations, averaged over 1995 and 1996 trials, was only a little

weaker (r=0.45). Predicting RIL-population yields on the basis of F4-populations or parents

grown in small plots (94-1a and 94-2a) appears not very reliable. Midparent values based on

large plot trials in the same year (94-1b and 94-2b) give a much better prediction of the yields

of the RIL populations (r=0.70). The predictive value of these midparent values approaches that

of midparent yields obtained from the same trials as the RIL-population yields (r=0.71). Using

midparent values from individual environments to predict population yields over all

environments is clearly more difficult (r=0.45), mainly because of genotype by environment

interaction.

However, midparent values seem to have a limitation in their predictive value for RIL-

population yields, even when these yields are averaged over six environments. There appears to

be a substantial difference in yield level between the parental average and their offspring in a

large proportion of the crosses (Figure 3.1). This may be explained by epistatic effects, where

favourable combinations of genes in the parents are lost in most of the offspring. Evidence for

this type of locus interaction was found in rice by Li et al. (1997). Another explanation could be

distorted segregation of ‘major genes’ for yield. In most crosses with a large difference between

midparent and offspring yield, we found that the skewed segregation ratios for the postulated

‘major genes’ could indeed explain the lower yield of the RILs. It may be questioned, however,

whether the postulated segregating ‘major genes’, which are based on phenotypic observations,

express the effect of segregation at a single locus. They may also be the result of two segregating

loci with epistatic effects, which supports again the first explanation. Some evidence for both

hypotheses was found, using molecular marker information from the two pairs of reciprocal

crosses. The segregation distortion for the ert-g gene was confirmed in crosses 12 and 17

(Koorevaar, unpublished). However, segregation distortion for a postulated ‘major gene’ in

crosses 8 and 19 (not denso), could not be confirmed by a single segregating marker (Yin,

unpublished). Therefore, we conclude that segregation distortion as well as epistasis can cause

decreased average yields of offspring compared to their parents.

The F4-line based prediction of yield variance between RILs is less reliable than

predicting the mean. This is mainly due to the estimation errors in the variance components,

caused by the relatively large error variance in the F4 and the limited number of tested lines.

Estimation error for the RIL variances also had a disturbing effect on the correlation coefficient
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estimates. This effect, however, is not relevant in the practical prediction situation. We can

conclude that estimated variances based on a single environment, lack the accuracy to be good

predictors of yield variance over environments, as the average correlation coefficient between

them was only 0.50. Small plot sizes do not seem to affect the variance predictions very much

as the average correlation coefficient of the single-environment based variances with the F4-

variance is 0.42, which is not much less than 0.50.

However, the moderate correlations between F4-line variance and RIL variance seem to

be mainly a result of segregating ‘major genes’ . This causes large line differences in yield

within part of the crosses, while other crosses lack this variation. Removing the effect of the

'major genes' results in a large decrease of the correlation coefficient between yield variances

(Table 3.8b). This corroborates the statement of Thomas (1987), that cross prediction should be

performed separately for crosses with a segregating ert-g or denso gene and crosses without this

segregation. Most of the studies on cross prediction, cited in the introduction, do not mention

the effect of segregation of ‘major genes’, although this may very well have contributed to the

positive results of cross prediction that were described. Excluding ‘major gene’ effects from the

variance estimations also shows an increased correlation between thousand kernel weight

variance and yield variance (Table 3.8a,b). If we assume that 'minor gene' variance is a joint

result of the segration of many genes with small effects, the magnitude of this variance is

linearly related to the number of segregating genes. This relationship will be trait-independent.

An increased correlation between 'minor gene' variances for yield and thousand kernel weight

supports the assumption that 'minor gene' variance of a trait is a result of the fraction of the total

genome that is segregating in the cross. As parental relatedness is assumed to be linearly related

to the number of segregating genes (see chapter 2), it may be used to predict 'minor gene'

variance.

It is questionable whether in practical breeding the high correlations between F4-line

variance and RIL variance, due to ‘major gene’ segregations, are relevant. First, practical

breeders will often know when to expect a segregating ‘major gene’ like ert-g or denso. They

will select visually for the desired allele in early generations, so that the variation caused by

segregation has already disappeared in the final yield trials. In these later generations only 'minor

gene' variance can be exploited, for which we showed that its prediction, on the basis of F4-line

data, is difficult. Possibly a prediction on the basis of relationship measures of the two parents

(see chapter 2) is more accurate. Secondly, in practical breeding ‘major gene’ segregation will

not occur as frequently as in our material, as breeders try to avoid this segregation by making

crosses between more related genotypes. However, one can envisage situations in which the

prediction of ‘major gene’ segregation is very relevant for practical breeding. This is the case

when potentially promising parent combinations are chosen on the basis of QTL-analyses, in

combination with pedigree information, so that one may expect segregation at certain QTL.
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Knowledge of the expected segregation patterns is useful to decide upon the necessity of ‘major

gene’ selection in early generations and the number of offspring lines grown in these

generations. And, of course, combining alleles of ‘major genes’ from both parents may result

in transgressive offspring lines, that show clear improvement in trait value in comparison with

both parents.

The prediction of cross performance gave poor results (Table 3.9). Mean prediction on

the basis of midparent values from large plots over several environments, in combination with

F4-based variance prediction produced the ‘best’ predictions (rs=0.22). An ‘exact’ prediction of

the cross mean, based on RIL yields, would have improved cross prediction quite significantly

(rs=0.48). An 'exact' variance prediction, based on between RIL variance, would have resulted

in an almost similar improvement of the prediction result (rs=0.46). However, predicting cross

performance in individual environments, although difficult, can seemingly only be improved by

accurate mean predictions. The rank correlation of 0.80, between 'exact' prediction of cross

performance and observed cross performance shows that the observed number of lines

outyielding the threshold is also subject to random error. Improvement of this ' exact' prediction

by adding information about ‘major gene’ segregation ratios and allele effects, in combination

with 'minor gene' variance, hardly gave any improvement in the correlation with observed cross

performance (rs=0.81).

Considering the poor correlations between yield of an individual F4 line and yield of a

related RIL, we conclude that perspectives for small plot yield assessment of individual F4-lines

are very limited. Differences between crosses are relatively large and yield correlations are often

due to segregating ‘major genes’. As mentioned above, the desired alleles of these ‘major genes’

can often be assessed visually instead of by a labourious yield assessment. This may very well

explain the positive results of early generation within-cross yield selection in small cereals,

reported by several authors (e.g., DePauw and Shebeski, 1973). The poor correlations that we

found are partially due to the inaccuracy of F4-line yield assessment with only one replicate per

environment and rather high CVs. The latter may be a result of the small size of individual plots

with insufficient compensation for small-scale soil irregularities. Also line by year and line by

location interaction cause a decrease in correlation between F4-line and RIL yield: average rank

correlation between RIL yields within crosses from different environments was only 0.35 and

decreased to 0.30 after elimination of ‘major gene’ effects.

Correlation between yield of an F4-line and the yield of a recombinant inbred line

descending from the same F2-plant was generally negative. The negative correlation is probably

related to the effect of plant height. In small F4-plots tall genotypes are at an advantage as a

result of strong interplot competition. In the large RIL plots plant height is negatively correlated

with yield, because tall plants lodge more often and have a reduced harvest index. In this study

the effect of small plot size is somewhat confounded with the effect of late sowing so that it is
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not completely clear which part of the inaccuracy is caused by the plot size. As already

mentioned above, by considering RILs, instead of F4 lines, we observe a large change in overall

rank correlation between yield and plant height, from positive to negative. The analogous change

in overall rank correlation between yield and flowering time, from negative in the F4, to positive

in the RIL populations, is less pronounced. Some F4-lines were too late under this late sowing

to produce high yields. Also the segregating denso gene in several crosses is causing this

negative correlation between flowering time and yield in the F4. The mutant allele causing

shorter plants also has an effect towards lateness. So plants possessing this allele do not yield

less because of late flowering, but because of their short stature. This explains the disappearance

of the correlation between flowering time and yield after the elimination of ‘major gene’ effects.

Altogether the main disturbing factor in the F4 trials appears to be the intergenotypic

competition between the small plots, confirming the conclusion of Van Oeveren (1992).

Whether intergenotypic competition within plots has any effect on early generation yield trials

cannot be said on the basis of this study.

Conclusion

Considering the results of this investigation we conclude that prediction of cross yield

performance on the basis of small plot yield trials in the F4 is not very reliable. We used two

locations to decrease the effect of cross by location interaction. Intergenotypic competition

between the small plots results in biased estimates of line, cross, and standard cultivar yields.

But even prediction of cross population mean by midparent values from large plots, averaged

over a wide range of environments, cannot improve reliability to a level that shows perspectives

for practical breeding. Segregation distortion and epistatic effects of yield genes may cause

differences between midparent values and cross means, differences varying from cross to cross.

The prediction of genetic variance for yield between recombinant inbred lines is based

on yield variance between F4-lines. Although variance estimates are not very accurate, the

correspondence between the two variances seems reasonable. However, it appears to predict

mainly differences between crosses with respect to the numbers of segregating ‘major genes’ and

the magnitude of their effect on yield. Some of these ‘major genes’ do not regularly segregate

in commercial breeding programs and if they segregate, they are usually selected visually in

early generations. This will mainly result in RIL populations without segregating ‘major genes’

, where only 'minor gene' variance can be exploited. Unfortunately 'minor gene' variances in F4-

populations do not reliably predict 'minor gene' variance in RIL populations.

Prediction of individual recombinant inbred line yields within crosses on the basis of the

yield of the F4-line descending from the same F2-plant, is not feasible. This is due to the large
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inaccuracy of small plot trials, intergenotypic competition between plots, line by location

interaction and line by year interaction. Also the genotypes of the RIL and the F4 line are not

completely the same, although they were derived from the same F2-plant.The main correspond-

ence between an F4-line and its inbred descendant is based on the ‘major gene’ constitution of

the F2. As it is often possible to assess this visually, it is not necessary to perform an accurate

yield assessment to select between lines within a cross.

Provided that the amount of seed is not limiting, the use of larger plots may improve line

prediction within crosses, as well as cross mean prediction. However, it is highly questionable

whether such an improvement is large enough to compensate for the cost of early generation

yield assessment.
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4

Prediction of progeny variation in barley crosses using parental relationship measures.

I. Measures based on pedigree, morphological, agronomic or AFLP data 3

Johan W. Schut and Izak Bos

Abstract

Twenty two-row spring barley crosses, each represented by 48 recombinant inbred lines, were

used to study the prediction of progeny variance using several parental relationship measures.

These distances were based on pedigree (1−ƒ), morphological (md), agronomic (agd) and AFLP

(1−gs) data separately, or in combination. No significant correlations were found between md

and progeny variance for the four investigated traits, i.e., plant height, flowering time, thousand

kernel weight and grain yield. Also for 1−ƒ no significant correlations were found, although they

were generally positive. However, only 10 crosses could be used due to lack of reliable pedigree

data. Agronomic distances (agd), based on parental traits showed several positive and significant

correlations with progeny variance, especially when parent traits for agd estimation were the

same as the RIL traits for variance estimation. However, the associations appeared to be mainly

based on differences in ‘major gene’ effects between crosses. In most breeding populations

progeny variation based on ‘major genes’ is absent due to early generation selection or absence

of allelic differences between parents. Thus agd is not expected to be a succesful predictor of

progeny variance in practical plant breeding. The correlations between 1−gs and progeny

variance were mainly positive, but insignificant. Correlation coefficients did not show consistent

differences when considering total and ‘minorgene’ variance. The lack of association is expected

to be a result of  lack of representation of QTL controlling the investigated traits by the observed

AFLP markers. In general combined distance estimates showed the highest correlations with

progeny variance. A distinction between crosses with related and unrelated parents seemed to

be useful in combining distance estimates. However, predictions of progeny variance, based on

the investigated parental distances, are not reliable enough for practical plant breeding. 

Keywords: coefficient of coancestry, genetic distance, Hordeum vulgare, major genes,

segregation analysis

3submitted for publication
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Introduction

A plant breeder has to create genetic variation to be able to select new cultivars with

combinations of desired traits. This variation is exposed by offspring obtained via crossing of

selected combinations of parent genotypes. Selection of parent combinations is usually based

on the ability of parents to compensate for their mutual weaknesses. This means that offspring

performance is predicted by the average parent value. Besides this parent selection on the basis

of predicted mean, it is desirable to select parental combinations producing offspring with a

large genetic variation. This variation enables plant breeders to select genotypes that have

improved trait values compared to the population average or even compared to the best parent.

The larger the offspring variation, the better the opportunities for the breeder to recover

transgressive segregants. The magnitude of the offspring variation is determined by the number

of segregating genes, i.e., the number of heterozygous loci in the F1, and by their effects.

Because the relatedness of the parents is expected to be a good measure of F1 heterozygosity,

it has been proposed as a predictor for progeny variation (e.g. Cowen and Frey, 1987a) as well

as heterosis (e.g. Smith et al., 1990).

Three sources of relationship information between genotypes are distinguished: (1)

geographic information about the origin of the genotypes, (2) pedigree information, and (3)

information about plant characteristics (see chapter 2). There are several measures available to

quantify this information, e.g. coefficient of coancestry (Malécot, 1948) for pedigree data, also

known as kinship coefficient or coefficient of parentage, Euclidean distance (Goodman, 1972),

for traits measured on a continuous or ordinal scale, and genetic similarity (Dice, 1945), for

binary trait data.

Earlier studies reported poor-to-moderate correlations between parental divergence and

progeny variance. Between parental divergence and heterosis a range from zero to moderate

correlations are found. Although heterosis and progeny variance are related phenomena, as they

both result from F1-heterozygosity, their genetic causes are different. Heterosis is mainly based

on dominance effects, while progeny variance is mainly a result of additive effects. Cowen and

Frey (1987a) found a positive correlation (r=0.41) between one minus the coefficient of

coancestry (1−ƒ) and the generalized genetic variance, i.e., the determinant of the trait variance-

covariance matrix (Sokal, 1965), for a combination of biomass yield, grain yield and harvest

index among F2-derived F3 and F4 lines in oats. They did not find significant positive correla-

tions between this genealogical distance measure and heterosis, although they give quite an

extensive overview of earlier research showing positive relationships. Cox and Murphy (1990)

observed a moderate correlation between coefficient of coancestry and F2 heterosis in wheat,

as well as between a distance measure, based on agronomic and morphological characters, and

F2 heterosis. A combination of the two relationship measures predicted F2 yield heterosis better
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than the individual measures. In oats, Souza and Sorrells (1991c) found that a combined distance

measure, based on pedigree data, qualitative and quantitative morphological characters and

biochemical characters, was poorly to moderately correlated with F1 specific combining ability

(SCA) for plant height in distant crosses. Coefficients of coancestry showed a moderate

correlation with genetic variance for biomass yield among F3-derived F4 lines. Hockett et al.

(1993) found indications for increased heterosis for yield in hybrids of unrelated parents

compared to hybrids of related parents in barley. This was found within a group of two-row

barleys but not in two-row by six-row crosses.

Molecular markers, like RFLP (restriction fragment length polymorphism; Botstein et

al. 1980), RAPD (random amplified polymorphic DNA; Williams et al. 1990), and AFLP (Vos

et al., 1995), allow the assessment of parental relatedness directly at the DNA level. This was

expected to be a great advantage compared to the relationship information previously used.

However, in most studies correlations between parental divergence based on molecular markers

and progeny variance and/or heterosis are of the same magnitude as mentioned above. Smith et

al. (1990) observed a high correlation (r=0.77) between RFLP-based genetic distances and yield

heterosis in maize. They used a combination of crosses within and between heterotic parent

groups. These two types of crosses were easily distinguished by the genetic distances. Boppen-

maier et al. (1993) concluded that RFLP based genetic distances could only predict grain yield

heterosis in maize succesfully for crosses within heterotic groups, but not for crosses between

groups. Moser and Lee (1994) found moderate correlations between RFLP based genetic

distances and genetic variance for plant height and straw yield among F2-derived F3 and F4 lines

in oats. They did not find significant correlations between genetic distance and grain yield

heterosis. Other relationship measures, based on pedigrees and agronomic traits, did not give

better predictions of heterosis and genetic variance. They propose the use of more markers (>68

polymorphisms) and more crosses (>eight) to establish more reliable results. Considering

heterosis in wheat, Martin et al. (1995) observed moderate correlations with coefficient of

coancestry for kernel weight and protein concentration. Correlations between genetic similarity,

based on STS-markers, and heterosis were small and not significant. Investigating four

agronomic traits in soybean, Helms et al. (1997) report higher progeny variances among F3-

derived F4 lines in three crosses between unrelated parents than in three crosses between related

parents. The relatedness was based on pedigree information and could not be confirmed by

RAPD-based genetic distance. Manjarrez-Sandoval et al. (1997) found a significant correlation

between coefficient of coancestry and variance for yield among soybean SSD-lines, based on

data from five crosses. The positive correlation between RFLP-based genetic distance and

progeny variance was not significant, which can be attributed to the small number of crosses.

Also Burkhamer et al. (1998) report generally positive but non-significant correlations between

progeny variance and molecular-marker (STS and AFLP) based genetic distances in wheat. They
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observed nine agronomic traits in 12 populations of F3-derived F5 lines. Overall genetic variance

appeared to be significantly correlated with coefficient of coancestry and STS-based genetic

distance. Also the correlation with a genetic distance measure combining molecular-marker and

pedigree information was significant (r=0.64). They conclude, however, that, in general, parental

divergence is not a reliable predictor of progeny variance.

In this study we investigate the correlation between progeny variance and a range of

parental relationship measures, based on pedigree data, agronomic and morphological characters

and AFLP markers, in spring barley. We use a relatively large group of 20 SSD-line populations

and establish genetic variance for grain yield in six environments, for thousand kernel weight

in three environments, for flowering time in four environments, and for plant height in seven

environments. Special attention is paid to the effect of segregating ‘major genes’ and we will

discuss the effect of genotype by environment interaction. Finally we consider the prospects of

prediction of progeny variation for practical breeding.

Material and methods

Plant materials

For this study we used 18 two-row spring barley (Hordeum vulgare L.) lines, representing

parents employed in commercial barley breeding programs in Northwest Europe over the last

20 years. Their pedigree and geographic origin are presented in Table 2.1. These genotypes were

used as parents in a partial diallel crossing design (n=18; s=2; Kempthorne and Curnow, 1961)

to produce 18 F2 populations (Table 4.1). Reciprocal crosses were made for two parent

combinations, increasing the total number of crosses to 20. Single seed descent was performed

Table 4.1. Crosses and their parents. R=reciprocal combination; †=’well known’ coefficient of coancestry

cross mother father cross mother father

1† Riff Drossel 11† Karat Yriba

2 Baronesse Forester 12(R2) Gunhild GEI-119

3 Baronesse Bonaire 13† Gunhild CEB-9186

4† Apex Riff 14 Bonaire Porthos

5 Porthos Yriba 15† CEB-9186 ZE-87-3414

6 Midas Forester 16† ZE-87-3414 CEB-9079

7 GEI-119 Midas 17(R2) GEI-119 Gunhild

8(R1) Prisma Apex 18† Triangel Georgie

9† Prisma Karat 19(R1) Apex Prisma

10† Triangel Drossel 20† Georgie CEB-9079
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on 48 F2 plants for each cross until the F5 generation. The F5 plants produced, after one

intermediate generation of multiplication, 960 F5-derived F7-lines. These recombinant inbred

lines (RILs) were used to obtain estimates of progeny variance for several traits.

AFLP analysis

DNA-extraction followed the CTAB-method described by Van der Beek et al. (1993). AFLP

analysis (Vos et al., 1995) followed the protocol described by Van Eck et al. (1995) with

modifications by Qi and Lindhout (1997).

Fourteen primer combinations  (Table 4.2) generating high numbers of unambiguous

polymorphisms in a wide range of barley germplasms were used (Qi and Lindhout, 1997).

