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Introduction 

Nutrition and immunity to infectious diseases are inseparable. One reason why infectious 

diseases such as malaria are more common in poor communities than in rich communities is 

that the former are more vulnerable to malnutrition. The diet of poor people in sub-Saharan 

Africa is based on cereal-based foods that have low contents of micronutrients (for example 

provitamin A) or that contain compounds that inhibit the intestinal uptake of trace metals 

such as zinc and iron. The aim of this first chapter is to review the effect of micronutrient 

deficiencies on the immune response to malaria, particularly with regards to their effect on 

cellular immunity. Although the focus of this review is on zinc, we will also consider other 

micronutrients because zinc deficiency in developing countries is commonly found in asso-

ciation with deficiencies in other micronutrients. 
 

1. Zinc nutrition 

1.1 Biological functions of zinc: Zinc is important for human well being because of its 

manifold biological functions in the body. It is a cofactor in many metalloenzymatic meta-

bolic pathways and  is required for the structure and activity of nearly 200-300 metalloen-

zymes, not only in humans but also in other  organisms [1, 2]. It has an antioxidant and cell 

membrane stabilisation activity that keeps the cells intact and functioning normally. Zinc is 

also known to play a critical role in body’s defence against infectious agents: it affects mul-

tiple aspects of the immune system, from the skin barrier to gene regulation in the lympho-

cytes [3]. As a result, zinc-deficient individuals are relatively vulnerable to a variety of 

pathogens. Zinc is fundamental in normal development and function of cells mediating both 

innate and acquired (specific) immunity. Zinc-deficient persons have disturbed functions of 

neutrophils and natural killer cells (non-specific immunity), and disturbed outgrowth and 

functions of cells of the adaptive immune response, affecting T lymphocyte numbers and 

activation, Th1 cytokine production, and B lymphocytes and antibody production, particu-

larly immunoglobulin G [4]. Zinc plays an important role in maintaining the proper balance 

between cell-mediated and humoral immunity by regulating patterns of cytokine secretion. 

These putative effects of zinc, together with its effects on the basic cellular functions such as 

DNA replication, RNA transcription, cell division, and cell activation makes its deficiency 

to be an issue of concern. Zinc is central in the formation of ‘zinc fingers’, i.e. loops within 

DNA-binding proteins that are required for recognizing and binding of these proteins to 

specific DNA regulatory sequences. Because many of these proteins act as transcription 

factors, zinc is required for DNA transcription. This role is particularly important in macro-

phages and other cells of the immune system that must divide rapidly in response to anti-

genic stimulation [4-6]. Zinc and iron are particularly required for the synthesis of deoxyri-
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bonucleotide precursors by ribonucleotide reductase and for the various nucleotidyl trans-

ferases. Apoptosis and thymic atrophy are also potentiated by zinc deficiency predisposing 

to probable impaired T-cell development and decreased T-cell counts with consequent CD4+ 

T-cell depletion.  
 

Micronutrients other than zinc are also critical for normal immune functioning [7].  Both the 

innate [8] and adaptive immune responses (cytokines and antibodies) are highly affected by 

deficiencies of micronutrients especially vitamin A, magnesium,  copper, iron and vitamin E 

[7]. Erickson et al [8] have stressed that these deficiencies particularly affect the functioning 

of macrophages, NK-cells and the polymorphonuclear cells, so that innate immune response 

is impaired. Because these innate response also determine the nature of the adaptive immune 

response, and particularly the balance between pro-inflammatory and regulatory immune 

responses, such deficiencies may be critical for the outcome of malarial infection. Thus an 

increased intake of such micronutrients may complement other interventions to control in-

fectious diseases. Table 1 shows the nutritional markers used in this thesis.  

 Table 1: Selected nutritional markers used in this thesis. 

Status Serum/plasma marker
 1

 Reference 

Zinc 
deficiency 

Zinc concentration <9.9 mmol/L (children aged <10 
years) 

Hotz and Brown 
[9] 

Low zinc 
status 

Zinc concentration <10.7 µmol/L Pilch and Senti 
[10] 

Iron 
deficiency 

Ferritin concentration <12 µg/L WHO [11] 

Iron 
deficiency 
anaemia 

Iron deficiency accompanied by anaemia (for children 
<5 y: haemoglobin concentration <110 g/L) 

WHO [11] 

Low 
magnesium 
status 

Magnesium concentration < 763 µmol/L, <777 µmol/L, 
<741 µmol/L, <740 µmol/L and <745 µmol/L for 
children aged 6-12 mo, 13-24 mo 25-36 mo, 37-48 mo 
and  >48 mo, respectively 

Adapted from 
Lowenstein and 
Stanton [12] 

Vitamin A 
deficiency 

Retinol concentration <0.70 µmol/L Sommer and 
Davidson [13] 

1 In the absence of inflammation 
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1.2  Zinc absorption and metabolism: Dietary zinc is taken up from the intestinal lumen by 

mucosal cells, where it is either integrated into intracellular zinc pools or rapidly transported 

across the basolateral membrane to the plasma compartment. In the plasma, the newly ab-

sorbed zinc is transported in portal systemic transport by albumin as the major carrier pro-

tein in a form of albumin-zinc complex [14].  
 

1.3 Causes and health effects of zinc deficiency: Plant foods contain phytic acid and phe-

nolic compounds, including some tannins from legumes, that interfere with the absorption of 

nutritional zinc. These compounds are collectively known as antinutrients. In addition, die-

tary calcium can decrease the absorption of zinc and iron [15]. Plant foods grown in zinc-

deficient soils are low in zinc content thus leading to dietary zinc deficiency. The varying 

grain zinc according to their source and not solely due to their genotype, indicates that the 

seed zinc content is controlled additively by both genotype and the environment of the 

mother plant, hence its availability from the food source when consumed by man. Balanced 

diets from variety of source that contain different nutrients at different levels will help to 

reduce risks of zinc deficiency. 
 

Overt zinc deficiency occurs in acrodermatitis enteropathica, a rare, autosomal recessive 

disorder, usually occurring in the first year of life [2, 16, 17] that results in severe zinc defi-

ciency as a consequence of impaired intestinal zinc absorption. This is associated with der-

matitis, poor wound healing, retarded growth and sexual development, and reduced taste 

acuity, abdominal pain, diarrhea, skin rash, and loss of appetite [18]. Recent studies have 

also identified a genetic mutation in women with low milk zinc concentration that results in 

transient neonatal zinc deficiency [19]. More frequently, however, individuals with zinc 

deficiency have no signs or symptoms even if it is associated with an impaired immune 

function and an increased burden of infectious diseases. Thus zinc supplementation has been 

shown to prevent diarrhoea and pneumonia in young children, whilst zinc supplementation 

during diarrhoea reduces the severity and duration of such illnesses [20, 21]. Its effect on 

child mortality remains inconclusive, although subgroup analyses suggest that it reduces 

mortality in children aged ≥12 months, with evidence of efficaciousness in infants aged <12 

months [20]. In children in Papua New Guinea and The Gambia, zinc supplementation also 

led to a reduced incidence of malaria [22, 23], although there was no evidence for such an 

effect in children in Burkina Faso [24]. Zinc supplementation can reduce infection with My-

cobacterium tuberculosis [25], and has been shown to greatly reduce the incidence of skin 

and wound infections in diverse populations including infants [26] and pregnant women 
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[27] . 
 

Studies on the effect of maternal zinc supplementation on infant birth weight and on infant 

and maternal health outcomes have ended with inconclusive results. In infants, however, an 

increased zinc intake may lead to improved mental and psychomotor development [28, 29]. 

Other consequences of zinc deficiency include impaired growth and loss of appetite. 

 

More trials need to be carried out to assess possible benefits and adverse effects in HIV. In 

the few studies that have been conducted so far in HIV-infected individuals, zinc intake was 

associated with decreased burden of opportunistic infections [30], an improved weight gain 

and increased CD4 cell counts [31]; however, these studies must be interpreted cautiously 

[30, 32]. Yeudall et al. [33] have studied and shown that multiple micronutrients, when in-

cluded in supplementation regimen, reduce incidences of common conditions like fever, 

diarrhoea, upper and lower respiratory infections. This suggests that precisely selected mul-

tiple nutrients rather than single micronutrient may be the preferred approach in African 

settings. 
 

1.4 Risk groups for zinc deficiency: In developing countries, the groups at highest risk for 

zinc deficiency are young children, and pregnant and lactating women. These groups also 

suffer the greatest burden of infectious diseases such as malaria. Preschool children are par-

ticularly vulnerable because of the large amounts of zinc required for rapid growth during 

this age.  Transient neonatal zinc deficiency in breast-fed infants, which cannot be corrected 

through maternal zinc supplementation, has been reported as a result of low zinc concentra-

tions in breastmilk [34-38]. However, breast milk normally has adequate zinc content to 

meet the requirement for infants up to 4–6 months of age [39]. Thus zinc deficiency usually 

starts at the age when children start receiving complementary foods, which are usually based 

on grains that contain antinutrients (see above). 

 

1.5 Assessment of zinc status: Although several methods are used to determine zinc status 

of individuals and populations, none is entirely satisfactory. A combination of zinc defi-

ciency characteristics (e.g. growth retardation, delayed sexual and skeletal maturity, skin 

lesions such as orificial and acrodermatitis, diarrhoea, alopecia, and behavioural changes) 

and severe hypozincemia makes the detection of severe human zinc deficiency relatively 

easy [40]. In severely zinc-deficient individuals, concentrations of zinc in the plasma are 

usually < 0.4 mg/L and often < 0.2 mg/L 
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In individuals with moderate zinc-deficiency, however, there are usually no manifestations; 

even if features exist, they are usually non-specific. Plasma zinc concentration is the most 

frequently used and best available method to determine zinc status, but it can be affected by 

a variety of other factors. Cut-off values defining deficiency are dependent on age, sex, 

pregnancy status and whether plasma samples were collected in a fasted state, either in the 

morning or in the afternoon/evening [9]. Infection-induced inflammation can reduce plasma 

zinc concentration; however, mean plasma zinc concentration may be a useful indicator of 

population zinc status for children in low-income nations despite the high prevalence of 

common childhood infections [41]. 

 

The zinc status of populations can also be assessed by determining the dietary intake of zinc 

and phytate. This can serve to estimate the dietary intake of zinc that is available for absorp-

tion, which can be compared with required amounts to assess the adequacy of intakes [9]. 
 

Zinc deficiency at population level can also be shown by determining the response to zinc 

interventions of growth or functional outcomes in randomised controlled trials [42]. Indi-

viduals with adequate zinc status down-regulate their absorption of zinc from food and may 

not respond to zinc-enriched staple foods to the extent shown by zinc-deficient individuals 

[43]. Serum extracellular superoxide dismutase can possibly be used as a biochemical indi-

Figure 1: Distribution of malaria worldwide; highlighted areas indicates regions worst 

affected by the disease. Source: WHO 
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cator of marginal zinc deficiency in humans [44] although further testing and validation is 

still needed to determine  the reliability of this indicator. Zinc clearance tests have also been 

used as diagnostic tests for marginal zinc deficiency in children of small stature [45]. 
 

1.6 Public health interventions to increase zinc intake: Despite the evidence of the health 

benefits of zinc supplementation, it has been difficult to translate these findings into health 

policies for African children. When planning the studies described in this thesis, the trials 

that had been conducted had been done almost exclusively in Asia, Latin America, the Pa-

cific, and developed countries. By contrast, the response to supplementation may be differ-

ent in Africa, where children’s health is challenged by different environmental factors. Ma-

laria is the prime example, with more than 90% of global deaths occurring in African chil-

dren, and up to 90% of African toddlers in many areas being infected but symptom-free. 

Few studies have been conducted on the protective effect of zinc against malaria, and their 

results are still contradictory and conflicting (see above). 
 

A group of leading economists recently recommended zinc supplementation as one of the 

most cost-effective interventions for reducing malnutrition and improving human welfare 

[46]. Nonetheless, adequate delivery of zinc supplements to populations in need is probably 

difficult to achieve. Preventive supplementation requires frequent contact with target groups 

that can possibly be achieved through integration with twice-yearly vitamin A supplementa-

tion programmes, immunization and growth monitoring programmes, or through social mar-

keting. Single-nutrient interventions are costly and in the long term possibly unsustainable 

[33]; this may be overcome at least in part by supplementation strategies that simultaneously 

address multiple micronutrient deficiencies. Another difficulties is the lack of suitable sup-

plementation vehicles for infants and toddlers, who have problems of swallowing tablets or 

capsules. There are several efforts currently being undertaken to develop and test low-cost 

supplementation vehicles in the form of chewable tablet-cookies and a nutrient-dense spread 

suitable for use in tropical environments [47-50]. 
 

Zinc supplements are now also recommended by the World Health Organization as part of a 

simple treatment for diarrhoea, in conjunction with oral dehydration salts. This use of zinc is 

safe and efficacious and may decrease the unnecessary use of antibiotics for non-dysentery 

diarrhoea [18, 51] and pneumonia. Short-term supplementation has the added benefit of 

improving health and overall immune status some weeks following treatment, and this strat-

egy may also boost the body’s immunological defence against other infections such as ma-
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laria and may be an effective way of decreasing childhood morbidity and mortality [18, 52]. 

Acceptance and affordability of the planned programs to the target populations is important; 

therefore the intervention practices should not differ much from the socio-cultural ways the 

target population is accustomed in terms of food practices. 

 

Several other innovative and complementary approaches are currently being developed. One 

is to breed and disseminate new staple crop varieties with high concentrations of micronutri-

ents. This can be achieved through selection and crossing of promising lines as part of a 

classical breeding programme; however, plants may also be genetically engineered to in-

crease the concentration of bioavailable zinc [53]. The approach has the potential to create 

an entirely new, safe, low-cost and self-sustaining approach to deliver zinc to poor farmer 

families [54]. Although the development and dissemination of such ‘biofortified’ crops re-

quires large initial research investments and sustained support by national and international 

policy makers, these interventions have low long-term recurrent costs. Because of technical 

constraints, and contrary to other methods of delivery such as supplementation or fortifica-

tion, the biofortification approach must focus on single nutrients or at most a few nutrients. 

This imposes a need to identify micronutrients that are critical to health and probably con-

sider area or regional requirements. Efforts to develop typically ‘African’ crops rich in zinc 

have so far been limited, and require increased support that is probably best obtained when 

showing compelling evidence of the health benefits of increasing zinc intake. 

 

Another option for increasing daily zinc intake is the mass fortification of centrally proc-

essed staple foods [55]. Zinc fortification has the potential to increase zinc intake and total 

zinc absorption, but there are no data to demonstrate the efficacy and effectiveness of this 

approach in improving the zinc status of young children [56]. Both the selection of appropri-

ate food vehicles and cost considerations should be taken into account in the formulation of 

fortification programmes [57]. 

 

Lastly, zinc nutrition can be improved by changing food preparation and processing meth-

ods to increase zinc bioavailability [52]. For example, soaking and fermentation can reduce 

the content of [31, 58] and can increase the bioavailability of zinc 
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2.  Malaria 

2.1  Burden of disease: Malaria has been and still causes much morbidity and mortality in 

endemic areas. The disease occurs in hundred of countries and represents between 300 and 

500 million clinical cases per year. More than 40% of the world's population is at risk of 

malaria infection with 90% of cases and more than 95% of global deaths occurring in tropi-

cal countries, particularly sub-Saharan Africa [59]. Up to 90% of African toddlers in many 

areas are malaria-infected but symptom-free. In malaria-endemic regions of sub-Saharan 

Africa, the groups at greatest risk of malaria-associated mortality are children younger than 

five-years of age (one child dying of malaria in every 30 seconds) and pregnant women. 

However, in African children it has been found that the incidence of severe malaria declines 

markedly after the age of four years [60]. Malaria epidemics have devastated large popula-

tions and, together with HIV/AIDS and tuberculosis, is one of major public health chal-

lenges and a serious barrier to economic progress in many developing countries. 

 

2.3 Pathogenesis and manifestations: Illness in malaria is caused by the erythrocytic stage 

of the parasite. There are no symptoms associated with sporozoites, the developing liver 

stage of the parasite, the release of merozoites from the liver, or gametocytes.  The first 

symptoms and signs of malaria are associated with the rupture of erythrocytes when erythro-

cytic stage schizonts mature. This release of parasite materials like, glycosylphosphatidy-

linositol (GPI) moieties [63], malaria pigment [64] and plasmodium-derived nitric oxide 

synthase (NOS)-inducing soluble factors [65] apparently trigger a host immune response. 

The simultaneous rupture of the infected erythrocytes and the concomitant release of anti-

gens and waste products accounts for the intermittent fever paroxysms associated with ma-

laria. These by-products stimulate human mononuclear cells to release pro-inflammatory 

cytokines like tumour necrosis factor-alpha (TNF-α) and other pyrogenic cytokines [66-70]. 

Pro-inflammatory cytokines such as TNF-α suppress haematopoiesis, thus contributing to 

anaemia. The spleen and liver enlarge over time especially in febrile children with malaria 

[60].  

 

As stated earlier, cytokines, reactive oxygen intermediates, and other cellular products re-

leased during the immune response play a prominent role in pathogenesis, and are consid-

ered responsible for the fever, chills, sweats, weakness, and other systemic symptoms asso-

ciated with malaria. P. falciparum has additional unique characteristics that help to explain 

its distinct potential to cause severe or fatal disease. The parasite is very fast and prolific in 

replication and in higher numbers of parasites than other Plasmodium species. As P. falcipa-
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Box 1. Human malaria parasites  

Four species of protozoan parasites within the genus Plasmodium are known to cause malaria. 

These include P. falciparum, P. vivax, P. ovale and P. malariae. In Africa, the vast majority, 

widespread and most deadly malaria cases are due to P. falciparum. 

The malaria parasite, like other members of apicomplexa has a complex life cycle, pigeonholed 

by three distinct processes: sporogony, merogony and gametogony. The life cycle of P. falcipa-

rum involves an insect vector (mosquito) and a vertebrate host (human). The stage infective for 

humans is the uni-nucleate, lancet-shaped sporozoite (approximately 1×7 µm). Sporozoites are 

produced by sexual reproduction in the midgut of vector anopheline mosquitoes and migrate to 

the salivary gland. When an infected Anopheles mosquito bites a human, she may inject sporo-

zoites along with saliva into small blood vessels (Figure 2). Sporozoites are thought to enter 

liver parenchymal cells within 30–60 minutes of inoculation. In the liver cell, the parasite de-

velops into a spherical, multinucleate liver-stage schizont which contains 2,000 to 40,000 uni-

nucleate merozoites. This process of enormous amplification is called exo-erythrocytic 

schizogony. This exo-erythrocytic or liver phase of the disease usually takes between 5 and 21 

days, depending on the species of Plasmodium. However, in P. vivax and P. ovale infections, 

maturation of liver-stage schizonts may be delayed for as long as 1 to 2 years. These quiescent 

liver-phase parasites are called hypnozoites. Because P. vivax and P. ovale are relatively rare in 

Africa, these species will not be considered in the remainder of this review. 

Mature schizonts eventually rupture, releasing thousands of merozoites into the bloodstream. 

Each merozoite can infect a red blood cell by entering through receptor-mediated endocytosis 

[61]. Inside erythrocytes a series of asexual events (3–5 cycles) takes place involving erythro-

cytic schizogony with differentiation of late schizonts to individual merozoites. The merozoite 

develops to form either an erythrocytic stage (blood-stage) schizont (erythrocytic schizogony) 

or a spherical or banana-shaped, uninucleate gametocyte.  

The mature erythrocytic stage schizont contains 8 to 36 merozoites, each 5 to 10 µm long, 

which are released into the blood when the schizont ruptures. These merozoites proceed to 

infect another generation of erythrocytes. 

The time required for erythrocytic schizogony which determines the interval between the re-

lease of successive generations of merozoites varies with the species of plasmodium and is 

responsible for the classic periodicity of fever in malaria. The gametocyte, which is the sexual 

stage of the Plasmodium, is infectious for mosquitoes that ingest it while feeding on blood 

meal. Within the mosquito, the parasites develop over 2 to 3 weeks to mature ookinetes that 

traverse the gut epithelium to the salivary glands where they form an oocyst which then rup-

tures to release sporozoites that can infect humans. Only a fraction of the released sporozoites 

end up in the salivary glands [62], the rest can be introduced into uninfected individual during 

mosquito bite to initiate a new cycle. 
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rum parasites mature within red blood cells, they induce the formation of sticky knob-like 

protrusions on the surface of infected erythrocytes [71]. These knobs, bind to receptors on 

endothelial cells in capillaries and venules in multiple vital organs in the body [72] leading 

to cytoadherence and sequester formation. It is important to note that erythrocytes parasi-

tized by P. vivax do not readily bind to endothelium. Thus, despite very high plasma con-

centrations of TNF-a that may occur in vivax malaria, this infection does not lead to cerebral 

disease [73].  
 

The cytoadherence and sequestration of red cells within small vessels leads to microvascular 

pathology and obstruction to blood flow. Infected red cells also stick to uninfected red cells 

and form rosettes that clog the microcirculation [74]. Ultimately, secondary organ dysfunc-

tion and severe complications in the host can occur. In the brain this causes cerebral malaria; 

in the kidneys it may cause acute tubular necrosis and renal failure; and in the intestines it 

can cause ischemia and ulceration, leading to gastrointestinal bleeding and to bacteraemia 

secondary to the entry of intestinal bacteria into the systemic circulation. 
 

The severity of malaria associated anaemia tends to be related to the degree of parasitaemia. 

The pathogenesis of this anaemia appears to be multifactorial. Haemolysis or phagocytosis 

of parasitized erythrocytes and ineffective erythropoiesis are the most important factors, and 

phagocytosis of uninfected erythrocytes and an autoimmune haemolytic anaemia have also 

been implicated [72]. Consequently, children die from malaria essentially because of cere-

bral malaria, respiratory distress and anaemia/acidosis as prevailing syndromes [60]. Riley 

[73] has pointed out that cerebral malaria is predominantly an immune-mediated disease, 

and that immunological priming occurs during first infection, leading to immunopathology 

on re-infection. Massive intravascular haemolysis leading to haemoglobinuria and renal 

failure, frequently described in the past as blackwater fever, is also not uncommon. How-

ever, care should be taken not to confuse with haemolysis that may also occur after the use 

of certain antimalarial drugs (especially primaquine) in patients with glucose-6-phosphate 

dehydrogenase deficiency [75].  
 

2.4 Diagnosis and treatment: In African conditions, diagnosis of malaria in both children 

and adults is usually based on signs and symptoms common for the disease. Confirmatory 

tests for definitive diagnosis rely on observation of presence of parasites by microscopy or 

parasite antigens by rapid diagnostic tests (RDTs) but also by genotyping of DNA by poly-

merase chain reaction (PCR) [76-78]. However, in most African communities where malaria 

is endemic, physician evaluation, microscopy and currently RDTs are more available and 
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reliable tools. PCR is especially effective at detecting submicroscopic levels of parasitaemia 

[79, 80] but its application is usually restricted to large scale surveys rather than being used 

in clinical practice [81] because of the high costs of reagents, trained personnel and the labo-

ratory facilities required. 

 

Chemoprophylaxis is highly effective in reducing mortality and morbidity from malaria in 

young children and pregnant women living in endemic areas [82]  although it is difficult to 

sustain, may lead to rebounds when stopped, and, in some studies, has impaired the develop-

ment of naturally acquired immunity. For decades, chloroquine and other quinoline deriva-

tives have been the drugs of choice for treatment of falciparum malaria in endemic coun-

tries. Because of the spread and intensification of drug resistance,  the mainland of Tanzania 

was forced to change its policy in 2001 from chloroquine to sulphadoxine-pyrimethamine 

(SP) as the first-line drug for treatment of uncomplicated malaria in children, and subse-

quently, in 2006, to artemether/lumefantrine (AL).  Artemisinin-based combination thera-

pies (ACTs) such as AL are now recommended by the World Health Organization (WHO) 

in all countries experiencing resistance to conventional monotherapies (chloroquine, amo-

diaquine or sulfadoxine–pyrimethamine) [83]. The recent finding that intrarectal artesunate 

administration is efficacious and safe as an initial treatment for uncomplicated malaria in 

children [84] is helpful in individuals who cannot swallow drugs.  

 

2.5 Public health interventions to control malaria: Annual economic growth in countries 

with high malaria transmission has historically been lower than in countries without malaria. 

The disease may account for as much as 40% of public health expenditure, 30% to 50% of 

inpatient admissions, and up to 50% of outpatient visits [59] signifying that public health 

interventions against the disease are highly needed. Intervention programs currently imple-

mented target the vector mosquito (insecticides), the parasite (vaccines) and cure of patient 

(antimalarials) to ensure effective recovery from the disease. The Malaria Vaccine Technol-

ogy Roadmap [85] anticipates the development and licensing of a first-generation malaria 

vaccine that has a protective efficacy of more than 50% against severe disease and death by 

2015; as foreseen, a malaria vaccine with protective efficacy of more than 80% against clini-

cal disease and lasting longer than 4 years will have been developed and licensed by 2025. 

Whilst this strategy may serve to contribute to malaria control within 10-20 years, insecti-

cide-treated nets, intermittent preventive treatment in pregnancy and antimalarial drug com-

bination therapy remain the key interventions for prevention and treatment of malaria. Inter-

mittent preventive treatment, in which full therapeutic doses of a drug are given at defined 
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intervals [82], has the potential to provide some of the benefits of sustained chemoprophy-

laxis in pregnant women (IPTp) and young children (IPTi) and is a promising new approach 

to malaria control. Schellenberg et al. [86] have demonstrated a reduction of episodes of 

clinical malaria by 60% and episodes of severe anaemia by 50% in Tanzanian infants treated 

with SP at 2, 3, and 9 months of age, at the time of routine immunization. However, because 

SP resistance has already become widespread in Tanzania, it is necessary to consider the 

newly WHO recommended ACTs for effective malaria control in both infants and pregnant 

women. Supplementation of micronutrients, if shown to protect against disease, will best 

work if integrated with other interventions.  

 

3.  Immune mechanisms in malaria 

3.1 Overview of the role of immunity to malaria: The evolution of the immune system con-

sists of factors that provide innate and acquired immunity, and has evolved to become more 

specific, complex, efficient, and regulated. One of the principal functions of the human im-

mune system is to defend against infecting and other foreign agents by distinguishing self 

from non-self (foreign antigens) and to organize other protective responses from leukocytes. 

A dysregulated immune system can react to self antigens resulting into autoimmune diseases 

or failure to defend against infections. Much of the pathology associated with parasitic in-

fections such as  malaria, is immune-mediated. The immune mediators (e.g. cytokines) of 

protection can also cause disease, and the outcome of infection hinges on a delicate balance 

between appropriate and inappropriate induction of these mediators [70, 87].  

 

Helper CD4+ T-lymphocytes (Th-cells) play a critical role in the immune response to many 

human diseases, including malaria, working in close interaction with cells of innate immu-

nity. Such cells include macrophages and dendritic cells.  The outer membranes of dendritic 

cells (DC) contain innate receptors, the Toll-like receptors (TLRs), which sense microbes 

and microbial products and trigger dendritic cell maturation and cytokine production, thus 

effectively bridging the innate and adaptive immunity against the pathogen [88]. On the 

DCs, are also CD36 host receptors that recognize P. falciparum-infected erythrocytes bind-

ing and modulate their function. The CD36 mediates non-opsonic phagocytosis of infected 

erythrocytes [87, 89, 90]. Binding of pathogen associated molecular patterns (PAMPs) to 

relevant pathogen recognition receptors (PRR, like the TLRs or CD36) will result in activa-

tion of the NF-kB transcription factor complex and the subsequent production of pro-

inflammatory cytokines such as interleukin (IL)-12. Besides activation of the innate arm of 

the immune system this release of IL-12 will also polarise the antigen-specifically-activated 
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Figure 2. Plasmodium falciparum life cycle in the vertebrate host (man) and invertebrate 

host (the mosquito). Source: Malaguarnera and Musumeci [61]                                                                                                  

Th-cell repertoire into preferential Th1 development. Such overactive and polarised Th1 rep-

ertoire evokes IL-12 and IFN-γ-dependent protection against the blood-stage infection with 

the malaria parasite, Plasmodium falciparum. Regulatory T-cells, on the other hand, mediate 

active suppression of various immune responses [91]. These T-cells comprise classical Th2 

cells capable of inhibiting Th1 responses, but also alternative T-cell populations. One of the 

primary mechanisms of tolerance induction is via secretion of immunosuppressive cytokines 
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Malaguarnera and Musumeci [61]                                                                                                            

such as IL-10, IL-4 and transforming growth factor-beta (TGF-β). Regulatory T-cells have 

been isolated from in vitro cultures, which appeared to produce low levels of IL-2, no IL-4, 

but high levels of IL-10 and TGF-β, demonstrating the importance of cytokines in regulating 

and dampening the immune response. Although cytokine functions are complex involving 

protective and pathological consequences, the analysis of a set of these soluble proteins will 

allow direct and complete measurement of regulatory circuits of the human immune system 

[92, 93]. 
 

3.2 Innate immunity to malaria: Immunity plays a critical role in the pathogenesis of ma-

laria, as shown by two key observations [94]. First, in highly endemic, rural areas, it is com-

monly found that up to 90% of children are infected yet symptom-free. Secondly, hospital-

based studies in such areas show that severe, acutely life-threatening malaria and malaria-

associated deaths occur mostly at a very young age, when maternal antibodies obtained dur-

ing pregnancy have waned out, and chronic or repeated exposure to infections has not yet 

resulted in protective levels of acquired immunity. Thus in highly endemic areas, severe 

malaria is an increasingly rare phenomenon after the age of 5 – 10 years, whilst the preva-

lence of parasitaemia steadily declines after the age of 2 years. These observations and oth-

ers indicate that immunity against severe disease and subsequent death develops much faster 

than against pyrogens and parasites themselves. 
 