Table 4.2. Primer combinations used in AFLP analysis

Number E+3/M+3 nucleotide

extensions

Number E+3/M+3 nucleotide

extensions

E32M50 E+AAC/M+CAT E35M50 E+ACA/M+CAT

E33M47 E+AAG/M+CAA E35M54 E+ACA/M+CCT

E33M48 E+AAG/M+CAC E35M61 E+ACA/M+CTG

E33M50 E+AAG/M+CAT E38M50 E+ACT/M+CAT

E33M54 E+AAG/M+CCT E38M59 E+ACT/M+CTA

E33M61 E+AAG/M+CTG E38M60 E+ACT/M+CTC

E35M47 E+ACA/M+CAA E38M62 E+ACT/M+CTT

Parent trials

The 18 parent lines plus two additional standards (Magda and Vada) were tested at several

locations in the years 1993 to 1996 (Table 4.3). In 1995 and 1996 they were used as standards

in the recombinant inbred line trials, described in the next paragraph. In 1994 the parents and

Magda and Vada were used as standards in a small plot yield trial of F4-material. In this trial all

standards occurred six times per location. The remaining trials had two replicates and we applied

a partially balanced incomplete block design with four plots per incomplete block. Plot sizes and

sowing dates are presented in Table 4.3. Observed traits were plant height (cm), flowering time

(°C.days), thousand kernel weight (g) and grain yield (kg/ha), although not all traits were

observed in all trials (Table 4.3). Flowering time was defined as the temperature sum from

emergence to decimal stage 49 (Zadoks et al. ,1974). All trials were kept free from diseases.

RIL-trials

The 960 recombinant inbred lines (RILs) were tested at several locations in 1995 and 1996

(Table 4.3). In 1996 three trials (Lelystad: 96-3, Rilland: 96-4, and Ottersum: 96-5) each
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Table 4.3. Field trial description. p=present in trial; †=only part of RILs present in trial; h=plant height;

f=flowering time; k=thousand kernel weight; y=grain yield

trial location soil year plot size (m2)

(width × length (m) ) 

sowing

date

parents RILs observed

traits

93-1 Wageningen clay 1993 5.55 (1.5 × 3.7)  2 April p hky

93-6 Wageningen sand 1993 5.55 (1.5 × 3.7) 26 March p hky

94-1a Lelystad clay 1994 0.94 (0.625 × 1.5) 31 May p y

94-2a Wageningen clay 1994 0.94 (0.625 × 1.5)   1 June p y

94-1b Lelystad clay 1994 8.55 (1.5 × 5.7) 22 April p hky

94-2b Wageningen clay 1994 8.55 (1.5 × 5.7) 28 April p hfky

94-6 Wageningen sand 1994 8.55 (1.5 × 5.7) 27 April p hfky

95-1 Swifterbant clay 1995 9.0 (1.5 × 6.0) 15 May p p hfy

95-2 Wageningen clay 1995 9.0 (1.5 × 6.0) 11 May p p hfky

95-6 Wageningen sand 1996 9.0 (1.5 × 6.0) 20 April p hfy

96-1 Swifterbant clay 1996 9.0 (1.5 × 6.0)   1 April p p hfk

96-2 Wageningen clay 1996 9.0 (1.5 × 6.0) 19 March p p hfky

96-3 Lelystad clay 1996 5.32 (1.4 × 3.8) 18 April p p† hy

96-4 Rilland clay 1996 3.6 (1.5 × 2.4) 19 March p p† hy

96-5 Ottersum sand 1996 4.65 (1.5 × 3.1) 18 March p p† hy

96-6 Wageningen sand 1996 9.0 (1.5 × 6.0) 26 March p y

contained one third of the lines (i.e., 16 lines) of each cross. They are called 'partial' locations,

while the other trials are indicated as 'complete' locations. The 18 parent lines and cultivars

Magda and Vada were added as standards. Each trial included two replicates. Each standard

occurred six times per replicate at the 'complete' locations and two times per replicate at the

'partial' locations. All genotypes were randomised according to a partially balanced incomplete

block design with 8 plots per block. The constraint that two genotypes do not occur more than

once together in the same block, extended over all RIL trials. Sowing dates and plot sizes are

presented in Table 4.3.

Observed traits were grain yield (kg/ha), thousand kernel weight (g; 0% moisture), plant

height (cm) and flowering time (°C.days). Grain dry matter content at harvest was measured on

a 100g-sample. Lodging was scored on a scale from 0 (no lodging) to 5 (severe lodging) around

decimal stage 69 (Zadoks et al., 1974), except for trial 95-2. In this trial lodging was observed

at stage 83 as there was hardly any lodging in earlier stages.

 

Statistical analysis

Parent trials

Per parent trial an analysis of variance was performed for each trait using a linear mixed model

with fixed effects for the 18 parents and 2 additional standards. Fixed replicate effects and

random incomplete block effects were included in the model whenever they appeared significant

(α=0.05). Average plant height of the two adjacent plots was used as a covariate in the analysis
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of the yield data. Parent least squares means were calculated for use in agronomic distance

estimation.

RIL-trials

RIL-trial data were analysed per trait (yield, thousand kernel weight, plant height, flowering time

and lodging) using average information REML (Gilmour et al., 1995). Analysis of the plot data

was performed per year by location combination (environment), because an overall analysis

appeared not feasible due to computational limitations. The linear mixed model included fixed

effects for standards, crosses and strips of adjacent incomplete blocks. The block effects were

assumed random, as well as the line within cross effects. In the analysis of residuals and

whenever a hypothesis considered the specific lines that were present in the trial, the line effects

were assumed to be fixed. For the analysis of lodging data we fitted a proportional odds model

(McCullagh & Nelder, 1989). Residual analysis was performed to trace outliers among the data.

These observations were excluded from the final analyses.

To overcome computational limitations we performed a combined analysis over years

and locations (environments) by using the least squares means for the lines as input data for an

analysis of variance. The linear mixed model included fixed effects for standards, crosses,

standard by environment interaction and cross by environment interaction. A random line effect

over environments was included to obtain an estimated line variance V per cross for every trait.

Generalised genetic variances (GGV) per cross were calculated as the determinant of the

n×n variance-covariance matrix for the traits (Sokal, 1965), where n is the number of trait by

environment combinations. The determinant is the product of the n eigenvalues of the matrix.

To make the GGVs comparable to the Vs, the GGVs were transformed by taking their nth root.

The overall GGV was based on the available least squares means of four traits (plant height,

flowering time, thousand kernel weight, grain yield) from the 4 ‘complete’ RIL trials (95-1,2 and

96-1,2). We calculated trial specific GGVs on the basis of the available trait data from each

single ‘complete’ RIL trial. We also calculated trait specific GGVs on the basis of single trait

data from all RIL trials. In contrast to the line variances V over environments, the trait specific

GGVs include variation caused by genotype by environment interaction. For plant height and for

grain yield, these GGVs were geometric means of three ‘partial’ GGVs. These ‘partial’ GGVs

were calculated from data from a subset of 16 RILs per cross, tested in one of the ‘partial’ trials

(96-3, 96-4, 96-5). We used trait data from the partial environment together with data from the

‘complete’ environments.

Segregation analysis
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On the basis of parent information we expected several crosses to segregate for ‘major genes’,

e.g. the denso gene (Haahr & Von Wettstein, 1976) and the ert-g gene (Thomas et al., 1984).

This segregation increases the variance among the offspring lines. To investigate the effect of

segregating ‘major genes’ on the relationship between parental divergence and progeny variance,

segregation analysis was performed to trace these genes. Therefore we applied a robust mixture

model (McLachlan & Basford, 1988) on the trait least squares means of the lines (plant height,

flowering time, thousand kernel weight or yield) per cross. The model was fitted using the idea

for an iterative EM-algorithm described by Jansen (1993). The algorithm was implemented in

SAS-IML (SAS Institute Inc., 1989). The presence of a segregating ‘major gene’ was accepted

on the basis of a likelihood ratio test (α=0.05), in which the unimodal model (H0: no ‘major

gene’ segregating) was tested against the bimodal model (H1: ‘major gene’ segregating).

Confidence thresholds for the likelihood ratio were obtained by Monte Carlo sampling from a

multivariate normal distribution with a variance-covariance matrix based on the observed data.

When a bimodal model was accepted, we refer to this as a 'major gene' segregating in the cross.

Once a ‘major gene’ was accepted, this factor was used as a covariable in the mixture model,

while looking for additional ‘major genes’ . This procedure was repeated until no further ‘major

genes’ were detected.

With the use of the postulated ‘major genes’, genetic variance between lines could then

be divided into two parts: variance caused by the hypothesised ‘major genes’ and variance

resulting from the segregation of other -‘minor’- genes. The latter variance is therefore called

‘minor gene’ variance (mgV). It is estimated by using the segregating ‘major genes’ and their

interactions as explanatory variables in the analysis of variance. In the analysis over environ-

ments we included the effect of ‘major gene’ by environment interaction.

‘Minor gene’ generalised genetic variances (mgGGV) were calculated similarly as

GGVs. They are based on least squares means corrected for the effects of ‘major genes’ and

mutual interactions of ‘major genes’.

Genetic-distance estimation

Markers were scored following the procedure described in chapter 2 in which redundant AFLP

markers within primer combinations were discarded. Genetic similarities (gs) were calculated

following Nei and Li (1979):  ,where Nij is the number of bands present in both

genotypes i and j, Ni is the number of bands present in genotype i and Nj is the number of bands

present in genotype j. In the case of a missing observation for a marker in genotype i and/or j,

this marker was not included in the calculation of gsij. The accuracy of gs-estimates as

influenced by sampling and missing marker data was assessed by taking bootstrap samples
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(Efron and Tibshirani 1993) from all markers, including polymorphic as well as monomorphic

markers. Bootstrap standard-deviation estimates were based on 1000 samples.

On the basis of pedigree data the coefficient of coancestry ƒ (Malécot, 1948) was

calculated for the parental combinations in Table 4.1, following the assumptions of Van Hintum

and Haalman (1994). Only 10 combinations had a ‘well known’ ƒ (Table 4.1), as defined in

chapter 2, and were used in further analysis.

AFLP-based genetic distance was calculated as 1−gs. Analogously the coefficient of

coancestry was converted into a genetic distance measure 1−ƒ.

Morphological distances (md) were calculated on the basis of 25 morphological traits 

described in chapter 2. The observed parent data were standardised and a principal components

analysis was performed. Principal components with an eigenvalue greater than an arbitrary value

K=1.0, were used to calculate generalised distances between the parents (Goodman, 1972).

A second multivariate distance between the 18 parent genotypes and the two standards

(Magda and Vada) was calculated on the basis of four agronomic characters: plant height (cm),

flowering time (°C.days), thousand kernel weight (g) and grain yield (kg/ha). We used the least

squares means for the traits from the different environments as separate variates in the analysis,

so the agronomic distance (agd) was based on 43 trait by environment combinations (Table 4.3).

The agd was calculated following the procedure of Goodman (1972), as used for the calculation

of morphological distance.

Finally the four distance measures (1−gs, 1−ƒ, agd, md) were combined in two ways. For

both methods we standardised the distances for each parental distance matrix to make them

comparable. The pooled distance measure pd1 is the first principal component from a principal

components analysis of the standardised distances. The pooled distance pd2 is based on the

distinction between relatively close parent combinations and relatively distant parent

combinations. Burstin and Charcosset (1997) point out that small morphological and agronomic

distances between two genotypes do not necessarily mean that these genotypes are closely

related. Therefore these two distance measures are only used for the calculation of  pd2 in

unrelated parent combinations. The other two distance measures, based on molecular markers

and pedigrees, reliably predict the distance between closely related genotypes. For unrelated

parent combinations differences between molecular markers may not be representative for the

QTL heterozygosity causing variation in the offspring (Charcosset et al., 1991). The assumption

of equally unrelated ancestors and the assumption of each parent contributing exactly 50% to

the offspring genotype cause large biases in the calculated coefficients of coancestry, especially

in unrelated genotype combinations (see chapter 2). So the average of the standardised 1−gs and
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Table 4.4. Method of calculating the pooled distance pd2 on the basis of the standardised

agronomic (agdst), morphological (mdst) and AFLP-based genetic distance ((1−gs)st) and the

standardised coefficient of coancestry ((1−ƒ)st), where pd2close=½((1-gs)st+(1-ƒ)st) and

pd2distant=½(agdst+mdst)

if pd2distant (for unrelated parent combinations)

≤0 >0

if pd2close

 (for related

parent

combinations)

≤0 pd2close

pd2close if (pd2close+pd2distant)≤0

pd2distant if (pd2close+pd2distant)>0

>0 (pd2close+pd2distant)/2 pd2distant

1−ƒ serves as distance measure pd2close for related parents and the average of the standardised

agd and md serves as distance measure pd2distant for unrelated parents. The degree of relatedness

of two genotypes was decided upon the values of these two averages and the pooled distance pd2

was calculated following the decision rules in Table 4.4. Two additional pooled distances pd1'

and pd2' were calculated without using the coefficient of coancestry. So pd2close was equal to the

standardised value of 1−gs. In this way the 10 crosses without ‘well known’ coefficients of

coancestry could also be used in the analysis.

Table 4.5. RIL trials characterised by average trait values, observed over 20 populations and 20

standards and root mean square errors (root mse) obtained by variance analysis. tkw = thousand

kernel weight.

trial mean root mse

plant

length

(cm)

flowering

time

(°C.days)

lodg-

ing  

(0-5)

tkw

(g)

yield

(kg/ha)

plant

length

(cm)

flowering

time

(°C.days)

tkw

(g)

yield

(kg/ha)

95-1 81 618 0.6 5452 3.1 9.7 229

95-2 77 593 1.5 46.4 6048 3.1 11.4 1.5 220

96-1 90 690 3.1 44.2 3.4 9.6 2.2

96-2 80 643 2.7 48.0 9127 3.3 8.6 1.6 293

96-3 94 1.5 7404 2.8 301

96-4 87 2.8 9813 3.3 453

96-5 89 0.7 9067 2.9 261
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Results

RIL trials

Average trait values and root mean square errors per trial are presented in Table 4.5. Square

roots of the estimated between line variances V per cross over environments are presented in

Table 4.6, as well as the nth root of the generalised genetic variance over all available traits from

the ‘complete’ trials. Due to severe hail storm damage, we did not obtain yield data from

Swifterbant. We could, however, sample spikes from this location to observe thousand kernel

weights. 

Table 4.6. Square root of variance and ‘minor gene’ variance for plant height, flowering time,

thousand kernel weight (tkw), and yield, per cross, analysed over RIL trials (95-1,2, 96-1,..,5),

nth root of generalised genetic variance (GGV) and ‘minor gene’ generalised genetic variance

(mgGGV) over all trait by ‘complete’ environment (95-1,2 and 96-1,2) combinations and CVs

for all variances.

√(variance) (GGV)1/n √(‘minor gene’ variance) (mgGGV)1/n

cross plant

height

(cm)

flowering

time

(°C.days)

tkw

(g)

yield

(kg/ha)

plant

height

(cm)

flowering

time

(°C.days)

tkw

(g)

yield

(kg/ha)

1 7.41 28.3 3.67 397 12.2 2.47 9.6 2.83 322 10.1 

2 7.25 23.5 2.68 292 11.6 2.91 4.5 0.98 192 7.2 

3 4.92 23.7 2.78 252 11.1 2.58 12.4 2.11 246 10.0 

4 8.06 29.9 1.63 254 10.9 2.71 8.7 0 173 9.1 

5 3.19 11.7 1.87 197 10.4 3.19 11.7 1.87 197 10.4 

6 9.11 47.8 4.09 461 13.6 1.45 29.8 2.18 268 9.3 

7 3.09 41.0 1.86 232 11.1 1.80 7.4 1.40 190 8.3 

8 7.58 24.9 1.93 357 12.5 4.04 10.0 1.97 237 10.6 

9 2.61 24.0 1.27 147 11.4 2.61 24.0 1.27 147 11.4 

10 2.91 23.2 2.05 199 11.5 2.71 10.6 1.22 182 10.2

11 8.13 42.6 1.97 393 14.0 2.67 33.6 2.05 177 12.2

12 7.36 37.3 2.85 153 13.2 3.36 17.3 1.49 132 10.1 

13 8.43 39.6 2.66 234 12.5 3.17 17.3 2.36 190 10.7 

14 5.32 29.9 1.95 356 12.4 3.60 8.2 1.11 297 9.0 

15 6.76 46.8 1.82 289 13.1 4.60 29.9 1.25 260 10.1 

16 4.99 37.7 2.10 336 12.7 3.57 17.0 2.08 267 11.8 

17 6.97 37.8 2.99 217 13.5 4.38 14.6 1.72 173 10.7 

18 2.14 21.2 2.01 241 10.6 1.85 13.4 1.97 236 9.0 

19 6.95 27.5 2.08 344 12.5 3.64 12.2 2.02 179 10.9 

20 6.55 27.7 2.28 492 11.1 3.23 14.6 2.35 254 9.6 

CV 0.60 0.57 0.64 0.65 0.17 0.52 1.07 0.59 0.47 0.23
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Table 4.7. Number of postulated segregating ‘major genes’ per cross. Known ‘major genes’ that

are segregating, are specified: denso (Haahr & Von Wettstein, 1976) and ert-g (Thomas et al.,

1984).

cross number of

‘major genes’ 

known ‘major

genes’  segregating

1 2 denso

2 4 denso

3 1 

4 2 denso

5 0 

6 3 denso, ert-g

7 3 

8 2 denso

9 0 

10 2 

11 2 denso

12 3 ert-g

13 2 

14 4 

15 3 

16 1 denso

17 3 ert-g

18 2 

19 2 denso

20 2 denso

Segregation analysis

As a result of segregation analysis we were able to postulate 0 to 4 segregating ‘major genes’ per

cross (Table 4.7). Whenever we expected segregation of the denso or the ert-g gene in a cross,

on the basis of the pedigrees of the parents, we were able to identify this segregation by visual

inspection of the distribution as well as by using the mixture model. The postulated ‘major

genes’ and their mutual interactions explained part of the trait variance V over environments.

The average explained proportions were: 47% for plant height, 55% for flowering time, 27% for

thousand kernel weight, and 25% for yield (Table 4.6). In a few cases ‘minor gene’ variances

that were slightly larger than V, were found. They result from crosses in which ‘major genes’

predominantly explain line by environment interaction variance. As a result of the separation of

this interaction, the average line effect over environments can be estimated more accurately,

leading to an increased between line variance over environments.
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Genetic-distance estimation

In total 1248 markers were used to estimate genetic similarities (gs) and 36 % of them showed

polymorphism among the 18 parent genotypes. Genetic distances 1−gs for all possible parent

combinations ranged from 0.031 to 0.085 with an average of 0.064. The bootstrap standard

deviations for these (1−gs) values ranged from 0.0041 to 0.0065. The genetic distances for the

20 crosses under investigation ranged from 0.044 to 0.075 with an average of 0.064.

‘Well known’ coefficients of coancestry (ƒ) were obtained from the pedigree data. The

parental divergence 1−ƒ ranged from 0.436 to 0.950 with an average of 0.845. The 10 crosses

in this study with reliable pedigree data for both parents (Table 4.1) had a value of 1−ƒ ranging

from 0.436 to 0.904 with an average of 0.798.

Morphological distances (md) among the 18 parents, based on 10 principal components,

ranged from 1.88 to 5.86 with an average of 4.32 (see chapter 2). The md values of the 20

investigated crosses ranged from 2.06 to 5.46 with an average of 4.14.

Agronomic distances (agd), calculated over all trait by environment combinations

mentioned in Table 4.3, were based on 7 principal components explaining 90% of the variation.

The values for agd between the 18 parent lines ranged from 1.42 to 5.89 with an average of 3.67.

The sample of 20 crosses had agd values ranging from 2.33 to 4.87 with an average of 3.72.

The pooled distances among the 18 parents ranged from −3.30 to 2.62 for pd1, and from

−3.20 to 1.48 for pd2. The principal component pd1 explained 38% of the variation of the four

distance measures. For the 10 crosses with ‘well known’ ƒ values the ranges were [−2.91, 1.43]

for pd1 and [−3.20, 1.13] for pd2 and the averages were −0.12 for pd1 and −0.07 for pd2. Pooled

distances based on only 1−gs, md and agd ranged from −4.27 to 2.61 for pd1', and from −3.89

to 2.06 for pd2'. Principal component pd1' explained 50% of the variation of the three distance

measures. For the 20 crosses in Table 4.1 pd1' ranged from −2.35 to 2.11 with an average of

−0.10 and pd2' ranged from −2.39 to 1.22 with an average of −0.17.

Relationship between genetic distance and progeny variation

Correlation coefficients between the parental divergence measures and the estimated offspring

variation are presented in Table 4.8. A bootstrap procedure (Efron and Tibshirani, 1993), taking

10,000 samples from the set of 20 parent combinations, was used to test whether these

correlation coefficients were significantly (α=0.05) higher than zero. Correlation coefficients

were mainly positive but small and non-significant. AFLP-based genetic distance (1−gs) and

pooled distances showed generally the ‘best’ correlations with progeny variance. Agronomic

distances, based on parent data for a single trait or environment, showed several significant
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Table 4.8. Correlation coefficients between parental divergence measures and progeny

variances. 1−gs=AFLP-based genetic distance; 1−ƒ=pedigree-based genetic distance; md=morphological distance;

agd= agronomic distance; pd1, pd2=pooled distances based on 1−gs, 1−ƒ, md and agd; pd1', pd2'=pooled distances

based on 1−gs, md and agd; agd(tr/env)=agronomic distance based on data for one trait from all environments or on

data for all traits from one environment, the single trait or the single environment is given in the second or third

column; V/mgV=variance/’minor gene’ variance analysed over environments; GGV/mgGGV=generalised genetic

variance/generalised ‘minor gene’ variance, based on specified set of n trait by environment combinations; V’/mgV’

=variance/’minor gene’ variance analysed per environment and correlation coefficients averaged over environments;

h=plant height; f=flowering time; k=thousand kernel weight; y=yield; A=95-1; B=95-2; C=96-1; D=96-2; E=96-3;

F=96-4; G=96-5; *=0.01<P<0.05; **=P<0.01

variance traits environments 1−gs 1−ƒ md agd pd1 pd2 pd1' pd2' agd

(tr/env)

V h ABCDEFG 0.31 -0.24 0.17 0.23 -0.24 -0.23 0.31 0.31 0.37*

mgV h ABCDEFG 0.43* 0.18 -0.04 0.28 0.42 0.37 0.26 0.38* 0.41

V f ABCD 0.03 0.07 0.22 0.24 0.31 0.28 0.23 0.08 0.41*

mgV f ABCD 0.27 0.24 0.26 -0.12 0.39 0.29 0.20 0.27 0.41*

V k BCD 0.09 0.27 0.16 0.24 0.25 0.36 0.22 0.23 0.29

mgV k BCD 0.02 0.47 -0.23 0.06 0.22 0.42 -0.09 0.16 -0.07

V y ABDEFG 0.02 0.13 -0.03 0.00 0.01 0.15 0.00 0.12 0.16

mgV y ABDEFG -0.29 0.23 0.04 0.05 0.33 0.46* -0.07 0.09 0.08

GGV1/n hfky ABCDEFG 0.51** 0.19 0.29 0.27 0.53* 0.52* 0.47** 0.47*

mgGGV1/n hfky ABCDEFG 0.47 0.17 -0.03 -0.04 0.47 0.51 0.16 0.40

GGV1/n h ABCDEFG 0.48* -0.26 0.25 0.35* 0.13 0.10 0.46** 0.51** 0.58**

mgGGV1/n h ABCDEFG 0.39 -0.17 -0.10 0.09 0.39 0.33 0.14 0.35 0.24

GGV1/n f ABCD 0.27 0.14 0.36 0.18 0.49* 0.45* 0.37 0.31 0.34

mgGGV1/n f ABCD 0.31 0.15 0.20 -0.15 0.42 0.37 0.16 0.29 0.22

GGV1/n k BCD 0.48* 0.48 0.14 0.40** 0.55 0.67* 0.43** 0.47** 0.13

mgGGV1/n k BCD 0.26 0.59 -0.42 -0.02 0.30 0.50 -0.13 0.10 -0.08

GGV1/n y ABDEFG 0.13 0.22 0.16 0.20 0.22 0.30 0.22 0.30 0.17

mgGGV1/n y ABDEFG 0.34 0.34 -0.07 -0.16 0.37 0.49 0.03 0.40 -0.24

GGV1/n hfy A 0.22 0.20 0.13 0.12 0.20 0.19 0.20 0.21 0.29

mgGGV1/n hfy A 0.41 0.41 -0.02 -0.13 0.41 0.40 0.10 0.36 0.06

GGV1/n hfky B 0.24 0.31 0.14 0.18 0.37 0.37 0.25 0.24 0.52**

mgGGV1/n hfky B 0.36 0.29 -0.14 -0.18 0.30 0.31 0.00 0.22 0.23

GGV1/n hfk C 0.25 0.27 0.12 0.17 0.25 0.36 0.23 0.28 0.43**

mgGGV1/n hfk C 0.30 0.39 -0.15 -0.07 0.41 0.57 0.01 0.29 0.16

GGV1/n hfky D 0.29 0.19 0.18 0.23 0.25 0.31 0.31 0.34 0.28

mgGGV1/n hfky D 0.48* 0.36 0.04 0.10 0.52 0.61* 0.25 0.53* -0.28

V’ h ABCDEFG 0.20 -0.22 0.04 0.13 -0.22 -0.21 0.16 0.19 0.26*

mgV’ h ABCDEFG 0.13 0.07 -0.24 0.08 0.21 0.15 -0.05 0.09 0.08

V’ f ABCD 0.02 0.05 0.22 0.22 0.32 0.30 0.22 0.10 0.37*

mgV’ f ABCD 0.25* 0.11 0.22 0.00 0.34 0.33 0.22 0.29* 0.21

V’ k BCD 0.14 0.29 0.16 0.25* 0.31 0.41 0.24* 0.26 0.27

mgV’ k BCD 0.04 0.42 -0.23 0.06 0.20 0.38 -0.08 0.15 -0.07

V’ y ABDEFG 0.00 0.02 0.15 0.13 0.14 0.23 0.13 0.14 0.20

mgV’ y ABDEFG -0.05 0.21 0.05 0.03 0.31 0.38* 0.02 0.12 0.00
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correlations with progeny variances for the same trait or environment. However, elimination of

‘major gene’ effects often resulted in a clear decrease of the correlation-coefficient values.

Discussion

Correlations between parental divergence measures were generally poor, as observed in chapter

2, for gs, ƒ and md. Correlation coefficients with agd were 0.083 (1−gs), 0.180 (1−ƒ; only ‘well

known’ ƒ), and 0.372 (md). This lack of correspondence among distance measures is confirmed

by the relatively small proportions of variation explained by their first principal component pd1

or pd1'. This is mainly a result of inaccuracies and incorrect assumptions in the calculation of

the different genetic distance measures. Most of these imperfection were described by

Burkhamer et al. (1998) and in chapter 2. Further, Burstin and Charcosset (1997) conclude that

small agronomic distances do not necessarily indicate relatedness. We may add that large

agronomic trait differences between parents are sometimes due to an allelic difference for only

one ‘major gene’. Therefore large agd values are not necessarily indicating large parental

divergences. 

Especially for yield we observed a lack of association among progeny variances for the

different environments. The average rank correlation coefficient between RIL variances obtained

from different environments was 0.67 for plant height, 0.72 for flowering time, 0.70 for thousand

kernel weight, and only 0.29 for grain yield. The average rank correlation between ‘minor gene’

variances was smaller: 0.27 for plant height, 0.55 for flowering time, 0.54 for thousand kernel

weight, and 0.10 for grain yield. Inaccurracy of yield variance estimates is not a likely cause of

this heterogeneity of cross variances, because the standard errors for the variance components

of the different traits are similar in size: about 30% of the variance value and about 40% of the

‘minor gene’ variance value. The variation in yield variance among crosses is similar to that of

other traits: CVs are comparable (Table 4.6). Therefore we assume that between RIL variance

for yield in different environments is a result of different genomic distributions of segregating

yield genes and their effects. This means that yield is controlled by genes with large and small

effects, even after the elimination of the postulated ‘major genes’. In our study we observed that

‘major gene’ effects for yield differed over environments. The assumption of QTL by environ-

ment interaction for yield is also corroborated by QTL mapping studies in barley, e.g. Hayes et

al. (1993) and Tinker et al. (1995). Due to this interaction, it is likely that only part of the yield

‘major genes’ have been found in the segregation analysis. Most of the ‘major genes’ were

postulated on the basis of segregation patterns for plant height, lodging and flowering time.

The correlation between parental divergence and progeny variance is generally poor

(Table 4.8). This lack of association, as far as it is not caused by inaccuracies in the genetic
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distance and variance estimates, is basically explained by Charcosset et al. (1991). They state

that RIL variance is caused by a limited number of segregating QTL. Part of the QTL positions

at the genome are not covered by genetic distance data and, conversely,  part of the genetic

distance data are based on genome regions without QTL. The poor association of parental

distance measures already shows that distance information from different sources depends on

the monitored parts of the genome. Also the different QTL, found in QTL studies as mentioned

above, and responsible for RIL variance for different traits in different environments, make clear

that reliable variance prediction based on a single genetic distance measure is virtually

impossible as distance information never matches with all sets of QTL.

The association of genetic distance measures with trait variance at individual trials (V’)

was generally absent. Agronomic distance (agd) based on plant height differences among the

parents showed significant correlation with plant height variance. Analogously, agd based on

parental flowering time data was significantly correlated with RIL variance for flowering time.

These correlations are also present for variances V estimated over environments and single trait

generalised genetic variances (GGV). For height and flowering time agronomic distances

apparently contain parental divergence information from the DNA positions of the most

important QTL. Elimination of this ‘major gene’ effect in the variances usually results in a

decrease of the correlation coefficients. For the generalised genetic variances, based on data

from a single environment, we observe a similar pattern. Agronomic distances based on parental

differences in the same environment significantly correlate with GGV, but not with mgGGV.

The AFLP-based genetic distance seems to have higher correlation coefficients with

‘minor gene’ variances than with variances including ‘major gene’ effects. However, this is not

always the case. Apparently, 1−gs is also predicting the absence or presence of segregating

‘major genes’ for plant height and thousand kernel weight, as it is significantly correlated with

generalised genetic variances for these traits. The significant correlations of 1−gs with ‘minor

gene’ variance is explained by the fact that ‘minor genes’ as well as AFLPs are assumed to have

positions dispersed all over the genome. Also the association of 1−gs and generalised genetic

variance GGV can be attributed to this fact. Presumably the number of QTL responsible for the

value of GGV is that high that QTL are positioned basically everywhere on the genome. This

association is confirmed by results of Burkhamer et al. (1998).

The number of crosses with ‘well known’ pedigrees is too small to establish significant

correlations between 1−ƒ and progeny variance. However, especially pooled distance measure

pd2 is significantly correlated with several RIL variances, including ‘minor gene’ variance for

yield. We also observe several significant correlations of pd1' and pd2' with genetic variance.

This confirms conclusions of Cox and Murphy (1990) and Souza and Sorrells (1991c) that

combining distance measures results in better predictions of progeny variance. Observing the

correlation coefficients in Table 4.8, it seems that a distinction between related and unrelated
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crosses, as used in the calculation of pd2 and pd2', performs slightly better than a rather

straightforward principal components analysis (pd1 and pd1') to combine genetic distance

measures.

The segregation of ‘major genes’, e.g. denso and ert-g, is usually predicted on the basis

of the parent pedigree information and the desired allele can be selected visually in early

generations and/or in small plots. In practical breeding programmes often both parent genotypes

contain the desired alleles for these genes. In both cases only ‘minor gene’ variation can be

subsequently exploited in SSD or DH populations. If a breeder wants to predict ‘minor gene’

variation, AFLP-based genetic distance or a genetic distance combining several sources of

distance information perform relatively well. However, the correlation coefficients between

parental relatedness and RIL variance do not seem to be high enough to be really useful in

practical breeding.

Conclusion

Genetic distance measures based on different sources of parent information do not correspond

well. This is the result of inaccuracies in the estimation as well as differences in the

representation of genomic divergence between the parents. Segregation analysis of the RIL

populations resulted in 43 postulated ‘major genes’ with important contributions to the genetic

variance of the investigated traits. Agronomic distances between the parents based on plant

height, flowering time, or thousand kernel weight predict this ‘major gene’ variation well. AFLP-

based genetic distance show poor, but significant correlations with some ‘minor gene’ variances

and generalised genetic variance over all traits. The distance as well as the variances may be

related to the overall genomic divergence. However, QTL not linked to AFLP markers and AFLP

markers not linked to QTL result in poor observed correlations (Charcosset et al., 1991). Lack

of reliable pedigree information for half of the crosses prohibits a clear statement about the

predictive value of the coefficient of coancestry. Pooled distance measures seem to perform

equally well as AFLP-based genetic distance. Among all distance measures they show the

strongest correlation with progeny variance for yield. However, in general progeny variance

predictions on the basis of the investigated genetic distance measures are not reliable enough for

practical breeding.
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Prediction of progeny variation in barley crosses using parental relationship measures.

II. Measures based on genetic map information and marker-trait associations among

parents 4

Johan W. Schut and Piet Stam

Abstract

Progeny variation for several agronomic traits in 20 crosses of spring barley was predicted by

two AFLP-based genetic distances. The first genetic distance, mgd, was estimated by the use of

genetic map information. Markers were weighted for the marker density at their map position

in order to obtain a more uniform representation of the genome. In comparison with the

correlation coefficient between unweighted genetic distance and progeny variance, the use of

mgd did not result in higher correlation coefficients. The second genetic distance, sgd, was based

on selected markers that showed significant association with the investigated trait in the parent

population. Several marker selection procedures were compared and the highest correlations

between sgd and progeny variance were found when an additional randomly chosen marker was

included in the model for marker-trait association. An average P-value for the F-test of the

marker under investigation was obtained by using all other markers, one by one, as random

marker in the model. The optimum selection threshold for the P-value was 0.005. In the case of

flowering time, an extension of the model with marker by environment interaction appeared

useful. In comparison with the correlation between genetic distance based on all markers and

progeny variance for the different traits, the use of marker selection resulted in higher correlation

coefficients. However, sometimes the correlation coefficients were high mainly as a result of

segregating ‘major genes’. We conclude, that correlations between sgd and progeny variance are

not high enough to be useful in practical breeding.

Keywords: AFLP, genetic distance, genetic map, Hordeum vulgare, marker selection

Introduction

4submitted for publication
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Prediction of progeny performance on the basis of parent information is very important for

practical plant breeding. If one is able to select the right parental combination, i.e., the combina-

tion producing a progeny that includes a genotype which is better than the existing cultivars,

much time, space, and effort can be saved. Prediction of offspring mean is usually based on the

midparent average for the trait (Bos and Caligari, 1995). Prediction of offspring variance causes

more difficulties. This genetic variance is related to the number of segregating genes and their

effects. The number of heterozygous loci in the F1 that will segregate in following generations,

can be predicted on the basis of the relatedness of the parents. So, parental divergence could

indirectly serve as a predictor for progeny variance. Many authors have tried to find empirical

evidence for this relationship by using relationship measures based on parental pedigree data,

morphological and agronomical characters, and biochemical and molecular marker information.

A brief overview is given in chapter 4. The general conclusion of these investigations is that the

correlation between parental divergence and genetic variance within a cross is positive, but

weak.

Many reasons have been suggested why parental relationship measures are poor pre-

dictors. The use of pedigree data is hampered by unrealistic assumptions that have to be made

for the calculation of a coefficient of coancestry (Cowen and Frey, 1987a; Burkhamer et al.,

1998). Estimation of progeny variances is not very accurate and is subject to large sampling

errors (Burkhamer et al., 1998). In some cases the number of crosses is considered too small to

establish a significant relationship between parental divergence and offspring variation (Moser

and Lee, 1994; Manjarrez-Sandoval et al., 1997). This relationship is also affected by the parent

population structure, i.e., the presence of one or more genetically distinct groups among the

parents (Souza and Sorrells, 1991c; Boppenmaier et al., 1993; Charcosset and Essioux, 1994).

The use of quantitative morphological traits to estimate genetic distance is also of limited value

as these traits tend to be strongly affected by only a few ‘major gene’ loci (Souza and Sorrells,

1991c) and do therefore not present information about the whole genome. Burstin and

Charcosset (1997) show that there exists no straightforward linear relationship between

phenotypic differences and genotypic differences. In the case of genetic distances based on

biochemical or molecular markers, representation of the genome can be poor, depending on the

type of markers (Powell et al., 1996) and the number of markers (Moser and Lee, 1994). Finally,

it is suggested that genetic variances for agronomic traits like yield are based on the segregation

of a limited number of genes with large effects (Souza and Sorrells, 1991c; Moser and Lee,

1994; see also chapter 4).

Several authors have suggested ways to improve the prediction of F1-heterozygosity of

crosses and/or its resulting breeding behaviour. This can be heterosis as well as progeny

variance, although, as mentioned in chapter 4, these phenomena are based on different effects

of the heterozygous loci. Charcosset et al. (1991) showed in a theoretical study that the
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correlation between heterosis and heterozygosity at molecular marker loci is decreased by QTL

that are not marked by marker loci and by marker loci that do not mark QTL. Empirical studies

testing improvements for heterosis prediction show varying results. Dudley et al. (1991) used

a genetic distance based on 29 RFLP loci that were significantly associated with maize hybrid

yield, to predict specific combining ability (SCA) for parent combinations. Correlation was poor

and even smaller than correlation between SCA and genetic distance based on all RFLPs.

However, Zhang et al. (1994) found a strong correlation (r=0.77) between F1 heterosis for yield

in rice and genetic distance based on 16 RFLP and SSR markers that were significantly

associated with F1 yield. Barbosa-Neto et al. (1996) could not show a significant relationship

between heterosis for yield in wheat and genetic distance based on RFLP markers associated

with parent yields. In this case marker-trait associations and predicted values were not based on

the observed hybrids. One could, however, argue that a marker-trait association found in an

arbitrary sample of parent lines does not necessarily reflect real linkage between a marker and

a QTL for a trait. Charcosset and Essioux (1994) state that such a ‘linkage disequilibrium’,

which they define as a statistical association between a marker and a QTL, should be similar in

the parent groups of interest in order to predict heterosis succesfully. Using cross validation,

Virk et al. (1996) show, for several agronomic and morphological traits in rice, that marker-trait

associations in a stratified sample of genebank accessions are most likely based on linkage

between markers and QTL. This would support the prediction of heterosis and progeny variance

by genetic distances based on markers associated with traits in the population of parents.

However, to confirm linkage, one needs to map QTL in offspring populations of these parents,

which is rather laborious, or one could use published QTL-information from related parent

combinations.

'Minor gene' variation is defined as genetic variation that cannot be explained by the

segregation of 'major genes' that have been identified in QTL-analysis or segregation analysis.

It is thought to be based on many segregating loci with small effects, which is a common

assumption in biometrical genetics (Mather and Jinks, 1982). We expect that these loci are more

or less uniformly spread over the genome. The amount of 'minor gene' variation for complex

traits, like yield, can be quite substantial (see, for instance, Tinker et al., 1996). Exploitation of

this variation can be performed after visual or marker-assisted selection for desired alleles of

‘major gene’ loci. The latter selection is often already performed during early inbreeding genera-

tions or during seed multiplication of DH lines. For the prediction of ‘minor gene’ variance, it

is likely that parental relationship measures based on genetic differences that are evenly distrib-

uted over the genome, will perform well. Molecular markers do not always satisfy this demand.