With the plasmodium parasite developing within the host hepatocyte being the major target 

of protective immunity at the exo-erythrocytic stage [95], the body’s immunologic defence 

mechanism develops against several liver-stage specific antigens, which along with those 

brought in with the invading sporozoite, are rapidly processed by the host cell and presented 

on the surface of infected hepatocytes in combination with MHC class I [96, 97]. Macro-

phages, including Kupffer cells, are antigen-presenting cells [98] and antigen presentation 

leads to recognition by cytotoxic T lymphocytes (CTLs) and killing of the infected cell or 

stimulation of NK and CD4+ T cells to produce IFN-γ, which can trigger a cascade of im-

mune reactions, eventually leading to death of intracellular parasite [96, 97]. Alternatively, 

the CTLs may directly be cytolytic to malaria-infected hepatocytes by releasing perforin and 

granzyme or by binding to apoptosis-inducing receptors on the infected cells [61, 95].  

Schwenk et al [99] proposed the exo-erythrocytic opsonization of P. falciparum liver-stage 

circumsporozoite proteins (spzs) by antigen-specific antibodies in both naturally infected 

individuals and in persons immunized with radiation-attenuated spzs to be an important step 

and a possible mechanism for macrophage phagocytic activity and contribution in confer-

ring a protective immunity against the infection. Evidence from other similar, previously 
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reported studies [100, 101] have revealed opsonization of spzs for uptake and destruction by 

monocyte/macrophages as a crucial process by which antibodies (Abs) contribute to protec-

tive immunity. All taken together, dendritic cells, NK-cells, NKT cells, macrophages and 

possibly γδT cells are proposed to play a great role as effectors of innate immune responses 

in human malaria infection. Evidence from in vitro studies have shown strong expansion of 

γδT cells during early phases of malaria infection supporting the idea that they contribute 

greatly in innate parasite control [102]. They can also modulate adaptive immunity through 

their ability to produce regulatory cytokines [87].  

 

Although the principal defence mechanism against protozoan parasites that survive within 

macrophages is cell-mediated immunity, particularly macrophage activation by Th1 cell-

derived cytokines [103], immunity to malaria is said to be both cellular and humoral [104], 

stage-specific [105] and includes both innate and adaptive immune responses. Following 

inoculation, the sporozoite stage in the liver comprises the first encounter with the host im-

mune system. The protective immunity relies on the release of pro-inflammatory cytokines 

such as IL-18, IL-12, IFN-γ, TNF-α, nitric oxide and reactive oxygen species by macro-

phages and NK cells [61, 106, 107]. Moreover, under the influence of the polarising capac-

ity of several of these cytokines, increased activity by CD8+ T-cells (CTL) will also result in 

an antigen-specific Th1 and cytolytic activity [108]. These early responses will be subse-

quently dampened by a later anti-inflammatory response based on the release of IL-4, IL-10, 

and TGF-β. Omer et al [70] for example, have reported low TGF-β concentration to have a 

pro-inflammatory role with an ability to recruit monocytes, T-cells and neutrophils towards 

the inflammation site early in an infection, through modulation of endothelial cell adhesion 

molecule expression in murine malaria. However, at high concentration, this multifunctional 

TGF-β has shown an anti-inflammatory role, suppressing production of TNF-α and NO 

from macrophages [109], inhibiting the production of IFN-γ and TNF-α from NK cells [110] 

as well as antagonising an IFN-γ-stimulated upregulation of major histocompatibility com-

plex (MHC) class II antigens [111]. These observations and results suggest that inhibition of 

rapid pro-inflammatory response and Th1 outgrowth such as may occur in zinc deficiency; 

potentially weakens the protective immune response towards human falciparum malaria. 

The fate and pathophysiological consequences of malaria, as stated earlier in this chapter, is 

pivoted largely on the balance in the pro- and anti-inflammatory immune responses and the 

regulation of innate immunity might be important component of adaptive responses.  
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Figure 3:  Possible targets of immune mechanisms at various stages of life cycle of human 

malaria parasite. The immune system react by activation, differentiation of T-cells leading 

to cytokine production and mainly cell-mediated response against liver-stage parasites. 

Antibodies, cytokines and free oxygen radicals are directed towards blood-stage parasites. 

Some of the merozoites develop (after escaping the immune attack), by a still unknown 

mechanism into male and female gametocytes which mature in the mosquito gut after being 

ingested by a blood sucking mosquito. In the gut, they fuse and develop sporozoites that may 

be injected into the blood stream of the new host through bite by the infected mosquito.  

Source: Hoffman and Miller [112] 
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3.3 Acquired immunity to malaria: Both innate and acquired immunity to malaria and other 

infections work synergistically being bridged with soluble mediator proteins, the cytokines. 

Specific antibodies are also thought to be involved in protective anti-malarial immunity de-

spite the fact that anti-malarial antibodies-induced immunity is not sterile [113]. The kind of 

immune response that develop against malaria is targeted towards reduction of clinical dis-

ease, lowering parasitaemia levels and is short lived unless there is repeated exposures like 

that occurs  in areas with intense transmission. In malaria endemic areas, repeated exposure 

to P. falciparum infection induces strong humoral immune responses characterised predomi-

nantly by immunoglobulins (Ig) M and G despite other isotypes. Large proportion of these 

immunoglobulins are non-malaria-specific reflecting polyclonal B-cell stimulation but a 

small proportion (5% or more) is what is important in malaria by keeping low parasitaemia 

and reducing clinical disease and is species and stage-specific reacting with a wide variety 

of parasite antigens [114]. Various transfer experiments conducted to date have indicated the 

significance of humoral immunity in providing a protection against malaria. In vitro studies 

have further shown that specific antibodies can inhibit both sporozoites motility [115] and 

sporozoites invasion of hepatocytes [116]. Additional evidence has shown that immunity to 

falciparum malaria is associated with protective antibodies of different classes and sub-

classes [117]. Depending on the dynamics of disease transmission and on the immune status 

of the individual, IgG1 and IgG3 antibodies have shown to be protective, while IgG2 and 

IgG4 subclasses generally compete and interfere with protection [113, 118, 119]. In other 

words, IgG2 and IgG4 are not considered protective. In general, IgG3 is the prevailing iso-

type associated with protection in humans. However, this isotype has only a short half-life in 

circulation (7 days, as compared to 24 days for IgG1). Hence, it would be beneficial to indi-

viduals to induce specific IgG1 antibodies, which potentially provide long-term efficient 

protection against the pathogen. In this context, cytokines such as IL-10, IFN-γ, IL-2 and 

TGF-β may be of profound importance, by virtue of their potential to induce isotype switch-

ing in B-cells to the induction of antigen-specific IgG1. Importantly, the precise production 

of these cytokines is thought to be affected by zinc deficiency, leading to decreased levels of 

innate immunity, but also decreased activity of NK cells and a decreased ability to mount a 

protective Th1-type immune response. 

 

3.4 T-cell responses to falciparum infection: Antibodies contribute to protective immunity 

to human malaria but priming of T-cells remains to be important for the development and 

maintenance of this important component of immunity [120-122], and T-cell-derived 

gamma interferon (IFN-γ) is said to be important in mediating the cellular effector mecha-
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Figure 4:  Bridging the innate and acquired immune systems. Potential regulatory mecha-

nisms of adaptive immunity to blood-stage malaria by cytokines produced by cells of the 

innate immune response [87]. In response to parasite ligands recognized by pattern-

recognition receptors (PRRs), such as Toll-like receptors (TLRs) and CD36, or inflamma-

tory cytokines, such as interferon-γ (IFN-γ), dendritic cells (DCs) mature and migrate to the 

spleen which is the primary site of immune responses against blood-stage Plasmodium 

parasites. Maturation of DCs is associated with the upregulation of expression of MHC 

class II molecules, CD40, CD80, CD86 and adhesion molecules and the production of cyto-

kines including interleukin-12 (IL-12). IL-12 activates natural killer (NK) cells to produce 

IFN-γ and induces the differentiation of Th1 cells. The production of cytokines, particularly 

IFN-γ, by NK cells results in DC maturation and enhances the effect of parasite-derived 

maturation stimuli, facilitating the clonal expansion of antigen-specific naive CD4+ T-cells. 

IL-2 produced by antigen-specific Th1 cells further activates NK cells to produce IFN-γ, 

which induces DC maturation and activates macrophages, further amplifying the adaptive 

immune response. Cytokines such as IL-10 and TGF-β negatively regulate both innate and 

adaptive responses.  

Source: Stevenson & Riley [87] 
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nisms [123]. Macrophages and dentritic cells are important in the initiation of innate im-

mune response (figure 4) with capability for integrating signals from pathogens, cytokines 

and T-cells, leading to the generation of an adaptive immune response of the appropriate 

class [124]. In this way the innate immune response is translated into adaptive immune re-

sponse to confer effective immune protection. Napolitani et al [125] suggest the TLRs ex-

pressed constitutively or after being induced in different cell types, to determine the innate 

cells capacity to detect microbial products [126-128] and discrimination to either type I or 

type II immune responses. This differentiation of macrophages to produce either type I or 

type II cytokine responses depends on activation states. The macrophages can be classically 

activated (caMac) to produce type I cytokines like IL-1β, TNF-α and in acute infections, IL-

12 [129] that are also produced by Th1 cells. On the other hand macrophages can be alterna-

tively activated (aaMac) inducing differentiation of T-helper cells into Th2 cells giving rise 

to production of type II cytokines like IL-4 and IL-10. While caMac expression of nitric 

oxide synthase (NOS) induce production of nitric oxide (NO) and polarization towards Th1 

responses, aaMac promote expression of arginase and polarization towards Th2 responses 

[129, 130]. The outcome of protozoan infections is largely dependent on the timing and rela-

tive strengths between the two types of responses (type I and II) which are dictated by acti-

vation pathway that the macrophages follow [131]. In most parasitic infections including 

helminths [129, 132-134] the response through aaMac is dominant, polarizing immunity 

towards Th2 responses. Studies by Rodriguez-Sosa et al [133] have shown chronic helmin-

thes infections to induce aaMac expressing high levels of chemokine receptor 5 (CCR5) 

with low IL-12 production despite a bias towards Th2 responses in mice. In humans, aaMac 

have been shown to actively inhibit proliferation of peripheral blood mononuclear cells 

(PBMCs) and down-regulating CD4+ T-cell-mediated responses [135].   
 

The domination of early responses to Plasmodium falciparum infection by pro-

inflammatory cytokines like IL-1β, TNF-α, IFN-γ and IL-12 which sometimes results into 

the pathological consequences, is suggestive of a classical activation of macrophages. This 

type I cytokine dependent pro-inflammatory response induce classically activated macro-

phages during protozoan infection [131]. Investigation of the immediate cytokine response 

of non-immune human PBMCs following stimulation with P. falciparum-infected erythro-

cytes after rigorous exclusion of Mycoplasma contamination has been done in vitro [136]. 

The results suggested that, the early inflammatory response to malaria is critically depend-

ent on lymphocyte subpopulations that are specific to P. falciparum antigens and that the 

response greatly differs from that which is directed towards bacterial endotoxins. It has been 

observed also that although viability of cells is slightly reduced [137] both antigen-specific 
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CD4+ and CD8+ T-cell responses are not affected in cryopreserved human PBMCs [138], 

signifying that T-cells are important targets for ex vivo measurements that reflect the magni-

tude and quality of in vivo T-cell responses. Studies on viability and functional activity of 

cryopreserved mononuclear cells [139] have however, indicated an association between 

viability and T-cell responses in HIV-based experiments. These prospective observations 

have not yet been well established in cryopreserved human PBMCs from exposed and non-

exposed individuals; stimulated with live P. falciparum antigens ex vivo. 
 

3.5.0 Regulation of cytokine responses in malaria: Regulation of immune responses is cru-

cial in plasmodium infection. During malaria, pro-inflammatory cytokines are released in 

early response to infection and later the adaptive (anti-inflammatory) responses takes over. 

Cytokines play both protective and pathological roles and the outcome of the disease de-

pends on the balance between protection and pathology. Cytokines production is elicited by 

schizonts rupture that result into release of  merozoites and various parasite antigenic sub-

stances and products like malarial pigments (hemozoins), glycosylphosphatidyl inositol an-

chors (GPI) of parasite proteins and other soluble antigens. The release of both pro-

inflammatory and anti-inflammatory cytokines require regulation for optimal responses and 

resolution of infection. Regulatory T-cells modulates parasite clearance and immune-

mediated pathology during malaria infection [140, 141].  
 

3.5.1 Regulatory T-cells; background: Regulatory T-cells (Tr cells) are subpopulation of T-

cells that was known once as suppressor T-cells because they down-regulate immune re-

sponses for both foreign and self antigens. These cells have immunoregulatory properties 

and they actively participate in maintaining and control of various immune responses [142, 

143]. Generation and differentiation of regulatory T-cells is reported to be dependent on 

transforming growth factor-beta (TGF-β) and that IL-6 may completely inhibit this TGF-β-

induced generation of regulatory T-cells [144]. Report by Seki et al [145] points out that 

galactose-specific soluble lectin-9 (Gal-9) induces differentiation of naïve T-cells (Th0) to 

regulatory T-cells and suppresses differentiation to Th17 cells (potentially pro-inflammatory 

cells, involved in autoimmune diseases such as rheumatoid arthritis) in vitro.  
 

Regulatory T-cells are characterized by expression of CD4 and CD25 markers on their sur-

faces (CD4+CD25+) which are IL-2 receptors and are referred to as natural regulatory T-cell 

(nTregs) [146]. These cells are produced by the normal thymus as a functionally distinct 

subpopulation of T-cells and their development critically depends on a forkhead family tran-

scription factor, Foxp3 [147] whose expression is regulated by IL-2 [148]. These cells do 
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not themselves produce IL-2 and act in a contact-dependent manner, antigen non-specific, 

prevent cell activation of other T-cells, and are dependent on exogenous IL-2 for prolifera-

tion in vitro and in vivo [149]. With broad repertoire of antigen specificities, they can recog-

nize both self and nonself antigens and their generation is controlled at least in part, devel-

opmentally and genetically. Other  subtypes of regulatory T-cells with diverse phenotypes, 

antigen specificity, and modes of action have been described [150, 151]. Some other anti-

gen-induced regulatory T-cells population have been identified and referred to as adaptive 

regulatory (or acquired regulatory) T-cells as they are induced in the periphery after encoun-

ter with pathogens and foreign antigens [152, 153]. Regulatory T-cells type I (Tr1 cells) are 

regulatory T-cells that produce the immunosuppressive cytokines IL-10 and originate from 

naïve T-cells primed by IL-10 or from T-cells induced by tolerogenic dentritic cells express-

ing IL-10. Th3 cells are also regulatory T-cells subpopulations that produce TGF-β. Regula-

tory T-cells play a golden suppressive role in maintaining the balance between Th1 and Th2 

to result into disease resolution while preventing pathology. The immunosuppressive cyto-

kines TGF-β and IL-10 therefore play important role in the balancing of immune response to 

a non-pathological one. 
 

In malaria the balance between Th1 and Th2 has been critical and it is the lack of a balanced 

immune response that results into aggressive pathological outcomes. Musumeci et al [69] 

studies on modulation of immune response in Plasmodium falciparum malaria have re-

vealed the levels of IL-12 to reliably predict the progression of the disease and they are 

modulated by administration of IL-18 and/or TGF-β (a Th3 product). Oustanding reviews on 

malaria immunology have further stressed  on the role of regulatory T-cells by pointing out 

that development of Th1 response can be antagonised directly by IL-4 and TGF-β and indi-

rectly by IL-10, which inhibit the production of pro-inflammatory cytokines [61] with IL-

10, in addition inducing B-cell proliferation, which is essential for the development of pro-

tective malarial antibodies. In malaria endemic areas the population risk to severe disease 

decline with increasing exposure with initially Th1/IFN-γ pro-inflammatory response 

switching to a predominantly anti-inflammatory response [73]. The switching between these 

responses is said to probably be induced by TGF-β, which has shown to be associated with 

reduced pathology in murine malaria [70, 154, 155]. The anti-inflammatory cytokine regula-

tory role of IL-10 and TGF-β produced by both the cells of  innate (macrophages) and adap-

tive (T-cells) are the key immunoregulators [87, 141] complemented by IL-4 that play a role 

in control of parasitemia and alteration of severity of malaria [156]. This means that IL-4 

contributes largely in conferring protection to malaria by potentially influencing adaptive 

immunity especially due to its role in polarization of T-cells. The TGF-β immunoregulatory 
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role base on its potetial property of being pro-inflammatory (at low concentration) and anti-

inflammatory (at high concentration) [70] that may largely depend on the antigen stimulat-

ing its release. 
 

3.5.2 Th17- cells and possible contribution to malaria pathology: With advancement in sci-

ence over decades, the understanding of immune aspects of regulation, pathogenesis and 

host defense to various infectious agents have broadened. The recent proposed T-cell subset 

of Th subpopulation, Th17, and understanding of contribution to outcome or pathology of 

malaria could be of particular interest. Th17 lineage of cells expressing IL-17 cytokines have 

been proposed some two years ago [157-159] and have been found  to develop from precur-

sor cells independent of cytokines and transcription factors that mediate the pathways under-

gone by Th1 and Th2 cell development [157]. This unique developmental and differentiation 

property of IL-17 producing Th17 provide insights into mechanisms by which signals from 

cells of the innate immune system guide alternative pathways of Th1, Th2 or Th17 develop-

ment [158].   
 

Activation of precursor Th cells in the presence of TGF-β and IL-6 is thought to drive differ-

entiation of Th17 cells in the mouse. Apart from cytokine environment, it is not clear 

whether any other elements of the initial activation of Th17 cells differ from those of other 

Th cell subpopulations. It has been suggested that IL-23 is involved in the expansion of al-

ready established Th17 populations, although the cytokine alone does not induce differentia-

tion of naïve T-cell precursors into that cell type. Cytokines produced by Th17 cells includes 

IL-17, IL-21 and IL-22 and among them IL-21, has also been shown to initiate an alterna-

tive route for the activation of Th17 populations [160]. In humans, a combination of TGF-β 

and IL-1β and IL-23 induces Th17 differentiation from naive T-cells [161] with both IFNγ 

and IL-4 which are main stimulators of Th1 and Th2 differentiation respectively, negatively 

regulating the Th17 differentiation [162, 163]. Studies in mice have in addition, shown the 

suppressive role of IL-10 on Th17 cytokines secretion by macrophages and T-cells in vitro 

and that only IL-10 deficient macrophages can produce IL-17 [164]. Some proteins involved 

in the differentiation of Th cells to Th17 cells are signal transducer and activator of transcrip-

tion 3 (STAT3) and the retinoic acid receptor-related orphan receptors  alpha and gamma 

(ROR-α and ROR-γ) [165]. The primary role of Th17 cells lies on its involvement in autoim-

mune disease. A more natural role for Th17 cells is suggested by studies which have demon-

strated preferential induction of IL-17 in cases of host infection with various bacterial and 

fungal species. Th17 primarily produce two main members of the IL-17 family; IL-17A and 

IL-17F which are involved in the recruitment, activation, mobilization and migration of neu-
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trophils and macrophages; and linking with activation of T lymphocyte subsets [166]. This 

is of particular attention as IL-17 produced by Th17 cells is said to contribute in a variety of 

inflammatory immune-mediated diseases such as rheumatoid arthritis, psoriasis and inflam-

matory bowel disease [167]. The involvement of Th17 in human malaria is still not yet eluci-

dated although has been found to associate with inflammation in rodent malaria parasite, 

Plasmodium yoelii [141].   
 

4. Zinc deficiency and malaria 

4.1 Effects of zinc on immunity: The immuno-modulating effects of zinc supplementation 

can be distinguished in immune enhancing and inhibiting activities [3, 168]. As a conse-

quence, zinc deficiency may also result in a surfeit of immune effects. Zinc deficiency rap-

idly diminishes antibody- and cell-mediated responses against parasites and viruses in both 

humans and animals. Biochemically, zinc catalyses the thymic hormone, thymulin, which 

stimulates differentiation, proliferation and maturation of CD8+ cytotoxic T-cells, CD4+ 

Th1-type cells, and of suppressor T-cells that are implicated in the fight against pathogens. 

The T-cell system is particularly sensitive to zinc deficiency because the resulting thymic 

atrophy, impaired T-cell development and decreased T-cell counts with consequent CD4+ T-

cell depletion [169-175]. 
 

Zinc is said to be essential for proliferation and differentiation of immune cells, and for vari-

ous lymphocyte functions implicated in resistance to malaria, including production of Im-

munoglobulin G (IgG), interferon-gamma(INF-γ) and tumour necrosis factor-alpha (TNF-

α), and microbicidal activity of macrophages. The innate immune defence system, which 

precedes adaptive immune response, is said to particularly be affected by zinc deficiency, 

leading to impaired activity of this type of response to variety of pathogens. Zinc deficiency, 

may cause decreased numbers of neutrophilic granulocytes generated by the bone marrow, 

decreased chemotaxis by neutrophilic granulocytes, decreased phagocytosis by macro-

phages and neutrophils, and deficient killing by Natural Killer (NK) cells by negatively af-

fecting KIR (killer Immunoglobulin-like receptors) binding, and impaired generation of 

oxidative burst. These all possible consequences from zinc deficiencies necessitates for de-

liberate efforts to delineate the effects of zinc on production profile and action of cytokines 

and possibly the impact may have on the antibody responses. This was also proposed by 

Keen and Gershwin [171] and it becomes worthwhile when explored together with other 

micronutrients in relation to more striking diseases like malaria in developing countries.   
 

Zinc deficiency is also likely to affects the adaptive (antigen-specific) arm of the immune 
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system [176-178]. Studies in human model have shown a marked decrease in IFN-γ produc-

tion but not on the IL-4, IL-6 and IL-10 in zinc deficiency [179]. Even mild zinc deficiency 

has been accompanied by an imbalance of Th1 and Th2 cell functions, resulting in dysregu-

lated resistance to infections restored following zinc supplementation [3]. Sensitivity of the 

Th1/Th2 balance needs special attention because it has been shown in other in vitro studies in 

both human and mouse models that polarization to either Th1 or Th2 may result following 

treatment with suppressive drugs such as vitamin D3 and Dexamethasone [91]. Other stud-

ies on naïve CD4+ T-cells have shown that 1α,25-dihydroxyvitamin D3 (vitamin D3) have a 

direct inhibition of Th1 favouring Th2 responses in mice models [180]. These studies have 

an implication that micronutrients may play a critical function in maintaining the Th1/Th2 

balance and induction of regulatory T-cell (Tr) proliferation, differentiation and activation, 

particularly induction of IL-10 and TGF-β production both being implicated in providing a 

balanced immune protection during infections. Studying these various effects of nutrients in 

relation to immune response to infections in human models could be very rewarding as may 

complement efforts already in place to control tropical diseases like malaria in endemic ar-

eas. 
 

An imbalance between Th1 and Th2 cells, decreased recruitment of T naive cells, and de-

creased percentage of T cytolytic cells may account for decreased cell-mediated immune 

functions in zinc-deficient subjects. Studies  by  Beck et al [179] revealed zinc to be re-

quired for regeneration of new CD4+ T lymphocytes and maintenance of T cytolytic cells. 

By negatively affecting T-cell activation, zinc deficiency will result in decreased IL-2 pro-

duction and IL-2 receptor expression. Decreased production of IL-2 in zinc deficiency may 

be due to decreased activation of nuclear factor kappa B (NF-kB) and subsequent decreased 

gene expression of IL-2 and IL-2 receptors [174]. Due to the impaired phagocytosis, intra-

cellular killing and cytokine production, macrophages become less activated resulting in 

decreased levels of IL-1β production and impaired expression of MHC class II molecules, 

which will add to the decreased T-cell activation and decreased production of IFN-γ. The 

profile of decreased cytokine production by T-cells is indicative for a decreased Th1 subset 

differentiation with possible functional consequences. Decreased production of Th1 cyto-

kines and IFN-γ by leukocytes in the healthy elderly person is correlated with low zinc se-

rum level. Zinc induces monocytes to produce IL-1β, IL-6 and TNF-γ in peripheral blood 

mononuclear cells and separated monocytes. B-cell development and antibody production, 

particularly IgG, is compromised by zinc deficiency. In particular, B-cells are sensitive to 

the induction of apoptosis induced by zinc deficiency. 
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4.2 Zinc deficiency and malaria; epidemiological evidence: Evidence prevail that shows 

that zinc supplementation can result in dramatic reductions in morbidity and mortality from 

malaria [22-24] and improved growth [181, 182] in some populations of children. Two of 

the malaria studies have indicated zinc supplementation to reduce the malaria-attributable 

fevers while one showed insignificant protective effects. Additionally, several studies con-

ducted in Asia and Latin-America have shown that preventive use of zinc by continuous 

supplementation leads to dramatic reductions in the incidence of diarrhoea, whereas thera-

peutic use of zinc for adjunctive treatment of children with either acute or persistent diar-

rhoea has been found to reduce the duration of illness and the risk of treatment failure [183, 

184]. Combination of iron and zinc in some cases is suggested to provide protection from 

both malaria and diarrhoea [185]. 
 

A pooled analysis of four studies and a subsequent study, all conducted in Asia, found that 

zinc supplementation in children led to substantial reductions in the incidence of pneumonia 

[183]; however, other studies showed no or little effect on acute lower respiratory infections 

[41, 185], or even an increased incidence [186]. Further studies must be conducted to deter-

mine whether the discrepancies reported are possibly due to bias, or to site-specific factors 

that influence response to zinc supplementation, such as zinc status or deficiencies in other 

nutrients known to be essential for growth or immune functioning, or suspected to impair 

zinc absorption or utilisation. For example, findings from a study among Ethiopian infants 

suggest that stunting predicts the presence of zinc deficiency, and thus for the response to 

supplementation [187]. In the recent study carried in Tanzanian community of Pemba, Zan-

zibar, Sazawal et al [188], have in addition, pointed out that the response to zinc supplemen-

tation was dependent on the dose given and also that there are sex and age-related differ-

ences in the response to supplementation. 
 

The postulated mechanism for the deleterious effects of zinc deficiency is a reduction in 

immuno-competence, particularly in cellular immunity [107], which may be reversible by 

supplementation [168, 183]. Zinc is essential for tissues with rapid cellular differentiation 

and turnover such as occur in the immune system and the gastrointestinal tract [183], and for 

various lymphocyte functions implicated in resistance to malaria [178]. Thus further studies 

of specific immune responses involved may provide clues about mechanisms of acquired 

immunity to malaria, which is essential for the development of  malaria intervention pro-

grams with micronutrients inclusion to boost immune responses to the disease. This could 

later be used together with not yet to be discovered effective vaccines for perfect malaria 

control. 
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Despite the impact of nutrition on immune functions and contradicting findings relating zinc 

with immune functions, most studies relating nutrition to immune response to malaria have 

been done outside Africa albeit malaria-related deaths in children of this endemic area. In 

addition, several in vitro stimulation studies have used peripheral blood mononuclear cells 

(PBMCs) for proliferation, differentiation and cytokine production but most of them have 

used mouse models whose immune responses may be different from that in human beings. 

In addition, even where studies have used human PBMCs, freshly prepared cells have been 

used rather than frozen cells which could reflect African situations where the location of 

study sites necessitates late processing (isolation of cells from whole blood after collection) 

and pre-cooling cells before stimulation experiments. In this study we have used laboratory 

prepared live P. falciparum-infected human red blood cells (mimicking the real in vivo 

situation), to stimulate PBMCs in vitro and measured proliferation, differentiation and cyto-

kine production of various lymphocyte subsets.    
 

5.  Aims and outline of the thesis 

This study was conducted to assess the baseline nutritional status, particularly zinc, and de-

termine its association with indicators of immune response to malaria before supplementa-

tion with zinc and other micronutrients in stunted children aged 6 - 72 months (< 5 yrs) of 

Handeni, Tanzania. In chapter 1, we provide a comprehensive theoretical background of the 

interaction between dietary micronutrient deficiencies, activity of the immune system and 

development of protection against Plasmodium falciparum infection and malaria disease 

manifestation. In the intervention study, the effect of zinc and other micronutrients on the 

immune response to malaria antigens will be investigated in 672 children aged 6-60 months 

receiving for a period of 26 weeks, a daily oral supplement with either zinc or its placebo, 

and additionally a daily oral supplement with either multiple micronutrients other than zinc 

or its placebo for group differences in cellular and serological indicators of immune re-

sponse to asymptomatic malarial parasitaemia determined at the end of the intervention pe-

riod; and group differences in cellular and serological indicators of the immune response to 

symptomatic malaria due to newly acquired infections in the course of the intervention pe-

riod. 
 

Chloroquine has been abandoned in Tanzania as a useful antimalarial drug due to parasite 

resistance. The antifolate drug combination, sulphadoxine-pyrimethamine (SP) is nowadays 

used for first-line treatment of uncomplicated malaria in most malaria endemic-African 

countries. Surveillance for antifolate-resistant parasites in the field was important to keep 

tracking the spread and intensity of drug resistance. Monitoring drug resistance through 
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regular exploration of gene mutations pertaining to drug resistance bears critical importance. 

In chapter 2, drug resistance to SP and detection of possible confounding factors pertaining 

to development of resistance in falciparum malaria was evaluated. 
 

The best indicator of immunity against malaria is arguably the incidence of symptomatic 

malaria, although this does not explain the mechanisms involved. In addition, zinc defi-

ciency has been found to result into underperformance of the immune system to combat 

malaria and other infections. These insights provided the basis for our hypothesis that zinc 

supplementation will boost the capacity of the immune system to brandish a protective re-

sponse to falciparum malaria, both in a quantitative and qualitative sense. To achieve these 

goals, we adopted the available technical and conceptual advances to analyse the immune 

capacity without the need to wait for actual challenging the individuals with infectious or-

ganisms. With respect to the involvement and role of the immune system we compared the 

activity of the innate immune response to Plasmodium falciparum (chapter 3) and the level 

of T-cell response after in vitro stimulation with cultured Plasmodium falciparum-infected 

red blood cell preparations (chapter 4) and Plasmodium falciparum specific antibodies as 

serological indicators of immunity (chapter 5) in zinc-deficient and zinc-replete children in 

both parasitaemic and aparasitaemic subjects. To reflect the real field situation where facili-

ties for sample processing may be far from the sample collection site, we performed the 

experiment in PBMCs kept frozen in Liquid Nitrogen (-1800C) for a period of 6 months and 

assessed cells viability, differentiation and proliferation capacity. 
 

A unique characteristic feature of infections with Plasmodium falciparum is the ability of 

infected red blood cells (IRBCs) to adhere to vascular endothelium by cytoadherence, re-

sulting in accumulation of IRBCs in the deep microvasculature. CD36 is one of the host 

ligands that have been found to mediate endothelial binding of IRBCs and has been identi-

fied in most field isolates. A mutation in  the gene encoding for CD36 is known to influence 

the malaria-associated anaemia (MA) in an endemic area. In chapter 6, the role of CD36 

deficiency was assessed in the development of malaria-associated anaemia in children. The 

study specifically explored the frequency of CD36 deficiency among children in malaria 

endemic areas and associations between CD36 deficiency and status of malaria-associated 

anaemia in these children. 
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6.5 Ethical issues: Clearance to conduct this study was obtained from ethical review boards 

in The Netherlands, by the Kilimanjaro Christian Medical Centre (KCMC) and the Tanza-

nian National Institute for Medical Research (reference numbers for KCMC and the Na-

tional Health Research Ethics Review sub-Committee: 094 and NIMR/HQ/R.8a/VolIX/540, 

respectively).  
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Abstract  

Sulphadoxine–pyrimethamine (SP) has been and is currently used for treatment of uncom-

plicated Plasmodium falciparum malaria in many African countries. Nevertheless, the re-

sponse of parasites to SP treatment has shown significant variation between individuals. The 

genes for dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) were used as 

markers, to investigate parasite resistance to SP in 141 children aged less than 5 years. Para-

site DNA was extracted by Chelex method from blood samples collected and preserved on 

filter papers. Subsequently, polymerase chain reaction (PCR) and restriction fragment length 

polymorphism (PCR-RFLP) were applied to detect the SP resistance-associated point muta-

tions on dhfr and dhps. Commonly reported point mutations at codons 51, 59, 108 and 164 

in the dhfr and codons 437, 540 and 581 in the dhps domains were examined.  Children in-

fected with parasites harbouring a range of single to quintuple dhfr/dhps mutations were 

erratically cured with SP. However, the quintuple dhfr/dhps mutant genotypes were mostly 

associated with treatment failures. High proportion of SP resistance-associated point muta-

tions was detected in this study but the adequate clinical response (89.4%) observed clini-

cally at day 14 of follow up reflects the role of semi-immunity protection and parasite clear-

ance in the population. In monitoring drug resistance to SP, concurrent studies on possible 

confounding factors pertaining to development of resistance in falciparum malaria should be 

considered. The SP resistance potential detected in this study, cautions on its useful thera-

peutic life as an interim first-line drug against malaria in Tanzania and other malaria-

endemic countries.  
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Background 

Human malaria is caused by an Apicomlexan parasite of the genus Plasmodium. Four spe-

cies are known to cause human malaria namely, Plasmodium falciparum, Plasmodium 

vivax, Plasmodium ovale and Plasmodium malariae. Nevertheless, P. falciparum has been 

found to be the most lethal of all human malaria parasites. This parasite causes epidemics in 

malaria-endemic countries, resulting in large numbers of deaths. Widespread chloroquine 

resistance has forced many countries to use alternative drugs as antimalarials against falci-

parum malaria, such as the combination of sulphadoxine and pyrimethamine (SP). However, 

the parasite has been observed to develop resistance to this drug combination associated 

with point mutations in the genes for the enzymes involved in the obligatory parasite-folate 

biosynthesis pathway. Such mutations lead to the lowering of the drug binding affinity to 

the parasite enzymes [1-5]. Resistance to pyrimethamine is attributed to mutations in the 

gene for the parasite enzyme dihydrofolate reductase (dhfr), whereas sulphadoxine resis-

tance is associated with mutations in the gene for the parasite enzyme dihydropteroate syn-

thetase (dhps). The increased level of resistance has been found to be associated with in-

creased numbers of mutations in the genes for these two enzymes. Studies [6] have shown 

that multiple mutations in the genes for both enzymes result in exceedingly high SP treat-

ment failure. Detection of these mutations in field isolates has been proposed as an alterna-

tive strategy for rapid screening of antifolate drug resistance [7-12].  
 

In Tanzania, due to high resistance that developed against the previously effective, safe and 

relatively cheap antimarial drug, chloroquine, SP was introduced as the first-line drug 

against malaria by August, 2001. Unfortunately, the change of policy to SP by the govern-

ment has been challenged by the previously reported low [13] but fast spreading levels of 

resistant parasite strains against the drug [14]. SP resistance has been reported in variable 

magnitudes across the country [15-17]. Surveillance for these antifolate-resistant parasites in 

the field is still required to dissuade its spread over wide areas and possibly suggest effec-

tive implementation of new drug policy in Tanzania. The present study was thus carried out 

during the period of January 2002 to August 2004 to evaluate the frequency of point muta-

tions in dhfr and dhps among P. falciparum isolates from children of Mlimba division of 

Kilomero district of Tanzania. This could give a picture of the level of drug pressure in the 

field from the time when SP was introduced as an interim first-line drug for malaria treat-

ment in the country. Since there are currently, various drug combinations on trial for treat-

ment of uncomplicated falciparum malaria [18,19], the anticipation was to obtain findings 

which would give information on the current frequencies of SP resistant P. falciparum 
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strains and probably give advice to policy makers for opting to other new effective, cheap 

and safe antimalarial drug combinations. 
 

Materials and methods 

Study area : The study was conducted at Ifakara Health Research and Development Center 

(IHRDC) situated in Ifakara Town of Kilombero District, Morogoro, Tanzania. Samples 

were collected during the period of January to August 2002 from Mlimba, an area about 150 

km from IHRDC along Kilombero River where malaria is endemic with perennial transmis-

sion. The area is among nine sentinel sites for National Malaria Control Programme since 

1997 and its human population dynamics is being closely monitored on a monthly basis by 

the Ifakara Centre Demographic Surveillance System (IC-DSS) since 1996. Recruitment of 

patients and sample collection was done by the research team at Mlimba Health Centre.  
  
Study subjects: The ethical clearance was obtained from both National Institute for Medical 

Research (NIMR) and IHRDC Institutional Ethics Committee authorities. Parents or guardi-

ans of participating children accepted and gave informed consent for participation in the 

study. About 172 patients of both sexes with acute uncomplicated falciparum malaria and 

aged 6 – 60 months (< 5 years) were initially recruited in this study. However 31 (18%) of 

the recruited patients either were excluded from the study due to failure to comply with cri-

teria for participating in the study or were lost during follow up.  
 

Sample collection: Blood samples for parasite genotyping were collected on filter paper 

(3MM Whatman), labelled and identified, and kept in a dry clean container with desiccant 

for a minimum of three hours to dry. Dry filter paper blood samples were stored at room 

temperature until when needed for further analyses. The follow-up samples were obtained at 

days 3, 7 and day 14 after SP treatment. Additional follow-ups were done at any other day if 

the child was unwell. During all these visits, finger-prick blood was obtained for micros-

copy and later molecular analysis.  
 

Extraction of parasite DNA: P. falciparum genomic DNA was extracted from blood col-

lected on 3MM Whatmann filter paper by Chelex method as previously described [20]. The 

extracted DNA from each sample was used immediately for PCR and any remaining portion 

was stored at –20ºC in appropriately labelled storage tubes.  
 

Genotyping of parasite genomic DNA: Sample analysis was based on the standardised poly-

merase chain reaction and restriction fragment length polymorphism. For amplification of 

the dhfr and dhps coding regions, a nested PCR protocol was adopted followed by RFLP. 
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The regions of the dhfr and dhps genes surrounding the polymorphisms of interest in dhfr 

51, 59, 108 and 164 and dhps 437, 540 and 581 codons were analysed as described in detail 

elsewhere [7,21,22].  
 

Amplification of parasite DNA by PCR: In this multiplex parasite DNA amplification of the 

parasite genomic DNA, two primer pairs M1/M5 and R2 + R/ were used as forward and 

reverse primers in primary (nest I) PCR reaction for the dhfr and dhps domains respectively. 

In secondary (nest II) PCR reaction M3 + F/ and F + M4 were used as forward and reverse 

primers to amplify the four regions on dhfr where the point mutation is anticipated to occur 

[20]. On the other hand, K +K/ and L + L/ primers were used to amplify regions on the dhps 

gene where resistance-associated mutations are said to occur [7]. The details of primer se-

quences, annealing temperatures and controls are shown in table 1. In both nest I and nest II 

PCR, reaction volumes ranged from 20µl to 30µl. The final concentration of each reagent 

was 1x PCR reaction buffer (10x PCR buffer – MgCl2, Invitrogen), 1.5 mM MgCl2, 125µM 

dNTP (Promega, Madison, WI, USA), 250nM primers (QIAGEN, Operon) and 0.02 U/µl 

Taq Polymerase (Invitrogen). The master mix was prepared in a 1.5ml reaction tube with 

Molecular biology PCR water (Sigma) as a diluent and aliquots made in PCR tubes (0.2ml 

size). To each PCR tube, 5µl of DNA was added in primary reaction and 2µl was re-

amplified in the nested PCR reaction. The known purified genomic DNA from HB3, 3D7, 

W2, K1, T9/96, FCR3 and V1/S laboratory parasite clones were used as positive controls 

and NT (No template) was included as negative control. PCR was performed in a Program-

mable Thermo Controller, (PTC-100 (TM) MJ Research, Inc., Watertown, MA, USA). Sam-

ples with no detectable PCR products were re-examined at least twice starting from the 

DNA preparation before were declared negative. 
 

Restriction enzyme digestion: Site-specific restriction enzymes were used to digest the PCR 

amplicons. Seven different restriction enzymes were used in this study (table 1), namely 

TSP509I, XmnI, AluI, DraI (dhfr domain) and AvaII, FokI, BstUI (dhps domain) enzymes, 

respectively. Essentially 8µl of PCR products were incubated with restriction enzymes (New 

England Biolabs, Beverly, MA, USA) according to manufacturer’s protocol in 25µl final 

reaction volume. The dhfr and dhps variants were identified as previously described 

[7,21,23].   
 

Gel electrophoresis: Nested PCR amplicons were electrophoresed on 2% agarose gels be-

fore subsequent restriction fragment length polymorphism analysis. Electrophoresis of re-

striction digests was done on 10% polyacrylamide gel (PAA) as described by Sambrook et 
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al [24] at a constant voltage of 11.25v/cm gel for 2.30 hours, stained with ethidium bromide, 

visualized under UV light, photographed and electronically stored.. 
 

Statistical analysis: Data were analysed using the EPI Info Version 6.04 epidemiological 

software (Centres for Disease Control and Prevention, Atlanta, GA, USA). This made it 

possible to estimate the frequency of point mutations on dhfr and dhps responsible for para-

site resistance against SP thus determining the prevalence of these mutations. The preva-

lence of each point mutation was calculated as the percentage of baseline (D0) samples con-

taining point mutation at the particular codon on dhfr and dhps, respectively. Fragment sizes 

were compared with known restriction fragments (band sizes) obtained in previous studies 

with reference to 1Kb DNA marker [21,25]. 
 

Results  

Treatment outcomes: From clinical evaluation (clinical data provided by IHRDC), a total of 

172 children with acute uncomplicated malaria were recruited into the study and treated 

with SP. Out of these recruited patients, 141 (82%) successfully completed the study. Data 

from 31 (18%) patients who could not complete the 14 days follow-up were excluded from 

analysis. Of patients who completed the study successfully, treatment failures were depicted 

in 15 (10.6%) patients comprising of 6.7% early and 3.9% late treatment failures, respec-

tively. Adequate clinical response occurred in 126 (89.4%) of patients. Consequently, mo-

lecular analysis was performed on 141 samples from patients who completed the study. 
 

PCR amplification of dhfr and dhps: Different primers were used to amplify regions in dhfr 

and dhps containing various point mutations associated with resistance to SP, thus different 

DNA fragments with different band sizes were obtained (figure 1). The fragment sizes were 

estimated as previously described elsewhere [21]. F + M4 amplification produced DNA 

amplicons of about 326 bp (figure 1a) while DNA amplicons of approximately 522 bp band 

size were obtained following DNA amplification by M3 + F/ primers (figure 1b). PCR am-

plification using K + K/ (figure 1c) and L + L/ primers (figure 1d) produced fragments of 

438 and 161 bp, respectively on 2% agarose gel.  Of 141 samples analysed, 120 (85.1%), 

136 (96.5%), 132 (93.6%) and 133 (94.3%) were successfully amplified using M3+ F/, F + 

M4, K + K/ and L +L/ primers, respectively.  
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RFLP analysis: Figure 2 depicts representative PAA gels of the restriction digests used to 

detect the fragment patterns corresponding to the different variants at each codon on the dhfr 

and dhps domains. PCR amplification of dhfr with the primers F + M4 yields a PCR product 

sized 326 bp of the codon 108. The restriction enzyme AluI was used specifically to cut 

fragments discriminating the two alternative forms, wild-type (180 and 118 bp) and mutant 

(299 plus 27 bp) at that codon. The wild type indicates presence of serine (Ser) in the amino 

acid sequence of the enzyme system while the mutant form of the gene indicates the substi-

tution by asparagine (Asn). Restriction digestion of the same PCR fragment with XmnI was 

used to distinguish wild type (189 and 137 bp) and mutant (162, 137 + 27 bp fragments) 

variants on codon 59 of the gene. Mutation at this codon reflects substitution of amino acid 

cystine (Cys, wild type) by arginine (Arg, mutant).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Agarose gels of the PCR products ((a) F+M4; (b) M3+F/; (c) K+K/; (d) L+L/) of 

the tests for the polymorphisms of dhf and dhps. Fragment sizes are in bp. 
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The M3 + F/ amplified PCR fragments (figure 1b) were digested with TSP509I and DraI to 

distinguish variants at codon 51 and 164, respectively. Digestion by TSP509I produced frag-

ments of sizes 153 and 120 bp indicative of presence of amino acid asparagine (wild type) 

and 217 and 120 bp indicating presence of amino acid isoleucine (Ile, mutant). On the other 

hand, digestion with DraI was expected to produce fragments of sizes 245, 171 and 106 bp 

(wild type) and 145, 143, 106 and 28 bp (mutant) distinguishing polymorphisms at codon 

164. In this context wild type denotes occurrence of isoleucine (Ile) and the mutant indicates 

occurrence of leucine (Le). The four restriction enzymes were used mutually to detect muta-

tions on the dhfr gene ascribed to resistance to antifolate, SP by the malaria parasite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Polyacrylamide gels of the restriction digest of the PCR products ((a) AluI and 

xmnI; (b) AluI and XmnI; (c) TSP609I and DraI; (d) BSTUI and AvaII; (e) FokI) of the tests 

for the polymorphisms of the dhfr and dhps genes.  Fragment sizes are in bp.  
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Tests for polymorphisms on dhps are shown in figures 2d and 2e. PCR products of approxi-

mately 438 bp (figure 1c) were obtained from amplification with the K and K/ primers. The 

variants at codon 437 were discriminated by restriction digestion using the restriction en-

zyme AvaII (figure 2d). In this case uncut fragment (438 bp) indicated wild type while mu-

tations at this site was shown by a cut fragment sized 404+ bp. Mutation at this codon is 

indicative of substitution of glycine (Gly) for alanine (Ala). The K + K/ amplified PCR 

products have been used to detect polymorphisms occurring at codon 540. A restriction en-

zyme, FokI produced fragments sized 405 bp (wild type) and 320 and 85 bp (mutant) dis-

criminating variants at that codon. The 405 bp fragment indicates presence of amino acid 

Lysine (Lys) while the 320 and 85 bp fragments reflect substitution of glutamate (Glu) for 

lysine at this codon.  
 

Following amplification with L + L/ primers, PCR products of size 161 bp were produced 

(figure 1d). These PCR fragments have been used to describe polymorphism on the dhps 

gene occurring at codon 581 using a restriction enzyme BstUI. This restriction enzyme pro-

duced restriction digests of sizes 105, 33 and 23 bp (wild type) and 138 and 23 bp (mutant) 

from the PCR products of size 161 bp (figure 2d). The former reflects presence of amino 

acid, alanine at this codon and the latter indicates substitution of glycine for alanine. 
 

Mutation analysis was variably successful at each codon in both dhfr and dhps genes and an 

average of 120 (85.1%) of 141 patients produced fruitful outcome. Four codons (51, 59, 108 

and 164) on dhfr and three codons (437, 540 and 581) on dhps were evaluated and the re-

sults are presented in figure 2. Mutations in the dhfr were highest for Asn-108 (66.9%) and 

progressively declined for dhfr Ile-51 (62.7%) and dhfr Arg-59 (48.8%). Mutations in dhps 

varied from dhps Gly-437 (43.7%), dhps Glu-540 (39.2%) and was lowest for dhps Gly-581 

(0.8%) alleles. In all pre-treatment and post-treatment samples, no mutant dhfr Leu-164 was 

depicted. The triple dhfr, double dhps and the quintuple mutants (carrying the dhfr triple 

mutant and the dhps double mutant) were also evaluated and were considerable (table 3). 

Mixed pattern was not uncommon in many samples examined (table 4). 
 

Discussion  

The 141 patients represent children aged less than five years, the age most vulnerable to 

falciparum malaria [26]. Parasite recurrence in SP treated individuals has been linked to 

many factors. Such factors include overwhelmed immunity, multiple concurrent infections 

and drug resistance [27]. Several previous studies have investigated the association between 

mutations in dhfr and dhps and the parasitological and/or clinical response to SP medication 
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at individual level [6,28-30]. Most of these studies produced tangible results regarding the 

use of dhfr and dhps genotypes as resistance marker genes for SP [31]. In this study, it was 

observed (clinical data) that SP treatment cleared infection in 89.4% of the patients who 

completed the study. This treatment success is partly concordant but higher than what has 

previously been reported (82%) in a similar study by Aubouy et al [25] in Bakoumba vil-

lage in Haut-Ogooué province of Southeast Gabon. According to that study, dhfr mutations 

that lead to high-level in vitro resistance to pyrimethamine plus one or two dhps mutations 

were reported to be not sufficient to induce in vivo failure of SP treatment in young chil-

dren. Nevertheless, the semi-immune population of over 60% previously reported in Tanza-

nia [32] is probable reminiscent for the observed high parasite clearance despite detection 

of high resistance-associated point mutations in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:   Proportions of point mutations on dhfr and dhps related to parasite resistance to 

 antifolates 

Resistance to Gene locus  Mutations (%) Wild type (%) Mixed (%) Total 

Pyrimethamine DHFR 51 74 (62.7%) 35 (29.7%) 9 (7.6%) 118 

 DHFR 59 59 (48.8%) 36 (29.8%) 26 (21.5%) 121 

 DHFR 108 81 (66.9%) 17 (14.1%) 23 (19.0%) 121 

 DHFR 164 0 (0.0%) 104 (100.0%) 0 (0.0%) 104 

Sulphadoxine DHPS 437 56 (43.7%) 71 (55.5%) 1 (0.8%) 128 

 DHPS 540 47 (39.2%) 65 (54.5%) 8 (6.3%) 120 

 DHPS 581 1 (0.8%) 126 (98.4%) 1 (0.8%) 128 

  318 454 68 840 
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Table 3: Various dhfr/dhps combinations obtained from restriction analysis to determine 

point mutations in genes responsible for SP resistance.  

tDHFR = Triple mutants on dhfr gene; dDHFR = Double mutants on dhfr gene; dDHPS = 

Double mutants on the dhps gene; sDHPS = Single mutant on the dhps gene; nDHPS = No 

mutation on the dhps gene. 

 

Slightly higher values of mutations on dhfr (66.9% and 62.7%) were detected at codons 108 

and 51, respectively as compared to those previously reported by Mshinda [33] of 50%. This 

is attributable to rapid, stepwise selection of mutations following use of antimalarial, SP or 

similar drugs in the area. This is simply because our study was carried 2 years after a similar 

study by Mshinda in 2000. Pharmacological case management of the disease occurring at 

informal level [26,34] with poor compliance with dosing schedules could be another basis 

for the high frequency of mutations detected in this study. In addition, sub-dosage levels of 

drug administration e.g. two patients sharing a single dose prescribed for a single patient 

(personal observation) may be a probable cause for the detected high proportion of muta-

tions. Extensive use of different types of antifolates with mechanism of action similar to SP 

like trimethoprim and sulphamethoxazole (TS) combination (e.g. septrin) in treating other 

infections over time, probably accounts for the increased selection of mutations ascribed to 

SP resistance [17].  
 

The mutation of about 66.9% observed in dhfr on codon 108 was higher than that reported 

by Jelinek et al. [35] in West Africa (54.0%) but slightly lower than that observed in Central 

Africa (72.4%), South Africa (68.9%) and East Africa (72.9%). This could be correlated to 

the high proportion of mixed genotype infections (mutant and wild type, 19.0%) detected at 

this codon in the present study. Pearce et al. [17] reported the increase of mixed genotypes 

Category Number  Percentage (%) Percent Cum. 

tDHFR 44 36.40 36.40 

dDHPS 18 14.90 51.30 

tDHFR/dDHPS 24 19.80 71.10 

dDHFR/dDHPS 10 8.30 79.40 

tDHFR/sDHPS 4 3.30 82.70 

dDHFR/sDHPS 7 5.80 88.50 

tDHFR/nDHPS 14 11.50 100.00 

Total 121 100.0  
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in codons whose mutations are associated with SP resistance in an area of high endemicity. 

This proportion of mixed genotypes could give rise to dhfr mutations of about 85.9% if at 

all these genotypes were additive. The dhfr point mutations at codons 51 and 59 were also 

higher than that previously reported by Jelinek et al. [35] in Africa and all together explains 

the significance of these mutations in causing higher SP resistance. As previously reported 

by Hastings et al. [36], mutations at codon 164 in dhfr, which is thought to confer highest 

SP resistance when it occurs, was not depicted in this study. Generally, mutations in the 

three codons in the dhfr domain were higher (table 2) than those on the dhps domain, sug-

gesting that mutations on dhfr precede those on dhps in conferring parasite resistance to SP 

[37].  
 

 Table 4:  Proportions of mixed infections detected in this study 

 

 

 

 

 

 

smDHFR = Mixed variants detected at a single codon on the dhfr domain; mDHPS = 

Mixed variants detected at a single codon on the dhps domain; dmDHFR = Mixed variants 

detected at two codons on the dhfr domain; dmDHPS = Mixed variants detected at two 

codons on the dhps domain; tmDHFR = Mixed variants detected at three codons on the dhfr 

domain; tmDHPS = Mixed variants detected at three codons on the dhps domain 

 

The point mutations in dhps depicted in this study are far higher than what was observed in 

previous studies in East and South Africa [35] and Eastern Iran [38]. This might be ex-

plained by the widespread use of septrin in Tanzania, which is said to indirectly select muta-

tions for SP resistance [17]. Takahashi et al. [39] further reported that the use of antifolates 

such as co-trimoxazole for prophylaxis or medication against other infections than malaria 

indirectly and predominantly select double mutations at dhps for resistance. Nevertheless, 

the dhps mutations observed in this study were relatively lower than that observed in Central 

Category Variants detected  Total No. of variants Percentage (%) 

smDHFR 27x1 27 39.7 

smDHPS 8x1 8 11.8 

dmDHFR 8x2 16 23.5 

dmDHPS 1x2 2 2.9 

tmDHFR 5x3 15 22.1 

tmDHPS 0x3 0 0.00 

Total  68 100 



60  

Drug resistance to sulphadoxine-pyrimethamine (SP) 

and West Africa by Jelinek et al [35], possibly due to geographical differences [16] and dif-

ferences in patterns of drug use between different areas [17]. However, Beswas [16] re-

ported the dhps mutations in Tanzania ranging between 30 – 34%, which is less than values 

observed in our study (39.2 – 43.7%) signifying that drug pressure increasingly selects these 

mutant alleles with time depending on frequent use of antifolates.   
 

Overall proportion of point mutations portrayed in this study reflects the existence of high 

resistance in the study area. Only 8.5% of infections carried pure wild type genotype and 

4.6% of the samples showed single mutant alleles. Quintuple mutations were highest 

(18.5%) followed by triple (16.2%) and double mutations (13.8%). Quadruple mutations 

occurred in 6.9% of samples. About 41 (31.5%) of infections had at least one mixed 

(mutant, wild type) genotypes attributable to endemicity of the disease [40], which may re-

sult into high transmission consequently augmenting high proportion of mixed clones per 

infection in the population.  
 

The co-occurrence of point mutations in both dhfr and dhps loci was also examined in this 

study (table 3) with about 44 (36.4%) of samples containing triple mutant on dhfr, which 

was relatively similar to that reported by Mshinda [33] in the same place (41%) but was 

almost twice to values reported by Mugittu et al [15] of 18.6%. However, the proportion 

could escalate if the mixed triple dhfr variants (22.1%) and mixed double dhfr variants 16 

(23.53%) detected in the present study (table 4) were counted inclusively. Nevertheless, the 

proportion of these mutations was less than that reported by Pearce et al [17] in Hai district 

Northern Tanzania (>70%) where resistance to SP is already unprecedentedly high due to 

widespread use of SP and spread of resistance from nearby area, Muheza into the area. 

Mugittu et al [15] reported a prevalence of 80.3% in Mkuzi, an area in Muheza District 

where pyrimethamine was used for prophylactic and/or therapeutic trials at different periods 

from 1950s to 1994 [41-43]. The difference in levels of SP resistance between Tanzanian 

communities is also attributable to the differences in patterns of drug use between communi-

ties within the country [17]. In Muheza District Hospital, for instance, SP was implemented 

as first-line drug in children less than 5 years of age since 1984 [44].  
 

The frequency of triple-dhfr/double-dhps mutants (quintuple mutation, 19.8%) depicted 

(table 3) is high as compared to previous studies in Mlimba and Idete [45] which was re-

ported as a rare event. However, the proportion of quintuple mutation in Mlimba was less 

than that reported by Pearce et al [17] in Hai and Pare areas of Northern Tanzania (30 – 

63%). The proportion of quintuple mutation was also less than that generally reported by 
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Jelinek et al [35] (42.9%) in East Africa, and that by Bwijo et al [46] in Maonga and Chim-

bala villages of Salima District, Malawi (78%). The lower frequency of quintuple mutations 

(19.8%) observed in this study as compared to other reported mutations in Tanzania and 

other areas of Africa could partly be attributable to the early development of resistance in 

those areas. In Malawi for instance, the study was carried 7 years after introduction of SP as 

a first-line drug while our study was carried shortly (2 years) after introduction of SP as an 

interim first-line drug in Tanzania, providing a relatively shorter time for selection of SP 

resistance mutations. In addition the low quintuple mutations can also be linked to the pro-

portion of genotypes at similar locus possessing mixed variants observed in this study. In 

previous studies, the mixed variants were not reported. The random selection of these muta-

tions might generally, be a consequent of country-wide use of SP as a second-line antimalar-

ial drug several years before it was implemented as an interim first-line drug by August 

2001.  
 

The prevalence of double dhps mutation (table 3), which is considered to be a prerequisite 

for resistance to sulphonamides [7], was found to be 6x that reported by Mugittu et al [15] in 

the same area. This proportion (19.8%) was also higher than that reported in Kyela and Ma-

sasi areas of Tanzania but nearly equal to that reported in Butimba but less than that re-

ported in Mkuzi areas of Tanzania by Mugittu et al This might be attributed to the effect of 

septrin, an antifolate extensively used in Tanzania as antibiotic agent, indirectly and prefer-

entially selecting double mutations on the dhps locus [39]. Similar effects can result from 

septrin, which is essentially similar to co-trimoxazole in composition as previously stated. 

Both are antifolates basically composed of trimethoprim-sulphamethoxazole (TS) with simi-

lar effects to SP [46,47]. Observation also showed that 52.1% of infections harboured at 

least one mutation on the dhps locus (table 3) reflecting that probably there is high effect or 

prevailing use of septrin in the area.  This can also be associated with long-term abuse of the 

drug, but also could be indicative of the differences in the generic drugs available in the 

country manufactured by different companies which might have different bioavailability and 

therapeutic values. The high proportion of double dhps mutations when coupled with triple 

mutations in dhfr can result into quintuple mutation to confer highest SP resistance. 
 

Mixed genotypes in either dhfr or dhps, or both, were depicted in at least 68 DNA samples 

(table 4). Detection of mixed genotypes in dhfr and dhps is important due to its influence on 

the overall proportion of point mutations in baseline samples which upon drug pressure, the 

wild type get cleared with mutant genotypes persisting in longitudinal follow up samples.  