For instance, using AFLP markers in barley, Qi et al. (1998) found regions with high densities

of markers, mainly positioned at the centromeric regions. Therefore, map information may be

used to select regularly dispersed markers. Dillman et al. (1997) use a marker variance-
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covariance matrix in the estimation of genetic distance to give more weight to markers from

chromosome regions with low marker density.

In this study we investigate the prediction of barley progeny variance for some agronomic

traits by parental genetic distance based on AFLP markers associated with these traits. Selected

marker information is also used for the prediction of 'minor gene' variance. We use genetic map

information to obtain a genetic distance that is weighted for marker density. The usefulness of

marker selection for the prediction of progeny variance in practical plant breeding is discussed.

Material and methods

Plant materials

In this study we used twenty populations of 48 recombinant inbred lines (RILs) each. These were

derived from crosses between 18 Northwest European two-row spring barley parents. Crosses

and inbreeding procedure are described in chapter 4.

AFLP analysis

Genetic distances were based on 411 polymorphic AFLP markers originating from 14 primer

combinations. Primer combinations and details about the AFLP analysis are given in chapter 4.

Field trials

The 18 parents plus two additional standards were tested at several locations and years in the

years 1993 to 1996. The 960 RILs were tested in 1995 at two locations and in 1996 at five

locations. We observed plant height (cm), flowering time (°C.days), thousand kernel weight (g)

and yield (kg/ha). A more extensive description of the field trials is presented in chapter 4.

The details of the statistical analyses of the trials are also given in chapter 4. We used a

linear mixed model with random RIL effects to estimate the genetic variance V per cross for

every trait over environments (plant height, flowering time, thousand kernel weight, and grain

yield). The generalised genetic variance GGV (Sokal, 1965), combining the variation for the

differents traits, was calculated from the RIL data for each environment. We also calculated trait

specific GGVs from single trait data for each environment. All GGVs were transformed by

taking their nth root, where n is the number of trait by environment combinations (see chapter

4).

66



Prediction of progeny variation. II.

Segregation analysis

In the RIL populations we observed ’major genes’ segregation patterns for several traits. To

establish significant segregation of a ‘major gene’ we fitted a bimodal mixture model (‘major

gene’) and tested it against the unimodal model (‘no major gene’). In this way we could

postulate 43 ‘major genes’. A more detailed description of the analysis is presented in chapter

4.

We were able to estimate the ‘minor gene’ variance (mgV) by using postulated ‘major

genes’, their mutual interactions and their interaction with the environment as explanatory

variables in the analysis of variance. ‘Minor gene’ generalised genetic variances (mgGGVs) were

calculated similarly as GGVs. They are based on RIL least squares means corrected for the effect

of ‘major genes’ and mutual interactions of ‘major genes’.

Map-based genetic distance

For 90 out of 1248 AFLP markers (non-redundant within primer combinations (see chapter 4)

we were able to establish the map positions. For this we used the combined genetic map based

on the genetic maps for the crosses Vada x L94 (Qi et al.,1998) and C-123 x L94 (de Bruin,

unpublished). Out of these 90 mapped markers 65 were polymorphic among the 18 parents. The

aim was to obtain a genetic distance that was based on a uniform representation of the genome.

Therefore, a density dependent weight wk (cM) for marker k was calculated as follows:

where mpk+1 is the map position in (cM) of the next marker on the chromosome, mpk−1 is the map

position (cM) of the previous marker on the chromosome, and nk is the number of markers

mapped at the same chromosome position of marker k. When marker k was at an outer end of

the map, mpk+1 or mpk−1 was replaced by mpk.

After calculating the weights of the markers, the map-based genetic distance mgdij

between parents i and j was calculated as follows: 

where pijk=1 if marker k is present in both genotypes i and j,

pijk=0 if marker k is absent in at least one of the genotypes i and j,

and pik, pjk=1 if marker k is present in genotype i, resp. j,
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pik, pjk=0 if marker k is absent in genotype i, resp. j

In case of a missing observation for a marker in genotype i and/or j, this marker was not included

in the calculation of mgdij.

Marker-trait association

To trace markers associated with parent traits we performed an analysis of variance for each trait

using data from all available environments. Because the two small-plot trials in 1994 did not

reflect the large plot conditions in which the RIL yields were obtained, their yield data were not

used to establish marker-trait associations. We tested 275 AFLP-markers for their association

with each trait. These are all polymorphic markers, after removing redundant markers within and

between the 14 primer combinations.

To test the degree of association between a marker and a trait we applied four linear

models with increasing complexity. Model (1a) only involves an environment effect and an

average allele substitution effect over environments for the investigated marker k. In model (1b)

we added the possibility for an allele substitution effect to vary among environments, thus

including marker by environment interaction in the model. Model (2a) is comparable to model

(1a), but a randomly chosen marker k’ is added before adding the investigated marker k to the

model. The allele substitution effect for the investigated marker is nested within the allele

substitution effect of the randomly chosen marker. One by one, all available markers are used

as random marker k’ in the model, except the marker under investigation. So, for every

investigated marker k, 274 models are fitted, using each of the other markers as random marker

k’. Then the P-values of the F-test for the investigated marker are averaged over all 274 models

and used for marker selection. This approach probably includes part of the epistatic effects and

prevents selection of markers that are loosely linked to QTL and that may show statistical

colinearity with more tightly linked markers. It is expected to produce more reliable probability

values to select markers associated with traits as compared to model (1a).To include part, a

marker selection procedure is tried that uses a model with an extra marker additional to the

marker under investigation. Model (2b) is comparable to model (2a), but we added the

possibility for an allele substitution effect to vary among environments, as in model (1b). This

resulted in the following models:

(1a)

(1b)

(2a)

(2b)
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where zil is the trait observation for parent i in environment l, μ is the general level parameter,

λl is the environment parameter for environment l, xik is the indicator variable for the investigated

marker k in parent i, and xik’ is the indicator variable for another randomly chosen marker k’

(k’≠k) in parent i. βk, βk(k’), βk(l), βk(k’(l)) are allele substitution parameters for marker k. They are,

depending on the model, allowed to differ for every marker genotype of marker k’ and/or every

environment l. βk’, βk’(l) are allele substitution parameters for marker k’, from which the second

is allowed to differ for every environment l. Eilkk’ is the residual. 

Markers were selected on the basis of the P-value in the F-test. Different thresholds were

applied (see below). Trait-dependent genetic distances sgd were calculated similarly as gd in

chapter 4, on the basis of markers selected for each trait separately. Distance sgd1 was based on

marker selection using model (1a) or (1b) and sgd2 was based on marker selection using model

(2a) or (2b). sgd-distances based on all four traits (plant height, flowering time, thousand kernel

weight, and grain yield) and aimed to predict GGV and mgGGV over all traits, were calculated

by using all markers that were selected on the basis of at least one trait.

When fitting models (2a) and (2b) we calculated the fraction of residual variance

explained by adding marker k to the model. This was done per trait by environment combination

for each of the 275 × 274 k-k’ constitutions. For each k the explained fractions were averaged

over k’. From these average explained fractions per environment, the highest value was taken

and used as a trait-specific weight for each marker. Weighted genetic distances sgd3 were then

calculated using markers selected by model (2a) or (2b).

For comparison of the models the number of markers selected by model (1a) was kept

equal to the number of markers selected by model (2a). For this model an optimal threshold

value was determined based on the highest correlation coefficient between sgd and progeny

variance. Analogously to model (1a) marker selection, the numbers of markers selected by

model (1b) P-values were set equal to the numbers selected by model (2b) P-values. The

threshold for model (2b) was set at a value that gave approximately equal numbers of selected

markers than the optimal threshold for model (2a).

To investigate the situation without segregating ‘major genes’, we discarded all markers

which were strongly associated with the trait under investigation. The discarded markers are

expected to be linked to the postulated major genes for the considered trait. The remaining

AFLP-markers include markers with a significant, but less strong marker-trait association, and

which are supposed to be linked to ‘minor genes’. Such markers were selected and used in

calculation of the genetic distances sgd4, sgd5, and sgd6 (analogously to resp. sgd1, sgd2, and

sgd3). We used models (1a) or (2a) for marker deletion depending on the model that was used

for marker selection. An arbitrary threshold probability of 0.001 was used for P-values from

model (2a). The number of markers discarded on the basis of P-values from model (1a) was kept

equal to the number of markers discarded when applying model (2a) with threshold 0.001.
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A bootstrap procedure (Efron & Tibshirani, 1993) taking 1,000 samples from the set of

20 parent combinations, was used to test whether the correlation coefficients between genetic

distances and RIL variances were significantly larger than zero.

Results

Results of the field trials and the segregation analysis have been presented in chapter 2.

Segregation analysis of five agronomic traits (plant height, flowering time, lodging, thousand

kernel weight, grain yield) resulted in 43 postulated segregating ‘major genes’ distributed over

20 crosses.

Map-based genetic distance

The map positions of the 90 markers used in the calculation of mgd are not evenly distributed

over the recombination map. Marker distribution patterns were similar to those of the original

maps, presented by Qi et al. (1998), with high marker densities around the centromere positions.

At 10 map positions more than one marker was present with an average of 2.3 markers per map

position. At 6 of these positions markers showed different polymorphism patterns among

parents. These markers were produced by different primer combinations. Markers generated by

the same primer combination and mapped at the same position showed identical or

complementary polymorphism patterns.

Correlations of mgd with variance estimates were poor and non-significant (Table 5.1).

mgd did not show any increase in correlation with variance compared to the unweighted genetic

distance (data not shown) based on the same 90 mapped markers.

Genetic distance based on marker-trait association

The predictive value of the sgds for the different variance estimates was clearly dependent on

the intensity of marker selection. Threshold values were varied to find an approximate optimum

selection intensity, generally producing the highest correlation coefficients between genetic

distances based on selected markers and progeny variances. The optimum selection intensities

appeared to be different for the different models. However, for each trait the numbers of selected

markers were usually in the same order of magnitude. Model (2a) had a consistent optimum at

treshold value 0.005, with numbers of selected markers ranging from 18 (grain yield) to 36

(plant height).
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Table 5.1. Correlation coefficients between AFLP-based parental divergence measures and

progeny variances. 1−gs=unweighted genetic distance based on all markers; mgd=genetic distance based on 90

mapped markers weighted for marker density; sgd1, sgd2=unweighted genetic distance based on markers associated

with the trait(s) given in the second column and selected using model (1a) and model (2a) resp., except for flowering

time, for which markers are selected using model (1b) and (2b) resp.; sgd3, as sgd2, but weighted for average

explained fraction of residual variance; sgd4/sgd5/sgd6, as sgd1/sgd2/sgd3, but only selected markers that are less

strongly associated (P≥0.001) with the investigated trait in the second column; V/mgV=variance/’minor gene’

variance analysed over environments; GGV/mgGGV=generalised genetic variance/generalised ‘minor gene’ variance,

based on a specified set of n trait by environment combinations; V’/mgV’=variance/’minor gene’ variance analysed

per environment and correlation coefficients averaged over environments; h=plant height; f=flowering time;

t=thousand kernel weight; y=yield; *=0.01<P<0.05; **=P<0.01

variance traits 1−gs mgd sgd1 sgd2 sgd3 sgd4 sgd5 sgd6

V h 0.31 0.20 0.44** 0.62** 0.59** 0.52** 0.76** 0.70**

mgV h 0.43* 0.01 0.39 0.45** 0.49* 0.26 0.36 0.46*

V f 0.03 0.20 0.19 0.19 0.26 -0.11 0.30 0.31

mgV f 0.27 0.30 0.19 0.28 0.33 -0.26 0.50* 0.51*

V t 0.09 0.17 0.48* 0.46** 0.48** 0.33* 0.44** 0.46**

mgV t 0.02 -0.04 0.11 0.11 0.11 -0.04 0.13 0.13

V y 0.02 0.21 0.09 0.38* 0.38* 0.23 0.40* 0.44*

mgV y -0.29 -0.13 0.33* 0.38* 0.34 0.44* 0.44* 0.42*

GGV1/n hfty 0.51** 0.24 0.47** 0.49* 0.54** 0.23 0.34 0.42*

mgGGV1/n hfty 0.47* 0.13 0.18 0.31 0.35 0.12 0.50* 0.57*

GGV1/n h 0.48* 0.14 0.62** 0.72** 0.68** 0.57** 0.82** 0.81**

mgGGV1/n h 0.39 0.11 0.25 0.34 0.34 0.14 0.28 0.33

GGV1/n f 0.27 0.18 0.22 0.21 0.28 -0.12 0.32 0.34

mgGGV1/n f 0.31 0.14 -0.07 -0.01 0.03 -0.29 0.34 0.34

GGV1/n t 0.48* 0.11 0.43* 0.61** 0.61** 0.46* 0.70** 0.71**

mgGGV1/n t 0.26 0.04 0.07 0.23 0.22 -0.06 0.36* 0.35*

GGV1/n y 0.13 0.02 0.01 0.23 0.30 0.15 0.24 0.33

mgGGV1/n y 0.34 -0.14 0.14 0.32 0.35* 0.37* 0.41* 0.45*

It appeared that models (1a) and (2a) with a general allele substitution effect over

environments generally performed better than models (1b) and (2b). This was the case for plant

height, thousand kernel weight, grain yield, and combined traits. However, for flowering time

models (1b) and (2b), having an environment-dependent allele substitution effect, performed

better than models (1a) and (2a). Therefore we decided to use models (1a) and (2a) for plant

height, thousand kernel weight, grain yield, and combined traits and models (1b) and (2b) for

flowering time for further comparisons (Table 5.1).

The single marker models (1a) and (1b) were compared to the models (2a) and (2b), that

have the additional random marker (Table 5.1). The optimal threshold value of 0.005 was used

for model (2a) P-values. In the investigation of flowering time, a threshold value of 0.05 was
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used for model (2b) P-values. This threshold resulted in a number of selected markers that was

close to the marker number that would have been selected using model (2a) with threshold

0.005. For comparison of the models the numbers of markers selected by models (1a) and (1b)

were kept equal to the numbers of markers selected by model (2a) and (2b), as already

mentioned in the material and methods section.

Correlation between genetic distance, based on selected markers, and progeny variance

measures appeared to be generally higher than the correlation between genetic distance, based

un unselected markers, and RIL variance estimates. The largest increase was found for correla-

tions with trait variance V over environments. Marker selection on the basis of averaged P-

values using model (2a) or (2b) resulted in higher correlations than marker selection based on

model (1a) or (1b) P-values. The use of the average fraction of explained residual variance as

a weight in the genetic distance calculation did not have a large effect on the correlation between

genetic distance and progeny variance. Correlations with variance measures were more or less

the same for sgd2 and sgd3. In some cases there was an indication that weighting of markers had

an increasing effect on the correlation coefficients.

In the situation without segregating ‘major genes’ the correlation coefficients between

sgd5 or sgd6 and ‘minor gene’ variance for plant height and thousand kernel weight decreased

compared to the situation with ‘major genes’. For flowering time and yield an increased

correlation was found. The correlation between sgd5 or sgd6 and V or GGV appeared to be

equal or even higher than the correlation between sgd2 or sgd3 and ‘minor gene’ variances,

except for the GGV for combined traits.

Considering the different traits, correlation coefficients between genetic distances and

total RIL variances (V, GGV) were the highest for plant height, followed by thousand kernel

weight. Variances for flowering time appeared hard to predict, as almost no significant correla-

tions (α=0.05) were found. This was also the case for the GGV for yield. Marker selection hardly

increased correlations between genetic distance estimates and generalised genetic variances for

the combined traits.

Discussion

A genetic distance measure between parent lines, where map information was used to weight

markers for the marker density at their position on the DNA, does not appear very successful in

predicting progeny variance. This measure was an attempt to obtain a more balanced representa-

tion of the genome. As already mentioned by Charcosset et al. (1991), a highly predictive

marker-based genetic distance should only involve markers that are linked to QTL for the

specified trait. This means that only part of the genome should be represented in the genetic
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distance measure. However, for the variance measure GGV, based on combined traits and pre-

sumably involving a high number of QTL, the correlation coefficient with mgd (r=0.24) is hardly

higher than with 1−gs, based on the same 90 markers (r=0.21). As there is a discrepancy

between the physical map (in Kbp), the recombination map (in cM) and the positions of

expressed genes, it is unclear how a balanced genome representation should be obtained and

whether it is representative for the GGV-QTL.

The genetic distance measures based on markers that are selected for their association

with a certain trait, can be interpreted as agronomic distances (agd), presented in chapter 2, that

are supported by molecular marker information. This explains the higher correlation coefficients

of sgd1, sgd2, and sgd3 with total variances V and GGV than with ‘minor gene’ variances mgV

and mgGGV, showing a similar pattern as the correlation coefficients of agd in part I. In

comparison with agronomic distances and genetic distances based on all available markers, sgd

generally gives a higher correlation coefficent with trait variances. The increase was not found

for flowering time variance (V) over environments. Closer inspection learned that a more

stringent selection of markers could improve the predictive value of the sgd estimates for

flowering time. For the other traits a threshold of 0.005 for model (2a) P-values seems to be a

good selection criterion. It resulted in 18 (grain yield) to 36 selected markers (plant height) for

single traits and 82 selected markers for the combined traits. It is, of course, unknown whether

these marker selection intensities can be transferred to other situations.

The choice of the model to estimate type I error probabilities (P-values) probably

depends on the type of marker by environment interaction. Considering the results in Table 5.1,

models (2a) and (2b) are clearly preferred above models (1a) and (1b), but the question whether

or not to include marker by environment interaction in the model needs more reasoning. If there

is hardly any interaction (plant height, thousand kernel weight), model (2a) performs well, as

expected. However, model (2a) also performs better than model (2b) for grain yield, for which

marker by environment interaction is surely expected according to our segregation analysis

results. This interaction partly consists of markers that have hardly any association with yield

in one environment and strong association in the other environment. This is in contrast with

marker by environment interaction for flowering time, where most markers are either always or

never associated with the trait. The allele substitution effect is different, depending on sowing

date, which causes the interaction. Thus the associated markers fit well to model (2b) and are

important for the amount of variance over environments. For yield the markers with large

interaction effects are not always relevant for the variance over environments. Model (2a) more

or less ignores the interaction effects and is therefore more useful in selection of markers for

yield. The use of weights for the selected markers is not advantageous, as the differences in

correlation coefficients with RIL variances between weighted sgds and unweighted sgds are

small.
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The ‘minor gene’ variances were included in this study to resemble a situation which

often occurs in practical barley breeding, as well as other crops: ‘major genes’ are already fixed

at certain alleles in the closely related parent population or the segregating populations have

been selected for desired alleles in the early generations of the inbreeding process. In the latter

case it is advisable to use markers, closely linked to the ‘major gene’, as additional parameters

in the marker-trait model. In this way the variation among parents, caused by the ‘major genes’,

is removed before testing the association of other markers with the investigated trait. This is

probably more reliable than the marker deletion procedure used for the calculation of sgd4, sgd5,

and sgd6. However, we did not have sufficient information about the map positions of markers

and ‘major genes’ to estimate a more reliable genetic distance.

The elimination of ’major genes’ resulted in a strong decrease in the correlation coeffi-

cients of genetic distance measures and RIL variances for plant height and thousand kernel

weight. These lower correlation coefficients give probably a more realistic view of the oppor-

tunities for prediction of progeny variance in practical breeding by genetic distances based on

selected markers. We prefer to consider the correlation coefficients for yield, because of the

consistent magnitude of the correlation coefficients, with and without ‘major genes’. These

correlations are mainly positive and significant. They seem to be higher than the correlations

between genetic similarity and heterosis presented by Dudley et al. (1991). We doubt, however,

whether the correspondence between sgd and progeny variance is high enough to be successfully

applied for cross prediction in practical plant breeding.

Conclusion

The use of map-based marker densities as weights in the calculation of genetic distance does not

improve its correspondence with progeny variance. This can be understood when one assumes

that the effects on RIL variance of QTL segregation are not uniformly distributed over the

linkage map.