Most recrudescent infection detected in follow up cases came from pure mutant and mixed 
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genotypes in baseline samples as parasites with wild type genotypes are sensitive and were 

subsequently cleared post-medication by the drug. The variable results obtained following 

PCR-RFLP of follow up samples (20%) have been previously observed [25]. Infection de-

tected during follow-up may be either an infection that previously failed to express due to 

presence of an abundant (detected) strain that masked the presence of minor resistant strain, 

thus being a recrudescent parasite. But on the other hand the detected mutant alleles during 

follow-up may be new infection with similar genotype as that detected pre-treatment.  
 

Conclusions and recommendations: In conclusions, the impact of quintuple mutation on SP 

resistance may be weighed down by host immunity in endemic areas although may not sug-

gest continued use of the drug for treatment of malaria. The impact of other drugs with simi-

lar mechanisms of action used as antibiotics in selecting mutations responsible for SP resis-

tance need be studied especially for co-trimoxazole, which is currently used as a prophylaxis 

against opportunistic infections in HIV-infected individuals. The information obtained in the 

present study will be of direct and immediate relevance to current HIV and malaria control 

policies in Tanzania and possibly in Africa and the universe. In addition, it will add to our 

basic knowledge of the molecular basis of antifolate-resistant malaria. There is a need for 

reviewing the policy on the use of SP as a first-line drug for treating malaria in Tanzania. In 

addition, despite several previous studies showing SP + Amodiaquin (SP+AQ) and 

SP+Artesunate (SP+AS) to cause a delay in emergence of resistance and rapid gametocyte 

clearance, the high SP resistance potential detected in this study suggests exclusion of SP 

component in future planned drug combinations for treatment of malaria. Alternative combi-

nation therapies like artemisinin-based drugs (e.g. artemisinin-lumefantrine) and short-

acting antimalarials such as chlorproguanil-dapsone combination (LapDap) and atovaquone-

proguanil (Malarone®) may be rewarding albeit thorough clinical trials are still needed to 

evaluate the effectiveness and possible harmful side effects of these proposed drugs. In de-

ployment of a new antimalarial drug for treating malaria, the effect of other drugs with simi-

lar mode of action to drug, used in treating other infections than malaria have to be consid-

ered to preclude the possibilities of early development of resistance to the target drug due to 

cross-resistance. The findings from this study imply that in vivo studies be further carried 

out to confirm that the high frequency of SP resistance alleles is indicative of treatment fail-

ure. Improvement of health services with adequate drugs and skilled medical staffs from 

village levels may reduce uncontrolled and inappropriate use of the drug, consequently re-

ducing the chances of selecting SP resistance mutations against malaria. 
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Abstract  

Deficiencies in vitamins and mineral elements are important causes of morbidity in develop-

ing countries, possibly because they lead to defective immune responses to infection. Our 

aim was to assess the effects of mineral element deficiencies on early innate cytokine re-

sponses to Plasmodium falciparum malaria. Peripheral blood mononuclear cells from 304 

Tanzanian children aged 6–72 months were stimulated with P. falciparum-infected erythro-

cytes obtained from in vitro cultures. The results showed a significant increase by 74% in 

TNF-α in malaria infected individuals with zinc deficiency (11% to 240%; 95% CI). Iron 

deficiency anaemia was  associated with increased TNF-α production in infected individuals 

and overall with increased IL-10 production, while magnesium deficiency induced increased 

production of IL-10 by 46% (13% to 144%) in uninfected donors. Most donors showed a 

profound response towards IL-1β production, drawing special attention for its possible pro-

tective role in early innate immune responses to malaria. In view of these results, our find-

ings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection 

under conditions of different micronutrient deficiencies. Our findings lay the foundations for 

future inclusion of a combination of precisely selected set of micronutrients rather than sin-

gle nutrients as part of malaria vaccine intervention programs in endemic countries.  
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Introduction 

In African populations, multiple micronutrient deficiencies, infections and immunodeficien-

cies commonly co-exist. Deficiencies in vitamins and mineral elements can impair immune 

responses to infectious diseases through multiple mechanisms, ranging from phagocytosis 

and innate immune responses to antibody formation and cell-mediated immunity. Zinc is an 

important micronutrient because it is essential for the development, differentiation and func-

tion of several critical types of immune cells [1, 2]. In vitro mitogen stimulation experiments 

indicate that marginal zinc deficiency can cause reduced counts of circulating leucocytes 

and reduced whole blood concentrations of cytokines, particularly IL-6 [3]. Zinc deficiency 

contributes to pneumonia, acute and chronic diarrhoea [4, 5], and possibly malaria [4-6], 

which together constitute the leading causes of death in African children. In addition, zinc 

deficiency may exacerbate the outcome of diseases such as HIV and tuberculosis that rely 

on macrophage killing of infected cells [7]. Deficiencies of copper [8], iron and vitamin B12 

have been associated with impaired neutrophil functions whereas deficiencies of folic acid 

are not [9]. 
 

A fast-acting innate immune response, mediated by cytokines such as interleukine-1β (IL-

1β), IL-12 and tumour necrosis factor-α (TNF-α), is crucial for host survival in the initial 

stages of Plasmodium falciparum infection [10]. Zinc is needed for monocytes and macro-

phages to produce IL-1β and for other peripheral blood mononuclear cells (PBMCs) to pro-

duce TNF-α. Zinc deficiency can lead to impaired phagocytosis and intracellular killing by 

macrophages and neutrophils. In addition, it can impair NK-cell function, cytokine produc-

tion, the generation of an oxidative burst as well as complement activity [2, 11-14] through 

decreased activation of various cellular responses and low concentrations of IL-1β. In addi-

tion, innate immune responses determine the type and efficiency of subsequent adaptive 

immune responses [10, 15, 16] at later stages of infection. 

 

This study was conducted to assess the impact of deficiencies of zinc and other mineral ele-

ments on early innate immune responses to P. falciparum infection. We assessed this by in 

vitro stimulation experiments, using PBMCs samples that were collected from Tanzanian 

children aged 6-72 months. We hypothesised that zinc deficiency alters the balance in cyto-

kine production and their association in early immune responses, and that deficiencies of 

zinc and other mineral elements induce a decreased ability of PBMCs to produce pro-

inflammatory cytokines, and the regulatory cytokine IL-10, when exposed to P. falciparum 

parasites. In addition, we investigated to what extent the magnitude of the PBMCs cytokine 
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response depended on the P. falciparum infection status of the child at the time that the 

blood was collected and PBMCs were isolated. 
 

Subjects and methods 

Study area and population: This study was conducted in a lowland area around Segera vil-

lage (S 05º 19.447’, E 38º 33.249’), Handeni District, north-eastern Tanzania, in May-July 

2006. Malaria is highly endemic in this area, with virtually all infections being due to P. 

falciparum. The residents in the study population mostly comprise poor farmer families 

growing maize and cassava for subsistence use. Such populations are prone to deficiencies 

of zinc and iron because they have cereal-based diets that are rich in natural dietary constitu-

ents that inhibit the absorption of these trace metals [17]. At the time of our study, only one 

health centre in Segera was available to serve all of the surrounding area. The study was 

approved by Ethics Review Committees in The Netherlands and Tanzania (reference num-

bers for KCMC and the National Health Research Ethics Review sub-Committee: 094 and 

NIMR/HQ/R.8a/VolIX/540, respectively). Informed consent was obtained from community 

leaders and local government officials, and from parents or guardians. 
 

Sampling methods and eligibility criteria: A census list was made with all resident children 

aged 6-72 months in the study area. Using this list, 16 children were randomly selected from 

19 communities, resulting in a total of 304 subjects. Further details are provided elsewhere 

[18]. 
 

Field procedures: All children were examined by a clinical officer, who also measured axil-

lary temperature by electronic thermometer. Subjects were eligible when they had no fever, 

and showed no signs of other severe disease or severe malnutrition (weight-for-height z-

score below -3 SD). Both dip stick test and microscopy ware used for diagnosis providing a 

wide chance for detecting asymptomatic malaria case [19, 20].  Venous blood (6 mL) was 

collected in containers suitable for mineral element analysis with sodium heparin as antico-

agulant (Becton-Dickinson, Franklin Lakes, NJ). Immediately upon collection, the cap was 

sprayed with ethanol and allowed to dry; approximately 1.3 mL blood was then drawn by 

sterile syringe. This aliquot was centrifuged and plasma samples were stored and trans-

ported to The Netherlands at -80 ºC for subsequent measurement of mineral element con-

centrations. The remainder of the blood sample was kept at 20-25 °C during transport the 

same day to the laboratory in Moshi, at approximately 300 km distance, for collection of 

additional plasma and PBMCs. Children were treated for common childhood infections and 

anaemia according to guidelines of Tanzanian Ministry of Health. 
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Determination of plasma concentrations of mineral elements: Plasma samples were diluted 

20 times in milliQ [21], and concentrations of zinc, magnesium and copper were measured 

by inductively-coupled plasma atomic emission spectrometry (ICP-AES) (Vista Axial, Var-

ian, Australia). To determine variability in outcomes, measurements were replicated five 

times. With mean values set at 100%, measurements varied between 97% to 102% for zinc, 

99% to 102% for magnesium, and 97% and 102% for copper. Because we found no evi-

dence for copper deficiency as assessed by plasma copper concentrations <7.1 µmol/L 

(unpublished data), we only report the results for zinc and magnesium in this paper. 
 

Determination of plasma indicators of iron stores and inflammation: After arrival at the 

laboratory in Moshi, blood samples were immediately centrifuged (300´g) at ambient tem-

peratures for 10 minutes. We collected plasma (1.2 mL) and replaced this immediately with 

an equal volume of Iscove’s modified Dulbecco's medium (IMDM) with GlutaMAX 

(Invitrogen Gibco-BRL, Life Technologies, Grand Island, NY, USA) for subsequent isola-

tion of peripheral blood mononuclear cells (see below). Plasma was stored in liquid nitro-

gen, and subsequently transported on dry ice to The Netherlands, where plasma concentra-

tions of ferritin and C-reactive protein were measured as indicators of iron stores and in-

flammation, respectively, by using a Behring nephelometer (BN ProSpec; Dade-Behring) in 

The Netherlands (Meander Medical Centre). 
 

PBMCs isolation: PBMCs were isolated by Ficoll density gradient centrifugation, cells were 

transferred to 10% v/v DMSO in fetal calf serum, cooled at -1oC/minute in an isopropyl-

loaded device (Nalgene, Rochester, NY, USA) and preserved in liquid nitrogen [22]. For a 

16-h period during transport to Wageningen University, The Netherlands, the PBMCs were 

kept on dry ice, and immediately thereafter stored again in liquid nitrogen until stimulation 

experiments (see below).  
 

Preparation of P. falciparum-parasitized and unparasitized erythrocytes: Human O and 

rhesus-negative erythrocytes from healthy blood donors (Sanquin, Nijmegen, The Nether-

lands) were cultured in medium to which live P. falciparum parasites (NF54 strain) pro-

duced in a continuous culture were added [23, 24]. After 2-4 days, when asexual parasitae-

mia reached ~8-10% of infected erythrocytes, the culture was concentrated by centrifugation 

at 625´g for 5 min; infected erythrocytes were separated on a 67% Percoll gradient as re-

ported elsewhere [25] and washed twice in phosphate-buffered saline (PBS). Purified in-

fected erythrocytes were preserved at a concentration of approximately 15´107/mL in 13% 
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glycerol/PBS in a freezing container at -80oC. Glycerol (50% w/v) was added to the infected 

erythrocytes to avoid mechanical damage of the cells through ice formation. Unparasitized 

erythrocytes were processed similarly but without adding parasites to serve as a control. 

Both in parasitized and unparasitized erythrocyte cultures, we confirmed the absence of my-

coplasma contamination by polymerase chain reaction. Both parasitized and unparasitized 

erythrocytes were counted by flow cytometry, and compared regarding their size and inter-

nal complexity to the counting beads and PBMCs. Aliquots were made and stored at -80oC 

until needed for PBMCs stimulation. 
 

PBMCs stimulation: Malaria antigens differ in their capabilities to stimulate PBMCs: intact 

parasitized red blood cells (pRBC) are capable of inducing more rapid and intense pro-

inflammatory responses from PBMCs than freeze-thaw lysates of P. falciparum [26]. To 

simulate in vivo malaria-specific responses as closely as possible, we used P. falciparum 

pRBC, with an adapted protocol for stimulation of PBMCs by Jeurink et al [22]. In brief, 

PBMCs were cultured at 106 cells/well in sterile polystyrene 48-well plates with flat-bottom 

wells (Corning Inc, Corning, NY, USA). Based on initial optimization experiments, aliquots 

of pRBC were thawed and cultured with PBMCs in IMDM with glutamax containing 

Yssel’s supplements [27] with 2% human AB serum, 1% penicillin/streptomycin and 1% 

fungizone (Gibco-BRL), at a PBMCs:pRBC ratio of 1:2. PBMCs were also cultured under 

similar conditions with unparasitized erythrocytes (uRBC) (2´106 cells/well) as a negative 

control, and with soluble antibodies to CD3 and soluble antibodies to CD28 (Cat. 

No.555336 and 555725, Becton-Dickinson, Alphen aan den Rijn, The Netherlands) as a 

positive control. Monoclonal anti-CD3 and anti-CD28 antibodies provide co-stimulatory 

signals and polyclonal stimulation required for maximal proliferation of T lymphocytes [22, 

28]. Cell culture plates were incubated at 37oC in a humidified atmosphere containing 5% 

CO2. After PBMCs culturing for 1 day, we aspirated 75 µL of the supernatant per well to 

measure cytokine concentrations. 
 

Measurement of cytokine concentrations: Concentrations of IL-1b, IL-10, IL-12p70 and 

TNF-a were determined on a FACSCanto II flow cytometer by cytometric bead array sys-

tem and analysed with FCAP software (all from Becton-Dickinson). 
 

Statistical analysis: Data were entered and analysed using SPSS for Windows (version 15.0. 

SPSS Inc., Chicago, IL, USA). Zinc deficiency and low zinc status were defined as plasma 

zinc concentrations <9.9 µmol/L and <10.7 µmol/L, respectively. Low magnesium status 

was defined by magnesium concentration < 750 µmol/L [29, 30]. Iron deficiency anaemia 



 73 

Chapter 3 

was defined by co-existing iron deficiency (plasma ferritin concentration <12 µg/L) and 

anaemia (haemoglobin concentration <110 g/L). Cytokine concentrations were ln-

transformed to obtain normally-distributed values. Group differences in these values were 

analysed assuming t-distributions. Interactions between malaria and micronutrient indicators 

were assessed using multiple linear regression models on log-transformed cytokine data; the 

resulting effect sizes were exponentiated and expressed as percentage values. Linear regres-

sion analyses were also carried out to explore the associations between IL-1β, TNF-α and 

IL-10, and to what extent these associations were influenced by nutrient status and malaria 

infection status. The association between concentrations of TNF-α and IL-10 were consid-

ered as a measure of balance between the pro-inflammatory responses and the regulatory 

response. We only report the analyses of the cytokine responses to pRBC. As expected, the 

average response to uRBC (negative control) was less than to pRBC, whereas the average 

response to CD3/CD28 (positive control) was higher. Correction for these responses does 

not change the estimates of the associations between nutrient status and cytokine responses, 

or between malarial infection status and cytokine responses. 
 

Results 

General characteristics of the study population: We collected blood from 135 boys and 169 

girls; these had similar age distributions. We found the following prevalence values (n): low 

zinc status: 63.1% (188); zinc deficiency: 48.3% (144); low magnesium status: 65.1% (194); 

iron deficiency anaemia: 9.4% (26); malaria: 46.1% (140). Detailed characteristics of the 

study population by malarial infection status are summarised in table 1. In addition, the 

associations between nutrient status and supernatant cytokine concentrations, and between 

malaria infection status of the child at the time of blood collection and supernatant cytokine 

concentrations, following 24h of PBMCs stimulation with Plasmodium falciparum-infected 

erythrocytes are also summarized (figure 1). Adjustment for age class, sex and/or magne-

sium deficiency did not lead to marked changes in the associations between zinc deficiency 

and supernatant cytokine concentrations shown in figure 1; conversely, adjustment for age 

class, sex and/or zinc deficiency did not lead to marked changes in the associations between 

magnesium deficiency and those supernatant cytokine concentrations. 
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Figure 1:  Associations between nutrient status and supernatant cytokine concentrations, 

and between malaria infection status of the child at the time of blood collection and super-

natant cytokine concentrations, following 24h of PBMC stimulation with Plasmodium falci-

parum-infected erythrocytes. 

 

N: normal concentrations; L: low concentrations (plasma concentrations of zinc and mag-

nesium <9.9 µmol/L and <750 µmol/L, respectively); A: absence of iron deficiency anae-

mia; P: presence of iron deficiency anaemia (co-existing iron deficiency; plasma ferritin 

concentration <12 µg/L and anaemia; haemoglobin concentration <110 g/L). –ve: malaria 

negative; +ve: malaria positive. Percentages indicate paired group differences in super-

natant cytokine concentrations, expressed as percentages relative to values observed in 

groups with normal plasma zinc or magnesium concentrations. P-values were obtained by 

assessing by multivariate analysis to what extent the proportional change in cytokine con-

centration that is associated with nutrient or malaria status.  
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Association between nutrient indicators and in vitro innate cytokine production, by malaria 

infection status at the time of blood collection: When analysing IL-10 concentrations, we 

excluded all individuals with IL-10 concentrations below the detection limit. In some in-

stances, differences in cytokine concentrations between nutrient replete and deficient chil-

dren (figure 2) seemed to depend on malarial infection status at the time of blood collection 

(table 2). The profile of supernatant cytokine concentration appeared different between sub-

jects with deficiencies in zinc, magnesium and with iron deficiency anaemia. In the absence 

of malaria infection at the time of blood collection, zinc deficiency was associated with mar-

ginal reductions in concentrations of TNF-α, IL-1β and IL-10. Amongst donors with malaria 

infection at the time of blood collection, zinc status was not associated with altered concen-

trations of IL-1β or IL-10, but low plasma zinc concentrations were associated with an in-

crease in TNF-α concentration by 74% (11% to 240%, 95% CI). Malaria infection at the 

time of blood collection seemed to determine the magnitude of the association between low 

plasma zinc concentration and TNF-α concentration (9% reduction in children without ma-

laria, as compared to 74% increase in their peers with malaria; although the statistical evi-

dence for this difference was weak (P=0.15). 
 

Magnesium deficiency, on the other hand, was associated with increased concentrations of 

IL-10; this increase was 46% in children without malaria, as compared to only 6% in their 

peers with malaria (figure 2). Low magnesium concentrations seemed associated with re-

duced concentrations of TNF-α and IL-1β by -25% (95% CI: -64% to 55%; P = 0.79) and -

44% (-70% to 6%; P = 0.13), respectively, in children with malaria infection at the time of 

blood collection, although these differences may have been due to chance. These results are 

a reverse of the situation in zinc deficiency. The numbers of individuals with both iron defi-

ciency anaemia and malaria (table 1) were too low to compare groups meaningfully. 
 

Influence of malaria and nutrient indicators on associations between cytokine concentra-

tions: We found no evidence that the associations between concentrations of TNF-α and IL-

10 depended on zinc, magnesium or malaria status at time of blood collection, as indicated 

by differences in slopes of 17% (-44% to 147%; 95% CI, P=0.67) for zinc status, 10% (-

47% to 127%; 95% CI, P=0.80) for magnesium status, or 3% (-24% to 39%; 95% CI, P=84) 

for malaria (figure 3). There was some evidence, however, that iron deficiency anaemia 

(IDA) influenced the relationship between concentrations of TNF-α and IL-10, as indicated 

by the difference between slopes of 119% (35% to 637%; 95% CI, P=0.20). 
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Figure 2:  Associations between nutrient status and supernatant cytokine concentrations 

following 24h of PBMC stimulation with Plasmodium falciparum-infected erythrocytes, by 

malaria infection status of the child at the time of blood collection. 

 

N: Normal concentrations; L: low concentrations (plasma concentrations of zinc and mag-

nesium <9.9 µmol/L and <750 µmol/L, respectively). Data from children without and with 

malaria infection at the time of blood collection are indicated with open and shaded col-

umns, respectively. Percentages indicate group differences in supernatant cytokine concen-

trations, expressed as percentages relative to values observed in groups with normal plasma 

zinc or magnesium concentrations. P-values were obtained by assessing by multivariate 

analysis to what extent the proportional change in cytokine concentration that is associated 

with nutrient status is different between children with and without malarial infection. The 

number of individuals with iron deficiency and malaria (table 1) was too small to meaning-

fully compare among groups. 
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Additional linear regression analyses (figure 4) showed evidence that zinc status influenced 

the association between concentrations of IL-1β and IL-10, as indicated by differences in 

slopes of 118% (4% to 359%; 95% CI, P=0.04). There was no evidence that malaria infec-

tion influenced the association between concentrations of TNF-α and IL-1β (figure 4, ma-

laria panel), as indicated by a difference in the slopes of regression lines of 9% (-13% to 

35%; P=0.47). In summary, these results show no evidence of influence on associations 

among innate cytokines, by the various conditions of micronutrient malaria status at time of 

blood collection except for zinc status, for which there was some evidence that it influenced 

the association between IL-1β and IL-10. We found no evidence of influence of micronutri-

ent status and malaria on associations in other relationships. There were insufficient cases in 

all groups to explore and meaningfully compare the associations between IL-12 and other 

cytokines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Associations between supernatant concentrations of TNF-α and IL-10 following 

24h stimulation of peripheral blood mononuclear cells with Plasmodium falciparum-

infected erythrocytes, by micronutrient and malaria status at the time of blood collection,  

 

Black blocks = zinc or magnesium replete, no iron deficiency anaemia or no malaria; open 

blocks = zinc and magnesium deficiency, iron deficiency anaemia or positive results for 
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malaria tests at time of blood collection. P-values indicate probabilities of obtaining differ-

ences in associations between cytokine concentrations (as indicated by the slopes of the 

lines) as least as extreme as observed, assuming no differences. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Relationships between supernatant concentrations of TNF-α, IL-1β and IL-10 

following 24h stimulation of PBMCs with Plasmodium falciparum-infected erythrocytes, 

under different conditions of micronutrient and malaria status at the time of blood collec-

tion.  

 

Black blocks = zinc replete, magnesium replete, or no malaria; open blocks = zinc defi-

ciency or positive results for malaria test at time of blood collection.  
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Effects of plasma concentrations of mineral elements on in vitro cytokine responses by 

PBMCs: Our biochemical data showed that most children in this study had nutrient deficien-

cies, particularly in zinc and magnesium and to a lesser extent iron deficiency anaemia. Zinc 

deficiency was associated with increased TNF-α responses in children with malaria infec-

tion at the time of blood collection but not in those without infection. TNF-α is a pro-
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inflammatory cytokine resulting in malaria pathology if not properly regulated. We also 

found that, in children with malarial infection, zinc deficiency is associated with increased 

production of IL-1β and IL-10, even if this increase did not bring the levels to those reached 

by individuals in the non-infected group. This is important because IL-10 is required to limit 

the production of pro-inflammatory cytokines, so they do not lead to pathological conse-

quences [31]. The low production of IL-10, however, could be due to the fact that the cyto-

kine is said to be produced late (in vivo) following infection relatively to the innate cyto-

kines. The initial production of TNF-α could also be the triggering factor by feedback 

mechanisms for production of IL-10 although Ramharter et al [32] reported increased re-

sponsiveness of in vivo primed cells as compared to malaria-naïve cells, with a tendency 

towards increased production of TNF-α. This can possibly explain the difference between 

subjects who were exposed or non-exposed at the time of blood collection, in response to in 

vitro stimulation in our study. These results show possible alterations in innate cytokine 

production particularly TNF-α and IL1-β due to the reported impaired macrophage functions 

and NK-cells activity in zinc deficiency [1, 2, 13, 33]. Interaction between these cells leads 

to the production of innate cytokines in the early stages of infections. 
 

The relatively higher cytokines levels in individuals with malarial infection as compared to 

their uninfected peers (figure 2), however, can be explained by the priming of the immune 

system by malaria. Exposure of T cells to malaria leads to priming, so that these cells pro-

duce greatly increased amounts of IFN-γ when subsequently exposed. This cytokine is nec-

essary for up-regulation of production of TNF-α and other pro-inflammatory cytokines in 

malaria infection [34, 35]. In this context, malaria-positive subjects are said to have γδT-

cells primed with the capacity for immunological memory and highly contributing to rapid 

and early pro-inflammatory cytokine production following re-infection [35]. The increase in 

innate cytokine production in zinc-deficient individuals with malarial infection can be the 

result of a shift towards a pro-inflammatory immune response due to zinc deficiency in 

combination with prior priming of these cells due to previous exposure to malaria. The ini-

tial contact with the pathogen directs towards production of pro-inflammatory cytokines to 

limit infection. Loharungsikul et al [36] proposed Toll-like receptors (TLRs) to play a role 

in innate immune recognition in which the differential expression of TLRs on antigen pre-

senting cells (APCs) could be regulated by the P. falciparum parasite. This could account 

for the increase in levels of TNF-α in malaria-positive individuals regardless of micronutri-

ent status (figure 1). Studies from murine malaria [37] have revealed glycosylphosphatidyl 

inositols (GPIs) that anchor P. falciparum merozoite surface protein 1 (MSP1) and mero-

zoite surface protein 2 (MSP2) to be the pathogen associated molecular patterns (PAMPs) 
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preferentially recognised by TLR-2 and TLR-4. The recognition and the interaction between 

these molecular patterns signal the induction of pro-inflammatory cytokine production. In 

addition, it is possible that parasite DNA attached to malarial pigment (hemozoin) produced 

in the course of infection further activates the innate immune response through TLR-9 en-

gagement [38]. The expression of TLRs has been found to differ between malaria-infected 

and uninfected individuals, with higher expression being observed in infected patients [24, 

39]. These recent studies have further indicated TLR-2 to be highly expressed in mononu-

clear cells, particularly monocytes of P. falciparum-infected children and that TLR-2 are 

well responsive following stimulation with pRBCs resulting into stronger signals with con-

sequential change in cytokine production profiles. 
 

The interesting result in this study is that the impact of magnesium deficiency on early cyto-

kine responses followed a different profile from that observed with zinc status. Magnesium 

deficiency seemed to be associated overall with low TNF-α concentrations, low concentra-

tions of IL-1β and higher concentrations of IL-10 in uninfected but not infected donors 

(figure 2). Low levels of pro-inflammatory cytokines in malaria are critical because they 

reduce the ability of the initial innate immune response to limit infection. Our results imply 

that magnesium deficiency directs early cytokine responses towards anti-inflammatory 

rather than pro-inflammatory cytokine responses, although further studies are still needed to 

confirm this hypothesis. The significantly increased IL-10 and variable alteration in levels 

of TNF-α and IL-1β in both malaria-negative and malaria-positive subjects with magnesium 

deficiency may explain the imbalance in cytokine production as a result of magnesium defi-

ciency modulated by malaria status.  
 

Methodological differences may explain contradictions between our findings and those from 

previous studies [5, 7, 9, 40]. We used parasitized erythrocytes to simulate the in vivo infec-

tion, whereas others used mitogens, lipopolysaccharides (LPS), phytohemagglutinin (PHA) 

and polyclonal stimulation. In addition, we used Ficoll-isolated PBMCs that had been stored 

for several months under frozen conditions, whereas whole blood stimulated within 15 min-

utes of collection was also used. McCall et al [24] stimulated freshly prepared PBMCs from 

adult naïve volunteers ex vivo with P. falciparum antigens. Our findings suggest that zinc 

and other micronutrients can protect against malaria infection by a different means such as 

targeting specific pathogenic processes of infection in vivo [41]. Nevertheless, the idea that 

zinc can also reduce production of pro-inflammatory cytokines by inhibiting signal trans-

duction in monocytes in healthy human subjects [42], particularly IL-1β and TNF-α [2, 43, 

424], should be further explored. The latter idea is also supported by in vitro studies [45, 46] 
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in other conditions than malaria. 
 

In our study and those conducted by others [47, 48], IL-12 concentrations were below the 

detection limits. The most probable reason is the time required for maximal priming of 

pathogen recognition receptors (e.g. TLRs) on PBMCs by P. falciparum-parasitized erythro-

cytes. McCall et al [24] have shown that pro-inflammatory priming effects of P. falciparum 

require up to 48 hours to develop maximally, whereas we measured cytokines after 24 hours 

of stimulation. This priming is lacking in our culture system despite the reported poor in 

vitro induction of IL-12 by P. falciparum [49]. There may be a possibility that the levels 

were below the detection limits as a result of IL-12B gene promoter polymorphisms that is 

reported to be associated with low IL-12 production and increased malaria mortalities in 

children [50]. This gene encodes for the IL-12p40 cytokine and has been determined in Tan-

zania. Early IL-12 activity is also liable to suppression by transforming growth factor 

(TGF)-β [51, 52] that has been reported to variably influence and result in weak IL-12 acti-

vation and production, at least in vivo. Most of our donors responded towards production of 

IL-1β rather than TNF-α and IL-10.  This is interesting since although different arguments 

reveal the pathological effect of IL-1β on cerebral malaria and severity of the disease in 

children [53], IL-1β together with other pro-inflammatory cytokines like IFN-γ and IL-6 is 

said to be protective against malaria by inducing parasite killing by monocytes, macro-

phages and neutrophils [54]. Production of IL-1β is induced by direct interaction between 

zinc and monocytes through activation of interleukine-1 receptor associated kinase (IRAK) 

which is dose-dependent [44]. Lower in vivo zinc levels, partially inhibit IRAK leading to 

diminished but not completely inhibited normal T-cells IL-β response. Results from this 

study may also reflect that stimulation of cryopreserved PBMCs by pRBCs results in a grad-

ual production of innate cytokines preceded by IL-1β from the monocytes.  

 

 

 

 

 

 

 

 

 

 

 



82  

Nutrition and Innate cytokines 

Table 1. Characteristics of the study population, by malarial infection status  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Association between innate cytokines under different conditions of micronutrients and ma-

laria status: The association between IL-1β and IL-10 was found to be influenced by zinc 

status (figure 4). The two innate cytokines TNF-α and IL-1β are a prerequisite in early re-

sponses to malaria infection and IL-10 is an important regulatory cytokine affected by nutri-

ent deficiencies and malaria infection status.  This is critical under tropical situations where 

both micronutrients deficiencies and malaria prevail, posing a challenge to the early immune 

response to infections. 

 

 

 

 

 

 

 

 

 

 Plasmodium- 
infected 

Plasmodium- 
uninfected 

P-value 

Sex   0.56 
Male 65 70  
Female 75 94  

Age class   0.03 
6-12 months 7 19  
12-24 months 18 31  
24-48 months 61 58  
48-72 months 54 55  

Zinc deficient 1   0.49 
Yes 63 81  
No 74 80  

Magnesium deficient 2   0.63 
Yes 87 107  
No 50 54  

Iron deficiency anaemia 3   <0.001 
Yes 2 24  
No 138 140  

 

1 
Plasma zinc concentration <9.9 µmol/L; 

2 
plasma magnesium concentration <750 µmol/L; 

3
 

anaemia (haemoglobin concentration <110 g/L) and iron deficient (plasma ferritin 

concentration <12 µg/L. 
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In conclusion, we have shown micronutrient deficiencies to variably influence some in vitro 

innate cytokine concentrations. Zinc deficiency in particular, was found to possibly influ-

ence  the in vitro production of various innate cytokines that particularly are modulated by 

malaria status. Magnesium deficiency, on the other hand, seemed to associate with higher 

concentrations of IL-10 in donors uninfected at time of blood collection. These results may 

be speculative indicators that while zinc deficiency and possibly iron deficiency anaemia 

might increase pro-inflammatory cytokines such as IL-1β and TNF-α, magnesium defi-

ciency may have greater influence on anti-inflammatory cytokines such as IL-10. With re-

gards to early innate cytokine responses to malaria, an ideal situation should be to supple-

ment children with a combination of a few precisely selected micronutrients rather than sin-

gle nutrients, although further studies involving larger sample sizes still need to be per-

formed. This study has indicated the effect of poor nutrition on innate immune responses in 

children from malaria endemic area and how malaria infection may modulate these relation-

ships. The findings have also shown plasticity in cytokine profiles of mononuclear cells 

reacting to malaria infection under conditions of different micronutrient deficiencies. Our 

findings therefore lay the foundations for future inclusion of selected micronutrients in ma-

laria vaccine intervention programs, particularly in developing countries, to boost immune 

response to malaria. 
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Abstract 

An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that 

mediate innate and adaptive immune responses is required for effective protection against 

human malaria and to avoid immunopathology. In malaria endemic countries this immu-

nological balance may be influenced by micronutrient deficiencies. Here, we stimulated 

peripheral blood mononuclear cells from Tanzanian preschool children in vitro with Plas-

modium falciparum-infected red blood cells to determine T-cell responses to malaria under 

different conditions of nutrient deficiencies and malaria status. Our data indicate that zinc 

deficiency is associated with an increase in TNF-α response by 37%; 95% CI: 14% to 118% 

and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other 

hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 

371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to 

a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type 

II response in magnesium deficiency. Our data also reveal a non-specific decrease in cyto-

kine production in children due to iron deficiency anaemia that is largely associated with an 

malaria infection status. The pathological sequel of malaria potentially depend more on the 

balance between type I and type II cytokine responses than on absolute suppression of these 

cytokines and this balance may be influenced by a combination of micronutrient deficien-

cies and malaria status. In conclusion, it should be further assessed to what extent supple-

mentation with zinc, magnesium and iron is beneficial in children with deficiencies for these 

nutrients. 

 

 

 

 

 

 

 

 



 91 

Chapter 4 

Introduction 

Frequent or chronic exposure to Plasmodium falciparum infection is thought to be a key 

element to immune protection against malaria in endemic areas [1]. Although the human 

immune system can kill parasites, it can also contribute to severe disease if not regulated 

and controlled to optimal levels [2, 3]. In African countries, micronutrient deficiencies are 

common and may modulate immunity and predispose to infections. This is particularly rele-

vant for young children who are most at risk of both malaria and micronutrient deficiencies. 

 

Deficiencies in mineral elements and vitamins can result in suppression of innate, T-cell 

mediated and humoral responses [4, 5]. Coordinating these responses are the cytokines 

which are produced interactively by several types of immune cells [2, 4]. The immune re-

sponse to malaria is specific for individual developmental stages of the parasite, and the 

balance in production of pro-inflammatory and anti-inflammatory cytokines seems to be 

critical for prognosis [5, 6]. Following presentation of malaria antigens by antigen-

presenting cells including dendritic cells, macrophages and occasionally B cells, naïve T 

helper (Th) cells proliferate and differentiate into specific Th cell subsets. The pattern of Th 

cell types, and the associated cytokine profile, probably depends on the type of antigen-

presenting cells and their cytokine milieu, and on regulatory T-cells that suppress the prolif-

eration and activity of B cells and Th cells by the production of IL-10 and transforming 

growth factor (TGF)-β. Imbalance in these responses can result in an inefficient adaptive 

immune response to clear infection, and may contribute to pathological consequences. Sev-

eral reports [7-15] have indicated possible roles of micronutrients on immune responses but 

either they have focused on other infections than malaria, or their effects have been evalu-

ated in individuals older than 5 years, the age with the highest vulnerability to malaria. 

 

We hypothesized that the adaptive cytokine response to Plasmodium falciparum is influ-

enced by micronutrient deficiencies that result in an imbalance between Th1 cells, with in-

terferon (IFN)-γ as a signature cytokine, and Th2 cells, characterized by the production of 

interleukin (IL)-4, IL-5 and to some extent IL-13. We isolated peripheral blood mononu-

clear cells (PBMCs) from Tanzanian children aged 6-72 months, and assessed in vitro the 

cytokine responses of these PBMCs upon exposure to erythrocytes parasitized by P. falcipa-

rum. We compared these responses between donors with and without micronutrient defi-

ciencies and in addition, we assessed to what extent the magnitude of PBMCs cytokine re-

sponses depended on P. falciparum infection status of the child at the time of blood collec-

tion. 
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Subjects and methods 

Study area and population: The field work for this study was conducted in a lowland area 

around Segera village (S 05º 19.447’, E 38º 33.249’), Handeni District, north-eastern Tanza-

nia, in May-July 2006. Malaria is highly endemic in this area, with virtually all infections 

being due to P. falciparum. The local population comprises mostly poor farmer families 

growing maize and cassava for subsistence use. The study was approved by both Ethics Re-

view Committees in The Netherlands and Tanzania (for Tanzania ethics review bodies, the 

reference numbers for KCMC and National Ethics Review Committee were 094 and NIMR/

HQ/R.8a/VolIX/540, respectively). Informed consent was obtained from community leaders 

and local government officials, and from parents or guardians. 
 

Sampling methods, eligibility criteria and preliminary laboratory analyses: The details of 

sampling method, field procedures, isolation of peripheral blood mononuclear cells 

(PBMCs) are provided elsewhere [16, 17]. In brief, children aged 6-72 months were re-

cruited in the study and were clinically examined before sample collection. Children were 

eligible to participate if they had no signs of severe febrile disease or severe malnutrition at 

the time of assessment. Dip stick test was used for diagnosis complimenting microscopy and 

providing a wide chance for detecting asymptomatic malaria infection [18, 19].  Whole 

blood samples from the study children were collected after overnight fasting. PBMC were 

isolated using Ficoll density gradient centrifugation. P. falciparum-parasitized and unparasi-

tized erythrocytes were prepared as described elsewhere [20, 21], and kept under frozen 

conditions until the stimulation experiments.  
 

Determination of plasma indicators of mineral element status: Plasma samples were diluted 

20 times in milliQ [22], and concentrations of zinc, magnesium and copper were measured 

by inductively-coupled plasma atomic emission spectrometry (ICP-AES) (Vista Axial, Var-

ian, Australia). To determine variability in outcomes, measurements were replicated five 

times: with mean values set at 100%, measurements varied between 97% to 102% for zinc, 

99% to 102% for magnesium, and 97% and 102% for copper. Plasma concentrations of fer-

ritin and C-reactive protein were measured as indicators of iron stores and inflammation, 

respectively by using a Behring nephelometer (BN ProSpec; Dade-Behring) in The Nether-

lands (Meander Medical Centre) and will be reported separately. 

 

PBMCs stimulation: PBMCs were cultured at 106 cells/well in sterile polystyrene 48-well 

plates with flat-bottom wells (Corning, Cat No. 3548, NY 1483, USA) in Yssel’s culture 

medium [23], which is a modification of Iscove’s modified Dulbecco’s medium (IMDM), 
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lacking the nutrients considered in this study. The medium is recommended for the culture 

of cells growing in suspension, such as human T and B cell lines and is especially recom-

mended for the generation and long-term culture of antigen-specific T cell and NK clones 

[24, 25]. Aliquots of P. falciparum-parasitized red blood cells (pRBC) were thawed, re-

suspended in Yssel’s+ medium [17] with 1% human AB+ serum plus 1% penicillin-

streptomycin and 1% fungizone (Gibco-BRL, Invitrogen, Grand Island NY, USA), and 

added to PBMCs in a ratio of 2:1 (2×106 pRBC to 1×106 PBMC). PBMC were also cultured 

under similar conditions with unparasitized erythrocytes (uRBC) (2´106 cells/well) as a 

negative control, and with soluble antibodies to CD3 and soluble antibodies to CD28 (Cat. 

No.555336 and 555725, Becton-Dickinson Pharmigen, Alphen aan den Rijn, The Nether-

lands) as a positive control. Cell culture plates were incubated at 37oC in a humidified at-

mosphere containing 5% CO2. Based on previous studies [26-28] and our own preliminary 

experiments (Mbugi E, Meijerink M et al, unpublished data), we expected 7 days of con-

tinuous stimulation to be optimal for observing differences in PMBCs responses to exposure 

with non-parasitized and parasitized RBCs. Thus after 6 days of culture, monensin was 

added to cells to allow for accumulation and subsequent staining of intracellular cytokines. 

At day 7 of culture, aliquots of supernatant were collected from parallel non-monensin 

treated cultures; concentrations of type I cytokines (IL-1β, IL-12p70, TNF-α, ILN-γ) and 

type II cytokines (IL-4, IL-5, IL-10, IL-13) in culture supernatants were measured using a 

Cytometric Bead Array System (FACSCanto, Becton-Dickinson). 
 

Proliferation and activity of leukocyte subsets: Proliferation assays were performed to deter-

mine the activity potential of cells and to determine whether selected individuals displayed 

intrinsic differences in their T-cell compartments. To distinguish PBMCs subsets, we 

stained cultured cells (5×105) for 30 min, at 4oC in the dark with a combination of fluoro-

phore-bound antibodies against CD4 (T helper cells), CD8 (cytotoxic T cells) and CD45 (all 

leucocytes) (Becton-Dickinson Pharmingen, Alphen aan den Rijn, The Netherlands). The 

cells were then centrifuged (500×g, 5 min, 4°C), washed, re-suspended in PBS for subse-

quent staining for Ki-67 protein. This protein is present during all active phases of the cell 

cycle, but not in resting cells [29]. After CD marker staining, cells were fixed and permeabi-

lised by incubation (15 min, 4°C, dark condition) with BD Cytofix/Cytoperm (catalogue no. 

554722, Becton-Dickinson Pharmingen). The cells were subsequently washed twice with 

BD Perm/Wash buffer™ (catalogue no.554723, Becton-Dickinson Pharmingen), centri-

fuged (300×g, 10 min, 4°C), re-suspended in BD Perm/Wash buffer and incubated with Ki-

67 detection antibodies (catalogue no. 556026, Becton-Dickinson Pharmingen) (30 min, 4°
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C, dark conditions). Thereafter, the cells were washed twice with perm/wash buffer and 

suspended in PBS with counting beads for subsequent flow cytometry. 

 

Intracellular cytokine staining: Cultured cells (5×105) were incubated (for 30 min, at 4°C in 

the dark ) with 20% human AB serum in PBS to block Fc receptor binding and stained with 

antibodies against CD4 and CD25 to detect activated Th cells, centrifuged (500×g, 5 min, 4°

C), fixed, permeabilized and washed as described above, and re-suspended in PBS for sub-

sequent intracellular staining for IL-10 and IL-4 using antibodies against these cytokines 

(BD Pharmigen, Alphen aan den Rijn, The Netherlands). After incubation with anti-IL-10 

and anti-IL-4 detection antibodies, the cells were washed twice with perm/wash buffer and 

re-suspended in PBS for analysis by flow cytometry. 

 

Flow cytometry: Analyses were performed on a FACSCanto II flow cytometer and analysed 

with FACSDivaTM software (both Becton-Dickinson Biosciences). 
 

Statistical analysis: Data were entered and analysed using SPSS for Windows (version 15.0. 

SPSS Inc., Chicago, IL, USA). Zinc deficiency and low zinc status were defined as plasma 

zinc concentrations <9.9 µmol/L and <10.7 µmol/L, respectively; low magnesium status was 

defined by magnesium concentration <750 µmol/L; iron deficiency anaemia was defined by 

coexisting iron deficiency (plasma ferritin concentration <12µg/L) and anaemia 

(haemoglobin concentration <110 g/L). Because we found no evidence for copper defi-

ciency as assessed by plasma copper concentrations  (<7.1 µmol/L) (data not shown), we 

currently only report the results for zinc, magnesium and iron deficiency anaemia. Cytokine 

concentrations were log-transformed to obtain normally distributed values. Group differ-

ences were analysed assuming t-distributions, and associations between continuous vari-

ables were assessed using linear regression analysis. Effects of log-transformed data were 

expressed in their natural units by exponentiation, and reported as the percentage difference 

relative to the reference value. We only report the analyses of the cytokine responses to 

pRBCs. As expected, the average response to uRBCs (negative control) was less than to 

pRBCs, whereas the average response to CD3/CD28 (positive control) was higher. Correc-

tion for these responses does not change the estimates of the associations between nutrient 

status and cytokine responses, or between malarial infection status and cytokine responses. 

 

Results 

Study population and characteristics: The study population consisted of 304 children; 301 

were within the eligible age range; for 3 children we found after recruitment that they were 
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older but these were retained in the analysis. Characteristics of the study population and 

crude associations between malarial infection and nutrient markers are provided elsewhere 

[16] and (Chapter 3). In short, the following prevalence values were found: malarial antigen 

as assessed by dipstick test: 45.2 %; low zinc status 63.1% (188); zinc deficiency: 48.3% 

(144); low magnesium status: 65.1% (194); iron deficiency anaemia: 9.4% (26); malaria: 

46.1% (140).  Malaria status at inclusion was found to associate with age and iron defi-

ciency anemia, but not with zinc or magnesium deficiency (Mbugi et al, chapter 3). 
 

Induction of cytokine production: Lower concentrations of cytokines were detected in uRBC 

than in pRBC indicating the differences in in vitro mitogenic activities on PBMC. Stimu-

lated PBMC responded more strongly with IFN-γ production as compared to other cyto-

kines. Production of IL-4 was lowest regardless of the micronutrient status. In general, the 

composition of cytokines in day 7 supernatants consisted of IFN-γ, TNF-α, IL-1β, IL-13, IL-

10, IL-12p70, IL-5 and IL-4, in declining order of concentration.  

 

Proliferation and intracellular cytokine staining: The average proportion of malaria extract-

specific proliferating cytotoxic T-cells (CD8+ Ki67+) and proliferating Th cells (CD4+ 

Ki67+) relative to the general proliferating leucocytes were 4% and 21%, respectively. In 

figure 1 a representative example of a flow cytometric analysis of a malaria-specific CD4+ 

T-cell response in the PBMCs of a malaria-infected child is shown. Of the leukocytes re-

sponding to the malaria extract after 7 days of culture,  on average 20% of the leukocytes 

were activated Th cells (CD4+ CD25+; 23 % in figure 1), part of them may be naturally oc-

curring or probably inducible regulatory T-cells (Tr). Intracellular cytokine staining revealed 

that the proportion of CD4+/CD25+ cells producing both IL-4 and IL-10 (average 19%; 7.2% 

in figure 1) was higher than cells producing only IL-10 (average 4%; 2.5 % in figure 1) or 

only IL-4 (14 % in figure 1). This indicated that most anti-inflammatory cytokine response 

came from IL-4+IL-10+ double producing cells, rather than from single IL10+ cells.  
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Influence of nutrient deficiencies on cytokine responses to stimulation with malaria para-

sites: We next explored the association between nutrient deficiencies and cytokine re-

sponses assuming no interaction with malarial infection. The effect change in cytokine con-

centration under different conditions of micronutrients status are shown in tables 1 and 2, 

respectively. For this analysis only the data were used of individuals of which the PBMCs 

cultures  stimulated by malaria extract yielded detectable cytokine levels that are indicative 

of malaria-specific responding T-cells by induced proliferation and cytokine synthesis. Thus 

the number of individuals differ for every individual cytokine analyzed. Overall, zinc defi-

ciency was associated with increased supernatant concentrations of TNF-α and IFN-γ (by 

37% and 74%, respectively), and seemed associated with increased concentrations of IL-5 

and IL-13 (tables 1 and 2). Magnesium deficiency was associated with an 80% increase in 

IL-13 concentrations, and seemed associated with a 49% increase in IL-5 concentrations. 

Iron deficiency anaemia was associated with increased concentrations of IL-12 by 37%, and 

seemed associated with a 34% decrease in IL-5 concentrations. 

 

Interaction between nutrient deficiencies and malarial infection on cytokine response to 

stimulation: In some cases, malarial infection at the time of blood collection seemed to in-

fluence the associations between nutrient deficiencies and cytokine responses to stimulation. 

For example, in children without malaria, zinc deficiency was associated with an increase in 

supernatant concentration of IFN-γ by 114%; 95% CI: 41% to 677% as compared to an in-

crease of 40%; 95% CI: -53% to 314% in their peers with malaria infection. Similarly, in 

children without malarial infection, iron deficiency anaemia was associated with a decrease 

in IFN-γ concentration by 23% (95% CI: -78% to 177%) as compared to a 60% increase 

(95% CI: 45% to 368%) in their peers with malaria infection. In none of these cases, how-

ever, was such interaction supported by statistical evidence, as indicated by the high P-

values in figures 2 and 3. In other words, there is no evidence that the relationships between 

nutrient markers and cytokines depend on malarial infection. This reflects that nutritional 

deficiencies association with in vitro cytokine responses is independent of malaria status at 

time of blood collection.   
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Table 3: Effect change in linear relationships and differences in slopes of supernatant con-

centrations of cytokines measured after 7 days of stimulation with malaria antigens in chil-

dren with different nutritional and malaria status at time when blood was collected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 IDA: Iron deficiency anaemia  

 

Relationship between IFN-γ and type II cytokines: Lastly, we explored the influence of nu-

trient deficiencies on the relationships between IFN-γ and some type II cytokines (table 3, 

figure 4). Overall, there was a clearly detectable positive linear relationship between IFN-γ 

and IL-5, IL-10 and IL-13. There was weak evidence however, that the slopes of regression 

lines differ with zinc, magnesium or malaria infection status. On the other hand, there was 

strong evidence that the slopes of regression lines for the association between IFN-γ and IL-

10 differed with iron deficiency anaemia status (P = 0.001). The change in slopes in the 

latter relationship was such that in iron deficiency anaemia there existed a negative linear 

relationship signifying that an increase in IFN-γ lead to a decrease in IL-10. There was no 

evidence that the slopes of regression lines for the association between IFN-γ and IL-10 

differed (figure 4) in zinc deficiency, magnesium deficiency and malaria infection. How-

ever, the results indicate that a smaller increase in concentration of IL-10 was associated 

with a relatively larger increase on IFN-γ (slopes). Subsequent analysis on whether deficien-

Predictors Cytokine pairs Change in 

slope  

95% CI 

Zinc  IFN-γ vs IL-5 32% -62% to 357% 

Zinc  IFN-γ vs IL-10 -12% -43% to 35% 

Zinc  IFN-γ vs IL-13 12% -52% to 157% 

Magnesium  IFN-γ vs IL-5 -38% -89% to 256% 

Magnesium  IFN-γ vs IL-10 -36% -61% to 5% 

Magnesium  IFN-γ vs IL-13 -20% -71% to 118% 

IDA  IFN-γ vs IL-5 -45% -81% to 58% 

IDA  IFN-γ vs IL-10 -48% -63% to -36% 

IDA  IFN-γ vs IL-13 -26% -66% to 58% 

Malaria  IFN-γ vs IL-5 174% -5% to 689% 

Malaria  IFN-γ vs IL-10 -23% -17% to 83% 

Malaria  IFN-γ vsIL-13 40% -34% to 197% 
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cies and malaria infection status influence the association among Th1 and Th2 cytokines, 

apart from IFN-γ (data not shown) revealed an overlap in slopes of linear associations. 

There was weak evidence that magnesium deficiency, zinc deficiency and malaria infection 

at time of blood collection influenced these associations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Representative example of the flowcytometric analysis of the IL-10 secreting 

CD4+CD25+ population of PBMCs stimulated with malaria extract for 7 days. A. Leuko-

cytes were identified by forward (FSC) and sideward (SSC) scatter. B. Of these leukocytes 

staining was performed with CD4-PE-Cy7-A and CD25-APC-Cy7-A labelled monoclonal 

antibodies from BD Pharmingen. C. The CD4+CD25+ double positive cells were stained 

intracellularly with IL-4 APC-A and IL-10 PE-A labelled monoclonal antibodies from BD 

Pharmingen. Panel 1 contains 14% IL-4 single positive CD4+CD25+ cells, panel 3 contains 

2.5% IL-10 single positive CD4+CD25+ cells, and panel 2 contains 7.2% IL-4+IL-10+ dou-

ble positive CD4+CD25+ cells.  

 
B 

C 

A 
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Figure 2: Associations between micronutrient status and supernatant type I cytokine con-

centrations following 7 days of PBMCs stimulation with Plasmodium falciparum-infected 

erythrocytes, by malaria infection status of the child at the time of blood collection. 

 

N: Normal concentrations; L: low concentrations; A: absent; P: present. Percentages indi-

cate paired group differences in cytokine concentrations. Data from children without and 

with malaria infection at the time of blood collection are indicated with open and shaded 

bars, respectively. P-values indicates the interaction between nutrition and malaria infec-

tion status.   
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Discussion 

Cytokine production: The results from this study reveal that pro-inflammatory cytokine do 

not only initiate immune response to infections but are also responsible to make it persistent 

and effective. We have revealed a cytokine concentration of IFN-γ, TNF-α, IL-1β, IL-13, 

IL-10, IL-12, IL-5 and IL-4 in declining order following a 7 days in vitro stimulation of 

PBMCs using pRBCs (tables 1 and 2). The cytokine concentration in the supernatant fol-

lowing in vitro stimulation cannot be extrapolated to number of responding cells but at least 

hints on what could happen in vivo amid natural infection. The relatively low concentrations 

of IL-12, IL-5 and IL-4 may reflect that probably these cytokines are needed in very minutes 

amounts, present only very temporarily or are gradually degraded or consumed by cells ear-

lier after response to infection. We anticipate that these cytokines are more active earlier 

than 7 days. Comparably, in both zinc replete and zinc deficient groups cells seemed to re-

spond better towards production of IFN-γ, TNF-α, IL-1β, IL-13 and IL-10 than other cyto-

kines in vitro. This might mean that these cytokines are crucial for continued elimination of 

the parasite at different stages of infection (pre-erythrocytic and erythrocytic stages) in vivo 

although this hypothesis may be unjustifiable based only on in vitro data.  

 

Effects of zinc and other micronutrients on cytokine production: In malaria endemic areas, 

repeated exposure to infection by P. falciparum results into naturally acquired immunity 

that fails to develop in areas where malaria is hypoendemic, epidemic or mesoendemic. This 

means that the potential mechanisms of protection and immunological memory depend 

among other factors, on the degree of exposure and pattern of malaria transmission [30]. 

Regardless of age, immunity to malaria is generally low in populations living in areas with 

low or unstable transmission. In such a situation, clinical malaria and possibly severe com-

plications can occur in both children and adults [31]. Although it appears not to be sterile, 

immunity to malaria is protective provided there is a constant exposure to infection and may 

be strengthened by good nutrition. This study provides in vitro results on the effect of some 

nutrients on the mediators of immune response to malaria in Tanzanian children. We have 

used intact P. falciparum infected erythrocytes (pRBC) to induce immuno-regulatory cyto-

kines [26, 32] reflecting the real in vivo situation. Among nutrients explored in this study, 

zinc, magnesium and iron deficiency anaemia was associated with variable concentrations 

of one or more cytokines from both Th1 and Th2 groups, that mediate the immune response 

to malaria. Prasad [33] reported zinc deficiency to cause an imbalance between Th1 and Th2 

functions in an experimental human model in which production of IFN-γ (product of Th1) 

was decreased and that no effects were predictable in production of IL-4 (and IL-10) 
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(products of Th2). Our findings contrast with previous findings by Prasad in the sense that 

zinc deficiency was associated with higher levels of IFN-γ, TNF-α and IL-12 (figure 2) but 

concur with the findings on IL-10 (figure 3). This is especially intriguing as it may imply 

that in zinc deficiency, the immune response to malaria shifts to more cellular-mediated 

immune response before tailing off. Previous results [13, 34, 35] have indicated that zinc 

deficiency is associated with a decreased ratio of CD4+ to CD8+ cells and is indicative of 

cytotoxic immune response. It could be that, in our study, of the activated CD4+ T-helper, 

Th1 cells were dominant in producing type I cytokines in cells from zinc deficient children. 

Our study partly agrees with available reports that zinc deficiency affects both cell-mediated 

immune responses and humoral responses [14] and that B cell proliferation is less dependent 

on zinc, albeit zinc deficiency may result in fewer naïve B cells for production of antibodies 

to new antigens [36].  

 

Magnesium deficiency was associated with an increase in the concentration of IL-13 among 

type II cytokines. Little work has been done on the role of magnesium in immune response 

to malaria and our results draw attention to the role of magnesium in cytokine production in 

reaction to malaria infection. Report [37] indicates that IL-13 and IL-4 are major cytokines 

driving the polarization of the immune response towards Th2. IL-13 is also believed to regu-

late immunoglobulin switching from IgG isotype to IgE, this is particularly important be-

cause it signifies that prolonged magnesium deficiency may predispose individuals to hyper-

sensitivity reactions. Type I cytokines dominate in cellular immune responses while type II 

cytokine dominance implies humoral immune response [38]. Our findings may reflect that 

magnesium deficiency is associated with an increase in IL-12 and IL-1β but these responses 

become weakened in malaria infection. On the other hand, the increase in IL-12 and IL-1β 

concentrations in zinc deficiency further go up in malaria infection (figure 2) which may 

imply that in zinc deficiency the potential for production of pro-inflammatory cytokines 

following malaria infection is high, rising the risk for development to pathology. To the 

contrary, in malaria-infected, magnesium deficient children, the concentrations of IL-12, IL-

1β  (type I) and IL-5, IL-10 and IL-13 (type II cytokines) do not increase to levels attained 

in  (figures 2 and 3) uninfected peers. In other words, the increase in cytokine concentra-

tions due to magnesium deficiency in malaria infection does not compensate for that ob-

served in uninfected. Thus although we speculate that in zinc deficiency, the immune sys-

tem is more likely to use cellular responses as a weapon to fight against malaria opting to 

antibody responses in case of magnesium deficiency, the responses in magnesium defi-

ciency might be weaker than in zinc deficiency.  
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Figure 3: Associations between micronutrient status and supernatant type II cytokine con-

centrations following 7 days of PBMCs stimulation with Plasmodium falciparum-infected 

erythrocytes, by malaria infection status of the child at the time of blood collection. 

 

N: Normal concentrations; L: low concentrations; A: absent; P: present. Percentages indi-

cate paired group differences in cytokine concentrations. Data from children without and 

with malaria infection at the time of blood collection are indicated with open and shaded 

bars, respectively. P-values indicates the interaction between nutrition status and malaria 

infection status (nutrient vs. malaria). 
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Figure 4: Relationships between supernatant concentrations of IFN-γ and IL-10 under dif-

ferent conditions of micronutrient and malaria status at the time of blood collection, follow-

ing 7 days stimulation of PBMCs with Plasmodium falciparum-infected erythrocytes.  

 

Regression lines and blocks in respective panels: closed blocks and solid lines = zinc re-

plete, magnesium replete, no iron deficiency anaemia and no malaria; open blocks and 

dashed lines = zinc deficiency, magnesium deficiency, iron deficiency anaemia and positive 

malaria tests at time when blood was collected. The differences in slopes for other relation-

ships are shown in Table 3. P-values have been calculated to indicates whether the interac-

tion between nutrition status and malaria infection status have impact on the association 

between IFN-γ and IL-10. 
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The role of iron in the induction of a protective immune response is still debatable. Our 

findings indicate variable effects of iron deficiency anaemia on cytokine concentration. 