The use of markers selected on the basis of their high degree of association with parental

traits is therefore much more promising. The preferred marker selection is based on the average

P-value obtained from model (2a) and (2b) where all remaining markers are included one by

one, while testing the one under investigation. Depending on the trait, a model should be chosen

that selects markers that are linked to trait effects which are relevant over environments.

 The correlations between genetic distance sgd, based on selected markers, and progeny

variance are mainly positive and range from poor to high. However, we found that high correla-

tion coefficents are the result of a few segregating ‘major genes’. These genes are often already

fixed in practical breeding populations, either because of parent selection or because of selection
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during early generations. Ignoring ‘major gene’ effects, we observe mainly poor-to-moderate

correlations between sgd and RIL variance. This leads us to the conclusion that marker selection

based on parental marker-trait associations, although promising, is not (yet) reliable enough to

establish highly predictive genetic distance estimates for practical plant breeding.
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Prediction of barley progeny performance in the presence of genotype by environment

interaction 5

Johan W. Schut and C. Johan Dourleijn

Abstract

Twenty crosses of European two-row spring barley and their parents were tested in six environ-

ments in the Netherlands to investigate the inheritance of genotype by environment interaction.

First, the inheritance of three stability measures is considered: Finlay and Wilkinson’s (1963)

regression coefficient bi, Shukla’s (1972) stability variance σi² and Eberhart and Russell’s (1966)

mean squared deviation di². The average bi value of the offspring recominant inbred lines (RILs)

is strongly correlated with the midparent value, indicating its heritable nature. The correlation

between RIL mean and midparent value is absent for σi², due to a difference in its composition

for parents and RILs. di² appeared to be heritable. However, its repeatability is poor. Therefore,

it is concluded that only prediction of bi is useful in practical plant breeding.

Secondly, a biplot from the AMMI-analysis of the parents is investigated. RIL means are

added in the biplot. The first two axes represent bi and the difference between clay and sandy

soils. There appears to be reasonable correlation between the RIL mean positions and the

midparent positions in the biplot. However, a midparent prediction of offspring genotype by

environment interaction, based on the AMMI-biplot, is probably not reliable enough for practical

purposes.

Finally, Habgood’s (1977) parental similarity measure is calculated as the correlation

between the parental residual vectors from a two-way ANOVA of the parent by environment

table using a model with additive genotype and environment effects. It shows a reasonable

negative correlation (rs=−0.63) with offspring variance for yield over environments. It is

concluded that the use of this similarity measure to predict progeny variance in practical plant

breeding appears promising, but further investigation is necessary.

Keywords: Additive Main effects and Multiplicative Interaction, genetic similarity, Hordeum

vulgare, progeny variance, stability
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Introduction

Genotype by environment interaction is a very important phenomenon in practical plant breed-

ing. A breeder can select cultivars specifically adapted to a certain location, but more often he

prefers cultivars that show a stable yield performance over several years and locations. As a

breeding goal this stability is often just as desirable as a high yield level. In general a genotype

is regarded as stable when its performance across environments does not deviate from the

average performance of a group of standard genotypes. Several measures have been presented

to quantify this feature. Extensive reviews are presented by Lin et al. (1986) and Becker and

Léon (1988).

Lin et al. (1986) considered three types of stability parameters. Type 1 stability is

accomplished when a genotype shows a small variance over environments. A genotype shows

type 2 stability, when its performance in a certain environment can be predicted by an additive

model consisting of a genotype term and an environment term. The latter term is equal to the

average yield over all genotypes in a certain environment (i.e., the environmental index). An

example of a type 2 stability parameter is the regression coefficient from the regression of the

yield of genotype i on the environmental index (Finlay and Wilkinson, 1963). Eberhart and

Russell (1966) consider a value of one, i.e., average stability, as a desirable value of bi. However,

originally Finlay and Wilkinson proposed a value of zero as the desirable value. In that case Lin

and Binns (1991) propose to classify bi as a type 1 stability parameter. Another example of a type

2 stability statistic was proposed by Shukla (1972). Based on the residuals from the additive

model this stability variance σi² of genotype i is defined as the variance of a genotype across

environments. Type 3 stability is based on the deviation from the Finlay-Wilkinson regression.

Eberhart and Russell (1966) proposed to use the mean squared deviation from the regression

(di²). A genotype is considered stable when this parameter is zero. Becker and Léon (1988)

showed the relationship between bi, σi², and di², where σi² is the sum of a linear term based on

bi and a non-linear term di². Later, Lin and Binns (1988) defined type 4 stability, which is merely

a modification of type 1 stability, ignoring the variance among locations. A genotype is

considered type 4 stable when its performance does not vary over years.

The repeatability over different sets of environments and the genetic control of several

stability parameters (e.g. bi, σi², di²) is reviewed by Sneller et al. (1997). Based on reviewed

literature they conclude that the repeatability of these parameters was generally low for σi², di²

and moderate for bi. The regression parameter bi is reported to be under genetic control, but σi²

and di² do not seem to be heritable. Using soybean grain yield data, measured in several

environments over two years, Sneller et al. (1997) could confirm the earlier conclusions about

repeatability of stability parameters. Lin and Binns (1991) make general statements about the

genetic control of the different types of stability parameters. On the basis of bromegrass forage
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yield data, measured at four locations in three years, they conclude that only type 1 and type 4

statistics are heritable. This seems to be in contradiction with the conclusion of Sneller et al.

(1997) that the regression parameter bi is under genetic control, although it may be dependent

on crop and/or trait.

Genotype by environment interaction is usually investigated by inspection of the

deviations from the two-way ANOVA model with additive genotype and environment effects.

Gollob (1968) proposed a factor analysis for parsimonious modelling of this non-additivity by

means of a few multiplicative terms. This bilinear model is also known as Additive Main effect

and Multiplicative Interaction (AMMI) model (Zobel et al., 1988). It is expected that the

interaction pattern of parent lines is an indication for the interaction pattern of the offspring. Van

Eeuwijk (1995) mentions that the cosines of the angles between genotypic vectors approximate

the correlations between genotypes with respect to their interactions with environments.

Habgood (1977, 1983) proposed to use these correlations to estimate genetic diversity among

parents to obtain an indication for the variation in yield among the offspring. This is based on

the idea that genetic similarity of genotypes with respect to yield genes will result in a similar

response to environmental changes, and, therefore, in high correlations between the genotype

vectors. Conversely, genotypes with non-similar responses will have few yield genes in common.

Therefore, the similarity of reaction patterns of two genotypes might be related to the yield

variance among the segregating offspring: a higher similarity will result in less variation among

the offspring.

To investigate the inheritance of genotype by environment interaction, and stability in

particular, 20 crosses of European two-row spring barley and their parents were tested in six

environments. We consider the genetic properties of three stability measures: Finlay and

Wilkinson’s (1963) regression coefficient, Shukla’s (1972) stability variance and Eberhart and

Russell’s (1966) mean squared deviation. We will discuss the opportunities of AMMI analysis

of parent genotypes to predict genotype by environment interaction for their offspring. We will

also consider the prediction of yield variance among the offspring of a cross based on the

correlation between the parental environment-response vectors.

Material and methods

Plant materials

For this study we used 20 populations of recombinant inbred lines (RILs) of two-row spring

barley (Hordeum vulgare L.). These populations were derived via a partial diallel crossing

design using 18 parent genotypes (n=18; s=2; Kempthorne and Curnow, 1961) and resulting in

18 crossing combinations (Table 6.1). Reciprocal crosses were made for two parent
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combinations, increasing the total number of RIL populations to 20. The parent genotypes

represent parents employed in commercial barley breeding programs in Northwest Europe over

the last 20 years. Their pedigree and geographic origin are presented in Table 2.1. Single seed

descent was performed on 48 F2 plants for each cross until the F5 generation. The F5 plants

produced, after one intermediate generation of multiplication, a total of 960 F5-derived F7-lines.

These recombinant inbred lines could then be tested and compared with their parents.

Table 6.1. Crosses and their parents. R=reciprocal combination

cross mother father cross mother father

1 Riff (1) Drossel (10) 11 Karat (14) Yriba (13)

2 Baronesse (3) Forester (2) 12(R2) Gunhild (15) GEI-119 (5)

3 Baronesse (3) Bonaire (16) 13 Gunhild (15) CEB-9186 (17)

4 Apex (8) Riff (1) 14 Bonaire (16) Porthos (9)

5 Porthos (9) Yriba (13) 15 CEB-9186 (17) ZE-87-3414 (4)

6 Midas (12) Forester (2) 16 ZE-87-3414 (4) CEB-9079 (18)

7 GEI-119 (5) Midas (12) 17(R2) GEI-119 (5) Gunhild (15)

8(R1) Prisma (6) Apex (8) 18 Triangel (7) Georgie (11)

9 Prisma (6) Karat (14) 19(R1) Apex (8) Prisma (6)

10 Triangel (7) Drossel (10) 20 Georgie (11) CEB-9079 (18)

Field trials

The 960 recombinant inbred lines (RILs) were tested at several locations in the Netherlands in

1995 and 1996 (Table 6.2). In 1996, three trials (Lelystad, Rilland, and Ottersum) each contained

only one third of the lines (i.e., 16 lines) of each cross. They are called 'partial' locations, while

the other trials are indicated as 'complete' locations. The 18 parent lines and cultivars Magda and

Vada were added as standards. Each trial included two replicates. Each standard occurred six

times per replicate at the 'complete' locations and two times per replicate at the 'partial' locations.

All genotypes were randomised according to a partially balanced incomplete block design with

8 plots per block. The constraint that two genotypes do not occur more than once together in the

same block, extended over all RIL trials. Sowing dates and plot sizes are presented in Table 6.2.

Grain yield was recorded in grams per plot and recalculated to kg/ha.

80



Performance prediction and genotype by environment interaction

Table 6.2. Field trial description. p=present in trial; †=only part of RILs present in trial

trial location soil year plot size (m2)

(width × length (m) ) 

sowing

date

parents RILs

S95 Swifterbant clay 1995 9.0 (1.5 × 6.0) 15 May p p

W95 Wageningen clay 1995 9.0 (1.5 × 6.0) 11 May p p

S96 Swifterbant clay 1996 9.0 (1.5 × 6.0)   1 April p p

W96 Wageningen clay 1996 9.0 (1.5 × 6.0) 19 March p p

L96 Lelystad clay 1996 5.32 (1.4 × 3.8) 18 April p p†

R96 Rilland clay 1996 3.6 (1.5 × 2.4) 19 March p p†

O96 Ottersum sand 1996 4.65 (1.5 × 3.1) 18 March p p†

Statistical analysis

Field trials

RIL-trial data were analysed using average information REML (Gilmour et al., 1995). Analysis

of the plot data was performed per year by location combination (environment), because an

overall analysis appeared not feasible due to computational limitations. The linear mixed model

included fixed effects for standards, crosses and strips of adjacent incomplete blocks. The block

effects were assumed random, as well as the line within cross effects. In the analysis of residuals

and whenever a hypothesis considered the specific lines that were present in the trial, the line

effects were assumed to be fixed. Residual analysis was performed to trace outliers among the

data. These observations were excluded from the final analyses.

To overcome computational limitations we performed a combined analysis over years

and locations (environments) by using the least squares means for the lines as input data for an

analysis of variance. The linear mixed model included fixed effects for standards, crosses,

standard by environment interaction and cross by environment interaction. A random line effect

over environments was included to obtain an estimated line variance V for yield for each cross.

Stability parameters

An index value for each environment was calculated as the mean yield of all parent genotypes.

Regression of the RIL and parent data on this environmental index produced Finlay and

Wilkinson’s (1963) regression coefficient bi and the mean squared deviation from the regression

di² (Eberhart and Russell, 1966) for each genotype i. Residuals were derived from the analysis

of variance of least squares means data using a model with additive genotype and environment

effects. Based on these residuals we calculated the stability variance σi² for an individual

genotype i, following Shukla (1972). The stability variances of the RILs were calculated

separately from those of the parents.
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Using the individual RIL statistics, means and variances for the stability parameters were

estimated per cross. The influence of high inaccurate values of di² and σi² was decreased by a

log-transformation before calculating mean and variance.The inverse error variance of bi and the

degrees of freedom for di² and σi² were used as weights in the calculation of mean and variance.

AMMI analysis

The least squares means from the analysis of variance of the individual locations were used to

construct the parent genotype by environment table for the AMMI analysis. Additive genotype

and environment parameters were fitted by analysis of variance. The nonadditive part was

described by principal components analysis. Sensitivity scores were recorded for every parent

genotype. Results of the parental AMMI-analysis were visualised by a biplot.

Next the RIL data were inserted in the biplot as follows. A mixed model including fixed

cross and environment effects, fixed cross by environment interaction, and a random line within

cross effect was used to produce best linear unbiased predictions for the missing RIL by

environment combinations (Van Eeuwijk, 1995). Then the environment parameters estimated

from the parent data were used to eliminate the environment effect from the RIL data. Sub-

sequently additive genotype effects were separated from the nonadditive part of the RIL data by

analysis of variance. The nonadditive part was transformed into sensitivity vectors by a linear

combination given by the eigenvectors from the parental AMMI-analysis. Parent and offspring

could then be compared in the biplot.

Finally, correlations rG×E between the parental environment-response vectors were calcu-

lated following Habgood (1977), and compared with RIL variance V for yield and stability para-

meters. The parental environment-response vectors consist of the residuals of an analysis of

variance (ANOVA) of the parent by environment table using a model with additive genotype and 

Table 6.3. Field trials characterised by average yield, observed over 20 crossing populations and

20 standards and root mean square errors (root mse) obtained by variance analysis.

trial mean yield

(kg/ha)

√mse

(kg/ha)

S95 5452 229

W95 6048 220

S96 - -

W96 9127 293

L96 7404 301

R96 9813 453

O96 9067 261
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environment effects. The correlation rG×E is equal to the cosine of the angle γij between the two

parental sensitivity vectors from an AMMI analysis using all dimensions. In this analysis the

genotype scores for the different dimensions are multiplied with the singular values for those

dimensions (Van Eeuwijk, 1995). It is possible to discard the highest dimensions to obtain a

more parsimonious model and maybe, to lose some random non-genetic variation. Then the

cosine of γij is still a good approximation of the correlation rG×E. We investigated the effect of

this dimension reduction on the correlation between cos(γij) and progeny variance V.

Results

Field trials

Average yield values and root mean square errors per trial are presented in Table 6.3. Mean

yields of the parents are presented in Table 6.4. For each cross mean yield over environments

and the square root of the estimated between line variance are presented in Table 6.5. Due to

severe hail storm damage, we did not obtain yield data from Swifterbant in 1996.

Table 6.4. Average yield (kg/ha) over environments and stability parameters of parents.
bi=regression coefficient (Finlay and Wilkinson, 1963); ln(di²)=natural logarithm of mean squared deviation from

regression (Eberhart and Russell, 1966); ln(σi²)=natural logarithm of stability variance (Shukla, 1972)

parent name yield bi ln(di²) ln(σi²)

1 Riff 8211 0.97 11.80 11.79 

2 Forester 7810 1.09 11.42 11.74 

3 Baronesse 8428 1.13 12.58 12.74 

4 Ze-87-3414 7526 1.08 12.56 12.58 

5 GEI-119 8136 0.75 12.23 12.97 

6 Prisma 8072 0.97 11.04 11.12 

7 Triangel 8588 1.30 11.32 12.98 

8 Apex 7846 0.98 11.59 11.59 

9 Porthos 7287 0.89 11.42 11.83 

10 Drossel 7526 0.98 10.69 10.84 

11 Georgie 7769 0.97 9.40 10.02 

12 Midas 7441 0.94 11.51 11.64 

13 Yriba 7691 0.87 10.45 11.60 

14 Karat 7784 0.96 11.26 11.37 

15 Gunhild 7868 0.92 10.20 10.92 

16 Bonaire 8109 1.06 11.93 11.97 

17 CEB-9186 8133 1.05 11.21 11.37 

18 CEB-9079 8276 1.07 11.85 11.96 
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Table 6.5. Cross population mean and square root of between RIL variance for yield over

environments (kg/ha) and stability parameters (see Table 6.3).

mean √variance

cross yield √var(yield) bi ln(di²) ln(σi²) bi ln(di²) ln(σi²)

1 7865 397 0.96 11.36 11.76 0.15 1.26 1.02

2 7857 292 0.97 10.96 11.58 0.15 1.63 1.19

3 8036 252 0.97 11.14 11.37 0.11 1.28 1.17

4 7842 254 0.95 11.19 11.64 0.15 1.11 0.93

5 7552 197 0.84 10.37 11.28 0.12 1.51 1.04

6 7350 461 0.93 11.24 11.58 0.15 1.21 1.13

7 7884 232 0.84 11.20 12.02 0.14 1.66 0.70

8 7659 357 0.94 10.94 11.65 0.15 1.43 1.05

9 8010 147 0.99 11.24 11.53 0.11 1.22 1.03

10 7953 199 0.98 11.04 11.12 0.10 1.12 1.06

11 7485 393 0.91 10.97 11.40 0.11 1.43 0.97

12 7798 153 0.87 11.15 11.50 0.12 1.39 1.09

13 7731 234 0.95 11.01 11.30 0.11 1.55 0.99

14 7671 356 0.93 10.98 11.34 0.12 1.54 1.22

15 7487 289 0.98 11.35 11.69 0.14 1.21 1.13

16 7578 336 0.97 11.07 11.63 0.12 1.20 0.85

17 7746 217 0.87 11.27 11.60 0.13 1.52 1.20

18 7922 241 0.96 10.91 11.24 0.09 1.17 0.70

19 7622 344 0.95 11.08 11.78 0.15 1.17 0.86

20 7805 492 0.91 10.65 11.23 0.15 1.62 1.20

Stability parameters

Stability parameters for the parents are presented in Table 6.4. Approximate standard errors were

estimated using the jackknife method (Tukey, 1958). For bi they ranged from 0.013 to 0.073 with

an average of 0.037. For ln(di²) standard errors ranged from 0.22 to 1.34 with an average of 0.52

and for ln(σi²) the range was between 0.10 and 0.76 with an average of 0.32. The ratio between

the standard deviation among the parents and the standard error was 3.23 for bi, 1.55 for ln(di²),

and 2.42 for ln(σi²). Mean and root variance of the different stability parameters for each RIL

population are presented in Table 6.5.

The rank correlations between the midparent values and RIL means for the investigated

stability statistics are presented in Table 6.6. The midparent value of bi appears to be a good

predictor of the average bi value of the offspring. For ln(di²) there is also a significant correlation

between midparent value and RIL mean. For ln(σi²) a relation between parent and offspring is

completely absent. However, the midparent value of ln(di²) appears to be moderately correlated

with the RIL mean of ln(σi²).
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Table 6.6. Spearman rank correlation coefficients between midparent values and RIL means of

stability parameters (see Table 6.3). *=0.01<P<0.05 **=0.001<P<0.01 ***=P<0.001

midparent value

bi ln(di²) ln(σi²)

RIL mean

bi 0.69*** 0.26 0.05 

ln(di²) -0.28 0.39* 0.20 

ln(σi²) -0.31 0.58** 0.17 

AMMI analysis

The first two factors from the AMMI analysis are used to construct the biplot presenting parents,

RIL population means and environments (Figure 6.1). These first two dimensions explain 69%

of the nonadditive variation among the parents. The first dimension seems to present the

difference in genotype response between Rilland trial in 1996 (R96) and the 1995 environments

(S95, W95) plus the Ottersum trial in 1996 (O96). The second dimension mainly presents the

difference between the response for the Ottersum trial in 1996 and the other environments.

The average positions of the RILs for each cross are generally closer to the origin of the

biplot than their parents. Their positions tend to be more towards lower yielding environments

(S95, W95, and L(elystad)96). A comparison of the average position of the RILs with the

positions of their parents does not show a consistent relationship between them. However, the

rank correlation coefficient between midparent coordinates and cross coordinates is 0.82 for the

first dimension and 0.70 for the second dimension. In most cases the average offspring position

is situated somewhere between the parents, e.g. cross 1 (1×10). But in some cases the average

offspring position is not even near the parents, e.g. cross 2 (3×2).