While levels of TNF-α, IFN-γ and IL-β (type I) and IL-10 and IL-13 (type II) seemed de-

creased in iron deficiency anaemia, the levels of IL-12 and IL-5 appeared increased (figure 

3). These variable effects of iron deficiency on a range of both type I and type II cytokines 

are critical as these may lead to unstable cytokine response failing to inhibit the parasite. 

Reports on iron nutrition in children living in malaria endemic areas have indicated some 

association between IL-4 with all biochemical indices of iron [39]. In this study that was 

carried on the coast of Kenya, authors also report an increase in IL-10 serum mRNA expres-

sions in malaria blood-smear positive children, results which are concordant with our in 

vitro results on iron deficiency anaemia despite the weak evidence. 

 

Malaria infection status and the profile of cytokine production under conditions of nutrient 

deficiencies: Comparing within groups our findings show an increase in type I cytokines 

(TNF-α, IFN-γ and IL-β) in association with malaria infection in zinc deficient children as 

compared with zinc sufficient individuals, although this increase is less than amongst unin-

fected donors. However, an increase in IL-12 concentration seems to be independent of zinc 

deficiency (figure 2) signifying that malaria infection is associated with induction of in-

creased IL-12 production independent of zinc status. The levels of IL-12 at day 7 of stimula-

tion supports our previous results (Mbugi et al, submitted) that in malaria infection, IL-12 is 

produced later than 24 hrs of stimulation. With slightly decreased levels of IL-10 in associa-

tion with malaria infection in zinc deficient children, the findings possibly reflect that zinc 

deficiency primarily results in pathological consequences of type I cytokines due the re-

duced regulatory role of the cytokine IL-10. In magnesium deficiency, we found malaria 

infection to associate with both type I and type II responses but the increase is not sufficient 

to compensate for the levels attained in malaria negative individuals regardless of magne-

sium status (figures 3 and 4). These results may reveal that magnesium deficiency can lead 

to immune incompetence in response to malaria infection.  

 

Iron deficiency anaemia appeared to induce a similar increased trend in both types of cyto-

kine amongst malaria infected donors. The only exception was IL-12, which was reduced in 

association with iron deficiency anaemia although the levels were higher than those attained 

in children without malaria infection. The high levels of IFN-γ in iron deficiency anaemia 

may be an indication that protection from clinical malaria reported in iron deficiency [39, 

40] is probably through cell mediated immune responses. Interestingly, with the exception 
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of IL-12, this study found an increase in both type I and type II cytokines in association with 

iron deficiency anaemia in children with malaria infection (figures 2 and 3). Available re-

port [41] have speculated about the role of iron deficiency in limiting the severity of the 

inflammatory response. The argument corresponds with our findings and it could be a result 

of increased secretion of anti-inflammatory cytokine in response to increase in levels of pro-

inflammatory cytokines in malaria infection. However, the observation that the increase in 

cytokine production could not reach the levels in children without malaria may be due to a 

combined effect of nutrients deficiencies other than iron in co-existence. It is possible that in 

addition to the depletion of iron to the parasite that may occur in iron deficiency anaemia the 

host cells, including immune cells, are also depleted of iron [42] thus reducing the capacity 

for sufficient cytokine production The modulation of immune response by iron rests on its 

effects on the function of Th1 mediated response and supply of this nutrient to the parasite 

[43], in particular, withdrawal of iron is said to increase Th1 mediated immune function in 

vivo [42]. Our study found an association of iron deficiency anaemia with slightly reduced 

concentrations of IL-1β, IFN-γ and TNF-α in children without malaria but an increment in 

children with malaria infection. This reflects that iron deficiency anaemia may be associated 

with increase in concentration of Type I cytokines in malaria infection. From our study it 

transpires that iron deficiency anaemia is most likely associated with variable effects of both 

type I and type II cytokine responses (figures 2 and 3) rather than the reported discriminate 

effects between the two arms [44].    

 

Linear association between type I and type II cytokines: Associations between cytokine pro-

duction under different conditions of nutrients and malaria status may be predictive for dis-

ease outcome. We found relationships between type I and type II cytokines in micronutrient 

deficient and replete groups and they were variably influenced by the malaria status (table 

3). However, the significant difference in slopes in the association between IFN-γ and IL-10 

with respect to iron deficiency anaemia status, in particular the negative association seen in 

iron deficiency anaemia, emphasises that probably the response shifts in deficiency situa-

tions from one type of cytokine response to the other. Particularly the balance between IFN-

γ and IL-10 which is said to be critical in controlling malaria infection. This underscores the 

notion that micronutrients may have no grossly visible effects under normal situations but 

they do when the body is destabilized in terms of immune protection during infections. To 

emphasize, there is strong evidence that the association between IFN-γ and IL-10 is influ-

enced by iron deficiency anaemia: in children without iron deficiency anaemia, IFN-γ re-

sponses are positively associated with IL-10 responses, whereas this association seems ab-
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sent or weakly negative in children with iron deficiency anaemia (lower-left panel of figure 

3). This seems supported by weak evidence of similar interaction in the same direction when 

examining the influence of iron deficiency anaemia on the association between IFN-γ and 

IL-5, and between IFN-γ and IL-13 (table 3). These associations may reveal that the regula-

tory T-cell responses (and possibly the Th2-responses) in malaria are suppressed in iron defi-

ciency anaemia. In addition, there is substantial evidence that the relationship between IFN-

γ and IL-5 is influenced by the presence of malarial infection at the time of blood collection: 

the association between the responses in IFN-γ and IL-5 is steeper in children with malarial 

infection than in their peers without infection (table 3); this seems supported by weak evi-

dence of similar interaction in the same direction between IFN-γ and IL-13 (table 3). These 

data provide evidence that in malaria, previous malarial infection suppresses the Th2 

(regulatory) responses to the disease. As regards to zinc and magnesium deficiencies, there 

is no evidence that the respective deficiencies influence the associations between IFN-γ and 

Th2 cytokines (table 3). However, the findings that nutritional deficiencies and malaria 

status at time of blood collection are variably associated with Th2 responses independent of 

IFN-γ alerts to the importance of nutritional component in boosting immune response to 

malaria. These associations, despite weak evidence, are indicative of a probable imbalance 

in cytokine concentration that may be influenced by nutrient deficiencies and malaria infec-

tion at the time of blood collection, the consequences of which may lead to exaggerated 

malaria pathology due to cytokine imbalance. 
 

Not only zinc deficiency results into significant impact on cytokine responses to infections 

[7, 9, 14, 45-48] but also other nutrients, like magnesium and iron. The results show that 

zinc deficiency may have more impact on type I cytokine responses while magnesium has 

selective effects on type II responses. In addition, the results also seem to indicate that in 

iron deficiency anaemia, the prevalent cytokine response is more of type I than type II re-

sponses. A recent randomised controlled trial conducted in Burkina Faso has suggested that 

a combined vitamin A plus zinc supplementation reduced the risk of fever and clinical ma-

laria episodes among children aged 6 to 72 months [49], and this combination may be in-

cluded in control strategies to fight against malaria in African children. However, it does not 

exclude the contribution of other micronutrients that have not been reported in this paper 

which need to be further explored.  
 

Our study have shown weak evidence [50] of effect of nutrients deficiencies on association 

between cytokine concentration and malaria status at time of blood collection. This could be 
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due to small sample size to detect differences, the use of confidence intervals in our analysis 

however, gives a strong reflection of what could be happening as it shows a range within 

which the true effect is likely to lie. A larger sample size could allow detection of even mi-

nor differences leading to a proposal to a more larger study particularly in the intervention 

study. The protective immune response to malaria is said to target a broad antigenic reper-

toire that go beyond parasitic developmental stages [51]. Our study used parasitized erythro-

cytes to induce cytokine response in PBMCs providing intimation that sterile immune pro-

tection focusing on whole parasite vaccines could be rewarding [52].  
 

In conclusion, we have found that micronutrient deficiencies may variably be associated 

with impaired cytokine production. Zinc deficiency and iron deficiency anaemia have 

shown to be associated with remarkable increases in type I cytokine production, implying a 

shift in the balance of the immune towards pro-inflammatory and cellular type in these con-

ditions. It may mean that zinc deficiency and iron deficiency anaemia directly induce in-

creased production of pro-inflammatory cytokines or causes an imbalance in regulatory anti-

inflammatory cytokines as reflected by increased pro-inflammatory cytokines. Since these 

pro-inflammatory cytokines have been associated with pathological consequences like cere-

bral malaria, it should be further assessed to what extent supplementation with zinc and iron 

is beneficial in children with deficiencies for these nutrients. Consideration of micronutrient 

supplementation may also be of value if incorporated in vaccine programs in endemic areas 

to boost immune responses to malaria.  
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Abstract  

Immunoglobulin G (IgG) subclasses have been signaled to confer naturally acquired immu-

nity to Plasmodim falciparum malaria. Cytophilic IgG1 and IgG3 by their potential for 

opsonization, phagocytosis and antibody-dependent cellular inhibition in association with 

monocytes have been suggestive for the critical role in malaria. The potential for production 

of antibodies is influenced by micronutrient status. We explored the effect of micronutrients, 

particularly zinc status on the profiles of IgG subclasses in 304 Tanzania children aged ≤ 5 

yrs. An enzyme-linked immunosorbent assay was performed using whole asexual blood 

stage malaria antigens to determine plasma malaria-specific antibody titres. The findings 

reveal that zinc deficiency may influence the production of IgM, total IgG and several IgG 

subclasses in a malaria status-dependent manner. Of the four IgG subclasses, IgG3 and 

partly IgG2 displayed significant changes in the zinc deficient children with IgG3 predomi-

nating in subjects with malaria. Zinc, magnesium, iron deficiency anaemia and malaria 

status did not influence the association between IgG3 and IgG4. Under conditions of micro-

nutrient deficiency and malaria status, an imbalance in IgG subclasses production may occur 

resulting into predominantly higher levels of IgG3 and IgG2 that may not confer sufficient 

protection. The profile of both cytophilic and non cytophilic IgG subclasses have shown to 

be variably influenced by zinc status, the effects that vary with age at least in under fives. 

These results provide an insight for inclusion of micronutrients, particularly precise amounts 

of zinc, in future malaria interventional programs in endemic areas. 
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Introduction 

The humoral immune response is mediated by naturally acquired antibodies against Plasmo-

dium falciparum blood-stage surface antigens and is vital in limiting parasite multiplication 

and the conferral of protection to clinical malaria. In malaria endemic areas the development 

of naturally acquired immunity to severe disease takes place in children at an age range of 1 

– 5  years [1, 2]. This ‘antiparasite’ immunity is not absolute and is acquired through re-

peated exposure to Plasmodium falciparum [3]. Many parasite antigens are known to occur 

at different stages of the parasite in the human host with the body generating antibodies 

against the prevailing antigenic proteins. Protective immunity to falciparum malaria, how-

ever, has particularly been associated with cytophilic antibodies of immunoglobulin G (IgG) 

subclasses [1, 3]. Ferrante and Rzepczyk [3] pointed out the switch from Immunoglobulin 

M (IgM) on B-cells to different isotypes and different IgG subclasses (IgG1, IgG2, IgG3 

and IgG4)  upon encounter with malaria antigens. Antigens can differentially modulate im-

munoglobulin heavy-chain switching through induction of different cytokine secretory pat-

terns by CD4+ T helper (Th) cells [3, 4]. The differential release of these cytokines (type I 

or type II) is influenced by nutritional status, particularly zinc [5, 6]. Studies by Tongren et 

al [7] reported the regulation of immunoglobulin class switching in murine malaria to be 

epitope-specific and that in human malaria, the IgG1/IgG3 class switching is independently 

regulated by the nature of antigen, cumulative exposure to the antigen and maturity of the 

immune system [8]. 
 

Several studies have highlighted the importance of naturally acquired antibody-mediated 

immunity through IgG subclasses to be crucial in limiting clinical malaria [3, 9-17] although 

these studies have targeted different parasite surface antigens. The levels of subclasses of 

IgG, in particular the proportion of cytophilic (IgG1 and IgG3) to non-cytophilic (IgG2 and 

IgG4) have been hypothesized to be more significant than the overall levels of antibodies in 

providing protection to the development of severe disease [1, 19, 20]. In addition, the fine 

specificity of antibodies towards specific antigenic epitopes on P. falciparum antigens is 

thought to be critical for the generation of an effective immune response [18, 19]. 
 

Poor nutrition in children may interfere with the development and function of the immune 

system. The immune regulatory mechanisms become impaired due to quantitatively and 

qualitatively altered immune cell populations [6, 20-23]. The whole immune response path-

way from innate to adaptive antibody response and cellular responses is said to be affected 

[6, 24-35] and in malaria endemic areas the impact of the disease may be aggravated. Most 

children become vulnerable to infections at weaning when the passive immunity acquired 
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from prenatal maternal antibodies and breast milk wanes and nutritional support is poor. It is 

likely that poor nutrition interferes with the immune response to malaria in African settings 

where both situations prevail. Several reviews and studies [31-36, 38-41] have  explored and 

the association between micronutrient particularly zinc deficiencies with infections but only 

few have specifically focused on the association with malaria [32, 36-38]. Even those stud-

ies that have extensively investigated the factors associated with a protective role of IgG 

subclasses, have been limited to individual effects of age, exposure, transmission intensity, 

ethnicity, geographical location of parasite and seasonality on the dynamics [11, 39] and 

fine specificity [14] of antibody-mediated protection to malaria. The fact that in some chil-

dren the B-cell response undergoes isotype switching to a more cytophilic antibody response 

to malaria early in life and who remain protected from the disease attacks for quite longer 

time periods than other children [8, 40] even when exposure is limited by seasonality [3, 

41], is indicative of the contribution of other factors like nutritional status in strengthening 

of an effective antibody response to malaria. 
 

We hypothesized that zinc and other micronutrients deficiencies induce relative alterations 

in the plasma profile of naturally acquired Plasmodium falciparum-specific antibody re-

sponses that these antibodies may influence the induction of a protective  immunity to mani-

festation of the clinical disease. To assess these associations, a direct enzyme-linked immu-

nosorbent assay (ELISA) was performed to determine the plasma levels of isotype-specific 

antibodies responding to asexual Plasmodium falciparum stage antigens which are differen-

tially involved in the parasite clearance and protection from clinical disease. Group differ-

ences were compared by determining the malaria infection status at the time when blood 

sample collection was done.  
 

Subjects and Method 

Study area and population: The cross-sectional study was conducted in the period of May-

July 2006 in a lowland area around Segera village (S 05º 19.447’, E 38º 33.249’), Handeni 

District, north-eastern Tanzania. Malaria is highly endemic in this area, with virtually all 

infections being due to P. falciparum. The residents in the study population comprise mostly 

poor farmer families growing maize and cassava for subsistence use. At the time of our 

study, only one health centre in Segera was available to serve all of the surrounding area. 

The study was approved by both Ethics Review Committees in The Netherlands and Tanza-

nia. Informed consent was obtained from community leaders and local government officials, 

and from parents or guardians. 
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Sampling methods and eligibility criteria: A census list was made with all resident children 

aged 6-60 months in the study area. Using this list, 16 children were randomly selected from 

each of 19 communities, resulting in a total of 304 children. Children were eligible when 

they had no fever, and showed no signs of other severe disease or severe malnutrition 

(weight-for-height z-score below -3 SD). Further details are provided elsewhere [42]. 
 

Field procedures: All children were examined by clinical officers, who also measured axil-

lary temperature by electronic thermometer. Information on the state of health such as ma-

laria, fever, sickness and reports on fever in the past 14 days was diligently recorded. Ve-

nous blood (6 mL) was collected in containers suitable for mineral element analysis with 

sodium heparin as anticoagulant (Becton-Dickinson, Franklin Lakes, NJ). Immediately upon 

collection, the cap was sprayed with ethanol and allowed to dry; approximately 1.3mL 

blood was then drawn in a sterile manner from the collected blood for different measure-

ments. Children were treated for common childhood infections and anaemia according to 

guidelines of Tanzanian Ministry of Health. 
 

After arrival of blood samples at the laboratory in Moshi, they were immediately centri-

fuged (300´g) at ambient temperatures for 10 minutes. Plasma (1.2 mL) was stored in liquid 

nitrogen, and subsequently transported on dry ice to The Netherlands to measure additional 

biochemical indicators of micronutrient status and inflammation. 
 

Parasite Enzyme-linked immunosorbent Assays (ELISA): Different ELISAs testing antibod-

ies against various specific parasite antigens are described elsewhere [1, 10, 12, 13, 43-45]. 

We developed our own direct ELISA test protocol that was used to determine the plasma 

concentration of isotype-specific antibodies responding to Plasmodium falciparum asexual 

blood stages. Parasite extract (asexual blood stage antigens) were used to coat the plates, 

and these were covered and incubated overnight at 40C. The parasite extract was obtained as 

a kind gift from Professor Robert Sauerwein from the Medical Parasitology Laboratory, 

Radboud University Medical Centre Nijmegen, The Netherlands. The plates were blocked 

with 150µL of 1% w/v bovine serum albumin, (BSA) (grade V, Sigma P4417, St Louis MO, 

USA) in PBS. After blocking the plates were washed three times with an extensive volume 

of 0.05% Tween 20 (v/v) (Sigma-Aldrich, Missouri, USA) in PBS. Plasma samples were 

diluted 5 (IgG total, IgG1, IgM) or 20 (IgG2, IgG3, IgG4) times in 0.2% w/v BSA and 

0.05% Tween 20 in PBS. Plasma samples were added to the wells at 50µL and malaria posi-

tive and negative samples were added as controls. The positive control consisted of a pooled 

sample of 25 highly immune Tanzanian individuals. Addition of plasma to the wells was 



118  

Nutrition and antibody responses 

followed by incubation under cover for 3 hrs at room temperature. After incubation, the 

plates were washed 3x in 0.05% Tween 20 in an extensive volume. Thereafter, 50µL of 

horseradish peroxidise (HRP) conjugated sheep anti human antibody (The Binding Site, 

Birmingham, UK) was added. and incubated at room temperature in a shaker in the dark for 

1.5 hrs. The following concentrations were used: 1µg/ml for IgG total (AP003) and IgG1 

(AP006), 2µg/ml for IgM (AP012), IgG2 (AP007), IgG3 (AP008) and IgG4 (AP009). Plates 

were emptied and washed 6x in 0.05% Tween 20 and finally 100µL of substrate, (2.2’-

azino-di[3-ethylbenzthi-azoline sulfonate (6)]), ABTS (Roche Diagnostics, Mannheim, Ger-

many) was added and incubated in the dark for colour development. A plate reader (Anthos 

Photometer 2020, Anthos-labtec, Woerden, The Netherlands) was used to measure colour 

development at 405 nm. 
 

Statistical analysis: The data were entered and analysed using SPSS for Windows (version 

15.0. SPSS Inc., Chicago, IL, USA). Relative titres were calculated using the control sample 

which was added to each plate. For these calculations a standard curve was made. Antibody 

titre values were log-transformed to obtain normally distributed variables. A  linear regres-

sion model was used to calculate the effect change in antibody levels in zinc replete and 

deficient individuals. Linear regression analysis was also used to assess whether different 

IgG subclasses associations were influenced by conditions of zinc, magnesium, iron defi-

ciency anemia and malaria status. Cut off values were set for zinc (plasma zinc concentra-

tion <9.9 µmol/L), magnesium (plasma magnesium concentration < 750 µmol/L) and iron 

deficiency anaemia (iron deficiency, ferritin concentration <12 µg/L accompanied by anae-

mia, haemoglobin concentration <110 g/L). Average antibody titres were determined by 

comparison of means from which the standard error of the means were used to calculate 

confidence intervals and the absolute values were obtained by exponential transformation of 

previously log transformed values using Microsoft excel. The confidence intervals were 

used as these provide an estimate of the mean at a confidence range of 95%. The difference 

in antibody titres in relation to zinc status among groups was based on ‘healthy’ children 

(with neither of conditions) and effect change estimated for asymptomatic malaria (from 

malaria dipstick results); sick with malaria infection; sick with malaria infection and a his-

tory of fever in the past 14 days; and sick without malaria infection. The group differences 

were accounted for by the use of confidence intervals (95% CI and p-value < 0.05). A gen-

eralized linear model (GLM) was performed to determine whether the effect of zinc defi-

ciency on plasma IgG subclass was age-dependent. Lots were used as scaling weight vari-

ables to account for the diversity in malaria prevalence among lots. The analysis compared 

among age groups the differences in P. falciparum (schizont asexual blood stage parasites)-
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specific antibodies plasma reactivity. Three age classes were established; 0.5 – 1.5 yrs, 1.5 – 

3 yrs and 3 – 5 yrs. 
 

Results 

General effect change and plasma total IgM and IgG levels: We initially evaluated the ef-

fect change and relative antibody levels of IgM and total IgG class (tables 1 and 2). The 

relative antibody levels in the zinc replete group were moderately higher compared to the 

zinc deficient group. IgM levels were significantly increased relative to the reference group 

(healthy children) in children with asymptomatic malaria, 38% (95% CI; 16% to 65%) and 

those who were sick with malarial infection and reported fever in the past 14 days, 53% 

(95% CI 25% to 89%) in the zinc replete group. Significantly higher levels of IgM were 

detected in the zinc deficient group for asymptomatic children, sick with malaria and those 

who were sick with malaria and a report of fever in the past 14 days (table 1).  The results 

in total IgG levels followed similar trends to the levels of IgM for the zinc replete as well as 

the zinc deficient group (table 2). In both cases the increase in IgM and total IgG levels 

were statistically not significant in sick children without malaria infection. 
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Effect change in plasma levels of IgG subclasses: Evaluation of the general plasma changes 

in IgG subclasses in different malaria situations are shown in figure 1. There was a signifi-

cant change in antibody titres for all IgG subclasses (P < 0.05) in zinc replete children with 

asymptomatic malaria and those who were sick and had malaria infection. In these subjects, 

the changes in IgG3 and IgG4 levels were almost similar with IgG4 being slightly higher 

than IgG3 in children that were sick with malaria infection and those who were sick with 

malaria infection and a report of fever in previous 14 days. With zinc deficiency (figure 1), 

only the changes in IgG3 levels were significant for asymptomatic malaria, sick with ma-

laria infection and in sick children with malaria and who reported complaints of fever in the 

past 14 days (P < 0.05). On the other hand, IgG2 predominantly showed increased levels in 

sick children with malarial infection (P < 0.05). There was a marked difference with respect 

to zinc status in which only IgG3 and partly IgG2 predominated in zinc deficiency which 

may imply these IgG subclasses to remain as critical weapons to fight against malaria in 

deficiency situations. The insignificant change in IgG subclasses in sick children with no 

malaria infection strengthens the notion that the antibodies studied are specific for malaria 

antigens. 
 

Comparison of levels of plasma IgG subclasses with respect to zinc status: The levels of 

Plasmodium falciparum-specific IgG subclasses in plasma were assessed to determine 

whether there were differences within individual IgG subclasses as a result of zinc status 

(figure 2). With ‘healthy children’ children set as reference group, the levels of IgG1 were 

significantly increased in asymptomatic malaria (P = 0.007; 95% CI, 13% to 120%) and in 

children who were sick with malaria infection (P = 0.011; 95% CI, 13% to 146%). There 

was no significant increase in IgG1 in the zinc deficient group. Increase in IgG2 levels fol-

lowed a similar trend to IgG1 in zinc replete group but in the zinc deficient group, the IgG2 

levels were significantly higher in the sick children with malaria infection (P = 0.015; 95% 

CI, 10% to 141%). Levels of IgG3 were significantly increased in both zinc replete and zinc 

deficient group (P < 0.05) relative to healthy individuals, except in sick children without 

malaria (figure 2). The levels of IgG3 in the zinc deficient group sick children with malaria 

(P = 0.004; 95% CI, 30% to 289%) and those sick with malaria and a reported fever in the 

previous 14 days (P = 0.002; 95% CI, 38% to 333%) were significant and relatively higher 

than their counterparts in the zinc sufficient group. With the exception of children sick with-

out malaria, IgG4 levels were higher in zinc replete and the increase of IgG4 in the zinc 

deficient group in all cases was statistically insignificant (figure 2). 
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Table 3:  Change in IgM, IgG total and IgG subclasses due to age in zinc deficient children 

compared to reference healthy group  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a = asymptomatic malaria infection 

b = sick with malaria infection 

c = sick with malaria infection and history of fever in the past 14 days 

d = sick without malaria infection 

– = reduction  

+ = increase 

∆ = insignificant change (P ≥ 0.10) 

∆-/d+ =  variable insignificant change with a change in sick without malaria increasing 

NB: Bolded values indicates borderline significant P-values 

Parameter Age Group (Years) 

 0.5 – 1.5 1.5 – 3.0 3.0 – 5.0 

IgM P < 0.001a- 

P = 0.036c- 

P = 0.019a- 

P = 0.029b- 

P < 0.001a- 

P = 0.021b- 

P = 0.002c- 

IgG total P < 0.000a- P = 0.031b- 

P = 0.05c- 

P = 0.003a- 

P = 0.027c- 

IgG1 P = 0.016a- ∆-  ∆- 

IgG2 P = 0.045b+ 

 

P = 0.049b+ 

P = 0.075
d+

 

∆-/d+ 

IgG3 P < 0.001a- 

P = 0.048c- 

P = 0.062
b-

 P = 0.002a- 

P = 0.022b- 

P = 0.004c- 

IgG4 P < 0.001a- 

P = 0.004c- 

∆-  ∆-  
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Association between IgG3 and IgG4 subclasses under different conditions of micronutrients 

and malaria status: Since the effect change and the levels of IgG subclasses showed a great 

potential for IgG3 and IgG4 to be in higher levels with respect to zinc status, we performed 

a linear regression analysis to determine whether these two immunoglobulin subclasses we 

associated under different conditions of micronutrient status (figure 3). The association be-

tween IgG3 and IgG4 were linear but the higher P-values reflected that the slopes of the 

regression lines in the four panels (figure 3) are not different. These results provide no evi-

dence that the associations between IgG3 and IgG4 are influenced by deficiencies in zinc, 

magnesium, iron deficiency anaemia or malaria status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Effect change in profile of relative plasma concentrations of malaria parasite-

specific IgG subclasses in different malaria situations with and without associated clinical 

features in zinc replete and zinc deficient children. Value on the y-axis are log transformed 

values of antibodies titres as detected in plasma. Bars with asterisk (*) indicates signifi-

cance at P < 0.05.  
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Effects of zinc deficiency on IgM, total IgG and malaria-specific IgG subclasses with age 

group: Using a generalised linear model, we assessed whether the influence of zinc defi-

ciency on the change of IgM, IgG total and IgG subclasses levels varied with age (table 3). 

Results showed zinc deficiency to significantly influence the change in antibody levels with 

variable conditions of malaria status and age groups. The reduction in levels of IgM and 

IgG3 had more impact in older children (3 – 5 yrs) as compared to other age groups. On the 

other hand, the impact of zinc deficiency on IgG1 and IgG4 was significant in the younger 

age (0.5 – 1.5yrs) with insignificant impact on the medium (1.5 – 3yrs) and the older age 

group. The interesting finding in this study is the increase in levels with zinc deficiency for 

IgG2 contrary to other IgG subclasses and that it was associated with sick children with ma-

laria and those sick without malaria in at least all age groups. This could mean that IgG2 is 

more profoundly associated with sickness than protection against malaria. The effect of zinc 

deficiency on IgG2 in sick children without malaria and on IgG3 in sick children with ma-

laria was borderline significant (table 3). 

 

Discussion 

In Plasmodium falciparum malaria protective immunity to clinical disease is mainly as-

cribed to immunoglobulin G subclasses. In human malaria, cytophilic IgG1 and IgG3 sub-

classes with high affinity to Fc receptors on monocytes, providing a crucial protection [1, 3, 

18] gradually increasing with age, to target antigen and duration of exposure [8]. Their pro-

tective potential solely rests on their ability to fix complement, and facilitating opsonization 

and phagocytosis that limits parasite multiplication in an antibody-dependent manner. The 

kinetics of the antibody isotype formation  are continually altered by reinfection [46] with 

the proportion of cytophilic IgG1 and IgG3 relative to non-cytophilic IgG2 and IgG4 con-

sidered more significant than the overall levels of antibodies in providing protection to se-

vere disease [1, 19, 20]. We hypothesized that micronutrients, zinc deficiency in particular, 

could contribute to alterations in the levels of these antibodies to influence protection 

against malaria since in African children the two entities commonly co-exist. This study 

provides the first findings in associating micronutrient deficiency with specific IgG sub-

classes that confer protection to malaria in endemic areas. 

 

Effect change and plasma total IgM and IgG levels: This study used whole asexual blood 

stage malaria antigens to reflect the real in vivo milieu and providing broader antigenic tar-

gets for optimal induction of malaria-specific antibody profiles [13]. Primary responses to 

infection were assessed by measuring plasma levels of IgM and total IgG (Tables 1 and 2) 
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and the levels changed with malaria status and significant changes were associated with 

asymptomatic malaria, sick with malaria infection and sick with malaria infection together 

with a reported fever in the past 14 days especially in the zinc deficient group. The similar 

pattern of change in IgM and IgG levels support previous reports [3] of switching of IgM on 

B-cells to different isotypes and different IgG subclasses upon encounter with malaria anti-

gens. This implies that IgM primarily determines the magnitude of protection by specific 

antibodies to malaria pathogen. In addition, Dodoo et al. [47] have reported recently IgM to 

confer protection and reduce incidence of malaria in African children. The levels of total 

IgG particularly reacting to glutamate rich protein (GLURP) of the parasite antigenic sur-

face has been reported to be strongly associated with reduced malaria incidence in Africa 

[48]. The significant changes in zinc deficient group could be a reflection of persistent infec-

tion and concurrent new infection. 