The correlation rG×E between the parental environment-response vectors was calculated

for each of the 20 crosses. The correlation coefficients of rG×E with between RIL variance for the

investigated stability statistics were small and insignificant.The relationship between rG×E and

variance V for yield over environments is presented in Figure 6.2. The rank correlation

coefficient between rG×E and V is −0.63 (P<0.001).

Discussion and conclusion

A large variation in average yield was found among the investigated environments. The 1995

trials were sown late. Ripening was promoted by hot weather during the end of the season,

especially in Wageningen. In 1996 the trials in Wageningen, Rilland and Ottersum were sown

early; the Lelystad trial was sown on an intermediate date. The grain filling stage was largely

extended as a result of cool weather, especially in Rilland and Lelystad. Severe lodging occurred
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Figure 6.1. AMMI biplot of genotype by environment interaction for parents and recombinant

inbred line (RIL) populations. ● = parents; × = crosses, presented as parent combinations; Δ =

environments; L96=Lelystad 1996; O96=Ottersum 1996; R96=Rilland 1996; S95=Swifterbant 1995;

W95/W96=Wageningen 1995/1996
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Figure 6.2. The relationship between the correlation coefficient rG×E between environment-

response vectors of two parents and the yield variance V(y) over environments among

recombinant inbred lines descending from a cross between these parents. The environment-

response vectors consist of the residuals of an analysis of variance of parent by environment data

for yield using a model with additive genotype and environment effects.

in Rilland, Wageningen and Lelystad in 1996, and in Swifterbant in 1995. In the Wageningen

trial in 1995 some lodging occurred towards the end of the season, and in Ottersum in 1996 there

was hardly any lodging. The sowing date effect, which seems confounded with the year effect,

could be an explanation for the differences in average yield between environments. The main

indication for this is the yield difference between Lelystad and the other locations in 1996.

Investigation of the stability statistics of the parents shows a significant correlation

between regression coefficient bi and average yield of parent i (rs=0.42), which was already

mentioned by Finlay and Wilkinson (1963). A highly positive correlation (r=0.87) is observed
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between the standard deviation among the parents and the average yield per environment,

indicating that the differences between parents increase as the average yield of an environment

increases. The positive rank correlations between parent performances in different environments

(average rs=0.46) show that the rank order of the parents does not change dramatically over

environments. The combination of these two facts is in agreement with the correlation between

bi and average parent yield. Most high yielding genotypes perform relatively well in high yield

environments and therefore have a high bi value, while poor yielding genotypes more often have

a low bi value. The positive correlation between bi and yield over environments is an indication

that the effects of some of the yield QTL increase when moving from low to high yield environ-

ments.

The high correlation between the midparent value and the RIL population mean for bi

corroborates the conclusions of Becker and Léon (1988) that this stability measure is highly

heritable. This would be in contradiction with the conclusion of Lin and Binns (1991), stating

that type 2 stability parameters, to which they initially assigned bi (Lin et al., 1986), are not

inherited. However, in their discussion they reason that bi can be interpreted as a heritable type

1 stability parameter as well.

For the second type 2 stability parameter, ln(σi²), no significant correlation is found

between midparent value and RIL population mean. This is an indication that this parameter is

not heritable, which confirms the conclusion of Lin and Binns (1991). However, the midparent

value of the natural logarithm of the mean squared deviation from the regression ln(di²)

(Eberhart and Russell, 1966) appears to be significantly correlated with the RIL mean for ln(σi²)

as well as with the RIL mean for ln(di²). This can be interpreted as an indication that these type

2 and type 3 stability statistics do have a heritable component. As mentioned in the introduction,

σi² is the sum of a linear term based on bi and a non-linear term based on di² (Becker and Léon,

1988). The non-linear term is the more important component of σi². This is confirmed by the

rank correlations between the parameters (rs(ln(σi²),ln(di²))=0.81 and rs(ln(σi²),bi)=0.34 for

parents; rs(ln(σi²),ln(di²))=0.62 and rs(ln(σi²),bi)=−0.04 for RIL means). The difference between

parents and RILs in the relative contributions of the two terms to σi² may be the main cause for

the lack of relationship between its midparent value and the RIL population mean. Apparently

the division of nonadditivity into a linear component bi and a non-linear component di² clarifies

its heritable basis. The relatively large inaccuracy of the di² estimates, especially for the RILs,

may have had a decreasing effect on the correlation between midparent value and RIL mean. The

contradiction of our results with the conclusions of Lin and Binns (1991) based on forage yield

in brome grass, stating that type 2 and 3 stability parameters are not heritable, can probably be

explained on the basis of differences in crop characteristics. The relationship between parent and

offspring can be shown much clearer by using pure lines of a self fertilising crop, like barley,

than by using a cross fertilising crop like brome grass. This is due to the absence of dominance
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effects in the first situation. However, the jackknife standard errors indicate that the repeatability

of the stability statistics σi² and di² is not very high, confirming the conclusion of Sneller et al.

(1997). It is therefore questionable whether prediction of these stability statistics for offspring

in one set of environments on the basis of parents in another set of environments will be useful

in practical plant breeding.

Investigation of the biplot showed that the first principal component pc1 almost coincides

with the linear component of the genotype by environment interaction (rs(pc1,bi)= 0.96). The

average bi value of the RILs appears to be smaller than the average bi value of the parents. In the

biplot we see this in the average position of the RILs which is left of the origin and close to the

environments with poorer yields. The positive correlation between bi and average yield, observed

for parents, can be confirmed by comparing parents and RILs. The average yield as well as the

average bi value of the RILs appear to be smaller than the average yield and average bi value of

the parents. The second dimension of the biplot is indicating the difference between the

environment with a sandy soil and the environments with clay soils. This difference is somewhat

confounded with the effects of lodging, which was much more severe at the clay environments.

The positive correlation between the average coordinates of the parents and the coordinates of

the RIL population mean indicates that there may be possibilities to use environmental

sensitivities of the parents to predict the genotype by environment interaction patterns of the

offspring. This is especially the case for the first dimension, the linear component, for which we

already showed its heritable nature. However, comparison of parent and average offspring

positions in the biplot shows that perspectives for prediction are limited.

We tried to predict the variance of the stability parameters in a RIL population from the

parental sensitivities calculated in the AMMI analysis. Euclidean distance measures (data not

shown) as well as rG×E appear to be poor predictors. We assume that the inaccuracy of the

variance estimate is too high to be able to find good predictors for stability parameter variance.

The between RIL variance V for yield over environments is negatively correlated with

the correlation rG×E between the parental residual vectors from a two-way ANOVA of the parent

by environment table using a model with additive genotype and environment effects. This

confirms results of Habgood (1983) showing that F2-populations from ‘similar’ parents (high

rG×E) show less variation than F2-populations from ‘dissimilar’ parents. In contrast to the study

of Habgood (1977; 1983) in which similarities were based on 40 environments, we only used 6

environments and already obtained a reasonable correlation with progeny variance. We suppose

that the residual vectors represent QTL by environment interaction for yield. Different directions

of the residual vectors represent different QTL with different QTL by environment patterns. The

variance of the effect of a single QTL across environments is assumed to be positively correlated

with the average size of the effect of that QTL over environments. Deviations from this

relationship may cause differences in V-value between RIL populations with the same rG×E-
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values. Also inaccuracies in the estimation of V and in the estimation of the least squares means

that make up the parent by environment table cause a weakening of the correlation.

The correlation rG×E is equal to the cosine of the angle γij between the two parental

sensitivity vectors from an AMMI analysis (Van Eeuwijk, 1995). The effect of dimension

reduction in the AMMI-analysis on the correlation between cos(γij) and progeny variance V is

investigated. We observed the strongest correlation between V and cos(γij) when we retained all

five dimensions after AMMI analysis (data not shown), although the fifth principal component

only explained 5% of the nonadditive variation. Inspection of this component, after

standardisation, showed a rather extreme value of −2.88 for parent 17, indicating that this

dimension is probably genetically meaningful and represents a genotype with a deviating

genotype by environment interaction compared to the other parents. However, it is difficult to

give a general indication of the number of dimensions that needs to be retained to determine γij

for variance prediction.

A comparison of rG×E with other variance predictors, presented in chapter 2, showed no

correlation with AFLP-based genetic distance and with a distance measure based on

morphological characters. The correlation coefficient between rG×E and the well-known

coefficient of coancestry, based on pedigree data, was 0.42 (n=10). In chapter 2 it was suggested

to combine several parental divergence measures to improve the prediction of V. However, none

of the three distance estimates could explain the residuals from a regression analysis of V on

rG×E. On the basis of the correlation between rG×E and V, we conclude that the use of rG×E for the

prediction of progeny variance appears promising and encourages further investigation.
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General discussion

In plant breeding programmes that create novel genetic variation by crossing, the choice of

parent combinations is very important. A breeder would like to select those parent combinations

that will produce the best performing offspring, as defined in chapter 1. To support the decision

on the choice of parent combinations one could make use of knowledge about the genes

underlying traits as well as knowledge about empirically established relationships between

parents and offspring. In the present study cross prediction methods using the latter type of

knowledge, and designated as B and D in chapter 1, are investigated in crosses between

European two-row spring barley lines. We mainly consider the opportunities for prediction of

offspring mean and variance.

The environments that are used to assess parent and cultivar performance represent

barley growing conditions in the central and southwest part of the Netherlands. It can be seen

from average yields and the biplot in chapter 6 that the trials are quite different and do not

produce much redundant information. The locations Lelystad (1994 and 1996) and Swifterbant

(1995) are in the same region, the central clay area of Flevoland, and represent similar growing

conditions. In commercial barley breeding the test locations usually cover a larger region of

Northwest Europe.

The data are analysed per environment using average information REML (Gilmour et al.,

1995). Least squares means for the lines are used as input for an analysis over environments. In

this analysis, crosses, environments and cross by environment interaction are assumed fixed, in

order to retain maximum information for further correlation analyses. In these analyses we

assume that parents and crosses are a more or less random sample from a larger candidate parent

and cross population. The genetic variances are estimated per cross by assuming random line

effects. For the situation of line prediction fixed line effects are used in the model, because in

this situation the interest is in the specific lines. Reciprocal crosses are treated as distinct

crosses. The differences in population mean and variance between reciprocals are assumed to

be an indication for the inaccuracy of these estimates. However, we found some indications for

reciprocal effects in a QTL-analysis of crosses GEI-119 × Gunhild and Gunhild × GEI-119

(Koorevaar, unpublished). This is an indication that the cytoplasm should be used as an

additional factor in a QTL-analysis.

On the basis of the least squares means for the different traits (plant height, flowering

time, lodging, thousand kernel weight, and grain yield), a segregation analysis is performed to

91



Chapter 7

investigate the effect of ‘major genes’. A robust mixture model (McLachlan and Basford, 1988)

is fitted, using the idea for an iterative EM-algorithm described by Jansen (1993). It appeared

possible to postulate 0 to 4 segregating ‘major genes’ per cross. Among them we have found the

expected segregations of the denso gene (Haahr & Von Wettstein, 1976) and the ert-g gene

(Thomas et al., 1984). Segregation ratios appear to be significantly distorted for 25 of the 43

postulated ‘major genes’ (see chapter 3). One of these genes with distorted segregation is the ert-

g gene. However, postulated ‘major genes’ may contain some inaccuracy. Using AFLP marker

information for the RILs of the reciprocal crosses Apex × Prisma and Prisma × Apex (Yin,

unpublished) we have not been able to find a marker associated with a postulated ‘major gene’

in that cross. Several candidate causes can be mentioned for this result. Maybe none of the

available markers was tightly linked to the ‘major gene’. Otherwise, the ‘major gene’ is not

completely correctly postulated which may be due to the inaccuracy of the input data for the

individual lines, the unjust normality assumptions in the mixture model, even when it is robust,

and interaction between different genes, i.e., epistasis, causing segregating ratios deviating from

the expected 1:1 ratio. In the marker analysis of the SSD-lines of both pairs of reciprocal crosses

genome regions with distorted segregation have been found (Yin, Koorevaar, unpublished). This

distorted segregation is also known from DH-line populations and it has been found for different

regions of the genome (Devaux et al., 1996).

Mean prediction

Early-generation based prediction

The prediction of mean offspring performance is investigated in chapters 3 and 6. Most attention

has been given to grain yield as it is genetically complex and very relevant for practical barley

breeding. An early generation (F4) assessment of mean yield per cross appears not useful as a

predictor of mean yield of a resulting recombinant inbred line (RIL) population. This is probably

due to intergenotypic competition between F4-plots, mainly caused by the small plot size and

the large variation in plant height. Usually it is not possible to extend the plot size in an early-

generation trial because of lack of seed. The variation in plant height might be somewhat smaller

in a practical breeding situation, though still present. In combination with the large

environmental difference between small and large plots an early generation assessment will not

allow a reliable prediction of mean offspring yield in barley under Dutch conditions. This is in

agreement with the results in spring wheat presented by Van Ooijen (1989b).
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Midparent-value based prediction

A well-known and simple alternative is also investigated, a prediction on the basis of

midparent values, i.e., the average performance of the parents of the candidate cross. This

prediction has appeared useful, especially for average yield over environments or thousand

kernel weight. Due to genotype by environment interaction, a midparent value for yield based

on one location-by-year combination is not a reliable predictor of average RIL yield over

environments.

Significant variation for the difference between midparent yield and mean offspring yield

has been observed. In most crosses midparent yield appears to be clearly higher than mean off-

spring yield. Thus, in these cases prediction on the basis of midparent value would result in an

overestimation of the expected progeny yield. We have not found a way to predict in which

crosses such an overestimation would occur and in which it would not. As an explanation for the

difference between midparent yield and mean offspring yield we hypothesised distorted segrega-

tion and/or epistasis. Using molecular marker information, we have found some evidence for

both hypotheses, but more investigation is necessary to draw reliable conclusions. In the case

of distorted segregation towards the allele with a negative effect on yield, a reconsideration of

the applied single seed descent method in comparison with other procedures to obtain

homozygosity, e.g. doubled haploid systems, may be necessary. In the case of epistasis, when

offspring segregation results in the loss of favourable parental allele combinations, it would be

interesting to find ways to predict the degree of epistasis in candidate crosses. A QTL-analysis

may be very useful in this aspect. The variation in the difference between midparent value and

progeny mean is not found for thousand kernel weight and midparent values predict RIL means

correctly.

Prediction of mean stability

Although midparent yields from a single environment are poor predictors of mean off-

spring yield averaged over environments, they are good predictors of mean offspring yield in the

considered environment. The stability measures bi (Finlay and Wilkinson, 1963), di² (Eberhart

and Russell, 1966), and σi² (Shukla, 1972), investigated in chapter 6 are based on these parent

and offspring yields and capture the genotype by environment interaction. The significant posit-

ive correlation between midparent values and offspring mean for bi and di² can be explained by

the strong correlation between the parent and offspring yields in a single environment. The

stability variance σi² consists of two terms: one is based on bi, the other is based on di². The lack

of correlation between midparent value and progeny mean for σi² is a result of a difference

between parents and offspring in the relative contribution of the two terms to σi². Although bi and

di² are both heritable, the opportunities for a reliable prediction of offspring mean for bi are
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expected to be much better than for di². This is based on the difference between bi and di² in the

strength of correlation between midparent value and offspring mean and on the difference in

approximate standard errors for the two statistics. The relatively high standard error for di² is an

indication of poor repeatability, i.e., the ranking of genotypes based on di² is strongly influenced

by the investigated sample of environments. It is therefore concluded that from the three

investigated stability statistics only bi is predictable in a practical breeding situation. This is in

agreement with the conclusion of Lin and Binns (1991), although they do not consider

repeatability.

Variance prediction

Early-generation based prediction

The prediction of progeny variance is considered in chapters 3 to 6. A prediction of yield vari-

ance based on early generation trials is presented in chapter 3. Although CVs of the F4-trials are

rather high and the genetic variance estimates are quite inaccurate, for the F4-lines as well as the

RILs, the correlation coefficient between F4 variance and RIL variance is moderately high

(r=0.62). However, this high correlation is mainly a result of differences between the crosses

with respect to the number of segregating ‘major genes’. These segregating ‘major genes’, e.g.

the denso gene (Haahr & Von Wettstein, 1976) and the ert-g gene (Thomas et al., 1984), were

indentified in a segregation analysis and explain a large part of the yield variation within the RIL

populations.

By elimination of ‘major gene’ effects, ‘minor gene’ variance is estimated. In this way

we investigated the prediction of genetic variance for populations where no ‘major genes’ are

segregating. This is a common situation in practical barley breeding. It may be a result of crosses

between parents that both contain the favourable alleles of the ‘major genes’. It can also be the

result of visual selection for the favourable alleles in an early generation. So, the prediction of

the ‘minor gene’ variance is very relevant in practice as it reveals the perspectives for selection

in a normal offspring population. The ‘minor gene’ variance for yield, between F4-lines, shows

a poor correlation with ‘minor gene’ variance for yield, between RILs. It is therefore concluded

that a prediction of progeny variance for grain yield using early generation trials is not useful in

practical barley breeding.

AFLP-based genetic similarity

In chapter 2 a genetic similarity, gs, based on AFLP-markers (Vos et al., 1995) is presented. gsij

between genotype i and j is calculated following Nei and Li (1979), ignoring bands that are

absent in both genotypes i and j. All bands from the investigated primer combinations are used,
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including the monomorphic ones. This saves the ‘existing’ gs estimates from being recalculated

every time marker information for a new genotype is added using the same primer combinations.

Redundant bands within primer combinations are discarded because they are usually derived

from the same genome position (Qi and Lindhout, 1997). The application of AFLPs for barley

cultivar identification is useful because for each of primer combinations we used all investigated

barley genotypes showed distinguishable marker patterns. AFLPs also seem applicable for the

assessment of genetic diversity, as a set of barley genotypes is easily divided into major ecotypes

on the basis of gs estimates. A third application is the prediction of progeny variance, which is

discussed in the next paragraph.

Prediction based on parental relationship measures

The genetic variance within an offspring population can be predicted by parental relationship

measures. This prediction is based on the idea, described in chapter 1, that differences in genetic

variance between crosses are mainly a result of differences in the number of segregating genes.

This number of segregating genes is expected to be negatively correlated with the relatedness

of the parents. However, the usefulness of parental relationship measures for direct variance

prediction depends largely on the agreement between the genomic representation caught by the

parental relationship measure and the genomic distribution of the segregating genes that make

up the genetic variance among the offspring.

Because pedigree information is lacking for part of the parents, only 10 crosses are used

to examine the predictive value of the coefficient of coancestry ƒ (Malécot, 1948). Although

correlations between 1−ƒ and offspring variances are mainly positive, the number of crosses is

too small to draw reliable conclusions. However, pedigree data can naturally be considered as

a good source of information for close relationships.

A distance measure, md, based on parent data for 25 morphological traits (UPOV, 1981)

does not appear to be a good predictor of progeny variance. This may be due to the poor

accuracy of this distance measure, caused by the rather rough ordinal scales that are used to

score most of the traits. Burstin and Charcosset (1997) show that similarities in the phenotypes

of two parents do not have to be a result of genetic relatedness. It is also questionable whether

the positions of the genes underlying the morphological traits are representative for the positions

of genes underlying the agronomic traits for which progeny variance is considered.

The latter problem is more or less solved by the use of the agronomic distance measure,

agd, based on the parental values for the investigated agronomic trait. Poor-to-moderate correla-

tions are found between these trait specific agds and trait variance, except for yield, for which

the correlation is absent. However, the correlations appear to be based on ‘major gene’ effects.