 

Effect change in plasma levels of IgG subclasses: This study found significant change in all 

IgG subclasses in zinc replete group especially in asymptomatic children and those who 

were sick with malaria infection (figure 1). The change in levels for sick children with ma-

laria infection and a report of fever in the past 14 days was high only for IgG3 and IgG4. 

The predominantly significant change in IgG3 observed in this study concur with previous 

studies for the significant role of IgG3 in conferring protection to malaria [1, 8, 12, 14] and 

the trend that IgG1 and IgG2 are lower than IgG3 and IgG4, respectively in asymptomatic 

children is intriguing (figure 1). It may reflect the potential response that in asymptomatic 

malaria there is a shifting order of response dominance from IgG1 to IgG3 and IgG2 to 

IgG4 respectively to sustain protection, albeit studies need to be done to uncover this propo-

sition. The dynamics of these isotype dominance may be due to dynamics of infection in the 

area with re-infection playing a role to keep the levels high [46].  

 

 

 

 

 

 

 

 



 127 

Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Relative plasma levels and effect change under different malaria and zinc status. 

For each immunoglobulin G subclass the panels compare the levels in zinc replete and zinc 

deficient situations at different states of malaria infections. Percentages indicate paired 

group effect change differences in the relative plasma levels of antibodies. Bolded values: 

significant at P ≤ 0.05.  

 

Higher changes in IgG4 levels in sick children with malaria and a report of fever in the pre-

vious 14 days may be explained by firstly, a long half-life of IgG4 (probably due to previous 

subclinical malaria infection) and secondly, the reports that IgG4 is more associated with 

disease than protection [49]. However, Nebie et al [48] have recently reported IgG3 and 

IgG4 to be associated with reduced risk of clinical malaria in African children. In zinc defi-

ciency, however, the higher incremental change of IgG3 in all malaria situations further 

endorses the significant role IgG3 in protecting against malaria and that probably under de-
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ficiencies, the role of this IgG subclass becomes more critical. The findings also contrasts 

previous propositions of downstream isotype switching from IgG3 to IgG1 later in the 

course of infection after displaying early comparable levels [3]. This is because in an area of 

intense malaria transmission, re-infection maintains the level of IgG3 isotype [17]. The sig-

nificant change in levels of IgG2 in sick children with malaria may be associated with dis-

ease by the explanation that probably it replaces IgG4 in such situations of micronutrients 

deficiencies. Generally, there is a clear difference in alteration of IgG subclasses plasma 

levels in the zinc deficient group which may be explained by the probable influence of zinc 

status. IgG subclasses reacts to various sets of asexual stage parasite antigenic proteins that 

may account for the variable effects of zinc deficiency on these antibodies. 

 

Comparison of levels of plasma IgG subclasses with respect to zinc status: Having assessed 

the effect change and levels of primary response by IgM and total IgG plasma levels and the 

effect change in IgG subclasses, we compared the levels of individual IgG subclasses with 

regard to zinc status (figure 2). Results showed higher levels of increase in the zinc replete 

group as compared to the zinc deficient group for at least each immunoglobulin subclass. 

This signifies the importance of these IgG subclass coexistence in conferring protection to 

malaria and that may be influenced by zinc status due to relatively lower increases in the 

deficient group. While the increase in IgG3 and IgG4 seemed to predominate in zinc replete 

group, IgG3 and partly IgG2 were predominant in the zinc deficient group. The trend of 

response for IgG1 and IgG2  and that for IgG3 and IgG4 were also similar in the zinc replete 

group but not in the zinc deficient group. Available reports [48] indicate that, in the course 

of conferring protection to malaria, the IgG subclasses target different surface parasite anti-

genic proteins with IgG3 and IgG4 responding against (glutamate rich protein (GLURP) and 

IgG1 against apical membrane protein 1 (AMA1). In addition, cytophilic IgG1 and IgG3 

have been shown to be differentially regulated over time [50] with IgG3 remaining abundant 

[45]. This could further explain the association between IgG3 and IgG4 in the zinc replete 

group that was lost in the zinc deficient group. This may support previous findings that the 

proportion of these IgG subclasses is more important than their levels in conferring protec-

tion against the disease [1, 49, 51]. This proportion seemed to be disturbed under conditions 

of zinc deficiency. The increase in IgG3 levels can also be explained by its short half-life. 

IgG3 disappears fast (serum half life of 7 days) so that high amount can not be measured in 

healthy control, but there may be many IgG3 producing B-cells which rapidly start to pro-

duce IgG3 following infection.  
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Figure 3: Relationship between malaria specific plasma IgG3 and IgG4 under different 

situations of nutrition and malaria status. There were no significant differences between 

slopes in all four conditions being compared as indicated by P-values.  

 

Footnote: scatter spots (black): zinc and magnesium replete, absence of iron deficiency 

anaemia and absence of malaria infection; scatter spots (grey): zinc, magnesium deficiency 

and iron deficiency anaemia and malaria infection. The black and dashed lines are their 

corresponding regression lines.  

 

In the zinc deficient group the predominance of IgG3 and that of IgG2 at least in sick chil-

dren with malaria infection, reflect that probably under zinc deficiency these IgG subclasses 

are critical in providing protection against the disease. Garraud et al [52] reported the asso-

ciation between IgG2 and IgG3 in conferring protection to malaria and that certain individu-

als possess rare mutated allele encoding an FcR that can bind IgG2 along with IgG3 and 

IgG1. Other mechanisms have also been suggested [49, 53]. Another possibility is that, an 

isotype imbalance [49] occurred in zinc deficiency and thus the resulting IgG2 and IgG3 
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proportions may note be protective. These results are in contrast of previous findings by 

Groux and Gysin [54] that IgG1 and IgG3 were always predominant in serum. It may be 

that, in malaria infection as reported previously either of the cytophilic IgG subclass (IgG1 

or IgG3) should be associated with a non cytophilic (IgG2 or IgG4) for perfect protection. 

Kinyanjui et al [46] reported the half-lives of these IgG subclasses to probably be shorter 

than what is known [3] with the half-life of IgG3 being shortest of all. The prevailing high 

levels of IgG3 in both zinc replete and zinc deficient group may be attribute to continued 

exposure to low but persistent malaria infections in an endemic area [1]. Rzepczyk et al [17] 

reported skewing of IgG response towards a short-lived IgG3 in response to P. falciparum 

infection and that plasma levels could be maintained through persistent infection or new 

infection.  
 

Association between IgG3 and IgG4 subclasses under different conditions of micronutrients 

and malaria status: Assessment of whether the association between IgG3 and IgG4 are in-

fluenced by nutritional status indicated no impact of zinc deficiency, magnesium deficiency, 

iron deficiency anaemia or malaria status (figure 3). This implies that deficiency in micro-

nutrients may influence production and consequently proportions of protective antibodies to 

malaria but not their association that may be programmed inherently by the body’s immune 

system which has high fidelity. 
 

Effects of zinc deficiency: Does age make the difference?: Several reports have evaluated the 

profile of antibody response to asexual blood stages of the malaria parasite. Some have in 

principle proposed the gradual change in the naturally acquired antibody responses with age 

[1, 3, 8, 40]. This study adds more information on zinc deficiency variably influencing the 

profile of antibody protection to malaria. Zinc deficiency seemed to significantly and nega-

tively influence the profile of IgM and IgG in all age groups implying that the primary re-

sponse is generally influenced by zinc deficiency regardless of children’s age differences. 

Children of 0.5 – 1.5yrs have shown to be prone to lowered IgG1 and IgG4 production in 

zinc deficiency while the impact on IgG2 and IgG3 is significant in all age groups with 

IgG2 increasing with zinc deficiency in contrast to IgG3. As suggested by previous studies, 

IgG3 levels seem to be prevalent in all age groups implying its critical role in conferring 

protection across all young ages (within < 5yrs children). Deficiency in zinc may be more 

alarming in endemic areas due to its impact on the largely believed immunoprotective IgG3 

subclass and possibly other IgG subclasses that have been shown in this study. 
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Our findings have shown preliminarily the variable effects that zinc may have on the pro-

files of IgM, IgG total and IgG subclasses, and that this effect seems to vary with age. IgG3 

have been shown to be critically affected across all age groups as per this study classifica-

tion. Inclusion of appropriately selected micronutrients could be a way forward towards 

boosting the production of protective IgG subclasses in endemic areas. Previously we found 

a profound impact of zinc and other micronutrients on the cytokine arm of the immune re-

sponses, both in the innate and anti-inflammatory cytokine profiles. This evidence brings us 

to firmly suggest for inclusion of micronutrients in future malaria vaccine programs pending 

thorough and extensive studies on these interactions are further done to strengthen the 

proposition. Special attention should be on the isotype switching under conditions of micro-

nutrient deficiencies, malaria status and age. 
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Abstract 

CD36 is a receptor that occurs on the surface of activated immune cells, vascular endothelial 

cells and participates in phagocytosis and lipid metabolism. This receptor is known to be the 

major endothelial receptor molecule for field isolates of Plasmodium falciparum. A T1264G 

mutation in exon X of the gene leads to deficiency of CD36. This study aimed at determin-

ing associations between CD36 deficiency, P. falciparum in vitro adherence on purified 

CD36 and anaemia among children in an endemic area. Genotypes were determined by 

nested polymerase chain reaction of isolated DNA from filter blood spots followed by Re-

striction Fragment Length Polymorphism (RFLP). Plasmodium falciparum adherence as-

says were performed on immobilized purified CD36. The data indicate that CD36 is an im-

portant cytoadherence receptor that mediates adherence to most P. falciparum field isolates. 

Our findings also suggest that mutations causing CD36 deficiency may confer significant 

protection against malarial anaemia (MA) in children (χ2 = 8.58, P < 0.01). The protective 

role that CD36 deficiency may confer against MA in children seems to be mediated through 

reduced cytoadherence of infected red blood cells to vascular endothelium.  
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Introduction 

A unique characteristic feature of infections with Plasmodium falciparum is the ability of 

infected red blood cells (IRBCs) to adhere to vascular endothelium by cytoadherence. The 

result of cytoadherence is accumulation of IRBCs in the deep microvasculature. This phe-

nomenon is called 'sequestration' and is associated with disease outcomes [1-3]. In some 

instances, parasite populations with a predisposition to adhere to certain receptors are more 

commonly associated with certain disease outcomes, such as cerebral malaria and placental 

malaria [4-6], although the precise role of parasite–receptor interactions in determining dis-

ease severity remains to be understood. Sequestration plays a major role in the development 

of severe disease and occurs as a result of both cytoadherence of IRBCs to capillary endo-

thelium [3, 7, 8] and the binding of IRBCs to uninfected erythrocytes (rosetting) [9, 10]. 

Adherence is mediated via knob-like structures at the surface of IRBCs [11] resulting from 

the deposition and aggregation of parasite proteins and their interaction with the host cell 

cytoskeleton underneath the RBC membrane [12, 13]. Studies have suggested that P. falci-

parum erythrocyte membrane protein 1 (PfEMP-1) expresses variant-specific epitopes and 

mediates adhesion to endothelium. CD36 is among the host ligands that have been found to 

mediate endothelial binding of IRBCs and has been identified in most field isolates [8, 14-

21]. 

 

CD36 is one of the most characterized host receptors for P. falciparum IRBCs. CD36 is an 

88-kDa glycoprotein expressed on endothelial cells, platelets, macrophages and dendritic 

cells, and participates in phagocytosis and lipid metabolism. However, it is not expressed on 

endothelial cells of brain capillaries. The gene encoding CD36 consists of 15 exons, and 

extends at least 32 kb on the q11.2 band of chromosome 7 in humans. As most P. falcipa-

rum field isolates bind CD36, CD36 is considered the major endothelial receptor for seques-

tration, although not all parasites bind this receptor [22, 23]. CD36 exons X–XII occur in 

numerous polymorphic forms in the Gambia and in Kenya and several of these forms are 

associated with susceptibility to cerebral malaria. A subsequently described polymorphism 

of exon X confers protection against severe anaemia in heterozygotes in Kenya by mecha-

nisms not clearly defined [24].   

 

The mechanism by which CD36 confers protection against malarial anaemia (MA) in chil-

dren is not clearly understood. This study was designed to determine role of cytoadherence 

in the protection of CD36 deficiency against MA in children below 5 years of age. In par-

ticular, we assessed the role played by CD36 deficiency in the development of MA in chil-
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dren. The study specifically explored the frequency of CD36 deficiency among children in 

malaria endemic areas and associations between CD36 deficiency and status of MA in chil-

dren and the role played by cytoadherence on the development of MA in children. 
 

Materials and methods 

Participants, recruitment and consent: Mothers were recruited among women presenting at 

Muheza Designated District Hospital for antenatal care in the third trimester or for delivery 

hospitalization. Mothers of prospective study children initially learned about the study 

through community meetings. Mothers who qualified for inclusion were requested to read 

and sign a consent form on behalf of their newborns. Verbal consent was given by those 

unable to read and write, followed by thumb stamp. Children whose mothers consented for 

participation, and whose mothers were willing to bring them fortnightly and when they are 

sick for sample collection were included in the study. Unwillingness to sign the informed 

consent form and to give samples when required were exclusion criteria for this study. In 

total, 155 children were recruited. Of these, 149 completed the follow up, and provided 204 

samples used for data analysis. Six children were dropped at different time points due to 

various exclusion criteria. 
 

Definition of categories: A malaria case was defined as a child testing positive for P. falci-

parum parasites with a fever (body temperature) of >38.5 °C and any of the typical malaria 

symptoms. MA was defined as a haemoglo+bin (Hb) concentration of ≤10 g/dl, in the pres-

ence of positive thin and/or thick blood smears at any parasitemia level. Non-anaemia (NA) 

was defined as an Hb concentration of >10 g/dl, in the presence of malaria parasites at any 

parasitemia level. Hb concentration was determined using a Cell-Dyn 1200® Haematology 

Analyser (Spectron Corporation, Burlington, WA, USA). In this study, an IRBC was con-

sidered to be a binder to CD36 if the number of IRBCs binding to CD36 was at least twice 

as much as the number of IRBCs binding to the control molecule, bovine serum albumin 

(BSA), observed under light microscope at 10 × magnification in 20 fields of the binding 

plate. This study was approved by both the Tanzanian and the Seattle Biomedical Research 

Institute (Seattle, WA, USA) Ethics Review Boards. 
 

Sample collection: We genotyped 155 children for the CD36 gene at the start of the follow-

up. The children were then followed for a period of 12 months from November 2003, for 

occurrence of malaria-associated anaemia. Only malaria positive blood samples were used 

in this study. Each collected sample was treated as a separate sample representing a different 

infection. Samples were collected as passive cases when a child presented with malaria. 
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Every time a sample was collected, Hb concentration was measured, and IRBCs cultured for 

binding assays. Approximately 1 ml of blood was collected by venipuncture into 10 ml 

vacutainers (Fisher Inc, USA) containing citrate phosphate dextrose (CPD) as anticoagulant, 

at a ratio of 1:10, CPD: blood. A blood drop from whole blood was placed on Whatman® 

filter paper strips (Whatman, USA) and stored at room temperature for genotyping. 
 

Parasites quantification and in vitro culture: Small volumes (5 µl) of blood were used to 

prepare a thick and thin smear for detection of malaria parasites. Slides were stained with 

Giemsa stain at pH 7.2. The number of IRBCs with asexual parasites was counted against 

2000 total red blood cells (both infected and non-infected) to obtain the percentage of IRBC. 

The infected blood was then diluted using a mixture of blood group O+ cells and AB sera 

from malaria non-immune volunteers to 3–5% IRBCs, and cultured in a complete media 

with RPMI 1640 (Gibco), 10% human sera, Pen-strep (Gibco) and Gentamycin (Gibco) for 

24 h at 37 °C, 5% CO2, humidified incubator, to allow them to develop into the mature form 

before subjected to binding assays to determine their CD36 binding phenotypes. 
 

Determination of parasite binding phenotype: Parasites (IRBCs) were allowed to develop 

into the mature form by in vitro culture before being subjected to binding assays to deter-

mine their CD36 binding phenotypes. Purified CD36 (20 µl) and BSA at a concentration of 

1 µg/ml (Sigma Chemicals Co. St Louis, USA) were placed onto a Petri dish and incubated 

overnight at 4 °C. Petri dishes were then blocked with 2% BSA for 30 min at 37 °C and 

washed three times with 1 × PBS (Dulbeco). The dishes were incubated with 5% Hematocrit 

of washed parasites for 30 min at 37 °C followed by a triple wash with PBS. Parasites on 

Petri dishes were fixed using 1% (w/v) Formaldehyde solution at room temperature for 

1 min, and then stained with 1% Giemsa stain for 1 min. The number of parasites binding 

onto each molecule in relation to those binding to BSA was determined by observing under 

light microscope at 10 × magnification in 20 fields of the binding plate. 
 

DNA extraction and PCR amplification of CD36: DNA extraction was performed using the 

Gentra DNA extraction protocol (Gentra Systems Inc, Minneapolis, USA) according to the 

manufacturer's instructions. DNA was used as 10% of the PCR reaction mix. Nested PCR 

was used throughout this experiment. The reactions were performed in 50 µl reaction tubes 

on a PTC-100 Programmable Thermal Controller (MJ Research Inc., USA). The primer 

sequences for the first PCR reaction were F: 5' ATG CTT GGC TAT TGA GT and R: 5' 

TAT CAC AAA TTA TGG TAT GGA CTG and those for the nested PCR were F: 5' CTA 

TGC TGT ATT TGA ATC CGA and R: 5' ATG GAC TGT GCT ACT GAG GTT ATT 
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CGT T. The nested primers were designed using DNAstar® software (Lasergene, Madison, 

USA). Distilled water was included in the control reactions instead of the isolated DNA. For 

both PCR reactions, the following PCR cycle was used: a initial denaturation step of 94 °C 

for 4 min followed by 45 cycles of 94 °C denaturation for 1 min, annealing at 55 °C for 30 s 

and elongation at 68 °C for 8 min. The first PCR reactions amplified fragments of 415 bp 

whereas the nested PCR reaction amplified fragments of 212 bp. 
 

Genotyping by RFLP and agarose gel electrophoresis: The nested PCR product (20 µl) 

from each sample were placed into a 50-µl microtubes followed by 1 µl of restriction en-

zyme NdeI (BioLabs Inc, New England, USA). The mixture was incubated for 4 h at 37 °C 

and then was heated at 65 °C for 1 min to stop enzyme activity. The CD36 gene has a wild-

type NdeI restriction site, 5'-CA/TATG. This single nucleotide mutation eliminates the in-

herent restriction site. Thus, NdeI digestion of the wild-type CD36 allele gave two frag-

ments, 148 bp and 64 bp, whereas the homozygous mutant was not cut and thus was a single 

fragment of 212 bp. The heterozygous allele gave a mixture of the three fragments from the 

wild-type and the mutant allele, i.e. 212, 148 and 64 bp fragments. Restriction digestion 

products, PCR products and molecular weight markers were subjected to agarose gel elec-

trophoresis in a 3.5% (w/v) agarose gel (Sigma Chemicals Co) containing 5 µl of 10 mg/ml 

ethidium bromide (Sigma Chemicals Co). PCR products, restriction digests and molecular 

weight markers were loaded onto the wells as 1 µl of 6 × loading dye (0.2% bromophenol 

blue, 0.2% xylene cyanol, 60% glycerol and 60 mm EDTA) in 10 µl of sample, and run in 

1 × TE buffer at constant voltage of 120 V for 25–30 min. The DNA marker FX174/HinfI 

(BioLabs Inc) with fragment size range from 24 to 726 bp was used to determine the various 

band sizes for the samples. 
 

Statistical analyses: For categorical (nominal) data, chi-square correlation tests were used to 

compare expected and observed frequencies for (genotypes, binding patterns and MA) pa-

rameters using SPSS version 14.0.1 (SPSS Inc., USA) computer software. Unpaired t-test 

comparisons of means were used to compare mean Hb readings among different genotypes. 

 

Results 

Frequencies of CD36 alleles and CD36 binders: Results for CD36 genotyping and IRBC 

binding profiles are presented in Fig 1 and Table. The gel presented in Fig 1 shows an aga-

rose gel for the PCR-RFLP of genotyped CD36 gene for the CD36 T1264G mutation. Table 

1 summarizes the frequencies of different CD36 genotypes among children. Results show 

that out of the 204 genotyped children, 176 (86.3%) children had the wild-type allele, 22 
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(10.8%) children were heterozygous for the studied mutation and 6 (2.9%) children were 

homozygous for the CD36 mutation studied. 

 

 

 

 

 

 

 

 

 

Figure 1: Agarose gel showing restriction fragments for CD36 alleles. Lanes 1, 20, 21 and 

38: molecular marker with the following band size (bp) (top–bottom): 726, 713, 553, 500, 

(427, 417, 413 together), 311, 249 200, 151, 140, 118, 100, 82, 66, (48, 42, 40 together), 

and 24 bp. Lanes 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32 and 34: undigested 

nested PCR product. Lanes 3, 5, 9, 11, 13, 15, 17 19, 23, 25, 27, 29: wild-type CD36 allele 

with two bands of 148 and 64 bp. Lanes 7 and 31: heterozygous for CD36 allele with three 

bands of 212, 148 and 64 bp. Lane 35: homozygous mutant with one band of 212 bp. Lanes 

36 and 37: control samples (distilled water) digested and undigested, respectively.  
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Figure 2: Overall results for CD36- IRBC binding phenotypes. IRBC samples were either 

binders or non-binders if the number of CD36 binding IRBC were twice as much (or more) 

as the number of IRBC binding to BSA, tested on the same plate. 

 

 

 

 

 

 

 

 

Figure 3: Binding phenotypes of IRBCs isolated from different CD36 genotypes to CD36. 

The y-axis shows the number of anaemic cases from both binders and non-binder IRBCs to 

CD36. The binding phenotype was found to be statistically associated with occurrence of 
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MA among children using the Fisher's exact test (P < 0.01). MA, malarial anaemia, NA, 

non-anaemia.  

 

 

 

 

 

 

 

 

Figure 4: Mean haemoglobin (Hb) levels among different genotypes of CD36. Bars repre-

sent the mean (mean ± SE) Hb level (g/dl) for each CD36 genotype. All means were statisti-

cally different from one another (P < 0.01). 

 

Table 1:  Frequencies of CD36 genotypes and binders in each category  

 

 

 

 

 
Data presented in column A: Numbers indicate the number of children that fall in each 

genotype (Wild-type, Heterozygous and Homozygous mutant). Numbers in parentheses show 

the percentage of respective genotypes out of 204 typed children. Column B: Data in col-

umn B show the number of IRBC samples binding to CD36. Numbers in parentheses indi-

cate the respective percentage of binder IRBC samples in each genotype. 

 

  Frequency 
 A B 
 Genotype Genotype frequency (%) 
Wild-type 176 (86.3) 124 (70.5) 
Heterozygous 22 (10.8) 20 (10.8) 
Homozygous 6 (2.9) 0 (0.0) 
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Discussion and conclusions 

The absence of data that intimately defines, at the molecular level, the host–parasite inter-

face during infection with malaria parasites leaves a major gap in our understanding of the 

critical phenomena that lead to severe malaria, particularly in children. The only available 

information provides statistical associations between polymorphisms that occur in genes 

encoding host proteins used by malaria parasites as ligands of cytoadherence and severe 

malaria. Consistent with previous observations in Kenya and The Gambia [22], results from 

this study show CD36 to be the major ligand for cytoadherence of field isolates of P. falci-

parum. In line with previous findings elsewhere [25-29], we have shown in our study that 

the prevalence of CD36 deficiency in Muheza, Tanzania is (2.9%). 
 

A small proportion of IRBCs from CD36 deficient children bound to the purified CD36 

protein. Binding to CD36 has been shown to be highest when IRBC used were from chil-

dren with the wild-type CD36 allele. This association between CD36 genotypes and parasite 

adherence to CD36 in our study was found to be statistically significant. The association 

between IRBC binding phenotype and occurrence of MA provides a direct explanation that 

failure of adherence of IRBC to vascular endothelial cells may be responsible for reduced 

occurrence of MA. The findings in this study suggest that protection against MA in CD36 

deficient children is most likely to be a result of changes (absence/reduction) in IRBC ad-

herence to vascular endothelial CD36 receptors. 
 

As CD36 deficient children do not express the CD36 receptor, it is likely that CD36 defi-

ciency alters the ability of IRBCs to bind to CD36. A reduction/absence of in vivo IRBC 

adherence to CD36 may result into a reduction in the number of sequestered, agglutinating 

and rosetting IRBC and non-infected RBC, which would result to resistance to reduction of 

number of circulating erythrocytes due to parasite-induced hemolysis. This phenomenon is 

reflected as normal Hb level, and thus absence of anaemia. This is the first study that has 

linked polymorphisms in the CD36 gene, genotype-specific, IRBC CD36 binding profiles 

and MA. 
 

Apart from acting as a receptor for P. falciparum-infected IRBC, CD36 serves as an impor-

tant molecule in modulating host immunity. CD36 is expressed on endothelial cells, plate-

lets, macrophages and dendritic cells and participates in phagocytosis and lipid metabolism 

[30-36] all of which are crucial processes of life. This may partly explain the mechanisms 

by which a polymorphism that protects against a severe malarial syndrome (MA) is kept at a 

relatively low and stable frequency in the study population and elsewhere. The results of 
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this study focus on the contribution of CD36 polymorphisms to the development of MA in 

children. The deficiency of CD36 on immune cells is most likely to interfere with immune 

processes, including phagocytosis of ageing RBCs, which may have significant implications 

in terms of Hb levels, aberrant lipid metabolism, predisposition to atherosclerosis insulin 

intolerance and many other fatal conditions [33, 37, 38]. 
 

A delicate equilibrium is therefore likely to exist between the protective role of CD36 defi-

ciency and reduced CD36 adherence against MA and its predisposition to other equally fatal 

diseases. This observation calls for future studies to better explain how CD36 deficiency 

may influence host immunity, and ways in which such deficiency modulates the clinical 

outcomes of fatal syndromes. 
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General Discussion 

General discussion 

 

Interpretation of the results  

Chloroquine has been a useful antimalarial drug for decades, but parasite resistance to this 

drug has led to policy changes in most malaria-endemic countries. Tanzania, for example, 

changed its policy from chloroquine to an antifolate drug combination, sulphadoxine-

pyrimethamine (SP) for first-line treatment of uncomplicated malaria in August 2001. In 

addition, SP is used to control malaria in pregnancy: as part of antenatal care, pregnant 

women are provided with repeated curative doses of SP. Surveillance for antifolate-resistant 

parasites in the field was important to keep tracking the spread and intensity of drug resis-

tance. Monitoring drug resistance through regular exploration of gene mutations pertaining 

to drug resistance bears critical importance. Results from surveillance of SP resistance para-

site genetic markers have led to a policy change in Tanzania in late 2006 from SP as an in-

terim first-line drug to artemether-lumefantrine (Coartem). Both effective drugs and natu-

rally acquired immunity play important roles in controlling malaria. Such immunity is ac-

quired in endemic areas through continued or repeated exposure to malaria infection.  
 

In the immune defence against infection with Plasmodium falciparum, many innate factors 

were found to be involved. Genetic polymorphisms in the innate immune response of the 

host during falciparum malaria results in a partial protection against the development of 

severe disease. Thalassaemia trait, sickle cell anaemia, glucose-6-phosphate dehydrogenase 

(G6PD) deficiency may partially protect against disease. The acquired resistance, on the 

other hand, is slow to develop and the underlying immune mechanisms involved are still 

only partially understood. It is believed that acquired immunity requires repeated exposure 

to malaria infection, possibly with different variants of the parasite. In areas of stable trans-

mission, neonates are protected for the first 6 months of age by maternal antibodies, fol-

lowed by a periods of increased susceptibility during which immunity is only slowly ac-

quired. Depending on the level of transmission anti-parasite immunity appears around 10 

years of age. Adults tend to get less severe disease and parasite densities are usually lower 

than in children..  
 

A combined efficient innate and adaptive immune response is essential for limiting Plasmo-

dium falciparum multiplication in its host’s blood or at least to prevent the progression of 

infection to (severe) disease. The importance of protective immunity is evident from the fact 

that many people in endemic areas are infected yet symptom-free. This protective immunity 

can possibly be influenced by micronutrient deficiencies. Zinc plays a critical role in multi-
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ple enzyme systems that are involved in gene expression, cell division and growth, and im-

munological functions. Zinc determination in plasma is difficult to link to the zinc status in 

the individual. Supplementation with zinc and observing the response is the most reliable 

method to diagnose zinc deficiency. Based on available evidence and the guidelines for a 

survey design, zinc deficiency and low zinc status were defined as plasma zinc concentra-

tions <9.9 µmol/L and <10.7 µmol/L, respectively. Zinc deficiency has been found to result 

in an increased risk and severity of a variety of diarrhoeal diseases, acute respiratory infec-

tions and possibly malaria. We therefore hypothesized that supplementation with zinc and 

other micronutrients would boost the capacity of the immune system to brandish a protec-

tive response to falciparum malaria. To study this hypothesis, we adopted technical and con-

ceptual advances to analyse the immune capacity in vitro without the need to wait for actual 

challenging the individuals with infectious organisms. This enabled us to assess various 

immunological parameters reflecting the capacity of monocytes to mount innate immune 

response, induction of T-cell subpopulations and alterations in cytokine-mediated immune 

regulation, and alterations in malaria-specific antibodies and their isotypes in the serum. 
 