An allele difference between the parents for a ‘major gene’ causes a large trait value difference
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between parents as well as a large variance among the offspring. This effect is clearly observed

for plant height and flowering time as a result of absence or presence of the mutant-allele of the

denso-gene, and for plant height and thousand kernel weight considering the ert-g gene. The

poor and non-significant correlations between agd and progeny variance for yield and between

agd and ‘minor gene’ variances corroborate conclusions of Burstin and Charcosset (1997). They

state that large phenotypic differences usually agree with large genotypic differences. However,

small phenotypic differences are not necessarily based on small genotypic differences.

In the case of yield a clear genotype by environment interaction was observed. This

information is not effectively used in the agd-based prediction of progeny variance for yield,

because the agronomic distance is largely determined by differences in the general yield level

of the parents. Large differences between parents for yield in specific environments have a

relatively small impact. One can focus on these differences by examining the residuals of an

analysis of variance using a model with additive genotype and environment effects. The

correlation coefficient rGxE between the environment-specific responses of two parents, i.e., the

residuals, appears to be a relatively good predictor of yield variance among the offspring. This

confirms earlier results of Habgood (1983), who predicted F2-variance for several yield

components in barley. On the basis of this correlation between rGxE and progeny variance for

yield, we suppose that there is a positive correlation between the overall effect of a yield QTL

and the QTL by environment interaction variance of that QTL. It seems that the majority of yield

QTL are sensitive to changes in environments. The usefulness of the correlation coefficient

between parental environment responses as a predictor for progeny yield variances in a practical

breeding programme may be dependent on ‘major gene’ effects. Because the effect of the ‘major

genes’ on the parental environment-specific responses cannot be estimated in this study, no final

conclusions can be drawn. Further investigation using populations without segregating ‘major

genes’ is probably useful.

The correlation coefficients between AFLP-based genetic distance (1−gs) and progeny

variances are generally positive, but non-significant. Analogously to the lack of correlation

between genetic distance and heterosis observed by Charcosset et al. (1991), the lack of

correlation between marker-based genetic distance and trait variance is most likely a result of

markers that are not linked to QTL for the investigated trait and QTL that are not linked to

markers included in gs estimation. One could thus say that random markers are a poor

representation of the segregating trait genes and their effects.

In an attempt to improve the genomic representation of markers, genetic map information

was used. The resulting map-based genetic distance, mgd, is more or less independent of the

marker density on the map. The correlation of ‘minor gene’ offspring variance with mgd is just

as poor as with 1−gs. The assumption that ‘minor gene’ variance is based on many segregating

genes with small effects, referring to the general quantitative genetic model (Mather and Jinks,
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1982), is probably not completely fulfilled, suggesting that mionor genes and their effects are

not uniformly scattered over the genome in large numbers. Another reason for the poor

predictive value of mgd is the lack of representation of the expressed part of the genome (‘the

genes’) by the markers of the recombination map: the weighting of markers that we applied does

of course not remove gaps in the linkage map.

In order to estimate 1−gs with AFLP-markers representative for those parts of the

genome which are primarily responsible for the genetic variance, marker selection was

performed. Markers are selected on the basis of a strong marker-trait association in the parent

population. The degree of association is based on an F-test for the marker effect in an analysis

of variance of the investigated trait using data from several environments. The genetic distance,

sgd, is based on the selected markers. To obtain a good and reliable predictor sgd for progeny

variance for the examined trait, several marker selection procedures and selection thresholds are

compared. To include part of the possible epistatic effects and to prevent selection of markers

that are loosely linked to ‘major genes’, a marker selection procedure was applied that uses a

model with an extra marker additional to the marker under investigation. Each of the available

markers, except the investigated one, is used as extra marker in a separate model. The P-values

for the investigated marker are averaged over all these ‘augmented’ models. Markers selected

by using this average P-value as a selection criterion produce sgd estimates that give higher

correlations with progeny variance than sgds based on the P-value of a single-marker model or

1−gs based on all available markers. Without knowing the map position of the markers, it is

difficult to get insight in the exact action of the ‘extra marker’ model while selecting markers.

It is also not clear how to establish a generally applicable selection threshold for the average P-

value. Selection intensity may be a better criterion than an absolute selection threshold, although

this intensity may still vary depending on crop and trait. In order to account for the effect of the

QTL that the selected marker is expected to be associated with, the fraction of the trait variance

explained by that marker is used as a weight in the sgd calculation. In general the correlation

coefficient of progeny variance with this weighted sgd is not higher than with an unweighted

sgd. We may conclude that marker-trait associations in a parent population of only 18 parents

are informative enough to select markers that represent genomic regions responsible for the

genetic variance of a trait. The estimation of the relative contribution of these regions is,

however, not reliable enough to be useful in sgd assessment. The effectiveness of the marker

selection procedure may be improved by sampling more parents from the same group of rather

closely related European two-row spring barleys. The observed correlations between sgd and

progeny variance in this study, in situations with and without segregating ‘major genes’, are not

high enough to allow reliable variance prediction in practical plant breeding.

Another approach to combine relatedness information from different sources is a direct

pooling of several distance estimates. In general, the investigated relationship measures based
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on different types of information show no significant correlation with each other, if tested under

the correct assumptions. It is quite conceivable that they represent different parts of the genome.

They can also be quite inaccurate. The independent inaccuracies may be decreased by pooling

the various distance estimates (Cox et al., 1985). The first component from a principal compon-

ents analysis of the distance estimates 1−ƒ, 1−gs, md, and agd generally shows higher

correlation coefficients with progeny variance than the separate distance estimates. The

correlation coefficients between the following pooled distance measure and offspring variance

seem to be even higher. This pooled distance is based on 1−ƒ and 1−gs for closely related parent

combinations and on agd and md for distantly related parent combinations. These higher

correlations show that it may be useful to employ those distance estimates that are expected to

be the most reliable in a certain parent combination. However, the division between distantly

and closely related parent combinations is rather arbitrary. It can be concluded that this type of

combined distance measure needs more investigation. Distance estimates based on marker

selection and correlation between environment-specific responses of genotypes can be included.

An interesting application of parental relationship measures is presented by Bernardo

(1994) and Charcosset et al. (1998) and already discussed in chapter 1. They use genetic

distances to describe the relationship between tested predictor hybrids and candidate hybrids,

i.e., potential parent combinations. Although it has not been investigated in this study, it may be

possible to predict mean and variance of candidate crosses in a similar way. A limited set of

crosses is made and DH or SSD lines are tested to obtain mean and variance estimates for the

predictor crosses. Best linear unbiased predictions (Bernardo, 1994) or factorial regression

estimators (Charcosset et al., 1998) can be used to predict mean and variance of candidate

crosses. Finally, it may also be interesting to test the usefulness of the parental relationship

measures, introduced in the present study, for hybrid prediction, following Bernardo (1994) or

Charcosset et al. (1998).

Cross prediction combining mean and variance

The predicted mean and variance can be combined, following Jinks and Pooni (1976), to obtain

a prediction of the probability that an inbred line descending from the investigated parent

combination performs better than an arbitrary threshold level. In chapter 3 this procedure is

tested for grain yield with a mean prediction based on midparent values and a variance

prediction based on the variance among F4-lines. The correlations between predictor and

observed value are 0.71 for progeny mean and 0.62 for progeny variance. However, the

combination of mean and variance prediction resulted in a very poor prediction of the number

of RILs exceeding the threshold (rs=0.22). This is basically caused by three factors: (1) the lack
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of predictive value of the midparent value, probably due to distorted segregation and epistasis,

(2) the lack of predictive value of the F4 variances, probably due to inaccurate variance

estimates, genotype by environment interaction and interplot competition, (3) the sampling error

of the number of RILs exceeding the threshold value. Also the normality assumptions in the

prediction method may have been inappropriate because of ‘major gene’ effects. However, a

prediction using ‘major gene’ information, i.e., segregation ratios and allele effects, hardly

improves the correlation coefficient between the combined cross prediction and the observed

number of desired SSD-lines. Earlier studies in small cereals (Snape, 1982; Tapsell and Thomas,

1983) mention reasonable results of cross prediction based on predicted mean and variance.

However, all material was grown in the same environment, excluding the effect of genotype by

environment interaction, and the effect of segregating ‘major genes’ was not mentioned. If both

crosses with and without segregating ‘major genes’ were used, results are indeed expected to be

better than in the situation without segregating ‘major genes’.

Line prediction

Within crosses, the yields of the F4-lines are compared to the yields of the RILs descending from

the same F2-plant. A strong correlation between F4-yield and RIL-yield would open perspectives

for early generation selection for yield. However, the observed correlation is poor and slightly

negative. It appears to be based on segregating ‘major genes’. Such genes can easily be selected

by visual observation, which is more cost-effective than a laborious yield assessment. We find

evidence for interplot competition in the small F4 plots based on a positive correlation between

plant height and yield. This correlation between plant height and yield becomes slightly negative

when considering the large plot RIL trials.

Cross prediction in practice

Plant breeding programmes generally include cross prediction, explicitly or implicitly, as

described in chapter 1. The present study demonstrates the usefulness of some of the explicit

cross prediction methods. The usefulness may depend on crop and/or trait, so some additional

examination will be necessary to extend the results from this barley study to other breeding

programmes. However, most of the cross prediction methods that are presented can easily be

applied in other selffertilizing crops. Mean and variance prediction methods can be used to

predict inbred line performance in hybrid cultivar breeding as well as pure line cultivar breeding.

In crops like maize, cabbage and tomato, the performance of the inbred line is judged by its

performance as a hybrid parent. In barley, as well as in crops like wheat and lettuce, the
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Chapter 7

performance of the inbred line is judged by its performance as a cultivar. Moreover, the

prediction of the performance of hybrid cultivars is often divided in prediction of general

combining ability and prediction of heterosis, which can be regarded as parallels of mean and

variance prediction.

A prediction of mean offspring performance on the basis of midparent values is often

applied in practice. It can be a good criterion for the choice of parent combinations, also when

considering more than one trait. The results of the present study support a mean prediction based

on midparent values. However, for grain yield we observed significant deviations from the

predicted means. Whatever the cause, distorted segregation or epistasis, a breeder should be

aware of the possible occurence of these deviations and, if they are large, try to predict their size

for the different parent combinations. The assessment of parent traits is usually cheap compared

to the costs of making the candidate crosses and evaluating offspring performance. It is obvious

that candidate parents should be evaluated in more than one environment for traits that show

genotype by environment interaction.

An explicit prediction of offspring variance is not often performed in practical plant

breeding. However, breeders are anxious to obtain transgressive segregants, i.e., descendants that

perform better than the best parent. First, this can be achieved by using almost equally well

performing genotypes as parent. If the ‘best’ parent is kept the same, this means increasing the

mean performance of the offspring. Second, transgression can be further increased by using

parent combinations that are expected to give a highly variable offspring population. The results

of the present study show that the prediction of variance is difficult, especially when there are

no ‘major genes’ segregating. If ‘major genes’ segregate, it is usually possible to predict the

mean performance of the offspring after visual selection for the desired alleles. The predictors

of offspring variance are mainly parental relationship measures. Considering the results of the

present study, it may be useful to apply some of the parental relationship measures as indicators

for progeny variance. The word ‘indicator’ is used instead of ‘predictor’ to stress the supporting

role of these parental relationship measures in the decision which parent combinations will

proceed to a crossing and selection program. On the basis of the indicators, a breeder could for

instance decide whether to test a large or a small number of descendants from a parent combina-

tion. In a breeding program the requirements for an offspring line to become a cultivar often

include certain minimum levels of performance for several traits at the same time. In this case

it may sometimes be decided to discard a parent combination because of the unaccessibly large

amount of variation that is expected. For such a parent combination the probability that an off-

spring line performs equal to or better than the minimum levels for all traits, is very small, sug-

gesting that a proper offspring evaluation would require a disproportional amount of resources.
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Summary

Summary

In plant breeding programmes genetic variation has to be created in order to be able to select

new cultivars. This variation is often created by crossing genetically divergent parents. The

choice of parent combinations determines the genetic variation on which new cultivars will be

based and which genes will be (re)combined by crossing. To provide a solid basis for the choice

of parent combinations the performance of the offspring can be predicted using knowledge about

the genes underlying important traits and the corresponding parental genotypes. If this

knowledge is absent or incomplete, other prediction methods can be used. These are largely

based on the relationship between parents and offspring, either inferred empirically or derived

from genetic theory.

 The subject of the study is the prediction of offspring mean and variance in an inbred

crop, using the latter type of prediction methods. Several approaches are compared and investig-

ated for their usefulness in practical plant breeding. One of the sources of parent information

used for cross prediction, is a relatively new type of molecular markers: AFLPs. European two-

row spring barley is used as a model crop. To obtain reliable results and draw general conclu-

sions, 20 crosses, each represented by 48 recombinant inbred lines (RILs), are tested with their

parents in large 10-row plots in 7 environments, distributed over two years. Offspring perform-

ance is observed for four agronomic traits: plant height, flowering time, thousand kernel weight

and grain yield.

In chapter 2 a genetic similarity, gs, based on AFLP markers is compared with other

parental relationship measures. The AFLP-based gs shows a poor-to-moderate correlation with

the coefficient of coancestry, ƒ, based on pedigree data. No correlation is found with

morphological distance, md, based on data for 25 morphological traits. Bootstrap sampling from

the parental genotypes is performed to assess the accuracy of the estimated correlation

coefficients between the relationship measures. The AFLP-based genetic similarity appears

useful to assess some of the major ecotypes of barley, and AFLPs, even if they are derived from

only one primer combination, appear useful for cultivar identification.

In chapter 4 the usefulness of the parental relationship measures gs, ƒ, and md for the

prediction of progeny variance is examined. Correlations between 1−ƒ and offspring variance

are mainly positive, but non-significant. They are based on only 10 parent combinations which

have reliable pedigree data. Correlations between md and variance among the RILs are non-

significant. Correlations between 1−gs and progeny variance for the investigated traits are gener-

ally positive, but seldom significant. The poor correlations are expected to be a result of a poor

genomic representation by AFLP markers of the genes affecting the traits. Another parental rela-

tionship measure is introduced: agronomic distance, agd, based on multi-environment data for
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several agronomic traits. The correlation between agd and offspring variance is mainly positive,

and sometimes significant, especially when the traits, used in the calculation of the parental agd

and the RIL variance, are the same. However, this correlation appears to be due to differences

between crosses in the number and effect of ‘major genes’. These genes can be visually selected

in early generations. The ‘minor gene’ variance remaining after visual selection for desired

alleles of ‘major genes’, cannot reliably be predicted by agd. Combined relationship measures

generally have the highest correlations with progeny variance. This is especially true when

different combinations of relationship measures are used for closely and distantly related parent

combinations. 1−gs and 1−ƒ seem more reliable for related parent combinations, while agd and

md may be more reliable for distant parent combinations. However, the correlations between the

combined relationship measures and progeny variance are not high enough to allow a reliable

variance prediction.

In chapter 5 two possible improvements of the genomic representation of investigated

traits by AFLP markers are studied. First, the overrepresentation of genomic regions caused by

clustered markers is eliminated by the use of genetic map information. Markers are weighted for

marker density around their map position in the calculation of the genetic distance mgd. The

correlation of progeny variance with mgd is just as poor as with 1−gs using unweighted markers.

So, perspectives for mgd-based variance prediction are poor. Secondly, a genetic distance sgd

is calculated using only those markers that are selected on the basis of strong marker-trait

associations in the population of parents. The applied selection criterion is the P-value of the F-

test for the investigated marker in an analysis of variance of the parent data. Several marker

selection procedures and selection thresholds are tested. The correlation between sgd and

progeny variance is highest when a range of modified ANOVA models is used for marker

selection. These models each include the investigated marker plus one of the other available

markers in the parental data set. The average P-value for the investigated marker in these models

is used as selection criterion. For the different traits we found an optimum selection threshold

for the average P-value of 0.005. Only for flowering time it appeared useful to include marker

by environment interaction in the model. However, correlations between sgd and progeny vari-

ance are not high enough to be reliably used for variance prediction in practical breeding.

In chapter 3 we investigate the usefulness of an early generation (F4) small-plot trial over

two environments to predict offspring mean and variance for grain yield. The mean yield of the

RILs cannot be predicted by the mean yield of the F4-lines, because of interplot competition

between the small plots and because of genotype by environment interaction. The midparent

value for yield over environments, measured in large plots, appears to be a reasonable predictor

of mean RIL yield over environments (r=0.71). However, for most crosses the midparent value

overestimates the mean offspring yield, probably as a result of distorted segregation and epi-

stasis. F4 variance for yield is moderately correlated with RIL variance (r=0.62). However, this

110



Summary

relationship is based on differences between crosses in the number and effects of segregating

’major genes’. The ‘minor gene’ variance remaining after visual selection for desired alleles of

‘major genes’, shows a poor correlation with F4 variance (r=0.41). The combination of predicted

mean and variance results in a poor prediction of the probability for a line in the RIL population

to exceed a certain threshold level. Selection for yield of F4-lines within a cross is also not useful

in practice, because of interplot competion, a large standard error for individual line estimates

and genotype by environment interaction.

In chapter 6 the prediction of offspring performance in the presence of genotype by

environment interaction is examined. First, midparent values for three stability parameters are

used to predict the average stability of the offspring populations. A reasonable correlation

between midparent value and RIL mean is found for the coefficient of regression of parent or

RIL performance on the environmental index, i.e., the average of all parents in a certain

environment (rs=0.69). A weaker, but significant correlation is found for the second measure,

the mean squared deviation from the regression (rs=0.39). The correlation is virtually absent for

the third measure, the stability variance, because its composition is different for parents and

RILs (rs=0.17). Because repeatability of the mean squared deviation is much poorer than that of

the regression coefficient, it is concluded that only a prediction of the average regression

coefficient of an offspring population is useful in practice. The genotype by environment

interaction of parents and offspring is further assessed with an AMMI-analysis in which the

interaction is described by a parsimonious set of multiplicative parameters. Although there is

a clear correlation between midparent values and offspring means for these parameters,

perspectives for a prediction of the offspring interaction are limited. The interaction pattern of

parents can also be used to assess the relationships between them. As a similarity measure we

use the correlation coefficient rG×E. It is based on the correlation between the parental residual

vectors from an analysis of variance of the multi-environment yield data for the parents. An

ANOVA model with additive genotype and environment effects is used. The calculated rG×E is

negatively correlated with RIL variance for yield over environments (rs=−0.63). We conclude

that this relationship measure may be useful for variance prediction, although further

investigation is necessary.

In conclusion, it is stated that mean offspring prediction on the basis of midparent values

is useful in practical breeding. Prediction of progeny variance is less reliable, especially when

no ‘major genes’ are segregating. It is proposed to use parental relationship measures as ‘indic-

ators’ for progeny variance to stress their supporting role in the choice of parent combinations

that will proceed to a crossing and selection program. Several investigated relationship measures

are useful to make a rough distinction between uniform and variable offspring populations. The

degree of usefulness, although crop and trait dependent, may be approximately indicated by the

strength of the correlation of the relatedness measure with progeny variance found in this study.
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In een plantenveredelingsprogramma moet eerst genetische variatie gecreëerd worden om daarna

nieuwe rassen te kunnen selecteren. Vaak wordt deze variatie tot stand gebracht door het kruisen

van genetisch verschillende ouders. De keuze van de oudercombinaties voor het maken van

kruisingen bepaalt welk deel van de beschikbare genetische variatie benut wordt en welke genen

ge(re)combineerd worden in de nakomelingen. Ter ondersteuning van de keuze van ouder-

combinaties kan men de prestatie van de nakomelingen voorspellen met behulp van kennis over

de genen voor een eigenschap en hun bijbehorende oudergenotypen. Als deze kennis geheel of

gedeeltelijk ontbreekt, kunnen andere voorspellingsmethoden worden gebruikt. Deze methoden

maken voornamelijk gebruik van relaties tussen ouders en nakomelingen, die ofwel empirisch

bepaald zijn ofwel berusten op genetische theorie.