The studies described in thesis were conducted in Tanzanian preschool children, with the 

following aims: 

1. To assess the prevalence of resistance-associated mutations on dhfr (dihydrofolate 

reductace) and dhps (dihydropteroate synthase) genes of the infectious pathogen, P. 

falciparum, and their relation to the risk of drug resistance to SP. 

2. To assess the effect of nutrient deficiencies on cytokine responses of innate immu-

nity to Plasmodium falciparum. 

3. To assess the effect of nutrient deficiencies on adaptive immune responses to Plas-

modium falciparum, measured as T-cell responses to in vitro stimulation with cul-

tured Plasmodium falciparum-infected red blood cell preparations. 

4. To assess associations between markers of micronutrient status and plasma levels of 

malaria-specific immunoglobulins. 

5. To assess associations between the endothelial receptor molecule CD36 deficiency, 

Plasmodium falciperum adherence in vitro on purified CD36 molecules and anaemia 

status among children in a malaria endemic region. 
 

Mutations in the dhfr and dhps genes alter the conformational structure of some crucial en-

zymes that are involved in the synthesis of parasite DNA. SP is a drug combination that was 

designed to produce an intracellular state of folic acid deficiency so that folate-dependant 

enzymes involved in DNA synthesis and cell division are inhibited, thereby killing the para-
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site. Mutations in those genes can induce parasite resistance to SP. The field work for our 

study (January-August 2002) was conducted shortly before the formal introduction of SP as 

the first-line treatment for uncomplicated malaria (August 2002). Even so, we found that 

11% of treatments resulted in failure within 14 days of follow-up (Chapter 2). These find-

ings and subsequent reports [1-4] provide support for the decision by late 2006 of Tanzanian 

policy makers to change from SP to artemether-lumefantrine (Coartem) as the first-line anti-

malarial drug. The problem of drug resistance by the malaria parasite has been compounded 

by similar problems of resistance by the mosquito vector to insecticides used for bednet 

impregnation. Thus improving nutrition to boost immunity against malaria remains to be a 

promising control strategy in endemic areas. 
 

The findings presented in Chapter 3 show variable effects of micronutrient deficiencies on 

innate cytokine responses. Previous studies have shown the immunoregulatory potential of 

zinc [5-12]. Our results concur with previous reports that zinc deficiency is associated with 

increased production of malaria-extract induced and monocyte-derived inflammatory cyto-

kines (TNF-α and IL-1β) that can be restored through zinc supplementation [8, 11, 12]. Our 

results contradict reports, however, that deficiency in zinc resulted in a reduced production 

of TNF-α. It can be derived from these contradictory findings that zinc deficiency might be 

causing an imbalance in cytokine production [13]. This is critical in malaria because in-

creased inflammatory cytokine levels are widely associated with pathological consequences 

of the disease. The association between magnesium and innate cytokine regulation, particu-

larly in malaria, had not been studied before. In our study, we found a relative increase in 

IL-10 concentration in magnesium deficiency as compared to zinc deficiency. 
 

In Chapter 4, effects of micronutrients deficiencies are assessed on T-cell responses that, 

based on their associated cytokine profile, are indicated by type I and type II. The results 

concur with previous reports that zinc deficiency is typically associated with the production 

of signature type I cytokines, like IFN-γ, that results in a cell-mediated immune response [8, 

15]. By contrast, magnesium deficiency appeared more associated with signature type II 

cytokines, notably IL-13. IL-13 production coincides with the generation of a humoral im-

mune response [15], and is particularly associated with isotype switching from IgG to IgE 

[16-18]. This may be critical because IgE contributes to protection against malaria, but also 

to disease severity [17, 19]. Collectively, our findings indicate that deficiencies in zinc and 

magnesium may lead to an imbalance between type I and type II responses, which may be 

associated with poor protection or even pathology. Iron deficiency anaemia was found to be 

associated with variable changes in concentrations of both type I and type II cytokines, par-
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ticularly in children with malaria infection. 
 

The associations between zinc deficiency and plasma antibody responses to malaria are re-

ported in Chapter 5. Specifically, the study determined the plasma concentrations of IgM, 

total IgG, and malaria-specific IgG subclasses to provide the profile of a specific antibody 

response to malaria antigens. The malaria-specific IgG3 concentration was predominantly 

high in both zinc deficiency and zinc replete groups although the levels were relatively 

higher in zinc deficient than in zinc replete individuals. The malaria status, both in asympto-

matic and symptomatic children, was always associated with increased IgG3 concentrations, 

and the change was always associated with an age dominating in ‘older’ (3–5 yrs) as com-

pared to younger age (< 3 yrs of age). The dominance in IgG3 responses is in agreement 

with previous reports that this IgG subclass is the main antibody class conferring protection 

against malaria parasites [20-25]. We report that the association of at least one cytophilic 

with one non-cytophilic IgG subclass may be crucial in conferring protection at least in zinc 

deficiency and this association is also influenced by age. This is because at younger age the 

IgG1 and IgG4 classes were dominant and IgG2 and IgG3 were more prevalent in older 

children providing the probability of the latter to be protective [26, 27] in relatively older 

children. These suggestions needs further studies but largely reflect an imbalance in anti-

body responses due to zinc deficiency following a similar effect as previously observed in 

T-cell cytokine responses. This is not surprising as the isotype switching potential of the 

malaria-specific B-cells is largely dependent on exposure to helper T-cell derived cytokines. 

Our study specifically underscores the notion that the variation in profiles of IgG subclasses 

are the combined result of zinc deficiency, malaria status and an age < 5 yrs. These findings 

support the idea that zinc (and other micronutrients) may influence the malaria-specific im-

mune response at all steps ranging from the induction of the response to the generation of 

effector mechanisms by cells and antibodies [8, 28]. 
 

Our findings from chapters 3-5 can be presented in a model showing possible impacts of 

nutrient deficiencies on a range of immune responses to malaria parasites (figure 1). 
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Figure 1: Different points in the network of the proposed immune response to malaria para-

sites where possible effects of zinc deficiency are noticed; 1: impaired activation, phagocy-

tosis; 2: impaired killing activity; 3: decreased production of IL-2 and IL-2 receptors; 4: 

impaired MHC class II expression; 5: impaired T-cell differentiation; 6: impaired produc-

tion of anti-inflammatory cytokines by Tr cells (modified from: Stevenson & Riley [14]). 

 

Previous reports have proposed a stepwise fashion in P. falciparum-parasitized erythrocytes 

cytoadherence within the microvasculature, reflecting a synergistic activity between recep-

tors. According to Ho and White [29], parasite ligands expressed on the surface of infected 

erythrocytes interact with endothelial receptor CD36, and in synergy with intercellular adhe-

sion molecules-1 (ICAM-1), P-selectin and vascular adhesion molecule-1. Consequently, 

cytoadherence may activate intracellular signalling pathways of mediators, particularly cyto-

kines, which can influence the outcome of infection. CD36 participates in phagocytosis and 

lipid metabolism and is known to be the major endothelial receptor molecule for field iso-

lates of Plasmodium falciparum. A T1264G mutation in exon X of the gene leads to defi-

ciency of CD36. Chapter 6 explored the association between this CD36 deficiency, P. falci-
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parum in vitro adherence with purified CD36, and anaemia in children. The findings indi-

cate the protective role of CD36 deficiency against the development of malarial anaemia in 

children, which may be mediated through reduced cytoadherence of infected red blood cells 

to vascular endothelium. These findings necessitate a more focused study on the nature of 

the protective mechanisms that could be exploited and combined with malaria interventions 

to limit severe forms of malaria. 
 

From the results of this thesis, we have generated a model that represents the effects of zinc 

and magnesium deficiencies on the generation of the immune response in the course of ma-

laria infection (figure 2). In this model, we propose that following an infection with malaria, 

of the presence of a zinc deficiency can induce Th1 cell activation with subsequent produc-

tion of mainly type I signature cytokines (TNF-α, IL-12 and IFN-γ) which activate and in-

duce B-cells, in a series of events to produce antibody switching from IgM to IgG1 and 

IgG3 subclasses. IgG3 is responsible for malaria parasite clearance (Chapter 5). On the 

other hand, we hypothesise that malarial infection under conditions of magnesium defi-

ciency will lead more towards a Th2 response phenotype through the production of IL-5, IL-

10 and IL-13. IL-13 is well known for its pathological role through induction of IgG4 and 

IgE isotype switching and CD23 expression by human B cells [17-19]. In malaria, Th2 re-

sponses will induce B-cells to produce IgM switching to IgG2, IgG4 and possibly IgE. As 

discussed in Chapter 5, IgG2 may be involved in protection against malaria in association 

with IgG3, but IgG4 and IgE may be associated with the development of disease. It is im-

portant to note that while zinc deficiency showed insignificant changes in innate cytokine 

responses (Chapter 3) in the absence of infection but a high cytokine response in malaria 

infection, magnesium deficiency seemed to associate with increased IL-10 levels independ-

ent of a malaria infection. 
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Figure 2: Proposed model for the effects of zinc and magnesium deficiencies on immune 

responses in the course of infection by the malaria parasites. Iron deficiency anaemia varia-

bly influenced production of cytokines especially depending on malaria infection status (+/-

). Dashed line: negative effects; solid line: positive effects. 

 

Intervention strategies 

Micronutrient deficiencies have been widely regarded as contributing factors to morbidity 

from infections. Several studies have indicated a reduction in disease morbidities and mor-

talities as the result of micronutrient supplementation. Nutrient deficiencies lower the resis-

tance to infection. Conversely, fever from infection speeds depletion of calories and thus 

nutrients by influencing satiety centres that control appetite in the brain. As a result, loss of 

appetite and other symptoms (e.g. weakness, nausea and mouth lesions) limit the ability to 

eat. Programmes that prevent or control infection (e.g. immunization, improvement in hy-

giene and sanitation, safe water supply, and access to medicine and medical care) can all 

indirectly improve nutrition status. This thesis evaluated the impact that some micronutri-

ents may have on the immune response to malaria focusing on both innate and adaptive re-
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sponses. The intervention strategies should focus on precise selection of specific nutrient 

components given in combination at proper dosages and with suitable supplementation 

vehicles. Preschool children are the primary beneficiaries from such supplementation, but 

one of the main operational problems is that infants and toddlers have problems with swal-

lowing tablets or capsules that are conventionally used to supplement minerals and vita-

mins. The International Research on Infant Supplementation (IRIS) initiative has been 

evaluating newly created supplementation vehicles in the form of chewable tablet-cookies 

and nutrient-dense spreads suitable for use in tropical environments. The efficacy, safety 

and acceptability is being evaluated in populations of children where this study was carried 

and the initial results are promising. Another possibility is the breeding and dissemination 

of new staple crop varieties with high concentrations of micronutrients. This has the poten-

tial to create an entirely new, safe, low-cost and self-sustaining approach to deliver micro-

nutrients to poor farmer families that are difficult to reach through alternative approaches. 

Biofortification focusing on single nutrients or at most a few nutrients will be rewarding 

especially those which have shown potential impacts on the immune response to malaria as 

reported in this thesis. Malaria vaccine programmes should consider incorporating at least 

few micronutrients that have shown the potential to boost the immune response to malaria, 

like zinc, and to strengthen protection against the manifestation of  clinical disease. 
 

Potential challenges for micronutrient interventions 

Nearly half of the world’s population suffers from deficiencies in vitamins and minerals. 

Development of effective strategies for increasing the intake of micronutrients by people, 

most of them being the poor, bears a critical importance. The concern is how to produce 

strategies that are cost effective, acceptable and the most likely to succeed. Distribution of 

dietary supplements can be very efficacious in the short term. This approach may be diffi-

cult to sustain, however, because of poor adherence to supplementation, particularly if sup-

plements cause unpleasant side effects, cost, and difficulties in the distribution of supple-

ments. The best strategy would thus be fortification of staple foods with vitamins and min-

erals. This has been used and has proven to be successful in many developed countries; it 

can be used also in developing countries but can only be used with centrally processed 

foods and probably has limited impact in rural self-sustaining populations. Another strat-

egy could be the use of nutritionally enhanced staple food crops through conventional 

breeding or genetic engineering (‘biofortification’). These strategies could be very reward-

ing but may require relatively high initial capital investments. The main potential chal-

lenge is the acceptance of biofortified foods. Genetically modified foods have been facing 

wide spread problems of ethical and public acceptance. There have also been concerns that 
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genetically modified foods can cause allergic reactions or other health hazards. Community 

education and sound scientific advice to policy authorities is needed to clear misconceptions 

and to promote the use of these promising approaches.   
 

Potential challenges from parasite and vectors genetic factors 

Several host and parasite genetic factors will determine the fate of malaria infection and its 

consequences. Drug resistance of the parasite has been critical in malaria control. In addi-

tion, the extensive diversity in parasite surface proteins, which are the targets for the induc-

tion of the protective immune responses, and this combination proved to be catastrophic for 

malaria control. Malarial parasites are capable of evading the induction of a protective im-

munity by displaying an unprecedented level of antigenic variation, and in addition have 

developed several specific genetic mutations that confer resistance to the employed antima-

larial drugs. Integrated disease control is furthermore hindered by the resistance of Anophe-

les gambiae – the most important malaria vector in Africa – to commonly used insecticides, 

the inability of transgenic mosquitoes to compete under field condition and the ban of previ-

ously effective insecticide (DDT). In this context, the strengthened immune response to ma-

laria through micronutrient supplementation could still be a preferable potential strategy 

particularly in poor communities. Our findings show potential associations between nutrient 

deficiencies and cytokine responses although they lack sufficient evidence to warrant devel-

opment of public health interventions as a strategical measure to improve body’s immune 

defence as yet. However, the study provides insights for further research that can bring this 

goal within reach. More large scale dietary intervention studies at the community level can 

substantiate and elaborate on the findings described in this thesis. 
 

Potential challenges from host genetic factors 

An emerging challenge in chapter 3 is the IL-12B gene promoter polymorphisms that have 

been detected in Tanzania, and that have been reported to be associated with low IL-12 pro-

duction and increased malaria mortalities in children [33]. Suboptimal levels of IL-12 in 

early phases of infection may result in delayed or reduced triggers of subsequent cellular 

responses to infection. These polymorphisms may underestimate the real IL-12 cytokine 

response that could be expected under normal conditions. With the results of chapter 5, the 

recently reported ethnicity difference in malaria-specific antibody subclasses [27] poses a 

challenge on the variability in the response to malaria that can be expected in the population. 

This is in addition to the differences due to micronutrient deficiencies. Some genetic poly-

morphisms like those occurring in TNF-α and TLR-genes are challenging the potency of the 

immunological reactions. For example, it has been recently reported that single nucleotide 
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polymorphism haplotypes of TNF-α genes will result into significantly higher plasma levels 

of TNF-α [34]. Strong TNF-α responses have furthermore been associated with intestinal 

blockade of iron absorption leading to its systemic deficiency. On the other hand, the re-

ported TLR-4-mediated response to malaria in vivo and the polymorphisms on the TLR-4 

genes and their association with severe disease [35] are potential challenges to intervention 

programs aimed at correcting such nutrient deficiencies. Research efforts should be directed 

to address these challenges together with possible contribution of Th17 cells that produce a 

potential inflammatory cytokine IL-17 that may also contribute to malaria severity in en-

demic countries. 
 

Conclusion 

Despite the variable effects of micronutrients on several parameters of the immune response 

to malaria, the findings from all chapters in this thesis, add to our current knowledge of how 

useful micronutrient supplementation can become part of malaria control programs. In the 

face of the prevailing malaria parasite resistance potential to conventional antimalarial 

drugs, and given the potential development of protective immunity in endemic areas, the use 

of micronutrients supplementation may become an option for prevention, especially in 

young children.  
 

Recommendations for future research 

The potential effects of zinc and magnesium in boosting effective malaria-specific immune 

response as shown in Chapters 3 – 5 may help poor communities to prevent malaria. How-

ever, large scale dietary intervention trials are needed to confirm the medical importance of 

the findings that zinc deficiency and possibly magnesium, influence the balance in the pro-

duction of crucial cytokines that play a role in limiting the dangers of malaria. Focusing on 

supplementation trials may be rewarding in providing sufficient evidence for policy changes 

towards complementary strategies for malaria control programs, but more emphasis should 

be placed on elucidating the underlying mechanisms by which micronutrients interact with 

or promote the development of effective innate and adaptive responses. In addition, African 

countries should support the development of research facilities so that most of advanced 

immunological researches can be near the field, where malaria occurs. 
 

Food fortification of staple foods with vitamins and minerals, particularly those found to be 

deficient, should ideally, be implemented in developing countries. Lay people should be 

educated about the advantages of such programs, not only because they may improve the 

nutritional quality of foods but also because they may provide protection from malaria. Ac-
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ceptance of nutritionally enhanced staple food crops through genetic engineering has been 

debated among scientists and lay people. Sufficient evidence and clarification, will be re-

warding if focused on populations in need. Fortification of locally acceptable foods, and 

dietary modification to consume greater amounts of animal products and less phytates may 

contribute to better zinc and iron nutritional status. Focused researches on improving or de-

signing the best supplementation vehicles should be sought to suit children, because these 

are at highest risk of malaria and other infectious diseases. With expected goals clearly ex-

plained to the community in need of the service, whatever useful strategy will hopefully be 

acceptable.  
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This thesis aimed at investigating the role of genetic and nutritional factors that affect the 

immune response to malaria in Tanzanian children. The introductory chapter (Chapter 1) 

reviews the importance of nutritional deficiencies, particularly of zinc, and presents the hy-

pothesis that such deficiencies lead to impaired immunity and contribute to the burden of 

malaria. The chapter also describes current efforts to prevent malaria through intermittent 

preventive treatment, both in infants (IPTi) and pregnant women (IPTp). Sulfadoxine-

pyrimethamine is still used for first-line treatment of uncomplicated malaria, or, in many 

countries, to prevent malaria and anaemia in pregnancy. In malaria endemic areas, develop-

ment of resistance to previously valuable antimalarial drugs has been continuously reported 

for decades. Thus our initial longitudinal study aimed at measuring the prevalence of resis-

tance-associated mutations on dihydrofolate reductase (DHFR) and dihydropteroate syn-

thase (DHPS) genes (dhfr and dhps) that confer parasite resistance to sulphadoxine-

pyrimethamine (SP) that was used as an interim antimalarial drug after chloroquine resis-

tance. Although SP resistance-associated point mutations were highly prevalent, we ob-

served an adequate parasite response to SP (Chapter 2). We speculated that the impact of 

the dhfr and dhps mutations on SP resistance may be dependent at least in part on the pro-

tective immunity that has developed in response to frequent exposure to infection and may 

be weighed down by host immunity in endemic areas and thus impacts in the continued use 

of the drug for treatment of malaria. The impact of other drugs with similar mechanisms of 

action used as antibiotics in selecting mutations responsible for SP resistance needs there-

fore to be studied for their modulating activity of the immune response. These findings un-

derscore the relevance to further study the crucial involvement of the immune system in the 

development of protection against malaria but also affecting the efficacy of treatment mo-

dalities of malaria in various African conditions. 
 

In the subsequent cross-sectional studies, we assessed the effect of deficiencies of zinc and 

magnesium as well as iron deficiency anaemia on malaria-specific cytokine responses in-

dicative of innate immunity to Plasmodium falciparum (Chapter 3). In this study, we used 

Plasmodium falciparum-parasitised red blood cells (pRBCs) as antigens for in vitro stimula-

tion of peripheral blood mononuclear cells (PBMCs). Cytokines were measured in the su-

pernatant of cultured PBMCs after 24 hours of stimulation. Zinc deficiency was associated 

with a marked increase in monocyte-derived TNF-α concentration in children with malarial 

infection but not in their uninfected peers. In children with malarial infection, iron defi-

ciency anaemia was associated with elevated concentrations of TNF-α, whereas magnesium 

deficiency in children without malaria seemed to be associated with increased concentra-

tions of IL-10. Our findings reflected plasticity in cytokine profiles of monocytes reacting to 
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malaria infection under conditions of different nutrient deficiencies. Following the observa-

tion of the variable impact of micronutrients on innate cytokines, we evaluated the profile of 

both type I and type II cytokines and whether they were influenced by nutritional and ma-

laria status (Chapter 4). The cytokine measurements were performed at day 7 of stimulation 

anticipating that this timing was optimal for measuring effects on these cytokines mainly 

derived from activated T-cells. The results indicated a variable influence of nutrient defi-

ciencies on increased cytokine response with zinc deficiency and iron deficiency anemia 

having greater impact on type I and magnesium deficiency on type II cytokines. The subse-

quent study evaluated the plasma levels of naturally acquired antimalarial antibodies of vari-

ous IgG subclasses plus the total IgG and IgM levels and whether they were associated with 

zinc deficiency based on preceding chapters (Chapter 5). The results indicated a high vari-

ability in antibody levels with zinc deficiency, varying with age of the affected child. IgG3 

appeared to be predominant across all age subgroups within < 5 yrs aged children providing 

clues that IgG3 might confer immune protection to malaria under conditions of zinc defi-

ciency. Chapter 6 explored the association between CD36 deficiency, P. falciparum in vi-

tro adherence on purified CD36 and anemia in children. CD36 is a receptor that occurs on 

the surface of activated immune cells and vascular endothelial cells and participates in 

phagocytosis and lipid metabolism. We hypothesized that it could play a fundamental role in 

cytoadherence of erythrocytes that are parasitized by Plasmodium. Our results showed that 

CD36 deficiency was associated with protection against the development of malarial anemia 

in children and that it may be mediated through reduced cytoadherence of infected red blood 

cells to vascular endothelium.  
 

These studies demonstrate that despite antimalarial drug resistance, there is a potential for 

optimizing the immunological protective capacity in the population to confer parasite clear-

ance that can be variably influenced by micronutrient status. Improving nutritional status in 

this population could be rewarding not only to increase protection to malaria but possibly 

also to other infections. 
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In dit proefschrift worden de bijdragen van genetische en nutritionele factoren onderzocht 

op hun vermogen de immuunrespons tegen Plasmodium falciperum malaria in Tanzaniaanse 

kinderen te beïnvloeden. Het inleidende hoofdstuk (Hoofdstuk 1) word teen overzicht gege-

ven van het belang van dieet gebonden nutritionele deficiënties, in het bijzonder van zink, 

en wordt de hypothese ontwikkeld dat dergelijke deficiënties leiden tot verstoorde immuni-

teit die bijdraagt aan de ziektelast van malaria infecties. In dit hoofdstuk worden eveneens 

de huidige vormen van therapeutische interventies beschreven via zogenaamde intermitte-

rende preventieve behandeling bij zowel jonge kinderen (IPTi) als zwangere vrouwen 

(IPTp). Sulfadoxine-pyrimethamine wordt nog steeds in vele landen gebruikt als eerstelijns 

behandeling van ongecompliceerde malaria of om malaria en daaraan geassocieerde bloed-

armoede (anemie) tijdens de zwangerschap te voorkomen. In endemische malariagebieden 

wordt al gedurende vele jaren het probleem gerapporteerd van opkomende resistentie ont-

wikkeling tegen voorheen goed werkende antimalaria medicatie. In onze eerste longitudina-

le studie werd de prevalentie bepaald van resistentie geassocieerde mutaties in de genen die 

coderen voor dihydrofolate reductase (DHFR) en dihydropteroate synthase (DHPS) (dhfr 

and dhps) en die de parasieten resistentie bepalen tegen sulphadoxine-pyrimethamine (SP) 

dat gebruikt werd als interim antimalaria medicatie na de ontwikkeling van resistentie tegen 

chloroquine. Ofschoon aan SP resistentie geassocieerde puntmutaties veelvuldig voorkwa-

men vonden we dat de parasiet een adequate respons ontwikkelde tegen SP (Hoofdstuk 2). 

Wij speculeren dat het belang van de dhfr en dhps mutaties bij de ontwikkeling van SP re-

sistentie (gedeeltelijk) berust op de beschermende immuniteit die in respons op veelvuldige 

blootstelling aan infectie optreedt op de jonge kinderleeftijd. Tegelijkertijd wordt deze be-

schermende immuniteit in endemische gebieden onderdrukt en maakt daarmee het continue 

gebruik van deze behandeling van malaria met SP noodzakelijk. Het belang van andere me-

dicatie met vergelijkbare werkingsmechanismen als antibioticum om mutaties te selecteren 

die verantwoordelijk zijn voor SP resistentie dient daarom onderzocht te worden op het ver-

mogen de beschermende immuunrespons te moduleren. Deze bevindingen onderstrepen het 

belang om de cruciale rol van het immuunsysteem nader te onderzoeken voor het opwekken 

van bescherming tegen malaria maar ook de beïnvloeding van de effectiviteit van de behan-

deling van malaria onder condities in Afrika. 
 

In de hierop volgende cross-sectionele studies hebben wij het effect onderzocht van zink- en 

magnesiumdeficiëntie in combinatie met ijzer deficiëntie anemie op de malaria-specifiek 

geïnduceerde cytokinenresponsen die indicatief zijn voor de aangeboren immuniteit tegen 

Plasmodium falciperum infectie (Hoofdstuk 3). In deze studie hebben we Plasmodium fal-

ciparum-geparasiteerde rode bloed cellen (pRBCs) als antigeen gebruikt voor de in vitro 
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stimulatie van perifere bloed mononucleaire cellen (PBMCs) van jonge kinderen. De cytoki-

nes werden gemeten in het kweeksupernatant van PBMCs na 24 uur stimulatie. Zink defici-

entie bleek geassocieerd aan een sterke stijging in het van monocyten afkomstige cytokine 

TNF-α bij kinderen met een malaria infectie maar niet bij kinderen zonder deze infectie. Bij 

kinderen met een malaria infectie bleek ijzer deficiëntie anemie geassocieerd aan een ver-

hoogde concentratie TNF-a, terwijl magnesium deficiëntie in kinderen zonder malaria infec-

tie geassocieerd bleek te zijn aan verhoogde productie van het anti-inflammatoire cytokine 

IL-10. Onze bevindingen reflecteren de plasticiteit in de cytokinenprofielen van monocyten 

die verschillend reageren op malaria infectie afhankelijk van de nutriënt deficiëntie van het 

desbetreffende kind. Na het vaststellen van de variabele invloed van micronutriënten op de 

productie van cytokines die de innate immuniteit reflecteren, hebben wij het profiel van type 

I (IFN-γ) en type II (IL-5, IL-13) cytokines en de invloed daarop van malaria infectie en 

micronutriënt status onderzocht (Hoofdstuk 4). De cytokinenmetingen werden uitgevoerd 

na 7 dagen stimulatie waarbij de effecten op de uitgroei en differentiatie van geactiveerde T-

cellen waarneembaar zijn. De resultaten geven aan dat er een variabele invloed is van mi-

cronutriënt deficiëntie op de cytokinenproductie waarbij zinkdeficiëntie en ijzer deficiëntie 

anemie leiden tot een verhoogde productie van type I cytokines, terwijl magnesiumdeficiën-

tie de productie van type II cytokines verhoogt. Vervolgens hebben wij de plasmaspiegels 

van verschillende typen malaria-specifieke antistoffen bepaald die via natuurlijk voorko-

mende infecties waren gevormd. Speciaal is er gekeken naar malariaspecifieke antistoffen 

van de IgG subklassen en naar totale IgG en IgM antistoffen en of deze geassocieerd waren 

aan zink deficiëntie gebaseerd op voorgaande onderzoeken (Hoofdstuk 5). De resultaten 

gaven aan dat zinkdeficiëntie leidt tot een grote mate van variabiliteit in antistofspiegels bij 

de individuele kinderen en dat deze spiegels afhankelijk blijken te zijn van de leeftijd van 

het kind. Malariaspecifieke antistoffen van de IgG3 klasse waren dominant in alle leeftijds-

groepen van kinderen jonger dan 5 jaar waarbij aanwijzingen werden verkregen dat IgG3 

antistoffen immuunbescherming tegen malaria kunnen geven onder zinkdeficiëntie condi-

ties. In Hoofdstuk 6 hebben wij de associatie onderzocht tussen CD36 deficiëntie, P. falci-

parum in vitro adherentie aan gezuiverd CD36 en het optreden van ijzer deficiëntieanemie 

bij jonge kinderen. CD36 is een receptor die voorkomt op het oppervlak van geactiveerde 

immuuncellen (zoals dendritische cellen en macrofagen), erytrocyten en vasculaire en-

dotheelcellen en die participeert in fagocytose en lipide metabolisme. Wij onderzochten de 

hypothese dat CD36 een fundamentele rol zou kunnen spelen in cytoadherentie van erytro-

cyten die geïnfecteerd zijn met Plasmodium. Onze resultaten toonden aan dat CD36 defici-

entie geassocieerd was aan bescherming tegen de ontwikkeling van malaria geïnduceerde 
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anemie en dat dit mogelijk een gevolg was van gereduceerde cytoadherentie van geïnfec-

teerde rode bloedcellen aan het vasculaire endotheel.  
 

Deze studie laat zien dat er in de populatie van Afrikaanse kinderen een grote potentie aan-

wezig is om via optimalisatie van de immunologische bescherming tegen infectie met Plas-

modium falciperum malaria parasieten te verkrijgen ondanks het voorkomen van resistentie 

van de parasiet tegen de gebruikte geneesmiddelen en dat deze potentie verschillend beïn-

vloed wordt door de micronutriënt status van het individuele kind. Het verbeteren van de 

voedingsstatus van deze populatie kan daarmee de aanwezige beschermende immuniteit 

tegen malaria infectie versterken en wellicht ook tegen andere infecties.  
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