Het onderwerp van dit proefschrift is het gebruik van de laatstgenoemde voorspellings-

methoden als basis voor de keuze van oudercombinaties in een zelfbevruchtend gewas. In dit

gewas worden het gemiddelde en de variantie voor de nakomelingschap van een

oudercombinatie voorspeld. Verschillende methoden zijn met elkaar vergeleken en onderzocht

op hun bruikbaarheid voor voorspelling in de veredelingspraktijk. In verschillende

voorspellingsmethoden wordt de mate van verwantschap van de ouders gebruikt. Deze is onder

andere bepaald met behulp van een relatief nieuw type moleculaire merkers: AFLPs. Europese

tweerijige zomergerst (Hordeum vulgare L.) is gebruikt als modelgewas. Om betrouwbare en

generaliseerbare resultaten te verkrijgen zijn 20 kruisingspopulaties, elk bestaand uit 48

inteeltlijnen (RILs: ‘recombinant inbred lines’), samen met hun ouderlijnen beproefd in tienrijige

veldjes in 7 milieus, verdeeld over twee jaar. De prestaties van de nakomelingen zijn

waargenomen voor vier landbouwkundige eigenschappen: plantlengte, bloeitijdstip,

duizendkorrelgewicht en korrel-opbrengst.

 In hoofdstuk 2 wordt de genetische similariteit gs, gebaseerd op AFLP-merkers,

vergeleken met andere verwantschapsmaten. De gs vertoont een zwakke correlatie met de

‘coefficient of coancestry’ ƒ. Deze maat is gebaseerd op de afstamming van de ouderlijnen. Er

is geen correlatie gevonden met de morfologische afstand md, die berekend is op basis van 25

morfologische eigenschappen. De nauwkeurigheid van de correlatieschattingen is bepaald door

het nemen van ‘bootstrap’ steekproeven uit de populatie van ouderlijnen, waarbij door trekking

met teruglegging een groot aantal ‘bootstrap’ datasets gecreëerd worden. Aan de hand van de

daaruit berekende correlaties kan de onnauwkeurigheid van de correlatieschatting onderzocht

worden. Voor wat betreft de toepassing van de verwantschapsmaat gs, blijkt dat deze geschikt

is om enkele hoofd-ecotypes (bijv. wintergerst/ zomergerst, tweerijig/zesrijig) in gerst te

onderscheiden. Ook blijken AFLPs bruikbaar voor rasidentificatie, zelfs al zijn ze gebaseerd op

slechts één primercombinatie.
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In hoofdstuk 4 wordt de bruikbaarheid van de verwantschapsmaten gs, ƒ en md voor de

voorspelling van de variantie van een nakomelingschap onderzocht. Correlaties tussen 1−ƒ en

de variantie van een RIL-populatie zijn meestal positief, maar niet significant. Slechts 10

oudercombinaties hadden betrouwbare afstammingsgegevens en konden voor deze

diversiteitsmaat worden gebruikt. De correlaties tussen md en de variantie onder de na-

komelingen zijn niet significant. De correlaties tussen 1−gs en de nakomelingschapsvariantie

voor de verschillende eigenschappen zijn in het algemeen positief, maar zelden significant. Het

vermoeden bestaat dat de AFLP-merkers geen goede representatie zijn van de genoomposities

van de genen voor de verschillende eigenschappen. Dit zou de genoemde zwakke correlaties

kunnen verklaren. Vervolgens is er nog een verwantschapsmaat onderzocht: de genetische

afstand agd op basis van landbouwkundige eigenschappen in de verschillende milieus. De

correlatie tussen agd en de variantie van de nakomelingen is meestal positief en soms

significant, in het bijzonder wanneer de planteigenschappen voor de berekening van de agd

tussen de ouders en de RIL-variantie hetzelfde zijn. Echter, deze correlaties berusten

voornamelijk op verschillen tussen kruisingen in het aantal uitsplitsende hoofdgenen (‘major

genes’) en hun effecten. Deze hoofdgenen zijn genen met grote effecten op een eigenschap en

kunnen vaak ‘op ‘t oog’ beselecteerd worden. De polygenvariantie (‘minor gene’variantie) die

overblijft na een selectie op de gewenste allelen van uitsplitsende hoofdgenen, wordt niet

betrouwbaar voorspeld door de agd. Tenslotte blijken gecombineerde verwantschapsmaten de

hoogste correlaties te geven met de variantie van een nakomelingschap. Dit is zeker het geval

wanneer voor verwante en onverwante ouderparen verschillende combinaties gebruikt worden.

1−gs en 1−ƒ lijken meer betrouwbaar bij sterk verwante oudercombinaties, terwijl agd en md

meer betrouwbaar lijken te zijn bij onverwante oudercombinaties. Echter, de correlaties van

gecombineerde verwantschapsmaten met RIL-variantie zijn niet groot genoeg om betrouwbare

variantievoorspellingen mogelijk te maken.

In hoofdstuk 5 worden twee varianten van de op AFLP-merkers gebaseerde genetische

similariteit gs onderzocht. Deze varianten zijn mogelijk betere AFLP-representaties van de

genoomposities van de genen voor de onderzochte eigenschappen. In de eerste variant wordt de

oververtegenwoordiging van genoomposities als gevolg van geclusterde merkers geëlimineerd

op basis van genetische kaartinformatie. Bij de berekening van de genetische afstand mgd

worden de merkers gewogen voor de merkerdichtheid in de buurt van hun kaartpositie. De

correlatie van de variantie van de nakomelingschap met deze mgd is echter net zo zwak als met

1−gs, waarbij de merkers ongewogen zijn. De vooruitzichten voor een variantievoorspelling

gebaseerd op mgd-schattingen zijn slecht. In de tweede variant wordt de genetische afstand sgd

berekend op basis van merkers die geselecteerd zijn vanwege hun sterke associatie met een

eigenschap in de ouderpopulatie. Het toegepaste selectiecriterium is de overschrijdingskans van

de F-toets voor de onderzochte merker in een variantieanalyse van de oudergegevens.
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Verschillende merkerselectieprocedures en selectiedrempels zijn onderzocht. De correlatie

tussen sgd en RIL-variantie is het hoogst als er een reeks van ANOVA-modellen wordt gebruikt

voor de merkerselectie. Deze modellen bevatten elk het effect van de onderzochte merker plus

het effect van een van de andere beschikbare merkers. De gemiddelde overschrijdingskans voor

de onderzochte merker in deze modellen wordt dan gebruikt als selectiecriterium. Voor

verschillende eigenschappen is steeds een optimum selectiedrempel voor de gemiddelde

overschrijdingskans gevonden van 0.005. Alleen bij bloeitijdstip bleek het nuttig om rekening

te houden met merker×milieu-interactie. Echter, de correlaties tussen de sgd en de variantie van

een nakomelingschap zijn niet hoog genoeg voor de verschillende eigenschappen om een

betrouwbare variantievoorspelling te doen in de praktijk.

In hoofdstuk 3 wordt een beproeving van de kruisingen in een vroege inteeltgeneratie

(F4) beschreven. Deze is uitgevoerd in kleine drierijige veldjes op twee locaties. De daaruit

verkregen gegevens worden onderzocht op hun bruikbaarheid voor een voorspelling van

gemiddelde en variantie van de later te verkrijgen RIL-populatie. De gemiddelde korrelopbrengst

van een RIL-populatie kan niet worden voorspeld door de gemiddelde korrelopbrengst van een

F4-populatie. Dit is een gevolg van concurrentie tussen de genotypen in de kleine veldjes en

genotype×milieu-interactie. Voor de gemiddelde korrelopbrengst over milieus op basis van

tienrijige veldjes, blijkt de ‘midparent value’, de gemiddelde prestatie van beide ouders, een

redelijke voorspeller van de gemiddelde prestatie van de RIL-nakomelingschap (r=0.71). Echter,

bij de meeste kruisingen levert een voorspelling op basis van ‘midparent value’ een

overschatting op van de gemiddelde korrelopbrengst van de RILs. Dit is waarschijnlijk het

gevolg van scheve uitsplitsing en epistasie. De variantie van een F4-nakomelingschap laat een

redelijke correlatie zien met de variantie tussen de RILs (r=0.62). Echter, dit verband berust op

verschillen tussen kruisingen in het aantal uitsplitsende hoofdgenen en hun effecten. De

overblijvende polygenvariantie vertoont slechts een zwakke correlatie met de variantie tussen

F4-lijnen (r=0.41). Het combineren van de F4-voorspelling van gemiddelde en variantie leidt tot

een slechte voorspelling van de kans van een lijn in de nakomelingschap om beter te presteren

dan een zekere drempelwaarde. Selectie op korrelopbrengst van F4-lijnen binnen een

kruisingspopulatie blijkt ook niet effectief. Dit is het gevolg van de reeds genoemde competitie

tussen genotypen in kleine veldjes, een grote standaardfout voor de individuele lijnschattingen

en genotype×milieu-interactie.

In hoofdstuk 6 wordt de voorspelling van de prestaties van een nakomelingschap in de

aanwezigheid van genotype×milieu-interactie onderzocht. Als eerste worden de ‘midparent

values’ voor drie stabiliteitsmaten gebruikt om de gemiddelde stabiliteit over milieus van een

nakomelingschap te voorspellen. Er wordt een redelijke correlatie gevonden tussen ‘midparent

value’ en het gemiddelde van de RIL-populatie voor de coëfficiënt van regressie van de

opbrengst van een genotype op de milieu-index (rs=0.69). Deze milieu-index is de gemiddelde
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opbrengst van alle ouders in een bepaald milieu. Een zwakkere, maar wel significante, correlatie

wordt gevonden voor de tweede stabilititeitsmaat, de gemiddelde gekwadrateerde afwijking van

de bovengenoemde regressie (rs=0.39). Voor de derde maat, de stabiliteitsvariantie is de

correlatie tussen ‘midparent value’ en het gemiddelde van de RIL-populatie zwak en niet

significant (rs=0.17). Dit is het gevolg van een verschil tussen ouders en nakomelingen in de

samenstelling van deze maat. We concluderen dat van de drie stabiliteitsmaten alleen de

gemiddelde regressiecoëfficiënt van de nakomelingschap voorspelbaar is in de praktijk. Dit is

mede het gevolg van de slechte herhaalbaarheid van de gemiddelde gekwadrateerde afwijking

van de regressie. Vervolgens is de genotype×milieu-interactie verder onderzocht middels een

AMMI-analyse waarin de interactie wordt beschreven door een beperkt aantal multiplicatieve

parameters. Hoewel er behoorlijke correlaties bestaan tussen ‘midparent values’ en nakomeling-

schapsgemiddelden voor deze parameters, zijn de vooruitzichten voor een voorspelling van de

genotype×milieu-interactie van nakomelingen beperkt. Het interactiepatroon van de ouders kan

echter ook gebruikt worden om hun onderlinge verwantschap vast te stellen. Als

similariteitsmaat gebruiken we de correlatiecoëfficiënt rGXE. Deze wordt berekend als de

correlatie tussen de residu-vectoren van twee ouders, waarbij de residuen afkomstig zijn van een

variantieanalyse van de opbrengstgegevens van de ouders in de verschillende milieus. Het

gebruikte ANOVA-model bevat additieve genotype en milieu effecten. rGXE blijkt negatief

gecorreleerd met de variantie voor gemiddelde opbrengst over milieus in de nakomelingschap

(rs=−0.63). We concluderen dat een variantievoorspelling op basis van deze verwantschapsmaat

misschien praktisch bruikbaar is, maar dat nog verder onderzoek nodig is.

Concluderend wordt gesteld dat het voorspellen van het nakomelingschapsgemiddelde

met behulp van ‘midparent values’ bruikbaar is in de veredelingspraktijk. De voorspelling van

de variantie in een RIL-populatie is moeilijker, zeker wanneer er geen hoofdgenen uitsplitsen.

Daarom stellen wij voor om verwantschapsmaten tussen ouders te gebruiken als ‘indicatoren’

voor nakomelingschapsvariantie. Deze omschrijving benadrukt het ondersteunende karakter van

verwantschapsmaten bij de keuze van oudercombinaties voor een kruisings- en selectie-

programma. Verschillende onderzochte verwantschapsmaten zijn bruikbaar om een voorzichtig

onderscheid te maken tussen uniforme en variabele kruisingsnakomelingschappen. De mate van

bruikbaarheid, ofschoon afhankelijk van gewas en eigenschap, kan tot op zekere hoogte worden

bepaald aan de hand van de sterkte van de in dit proefschrift beschreven correlatie tussen de

verwantschapsmaat en de nakomelingschapsvariantie.
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Eindelijk is het dan af, het proefschrift, of, zoals het onder AIO’s heet, ‘het boekje’. Toen ik 

bijna zes jaar geleden met mijn AIO-project begon, was het al duidelijk dat het wel een jaartje

of vijf zou gaan duren. Die planning is dus bijna gehaald, of ruim, het is maar hoe je het bekijkt. 

In elk geval sprak de inhoud van het project mij erg aan, omdat het een toepassing van

moleculaire merkers  in de plantenveredeling betrof en het werk behoorlijk praktijkgericht was.

Deze merkertechnologie was toen nog erg nieuw en het was niet geheel duidelijk wat je nu wel

en niet kon met merkers in de veredeling. Ik had het geluk dat de AFLP-merkertechnologie net

op tijd binnen bereik kwam, waardoor het aantal te bepalen merkers drastisch

omhooggeschroefd kon worden. Dit is m.i. dan ook geen ‘bottleneck’ geweest in het project. De

‘bottleneck’ was, zoals in veel veredelingsprojecten, de beschikbare capaciteit voor veldproeven.

Desondanks is er nog niet eerder op een dergelijke omvangrijke schaal gekeken naar het verband

tussen genetische afstand tussen ouderlijnen op basis van moleculaire merkers en variatie in een

kruisingsnakomelingschap. Het was dan ook wat teleurstellend dat de resultaten geen duidelijk

verband gaven te zien tussen deze twee parameters. Uit nadere analyse van de gegevens bleek

dat dit niet zozeer te wijten was aan onnauwkeurigheid van de resultaten, maar dat het verband

waarschijnlijk niet zo sterk was als vooraf vermoed werd. Enkele theoretische studies

ondersteunden deze conclusie. Daarmee was een hele bult werk van een hele hoop mensen niet

voor niets. Veredelaars weten nu dat zomaar wat merkergegevens op een hoop gooien weinig

voorspellende waarde heeft en dat een voorselectie van merkers noodzakelijk is. Waarschijnlijk

kunnen lopende en toekomstige QTL-studies daar nog een ondersteunende bijdrage aan leveren.

Verder is uit het onderzoek ook duidelijk geworden dat het gebruik van gegevens over de

landbouwkundige eigenschappen van de ouders minstens net zo belangrijk is om een

voorspelling te doen over hun kruisingsnakomelingschap. Tenslotte kan ik nog toevoegen dat

ikzelf veel geleerd heb van dit hele project. Het geeft een goed gevoel om een planning voor vier

jaar veldje voor veldje realiteit te zien worden, zelfs als er lampendieven op je planten gaan

staan of als hagel je proefveld vervroegd dorst. Het meeste plezier heb ik beleefd aan de

samenwerking met iedereen die aan het project heeft bijgedragen. Alleen gezamenlijk kun je een

dergelijke klus op een succesvolle manier klaren.

Ik zou allereerst de initiatiefnemers van het project willen bedanken: professor Jan

Parlevliet en Ies Bos. Mede dankzij hen is dit onderwerp gekozen en kreeg ik de kans om het

onderzoek te doen. De bijdrage van Lianke Breekland mag hier niet onvermeld blijven, want zij

inventariseerde mogelijke onderzoeksdoelen in samenwerking met een aantal granenkwekers

en viste dit onderwerp eruit. Daarna heeft ze ook gezorgd voor het uitgangsmateriaal en een

globale onderzoeksopzet. Ik kwam dus min of meer in een gespreid bed. Daarna is ze steeds bij

het project betrokken gebleven als lid van de begeleidingscommissie.
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De kweekbedrijven Cebeco Zaden, Vanderhave en Zelder ben ik veel dank verschuldigd.

Zij waren betrokken bij de start van het project en zorgden mede voor interessant

uitgangsmateriaal, waaronder enkele splinternieuwe rassen. Daarnaast heb ik veel profijt gehad

van de deelname van de gerstkwekers in de begeleidingscommissie van dit project. Door hun

commentaar werd de koppeling van de onderzoeksresultaten met de veredelingspraktijk beter

mogelijk. Tenslotte heb ik in 1996 bij bovengenoemde bedrijven uitgebreide veldproeven neer

kunnen leggen. Dit is een onmisbare bijdrage geweest voor de resultaten in dit proefschrift.

De onvolprezen wetenschappelijke begeleiding van mijn project heeft zich behoorlijk

uitgebreid in de loop van de zes jaar. Ies Bos was, zoals gezegd, vanaf het begin erbij. Zijn grote

betrokkenheid, zijn uitgebreide literatuurkennis en zijn gevoel voor heldere formuleringen

leverden een belangrijke bijdrage aan dit proefschrift, getuige zijn co-promotorschap en twee

co-auteurschappen. Piet Stam kwam in 1994 als hoogleraar bij de vakgroep en verraste mij in

ons eerste gesprek met de mededeling dat hij het promotorschap inmiddels had overgenomen

van professor Parlevliet, terwijl ik op het punt stond om hem daarnaar te vragen vanwege zijn

achtergrond in de kwantitatieve genetica en zijn ervaring met het gebruik van moleculaire

merker gegevens. Uit dit proefschrift mag blijken dat ik van zijn kwalititeiten ruimschoots en

dankbaar gebruik heb gemaakt. Daarnaast heeft Piet een goed oog voor structuur in het verhaal:

iets wat je als AIO wel eens een enkele keer uit het oog dreigt te verliezen in het woud van

resultaten. Tenslotte wil ik hier Johan Dourleijn bedanken, die nog weer iets later dan Piet op

de vakgroep arriveerde, maar vanaf het begin van het project al in de begeleidingscommissie

betrokken was. Zijn statistische kennis en zijn kritische blik vormden een goede aanvulling voor

het begeleidingsteam.

Bij de uitvoering van alle proeven heb ik veel assistentie gehad. In de eerste plaats wil

ik Jan Waninge bedanken, die mij al vrij snel in het project kwam helpen. De enorme

hoeveelheid praktijkervaring die Jan meebracht, is bijzonder waardevol geweest voor het hele

project. Ook in het contact met anderen in de kas en op het veld heb ik van Jan veel geleerd. Zijn

vervroegde uittreding betekende dan ook een groot gemis voor het project en voor de vakgroep.

Vervolgens wil ik Herman Masselink bedanken. Elk jaar kwam ik met grotere proeven en altijd

weer wist hij het vele werk dat eraan vast zat goed te organiseren. Gelukkig kon hij daarbij

rekenen op de ervaring van zijn medewerkers, eerst bij de vakgroep en daarna bij Unifarm. Ik

wil dan ook iedereen die zijn steentje heeft bijgedragen aan de uitvoering van de proeven op het

veld en in de kas van harte bedanken. Die dank geldt zeker ook de mensen in Flevoland, zowel

bij de Minderhoudhoeve als bij de Broekemahoeve. De plezierige samenwerking maakte het

doen van proeven op afstand tot een eenvoudig karweitje. Daarnaast wil ik de mensen op

bovengenoemde kweekbedrijven bedanken voor hun bijdrage aan een serie prima proeven.

Naast de proeven in Nederland heb ik mijn materiaal ook bij het Centro Internacional

de Mejoramiento de Maíz y Trigo (CIMMYT) in Mexico op het veld gehad. Ik wil professor
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Parlevliet bedanken voor zijn bemiddeling om deze noodzakelijke vermeerderingsstap tot stand

te brengen. Daarnaast bedank ik Hugo Vivar (Hugo, muchos gracias!), Leon Broers en het

uitvoerders op het CIMMYT voor de prima begeleiding van de proef in Mexico. Daarnaast wil

ik Leon en Ursula van harte bedanken voor hun gastvrijheid, ook namens Ingrid. We hebben het

erg naar onze zin gehad bij jullie. Ook wil ik Maarten van Ginkel bedanken voor zijn
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